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Abstract

Electronic, optical, and phononic properties of graphene, boron nitride, and related
materials

by

Cheol Hwan Park
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Steven G. Louie, Chair

Since the isolation of graphene, a single layer of carbon atoms in honeycomb structure, in
2004, this new material has gotten huge attention from communities in physics, chemistry,
materials science, and engineering not only because the charge carriers of graphene show
neutrino-like linear energy dispersion as well as chiral behavior near the Dirac point but
also because graphene is considered to be a promising candidate for nano- and micro-scale
electronic and spintronic device applications.

On the other hand, a hexagonal sheet of boron nitride has a similar honeycomb-like
structure, except that the two different sublattices are occupied by boron and nitrogen
atoms, respectively. Notwithstanding its structural similarity to graphene, a hexagonal boron
nitride sheet is an insulator with a large bandgap and is considered to be useful for optical
applications such as ultra-violet lasers.

In this work, we investigate the electronic, optical, and vibrational properties of graphene,
hexagonal boron nitride, and related materials such as nanotubes or nanoribbons from first-
principles calculations as well as from simple model considerations.

In the first chapter, we briefly review the methodologies used in our work such as density
functional theory, the GW approximation, the Bethe-Salpeter equation method, and density
functional perturbation theory.

In the following four chapters (2–5), we discuss the calculated spectral features of graphene
and compare the results mainly with recent angle-resolved photoemission experiments. In
our work, we have explicitly taken into account the effects of electron-electron and electron-
phonon interactions from first-principles. Our calculations reproduce some of the key ex-
perimental observations related to many-body effects, including a mismatch between the
upper and lower halves of the Dirac cone and the non-trivial energy dependence of carrier
linewidths on the binding energy.

The following three chapters (6–8) are on bilayer graphene. In chapters 6 and 7, we
discuss the effects of many-body interactions on the dynamics of electrons and phonons
in bilayer graphene, in similar ways as in chapters 2 to 5. We show that the interlayer
interaction between the two graphene layers change electron-phonon and electron-electron
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interactions. In chapter 8, we discuss the excitons in biased bilayer graphene. We show that
bound excitons qualitatively change the optical response of this novel material.

In the following four chapters (9–12), we discuss the interesting behaviors of charge car-
riers in graphene subjected to an external periodic potential. For example, we show that the
carrier group velocity is anisotropically reduced and that, under certain conditions, electrons
can be supercollimated. We also discuss newly generated massless Dirac fermions in graphene
superlattices as well as their signatures in quantum Hall conductance measurements.

In chapter 13, we discuss the possibility of generating massless Dirac fermions in a con-
ventional two-dimensional electron gas with an external periodic potential, i. e. , a way of
making artificial graphene.

In the last four chapters, we discuss several different aspects of boron nitride compounds.
In chapter 14, we present the calculated electronic energy bandgaps and effective masses of
boron nitride nanoribbons and their changes in response to a transverse electric field. In
chapters 15 and 16, we discuss excitons and optical response of boron nitride nanotubes and
bulk hexagonal boron nitride, respectively. Finally, in the last chapter, we discuss a novel
behavior of electric dipole moment reversal upon hydrogen passivation in boron nitride as
well as other III-V or II-VI compound nanostructures.
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the highest level of doping in Fig. 3 of Ref. [2] are shown as the solid line [3].
Both the experimental and the calculated results are along the KM and the
KΓ direction of the Brillouin zone when the electron energy is above and below
ED, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Diagrams included in the calculated electron self-energy Σ. a, Elec-
tron self-energy Σe−e = iG0W0 arising from e-e interactions within the G0W0

approximation. G0 is the Green’s function for bare electrons and W0 is the
screened Coulomb interaction. b, Self-energy Σe−ph = ig2G0D arising from
e-ph interactions within the Migdal approximation. Here, g is the e-ph inter-
action matrix element and D is the dressed phonon propagator. . . . . . . . 37

5.2 Simulated ARPES spectra, energy distribution curves (EDCs) and
quasiparticle band structures of suspended graphene including e-e
and e-ph interactions. a, Simulated ARPES spectrum of pristine graphene
at T = 25 K taken along the Brillouin zone segment indicated in the inset of
c. b, EDCs extracted from a. The central red curve corresponds to k = 0
(the K point). c, Quasiparticle band structure (solid red curve) obtained by
connecting the peak positions of EDCs in b. d to f, and g to i, Same quantities
as in a to c for n-doped graphene with charge densities of 4.5 × 1013 cm−2

and 1.2×1014 cm−2, respectively. The dashed blue lines in c, f, and i indicate
the asymptotes of the linear bands far from the Dirac point. The energy
difference between the upper and the lower asymptotes close to the Dirac
point is indicated by ∆kink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Mismatch between the upper and lower bands of the Dirac cone.
Calculated energy difference ∆kink between the asymptotic lines close to the
Dirac point of the upper and the lower linear bands vs. doping for suspended
graphene (squares) and for graphene with a model dielectric screening (circles)
corresponding to the SiC substrate (see Methods). The lines are a guide to
the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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5.4 Momentum distribution curves (MDCs) of graphene and associated
linewidths. a, Simulated ARPES spectrum of suspended n-doped graphene,
for a doping level corresponding to a charge density of 4.5× 1013 cm−2, taken
along the Brillouin zone segment indicated in the inset of c. b, MDCs obtained
from a. c, Width of the MDCs obtained from b for suspended graphene (red
curve) and that for graphene with a model dielectric screening corresponding
to the SiC substrate (blue curve). The measured widths of the MDCs [4] are
shown for comparison (black curve). . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Quasiparticle velocity in graphene. The slopes (quasiparticle velocity) of
the linear bands far from the Dirac point (indicated by the blue dashed lines
in Figs. 5.1c, 5.1f, and 5.1i) vs. doping. Squares and circles are calculated
quantities for suspended graphene and for graphene with a model silicon car-
bide (SiC) dielectric screening, respectively. Triangles are DFT results within
the LDA. The lines are a guide to the eye. . . . . . . . . . . . . . . . . . . . 46

5.6 Calculated dielectric functions of SiC versus energy. Macroscopic di-
electric function of 3C-SiC εSiC

0,0 (q, ω) versus energy ω. Quantities for different
wavevectors are shown in different colors. Solid lines and dashed lines show
quantities for the wavevector q in two representative directions in wavevector
space: Γ-X and Γ-L, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 (a) Ball-and-stick model of bilayer graphene (Bernal stacking). (b) Brillouin
zone of graphene and bilayer graphene. (c) The electron-phonon coupling
strength λnk in bilayer graphene versus changing Fermi level EF calculated
along the path (double-head arrow) shown in (b). Solid and dashed red lines
correspond to λnk of the individual blue and red parabolic band in the inset,
respectively. The Fermi level of neutral bilayer graphene is set at zero. (d) As
in (c), for each of the two electronic bands of graphite touching at the K point
(solid blue line). In (c) and (d), we show for comparison the e-ph coupling
strength in graphene [5] (indicated by the dash-dotted line). . . . . . . . . . 53
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6.2 (a) The electronic energy dispersion and the Fermi level of hole-doped graphene.
(b) The Fermi surface (contours) and the Brillouin zone (dashed hexagon)
of hole-doped graphene. The black dots represent the wavevector k of the
electronic state considered on the Fermi surface. (c) The phonon dispersion
curves of undoped (dashed lines) and hole-doped (solid lines) graphene versus
the wavevector q along the solid green line shown in (b). The vertical lines
indicate the phonon wavevectors q such that the final electronic state with
wavevector k + q is also on the Fermi surface. The size of the disks on top
of the phonon dispersions is proportional to the contribution of that phonon
mode to λnk. (d) to (f): Same quantities as in (a) to (c) for hole-doped bi-
layer graphene but including also interband coupling. The inset of (f) shows
one of the three modes responsible for the enhancement of the e-ph coupling
strength in bilayer graphene. The color (red and blue) and the type (solid
and dashed) of the curves in (c) and (f) corresponds to the phonon branches
in Figs. 6.4(a) and 6.4(b) and 6.4(c) and 6.4(d), respectively. . . . . . . . . . 54

6.3 (a) Phonon linewidth in doped graphene for the E2g mode at the Γ point (solid
line) and the A′

1 mode at the K point (dashed line) versus the Fermi level
EF. The filled squares are the experimental data from Ref. [6] downshifted
by 0.6 meV (to account for a uniform background). (b) Phonon linewidth
in bilayer graphene for the Eg mode (solid line) and the Eu mode (dash-
dotted line) at the Γ point, and for the E mode at the K point (dashed line).
The insets show one of each of the two doubly-degenerate zone-center modes
considered here. The filled squares are the experimental data from Ref. [7]
downshifted by 0.6 meV (to account for a uniform background). . . . . . . . 56

6.4 (a), (b): The phonon linewidth of the highest energy branches in undoped
[(a)] and hole-doped [(b)] graphene. The color code (red and blue) and the
type (solid and dashed) of the line correspond to the phonon branches shown
in Fig. 6.2(c). (c), (d): Phonon linewidth of the second highest doubly-
degenerate phonon branches at the Γ point in undoped [(c)] and hole-doped
[(d)] bilayer graphene. The color code (red and blue) and the type (solid and
dashed) of the line corresponds to the phonon branches shown in Fig. 6.2(f).
The inset in each panel shows a magnified view of the region near the Γ point,
where the symbols represent calculated data points and the lines are a guide
to the eye. The vertical dashed line in the inset specifies the characteristic
wavevector k0 (see text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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7.1 Calculated inelastic scattering rate of charge carriers arising from e-e interac-
tions, τ−1

nk,e−e
, versus the LDA energy εnk. The solid, dashed, and dash-dotted

lines are results, calculated along the reciprocal space segment shown in the in-
set of each panel, for the inner parabolic bands and outer parabolic bands in bi-
layer graphene and for the linear bands in graphene, respectively. (a)-(d) and
(e)-(h) are results for undoped system and n-doped system where the Fermi
level is 1.0 eV above the Dirac point energy ED, respectively. (a), (b), (e), and
(f) are results for suspended systems, whereas (c), (d), (g), and (h) are results
for systems with a background dielectric constant of εb = (1 + εSiC)/2 = 3.8.
The Fermi level and ED are indicated by vertical lines. . . . . . . . . . . . . 62

7.2 Calculated inelastic scattering rate of charge carriers arising from e-ph inter-
actions, τ−1

nk,e−ph, versus the LDA energy εnk. The solid, dashed, and dash-
dotted lines are results, calculated along the KΓ reciprocal space segment, for
the inner parabolic bands and outer parabolic bands in bilayer graphene and
for the linear bands in graphene, respectively. (a) and (b) are results for un-
doped system and n-doped system where the Fermi level is 1.0 eV above the
Dirac point energy ED, respectively. The Fermi level and ED are indicated by
vertical lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1 (a) Schematic diagram showing the structure of pristine bilayer graphene
whose unit cell is composed of four different sublattices (A, B, A′, and B′).
(b) Schematic bandstructure of pristine bilayer graphene (origin is the Dirac
point). Solid blue and dashed red lines represent valence bands and conduc-
tion bands, respectively. (c) and (d): Same schematic diagrams as in (a) and
(b) for bilayer graphene under a displacement field D generated through a
double-gate. In (d), ∆ is the energy bandgap and vertical arrows represent
interband transitions responsible for the formation of excitons. (e) Schematic
diagram showing the probability density that a photo-excited electron is found
at re when the hole (blue empty circle) is fixed at the origin, |Φ(re, rh = 0)|2
(see text). For visualization purposes, we show the quantities in a vertical
plane that includes the hole. The fake thickness of the plotted profile (red)
is proportional to the probability density. The interlayer distance d is ex-
tremely exaggerated in (e). The size of the exciton Reh is much larger than d
[Fig. 8.4(b)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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8.2 (a) Calculated free pairexcitation dispersion (Eck − Evk versus k) and ex-
citon levels of a BBG with an external electrostatic potential between the
two graphene layers Vext = eDd equal to 0.56 eV (Fig. 8.1). Thick red lines
and thin blue lines show optically active (bright) and inactive (dark) exciton
levels, respectively, for incident light with in-plane polarization. The exciton
Xn,m (X ′

n,−m) formed by pairs near the K (K′) point is denoted by its radial
quantum number n, angular momentum quantum number m (see text), and
binding energy Eb. Each exciton level is four-fold degenerate due to the spin
and valley degeneracy (see text). There are many other higher-energy bound
excitons not shown here whose energy is below the bandgap. (b) The squared
amplitude of the lowest-energy exciton [exciton X0,0 in (a)] in momentum

space
∣∣AS

cvk

∣∣2. (c) Squared wavefunction in real space of the corresponding
exciton in (b). The plotted quantity is the probability density |Φ(re, rh = 0)|2
of finding an electron at re given that the hole is fixed at one of the carbon
atoms (at the center of the figure) in sublattice B′ (Fig. 8.1). (d) Real part
of the exciton wavefunction Re Φ(re, rh = 0) for the corresponding exciton in
(b). (e)-(g), (h)-(j), and (k)-(m): Similar quantities as in (b)-(d) for the first,
the second and the third bright excitons [excitons X0,−1, X1,−1, and X2,−1 in
(a), respectively]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3 (a) Calculated absorbance spectra of BBG (with an arbitrary energy broad-
ening of 5 meV and in-plane polarization) where Vext = eDd (see Fig. 8.1)
is 0.22 eV. Results with (blue or solid line) and without (red or dashed line)
interaction effects are shown. (b) Wavefunction of the lowest-energy bright
exciton (X0,−1 or X ′

0,1) that forms the dominant peak in the absorbance spec-
trum. The plotted quantity is the probability density |Φ(re, rh = 0)|2 of find-
ing an electron at re given that the hole is fixed at one of the carbon atoms
(at the center of the figure) in sublattice B′ (see Fig. 8.1). (c) and (d), (e)
and (f), and (g) and (h): Same quantities as in (a) and (b) for Vext = 0.39 eV,
0.56 eV, and 0.90 eV, respectively. . . . . . . . . . . . . . . . . . . . . . . . 73

8.4 (a) The quasiparticle bandgap ∆QP, the optical bandgap ∆BSE, and the bind-
ing energy Eb (= ∆QP − ∆BSE) of BBG versus Vext = eDd. (b) The size
Reh, defined in Fig. 8.1(e), of the lowest-energy bright exciton (X0,−1 or X ′

0,1)
versus Vext. The line is a guide to the eye. . . . . . . . . . . . . . . . . . . . 74

8.5 The optical bandgap ∆BSE and the binding energy Eb (= ∆QP − ∆BSE) of
BBG under background screening (ǫBG = 5.7) versus Vext = eDd. Measured
data ∆Exp are taken from Ref. [8]. . . . . . . . . . . . . . . . . . . . . . . . . 75



xiv

9.1 Graphene superlattices and anisotropic Dirac cones. (a) Schematic diagram
of graphene. Inset: the Brillouin zone of graphene and Dirac cones centered
at Dirac points among which two (K and K’) are nonequivalent (left) and the
linear and isotropic energy dispersion near one of the Dirac points of charge
carriers in graphene (right). (b) One-dimensional (1D) graphene superlattice
formed by Kronig-Penney type of potential periodic along x̂ direction with
spatial period L and barrier width w. The potential is U1D in the grey regions
and zero outside. Inset: energy dispersion of charge carriers in 1D graphene
superlattice. The energy dispersion along any line in two-dimensional (2D)
wavevector space from the Dirac point is linear but with different group veloc-
ity. For a particle moving parallel to the periodic direction, the group velocity
(v‖) is not renormalized at all whereas that for a particle moving perpendicular
to the periodic direction (v⊥) it is reduced most. (c) 2D graphene superlattice
with muffin-tin type of potential periodic along both x̂ and ŷ directions with
spatial periods Lx and Ly, respectively. The potential is U2D inside the grey
disks with diameter d and zero outside. Inset: energy dispersions of charge
carriers in 2D graphene superlattice. . . . . . . . . . . . . . . . . . . . . . . 79

9.2 Anisotropic velocity renormalization in graphene superlattices. (a) The com-
ponent of the group velocity parallel to the k vector [vk̂ ≡ v(k) · k̂ with k
measured from the Dirac point] of charge carriers in a 1D graphene superlat-
tice in units of the Fermi velocity in graphene (v0) versus the angle (θk) of
the k-vector from the periodic potential direction x̂ (solid lines) and that in
a superlattice made from a fictitious system of nonchiral fermions with prop-
erties otherwise identical to those in graphene (dashed lines). Red, green and
blue lines correspond to U1D being 0.2 eV, 0.3 eV and 0.5 eV, respectively.
(b) Similar quantities as in (a) for a rectangular 2D graphene superlattice.
Red, green and blue lines correspond to U2D being 0.3 eV, 0.5 eV and 0.7 eV,
respectively. (c) The group velocity of charge carriers in a 1D graphene su-
perlattice (solid line) with k perpendicular to the periodic direction, v⊥, in
units of v0 versus U1D (solid line) and that in a superlattice made from a
fictitious system of nonchiral fermions with properties otherwise identical to
those in graphene (dashed line). (d) v⊥ versus the potential spatial period (L)
of charge carriers in a 1D graphene superlattice. Red, green and blue lines
correspond to a fixed potential barrier height but with width (w) being 5 nm,
10 nm and 25 nm, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 81
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9.3 Energy gap at the superlattice Brillouin zone or minizone boundary of a 1D
graphene superlattice. (a) Energy of charge carriers in 1D graphene superlat-
tice versus the component of the wavevector k parallel to the periodic potential
direction (kx) at a fixed ky. Dashed vertical lines indicate minizone boundaries
(kx = ±π/L). ∆E is the energy gap at the minizone boundary for a given ky.
Red and blue lines correspond to ky being zero and 0.012 Å−1, respectively.
(b) ∆E versus ky for charge carriers in 1D graphene superlattice (solid lines)
and that in a superlattice made from a fictitious system with states without
chirality but otherwise identical to graphene (dashed lines). Red, green and
blue lines correspond to U1D being 0.1 eV, 0.3 eV and 0.5 eV, respectively. . 83

9.4 Energy dispersions and densities of states of charge carriers in graphene su-
perlattices. (a) Energy of charge carriers in 1D graphene superlattice with
U1D = 0.3 eV, L = 10 nm and w = 5 nm in the first (red and black) and
the second (blue and pink) band above the vertex of the Dirac cone versus
2D wavevector k away from the Dirac point. Minizone boundaries are at
kx = ±0.031 Å−1. Arrows indicate points on the minizone boundary where
the gap closes. (b) Density of states (DOS) of charge carriers in electron orbits
(red), open orbits (green) and hole orbits (blue) in the 1D graphene super-
lattice characterized in (a) versus the Fermi energy (EF). The origin of the
energy scale is set at the energy of the Dirac point. The DOS of each species
is the height of the corresponding colored region. Dashed black line shows
the DOS of pristine graphene for comparison. (c) Similar quantities as in (a)
for a 2D graphene superlattice with U2D = 0.3 eV, Lx = Ly = 10 nm and
d = 5 nm. (d) Similar quantities as in (b) for the 2D graphene superlattice
specified in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.5 Dependence of the velocity renormalization on the amplitude of periodic po-
tential in a 1D graphene superlattice. Square root of the difference between
the group velocity for state with k along the direction perpendicular to the
periodic direction of the potential (v⊥) and the unrenormalized one (v0) di-
vided by v0 versus the potential amplitude U1D. Solid red line and dashed blue
line are results of the full calculation and second order perturbation theory,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.6 The magnitude and the component parallel to the wavevector k of the renor-
malized group velocity in a 2D graphene superlattice. The component of the
group velocity parallel to the k vector [vk̂ ≡ v(k) · k̂ with k measured from
the Dirac point] of charge carriers in a 2D graphene superlattice (solid lines)
and the absolute value of the group velocity (dashed lines) in units of the
Fermi velocity in graphene (v0) versus the angle (θk) of the k-vector from the
periodic potential direction x̂. Red, green and blue lines correspond to the
potential amplitude U2D being 0.3 eV, 0.5 eV and 0.7 eV, respectively. Plotted
quantities are obtained from the full calculation by solving Eq. (9.4). . . . . 90
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9.7 Dependence of the energy gap at the minizone boundary on the length param-
eters of 1D graphene superlattice. (a) The energy gap ∆E between the first
and the second band at the minizone boundary versus ky for charge carriers
above (solid lines) and below (dashed lines) the energy at the Dirac point in a
1D graphene superlattice. Red, green and blue lines correspond to the spatial
period (L) being 10 nm, 15 nm and 25 nm, respectively. (b) Similar quantities
as in (a). Red, green and blue lines correspond to the potential barrier width
(w) being 2.5 nm, 5 nm and 7.5 nm, respectively. . . . . . . . . . . . . . . . 93

9.8 Fermi surfaces of a 1D graphene superlattice. (a)-(f) Fermi surfaces of 1D
graphene superlattice with U1D = 0.3 eV, L = 10 nm and w = 5 nm plotted
in the repeated zone scheme for different values of the Fermi energy (EF) with
respect to that at the Dirac point. Dashed lines are minizone boundaries. Red
and blue lines are parts coming from the first and the second band above the
Dirac point energy, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.9 Fermi surfaces of a 2D rectangular graphene superlattice. (a)-(f) Fermi sur-
faces of a 2D rectangular graphene superlattice with U2D = 0.3 eV, Lx = Ly =
10 nm and d = 5 nm plotted in the repeated zone scheme for different values
of the Fermi energy (EF) with respect to the Dirac point energy. Dashed lines
are minizone boundaries. Red lines and blue line are parts coming from the
first and the second band above the Dirac point energy, respectively. . . . . . 95

10.1 Schematic diagram showing an equi-energy contour (ellipse) with E = h̄v0k0+
h̄v0mG0/2 of the newly generated massless Dirac fermions. The quasiparticle
wavevector k, the generalized pseudospin vector (see text) c, and the group
velocity vector vg are represented by solid, dashed and dash-dotted arrows,
respectively, for graphene in an even periodic potential. . . . . . . . . . . . . 99

10.2 (a): A TGS with muffin-tin type of periodic potential with a spatial period
L. The potential is U0 inside the gray disks with diameter d and zero outside.
(b) The SBZ of a TGS. (c) The energy separation ∆E between states in
the first and the second band above the original Dirac point energy versus the

wavevector k along the path K̃M̃K̃′ in a TGS given by U0 =0.5 eV, L = 10 nm,
and d = 5 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.3 (a): Energy dispersion relation of a TGS with external potential with U0 =
0.5 eV, L = 10 nm and d = 5 nm for the first and the second band above the
original Dirac point energy as a function of wavevector k from the original
Dirac point. Arrows indicate the M̃ points of the SBZ around which new
massless Dirac fermions are generated. (b): The DOS of charge carriers in
electron orbits (bright) and hole orbits (dark) in the TGS characterized in
(a). The original Dirac point energy is set at zero. Dashed black line shows
the DOS of pristine graphene. The arrow indicates the new Dirac point energy.103



xvii

11.1 Electron energy dispersion relation in a special graphene superlattice. (a)
Schematic diagram of a Kronnig-Penney type of potential applied to graphene
with strength U0 inside the gray regions and zero outside. The lattice period
is L and the barrier width is w. (b) Schematic diagram showing the electronic
energy dispersion relations and pseudospin vectors (black arrows) in graphene.
(c) Contour plot of the first electronic band above the Dirac point energy in
pristine graphene. The energy difference between neighbouring contours is
25 meV, with the lowest contour near the origin having a value of 25 meV.
(d) The electronic energy dispersion relation E versus kx with fixed ky. Red,
green and blue lines correspond to ky = 0, 0.1 π/L and 0.2 π/L, respectively,
as indicated in (c). (e), (f) and (g) Same quantities as in (b), (c) and (d) for
the considered SGS (U0 = 0.72 eV, L = 10 nm and w = 5nm). Red and blue
arrows in (e) represent the ‘right’ and the ‘left’ pseudospin state, respectively. 106

11.2 Pseudospin collapse in a special graphene superlattice. (a) and (b) Calculated

overlap of two quasiparticle states ψ0
s,k(r) and ψ0

s′,k′(r),
∣∣〈ψ0

s′,k′|ei(k′−k)·r|ψ0
s,k

〉∣∣2,
in graphene versus θk and θk′ which are the angles between the x axis and
wavevectors k and k′ (|k| = |k′| = 0.1π/L), respectively. The overlap is shown
in a gray scale (0 in black and 1 in white). The two states are in the same
band (s′ = s) in (a) and are in different bands (s′ = −s) in (b). (c) and
(d) Same quantities as in (a) and (b) for the considered SGS (U0 = 0.72 eV,
L = 10 nm and w = 5nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.3 Special graphene superlattice as an electron supercollimator. (a), (e) and (g)
Time-integrated probability density of an electron wave packet,

∫ ∞
0

|Ψ(x, y, t)|2dt,
in graphene. The initial (t = 0) wave packet is a Gaussian localized at
the coordinates origin (middle of the left edge of each panel) |Ψ(x, y, 0)|2 ∼
exp

[
−

(
x2/2σ2

x + y2/2σ2
y

)]
where 2σx = 200 nm and 2σy = 40 nm. The

wave packet in wavevector space is set to be localized around a specific kc.
In (a), kc is set by E(kc) = E0 = h̄v0 0.1π/L = 0.02 eV and k̂c = x̂. In
(e), kc is set by E(kc) = 2E0 and k̂c = x̂. In (g), kc is set by E(kc) = E0

and k̂c = x̂/
√

2 + ŷ/
√

2. θc denotes the angle (defined with respect to the
x-direction) along which direction the intensity is maximal and ∆θ denotes
the angular spread which gives half the maximum intensity when the angle
is at θc ± ∆θ. (b), (f) and (h) Same quantities as in (a), (e) and (g) for the
considered SGS (U0 = 0.72 eV, L = 10 nm and w = 5 nm), respectively. (c)
and (d), Same quantities as in (b) for graphene superlattices corresponding
to a superlattice potential that is otherwise the same as the SGS studied but
with a period L change of ∆L/L = 5% and ∆L/L = −5%, respectively. . . . 110
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11.4 Reflection and transmission at a graphene − special graphene superlattice
interface and virtual imaging. (a) Schematic diagram showing the incident,
the reflected and the transmitted wave (the band index is set to s = 1) at
a graphene − SGS interface, with the relative amplitudes being 1, r and t,
respectively. Thick arrows represent the wavevectors of the corresponding
waves. The incidence and reflection angle is θ. (b) Reflectance R = |r|2
versus the incidence angle θ. (c) Schematic diagram showing the propagation
of electron waves in graphene − SGS − graphene geometry. Thickness of each
arrow is proportional to the actual intensity of the wave. A virtual image
(dashed disk) is formed at a place far from the actual wave source (solid disk). 112

12.1 (a) Schematic diagram of a Kronig-Penney type of potential applied to graphene
with strength U0/2 inside the gray regions and −U0/2 outside with lattice pe-
riod L and barrier width L/2. (b) Electron energy in units of εL (≡ h̄v0/L; for
example, if L = 20 nm, εL = 33 meV) versus wavevector near the Dirac point
in pristine graphene. (c) The same quantity as in (b) for a GS with U0 = 6πεL.
(d) Number of Dirac points (not including spin and valley degeneracies) in a
GS versus U0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.2 Electron energy (in units of εL = h̄v0/L) versus ky with kx = 0 in GSs shown
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12.3 Landau level energy Ei (in units of εB ≡ h̄v0/lB with lB =
√
h̄c/eB) versus

the Landau level index i (i = 0, ±1, ±2, ... ) in GSs formed with a 1D Kronig-
Penney potential for several different values of barrier height U0, with lattice
period L = 0.5lB. The LLs now have a finite width ∆E (shown not to scale
and exaggerated in the figure) arising from the ky dependence of the energy
of the electronic states in a perpendicular magnetic field [9]. Note the 3-fold
and the 5-fold degeneracies around Ei = 0 in (d) and (f), respectively. (If the
spin and valley degeneracies are considered, those become 12-fold and 20-fold,
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12.4 Hall conductivity σxy versus carrier density (with an artificial broadening for
illustration) for a 1D Kronig-Penney GS with U0 near 6πh̄v0/L (solid line) is
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12.5 (a) Schematic diagram of a sinusoidal type of potential applied to graphene
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Chapter 1

Theoretical methods

1.1 Density functional theory

1.1.1 Introduction

It is in general impossible to calculate the electronic properties of realistic systems by
solving the interacting many-electron Hamiltonian [11]:

Ĥel = − h̄

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i6=j

e2

|ri − rj|
. (1.1)

According to the density-functional theory, however, any ground-state property of a system
of many interacting electrons can be viewed as a functional of the ground state density n0(r),
a simple scalar function of the position r. The density-functional theory makes the problem
at hand tractable because one does not have to deal with the many-particle wavefunction
directly.

1.1.2 The Hohenberg-Kohn theorems

The first theorem of Hohenberg and Kohn is that for any system of interacting particles
in an external potential Vext(r), the potential Vext(r) can be determined uniquely, except
for a constant, by the ground state particle density n0(r) [12]. A direct consequence of this
theorem is that, since the Hamiltonian is uniquely determined within an arbitrary constant,
all properties of the system in principle are completely determined by the ground state
density no(r) only.

The second theorem of Hohenberg and Kohn is that for any particular Vext(r), the exact
ground state density n0(r) minimizes the universal energy functional E[n] [12]. According
to this second theorem, the functional E[n] alone is sufficient to determine the exact ground
state energy and charge density.
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However, density-functional theory does not provide a practical way to calculate the
properties of a material from the density, although it should be sufficient in principle. The
Kohn-Sham Ansatz enables this task.

1.1.3 The Kohn-Sham equation

Density functional theory is widely used today for electronic structure calculations be-
cause of the work by Kohn and Sham [13]: replacing the original many-electron problem
by an auxiliary independent-electron problem. This Ansatz assumes that the ground state
density of the original interacting system is equal to that of some non-interacting system,
which leads to independent-particle equations for the non-interacting system that are exactly
soluble.

The Kohn-Sham Ansatz has its root on two assumptions. The first assumption is that
the exact ground state density can be represented by the ground state density of an auxil-
iary system of non-interacting particles, although there are no rigorous proofs. The second
assumption is that the auxiliary Hamiltonian is chosen to have the usual kinetic energy op-
erator −h̄2∇̂2/2me and an effective local potential potential V σ

eff(r) acting on an electron at
r with spin σ.

The Kohn-Sham approach to obtain the equation for auxiliary non-interacting particles
starts with writing down the ground state energy functional as

EKS = T0[n] +

∫
drVext(r)n(r) + EHartree + EII + Exc[n] . (1.2)

Here, n(r) is the ground state charge density given by sums of squares of N = N↑ + N↓

lowest-energy orbitals

n(r) =
∑

σ

Nσ∑

i

|ψσ
i (r)|2 , (1.3)

T0[n] is the non-interacting kinetic energy given by

T0 = − h̄2

2me

∑

σ

∑

i

〈ψσ
i |∇2 |ψσ

i 〉 (1.4)

EHartree[n] is the Hartree energy, EII is the interaction energy between the nuclei, and Exc[n]
is the exchange-correlation energy.

In order to solve the Kohn-Sham auxiliary system for the ground state, a variational
equation is derived by taking the variation of Eq. (1.2) with respect to the wavefunctions,
i. e. ,

δEKS

δψσ∗
i (r)

=
δT0

δψσ∗
i (r)

+

[
δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

]
δn(r, σ)

δψσ∗
i (r)

= 0 . (1.5)

Now, using the Lagrange multiplier method for handling the constraint that the total number
of electrons is fixed, we arrive at the Kohn-Sham Schrödinger-like equations:

(Hσ
KS − εσ

i )ψσ
i (r) = 0 , (1.6)
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where εσ
i ’s are the eigenvalues and

Hσ
KS(r) = − h̄2

2me
∇2 + V σ

KS(r) , (1.7)

with

V σ
KS(r) = Vext(r) +

δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

= Vext(r) + VHartree(r) + V σ
xc(r) . (1.8)

Equations (1.3) and (1.6) are solved self-consistently to find the ground state energy
n(r, σ) and the total energy EKS. Although the exact form of the exchange-correlation
functional, Exc[n], is not known, it can reasonably be approximated in many cases by a local
or nearly local functional of the density.

1.1.4 The local density approximation

Within the local density approximation (LDA), the total exchange-correlation energy
Exc[n] is a simple integration over all space of the exchange-correlation energy density which
is approximated by that of a homogeneous electron gas with that density,

ELDA
xc [n] =

∫
d3rn(r) ǫhom

xc (n(r)) . (1.9)

Here, ǫhom
xc (n) is the exchange-correlation energy of a homogeneous electron gas and has been

calculated with quantum Monte Carlo simulations [14].

1.1.5 Pseudopotentials

Due to the strong Coulomb potential of the nucleus and the effects of the tightly bound
core electrons, the Kohn-Sham equations are very hard to solve. However, the core electron
states of an atom hardly changes in forming molecules or solids. Therefore, an effective
potential felt by valence electrons, which preserves several important properties of the true
atomic potentials including the scattering amplitudes over a wide range of energies, can be
defined.

The basic idea is as follows. Suppose that the valence wavefunction ψv
i (r) satisfies the

Kohn-Sham equation (
− h̄2

2me
∇2 + VKS(r)

)
ψv

i (r) = εv
i ψ

v
i (r) . (1.10)

If we define the pseudowavefunction ψ̃v
i (r) as

ψv
i (r) ≡ ψ̃v

i (r) −
∑

j

ψc
j(r)

〈
ψc

j |ψ̃v
i

〉
, (1.11)
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then the pseudowavefunction satisfies

(
− h̄2

2me
∇2 + V̂ PS

KS

)
ψ̃v

i (r) = εv
i ψ̃

v
i (r) . (1.12)

where
V̂ PS

KS ψ̃
v
i (r) ≡ VKS(r)ψ̃

v
i (r) +

∑

j

(εv
i − εc

j)
〈
ψc

j |ψ̃v
i

〉
ψc

i (r) . (1.13)

Now the pseudopotential operator V̂ PS
KS is much smoother than the original potential VKS(r)

although it is nonlocal. Because of this smoothness, it is computationally much easier to
solve the pseudo Kohn-Sham equation.

A way to define ab initio pseudopotential is to impose norm-conservation condition [15].
Once the critical radius Rc is defined, norm-conserving pseudopotentials require that the
following quantities agree for all-electron and pseudo valence calculations: (i) eigenvalues,
(ii) wavefunctions beyond Rc, (iii) the logarithmic derivative of wavefunctions at Rc, (iv) the
integrated charge inside Rc, and (v) the first energy derivative of the logarithmic derivatives
of wavefunctions at Rc. Indeed, it has been shown that the condition (iv) is equivalent to
(v) [16].

Non-local pseudopotential corresponding to different angular momentum eigenvalues are
different and can be written as

Vl(r) = Vlocal(r) + δVl(r) , (1.14)

where Vlocal(r) is the local part of the pseudopotential and δVl(r) is the l-dependent non-local
part. Kleinman and Bylander proposed a method of constructing a separable pseudopotential
operator to a good approximation [17].

V̂ KB = Vlocal(r) +
∑

lm

∣∣ψPS
lmδVl

〉 〈
δVlψ

PS
lm

∣∣
〈ψPS

lm |δVl|ψPS
lm〉 , (1.15)

where the second term is a non-local operator written in separable form.

1.2 The GW approximation

Ground state properties such as the total energies, equilibrium geometries, structural
phase transitions, bulk moduli, lattice vibration frequencies, and so on are very well predicted
by solving the Kohn-Sham equation in good agreement with the experiment. However, the
excited state properties like the quasiparticle band gaps of semiconductors or insulators are
poorly reproduced by the density functional theory calculations. Most of the important
modern experimental techniques like scanning tunneling microscopy or angle-resolved or
time-resolved photoemission spectroscopy measure the quasiparticle properties and hence
cannot be described by standard density-functional theory calculations.



5

The GW approximation is a way of calculating the excited state quasiparticle self energies
and wavefunctions from many-body Green’s function perturbation theory. The electron self
energy Σ can be expanded by the electron Green’s function G and the screened Coulomb
interaction W. The first term of the series expansion is GW and hence the approximation of
truncating higher-order terms in the self-energy operator is called the GW approximation.
The formalism was first established by Hedin [18, 19] and ab initio implementation of the
methodology was first done by Hybertsen and Louie [20].

Within the GW approximation [18, 19], the electron self-energy operator, using a con-
tracted notation for the space and time arguments (1 ≡ (r1, t1), 1+ ≡ (r1, t1 + δ), etc.),
is

Σ(1, 2) = iG(1, 2)W (1+, 2) , (1.16)

where the screened Coulomb interaction is given by

W (1, 2) = v(1, 2) +

∫
v(1, 3)P (3, 4)W (4, 2)d(34) (1.17)

and the polarizability is given by

P (1, 2) = −iG(1, 2+)G(2, 1) . (1.18)

Equation (1.17) can equivalently be written, in terms of the inverse dielectric matrix, as

W (r, r′;ω) =

∫
ε−1(r, r′′;ω) v(r′′, r′) dr′′ , (1.19)

where the dielectric matrix is expressed in terms of the polarizability as

ε(r, r′;ω) = δ(r − r′) −
∫
v(r, r′′)P (r′′, r′;ω) dr′′ . (1.20)

Equation (1.18), also known as the random phase approximation (RPA), can be evaluated
using the mean-field wavefunctions [ψi(r)] and energy eigenvalues (ǫi) as [21, 22]

P (r, r′;ω) =
∑

i,i′

ψ∗
i (r)ψi′(r)ψ

∗
i′(r

′)ψi(r
′)

(
fi(1 − fi′)

ǫi − ǫi′ + ω + iδ
+

fi′(1 − fi)

ǫi′ − ǫi − ω + iδ

)
, (1.21)

where fi’s are the Fermi-Dirac occupation factors. If one uses a planewave basis, the polar-
izability and the RPA dielectric matrix are given by

PG,G′(q;ω) =
1

V

∑

i,i′

〈i|ei(r+G)·r|i′〉〈i′|e−i(r+G′)·r′ |i〉

×
(

fi(1 − fi′)

ǫi − ǫi′ + ω + iδ
+

fi′(1 − fi)

ǫi′ − ǫi − ω + iδ

)
(1.22)
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and

εG,G′(q;ω) = δG,G′ − 4πe2

|q + G|2PG,G′(q;ω) , (1.23)

respectively.
Frequency space representation of the self-energy operator within the GW approximation

is given by the Fourier transform of Eq. (1.16),

Σ(r, r′;ω) =
i

2π

∫
e−iω′δG(r, r′;ω − ω′)W (r, r′;ω′)dω′ . (1.24)

Using the spectral representation, the screened Coulomb interaction can be written as [20]

W (r, r′;ω) = v(r, r′) +

∫ ∞

0

2ω′B(r, r′;ω′)

ω2 − (ω′ − iδ)2
dω′ , (1.25)

where B(r, r′;ω) is the spectral function for the screened interaction. By using this spectral
representation, we can divide the quasiparticle self energy into the screened-exchange part
and the Coulomb-hole part, Σ = ΣSX + ΣCH. The screened-exchange term arises from the
poles of the Green’s function and is given by [20]

ΣSX(r, r′;ω) = −
occ∑

i

φi(r)φ
∗
i (r

′)W (r, r′;ω − ǫi) , (1.26)

whereas the Coulomb-hole term has its origin in the poles of the screened Coulomb interaction
and is given by [20]

ΣCH(r, r′;ω) =
∑

i

φi(r)φ
∗
i (r

′)P

∫ ∞

0

B(r, r′;ω′)

ω − ǫi − ω′dω
′ . (1.27)

Obtaining the frequency dependence of the dielectric matrix within the RPA requires very
heavy calculations. The generalized plasmon pole model approximation [20] significantly
reduces the computational load. In the model, the imaginary part of the dielectric function
is represented by a pair of delta functions as

Im ε−1
G,G′(q, ω) = AG,G′(q) {δ [ω − ω̃G,G′(q)] − δ [ω + ω̃G,G′(q)]} , (1.28)

and the real is given by

Re ε−1
G,G′(q, ω) = 1 +

Ω2
G,G′(q)

ω2 − ω̃2
G,G′(q)

. (1.29)

Since there are three parameters (ω̃, A and Ω) in the model, one needs three equations
to determine them. Those three are (i) the Kramers-Kronig relation between the real and
imaginary part of the inverse dielectric function, (ii) the condition that the model dielectric
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function with zero frequency should reproduce the calculated static dielectric function, and
(iii) a generalized f-sum rule relating the dielectric matrix to the plasma frequency and the
electronic charge density [20].

In calculating the quasiparticle wavefunctions and energy eigenvalues, it is known that
calculating the diagonal matrix elements of the self-energy operator is good enough [20].
Or, in other words, the LDA wavefunctions are a good approximation for the quasiparticle
wavefunctions and the self-energy corrections are simply calculated by taking the expecta-
tion value of the self-energy operator for the LDA wavefunctions. The quasiparticle energy
bandgaps of semiconductors and insulators obtained in this way are in excellent agreement
with the experimental findings [20].

1.3 The Bethe-Salpeter equation approach

Although the GW approximation formalism successfully describes the results of various
kinds of experiments based on the single-particle excitation phenomena, it is not formulated
to explain the results of optical measurements which necessarily involve a two-particle exci-
tation, i. e. , an electron-hole pair generation process. Excitons, coherent superpositions of
electron-hole pair configurations, change the optical response drastically.

The Bethe-Salpeter equation (BSE) describes the two-particle amplitude propagation
under Coulomb interaction. The BSE formalism for the optical response was first applied to
semiconductors within a tight-binding bond orbital model [23, 24] and then in the last decade
the formalism was implemented in a first-principles scheme [25, 26, 27]. In this section, we
mainly follow the discussion of Rohlfing and Louie [25, 28].

According to Rohlfing and Louie [28], the exciton wavefunction |S〉 (i. e. , the electron-hole
amplitude) with the excitation energy ΩS is given as a linear combination of electron-hole
pair states |vck〉 by

|S〉 =
occ∑

v

empty∑

c

∑

k

AS
vck|vck〉 , (1.30)

where the coefficients AS
vck’s are obtained by solving the BSE within the Tamn-Dancoff

approximation,

(Eck − Evk)AS
vck +

∑

v′c′k′

Kvck,v′c′k′(ΩS)AS
v′c′k′ = ΩSA

S
vck . (1.31)

Here, the interaction kernel Kvck,v′c′k′ is divided into two terms. The direct termKd describes
the attractive screened Coulomb interaction and is responsible for the exciton formation.
The exchange term Kx describes the repulsive bare Coulomb interaction and is the source of
singlet-triplet splitting. Using the notation that x includes the real-space coordinate r and
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the spin σ, These two terms are evaluated as

〈vc|Kd|v′c′〉 = −
∫
ψ∗

c (x)ψc′(x)W (r, r′;ω = 0)ψv(x
′)ψv′(x

′)dxdx′ (1.32)

〈vc|Kx|v′c′〉 =

∫
ψ∗

c (x)ψv(x)v(r, r′)ψc′(x
′)ψ∗

v′(x
′)dxdx′ . (1.33)

In the direct term, the energy argument ω should actually be ΩS − (Ec−Ev); however, when
ω ≪ ΩS , we can, to a good approximation, neglect the dynamical effect and set ω = 0.

Considering the spin degree of freedom of valence band electron (not hole) and conduction
band electron, the BSE can be written in terms of the four basis states ((v ↑ c ↑), (v ↑ c ↓),
(v ↓ c ↑) and (v ↓ c ↓)) as




D +Kd +Kx 0 0 Kx

0 D +Kd 0 0
0 0 D +Kd 0
Kx 0 0 D +Kd +Kx







v ↑ c ↑
v ↑ c ↓
v ↓ c ↑
v ↓ c ↓


 , (1.34)

where D = (Ec − Ev). These equations decouples into a spin-triplet set of three equations
with the HamiltonianD+Kd and a spin-singlet equation with the HamiltonianD+Kd+2Kx.
Therefore, the excitation energy difference between the singlet and triplet states comes from
the exchange term. After this decoupling, the BSE can be solved for spin-singlet states
and spin-triplet states independently. However, when the spin-orbit coupling cannot be
neglected, the spin-singlet and spin-triplet terms mix with each other and hence Eq. (1.34)
should be solved as is.

Using the exciton wavefunctions and excitation energies, we can straightforwardly cal-
culate the imaginary part of the transverse dielectric function Im ǫ2(ω), which can directly
be compared with the optical measurements. Suppose that the light is linearly polarized in
parallel to a unit vector λ and that v = i/h̄[H, r] is the velocity operator. Within the single-
particle picture, i. e. , neglecting the excitonic effects, the imaginary part of the dielectric
function is given by

ǫ
(0)
2 (ω) =

16πe2

ω2

occ∑

v

empty∑

c

|λ · 〈v|v|c〉|2 δ(ω − (Ec − Ev)) , (1.35)

showing that the optical absorption arises from the interband momentum-conserving transi-
tions. However, the effects of mixing between different interband transitions on the optical
response are not considered in this single-particle picture. When the excitonic effects are
considered, the imaginary part of the dielectric function can be written in terms of the
exciton eigenstates obtained by solving the BSE as

ǫ2(ω) =
16πe2

ω2

∑

S

|λ · 〈0|v|S〉|2 δ(ω − ΩS) , (1.36)
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where the optical transition matrix element is given by

〈0|v|S〉 =
occ∑

v

empty∑

c

AS
vc〈v|v|c〉 , (1.37)

allowing for the coherent superposition of electron-hole pair states with different momentum
and band indices. It is well known that the coherent effects significantly change the optical
response [28].

1.4 Density functional perturbation theory

Lattice vibrational, or phononic, properties of solids are of of interest because they play a
crucial role in charge or heat transport as well as in superconductivity and other phenomena.
In order to obtain the phonon eigenmodes and eigenfrequencies one needs the dynamical
matrix, i. e. , to calculate the derivatives of the total electronic energy EKS with respect to
the ionic displacements Ri’s [29]. According to the Hellmann-Feynman theorem [30],

∂EKS

∂Ri
=

∫
∂VKS

∂Ri
n(r) dr , (1.38)

and
∂2EKS

∂Ri∂Rj
=

∫
∂VKS

∂Ri∂Rj
n(r) dr +

∫
∂VKS

∂Ri

∂n(r)

∂Rj
dr . (1.39)

The electron-density response ∂n(r)/∂Rj can be evaluated by linearizing Eq. (1.3),

∆n(r) = 2

occ∑

n

ψ∗
n(r)∆ψn(r) , (1.40)

where the finite-differential operator ∆ is defined as

∆F =
∑

i

∂F

∂Ri
∆Ri . (1.41)

The variation to the Kohn-Sham wavefunction ∆ψn(r) is obtained by first-order perturbation
theory as

(HKS − ǫn)|∆ψn〉 = −(∆VKS − ∆ǫn)|ψn〉 , (1.42)

where, according to Eq. (1.8),

∆VKS(r) = ∆Vext(r) + e2
∫

∆n(r′)

|r − r′|dr
′ +

d vxc(n(r))

d n(r)
∆n(r) (1.43)

is the first-order correction to the self-consistent potential and ∆ǫn = 〈ψn|∆VKS|ψn〉 is the
first-order correction to the Kohn-Sham eigenvalue. Equations (1.40), (1.42), and (1.43)
form a self-consistent set of equations for the perturbed system.
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On the other hand, the first-order correction to the wavefunction ∆ψn(r) is given as a
sum over the unperturbed states,

∆ψn(r) =
∑

m6=n

ψm(r)
〈ψm|∆VKS|ψn〉

ǫn − ǫm
. (1.44)

Plugging this expression into Eq. (1.40), we obtain

∆n(r) = 2

occ∑

n

∑

m6=n

ψ∗
n(r)ψm(r)

〈ψm|∆VKS|ψn〉
ǫn − ǫm

. (1.45)

An important conclusion that can be drawn from Eq. (1.45) is that the first-order correction
to the charge density is not affected when the state m is an occupied state due to the cancel-
lation with the summand where n and m are replaced by m and n, respectively. Therefore,
we can confine our interest in the first-order correction to the wavefunction in Eq. (1.42)
to empty state components only. Using the projection operator into the conduction band
states Pc = 1 − Pv, we can rewrite Eq. (1.42) as

(HKS − ǫn)|∆ψn〉 = −Pc∆VKS|ψn〉 . (1.46)

By solving Eqs. (1.40), (1.46), and (1.43) self-consistently, one can obtain the first-order
corrections to the perturbing Hamiltonian. An advantage of this linear response formalism
is that one does not need to know empty state wavefunctions or energy eigenvalues at all. The
force constants (related to the second derivatives of the total energy), phonon eigenmodes,
and phonon frequencies can be obtained by evaluating Eqs. (1.38) and (1.39) using the
described density functional perturbation theory [29].

1.5 The electron-phonon coupling matrix elements

Electrons and phonons are by far the two most important elementary excitations in
solids. The interaction between these two types of excitations, i. e. , electron-phonon inter-
actions, renormalize the properties of both of them. For example, the electron lifetime and
velocity are determined by this interaction and hence the carrier transport properties are
significantly affected by phonons. On the other hand, the phonon linewidths and bandstruc-
tures measured from various kinds of experiments are also influenced by the interaction with
the electrons. Therefore, in understanding the properties of solids, it is very important to
accurately calculate the electron-phonon interaction matrix elements

〈mk + q|∆V ν
q (r)|nk〉 , (1.47)

where |mk + q〉 and |nk〉 are the Kohn-Sham electronic wavefunctions and ∆V ν
q (r) is the

first-order perturbation in the Kohn-Sham self-consistent potential due to a phonon with
branch index ν and wavevector q.
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In our study, we have used a recently developed methodology [31], based on the use of
maximally localized Wannier functions [32, 33], in calculating the electron-phonon matrix
elements. The main idea is to use the property that the electron-phonon interaction matrix
element in Wannier basis

〈mRe|∆V ν
Rph

(r)|nR′
e〉 , (1.48)

is an integral of the product of three functions localized in real space. Therefore, the matrix
element is negligible unless all three centers Re, R′

e, and Rph are close to one another. Using
this property, one can obtain the electron-phonon matrix elements in Bloch basis shown in
Eq. (1.47) through an interpolation at a relatively low price [31].
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Chapter 2

Velocity renormalization and carrier
lifetime in graphene from
electron-phonon interaction

2.1 Introduction

The recent fabrication of single-layer graphene [34] has attracted considerable interest
because low-energy charge carriers in this material have dispersion curves similar to Dirac
fermions with zero rest mass and constant group velocity [35, 36]. Because of the peculiar
electronic structure of graphene, electrons and holes exhibit exceptionally large mobilities,
and the density of states can be tuned over a wide range by applying a gate voltage [35, 36].
These properties make graphene a promising candidate for new-generation electronic and
spintronic devices.

Angle-resolved photoemission spectroscopy (ARPES) is used as a powerful tool for inves-
tigating quasiparticle behavior with extremely fine energy and momentum resolution [37].
The photoelectron intensity provides information about the energy vs. momentum disper-
sions of the charge carriers and the associated lifetimes. Recent photoemission experiments
performed on graphene showed a peculiar dependence of the hole lifetime on the binding
energy, as well as a significant velocity renormalization [2]. The measured carrier lifetime
has been discussed within a model including three different decay channels: electron-phonon
(e-ph) scattering, electron-plasmon scattering, and electron-hole pair generation [2]. The
linear dependence of the linewidth on the binding energy was attributed to the generation of
electron-hole pairs. The phonon-induced lifetime was assumed to be energy-independent as
found in conventional metallic systems [2]. A subsequent theoretical work analyzed the car-
rier lifetimes in graphene by adopting a two-dimensional electron-gas model, and concluded
that the experimental results could be explained without invoking the e-ph interaction [38].

In this chapter we investigate the e-ph interaction in graphene within a first-principles

approach. We calculated the electron self-energy arising from the e-ph interaction using a
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dense sampling of the scattering processes in momentum space, and we extracted the velocity
renormalization and the carrier lifetimes from the corresponding real and imaginary parts
of the self-energy, respectively. Our analysis shows that the self-energy associated with the
e-ph interaction in graphene is qualitatively different from that found in conventional metals.
The imaginary part of the self-energy shows a linear energy dependence above the phonon
emission threshold, which directly reflects the bandstructure of graphene. The real part
of the self-energy leads to a Fermi velocity renormalization of 4-8 % depending on doping.
We further propose a simple analytical model of the electron self-energy capturing the main
features of our first-principles calculations. Our calculation allows us to assign the low-energy
kink in the measured photoemission spectrum and part of the linear energy-dependence of
the electronic linewidths to the e-ph interaction.

2.2 Theory and computation

The e-ph interaction in graphene is treated within the Migdal approximation [39]. The
contribution to the electron self-energy Σnk(E;T ) arising from the e-ph interaction at the
temperature T is [39, 31]:

Σnk(E;T ) =
∑

m,ν

∫
dq

ABZ
|gmn,ν(k,q)|2

×
[

nqν + 1 − fmk+q

E − εmk+q − h̄ωqν − iδ
+

nqν + fmk+q

E − εmk+q + h̄ωqν − iδ

]
,

(2.1)

where εnk is the energy of an electronic state with band index n and wavevector k, and
h̄ωqν the energy of a phonon with wavevector q and branch index ν. fnk and nqν , are the
Fermi-Dirac and Bose-Einstein distribution functions, respectively. The integration extends
over the Brillouin zone (BZ) of graphene of area ABZ and the sum runs over both occupied
and empty electronic states and all phonon branches. The e-ph matrix element is defined
by gmn,ν(k,q) = 〈mk + q|∆Vqν |nk〉, ∆Vqν being the change in the self-consistent potential
due to a phonon with wavevector q and branch index ν, while |nk〉, |mk + q〉 indicate
Bloch eigenstates. Equation (2.1) takes into account the anisotropy of the e-ph interaction
in k-space, as well as retardation effects through the phonon frequency in the denominators.

The electronic structure was described within the local density approximation to density-
functional theory [14, 40]. Valence electronic wavefunctions were expanded in a plane-waves
basis [41] with a kinetic energy cutoff of 60 Ry. The core-valence interaction was treated
by means of norm-conserving pseudopotentials [15, 42]. Lattice-dynamical properties were
computed through density-functional perturbation theory [43]. We modeled an isolated
graphene by a honeycomb lattice of carbon atoms within a periodic supercell. The graphene
layers were separated by 8.0 Å of vacuum [44], and the relaxed C-C bond-length was 1.405 Å.
Doped graphene was modeled by varying the electronic density and introducing a neutralizing



14

background charge. We first calculated electronic and vibrational states and the associated
e-ph matrix elements on 72×72 k-points and 12×12 q-points in the BZ of graphene. Then,
we determined the quantities needed to evaluate the self-energy given by Eq. (2.1) on a
significantly finer grid of 1000×1000 k and k+q points in the irreducible wedge of the BZ by
using a first-principles interpolation based on electron and phonon Wannier functions [45, 46,
47]. The fine sampling of the BZ was found to be crucial for convergence of the self-energy. In
the calculation of the self-energy we used a broadening parameter δ of 10 meV, comparable
with the resolution of state-of-the-art photoemission experiments [37]. The calculations were
performed with the electron and phonon occupations [Eq. (2.1)] corresponding to T =20 K to
make connection with the ARPES experiment [2]. In what follows, we discuss the computed
electron self-energy by focusing on a straight segment perpendicular to the ΓK direction and
centered at the K point in the BZ [Fig. 2.1].

We note here that within 2.5 eV from the Dirac point, the angular dependence of the
self-energy is insignificant (at fixed energy E) [5]. As a consequence, the e-ph coupling
parameter λn(k̂) = − ∂ ReΣnk(E)/∂E|E=EF

is isotropic in k-space.

2.3 Results and discussion

2.3.1 Electron linewidth

Figure 2.1 shows the calculated imaginary part of the self-energy (which is closely re-
lated to the linewidth) as a function of carrier energy, corresponding to three representative
situations: intrinsic, electron-doped, and hole-doped graphene. We here considered doping
levels corresponding to 4·1013 cm−2 electrons or holes. The corresponding Fermi levels were
found to lie at +0.64 eV and −0.66 eV from the Dirac point, respectively. In the intrinsic
system, we found that the electron linewidth due to e-ph interaction is negligible (<1 meV)
within an energy threshold h̄ωph for the emission of optical phonons (h̄ωph ≈ 0.2 eV being
a characteristic optical phonon frequency), while it increases linearly beyond this threshold
[Fig. 2.1(a)]. The scattering rate for electrons with energy below the optical phonon emission
threshold is negligible because (i) only optical phonons are effective in e-ph scattering and
(ii) Pauli’s exclusion principle blocks transitions into occupied states. On the other hand, the
linear increase of the linewidth above the optical phonon energy relates to the phase-space
availability for electronic transitions, and reflects the linear variation of the density of states
around the Dirac point in graphene. The energy dependence of the electron linewidths in
the electron-doped and the hole-doped systems [Fig. 2.1(b) and Fig. 2.1(c), respectively] can
be rationalized by a similar phase-space argument. We denote by ED the energy of the Dirac
point with respect to the Fermi level. For definiteness, we here consider the electron-doped
situation (ED < 0). When the energy of the hole is exactly equal to |ED| + h̄ωph (i.e., at
−|ED| − h̄ω in Fig. 2.1), there are no allowed final states for electronic transitions through
optical phonon emission, resulting in a vanishing scattering rate at zero temperature. As
the hole energy departs from |ED| + h̄ωph, the linewidth increases linearly, and exhibits a
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Figure 2.1: Calculated imaginary part of the electron self-energy arising from the e-ph
interaction at T = 20 K (solid lines), for (a) intrinsic, (b) electron-doped, and (c) hole-doped
graphene. The self-energy Σk(εk) was evaluated along the reciprocal space line segment
shown in the upper-left corner. The Fermi level and the Dirac point are shown schematically
in each case. We also show for comparison the imaginary part of the self-energy for a
conventional metal (dashed lines) (Ref. [1]).
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characteristic dip at the Fermi level. The latter feature corresponds to forbidden phonon
emission processes, as discussed above for intrinsic graphene. The calculated energy depen-
dence of the electron linewidth deviates substantially from the standard result which applies
to conventional metals (Fig. 2.1, dashed line) [1]. The latter consists of a constant scattering
rate above the phonon emission threshold, and fails in reproducing the features revealed by
our ab initio calculations.

2.3.2 Velocity renormalization

Figure 2.2 shows the real part of the electron self-energy arising from the e-ph interaction,
for intrinsic and for electron-doped graphene. The behavior of the hole-doped system is
qualitatively similar to the electron-doped case. While in conventional metals the real part
of the self-energy decays at large hole energies (E < −h̄ωph) [Fig. 2.2(b), dashed line], the self-
energy in graphene shows a monotonic increase in the same energy range [Fig. 2.2(b), solid
line]. Since the wavevector dependence of the self-energy in graphene within a few eV from
the Fermi level is negligible [i.e., Σnk(E) ≃ Σn(E)] [5], we obtained the quasiparticle strength
Znk = (1− ∂ ReΣnk/∂E)−1 by evaluating (1− d ReΣnk(εk)/dεk)

−1. In all cases considered,
the e-ph interaction was found to reduce the non-interacting quasiparticle strength down
to at most Znk = 0.93 at the Fermi level. This suggests that a quasiparticle picture is
still appropriate at low energy, the e-ph interaction largely preserving the weakly perturbed
Fermi-liquid behavior. The quasiparticle strength is related to the velocity renormalization
through 1−Z−1

nk = (vnk−v0
nk)/vnk, v

0
nk and vnk being the non-interacting and the interacting

velocity, respectively. The velocity renormalization is plotted in Fig. 2.2(c) and Fig. 2.2(d)
for the intrinsic and the electron-doped system, respectively. The velocity renormalization
at the Fermi level was found to increase with the doping level, and amounts to −4 %, −8 %,
and −6 % in the intrinsic, the electron-doped, and in the hole-doped system considered here.
Our results indicate that the velocity of Dirac fermions in graphene is affected by the e-ph
interaction. This bears important implications for the transport properties of graphene-based
electronic devices.

2.3.3 Toy model

In order to provide a simplified picture of the e-ph interaction in graphene, we analyzed
the various e-ph scattering processes contributing to the electron lifetimes. We repeated our
calculations by restricting either the energy h̄ωqν or the momentum transfer q in Eq. (2.1)
to limited ranges. When only the in-plane optical phonon modes between 174 and 204 meV
are taken into account in Eq. (2.1), the electron linewidth is found to deviate from the full
ab initio result by 15% at most. In contrast, when the momentum integration in Eq. (2.1)
is restricted to small regions around the high-symmetry points Γ and K, the linewidth is
found to deviate significantly from the full calculation, indicating that a proper account of
the entire BZ is essential. Based on this analysis, we devised a simplified single-parameter
model of the e-ph interaction in graphene. We assumed: (i) linear electronic dispersions up
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Figure 2.2: Calculated real part of the electron self-energy arising from the e-ph interaction
at T = 20 K (solid lines), for (a) intrinsic and (b) electron-doped graphene. The self-energy
was evaluated along the reciprocal space line segment shown in Fig. 2.1. The corresponding
velocity renormalization (vnk−v0

nk)/vnk is shown in panels (c) and (d), respectively. We also
report, for comparison, the real part of the self-energy and the velocity renormalization for a
conventional metal (dashed lines) (Ref. [1]). At variance with conventional metals, the group
velocity in graphene shows additional dips when the carrier energy is |ED| + ωph (arrows),
reflecting the vanishing density of states at the Dirac point.
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to a few eV away from the Dirac point [48], (ii) an Einstein model with the effective phonon
energy h̄ωph set to that of the highest degenerate zone-center mode, (iii) an effective e-ph
vertex g, independent of the electron and phonon momenta [5]. The e-ph matrix element g
represents a free parameter in our simplified model, and has been determined by matching
the model self-energy with the full ab initio result. Within these assumptions, and with the
Fermi level set to zero, the imaginary part of the self-energy reads

Im Σ(E) =

√
3 a2

16
α2

G g
2 |E − sgn(E) h̄ωph − ED| , (2.2)

whenever |E| exceeds the characteristic phonon energy h̄ωph, and vanishes otherwise. In
Eq. (2.2), a is the lattice parameter in Bohr units, αG = e2/h̄v0 = 2.53 is the effective fine
structure constant of graphene, and g is the average e-ph matrix element in Rydberg units.
The fitting to our calculated ab initio self-energy gave g = 3.5 ·10−2 Ry. The real part of the
model self-energy can be straightforwardly obtained from Eq. (2.2) through Kramers-Kronig
relations. Figure 2.3 shows that this simplified model is in fairly good agreement with the
full first-principles calculation. Therefore, despite its simplicity, our single-parameter model
captures the qualitative features of the e-ph interaction in graphene.

2.3.4 Comparison with experiment

In Fig. 2.4 we compare our first-principles calculations with the width of the momentum
distribution curve (MDC) measured by ARPES experiments at 20 K on graphene with
a similar doping [2]. The width ∆knk of the MDC was calculated taking into account
renormalization effects through ∆knk = Znk 2Im Σnk/h̄vnk [39]. Figure 2.4 shows that,
contrary to previous findings [38], the e-ph interaction plays a significant role in reducing
the carrier lifetime in graphene, as it accounts for about a third of the measured linewidth at
large binding energies. The e-ph contribution to the width of the MDC is found to increase
linearly at large binding energy, in agreement with experiment.

2.4 Conclusion

In conclusion, we have computed from first-principles the velocity renormalization and
the carrier lifetimes in graphene arising from the e-ph interaction and we have reproduced
these results with a simplified model. The calculated energy-dependence of the phonon-
induced electronic linewidths is shown to originate from the linear electronic dispersions.
The renormalization of the Fermi velocity was found to be −4 % for intrinsic graphene and
−8 % for an electron doping of 4 · 1013 cm−2, and is expected to affect the mobility of
graphene-based electronic and spintronic devices. Our results are in agreement with a recent
publication [49].
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Chapter 3

Van Hove singularity and apparent
anisotropy in the electron-phonon
interaction in graphene

3.1 Introduction

The energies and lifetimes of charge carriers in solids are significantly affected by many-
body interactions including those with electron-hole pairs, plasmons, and phonons. Angle-
resolved photoemission spectroscopy has emerged as an ideal tool for directly probing the
effects of these interactions on the electron quasiparticle dynamics with good energy and
momentum resolution [37].

In particular, the low-energy electron dynamics at metal surfaces [50], in layered ma-
terials, such as magnesium diboride [51], graphite [52], and cuprate superconductors [37],
and in single layer graphene [2, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], is significantly
affected by the electron-phonon interaction. Since the electron-phonon interaction generally
manifests itself as a kink in the quasiparticle dispersion relations measured by angle-resolved
photoemission spectroscopy [64, 39], it is common practice to determine the strength of the
electron-phonon coupling by taking the ratio between the group velocity at the Fermi level
and below the phonon-induced kink [65, 66, 67, 55]. In the cases where this simple procedure
is not applicable, more complicated self-consistent algorithms [68, 69] become necessary to
extract the electron-phonon coupling strength. However, the application of these methods
requires the knowledge of several adjustable parameters and is subject to some arbitrariness.
Therefore, assessing in the first instance the validity of extraction procedures based on the
linear slopes of the photoemission data is an important issue.

Graphene [70, 34, 35, 36, 71] is an ideal system to investigate these effects. Indeed, the
Fermi level of graphene can be tuned over a wide energy range by chemical doping [2, 55]
or by gating [35, 36, 72], and can almost be aligned with the van Hove singularity at the M
point of the two-dimensional Brillouin zone [55].
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In this chapter, we show that the apparent electron-phonon coupling strength in doped
graphene obtained from the linear slopes of the renormalized quasiparticle dispersions, as
calculated from first principles, is highly anisotropic, in good agreement with experimental
results [55]. On the other hand, the phonon-induced electron self-energy is found to be only
weakly dependent on the wavevector in the Brillouin zone. As a consequence, the actual
electron-phonon coupling strength is isotropic. The apparent anisotropy of the electron-
phonon interaction is shown to arise from the curvature of the bare electronic bands of
graphene, which is strongly enhanced in proximity of the van Hove singularity at the M
point. Our findings are relevant to the interpretation of photoemission spectra in materials
where the Fermi level is aligned with a van Hove singularity, such as the hole-doped cuprates
at optimal doping.

3.2 Theory and computation

The mass-enhancement parameter or electron-phonon coupling strength λk of an elec-
tronic state with wavevector k on the Fermi surface can be expressed through the energy
derivative of the real part of the self-energy arising from the electron-phonon interaction [73]:

λk = − ∂ ReΣk(E)

∂E

∣∣∣∣
E=EF

, (3.1)

EF being the Fermi level. Within the Migdal approximation, which corresponds to consid-
ering the non-crossing electron-phonon self-energy diagrams, this quantity can be calculated
by [39, 31]:

λk =
∑

m,ν

∫
dq

ABZ

|gmn,ν(k,q)|2

×
[

nqν + 1 − fmk+q

(EF − ǫmk+q − ωqν)2
+

nqν + fmk+q

(EF − ǫmk+q + ωqν)2

]
,

(3.2)

where ǫnk is the energy of an electron in the band n with wavevector k, ωqν the energy
of a phonon in the branch ν with wavevector q, and fnk and nqν are the Fermi-Dirac
and Bose-Einstein occupations, respectively. The integration is performed within the two-
dimensional Brillouin zone of area ABZ. The electron-phonon matrix element gmn,ν(k,q) =
〈mk+q|∆Vqν |nk〉 is the amplitude for the transition from an electronic state |nk〉 to another
state |mk+q〉 induced by the change in the self-consistent potential ∆Vqν generated by the
phonon |qν〉. The technical details of the calculations are reported in Ref. [60].

It can be shown [39] that the actual electron-phonon coupling strength in Eq. (3.1) can
also be written as

λk =
v0
k(EF)

vk(EF)
− 1 , (3.3)
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Figure 3.1: Polar plots of the apparent electron-phonon coupling strength λapp
k on the Fermi

surface around the K point in the Brillouin zone. Filled squares and empty circles represent
results from the ab initio calculation and from the experimental photoemission spectra,
respectively. The lines are included as a guide to the eye. Different panels correspond to
different doping levels. Note that the scale in (d) is different from that in (a)-(c).

where vk(EF) and v0
k(EF) are the renormalized and the bare velocities at the Fermi level,

respectively. While Eq. (3.3) is useful for theoretical analyses, it cannot be used directly
in determining the electron-phonon coupling strength from the experimental data since the
bare group velocity is merely a conceptual tool and cannot be measured. To circumvent
this difficulty, from the experimentally measured low-energy photoemission spectrum, the
electron-phonon coupling strength is usually extracted [37, 55] by taking the ratio of the
renormalized velocity below and above the phonon kink. This procedure rests on the as-
sumptions that (i) well beyond the phonon energy scale the bare velocity is fully recovered
and (ii) the bare band is linear over the energy range considered. We denote the value
obtained from this procedure as the apparent electron-phonon coupling strength:

λapp
k =

vk(EF − ∆E)

vk(EF)
− 1 , (3.4)

where ∆E is taken slightly larger than the phonon energy ωph so that the energy E =
EF − ∆E falls below the phonon kink.

3.3 Results and comparison with experiment

3.3.1 The apparent electron-phonon coupling strength

In Fig. 3.1 we compare the apparent coupling strength λapp
k obtained from our first-

principles calculations and that extracted from the experimental photoemission spectra of
graphene at four different levels of doping [55]. To determine vk(EF −∆E) in Eq. (3.4) from
our first-principles calculations, we considered the slope of the quasiparticle band at the
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Figure 3.2: The apparent strength λapp (a) and the actual electron-phonon coupling strength
λ (b) calculated along two different directions in the two-dimensional Brillouin zone of
graphene: along KM (solid lines) and along KΓ (dashed lines). Along the KΓ direction,
λapp can even become negative [cf. discussion around Eq. (3.5)].

energy ∆E =0.3 eV below the Fermi level [74]. We have checked that as the energy range
∆E varies within the interval 0.2∼0.4 eV, the apparent strength λapp changes by less than
10 % along both the KM and KΓ directions. Theory and experiment are in good agreement
with each other for all doping levels considered. For graphene at the highest doping level
(EF −ED = 1.55 eV, where ED being the energy at the Dirac point) the agreement between
theory and experiment is slightly worse along the KΓ direction.

Figure 3.2(a) shows the calculated apparent strength λapp [Eq. (3.4)] as a function of
doping for two different directions in the Brillouin zone of graphene. The apparent electron-
phonon coupling strength is highly anisotropic and can become as large as λapp = 2 along
the KM direction for the doping levels considered here.

Now we consider the actual electron-phonon coupling strength λ as obtained from Eq. (3.2)
[Fig. 3.2(b)]. The actual strength increases monotonically with doping, reaching λ = 0.22
when EF − ED = 1.5 eV. At variance with the apparent strength, the actual strength λ
does not depend on the direction of the wavevector k. We have checked that this holds for
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Figure 3.3: Calculated (a) real and (b) imaginary part of the electron self-energy Σ(E,k)
and (c) logarithm of the corresponding spectral function A(E,k) arising from the electron-
phonon interaction in n-doped graphene (EF−ED = 0.64 eV), along two different directions
KM and KΓ in the Brillouin zone.

any path through the K point. The present results indicate that the actual electron-phonon
coupling strength in doped graphene is extremely isotropic. Thus, the actual strength can
differ substantially from the apparent strength, the more so as the Fermi surface approaches
the van Hove singularity at the M point.

3.3.2 The electron self energy and spectral function

In order to analyze in detail the angular dependence of the electron-phonon coupling in
graphene, we calculated the phonon-induced electron self-energy using Eq. (1) of Ref. [60].
While in Ref. [60] the electron self-energy was evaluated under the constraint E = ǫk,
we here consider the complete energy-dependent self-energy Σk(E). Figure 3.3 (a) and
(b) show the real and the imaginary part of the electron self-energy in n-doped graphene
(EF − ED = 0.64 eV). The wavevector is varied along two different paths indicated in the
upper left corner of Fig. 3.3. The dependence of the self-energy on the wavevector k is found
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Figure 3.4: Quasiparticle bandstructures of model systems including the electron-phonon
interaction (dashed lines). In (a) and (b) the bare electronic bands (dash-dotted lines) are
assumed to be linear and quadratic, respectively. In each case, the actual electron-phonon
coupling strength is set to λ = 0.2. The horizontal solid lines represent the phonon energy
ωph = 0.2 eV, and the energy ∆E = 0.3 eV below the Fermi level (EF = 0) at which the
slope is taken to calculate the apparent strength λapp. The solid line segments are tangential
to the quasiparticle bandstructure at E = 0 or E = −∆E.

to be extremely weak, the variation along the path considered in Fig. 3.3 being less than
3 meV for a given energy E. The insensitivity of the electron-phonon coupling strength λk

to the wavevector k [see Fig. 3.2(b)] is fully consistent with the finding on the self-energy.
Figure 3.3 also shows that, while the self-energy is highly isotropic, the corresponding spectral
function exhibits significant angular dependence due to the anisotropic dispersion of the
energy bands in graphene.

Recently, the observed anisotropy [55] in the apparent electron-phonon coupling strength
has been related to foreign atoms based on calculations of CaC6 layers with the dopants
arranged periodically in atop sites on the graphene plane [61]. Our calculations clearly show
that the anisotropy in the apparent strength λapp is already present without invoking the
possible effect of the dopants.
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3.3.3 The effect of bare electron band curvature

Our investigation of doped graphene allows us to discuss some general aspects of the
extraction of the electron-phonon coupling parameters from angle-resolved photoemission
data. By expanding the energy dependence of the velocity to first order, we can rewrite
approximately the apparent electron-phonon coupling strength in Eq. (3.4) as:

λapp
k ≈ λk −

v′0k (EF)

vk(EF)
∆E . (3.5)

In Eq. (3.5), v′0k (EF) is the energy derivative of the bare velocity, and we assumed that well
below the phonon kink the bare and the renormalized velocities coincide. Equation (3.5)
shows that, whenever the band velocity decreases with decreasing binding energy (i.e., v′0k <
0) as is the case for graphene along the KM direction, the apparent electron-phonon coupling
strength always exceeds the actual strength.

To illustrate this point, we consider in Fig. 3.4 the quasiparticle bandstructure for a model
system obtained by assuming an Einstein phonon spectrum with phonon energy ωph = 0.2 eV,
a constant density of states near the Fermi level, and a constant electron-phonon coupling
strength λ=0.2. Within this model, the real part of the electron self-energy due to electron-
phonon interaction reads [64]:

Re Σ(E) = −λωph

4
log

∣∣∣∣
(E + ωph)

2 + Γ2

(E − ωph)2 + Γ2

∣∣∣∣ , (3.6)

having included broadening Γ = 10 meV for convenience. As shown in Fig. 3.4(a), the
apparent strength λapp = 0.21 constitutes a good approximation to the actual strength
λ = 0.2 when the slope of the bare electronic band does not change appreciably within
the phonon energy scale, i.e. v′0k (EF)∆E ≪ vk(EF). However, in the case where the bare
velocity decreases with decreasing binding energy, the apparent strength λapp = 1.8 differs
significantly from the actual electron-phonon coupling strength λ = 0.2, consistent with
Eq. (3.5) [Fig. 3.4(b)]. In the limiting situation where the Fermi level is aligned with the
van Hove singularity (as in heavily doped graphene), the velocity at the Fermi level vanishes
while the velocity below the phonon kink energy remains finite. As a result, the apparent
strength obtained through Eq. (3.4) becomes exceedingly large.

3.4 Conclusion

In conclusion, we have shown that while the phonon-induced electronic self-energy of
graphene is isotropic and consequently the angular dependence of the electron-phonon cou-
pling strength is negligible, the apparent electron-phonon coupling strength extracted from
the experimental angle-resolved photoemission spectra using Eq. (3.4) exhibits significant
anisotropy due to the curvature of the underlying bare electronic bands. Our analysis indi-
cates that the band curvature is a crucial ingredient for the interpretation of angle-resolved
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photoemission spectra. For example, the present result may carry implications in the inter-
pretation of many-body renormalization effects along the antinodal cuts in the photoemission
spectra of cuprate superconductors, due to the presence of a saddle-point van Hove singu-
larity along the Cu-O bond directions [75, 76].
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Chapter 4

First-principles study of electron
linewidths in graphene

4.1 Introduction

Graphene [35, 36, 71], a single layer of carbon atoms in a hexagonal honeycomb structure,
is a unique system whose carrier dynamics can be described by a massless Dirac equation [77].
Within the quasiparticle picture, carriers in graphene exhibit a linear energy dispersion re-
lation and chiral behavior resulting in a half-integer quantum Hall effect [35, 36], absence of
backscattering [78, 79], Klein tunneling [80], and novel phenomena such as electron super-
collimation in superlattices [81, 82, 83].

Graphene is considered a promising candidate for electronic and spintronic devices [72].
For these applications it is important to understand the effects of many-body interactions
on carrier dynamics. In particular, the scattering rate of charge carriers, manifested in their
linewidths, affects the transport properties of actual devices.

The scattering of charge carriers in solids can arise from several different mechanisms,
among which electron-hole pair generation, electron-plasmon interaction, and electron-phonon
(e-ph) interaction are generally important. Scattering by impurities, defects and interac-
tions with the substrate also affects the carrier dynamics. The contribution to the electron
linewidths arising from the e-ph interaction has been studied with first-principles calcu-
lations [60, 5] and through the use of analytical and numerical calculations based on the
massless Dirac equation [49, 84]. The linewidth contribution originating from electron-
electron (e-e) interactions, which includes both the electron-hole pair generation process and
the electron-plasmon interaction, has only been studied within the massless Dirac equation
formalism [85, 86, 38].

A recent angle-resolved photoemission experiment on n-doped graphene epitaxially grown
on silicon carbide (SiC) [2] has stimulated experimental [53, 55, 58] and theoretical [85, 86, 38,
60, 49, 84] studies on this topic. In Ref. [2], the width of the momentum distribution curve
(MDC) from photoemission data is presented. The MDC of the graphene photoemission
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spectra is observed to resemble a simple Lorentzian whose width may be interpreted to be
directly proportional to the scattering rate [2].

We draw the attention to the well-known controversy in the different interpretations of the
angle-resolved photoemission spectra of graphene. It is claimed in Ref. [2] that the spectral
features can entirely be understood from many-body effects, including both e-e and e-ph
interactions, in graphene. On the other hand, in Ref. [58], it is argued that many of those
features are dominated by an energy gap of 0.2∼0.3 eV, which opens up at the Dirac point
energy (ED) because of interactions between graphene and the reconstructed surface of SiC.
This important problem in understanding the quasiparticle spectra of graphene (which also
have implications in graphene-based electronics applications) has led to numerous additional
experiments directly or indirectly addressing this discrepancy [56, 54, 87, 88, 59, 89]. On
the theoretical side, several density functional theory calculations on the effect of substrates
without considering many-body effects, along the line of Ref. [58], have been performed [90,
91, 92]. On the other hand, first-principles calculations on the effects of both e-e and e-ph
interactions, along the line of Ref. [2], have been lacking up to now.

In this chapter, to fill in this missing part, we present ab initio calculations of the electron
linewidth in n-doped graphene arising from e-e interactions employing the GW approxima-
tion [20, 93, 94]. In addition, we calculate the electron linewidth originating from the e-ph
interaction following the method in Refs. [60, 95] and [31]. Combining both contributions,
we provide a comprehensive view of the scattering rate originating from many-body ef-
fects. Our calculation indicates that the linewidth arising from e-e interactions is highly
anisotropic. This is in contrast to the insensitivity to wavevector of the phonon-induced
electron linewidth shown in Ref. [5]. The calculated linewidth arising from e-e interaction
becomes comparable to that arising from e-ph interaction at a binding energy of ∼ 0.2 eV
(i. e. , the optical phonon energy). The combination of the two contributions accounts for
most of the measured linewidth over the 0 eV ∼ 2.5 eV binding energy range.

4.2 Theory and computation

The electronic eigenstates |nk〉 of graphene are obtained with ab initio pseudopotential
density-functional calculations [96] in the local density approximation (LDA) [14, 40] in a
supercell geometry. Electronic wavefunctions in a 72 × 72 × 1 k-point grid are expanded in
a plane-waves basis [41] with a kinetic energy cutoff of 60 Ry. The core-valence interaction
is treated by means of norm-conserving pseudopotentials [15]. Graphene layers between
adjacent supercells are separated by 8.0 Å and the Coulomb interaction is truncated to
prevent spurious interaction between periodic replicas [97]. Increasing the interlayer distance
to 16.0 Å makes virtually no difference in the calculated electron self-energy. Doped graphene
is modeled by an extra electron density with a neutralizing background.

We calculate the imaginary part of the electron self-energy induced by the e-e interac-
tion within the GW approximation [20, 93]. The frequency dependent dielectric matrices
ǫG,G′(q, ω) are calculated within the random phase approximation using the LDA wavefunc-
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tions on a regular grid of ω with spacing ∆ω =0.125 eV [98], and a linear interpolation
is performed to obtain the dielectric matrices for energies in between the grid points. In
the calculation of the polarizability, for numerical convergence, an imaginary component
of magnitude ∆ω of 0.125 eV as above is introduced in the energy denominator. Conver-
gence tests showed that the dimension of ǫG,G′ may be truncated at a kinetic energy cutoff
of h̄2G2/2m =12 Ry. To take into account the screening of the SiC substrate, we have
renormalized the bare Coulomb interaction by an effective background dielectric constant of
εb = (1 + εSiC)/2 = 3.8 [2, 85, 86, 38], where εSiC(= 6.6) is the optical dielectric constant of
SiC [99, 100].

4.3 Results and discussion

4.3.1 The electron self energy arising from electron-electron in-
teractions

Figure 4.1 shows the calculated imaginary part Im Σe−e

nk (εnk) = 〈nk| Im Σe−e(r, r′, εnk) |nk〉
of the electron self-energy arising from the e-e interaction with ω set at the LDA eigen-
value εnk. The Fermi level EF (= 0) is taken to be 1 eV above ED. In Fig. 4.1(a),
Im Σe−e

nk (εnk) for graphene without including substrate screening, appropriate for suspended
graphene [101, 102], is plotted along the KΓ direction. Generally, the self-energy increases
with increasing |εnk| as measured from EF. A notable feature is the peak around εnk =
−1.5 eV. To find the origin of this peak, we have decomposed the total electron self-energy
into the contributions arising from transitions into the upper linear bands (above ED) and
the lower linear bands (below ED). The former involves electron-plasmon interaction [85].
The peak structure comes from scattering processes of electrons into the upper linear bands,
whereas those scattering processes into the lower linear bands result in a monotonic increase
in the electron linewidth. When the background dielectric constant εb is changed from 1 to
3.8 [Fig. 4.1(b)], the position of this peak shifts toward lower-binding energy by ∼ 0.3 eV,
reflecting a decrease of the plasmon energy in graphene [Fig. 4.1(e)] [103, 104]. The height
of the peak is further suppressed. At low energy (|εnk| < 1.0 eV), the imaginary part of the
self-energy is however not sensitive to the choice of εb.

Comparing Figs. 4.1(a) and 4.1(b) with Figs. 4.1(c) and 4.1(d) shows that the electron
self-energy arising from the e-e interaction calculated along the KM direction is very different
from that along the KΓ direction. Below −1.5 eV, Im Σe−e

nk (εnk) along K→M decreases with
increasing |εnk|, and it almost vanishes at the M point. This strong k anisotropy in the
e-e contribution to the imaginary part of the self-energy is a band structure effect, and is
absent in calculations based on the massless Dirac equation. This behavior is in contrast
with the wavevector insensitivity of the phonon-induced electron self-energy [5] (Fig. 4.2).
The calculated real part [105] and the imaginary part [93] of the electron self-energy in bulk
graphite arising from the e-e interaction are also anisotropic, in line with the present findings.
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Figure 4.1: (a)-(d): Calculated imaginary part of the electron self-energy arising from the e-e
interaction, Im Σe−e

nk (εnk), versus the LDA energy εnk (solid lines) in n-doped graphene. The
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coming from electronic transitions to the upper linear bands and to the lower linear bands
are shown as dashed lines and dash-dotted lines, respectively. The self-energy is evaluated
along the reciprocal space segments shown in the insets. (a) and (c) are results for suspended
graphene with a background dielectric constant of εb = 1.0, whereas (b) and (d) are results
for graphene with a background dielectric constant of εb = (1 + εSiC)/2 = 3.8. The Fermi
level and ED are indicated by vertical lines. (e): Calculated plasmon energy dispersion
relation ωpl

00(q), given by ǫG=0,G′=0[q, ω
pl
00(q)] = 0, versus h̄v0|q| along the ΓM direction. The

solid lines are guides to the eye and the dashed line corresponds to ω(q) = h̄v0q.
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Figure 4.2: Calculated Im Σnk(εnk) versus the LDA energy eigenvalue εnk in n-doped
graphene (ED = −1.0 eV) on a model substrate (εb = 3.8). The total self-energy, the
self-energy arising from the e-e interaction, and that arising from the e-ph interaction are
shown in solid, dashed and dash-dotted lines, respectively. The self-energy is evaluated along
the reciprocal space segments shown in the insets.

4.3.2 The total electron self energy

Figures 4.2(a) and 4.2(b) show the electron self-energy in n-doped graphene (ED =
−1.0 eV) on a substrate (model with εb = 3.8) arising both from the e-e and the e-ph
interaction. The Im Σnk(εnk) along the two different directions KΓ and KM are qualita-
tively different at high binding energy. This anisotropy is due to the e-e interaction, and
not the e-ph interaction [5]. It is noted that the total linewidth along the KM direction is
almost constant for binding energies in the range 1.7 to 3.5 eV. These anisotropic features
should be observable in photoemission experiments.

The e-e and the e-ph interactions give comparable contributions to the imaginary part
of the electron self-energy, especially within a few tenths of an eV from the Fermi level
(Fig. 4.2). This behavior is peculiar to graphene. In most metals the e-ph contribution to
the electron self-energy near EF is generally dominant over the e-e contribution at energies
comparable to the relevant phonon energy scale [106]. Similarly large Im Σnk(εnk) due to e-e
interactions are obtained in the Dirac Hamiltonian calculations in Refs. [85] and [86] if the
same background dielectric constant εb is used. Because of this peculiar aspects of graphene,
an e-ph coupling strength λ extracted from measured data could be overestimated if the e-e
interaction is neglected. This may explain why the e-ph coupling strength λ extracted from
photoemission spectra [55] is larger than the theoretical calculations [5, 49], together with
the effects of bare band curvature [5] and dopants.
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Figure 4.3: MDC width versus binding energy in n-doped graphene (ED = −1.0 eV). Calcu-
lated quantities for suspended graphene (εb = 1.0) and for graphene on a model substrate
(εb = 3.8) are shown in dash-dotted and dashed lines, respectively. The experimental result
measured for sample corresponding to the highest level of doping in Fig. 3 of Ref. [2] are
shown as the solid line [3]. Both the experimental and the calculated results are along the
KM and the KΓ direction of the Brillouin zone when the electron energy is above and below
ED, respectively.

4.3.3 Comparison with experiment

We now compare the imaginary part of the electron self-energy obtained from our calcu-
lation with the MDC width obtained from measured photoemission spectra [2]. For a linear
bare band energy dispersion, the spectral function at a fixed energy ω is a Lorentzian as a
function of the wavevector measured from the K point [2]. Thus, the width of the MDC ∆k
at energy ω = εnk can be identified as ∆k(εnk) = 2Im Σnk(εnk)/h̄v0 where v0 is the LDA
band velocity of low-energy charge carriers in graphene [2, 60]. (For the n-doped graphene
with ED = −1.0 eV, the bare band dispersion is, to a good approximation, linear in the
energy range considered in Fig. 4.3.)

Figure 4.3 shows the calculated MDC width for suspended graphene (εb = 1.0) and
for our model of graphene on SiC (εb = 3.8). The substrate screening affects the position
and the strength of the peak arising from the electron-plasmon interaction, while the low-
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energy part is insensitive to the dielectric screening from the substrate. The calculated
MDC width for graphene when substrate screening is accounted for is in agreement with
the experimental data of Ref. [2] throughout the whole energy window shown in Fig. 4.3.
However, the experimentally measured MDC width in a 0.4 eV energy window around ED

(=-1.0 eV) is larger than that from our calculation. This enhanced linewidth may possibly
arise from the gap which opens up at ED and midgap states originating from the interactions
between graphene and SiC substrate with a carbon buffer layer [58, 90, 91, 92].

4.4 Conclusion

In conclusion, we have studied the electron linewidths of n-doped graphene including both
the e-e and the e-ph interaction contributions, using first-principles calculations. The imagi-
nary part of the electron self-energy arising from the e-e interaction is strongly anisotropic in
k-space. We have shown that for graphene, unlike in conventional metals, the e-e contribu-
tion is comparable to the e-ph contribution at low binding-energy. Our calculation explains
most of the scattering rate observed in a recent photoemission experiment [2]; however, near
the Dirac point energy, the calculated scattering rate is smaller than the measured one, sug-
gesting the possibility of band gap opening and midgap states. These results contribute to
the resolution of the important controversy introduced earlier in this chapter and encourages
further theoretical studies including both many-body interactions and substrate effects at
an atomistic level. More generally, our first-principles calculations convincingly demonstrate
that multiple many-body interactions ought to be considered on the same footing in order
to achieve a quantitative and comprehensive interpretation of high-resolution angle-resolved
photoemission spectra.



36

Chapter 5

Angle-resolved photoemission spectra
of graphene from first-principles
calculations

5.1 Introduction

5.1.1 Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental tech-
nique for directly probing electron dynamics in solids. The energy vs. momentum dispersion
relations and the associated spectral broadenings measured by ARPES provide a wealth
of information on quantum many-body interaction effects. In particular, ARPES allows
studies of the Coulomb interaction among electrons (electron-electron interactions) and the
interaction between electrons and lattice vibrations (electron-phonon interactions).

In ARPES experiments a sample is illuminated by monochromatic photons, which can
extract electrons from the sample if the photon energy exceeds the work function. Analysis
of the kinetic energy and angular distribution of the emitted electrons yields the binding
energy of the electron in the material and its crystal momentum parallel to the surface [37].
The measured intensity I(k, ω), where k and ω are the momentum and the binding energy
of electrons (usually referenced to the Fermi energy), can be written as [37]

I(k, ω, êν, h̄ν) = I0(k, ω, êν, h̄ν)f(ω)A(k, ω) , (5.1)

where the function I0(k, ω, êν, h̄ν) takes into account the absorption cross section of the
incident photon of energy h̄ν and polarization êν . The function f(ω) is the Fermi-Dirac
distribution, and A(k, ω) is the electron spectral function [37]. In interpreting ARPES
measurements in a narrow energy range, it is appropriate to assume that the absorption
cross section of the photon is constant. Under these conditions, a measurement of the
ARPES spectrum provides direct access to the electronic spectral function A(k, ω). Within
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Figure 5.1: Diagrams included in the calculated electron self-energy Σ. a, Electron
self-energy Σe−e = iG0W0 arising from e-e interactions within the G0W0 approximation. G0

is the Green’s function for bare electrons and W0 is the screened Coulomb interaction. b,
Self-energy Σe−ph = ig2G0D arising from e-ph interactions within the Migdal approximation.
Here, g is the e-ph interaction matrix element and D is the dressed phonon propagator.

quantum many-body theory the electronic spectral function can be expressed as

A(k, ω) =
2

π

−ImΣ(k, ω)

[ω − εk − ReΣ(k, ω)]2 + [ImΣ(k, ω)]2
, (5.2)

where the εk’s are the the single-particle energy eigenvalues of a reference mean-field system,
and the self-energy Σ(k, ω) accounts for the many-body interactions going beyond the mean-
field picture [37]. For simplicity of discussion, the band indices are dropped from Eq. (5.2)
(see Methods).

5.1.2 Electron self energy

In our investigation, we use density-functional Kohn-Sham eigenstates to describe the
mean-field or non-interacting electrons. The electron self-energy arising from the e-e in-
teraction Σe−e(k, ω) is evaluated within the G0W0 approximation [20] (Fig. 5.1a). This
corresponds to retaining the first diagram in the Feynman-Dyson perturbation expansion of
the self-energy operator but in terms of the screened Coulomb interaction W0 (Supplemen-
tary Discussion 3 for a comparison with previous first-principles calculations [107, 108]). In
this work, G0 is constructed from the Kohn-Sham eigenvalues and eigenfunctions of density-
functional theory, and W0 is the bare Coulomb interaction screened by the full frequency-
dependent dielectric matrix ǫ(r, r′, ω) calculated within the random phase approximation.
The self-energy Σe−ph(k, ω) arising from the e-ph interaction is similarly evaluated within
the Migdal approximation [31] (Fig. 5.1b). With these choices, the e-e interaction and the
e-ph interaction are described consistently within the same level of approximation [19] (see



38

Methods). The total self energy is then obtained as

Σ(k, ω) = Σe−e(k, ω) + Σe−ph(k, ω) . (5.3)

5.1.3 ARPES of graphene

Graphene, a single layer of carbon atoms in a honeycomb structure, has recently become
an active research area in physics, chemistry, and nanoscience not only because of its peculiar
low-energy massless Dirac fermion band structure [35, 36, 71], but also because it holds
promise for novel electronics and spintronics applications [109]. In particular, the epitaxial
growth of graphene on silicon carbide (SiC) has emerged as one of the promising routes
towards large-scale production of graphene [71, 109].

The interpretation of the measured ARPES spectra of epitaxial graphene grown on
silicon-rich surface of SiC has been controversial. The spectral features observed in early
ARPES measurements [4] were interpreted qualitatively in terms of e-e and e-ph interac-
tions. On the other hand, experiments and analyses performed by a different group suggested
that the low-energy ARPES spectrum is dominated by a quasiparticle energy gap of 0.2-0.3
eV at the Dirac point [58]. According to Ref. [58], this band gap likely arises from the
coupling of the graphene layer with the reconstructed surface of the SiC substrate. Despite
a number of subsequent studies to resolve this controversy [87, 88], the detailed nature of
the low-energy quasiparticle dynamics in epitaxial graphene remains an open question.

The electronic structure and the photoemission spectra of graphene have also been ex-
plored in a number of theoretical investigations using density-functional theory approaches
within a non-interacting single-particle picture [90, 91, 92]. The effects of many-body inter-
actions have also been investigated in model calculations [85, 86]. However, first-principles
calculations of the full k- and ω-dependent ARPES spectral function - which contains both
the quasiparticle dispersions and their lifetimes - including the e-e and the e-ph interactions
have not been reported. The lack of first-principles many-body investigations can partly be
ascribed to the extremely demanding computational efforts required to evaluate the real part
of the electron self-energy, both for the e-e and for the e-ph contributions.

In dealing with effects of e-e interactions, first-principles calculations have advantages
over model calculations based on the two-dimensional massless Dirac equation [85, 86]. First,
the scattering rate of even the low-energy charge carriers, whose non-interacting dispersion
relation can be well approximated by the two-dimensional massless Dirac equation, shows
strong wavevector-anisotropic behaviors [110]. This is because the carrier scattering rate
in graphene depends sensitively on the sign of the band curvature [111]. Therefore, the
significant wavevector anisotropy in the electron scattering rate is not captured by the model
calculations. Second, the model calculations require a cutoff of the high-energy states and
an adjustable parameter mimicking effects of internal screening arising from the high-energy
states (including the π states higher in energy than the cutoff and the σ states), in addition to
the external screening due to the environment. The first-principles approach employing the
full bandstructure accounts for these processes explicitly and requires neither a high-energy
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cutoff nor an empirical parameter to describe the internal screening.

5.2 Results and discussion

5.2.1 Energy distribution curves

To determine the quasiparticle energy vs. momentum dispersion relations from the cal-
culated ARPES intensity maps for graphene (Figs. 5.2a, d, and g), we follow the standard
procedure adopted in analyzing ARPES experiments [37]. First, the energy distribution
curves (EDCs) are obtained by performing cuts of the intensity maps at fixed photoelec-
tron momentum (vertical cuts in Figs. 5.2a, d, and g). Subsequently, the quasiparticle band
structures are generated by connecting the locations of the maxima in the EDCs for each
photoelectron momentum (Figs. 5.2b, e, and h). This procedure ensures that the calculated
and the measured dispersion relations are obtained from the corresponding intensity maps
using the same procedure.

5.2.2 Energy mismatch between the upper and lower bands

While the dispersion relations extracted from our spectral functions for an isolated
graphene layer are linear at large binding energy, we observe a sizable kink for n-doped
graphene near the Dirac point (k = 0 in Fig. 5.2) at an energy below the Dirac point energy.
Such kinks result in a mismatch between the linear extrapolations of the lower and the upper
portions of the Dirac cone (Fig. 5.2). A similar phenomenon has been observed in the mea-
sured ARPES spectra [4, 58]. In order to quantify the size of the kinks and the associated
energy mismatch, we have taken the energy difference between the two linear asymptotes
of the upper and the lower bands (∆kink in Fig. 5.2f). This calculated energy offset ∆kink

is predominantly a result of many-body effects, which comes from the GW self-energy, and
is found to increase with the doping level (see Fig. 5.3), consistent with the experimental
trend [4]. We have checked that, if many-electron effects are not considered, the energy
mismatch is several times smaller, with value ≤ 20 meV for the most heavily doped case
considered here and even smaller for other cases. We note that, for the path along which
the ARPES spectra are calculated (inset of Fig. 5.2c), the nonlinearity of the bare graphene
band is smallest.

Although the calculated ∆kink shows qualitative agreement with experiment, after taking
into account the screening of the SiC substrate (Refs. [85, 86], see Methods), our calcu-
lated values underestimate the experimentally observed offsets in Ref. [4] consistently by
60-90 meV; this discrepancy, together with the comparison between theory and experiment
of electron linewidths discussed in Ref. [110] and later in this chapter, suggests the pos-
sible opening up of a band gap at the Dirac point energy due to the interaction between
graphene and a reconstructed silicon-rich surface of SiC [58, 90, 91, 92]. Our study shows
the need of further first-principles studies, considering both the atomistic structure of the
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Figure 5.2: Simulated ARPES spectra, energy distribution curves (EDCs) and
quasiparticle band structures of suspended graphene including e-e and e-ph in-
teractions. a, Simulated ARPES spectrum of pristine graphene at T = 25 K taken along
the Brillouin zone segment indicated in the inset of c. b, EDCs extracted from a. The
central red curve corresponds to k = 0 (the K point). c, Quasiparticle band structure (solid
red curve) obtained by connecting the peak positions of EDCs in b. d to f, and g to i, Same
quantities as in a to c for n-doped graphene with charge densities of 4.5 × 1013 cm−2 and
1.2 × 1014 cm−2, respectively. The dashed blue lines in c, f, and i indicate the asymptotes
of the linear bands far from the Dirac point. The energy difference between the upper and
the lower asymptotes close to the Dirac point is indicated by ∆kink.
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Figure 5.3: Mismatch between the upper and lower bands of the Dirac cone.
Calculated energy difference ∆kink between the asymptotic lines close to the Dirac point of
the upper and the lower linear bands vs. doping for suspended graphene (squares) and for
graphene with a model dielectric screening (circles) corresponding to the SiC substrate (see
Methods). The lines are a guide to the eye.
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Figure 5.4: Momentum distribution curves (MDCs) of graphene and associated
linewidths. a, Simulated ARPES spectrum of suspended n-doped graphene, for a doping
level corresponding to a charge density of 4.5 × 1013 cm−2, taken along the Brillouin zone
segment indicated in the inset of c. b, MDCs obtained from a. c, Width of the MDCs
obtained from b for suspended graphene (red curve) and that for graphene with a model
dielectric screening corresponding to the SiC substrate (blue curve). The measured widths
of the MDCs [4] are shown for comparison (black curve).

graphene-substrate interface and many-body effects.
The quasiparticle velocity can be extracted from the simulated spectral functions. We

find that e-e interactions greatly enhance the band velocity by over 30 % compared to the
density-functional theory value in pristine graphene, but dielectric screening from the SiC
substrate (by weakening the e-e interaction) reduces the quasiparticle velocity by as much as
∼10 % (Supplementary discussion and Fig. 5.5). Moreover, the calculated velocity decreases
with doping (Fig. 5.5) in agreement with previous calculations [108].

5.2.3 Momentum distribution curves and electron linewidths

Our calculations also reveal phonon-induced kinks near the Fermi energy at binding
energies between 150 and 200 meV (e. g. , Fig. 5.4a) in good agreement with experimental
photoemission maps [4, 58, 87, 88]. These signatures of the e-ph interaction in graphene
have been analyzed thoroughly both experimentally and theoretically [60, 5, 49, 84].

A complementary and important piece of information provided by ARPES intensity maps
is the linewidth of the electronic quasiparticle peaks. The linewidth Γnk is related to the
lifetime τnk of the electron in a given quasiparticle state through τnk = 2h̄/Γnk, and plays
an important role in transport phenomena. The electron linewidths are extracted from
the measured photoemission spectra by considering momentum distribution curves (MDCs),
which are constant-energy cuts of the intensity maps. The width of the MDC at a given
binding energy can subsequently be obtained using a Lorentzian fit [37]. From our simulated
ARPES spectra of graphene along the ΓKM direction in wavevector space (Fig. 5.4a), we



43

obtained the MDCs (Fig. 5.4b) and their widths (Fig. 5.4c). Unlike previous methods [110],
this procedure is direct and is not confined to materials having a linear electronic dispersion.

The widths extracted from the calculated MDCs in n-doped graphene after including the
effect of the SiC substrate screening (see Methods) follow closely the experimental measure-
ments on epitaxial graphene at large binding energies [4], although they underestimate the
experimental data close to the Dirac point energy (Fig. 5.4c). The agreement between calcu-
lated and measured widths at large binding energy and the underestimation of the linewidths
close to the Dirac point energy provide additional support to the proposed scenario of a band
gap opening arising from the interaction with the SiC substrate [58, 90, 91, 92, 110]. That
is, the opening of a band gap and the generation of midgap states near the Dirac point
energy (not included in our calculations) would lead to increased linewidths in this en-
ergy regime [92]. However, from the view point of theory, a conclusive statement can be
made only after first-principles calculations considering both the atomistic structure of the
graphene-substrate interface and the many-body effects, which is beyond the scope of this
work.

The widths extracted from the calculated full ARPES spectrum and those obtained
by calculating the imaginary part of the on-shell electron self-energy Im Σ(k, εk) [110] are
similar for n-doped graphene with the same charge density. (The charge density of n-doped
graphene considered in Ref. [110] is different from that in Fig. 5.4.) However, it is important
to note that the current method of using the full ARPES spectra, although involving heavier
computations, is more powerful because it can be in general applied to systems whose bare
electronic energy dispersion is not linear.

5.3 Conclusion

In this work, the effects of substrate optical phonons have not been considered. These sub-
strate phonons contribute to the room-temperature transport properties of graphene [112].
However, over a 1.5 eV range around the Fermi level in doped graphene relevant to ARPES
experiments [4, 58], the imaginary part of the electron self energy that arises from interac-
tions with the substrate phonons is less than 1 meV [113], about two orders of magnitude
smaller than the self-energy effects intrinsic to graphene itself [110].

The present work shows that first-principles simulation of ARPES spectra based on a
quantum many-body theory approach treating e-e and e-ph interactions on the same footing
holds great potential for the interpretation of complex ARPES spectra. In particular, a direct
calculation of the quasiparticle spectral function is needed to obtain meaningful comparisons
with experimental data (e. g. , the extraction of EDCs, MDCs, linewidths, and quasiparticle
dispersion relations).
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5.4 Methods

5.4.1 Computational setup

The Kohn-Sham eigenstates of graphene are obtained using density-functional theory cal-
culations within the local density approximation (LDA) [14] in a supercell geometry [114].
Electronic wavefunctions in a 72 × 72 × 1 k-grid are expanded in a plane-waves basis with
a kinetic energy cutoff of 60 Ry. The core-valence interaction is treated by means of ab

initio norm-conserving pseudopotentials [15]. Graphene layers are separated by 8.0 Å and
the Coulomb interaction is truncated to prevent spurious interaction between periodic repli-
cas [97]. We have checked that increasing the interlayer distance to 16.0 Å makes virtually
no difference in the calculated self energy. Charge doping is modeled by an added electron
density with a neutralizing background.

Extending the procedure presented in Ref. [110], where only the imaginary part of the
on-shell electron self-energy ImΣe−e(εk) arising from electron-electron (e-e) interactions is
calculated (εk being the LDA energy eigenvalue), we calculate the full frequency dependence
of both the real and the imaginary parts of the dielectric matrix (within the random phase
approximation) and the self-energy operator Σe−e(ω) within the G0W0 approximation in
the present work. Thus our theory includes the two scattering mechanisms arising from e-e
interaction effects discussed in previous model calculations performed within the massless
Dirac equation formalism [85, 86], i. e. , electron-hole pair and plasmon excitations. Since
our calculations are based on first-principles, they are parameter free for suspended graphene
and can give information that depends on atomistic details, e. g. , the effects of trigonal
warping. For convergence of the real part of Σe−e(ω), we have included conduction bands
with kinetic energy up to 100 eV above the Fermi level. The frequency dependent dielectric
matrix ǫG,G′(q, ω) is calculated within the random phase approximation using the LDA
wavefunctions on a regular grid of ω with spacing ∆ω =0.125 eV [98], and the dielectric
matrix at energies in between frequency grid points is obtained by a linear interpolation.
In the calculation of the polarizability, for numerical convergence, an imaginary component
of magnitude ∆ω of 0.125 eV is introduced in the energy denominator. Convergence tests
showed that the dimension of the dielectric matrix may be truncated at a kinetic energy
cutoff of h̄2G2/2m =12 Ry. Additionally, we obtain the electron self-energy arising from
electron-phonon (e-ph) interactions Σe−ph(ω) following Ref. [5] for different levels of doping.

In our approach, we describe the e-e and the e-ph interactions within the same level of
approximation. Previous studies suggested the use of the quasiparticle dispersions renormal-
ized by the e-e interaction to compute the e-ph interaction [115]. This latter procedure (not
adopted here) would correspond to including some of the higher order processes in Σe−ph(ω)
whilst neglecting them in Σe−e(ω), and would result in an unbalanced evaluation of e-e and
e-ph effects according to different levels of approximation. In any event, even if some e-ph
matrix elements calculated after renormalizing the bands through the GW approximation
were 20% to 40% larger than those used in this work [115], the band velocity would also
be enhanced by a similar factor (this work and Refs. [107, 108]), and the two factors would
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cancel out approximately in the calculation of Σe−ph(ω) [cf. Eq. (2) of Ref. [60]]. Therefore,
we estimate that the effects of such alterations on our results are not significant.

5.4.2 Angle-resolved photoemission spectra

First, the trace of the spectral function with respect to band index n, i.e., A(k, ω) =
c
∑

nAnn(k, ω), is calculated. Here, c is a normalization constant, |n〉 are the Kohn-Sham
eigenstates, and

Ann(k, ω) =
2

π

−Im 〈nk|Σ(ω)|nk〉
[ω − εk − Re 〈nk|Σ(ω)|nk〉]2 + [Im 〈nk|Σ(ω)|nk〉]2

. (5.4)

To simulate the measured angle-resolved photoemission spectra from the calculated spec-
tral functions, we multiplied the spectral function by the Fermi-Dirac distribution f(ω)
[Eq. (5.1)] with T = 25 K at which the experiments were performed [4, 58]. Then, to
take into account the experimental resolutions in energy and momentum, we have convo-
luted the intensity maps with a two-dimensional Lorentzian mask with ∆k=0.01 Å−1 and
∆ω = 25 meV, corresponding to the experimental resolution [4, 58]. (This convolution results
in finite linewidths even for zero binding-energy states.) In simulating the photoemission
spectra along the ΓKM direction (Fig. 5.4a), we have used only one branch of the two linear
bands in order to simulate the matrix element effects in I0(k, ω, êν, Eν) [Eq. (5.1)] (cf. Fig. 2
of Ref. [4]). In calculating the width of momentum distribution curves (the linewidths in
Fig. 5.4c), we have arbitrarily subtracted off a constant from the simulated widths so that
the width vanishes at zero binding energy, as also done in the analysis of experimental data
in Ref. [4].

5.4.3 Substrate screening

To include the effects of the dielectric screening associated with the silicon carbide (SiC)
substrate, we have, as done in previous studies [4, 85, 86] (Supplementary discussion and
Fig. 5.6), renormalized the bare Coulomb interaction by an effective background dielectric
constant ǫb = (1 + ǫSiC)/2, where ǫSiC=6.6 is the optical dielectric constant of silicon car-
bide [110]; one takes the average of the vacuum dielectric constant and the substrate dielectric
constant because graphene is sandwiched in between the two media [116]. Along the lines
of Ref. [4], we do not take into account atomistic interactions between graphene and the
reconstructed surface of the silicon carbide substrate [90, 91, 92].

5.5 Supplementary discussion

5.5.1 Velocity renormalization

Our simulated spectral functions allow us to study the velocity of Dirac fermions in the
linear regime (away from the Dirac point) as a function of dielectric screening of the substrate
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Figure 5.5: Quasiparticle velocity in graphene. The slopes (quasiparticle velocity) of the
linear bands far from the Dirac point (indicated by the blue dashed lines in Figs. 5.1c, 5.1f,
and 5.1i) vs. doping. Squares and circles are calculated quantities for suspended graphene and
for graphene with a model silicon carbide (SiC) dielectric screening, respectively. Triangles
are DFT results within the LDA. The lines are a guide to the eye.
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and doping (Fig. 5.5). The band velocity of our model epitaxial graphene [ǫb = (1+ǫSiC)/2 =
3.8] is found to be smaller than that of suspended graphene (ǫb = 1) by as much as ∼10%
(Fig. 5.5). In addition, the velocity decreases as doping increases (Fig. 5.5), in agreement
with the previous calculation [108]. Both trends are easily explained by observing that the
polarizability of the substrate and the additional electrons in the graphene layer both lead
to weaker e-e interactions.

5.5.2 Substrate Dielectric Function

In this section, we show that the dielectric function of silicon carbide (SiC) εSiC(q, ω) is
well represented by the value at q = 0 and ω = 0 (i. e. , the optical dielectric constant) as far
as our calculation is concerned. We also estimate that an error in the electron self energy
arising from this simplification is less than 10%.

In calculating the imaginary part of the self-energy, the relevant energy scale of the
dielectric function of SiC is the quasiparticle energy measured from the Fermi surface, since
the lifetime is determined by the real decay processes to lower energy states [see, e. g. , Eq. (5)
of Ref. [38]]. The energy argument of the inverse dielectric function used in the calculation of
the imaginary part of the self energy at energy ω varies between ω itself and the Fermi energy
due to the two Heaviside functions. As long as the dielectric function is reasonably constant
over this range, the results are valid. Since we are only interested in the value of the linewidth
for states from the Fermi level down to about 2.5 eV below it (as measured by experiment
and presented in Figs. 5.2 and 5.4), we have checked the validity of our approximation
on substrate screening within this energy range and the corresponding wavector range as
discussed later. The real part of the self energy is affected by the dielectric screening involving
large wavevectors; however, the contribution coming from larger wavevector scatterings is
smaller because the Coulomb interaction decreases with q. The error in the real part of
the self energy arising from the inaccuracy in the dielectric function for a larger wavevector
would be smaller than that involving a smaller wavevector, which is estimated below.

In order to give a quantitative estimate of the possible error arising from the frequency and
wavevector dependence of the dielectric function, we performed first-principles calculations
of the dielectric function of 3C-SiC showing dielectric responses very similar to 6H-SiC [99],
which is the substrate used in experiments [4, 58]. (The unit cell of 3C-SiC is much smaller
than that of 6H-SiC though.)

Figure 5.6 shows that using the optical dielectric constant (ω = 0, q = 0) is a good
approximation for the energy and wavevector regime considered in our work: the maximum
variation in the dielectric function is 15%. (We have also checked that the inverse dielec-
tric function shows similar behaviors.) Moreover, since (i) the self energy is an average of
many contributions, and, (ii) the finite frequency and finite wavevector effects increase and
decrease the value of the dielectric function, respectively, the combined error coming from
our approximation will be less than 10%.

Figure 5.6 also shows (difference between solid and dashed lines) that in fact the max-
imum anisotropy in the dielectric function of SiC is ∼3%. (We have also checked that the
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inverse dielectric function shows similar behaviors.) Since the self energy is an average of
all contributions, we expect that the anisotropy in the calculated electron self energy arising
from that in the dielectric function of SiC will be even smaller than that.

5.5.3 Comments on other calculations

First-principles calculations of the real part of the self-energy in graphene arising from
e-e interactions within the GW approximation have been reported previously [107, 108]. The
authors of Ref. [108] calculated the frequency dependence of the dielectric matrices within
the generalized plasmon-pole model. The authors of Ref. [107] calculated the full frequency
dependence of the dielectric matrices using the random phase approximation as we did for
the present work. For consistency we compare our calculations to the latter study.

Our calculated velocity (1.23×106 m/s) in suspended graphene is ∼9% larger than the
one reported in Ref. [107] (1.12×106 m/s). Moreover, unlike the finding of Ref. [107], we do
not observe a kink in the quasiparticle band structure of suspended pristine graphene at an
energy ω ∼ −0.15 eV when e-ph interactions are not included. The fact that we observe a
gradual increase in the band velocity when approaching the Dirac point energy, rather than a
kink at a finite energy value is in line with results of model analytical calculations [111, 117].
To clarify this difference, we observe that, in the case of graphene, electronic states with
wavevectors on nearest neighboring grid points of a discretized N × N mesh of the full
Brillouin zone have an energy difference ∆E (eV) ≈ 20/N . The Brillouin zone sampling
adopted in Ref. [107] (10 × 10 points) corresponds to electronic eigenstates with minimal
energy separation of approximately 2 eV. We find that this energy resolution is not sufficient
to achieve convergence in the dielectric matrices needed for the GW self energy (we used
instead a 72× 72 grid, corresponding to energy separations of about 0.25 eV). Therefore we
suggest that the difference between the band dispersions and velocities calculated here and
those of Ref. [107] may arise from the insufficient Brillouin zone sampling adopted in that
work.
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Chapter 6

Electron-phonon interactions in
graphene, bilayer graphene, and
graphite

6.1 Introduction

Since the fabrication of crystalline graphitic films with a thickness of only a few atoms [70,
34, 35, 36, 71], single- and double-layer graphene have received considerable attention [72].
These materials are promising candidates for nanoelectronics applications because of the high
mobility of charge carriers in these systems and the tunability of their electronic properties by
gating [72]. Since electron-phonon (e-ph) interaction plays an important role in the dynamics
of charge carriers [64, 39], understanding its effects in single- and double-layer graphene is
of crucial importance for graphene-based electronics.

The e-ph interaction in metals modifies the dynamics of electrons with energy near the
Fermi level by increasing their mass and reducing their lifetime. The mass renormalization
can be described in terms of the e-ph coupling strength λnk, defined as the energy derivative
of the real part of the phonon-induced electronic self-energy Σnk(E) at the Fermi level EF:
λnk = −∂ ReΣnk(E)/∂E|E=EF

, where n, k and E are the band index, the wavevector and the
energy of the electron, respectively [39]. The electron mass renormalization can be obtained
from the e-ph coupling strength through m∗/m = 1 + λnk where m and m∗ are the bare
band mass and the renormalized mass, respectively. The e-ph interaction also gives rise to
a phonon lifetime τνq = h̄/Γνq [118], where Γνq is the phonon linewidth, i. e. , twice the
imaginary part of the phonon self-energy arising from the e-ph interaction. Here ν, q and ω
are the phonon branch index, the wavevector and the energy of the phonon, respectively [39].

These quantities can be calculated from first-principles within the Migdal approximation
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as [39]

λnk =
∑

m,ν

∫
dq

ABZ

|gmn,ν(k,q)|2

×
[

nqν + 1 − fmk+q

(EF − ǫmk+q − ωqν)2
+

nqν + fmk+q

(EF − ǫmk+q + ωqν)2

]
, (6.1)

and

Γqν = 4π
∑

m,n

∫
dk

ABZ

|gmn,ν(k,q)|2

× (fnk − fmk+q) δ (ǫmk+q − ǫnk − ωqν) . (6.2)

Here ǫnk and ωqν are the energy eigenvalue of an electron with band index n and wavevector
k and that of a phonon with branch index ν and wavevector q, respectively. ABZ is the
area of the first Brillouin zone where the integration is performed. The quantities fnk

and nνq are the Fermi-Dirac and the Bose-Einstein factors, respectively, and gmn,ν(k,q) ≡
〈mk + q|∆Vνq(r) |nk〉 is the scattering amplitude of an electronic state |nk〉 into another
state |mk + q〉 resulting from the change in the self-consistent field potential ∆Vνq(r) arising
from a phonon with the branch index ν and the wavevector q.

6.2 Theory and computation

Electron wavefunctions and energy eigenvalues are obtained using ab initio pseudopoten-
tial density functional theory calculations [96] within the local density approximation [14, 40].
Phonon frequencies and eigenstates are obtained through density functional perturbation
theory [43]. We have used a planewave basis set [41] with a kinetic energy cutoff of 60 Ry.
The core-valence interaction is handled using norm-conserving pseudopotentials [15, 42]. The
integration in Eq. (6.1) for graphene and bilayer graphene is performed by summation over
300×300 points and for graphite it is performed with 90×90×30 points in the irreducible
part of the Brillouin zone. The integration of Eq. (6.2) for graphene and bilayer graphene
is done by summation over 1000×1000 points in the irreducible part of the Brillouin zone,
and the δ function is replaced by a Lorentzian with 15 meV broadening for convergence.
Electron and phonon wavefunctions, energy eigenvalues and the e-ph coupling matrix ele-
ments in these extremely dense grid sets are obtained by a recently developed interpolation
scheme [45, 31] based on maximally localized Wannier functions [32, 33]. The Fermi-Dirac
and Bose-Einstein factors are evaluated at the temperature T = 15 K in all the calculations.
Charge doping is modelled by adding or removing electrons from the simulation cell and by
using a neutralizing background. In this work we assume that the layers in bilayer graphene
and in graphite are arranged according to the Bernal stacking sequence [Fig. 6.1(a)] [119].
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6.3 Results and discussion

6.3.1 The electron-phonon coupling strength λnk

Figure 6.1 shows the e-ph coupling strengths λnk in graphene, bilayer graphene and
in graphite calculated along the reciprocal space path indicated by the double-head arrow
in Fig. 6.1(b). As pointed out in Ref. [5] the e-ph coupling strength in graphene λnk is
insensitive to the location of the wavevector k on the Fermi surface. This is also the case
for bilayer graphene and for graphite. Therefore, we drop the index n and the wavevector
k from now on. In bilayer graphene, the two electronic bands near the Dirac point energy
exhibit almost identical e-ph coupling strengths [Fig. 6.1(c)].

The key factors determining the e-ph coupling strength are the density of states around
the Dirac point energy and the e-ph matrix elements between the initial and the final elec-
tronic states close to the Fermi level [39]. The density of states of pristine graphene vanishes
at the Fermi level, whereas bilayer graphene has a finite density of states. Despite this
difference, at low doping with only one band occupied (|EF − ED| < 0.2 eV, ED being the
energy at the Dirac point and is set to ED = 0 in the following discussion), the e-ph coupling
strengths in bilayer graphene and in graphite are similar (within 5%) to those of graphene.
This indicates that, as in graphene, there is no significant scattering between low-energy
electronic states in bilayer graphene and in graphite arising from the e-ph interaction. This
behavior originates from the chiral nature of the charge carriers in bilayer graphene [120, 80]
and in graphite [77], i. e. , it is a matrix-element effect. The difference in the e-ph coupling
strength between graphene and bilayer graphene (or graphite) increases with doping. At the
largest doping level considered [EF = 1.5 eV, Figs. 6.1(c) and 6.1(d)], the coupling strength
in bilayer graphene and graphite (λ = 0.28) is 30% larger than in graphene (λ = 0.21). As
we show in the following, these differences result from interlayer interaction.

In order to determine which phonon modes lead to the differences in the e-ph coupling
strengths between monolayer and bilayer graphene, we decomposed the coupling strength λnk

of both systems into contributions from each phonon branch and wavevector. Figures 6.2(b)
and 6.2(e) show the Fermi surfaces of hole-doped graphene and bilayer graphene and the ini-
tial wavevector k of the electronic state considered. Figures 6.2(c) and 6.2(f) show the phonon
dispersions of both pristine and hole-doped graphene and bilayer graphene, respectively. The
size of the disks superimposed to the phonon dispersions is proportional to the contribution
to the coupling strength λnk arising from the corresponding phonon mode. Figures 6.2(c)
and 6.2(f) show that both in graphene and in bilayer graphene, the major contributions re-
sult from the highest-energy in-plane vibrations with wavevectors connecting the initial and
final electronic states on the Fermi surface. However, in the case of bilayer graphene, the
three low-energy optical branches with energy ∼ 10 meV enhance the e-ph coupling strength
with respect to graphene. The latter vibrations correspond to the compression mode (singly
degenerate) and to the sliding mode of the two layers (doubly-degenerate).

Since, as in graphene, the e-ph coupling strength in bilayer graphene is rather small,
even in the heavily doped case considered here, it appears unlikely for bilayer graphene to
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Figure 6.1: (a) Ball-and-stick model of bilayer graphene (Bernal stacking). (b) Brillouin
zone of graphene and bilayer graphene. (c) The electron-phonon coupling strength λnk in
bilayer graphene versus changing Fermi level EF calculated along the path (double-head
arrow) shown in (b). Solid and dashed red lines correspond to λnk of the individual blue and
red parabolic band in the inset, respectively. The Fermi level of neutral bilayer graphene is
set at zero. (d) As in (c), for each of the two electronic bands of graphite touching at the K
point (solid blue line). In (c) and (d), we show for comparison the e-ph coupling strength in
graphene [5] (indicated by the dash-dotted line).
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Figure 6.2: (a) The electronic energy dispersion and the Fermi level of hole-doped graphene.
(b) The Fermi surface (contours) and the Brillouin zone (dashed hexagon) of hole-doped
graphene. The black dots represent the wavevector k of the electronic state considered on
the Fermi surface. (c) The phonon dispersion curves of undoped (dashed lines) and hole-
doped (solid lines) graphene versus the wavevector q along the solid green line shown in (b).
The vertical lines indicate the phonon wavevectors q such that the final electronic state with
wavevector k + q is also on the Fermi surface. The size of the disks on top of the phonon
dispersions is proportional to the contribution of that phonon mode to λnk. (d) to (f):
Same quantities as in (a) to (c) for hole-doped bilayer graphene but including also interband
coupling. The inset of (f) shows one of the three modes responsible for the enhancement of
the e-ph coupling strength in bilayer graphene. The color (red and blue) and the type (solid
and dashed) of the curves in (c) and (f) corresponds to the phonon branches in Figs. 6.4(a)
and 6.4(b) and 6.4(c) and 6.4(d), respectively.
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exhibit superconductivity with a transition temperature significantly higher than that one
may expect for graphene.

Recent angle-resolved photoemission experiments on kish graphite [121] and on a single
crystal of graphite [122] reported very different values of the e-ph renormalization, namely,
λ = 0.70 along the KK direction [path indicated by the double-head arrow in Fig. 6.1(b)] [121]
and λ = 0.14 along the KM direction [Fig. 6.1(b)] [122]. Our calculated e-ph coupling
strength in undoped graphite (λ = 0.034) is closer to the estimate of Ref. [122]. In that
work, the broadening of the energy distribution curve in the photoemission spectra was
entirely assigned to the e-ph interaction. This assumption leads to an apparent e-ph coupling
strength which is enhanced by the contributions arising from other interactions. In particular,
it has been shown that the electronic linewidth in graphite arising from the electron-electron
interaction is sizable [123]. A similar discrepancy has been pointed out for the case of
graphene [124, 125]. However, recent calculations indicate that the effect of the electron-
electron interaction in graphene is not negligible and must be taken into account in the
analysis of the experimental data [110].

6.3.2 The phonon linewidth Γνq

So far we have discussed the effect of the e-ph interaction on the Fermi velocity of the
carriers. In what follows we focus on the effect of e-ph interaction on the phonon linewidths.
Figure 6.3(a) shows the linewidth of the doubly-degenerate E2g phonons at the Γ point and of
the doubly-degenerate A′

1 mode at the K point for graphene. These phonons exhibit a finite
and constant linewidth for |EF| < ωph/2, where ωph ∼ 0.2 eV is the optical phonon energy,
and a negligible linewidth otherwise. The dependence of the phonon linewidth on the doping
level can be explained by considering that interband transitions through phonon absorption
are forbidden whenever |EF| > ωph/2. Our calculated linewidth of the E2g phonon is in good
agreement with previous studies [126, 127].

In bilayer graphene, as a consequence of the interlayer coupling, the four highest-energy
modes (originating from the E2g modes of graphene) split into two sets of doubly-degenerate
Eg and Eu modes [128], with the Eu modes 1.1 meV higher in energy than the Eg modes
(cf. Fig. 6.3). Interestingly, at Γ, only the Eg modes exhibit a finite linewidth (1.1 meV)
whereas the Eu modes are not broadened by the e-ph interaction. It can be shown that this
difference results from (i) the chiral nature of the low-energy electronic states [77, 129] and
(ii) from the fact that atoms in the same sublattice but different layers move in phase in the
Eg modes, while they move out of phase in the Eu modes [130]. The calculated linewidths of
the Eg and the Eu modes are in good agreement with a previous study based on a pseudospin
effective Hamiltonian for the massive Dirac fermions of bilayer graphene [130].

Among the two sets of high-energy zone-center modes, only the Eg phonons are Raman
active [128]. The calculated phonon linewidth of the Eg modes can therefore be compared
directly with the measured broadening of the Raman lines. As shown in Fig. 6.3(b), our
calculated linewidths are in excellent agreement with those reported in a recent experi-
mental study [7]. For the purpose of comparison, we have downshifted the experimental
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Figure 6.3: (a) Phonon linewidth in doped graphene for the E2g mode at the Γ point (solid
line) and the A′

1 mode at the K point (dashed line) versus the Fermi level EF. The filled
squares are the experimental data from Ref. [6] downshifted by 0.6 meV (to account for a
uniform background). (b) Phonon linewidth in bilayer graphene for the Eg mode (solid line)
and the Eu mode (dash-dotted line) at the Γ point, and for the E mode at the K point
(dashed line). The insets show one of each of the two doubly-degenerate zone-center modes
considered here. The filled squares are the experimental data from Ref. [7] downshifted by
0.6 meV (to account for a uniform background).
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linewidths of the E2g phonon in graphene [6, 131, 132] and of the Eg phonon mode in bilayer
graphene [7, 133] by 0.6 meV. The agreement between our calculations and experiment af-
ter the subtraction of this uniform background indicates that defect-induced scattering and
anharmonic effects are small and similar in magnitude in graphene and bilayer graphene.

We note that the linewidth of the E2g phonons in graphene (1.1 meV) and that of the
Eg phonons in bilayer graphene (1.4 meV) are very similar. This behavior originates from
the cancellation of the effects of larger electron density of states and smaller e-ph matrix
elements of bilayer graphene as compared to graphene. Because of their similar linewidths,
the broadening of these modes is unlikely to be useful for determining the number of graphene
layers using Raman spectroscopy. In contrast, the linewidth of the highest-energy mode at
the K point in graphene (the A′

1 mode) is reduced from 2.9 meV in graphene to 1.2 meV
in bilayer graphene (the E mode). Therefore it should be possible, at least in principle, to
exploit this difference in two-phonon Raman experiments to distinguish between graphene
and bilayer graphene.

Figure 6.4(a) shows the linewidths of the two highest-energy phonon branches in pristine
graphene. The phonon linewidths exhibit maxima at the K point and at or near the Γ
point. At the Γ point, the highest-energy phonons decay through electronic transitions
with no momentum transfer. Off the Γ point, because of the topology of the Dirac cone,
non-vertical transitions can occur if the wavevector of the phonon is smaller than k0 =

ωph/vF = 0.035 Å
−1

(ωph being the phonon energy and vF the Fermi velocity). These
transitions are allowed since the phonon wavevectors connect electronic states of the same
chirality [134]. The scattering of phonons with wavevector k0 = ωph/vF is enhanced because
the phase velocity of the phonon matches the slope of the Dirac cone. Correspondingly, at
this wavevector the transverse-optical phonon branch exhibits the largest linewidth. Unlike
the case for the transverse-optical phonons, the longitudinal-optical phonons with wavevector
k0 cannot promote electronic transitions, as a consequence of the chiral symmetry [134], and
the corresponding linewidth vanishes.

As shown in Fig. 6.4(b), in hole-doped graphene, the phonon linewidths in the highest
energy branches with wavevector at the Γ point or at the K point are negligible. However,
whenever the phonon wavevector exceeds k0 in magnitude, intraband electronic transitions
can occur through phonon absorption. In the case of phonons with wavevector close to the
K point, this kind of electronic transition is suppressed due to chirality [134]. In hole-doped
graphene, the Fermi surface consists of two contours centered around the two inequivalent
Dirac points. Two maxima are found in the phonon linewidths near K, corresponding to the
smallest and the largest wavevectors connecting electronic states on different contours.

Figures 6.4(c) and 6.4(d) show the linewidths of the Eg phonons for undoped as well as
for hole-doped (EF = −1.0 eV) bilayer graphene, respectively. In the undoped case, the
linewidths of transverse phonons with wavevector k0 are not as large as in graphene since
the low-energy electronic energy dispersions are nonlinear. In the case of hole-doped bilayer
graphene, the profile of the phonon linewidths is almost identical to the one calculated for
graphene. This can be explained by considering that the electronic density of states per
carbon atom near the Fermi level in graphene and bilayer graphene are very similar.
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The results of our calculations could be confirmed by performing detailed inelastic neu-
tron scattering, electron energy loss spectroscopy, or inelastic x-ray scattering experiments.
Measurements of this kind have been performed, for example, in the case of magnesium
diboride, allowing for a direct comparison with theoretical calculations. [135].

6.4 Conclusion

In summary the Fermi velocity renormalization and the phonon line broadening arising
from the e-ph interaction in bilayer graphene and in graphite are studied and compared with
the corresponding quantities in graphene. In bilayer graphene and in graphite, the e-ph
coupling strength is enhanced by up to 30% at high doping as compared to graphene. The
calculated doping dependence of the phonon linewidth of the zone-center Eg mode in bilayer
graphene is in excellent agreement with recent Raman measurements [6]. We discussed the
similarities and the differences in the linewidths of the optical phonons in graphene and in
bilayer graphene.
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Chapter 7

Inelastic carrier lifetime in bilayer
graphene

7.1 Introduction

The lifetime of charge carriers through inelastic scattering processes determines ballistic
transport properties of electronic devices operating at a high source-drain bias voltage for
which the inelastic carrier mean free path is much shorter than the elastic one [136]. There-
fore, knowing the carrier lifetime arising from inelastic scattering processes is an important
step towards the micro- or nano-meter scale electronic device applications. Inelastic scatter-
ing processes are induced by many-body interactions, two of the most important classes of
which are electron-electron (e-e) and electron-phonon (e-ph) interactions [136].

Graphene holds a great promise for electronic and spintronic device applications [72].
Moreover, recent experimental manifestations of a band gap opening up in bilayer graphene [137,
8] show new possibilities in the application of bilayer graphene in electronics and opto-
electronics applications. Although the carrier lifetime in electronic devices based on graphene
in a low-bias regime is likely to be limited by charged impurities [138], in a high-bias regime,
it is limited by many-body interactions [38].

The inelastic scattering rate of charge carriers in graphene arising from e-ph interactions
have been studied from first-principles calculations [60, 49] as well as from the model cal-
culations based on the two-dimensional massless Dirac equation [84, 139] and that arising
from e-e interactions have also been studied from model calculations [38, 139] and from a
first-principles approach [110]. However, a study on the inelastic carrier lifetime in bilayer
graphene has been lacking up to now. In this chapter, we present a first-principles calcu-
lation of the inelastic carrier lifetime in pristine and charge-doped bilayer graphene arising
from both e-e and e-ph interactions. (A model calculation study on monolayer graphene
with similar spirit has recently been performed [139].)

We find that the scattering rate in bilayer graphene arising from e-e interactions varies
highly anisotropically with the wavevector of electrons, as in graphene [110], even in a low-
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energy regime. However, due to the enhanced screening and the bandstructure effects in
bilayer graphene, this scattering rate is reduced by 20–40% depending on the charge density
and the band index and wave vector of electrons than that in graphene. On the contrary,
the scattering rate in bilayer graphene arising from e-ph interactions does not show band or
wavevector dependence once the energy is the same, similar to the case of graphene [110]. We
compare the results of our calculation with available experimental data and explain why the
scattering rate measured from ultrafast optical pump-probe spectroscopy measurements [140]
could be much smaller than that obtained from angle-resolved photoemission spectroscopy
measurements [4, 58].

7.2 Theory and computation

The scattering rate of charge carriers arising from e-e and e-ph interactions are given
by τ−1

e−e,nk = h̄/2Σe−e

nk (εnk) and τ−1
e−ph,nk = h̄/2Σe−ph

nk (εnk), respectively, where Σe−e

nk (εnk)

and Σe−ph
nk (εnk) are the corresponding electron self energies of charge carriers having band

index n, wavevector k, and, energy εnk obtained from the density-functional calculations
within the local density approximation (LDA). We evaluate Σe−e

nk (εnk) within the G0W0

approximation [20] by taking into account the full-frequency dependence of the dielectric
function within the random-phase approximation [98], and Σe−ph

nk (εnk) within the Migdal
approximation [31]. The computational setup for evaluating these self energies is the same
as that of our previous work on graphene [110]. We set the interlayer distance in one unit
cell of bilayer graphene to 3.33 Å.

7.3 Results and discussion

7.3.1 Carrier lifetime limited by electron-electron interactions

Figure 7.1(a) shows that the scattering rate τ−1
e−e,nk arising from e-e interactions in pristine

suspended bilayer graphene is smaller than that in graphene by 20–40% on average. This
decrease is partly due to the stronger screening in bilayer graphene. Another factor is the
bandstructure effect: the scattering rate for electrons in the outer parabolic bands (dashed
curve) are in general higher than that for the inner parabolic bands (solid curve). The
electrons in outer parabolic bands require, on average, a larger momentum transfer to decay
into lower-energy states than those in the inner parabolic bands. This bandstructure effect
could be directly confirmed by angle-resolved photoemission experiments.

Figure 7.1(b) shows that the scattering rate τ−1
e−e,nk of charge carriers in bilayer graphene

with wavevector on the KM line is much lower than that on the KΓ line, similar as in
graphene [110] or in graphite [93, 141]. Because the scattering rate is not well defined
in systems with a linear energy dispersion, it depends critically on the sign of the band
curvature of the additional non-linear energy dispersion [111]. This effect is important even
for low-energy carriers [Figs. 7.1(a) and 7.1(b)]. However, model calculations based on
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Figure 7.1: Calculated inelastic scattering rate of charge carriers arising from e-e interactions,
τ−1
nk,e−e

, versus the LDA energy εnk. The solid, dashed, and dash-dotted lines are results,
calculated along the reciprocal space segment shown in the inset of each panel, for the inner
parabolic bands and outer parabolic bands in bilayer graphene and for the linear bands
in graphene, respectively. (a)-(d) and (e)-(h) are results for undoped system and n-doped
system where the Fermi level is 1.0 eV above the Dirac point energy ED, respectively. (a),
(b), (e), and (f) are results for suspended systems, whereas (c), (d), (g), and (h) are results
for systems with a background dielectric constant of εb = (1 + εSiC)/2 = 3.8. The Fermi
level and ED are indicated by vertical lines.
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the two-dimensional massless Dirac equation cannot describe this anisotropy, because of
which, together with the ability to capture high-energy virtual scattering processes without
a tunable fitting parameter, first-principles calculations are very important in discussing the
carrier lifetime of graphitic systems.

Figures 7.1(c) and 7.1(d) show that the scattering rate τ−1
e−e,nk arising from e-e interactions

is reduced by the dielectric screening from the substrate. We arbitrarily set the effective
background dielectric constant εb = (1 + εSiC)/2 = 3.8 to be that of interface between
vacuum and silicon carbide (SiC) to see the effects of screening [104, 110]. We neglect the
atomistic interaction between bilayer graphene and the substrate which affects the inelastic
carrier lifetime near the Dirac point energy [58]. Also, for intrinsic systems, the interaction
between bilayer graphene and the optical phonon modes of the substrate could affect the
lifetime [142], although this effect is suppressed in real systems which are usually doped.

Figures 7.1(e)-7.1(h) show that in doped bilayer graphene, the inelastic scattering rate
τ−1
e−e,nk shows the signature of electron-plasmon interactions (the peaks near εnk = −1.5 eV)

as in graphene [85, 86, 110]. Moreover, the lifetime of electrons with wavevector in the
KM line in reciprocal space [Figs. 7.1(f) and 7.1(h)] is comparable to that in the KΓ line
[Figs. 7.1(e) and 7.1(g)], in contrast to the case of pristine system [Figs. 7.1(a)-7.1(d)]. This
increase in the scattering rate with doping has the origin in that the doped graphitic systems
no longer show the bandstructure effect [111]. However, still, the scattering rate of electrons
with wavevector in the KΓ line is higher than that in the KM line even for low-energy charge
carriers.

7.3.2 Carrier lifetime limited by electron-phonon interactions

Figure 7.2 shows that the scattering rate τ−1
e−ph,nk arising from e-ph interactions in bilayer

graphene is almost the same as that in graphene and that there is virtually no difference
in τ−1

e−ph,nk between electrons in different bands with the same energy (solid and dashed

curves). Moreover, τ−1
e−ph,nk does not depend sensitively on the wavevector k (not shown),

consistent with the isotropic variation of the e-ph coupling constant in graphene [5] and in
bilayer graphene [95]. Previous studies, using the quasiparticle dispersions renormalized by
the e-e interaction to compute the e-ph interaction [115], reported anisotropy in the e-ph
interaction in graphene. This latter procedure, which might give a better estimate for the
e-ph interaction matrix element, would correspond to including some of the higher order
processes in τ−1

e−ph,nk whilst neglecting them in τ−1
e−e,nk, and would result in an unbalanced

evaluation of e-e and e-ph effects according to different levels of approximation. Finally, the
calculated carrier scattering rate τ−1

e−ph,nk in graphene (Fig. 7.2) agrees well with one of the
previous theoretical studies [49] and is 5 times larger than the other [84].

The calculated total scattering rate τ−1
nk = τ−1

e−e,nk+τ
−1
e−ph,nk in charge-doped graphene [110]

is in good agreement with recent angle-resolved photoemission measurements on graphene
epitaxially grown on SiC [4]. On the contrary, an ultrafast optical pump-probe spectroscopy
study on similar samples has reported a carrier scattering rate of 0.014 fs−1 when the energy
of the carrier is 0.8 eV, an order of magnitude smaller value than the one extracted from the
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Figure 7.2: Calculated inelastic scattering rate of charge carriers arising from e-ph interac-
tions, τ−1

nk,e−ph, versus the LDA energy εnk. The solid, dashed, and dash-dotted lines are
results, calculated along the KΓ reciprocal space segment, for the inner parabolic bands and
outer parabolic bands in bilayer graphene and for the linear bands in graphene, respectively.
(a) and (b) are results for undoped system and n-doped system where the Fermi level is
1.0 eV above the Dirac point energy ED, respectively. The Fermi level and ED are indicated
by vertical lines.

angle-resolved photoemission spectroscopy [4]. However, due to a finite duration (∼ 85 fs)
of the pump pulse, a scattering rate higher than 0.012 fs−1 cannot be accurately measured
by this pump-probe study [140]. Moreover, the time-resolved measurements are likely to be
dominated by the carriers having longer lifetimes. Therefore, our finding that the inelastic
carrier lifetime varies significantly with the wavevector (Fig. 7.1) should be considered in the
interpretation of future time-resolved experiments on graphitic systems.

7.4 Conclusion

In summary, we have studied the inelastic carrier lifetime in bilayer graphene from first-
principles calculations. In particular, the scattering rate arising from e-e interactions is
highly anisotropic and is reduced by 20–40% on average from that of graphene. Our findings
could be useful in the electronic and spintronic device applications of bilayer graphene in a
high-bias regime.
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Chapter 8

Tunable excitons in biased bilayer
graphene

8.1 Introduction

The low-energy electronic states of graphene are described by a massless Dirac equa-
tion [35, 36, 138]. If an extra layer is added [Fig. 8.1(a)], the electronic properties change
drastically and the charge carriers become massive [Fig. 8.1(b)] [120]. There have been a
number of theoretical studies on the possibility of opening up a bandgap in the gapless bi-
layer graphene if an electric field is applied perpendicularly [Figs. 8.1(c) and 1(d)] [143, 144,
145, 146, 147, 148, 149, 150, 151]. Indeed, a bandgap has been observed in the case of an
internal perpendicular electric field generated by an imbalance of doped charge between the
two graphene layers [152]. Also, bandgap opening in bilayer graphene under an electric field
from a single gate has been observed by infra-red spectroscopy [153, 154, 155, 156, 157] and
quantum Hall measurement [158].

A bandgap opening up in bilayer graphene under an electric field from a double-gate con-
figuration has further been observed in transport experiments [137]. Very recently, infra-red
measurements showed that the bandgap of bilayer graphene in a double-gate geometry is
continuously tunable up to 250 meV, an order of magnitude higher than the thermal energy
at room temperature [8]. This discovery provides exciting new possibilities for the nanoelec-
tronic and nanophotonic device applications of bilayer graphene at room temperature.

Theoretical studies on the optical response of intrinsic bilayer graphene within a single-
particle picture [159, 160] as well as including electron-hole () interactions [161, 162] have
been performed. It is found that there are negligible many-electron effects on the low-energy
(≤ 1 eV) optical response of graphene and bilayer graphene [161]. There have also been
theoretical studies within a single-particle picture on the electronic and optical properties
of biased bilayer graphene (BBG) [163, 164, 165, 166]. However, theoretical investigation of
excitonic effects on the optical response of this novel tunable bandgap system has yet to be
performed up to now. It is known that interactions play a crucial role in the optical re-
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Figure 8.1: (a) Schematic diagram showing the structure of pristine bilayer graphene whose
unit cell is composed of four different sublattices (A, B, A′, and B′). (b) Schematic band-
structure of pristine bilayer graphene (origin is the Dirac point). Solid blue and dashed
red lines represent valence bands and conduction bands, respectively. (c) and (d): Same
schematic diagrams as in (a) and (b) for bilayer graphene under a displacement field D gen-
erated through a double-gate. In (d), ∆ is the energy bandgap and vertical arrows represent
interband transitions responsible for the formation of excitons. (e) Schematic diagram show-
ing the probability density that a photo-excited electron is found at re when the hole (blue
empty circle) is fixed at the origin, |Φ(re, rh = 0)|2 (see text). For visualization purposes,
we show the quantities in a vertical plane that includes the hole. The fake thickness of the
plotted profile (red) is proportional to the probability density. The interlayer distance d is
extremely exaggerated in (e). The size of the exciton Reh is much larger than d [Fig. 8.4(b)].
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sponse of semiconductors [28], especially, semiconducting nanostructures [167, 168, 169, 170].
Excitonic effects in BBG with a finite bandgap are expected to be important, considering
that the lowest-energy van Hove singularity in its joint electronic density of states exhibits a
one-dimensional (1D), and not a two-dimensional (2D), behavior (i. e. , it diverges as inverse
of the energy difference from the bandgap) [165].

8.2 Theory and computation

Here, we obtain the optical response of a BBG including interactions by solving the
Bethe-Salpeter equation (BSE):

(Eck − Evk)AS
cvk +

∑

c′v′k′

〈cvk|Keh|c′v′k′〉AS
c′v′k′ = ΩSAS

cvk , (8.1)

where AS
cvk is the amplitude of a free pair configuration composed of the electron state |ck〉

and the hole state |vk〉, ΩS is the exciton excitation energy, Eck and Evk are quasiparticle
energies, and Keh is the interaction kernel [28]. The absorption spectrum is calculated by
evaluating the optical matrix elements [28] using the eigenstates and eigenvalues of the BSE.

As in recent experiments [8, 171], we focus here on the case in which the net charge on
the BBG is zero, or, the displacement fields D above and below the bilayer graphene are the
same [Fig. 8.1(c)]. We find that the optical response of BBG is dominated by low-energy
bound excitons with huge oscillator strength due to the 1D nature in the joint density of
states. As a consequence, the main peak of the absorbance profile becomes highly symmetric.
The binding energy and oscillator strength of the excitons increase with the bandgap. We
find a very rich electronic structure for the excitons in a BBG. Especially, we discover a
symmetry breaking of excitons having angular momenta of equal magnitude but of opposite
sign which leads to an unusual selection rule in the optical absorption. This phenomenon is
explained in terms of the pseudospin, a degree of freedom describing the bonding character
between neighboring carbon atoms [138], in a BBG.

In this study, we make use of the k ·p based method developed by Ando and coworkers for
the excitonic spectra of graphene and carbon nanotubes [172, 173, 174, 175, 176]. Although,
unlike the first-principles GW-BSE approach [28] that is parameter free, the current method
is based on a tight-binding formalism and treats electron-electron interactions within the
screened Hartree-Fock approximation, it does provide excitonic features of the absorption
profile that may be compared with experiments for complex structures and applied fields [174,
177]. For the kernel Keh, we consider only the attractive direct term, which is by far
dominant and describes the screened interaction between electrons and holes, and neglect
the repulsive exchange term. The exchange kernel is responsible for singlet-triplet splitting
and the splitting among states within individual singlet and triplet complexes, but is usually
only a few percent in magnitude of the direct term [167].

The quasiparticle energies Eck = εck + Σck and Evk = εvk + Σvk are obtained by first
calculating the bare energy εk within the k ·p formalism [174] using a tight-binding Hamilto-
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nian where we set the intralayer hopping parameter between the nearest-neighboring atoms
γ0 = 2.6 eV and the interlayer hopping parameter γ1 = 0.37 eV. These parameters reproduce
well the bandstructure of pristine bilayer graphene obtained from density-functional calcu-
lations within the local density approximation (LDA) [161]. The self energy Σk is calculated
within the screened Hartree-Fock approximation, using the static random-phase dielectric
function [172, 173, 174, 177]. We calculate the static polarizability within the random-phase
approximation [172, 173, 174, 177] by including the four electronic bands closest to the
bandgap arising from the π states with an energy cutoff of 5 eV (we have checked that the
resulting quasiparticle energies are insensitive to this cutoff), and incorporate the effects
of screening from higher-energy states (including the π bands away from the Dirac points
and the σ bands) by an additional effective static dielectric constant ǫint = 2.0 as done in
previous graphene and nanotube studies [175, 176, 177]. The total dielectric function ǫ(q) is
given by ǫ(q) = 1 − v(q) [Pint(q) + P (q)] where v(q) = 2πe2/q is the bare Coulomb interac-
tion and Pint(q) and P (q) are the static polarizabilities coming from excitations involving
higher-energy states and those involving only the low-energy π states, respectively. Using
the relation ǫint(q) = 1 − v(q) Pint(q) ≈ ǫint for screening with low-momentum transfer, we
obtain ǫ(q) ≈ ǫint − v(q) P (q) [172, 173, 174, 177]. The calculated self energy is then added
to the LDA band energy to form the quasiparticle energy. Although in this scheme, the
LDA exchange-correlation energy is not subtracted from the LDA band energy, it should be
a reasonable approximation because the LDA exchange-correlation energy is nearly the same
for all the π states giving rise to a constant shift to both occupied and unoccupied states.

We use in all the calculations a very dense grid for electronic state sampling corresponding
to 1500 × 1500 k-points in the irreducible wedge of the Brillouin zone of bilayer graphene
in order to describe the extended wavefunction ( correlation length) of the excitons in real
space, in particular at small bias voltage when the bandgap is small.

The external displacement field D induces an imbalance between the charge densities on
the two graphene layers of the BBG, which creates an internal depolarization electric field.
This depolarization field induces additional charge changes, which in turn induce further
adjustments in the internal electric field, and so on. We obtain the resulting internal electric
field and the charge imbalance between the layers by solving Poisson’s equation [8].

8.3 Results and discussion

8.3.1 The wavefunctions and binding energies of bound excitons

Figure 8.1(e) is a schematic diagram showing the squared amplitude (wavefunction) of
the lowest-energy optically active (bright) exciton for incident light with in-plane polariza-

tion, |Φ(re, rh = 0)|2 =
∣∣∑

cvkA
S
cvk 〈re|ck〉 〈vk|rh = 0〉

∣∣2 where the hole is fixed at a carbon
atom belonging to the B′ sublattice. The bound excitons [Fig. 8.2(a)] are comprised of inter-
band transitions forming the bandgap [Fig. 8.1(d)]. The electronic states in those two bands
are localized at A and B′ sublattices for the conduction and valence band, respectively, i.e.,
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Table 8.1: Calculated quantities of bound excitons in a BBG: the binding energy (Eb), the
radial quantum number n, the angular momentum quantum number m, and the integrated
absorbance (IA), the absorbance integrated over energy, of the exciton Xn,m made from free
pairs near the K point. The IA is for incident light with in-plane polarization. The quantities
are the same for the exciton X ′

n,−m made from pairs near the K′ point. Here, we consider

the BBG with Vext = eDd equal to 0.56 eV.

Index Eb (meV) n m n+ |m| IA (meV)
1 55.6 0 0 0 0.000

(bright) 2 40.6 0 -1 1 1.240
3 35.0 0 1 1 0.000
4 32.7 0 -2 2 0.000
5 27.0 0 2 2 0.000
6 25.5 0 -3 3 0.000
7 22.8 1 0 1 0.000
8 22.0 0 3 3 0.000
9 20.9 0 -4 4 0.000

(bright) 10 19.5 1 -1 2 0.146
11 18.5 0 4 4 0.000
12 18.2 1 1 2 0.000
13 17.7 0 -5 5 0.000
14 17.0 1 -2 3 0.000

...
...

...
...

...
...

the electron and hole are localized on two different graphene layers. As shown schematically
in Fig. 8.1(e), the position of the maximum in the electron density is not on top of the hole,
but is on a ring with a radius Reh from the hole that is about two orders of magnitude larger
than the interlayer distance d. The radius of the exciton in real space is related to that in k
space by Reh ≈ 2π/Rcvk [see, e. g. , Fig. 8.2(e) and Fig. 8.2(f)].

8.3.2 Optical selection rules

Figure 8.2(a) shows the bound exciton levels for a particular BBG (eDd = 0.56 eV), in
which we label an exciton by the radial quantum number n and the angular momentum quan-
tum number m of its wavefunction. The wavefunction of an exciton Xn,m formed from the

free pairs near the K point is approximately of the form Φ(re, rh = 0) ≈ eimθre r
|m|
e fn,m(re)

near the origin (re = 0) where fn,m(re) has n zeros like the wavefunctions in the 2D quan-
tum well problem having the angular symmetry [178]. However, in our system, the angular
symmetry is broken, i. e. , the binding energy of Xn,m and that of Xn,−m are different (see
Table 8.1). The origin of this symmetry breaking lies in the pseudospin of BBG. The elec-
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binding energy Eb. Each exciton level is four-fold degenerate due to the spin and valley
degeneracy (see text). There are many other higher-energy bound excitons not shown here
whose energy is below the bandgap. (b) The squared amplitude of the lowest-energy exciton

[excitonX0,0 in (a)] in momentum space
∣∣AS

cvk

∣∣2. (c) Squared wavefunction in real space of the
corresponding exciton in (b). The plotted quantity is the probability density |Φ(re, rh = 0)|2
of finding an electron at re given that the hole is fixed at one of the carbon atoms (at the
center of the figure) in sublattice B′ (Fig. 8.1). (d) Real part of the exciton wavefunction
Re Φ(re, rh = 0) for the corresponding exciton in (b). (e)-(g), (h)-(j), and (k)-(m): Similar
quantities as in (b)-(d) for the first, the second and the third bright excitons [excitons X0,−1,
X1,−1, and X2,−1 in (a), respectively].
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tronic states in in the conduction and valence bands forming the bandgap of a BBG, in the
basis of amplitudes on the four sublattices (A, B, A′ and B′), are

|ck〉 ∝
(
a1, a2 e

iθk, a3 e
iθk , a4 e

2iθk
)T

(8.2)

and
|vk〉 ∝

(
−a4, a3 e

iθk ,−a2 e
iθk , a1 e

2iθk
)T

, (8.3)

respectively, where ai’s (i = 1, 2, 3, and 4) are real constants [176]. As discussed above, the
band edge states that form the bound excitons have |a1| ≈ 1 and |a2|, |a3|, |a4| ≪ 1, i. e. ,
the electron and hole are localized at the A and B′ sublattices, respectively. Therefore, the
pseudospin of the states in a BBG imposes approximately an extra phase of e−2iθk to the
pair state |ck〉 〈vk|, resulting in an extra pseudospin angular momentum mps = −2. This
behavior is unique in BBG. In pristine bilayer graphene, |a1| and |a4| are the same [175, 176],
and hence we cannot define a single extra phase.

If we denote the angular momentum of an exciton coming from the envelope function
AS

cvk by menv, then the total angular momentum quantum number (which is the approximate
good quantum number) is given by m = menv+mps. Because of the extra pseudospin angular
momentum, two exciton states having menv of the same magnitude but of opposite sign are
no longer degenerate since m would be different. Rather, two states having total angular
momentum quantum number m and m will be degenerate if the extra phase imposition by
the pseudospin is perfect. In fact, the extra phase imposition of e−2iθk is not perfect because
the coefficients |a22|, |a3|, and |a4| are non-zero, resulting in the degeneracy breaking shown
in Table 8.1. [The broken angular symmetry shown, e. g. , in Fig. 8.2(m) has the same origin.]
On the contrary, due to time-reversal symmetry, the exciton Xn,m (formed by states near
K) is degenerate in binding energy with X ′

n,−m, which is an exciton made from the free
pairs near the K′ point with radial and angular momentum quantum numbers n and m,
respectively. Therefore, considering the spin and valley degeneracy and neglecting possible
intervalley coupling, each bound exciton shown in Fig. 8.2(a) is four-fold degenerate.

The extra phase e−2iθk arising from the pseudospin in a BBG qualitatively changes the
selection rule for optical absorption as follows. The oscillator strength OS of an exciton
S of a BBG is given by OS =

∑
cvkA

S
cvk 〈vk| Ô |ck〉 in which Ô is proportional to the

electron-photon interaction Hamiltonian. If the exciting photons are polarized along the x

direction (i. e. , parallel to the graphene planes), then Ô ∝
(
σx 0
0 σx

)
where σx is the Pauli

matrix [175]. Using Eqs. (8.2) and (8.3), we obtain OS ∝
∑

cvkA
S
cvk

(
a1a3 e

−iθk − a2a4 e
iθk

)
.

In order to have a non-vanishing oscillator strength, we should have AS
cvk ∝ eiθk or AS

cvk ∝
e−iθk , i. e. , the envelope angular momentum quantum number menv should be 1 or −1.
Therefore, the total angular momentum quantum number m (which is equal to menv − 2)
for the optically active excitons is either −1 or −3. However, since |a1| is by far the largest
among the four |ai|’s and |a1a3| ≫ |a2a4| [176], effectively, only the excitons Xn,−1 or X ′

n,1 are
optically active (Table 8.1). This unusual optical selection rule in a BBG, hence, originates
from the unique pseudospin physics.
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8.3.3 Optical absorbance

In the discussion below on the optical absorbance, for concreteness, we shall assume that
the polarization of the incident light is linear and is parallel to the graphene planes. Ac-
cordingly, the lowest-energy exciton X0,0 [Figs. 8.2(b)-8.2(d)] is dark and the second lowest-
energy exciton X0,−1 [Figs. 8.2(e)-8.2(g)] is bright. As seen from the calculated oscillator
strength in Table 8.1, the lowest-energy bright excitons by far dominate the absorbance
spectrum. The first, second and third bright excitons have zero, one, and two nodes in the
exciton wavefunction along the radial direction, respectively, in both momentum and real
space (Fig. 8.2). Also, there are many dark exciton levels between the bright exciton ones
as shown in Fig. 8.2(a). A change in the polarization direction of the incident light away
from the graphene plane would alter the optical strength of the levels from those given in
Fig. 8.2(a).

In a 2D hydrogen atom, the binding energy is proportional to (n+ |m| + 1/2)−2 resulting
in a 2N + 1-fold degeneracy with N = n + |m| [178]. As shown in Table 8.1, however, this
degeneracy in the binding energy of the excitons in a BBG is broken, and, further, the order
of the binding energies largely deviates from the case for a 2D hydrogenic model. Also, we
have checked that the detailed order of exciton levels changes with the external displacement
field.

8.3.4 Tunable exciton binding energy

Figure 8.3 shows the calculated absorbance spectrum of BBG (for in-plane linearly polar-
ized incident light) near the bandgap energy and the wavefunction of the lowest-energy bright
exciton that forms the main peak for several bias voltages. Remarkably, when interactions
are accounted for, the absorbance profile is dominated by a single four-fold degenerate exci-
tonic level with huge oscillator strength. Accordingly, the dominant feature of the absorbance
profile near the bandgap energy becomes symmetric when excitonic effects are considered –
as in carbon nanotubes [167, 179]; whereas, if these effects are neglected, highly asymmetric
absorbance spectra are obtained reflecting the “effective” 1D van Hove singularity in the
joint density of quasiparticle states discussed above. The huge excitonic effects observed
here in fact originate from this 1D singularity [167] which becomes more and more dominant
as the bandgap increases. On the contrary, excitonic effects on the low-energy (≤ 1 eV)
optical response of pristine bilayer graphene are negligible since its joint density of states is
characteristic of a 2D system [161]. The enhancement of excitonic effects with the bandgap
is reflected in the increase in the exciton binding energy [Fig. 8.4(a)] and the decrease in the
exciton radius [Fig. 8.3 and Fig. 8.4(b)].

In a previous study [171], we have shown that when the photo-excitation energy is close
to the energy of the zone-center optical phonons in BBG (∼0.2 eV), Fano lineshapes in
the absorbance profile develop due to the coupling of pair excitations with the phonons.
We expect that similar exciton-phonon coupling behavior, whose effects on the optical re-
sponse is large when the optical energy gap is around 0.2 eV, would arise if electron-phonon
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Figure 8.3: (a) Calculated absorbance spectra of BBG (with an arbitrary energy broadening
of 5 meV and in-plane polarization) where Vext = eDd (see Fig. 8.1) is 0.22 eV. Results
with (blue or solid line) and without (red or dashed line) interaction effects are shown. (b)
Wavefunction of the lowest-energy bright exciton (X0,−1 or X ′

0,1) that forms the dominant
peak in the absorbance spectrum. The plotted quantity is the probability density |Φ(re, rh =
0)|2 of finding an electron at re given that the hole is fixed at one of the carbon atoms (at
the center of the figure) in sublattice B′ (see Fig. 8.1). (c) and (d), (e) and (f), and (g) and
(h): Same quantities as in (a) and (b) for Vext = 0.39 eV, 0.56 eV, and 0.90 eV, respectively.
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interactions are taken into account [180].

8.3.5 Effects of substrate dielectric screening

The above results are applicable to suspended BBG [181]. However, for BBG on sub-
strates, excitonic effects are altered due to enhanced screening from the substrate. As an
example, we consider the effect of background screening due to the substrate on the optical re-
sponse of BBG relevant for the experimental setup in Refs. [8] and [171]. For substrates above
and below the BBG having dielectric constants ǫ1 and ǫ2, respectively, their effect can effec-
tively be replaced by a single material having a dielectric constant of ǫBG = (ǫ1 + ǫ2)/2 [116].
Using the static dielectric constant of SiO2 (=3.9) and that of amorphous Al2O3 (=7.5), we
may roughly set the external background dielectric screening as ǫBG = (3.9 + 7.5)/2 = 5.7.
Figure 8.5 shows similarly calculated quantities as in Fig. 8.4(a), but now for BBG with added
substrate screening as discussed above. The exciton binding energy Eb = ∆QP − ∆BSE is
smaller than the case without substrate screening. The calculated optical gap ∆BSE is in
reasonable agreement with the experiment ∆Exp [8].
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8.4 Conclusion

In conclusion, we have shown that excitons in biased bilayer graphene dramatically change
the optical response because of the 1D nature of the joint density of quasiparticle states in
this system. These excitonic effects are remarkably tunable by the external electric field.
Also, we have shown that the pseudospin character of the electronic states dramatically
alters the excitonic structure (energy level degeneracy, optical selection rule, etc.) of this
system. These results illustrate the richness in the photophysics of biased bilayer graphene
and their promise for potential applications in nanoelectronic and nanophotonic devices at
room temperature [8].
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Chapter 9

Anisotropic behaviors of massless
Dirac fermions in graphene under
periodic potentials

9.1 Introduction

Charge carriers of graphene show neutrino-like linear energy dispersions as well as chiral
behavior near the Dirac point [77, 34, 35, 36, 182, 72]. Here we report highly unusual
and unexpected behaviors of these carriers in applied external periodic potentials, i.e., in
graphene superlattices. The group velocity renormalizes highly anisotropically even to a
degree that it is not changed at all for states with wavevector in one direction but is reduced to
zero in another, implying the possibility that one can make nanoscale electronic circuits out of
graphene not by cutting it [183, 184, 185, 186] but by drawing on it in a non-destructive way.
Also, the type of charge carrier species (e.g. electron, hole or open orbit) and their density
of states vary drastically with the Fermi energy, enabling one to tune the Fermi surface-
dominant properties significantly with gate voltage. These results address the fundamental
question of how chiral massless Dirac fermions propagate in periodic potentials and point to
a new possible path for nanoscale electronics.

Since the pioneering work by Esaki and Tsu [187], superlattices have been studied ex-
tensively and have had a huge impact on semiconductor physics [188, 189]. Superlattices
demonstrate interesting phenomena such as negative differential conductivity, Bloch oscilla-
tions, gap openings at the mini Brillouin zone boundary formed by the additional periodic
potential, etc [188, 189]. Conventional semiconducting superlattices are mainly produced by
molecular-beam epitaxy and metallo-organic chemical vapour-phase deposition while metal-
lic superlattices are made by sputtering procedures [188, 189]. We expect that, by modulating
the potential seen by the electrons, graphene superlattices may be fabricated by adsorbing
adatoms on graphene surface through similar techniques, by positioning and aligning impu-
rities with scanning tunneling microscopy [190, 191, 192], by using hydrocarbon lithography
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technique [193] or by applying a local top-gate voltage to graphene [194, 195, 196]. Epitaxial
growth of graphene [182] on top of pre-patterned substrate is also a possible route to graphene
superlattice. Recently, periodic pattern in the scanning tunneling microscope image has been
demonstrated on a graphene monolayer on top of a metallic substrate [197, 198, 199] as well.

9.2 Theory and computation

The low energy charge carriers in pristine graphene are described by a massless Dirac
equation and have a linear energy dispersion which is isotropic near the Dirac points K and
K’ in the Brillouin zone [77, 78, 200, 35, 36, 201] (Fig. 9.1a). It is shown experimentally
that the carriers have a group velocity of v0 ≈ 106 m/s which plays the role of an effective
speed of light in (2+1) dimensional quantum electrodynamics [35, 36]. Within the effective-
Hamiltonian approximation,

H = h̄v0

(
0 −ikx − ky

ikx − ky 0

)
,

where kx and ky are the x and y components of the wavevector k of the Bloch state defined
with respect to the Dirac point, the wavefunction of the quasiparticles in graphene has
two components corresponding to the amplitude on the two different trigonal sublattices of
graphene and can be represented by a two component spinor [201, 78, 200]. This spinor
structure of the wavefunction is called a pseudospin (because it is not related to a real
spin) or chirality [201, 78, 200, 79, 80], which is of central importance to the novel physical
properties of graphene superlattices discussed below.

Let us now consider the situation that an additional periodic potential is applied to
graphene. If the spatial period of the superlattice potential is much larger than the nearest
neighbor carbon-carbon distance in graphene (∼ 1.42 Å), the scattering of a state close to
one Dirac point to another one does not occur [78, 200, 79]. Therefore, even though there
are two nonequivalent Dirac cones for the energy dispersion surface of graphene, focusing
on a single cone is sufficient. This condition also implies that, in the graphene superlattices
discussed here, there is no gap opening at the Dirac point [78, 200, 79].

To investigate the physics of charge carriers in graphene superlattices, we have calcu-
lated the energy dispersions, the group velocities, and energy gap openings at the minizone
boundaries (MB) within the effective-Hamiltonian formalism [77]. Effects of the external pe-
riodic potential are incorporated into our calculation through the scattering matrix elements
between pseudospin states, or chiral eigenstates, of the electrons in graphene:

〈s,k |U(r)| s′,k′〉 =
∑

G

1

2

(
1 + ss′e−iθk,k−G

)
U(G) δk′,k−G .

Here, G’s are reciprocal lattice vectors of the superlattice and θk,k−G is the angle between k
and k−G. U(r) and U(G) are external potential in real and wavevector space, respectively.
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Figure 9.1: Graphene superlattices and anisotropic Dirac cones. (a) Schematic diagram of
graphene. Inset: the Brillouin zone of graphene and Dirac cones centered at Dirac points
among which two (K and K’) are nonequivalent (left) and the linear and isotropic energy
dispersion near one of the Dirac points of charge carriers in graphene (right). (b) One-
dimensional (1D) graphene superlattice formed by Kronig-Penney type of potential periodic
along x̂ direction with spatial period L and barrier width w. The potential is U1D in the
grey regions and zero outside. Inset: energy dispersion of charge carriers in 1D graphene
superlattice. The energy dispersion along any line in two-dimensional (2D) wavevector space
from the Dirac point is linear but with different group velocity. For a particle moving parallel
to the periodic direction, the group velocity (v‖) is not renormalized at all whereas that for
a particle moving perpendicular to the periodic direction (v⊥) it is reduced most. (c) 2D
graphene superlattice with muffin-tin type of potential periodic along both x̂ and ŷ directions
with spatial periods Lx and Ly, respectively. The potential is U2D inside the grey disks with
diameter d and zero outside. Inset: energy dispersions of charge carriers in 2D graphene
superlattice.
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s and s′ are either +1 or −1 depending on whether the energy of the state is above or
below the energy at the Dirac point, respectively. We have also carried out a tight-binding
formulation and obtained identical results as those discussed below.

9.3 Results and discussion

9.3.1 Velocity renormalization

First, for a one-dimensional (1D) graphene superlattice (Fig. 9.1b), we find that the
group velocity for states with wavevector k is anisotropically renormalized, i.e., it is a strong
function of the direction of k. For pristine graphene, the group velocity of states near the
Dirac point is parallel to k and of constant magnitude (v0). For example, in a 1D superlattice
of Kronig-Penny type of periodic potential with potential barrier height (U1D) of 0.5 eV and
spatial period (L) and barrier width (w) of 10 nm and 5 nm, respectively, the group velocity
of the charge carriers when k is along certain direction is renormalized to be slower than
40 % of its original value v0 but is the same as v0 along some other direction. [Fig. 9.2a:
the plotted quantity vk̂ ≡ v(k) · k̂ is the component of the group velocity parallel to the
wavevector k in units of v0. We note that this quantity which depends only on the direction
of k (Supplementary Discussion 2) is exactly equal to the absolute value of the group velocity
vg when k is at 0, 90, 180 or 270 degrees from the periodic direction of the applied potential
and, when the applied potential is weak, is only slightly different from vg at other angles
(Supplementary Discussion 3).] Thus, the group velocity of charge carriers can be tailored
highly anisotropically in graphene superlattices. More interestingly, the group velocity when
k is along the direction perpendicular to the periodic direction of the potential (v⊥) is reduced
the most, whereas when k is in the parallel direction, it is not renormalized at all (Fig. 9.1b).
This result is counter-intuitive since the velocity is strongly reduced when the charge carrier
is moving parallel to the hurdles, but is not modulated when it is crossing them.

To understand the physics behind this phenomenon, we have performed the same calcu-
lation for a fictitious system with carriers that have no chirality but otherwise identical to
those in graphene including the linear energy dispersion. The group velocity in this system
is reduced isotropically and the renormalized group velocity is close to v⊥, i.e., the maxi-
mally renormalized one, in 1D graphene superlattices (Fig. 9.2a). Thus, it is clear that the
absence of velocity renormalization in the direction parallel to the periodicity of the external
potential originates from the chiral nature of the electronic states of graphene. This behavior
can be demonstrated more clearly by second order perturbation theory in the case of the 1D
periodic potential with weak amplitudes (Supplementary Discussion 2). We note that the
chirality discussed here is also important in tunneling phenomenon in graphene through a
single barrier [80] or a finite number of barriers [202].

In the case of two-dimensional (2D) graphene superlattices, the group velocity is renor-
malized for k states along every direction, but anisotropically (Fig. 9.1c). As the amplitude
of the potential increases the overall group velocity is reduced and the ratio of the maximum
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Figure 9.2: Anisotropic velocity renormalization in graphene superlattices. (a) The compo-
nent of the group velocity parallel to the k vector [vk̂ ≡ v(k) · k̂ with k measured from the
Dirac point] of charge carriers in a 1D graphene superlattice in units of the Fermi velocity
in graphene (v0) versus the angle (θk) of the k-vector from the periodic potential direction
x̂ (solid lines) and that in a superlattice made from a fictitious system of nonchiral fermions
with properties otherwise identical to those in graphene (dashed lines). Red, green and blue
lines correspond to U1D being 0.2 eV, 0.3 eV and 0.5 eV, respectively. (b) Similar quantities
as in (a) for a rectangular 2D graphene superlattice. Red, green and blue lines correspond to
U2D being 0.3 eV, 0.5 eV and 0.7 eV, respectively. (c) The group velocity of charge carriers
in a 1D graphene superlattice (solid line) with k perpendicular to the periodic direction, v⊥,
in units of v0 versus U1D (solid line) and that in a superlattice made from a fictitious system
of nonchiral fermions with properties otherwise identical to those in graphene (dashed line).
(d) v⊥ versus the potential spatial period (L) of charge carriers in a 1D graphene superlat-
tice. Red, green and blue lines correspond to a fixed potential barrier height but with width
(w) being 5 nm, 10 nm and 25 nm, respectively.
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group velocity to the minimum one is enhanced (Fig. 9.2b). Here, again, the anisotropy
disappears if the chiral nature of the states in graphene is arbitrarily removed. As was
demonstrated for the 1D superlattice, the sinusoidal dependence on the angle of propagation
as well as the overall shift in the case of 2D graphene superlattice of the component of the
renormalized group velocity parallel to k in the weak potential limit is well explained and
reproduced by second order perturbation theory (Supplementary Discussion 2).

Remarkably, the anisotropy in energy dispersions of the 1D superlattices can be tuned
by changing the applied potential in such a way that v⊥ is reduced completely to zero
(Fig. 9.2c). Hence, we can achieve extremely low mobility in one direction and normal con-
duction in another one simultaneously. This enables one to control the flow of electrons
dramatically. It also provides a novel non-destructive pathway to make graphene nanorib-
bons [183, 184, 185, 186] which have been actively pursued by way of cutting graphene
sheets [185, 186]. The chiral nature of the states in graphene also plays a decisive role here.
In the model without chirality as discussed before the (isotropic) group velocity of charge
carriers is reduced monotonically and never reaches zero within a conceivable range of the
potential amplitude (Fig. 9.2c). We can also achieve vanishing group velocity in one direction
by changing the length parameters of the superlattice (Fig. 9.2d).

9.3.2 Gap opening at the mini Brillouin zone boundary

Graphene superlattices show peculiar behavior of gap openings at the MB formed by the
external periodic potential (Fig. 9.3). In conventional layer-structured 1D superlattices, gap
opening at the MBs is considered to be nearly constant, independent of k. 1D graphene
superlattices, however, are different in that the gap (∆E) vanishes when k is along the
direction of the periodic potential, i.e., at the centre of the MB (Fig. 9.3a and 4a). Moreover,
the size of the gap depends strongly on where it is on the MB (Fig. 9.3b). These strong
anisotropies in the gap opening do not happen in superlattices made from a system having
linear energy dispersions but no chirality (Fig. 9.3b). Hence, again, the chiral nature of charge
carriers in graphene is key in generating these anisotropies in the gap opening as it does in
the velocity renormalization. In particular, the gap closure at the centre of the MB is directly
related to the absence of back-scattering of charge carriers from a scattering potential when
the size of the scatterer is several times larger than the inter-carbon distance [78, 200, 79].
In 1D graphene superlattices, the important length-scale is L, which is much larger than the
inter-carbon distance, and hence the gap does not open at the centre of the MB.

The largest gap at the MB in a graphene superlattice is proportional to the amplitude of
the applied potential if the potential is weak (i.e., small compared to the band width) and the
size of which thus can be made to be a few tenths of an electron volt with appropriate per-
turbation and much larger than room temperature (Fig. 9.3b, Supplementary Discussion 5).
We have also investigated the gap opening in 1D graphene superlattices with different values
of length parameters (L and w). We find that, by changing these parameters, the anisotropy
in the gap at the MB can also be controlled (Supplementary Discussion 5).
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Figure 9.3: Energy gap at the superlattice Brillouin zone or minizone boundary of a 1D
graphene superlattice. (a) Energy of charge carriers in 1D graphene superlattice versus the
component of the wavevector k parallel to the periodic potential direction (kx) at a fixed
ky. Dashed vertical lines indicate minizone boundaries (kx = ±π/L). ∆E is the energy
gap at the minizone boundary for a given ky. Red and blue lines correspond to ky being
zero and 0.012 Å−1, respectively. (b) ∆E versus ky for charge carriers in 1D graphene
superlattice (solid lines) and that in a superlattice made from a fictitious system with states
without chirality but otherwise identical to graphene (dashed lines). Red, green and blue
lines correspond to U1D being 0.1 eV, 0.3 eV and 0.5 eV, respectively.
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9.3.3 Charge carriers in graphene superlattices

Due to the velocity renormalization near the Dirac point and the strong anisotropy in
energy dispersion close to the MB, the type and the density of states (DOS) of charge carriers
vary drastically from those in graphene as one varies the Fermi energy (Fig. 9.4). As the
Fermi level changes, the topology of the Fermi surface also exhibits a dramatic variation
(Supplementary Discussion 6). For example, as the Fermi level increases from the energy at
the Dirac point, the charge carriers of a 1D graphene superlattice fill electron orbits and show
a linear increase in the DOS with slope larger than that of graphene; but above certain value,
the DOS of electron orbits vanishes and charge carriers suddenly fill open orbits and hole
pockets. When the Fermi level increases further, charge carriers are in purely open orbits and
then the DOS of electron orbits starts to reappear and increases again (Fig. 9.4b). We expect
that the Fermi level in a graphene superlattice can be tuned as in graphene by applying a
gate voltage [35, 36, 195, 196]. Hence, by exploiting the various characteristics of charge
carriers and the Fermi surface topology, one can manipulate a variety of physical properties
dominated by the Fermi surface, such as conductance or magnetoresistance, significantly.

The anisotropic gap opening at the MB and the dramatic variation of the characters of
charge carriers with the Fermi energy are also common in 2D graphene superlattices. The
gap at the centres of the zone boundaries closes as in 1D graphene superlattice (Fig. 9.4c).
However, the gap at the corners of the 2D MB also disappears. This behavior, which occurs
in rectangular 2D graphene superlattices in general, has again its origin in the chiral nature
of charge carriers in graphene (Supplementary Discussion 4). In a square 2D graphene
superlattice, charge carriers are electrons, holes or a mixture of the two depending on the
Fermi level (Fig. 9.4d). For general rectangular 2D graphene superlattices, charge carriers
can also be in open orbits.

9.4 Conclusion

Here we have presented several novel physical properties of graphene superlattices with
Kronig-Penney type 1D and muffin-tin type 2D potentials. Through additional calculations,
we have confirmed that all the salient features of our findings are the same in sinusoidal or
Gaussian types of graphene superlattices in general as well. The novel properties discovered
in the present study thus should be of interest to the fundamental study and practical
applications of graphene systems in general.

Finally, since the massless Dirac fermions in graphene superlattices have some features
in common with high-energy relativistic particles propagating in anisotropic space (like the
anisotropy in the group velocity [203]), interesting physics of the latter may also be investi-
gated by table-top experiments based on our theoretical findings.
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Figure 9.4: Energy dispersions and densities of states of charge carriers in graphene su-
perlattices. (a) Energy of charge carriers in 1D graphene superlattice with U1D = 0.3 eV,
L = 10 nm and w = 5 nm in the first (red and black) and the second (blue and pink) band
above the vertex of the Dirac cone versus 2D wavevector k away from the Dirac point. Mini-
zone boundaries are at kx = ±0.031 Å−1. Arrows indicate points on the minizone boundary
where the gap closes. (b) Density of states (DOS) of charge carriers in electron orbits (red),
open orbits (green) and hole orbits (blue) in the 1D graphene superlattice characterized in
(a) versus the Fermi energy (EF). The origin of the energy scale is set at the energy of the
Dirac point. The DOS of each species is the height of the corresponding colored region.
Dashed black line shows the DOS of pristine graphene for comparison. (c) Similar quantities
as in (a) for a 2D graphene superlattice with U2D = 0.3 eV, Lx = Ly = 10 nm and d = 5 nm.
(d) Similar quantities as in (b) for the 2D graphene superlattice specified in (c).
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9.5 Supplementary discussion

9.5.1 Effective-Hamiltonian formalism

There are two carbon atoms per unit cell in graphene, forming two different sublattices,
and hence the eigenstate of charge carriers in graphene can be represented by a two compo-
nent basis vector. The Brillouin zone of graphene is a hexagon which has two inequivalent
vertices, so-called the Dirac points, K and K′, that cannot be connected by reciprocal lattice
vectors. In this work, we are considering eigenstates near K only as discussed in the paper.
The effective Hamiltonian for low-energy quasiparticles of graphene in this basis is given by

H0(k) = h̄v0

(
0 −ikx − ky

ikx − ky 0

)
, (9.1)

where v0 is the Fermi velocity and k the small wavevector of the quasiparticle from the
K point in the Brillouin zone of graphene. The energy spectrum of this Hamiltonian is
E = sh̄v0k where s is +1 or −1 for an eigenstate above or below the Dirac point energy
which is defined to be the energy zero, respectively. Eigenstates of this Hamiltonian is given
by

〈r|s,k〉 =
1√
2
ei(K+k)·r

(
1

iseiθk

)
, (9.2)

where θk is the angle of vector k with respect to the k̂x direction. Now, when an additional
periodic potential U(r) is applied to graphene, the scattering amplitude between states are
given by

〈s,k |U(r)| s′,k′〉 =
∑

G

1

2

(
1 + ss′e−iθk,k−G

)
U(G) δk′,k−G , (9.3)

where G and U(G) are the reciprocal lattice vector and the corresponding Fourier component
of the external periodic potential, respectively, and θk,k−G the angle from k − G to k.
The energy dispersions and eigenstates of the quasiparticles in a graphene superlattice are
obtained non-perturbatively within the single-particle picture by solving the following set of
linear equations:

(E − εs,k) c(s,k) =
∑

s′,G

1

2

(
1 + ss′e−iθk,k−G

)
U(G) c(s′,k −G) , (9.4)

where E is the superlattice energy eigenvalue and εs,k = sh̄v0k the energy of the quasipar-
ticles before applying the periodic potential. c(s,k) and c(s′,k − G) are the amplitudes of
mixing among different unperturbed quasiparticle states.

9.5.2 Velocity renormalization near the Dirac point from second
order perturbation theory

When the external potential is weak, perturbative calculations can give results in good
agreement with the full calculation and also in physically more intuitive forms. For pristine
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graphene, the group velocity of states near the Dirac point is parallel to k and of constant
magnitude (v0). For a graphene superlattice, the renormalization in the component of the
group velocity of quasiparticles parallel to the wavevector k [vk̂ ≡ v(k) · k̂] around the Dirac
point can be obtained within second order perturbation approximation as

vk̂ − v0

v0
= −

∑

G 6=0

2|U(G)|2
v2
0|G|2 sin2 θk,G , (9.5)

where θk,G is the angle from G to k. From Eq. (9.5), it is clear that for weak potentials, the
velocity renormalization grows as square of the amplitude of the external potential and vk̂

depends only on the direction of k. Throughout this document, by weak potential we mean
that the condition,

|U(G)|
v0|G| ≪ 1 , (9.6)

is satisfied for all the U(G) components. In the absence of chirality of the states, the
scattering matrix element [Eq. (9.3)] should be changed into

〈s,k |U(r)| s′,k′〉 =
∑

G

U(G) δk′,k−G . (9.7)

Using Eq. (9.7), the similar quantity as in Eq. (9.5) for nonchiral massless Dirac fermions is
now given by (

vk̂ − v0

v0

)

non−chiral

= −
∑

G 6=0

2|U(G)|2
v2
0 |G|2 , (9.8)

which is isotropic independent of the direction of k. Comparing Eq. (9.5) and Eq. (9.8),
the renormalization of group velocity in a one-dimensional (1D) superlattice for a fictitious
graphene with states without chirality corresponds to the maximum renormalization in the
corresponding 1D graphene superlattice. This trend agrees with the results from the full
calculation when the potential is weak (Fig. 9.2).

If Eq. (9.5) is applied to the Kronig-Penney type of 1D graphene superlattice periodic
along the x̂ direction as discussed in the paper (Fig. 9.1b),

vk̂ − v0

v0
= −

{
U2

1DL
2

π4v2
0

∑

n>0

1

n4
sin2

(πw
L
n
)}

sin2 θk,x̂ , (9.9)

where L is the spatial period of the potential, and U1D and w are the height and the width
of the rectangular potential barrier, respectively. Equation (9.9) is in good agreement with
the full calculation when the potential is weak (Fig. 9.5) and also shows sinusoidal behavior
with respect to the polar angle of k with respect to the periodic direction of the potential
as well as the absence of renormalization for a particle moving across the potential barriers.
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state with k along the direction perpendicular to the periodic direction of the potential (v⊥)
and the unrenormalized one (v0) divided by v0 versus the potential amplitude U1D. Solid red
line and dashed blue line are results of the full calculation and second order perturbation
theory, respectively.
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For the case of muffin-tin type of two-dimensional (2D) graphene superlattice (Fig. 9.1c)
periodic along both x̂ and ŷ directions, with periods Lx and Ly, respectively,

vk̂ − v0

v0
= −2π2U2

2D d2

v2
0L

2
xL

2
y

∑

G 6=0

1

G4
J2

1

(
Gd

2

)
sin2 θk,G , (9.10)

where U2D is the height of the circular potential barrier with diameter d and G =
(

2π
Lx
m, 2π

Ly
n
)

the reciprocal lattice vector with integers m and n and J1(x) is the first order Bessel function
of the first kind. When Lx ≈ Ly (as in Fig. 9.2b), the dominant contribution in the sum
comes from the terms with |m| = 1, n = 0 and m = 0, |n| = 1. Counting only these four
terms,

vk̂ − v0

v0
≈ −U

2
2D d2

4π2v2
0

{(
Lx

Ly

)2

J2
1

(
πd

Lx

)
sin2 θk,x̂ +

(
Ly

Lx

)2

J2
1

(
πd

Ly

)
sin2 θk,ŷ

}

= −U
2
2D d2

4π2v2
0

{[(
Lx

Ly

)2

J2
1

(
πd

Lx

)
−

(
Ly

Lx

)2

J2
1

(
πd

Ly

)]
sin2 θk,x̂

+

(
Ly

Lx

)2

J2
1

(
πd

Ly

)}
(9.11)

where the relation sin2 θk,ŷ = 1 − sin2 θk,x̂ has been used in the second line. Now the group
velocity vk̂ is renormalized in every direction. Equation (9.11) reproduces the sinusoidal
variation of the velocity renormalization as well as the constant shift as obtained in the full
calculation quite well when the potential is weak (Fig. 9.2b).

9.5.3 The magnitude and the component parallel to the wavevec-
tor k of the group velocity

The component of the group velocity vk̂ parallel to the wavevector k above is exactly
equal to the absolute value of the group velocity vg when k is at 0, 90, 180 or 270 degrees
from the periodic direction of the applied potential and, when the applied potential is weak,
is only slightly different from vg at other angles (Fig. 9.6).

9.5.4 Band gap at the minizone boundary from degenerate per-
turbation theory

When the wavevector k is on the minizone boundary (MB) of the 1D graphene super-
lattice, kx = ±π/L, two states |s,k〉 and |s,k − (2π/L, 0)〉 are degenerate before applying
the periodic potential. The largest contribution to the energy eigenvalues at the MB comes
from these two degenerate states. Scattering amplitude between these two states is given
by Eq. (9.3). By choosing the origin at the centre of a potential barrier, we can make all
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Figure 9.6: The magnitude and the component parallel to the wavevector k of the renor-
malized group velocity in a 2D graphene superlattice. The component of the group velocity
parallel to the k vector [vk̂ ≡ v(k) · k̂ with k measured from the Dirac point] of charge car-
riers in a 2D graphene superlattice (solid lines) and the absolute value of the group velocity
(dashed lines) in units of the Fermi velocity in graphene (v0) versus the angle (θk) of the
k-vector from the periodic potential direction x̂. Red, green and blue lines correspond to the
potential amplitude U2D being 0.3 eV, 0.5 eV and 0.7 eV, respectively. Plotted quantities
are obtained from the full calculation by solving Eq. (9.4).
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the Fourier components of the periodic potential real without losing generality. Now the
Hamiltonian for the two-state system is

H(k) =

(
εs,k

1
2

(
1 + e−iθk,k−(2π/L,0)

)
U (2π/L)

1
2

(
1 + eiθk,k−(2π/L,0)

)
U (2π/L) εs,k−(2π/L,0)

)
, (9.12)

where εs,k = εs,k−(2π/L,0) = sh̄v0k is the energy of the charge carrier before the external
potential is applied and U (2π/L) the Fourier component of the periodic potential whose
wavevector connects the two MBs at kx = ±π/L. The energy separate of the eigenvalues of
Eq. (9.12) (i.e., the energy gap) is given by

∆E = 2 |U(2π/L) sin θk,x̂| , (9.13)

where θk,x̂ is the polar angle between k and x̂. Equation (9.13) clearly shows that the gap
opening depends on k and, in particular, is zero at the centre of the MB (Fig. 9.2), and that,
as discussed in the paper, the maximum gap opening is proportional to the amplitude of the
external potential in the weak potential regime.

If the chirality of the states in graphene is manually removed by using Eq. (9.7) for the
scattering matrix element, the energy gap becomes

∆Enon−chiral = 2 |U(2π/L)| , (9.14)

in which case the gap neither closes at the centre of the MB nor depends sensitively on the
position along the MB in the weak potential limit (Fig. 9.2).

For a 2D rectangular graphene superlattice, in which the primitive translational lattice
vectors are orthogonal, for the same reason as in the 1D case, the gap closes at the centres
of MBs, i.e., when k is at (±π/Lx, 0) or (0,±π/Ly). The more interesting case is the cor-
ner of the minizone, where the four degenerate states |s, (π/Lx, π/Ly)〉, |s, (−π/Lx, π/Ly)〉,
|s, (π/Lx,−π/Ly)〉 and |s, (−π/Lx,−π/Ly)〉 mix strongly among themselves by the applied
periodic potential. If we set up a similar matrix for this case like Eq. (9.12) for the 1D
graphene superlattice, the energy eigenvalues of the matrix are

E = εs,k ±
√∣∣[U(2π/Lx, 0) sin θk,x̂]

2 − [U(0, 2π/Ly)cos θk,x̂]
2
∣∣ , (9.15)

where k = (π/Lx, π/Ly) is at the minizone corner and each eigenvalue is doubly degenerate.
The energy spectrum given by Eq. (9.15) clearly shows that there is no gap at the minizone
corner between the first and the second band (Fig. 9.4c). This gap closure at the minizone
corner is not obvious because a transition, which is not of a backscattering process, from
one of the four k points at the zone corners to another can occur in the 2D rectangular
graphene superlattice. For example, the state |s, (π/Lx, π/Ly)〉 can mix with another state
|s, (−π/Lx, π/Ly)〉 by the reciprocal lattice vector G = (2π/Lx, 0) but the two k vectors
are not anti-parallel. To understand the origin of the gap closure at the minizone corner,
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we repeated a similar calculation for a 2D rectangular superlattice formed of a non-chiral
system with linear energy dispersions. In this case, the energy eigenvalues are

Enon−chiral = εs,k + U(2π/Lx, 2π/Ly) ± [U(2π/Lx, 0) − U(0, 2π/Ly)] ,

εs,k − U(2π/Lx, 2π/Ly) ± [U(2π/Lx, 0) + U(0, 2π/Ly)] . (9.16)

According to Eq. (9.16), there is a finite energy gap between the first and the second band
in general, other than in accidentally symmetric cases. Therefore, the gap closure at the
minizone corner of a 2D rectangular graphene superlattice is a direct consequence of the
chiral nature of the states in graphene.

9.5.5 Dependence of the band gap at the minizone boundary on

length parameters and broken particle-hole symmetry

For a Kronig-Penney type rectangular potential barrier 1D graphene superlattice, the
energy gap at the MB can be expressed with Eq. (9.13) in terms of superlattice parameters
as

∆E =
2

π

∣∣∣U1D sin
(πw
L

)
sin θk,x̂

∣∣∣ . (9.17)

Thus, according to this simple degenerate perturbation theory result if the spatial period
(L) becomes long for a constant barrier width (w) the gap should decrease, whereas if L
is fixed and w is increased from zero, the gap should reach a maximum at w = L/2 and
after that should decrease symmetrically. The former trend is observed in the full calculation
(Fig. 9.7a); however, the latter seems not to hold in the full calculation (Fig. 9.7b). Moreover,
the gap openings at the MB above and below the Dirac cone are different (Fig. 9.7), which
shows the limitation of the simple degenerate perturbation theory because the potential is
not so weak and possesses higher Fourier components. One thing to note is that the energy
dispersion for states above the energy of the Dirac point, including the gap opening, for
a 1D Kronig-Penney type superlattice with width w = w0 is identical with that of states
below the energy of the Dirac point for width w = L−w0 (Fig. 9.7b, compare red and blue
lines). This symmetry can be understood following a simple argument. If we start from a
1D Kronig-Penney superlattice with w = w0 and then change w to be w = L − w0 and at
the same time invert the whole potential, the resulting periodic potential is identical to the
original one other than a constant shift which may be ignored. Inverting the potential is
effectively the same as exchanging particles with holes.

9.5.6 Fermi surfaces

In 1D and 2D graphene superlattices, the topology as well as the shape of the Fermi
surface varies significantly with the Fermi energy (Figs. 9.8 and 9.9). This variation gives
rise to a dramatic variation in the species and the density of states of charge carriers as a
function of the position of the Fermi level (Fig. 9.4).
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Chapter 10

New generation of massless Dirac
fermions in graphene under external
periodic potentials

10.1 Introduction

Semiconducting and metallic superlattice structures are now routinely used in manipulat-
ing the electronic structure of materials [188]. These superlattices have additional electronic
band gaps at the supercell Brillouin zone (SBZ) boundary, which often give rise to interesting
phenomena.

Since the successful isolation of graphene [34, 35, 36, 182], numerous studies have been
performed on this novel material [72]. In particular, there have been a number of interesting
theoretical predictions on graphene superlattices (defined to be graphene under an external
periodic potential or graphene with periodic defects). For example, for an one-dimensional
(1D) or a two-dimensional (2D) rectangular graphene superlattice, the group velocity of the
low-energy charge carriers is renormalized anisotropically [81]; a corrugated graphene sheet
is expected to show charge inhomogeneity and localized states [204]; and arrays of anti-dots
(missing carbon atoms) of specific design could induce band gaps [205] or magnetism [206].

Graphene superlattices are not only of theoretical interest, but have also been experimen-
tally realized. Superlattice patterns with periodicity as small as 5 nm have been imprinted
on graphene through electron-beam induced deposition of adatoms [193]. Also, triangu-
lar patterns with ∼10 nm lattice period have been observed for graphene on metal sur-
faces [197, 207, 199]. Using periodically patterned gates is another possible route to make
graphene superlattices.

In this chapter, we show that when a periodic potential is applied to graphene, a new
generation of massless Dirac fermions is formed at the SBZ boundaries. The electronic
wavevector (measured from the new Dirac point), the group velocity and a generalized pseu-
dospin vector, defined below, of the newly generated massless Dirac fermions are not collinear
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anymore. In 1D or 2D rectangular graphene superlattices, the features of these new massless
Dirac fermions are obscured by other states existing around the new Dirac point energy.
We show however that, in triangular graphene superlattices (TGSs), there can be no states
other than those of the new massless Dirac fermions around the energy of the new Dirac
points. Therefore, doped or gated TGSs should provide a clear way to probe this new class
of massless Dirac fermions that are absent in pristine graphene.

10.2 Analytical calculation

A physical requirement for the discussed phenomenon is that the variation of the external
periodic potential is much slower than the inter-carbon distance so that inter-valley scattering
(between K and K′) may be neglected [78, 79], and we limit our discussion to the low-energy
electronic states of graphene which have wavevectors close to the K point. The Hamiltonian

of the low-energy quasiparticles in pristine graphene in a pseudospin basis,

(
1
0

)
eik·r and

(
0
1

)
eik·r (where

(
1
0

)
and

(
0
1

)
are Bloch sums of π-orbitals with wavevector K on

the sublattices A and B, respectively, and k is the wavevector from the K point), is given
by [77]

H0 = h̄v0 (−iσx∂x − iσy∂y) , (10.1)

where v0 is the group velocity and σ’s are the Pauli matrices. The eigenstates and the energy
eigenvalues are given by

ψ0
s,k(r) =

1√
2

(
1

seiθk

)
eik·r (10.2)

and
E0

s (k) = sh̄v0k , (10.3)

respectively, where s = ±1 is the band index and θk is the polar angle of the wavevector
k. Equation (10.2) indicates that the pseudospin vector is parallel and anti-parallel to the
wavevector k in the upper band (s = 1) and in the lower band (s = −1), respectively.
Moreover, the pseudospin vector is always parallel to the group velocity.

Let us first consider the case that a 1D potential V (x), periodic along the x direction
with periodicity L, is applied to graphene. The Hamiltonian H then reads

H = h̄v0 (−iσx∂x − iσy∂y + I V (x)/h̄v0) , (10.4)

where I is the 2 × 2 identity matrix. After a similarity transform, H ′ = U †
1HU1, using the

unitary matrix

U1 =
1√
2

(
e−iα(x)/2 −eiα(x)/2

e−iα(x)/2 eiα(x)/2

)
(10.5)
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where α(x) is given by [208]

α(x) = 2

∫ x

0

V (x′) dx′/h̄v0 , (10.6)

we obtain [209]

H ′ = h̄v0

(
−i∂x −eiα(x)∂y

e−iα(x)∂y i∂x

)
. (10.7)

To obtain the eigenstates and energy eigenspectrum of H ′ in general, using a plane wave
spinor basis set, we need an infinite number of plane waves with wavevectors different from
one another by the reciprocal lattice vectors of the superlattice. (A reciprocal vector of the
superlattice is given by Gm = m (2π/L) x̂ ≡ mG0 x̂ where m is an integer.) However, if
we are interested only in quasiparticle states whose wavevector k ≡ p + Gm/2 is such that
|p| ≪ G0, we could treat the terms containing ∂y in Eq. (10.7) as a perturbation since Gm

is along x̂. H ′ may be reduced to a 2 × 2 matrix using the following two states as basis
functions (

1
0

)′
ei(p+Gm/2)·r and

(
0
1

)′
ei(p−Gm/2)·r . (10.8)

[Note that the spinors

(
1
0

)′
and

(
0
1

)′
now have a different meaning from

(
1
0

)
and

(
0
1

)
that were defined before because of the unitary transformation.]

In order to calculate these matrix elements, we expand eiα(x) as

eiα(x) =

∞∑

l=−∞
fl[V ]e i l G0 x, (10.9)

where fl[V ]’s are coefficients determined by the periodic potential V (x). One important
thing to note is that in general

|fl| < 1 , (10.10)

which can directly be deduced from Eq. (10.9). The physics simplifies when the external
potential V (x) is an even function. Then, fl[V ]’s are all real [210]. For states with wavevector
k very close to Gm/2, the 2×2 matrixM whose elements are calculated from the Hamiltonian
H ′ with the basis given by Eq. (10.8) can be written as

M = h̄v0 (pxσz + fmpyσy) + h̄v0mG0/2 · I . (10.11)

After performing yet another similarity transform M ′ = U †
2MU2 with

U2 =
1√
2

(
1 1
−1 1

)
, (10.12)
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Figure 10.1: Schematic diagram showing an equi-energy contour (ellipse) with E = h̄v0k0 +
h̄v0mG0/2 of the newly generated massless Dirac fermions. The quasiparticle wavevector
k, the generalized pseudospin vector (see text) c, and the group velocity vector vg are
represented by solid, dashed and dash-dotted arrows, respectively, for graphene in an even
periodic potential.

we obtain the final result:

M ′ = h̄v0 (pxσx + fm pyσy) + h̄v0mG0/2 · I . (10.13)

The only difference of the Hamiltonian in Eq. (10.13) from that in Eq. (10.1), other than
a constant energy term, is that the group velocity of quasiparticles moving along the y
direction has been changed from v0 to fmv0 [211]. Thus, the electronic states near k = Gm/2
are also those of massless Dirac fermions but having a group velocity varying anisotropically

depending on the propagation direction. Moreover, the group velocity along the y direction
is always lower than v0 [Eq. (10.10)] regardless of the form or magnitude of the periodic
potential V (x).

The eigenstate and the energy eigenvalue of the matrix M ′ are given by

ϕs,p =
1√
2

(
1

seiφp

)′′
(10.14)

and

Es(p) = sh̄v0

√
p2

x + |fm|2p2
y + h̄v0 mG0/2 , (10.15)
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respectively, where φp is the polar angle of the pseudospin vector c of ϕs,p, which is parallel to
s(pxx̂+fm pyŷ). The spinor ϕs,p, however, should not be confused with the one in Eq. (10.2)
representing the sublattice degree of freedom, or with the one in Eq. (10.8). A double prime
in Eq. (10.14) emphasizes this point.

The eigenstate ψs,k(r) of the original Hamiltonian H in Eq. (10.4) can be obtained by
using Eqs. (10.5), (10.8), (10.12) and (10.14). Since the unitary transforms conserve the
inner-product between eigenstates, if a generalized pseudospin vector for the original Hamil-
tonian H in Eq. (10.4) is defined as the pseudospin vector of the transformed Hamiltonian
M ′, i. e. , c, the scattering matrix elements between states of these new massless Dirac
fermions due to long-wavelength perturbations are described by the generalized pseudospin
in the same manner as those of the original massless Dirac fermions in pristine graphene are
described with their pseudospin.

On the other hand, the group velocity vector vg is parallel to s (pxx̂+f 2
m pyŷ) [Eq. (10.15)].

Therefore, in general, the three vectors p, c and vg are not collinear (Fig. 10.1). However,
it is obvious that if the wavevectors (p) of two electronic states are aligned or anti-aligned
to each other, so are their generalized pseudospin vectors, as in pristine graphene, resulting
in a maximum or a zero overlap between the two states, respectively. If V (x) is not an even
function, the dispersion relation of the new massless Dirac fermions remains the same as
Eq. (10.15) but a generalized pseudospin vector may not be defined [212].

Similarly, for graphene in slowly varying 2D periodic potential, new massless Dirac
fermions are generated centered around the wavevectors kc = G/2 where the G’s are the
superlattice reciprocal vectors. A state with wavevector k around kc mixes strongly with
another state with wavevector k−G by the superlattice potential. Applications of the same
argument that we made use of in the case of 1D graphene superlattices result in linear band
dispersions.

10.3 Triangular graphene superlattices

Even though new massless Dirac fermions are generated in 1D graphene superlattices,
because there is no SBZ boundary perpendicular to the periodic direction, they are obscured
by other states, and there is no new value of energy at which the density of states vanishes.
In a 2D rectangular graphene superlattices, the SBZ is a rectangle. It turns out that the
energy separation at the SBZ corners also vanishes due to the chiral nature of graphene [81].
Therefore, in 2D rectangular graphene superlattices, again, there are states other than the
new massless Dirac fermions in the range of the new Dirac point energy. However, as we
show below, in TGSs, there can exist an energy window within which the only available
states are the newly generated massless Dirac fermions.

As an illustration, we consider a TGS shown in Fig. 10.2(a). The external potential is of
a muffin-tin type with value U0 in a triangular array of disks of diameter d and zero outside
of the disks. The spatial period of the superlattice is L. Figure 10.2(b) shows the SBZ of a
TGS.
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Figure 10.2(c) shows the electron energy separation between states in the first and the sec-

ond band above the original Dirac point energy along the path K̃M̃K̃′ in the SBZ [Fig. 10.2(b)]
for a TGS. The energy separation at the corner, or the K̃ point, of the SBZ is largest, con-
trary to that of the rectangular graphene superlattices where the energy separation closes at
the SBZ corners [81]; but that at the M̃ point is zero. New massless Dirac fermions are thus
formed around the M̃ points. With the set of potential parameters in Fig. 10.2 (U0 =0.5 eV,
L = 10 nm, and d = 5 nm), the energy separation at the K̃ point is 82 meV, much larger
than room-temperature thermal energy. This energy separation can be tuned by changing
the superlattice parameters.

Figure 10.3(a) shows the energy dispersions of the first and the second band of the con-
sidered TGS. We can see the linear energy dispersion relation at the M̃ points [Fig. 10.2(c)].
Close to the original Dirac point energy (E = 0), the density of states (DOS) varies linearly
with energy, similar to that of pristine graphene, except that the slope is larger because of
the reduced band velocity. At around E = 0.16 eV, there exists another energy value where
the DOS vanishes also linearly.

10.4 Conclusion

In conclusion, we have shown that a new class of massless Dirac fermions are generated in
graphene when a periodic potential is applied and we have studied the novel characteristics of
these quasiparticles. Moreover, in triangular graphene superlattices, there can exist energy
windows where there are no other states than these new quasiparticles. The triangular
graphene superlattices thus should provide a good platform for experimental probing of the
new massless Dirac fermions predicted here.
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Figure 10.3: (a): Energy dispersion relation of a TGS with external potential with U0 =
0.5 eV, L = 10 nm and d = 5 nm for the first and the second band above the original Dirac
point energy as a function of wavevector k from the original Dirac point. Arrows indicate
the M̃ points of the SBZ around which new massless Dirac fermions are generated. (b):
The DOS of charge carriers in electron orbits (bright) and hole orbits (dark) in the TGS
characterized in (a). The original Dirac point energy is set at zero. Dashed black line shows
the DOS of pristine graphene. The arrow indicates the new Dirac point energy.
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Chapter 11

Electron beam supercollimation in
graphene superlattices

11.1 Introduction

Although electrons and photons are intrinsically different, importing useful concepts in
optics to electronics performing similar functions has been actively pursued over the last two
decades. In particular, collimation of an electron beam is a long-standing goal. In this chap-
ter, we show that ballistic propagation of an electron beam with virtual no spatial spreading
or diffraction, without a waveguide or external magnetic field, can be achieved in graphene
under an appropriate class of experimentally feasible one-dimensional external periodic po-
tentials. The novel chiral quasi-one-dimensional metallic state that the charge carriers are
in originates from a collapse of the intrinsic helical nature of the charge carriers in graphene
owing to the superlattice potential. Beyond providing a new way to constructing chiral
one-dimensional states in two dimensions, our findings should be useful in graphene-based
electronic devices (e. g. , for information processing) utilizing some of the highly developed
concepts in optics.

Electronic analogues of many optical behaviors such as focusing [213, 214, 215], collima-
tion [216], and interference [217] have been achieved in two-dimensional electron gas (2DEG),
enabling the system as a basic platform to study fundamental problems in quantum mechan-
ics [218, 219, 220] as well as quantum information processing [221]. The close relationship
between optics and electronics is been made possible due to the ballistic transport proper-
ties of a high-mobility 2DEG created in semiconductor heterostructures [222]. Among those
electronics-optics analogues, the collimation or quasi-one-dimensional (quasi-1D) motion of
electrons and photons are particularly important not only to achieve electronic quantum de-
vices [219, 221] but also to realize ultracompact integrated light circuits [223, 224]. Usually,
electrons originated from a point source may be controlled by electrostatics or geometrical
constrictions [214, 215]. Quasi-1D electronic states and focusing have been achieved in a
2DEG with the help of external magnetic fields, e. g. , employing magnetic focusing [213]



105

and quantum Hall edge states [219, 225]. However, it would be difficult to integrate them
into a single electronic device due to the external high magnetic field apparatus needed. In
view of recent successful demonstrations of extreme anisotropic light propagation without
diffraction, called supercollimation in photonic crystals [223, 224, 226, 227], an analogue of
this effect in two-dimensional (2D) electron systems may also be possible. In this work, we
demonstrate that graphene [35, 36, 182] in an external periodic potentials, or a graphene
superlattice, is particularly suitable to realize electron supercollimation in two dimensions.

The isolation of graphene [35, 36, 182], a single layer of carbon atoms in a honey-
comb structure composed of two equivalent sublattices, offers a new dimension to study
electronics-optics analogues. Carriers in graphene exhibit ballistic transport on the submi-
cron scale at room temperature [228] and with mobility up to 2 × 105 cm2 V−1 s−1 [229].
Graphene electronic states have an internal quantum number, a pseudospin, that is not
found in normal electronic systems and strongly influences the dynamics of the charge car-
riers. The pseudospin is of central importance to many of the novel physical properties of
graphene [35, 36, 182, 228, 229, 80, 230], and it also plays a significant role in the present
work.

11.2 Graphene: linear energy dispersion and pseudospin

The low-energy quasiparticles in graphene whose wavevectors are close to the Dirac
point K in the Brillouin zone are described by a 2 × 2 Hamiltonian matrix H0(k) =
h̄v0 (σxkx + σyky), where v0 ≈ 106 m/s is the band velocity, k is the wavevector mea-
sured from the K point, and σ’s are the Pauli matrices. The energy eigenvalues are given
by E0

s (k) = s h̄ v0 |k| where s = +1 (−1) denotes the conical conduction (valence) band
(Fig. 11.1b). The sublattice degree of freedom of the quasiparticles in graphene can con-
veniently be described with a pseudospin basis, or spinors, where the |↑〉 and the |↓〉 pseu-
dospin states of σz represent π-electron orbital on the A and B sublattices of the structure of
graphene, respectively. This Hamiltonian is very similar to the one used to model neutrinos
as massless Dirac fermions [129, 79]. The corresponding wavefunction is given by

ψ0
s,k(r) =

1√
2

(
1

s eiθk

)
eik·r , (11.1)

where θk is the angle of the wavevector k with respect to the x-axis. Equation (11.1) may
be viewed as having the pseudospin vector being parallel and anti-parallel to the wavevector
k for electronic states in the upper (s = 1) and the lower (s = −1) band, respectively
(Fig. 11.1b) [129, 79]. As the spin plays a role in the dynamics of neutrinos, the present
pseudospin is similarly important in the quasiparticle dynamics of graphene [129, 79].
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Figure 11.1: Electron energy dispersion relation in a special graphene superlattice. (a)
Schematic diagram of a Kronnig-Penney type of potential applied to graphene with strength
U0 inside the gray regions and zero outside. The lattice period is L and the barrier width is
w. (b) Schematic diagram showing the electronic energy dispersion relations and pseudospin
vectors (black arrows) in graphene. (c) Contour plot of the first electronic band above
the Dirac point energy in pristine graphene. The energy difference between neighbouring
contours is 25 meV, with the lowest contour near the origin having a value of 25 meV. (d)
The electronic energy dispersion relation E versus kx with fixed ky. Red, green and blue
lines correspond to ky = 0, 0.1 π/L and 0.2 π/L, respectively, as indicated in (c). (e), (f) and
(g) Same quantities as in (b), (c) and (d) for the considered SGS (U0 = 0.72 eV, L = 10 nm
and w = 5nm). Red and blue arrows in (e) represent the ‘right’ and the ‘left’ pseudospin
state, respectively.
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11.3 Graphene superlattices

Now, let us consider a 1D external periodic potential V (x) applied to graphene. The po-
tential is taken to vary much more slowly than the carbon-carbon distance so that inter-valley
scattering can be neglected [129, 79]. Under this condition and for low-energy quasiparticle
states whose wavevectors are close to the K point, the Hamiltonian reads

H = h̄v0 (−iσx∂x + σyky + I V (x)/h̄v0) , (11.2)

where I is the 2 × 2 identity matrix. The eigenstates and eigenenergies of the Hamiltonian
H in Eq. (11.2) may be obtained numerically in the general case or analytically for small k.

It has been predicted that, in a graphene superlattice with a slowly varying 1D periodic
potential or a 2D periodic potential of rectangular symmetry, the group velocity of its low-
energy charge carriers is renormalized anisotropically [81]. Unlike bare graphene which has an
isotropic (zero mass) relativistic energy dispersion (Figs. 11.1b-11.11d), graphene under some
specific superlattice potentials displays extremely anisotropic quasiparticle energy dispersion:
the group velocity near the Dirac point along the direction perpendicular to the periodicity
of the potential vanishes while the one parallel to the periodicity direction is intact [81].

We consider a Kronig-Penney type of potential with barrier height U0, lattice period L,
and barrier width w, periodic along the x direction (Fig. 11.1a). These potential parameters
can be tuned so that the group velocity of the quasiparticles (with wavevector close to the
Dirac point) along the y direction vanishes [81]. We shall focus on a graphene superlattice
under one of these conditions (U0 = 0.72 eV, L = 10 nm, and w = 5 nm) [81]. The parameters
used here are experimentally feasible as shown in recent studies [193, 197, 207, 199]. Later, we
will relax the special condition to confirm the robustness of the predicted supercollimation.

The quasiparticle energy dispersion of this superlattice (Figs. 11.1e-11.1g) shows that,
not only the group velocity of quasiparticles at the Dirac point along the y direction van-
ishes, there is hardly any dispersion along the ky direction within a good fraction of the
supercell Brillouin zone (Figs. 11.1f and 11.1g). This portion of the energy dispersion in this
superlattice thus is well described by the relation

Es(k) = sh̄v0|kx| . (11.3)

The deviation of the actual energy dispersion from that of Eq. (11.3) is less than 5% for k
vector as large as 40% of the supercell Brillouin zone considered (Figs. 11.1f and 11.1g). This
is an equation for wedges. Thus, for some specific superlattice potentials, graphene turns
from a zero-gap semiconductor into a quasi-1D metal with a finite and constant density of
states about the Dirac point energy. We shall call this class of graphene superlattices as
special graphene superlattices (SGSs).

Along with the quasiparticle energy dispersion, the internal pseudospin symmetry of the
electronic states in SGSs also undergoes a dramatic alteration. We calculate numerically

the overlap
∣∣〈ψs′,k′|ei(k′−k)·r|ψs,k

〉∣∣2 of two quasiparticle states ψs,k(r) and ψs′,k′(r). If there
were no external periodic potential, this overlap would be simply (1 + ss′ cos (θk′ − θk))/2
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L = 10 nm and w = 5nm).
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as seen from Eq. (11.1) (Figs. 11.2a and 11.22b). The same overlap in the SGS (Figs. 11.2c
and 11.2d) is however dramatically different from that in graphene, and can be well described

by
∣∣〈ψs′,k′|ei(k′−k)·r|ψs,k

〉∣∣2 = (1 + ss′ sgn (kx) sgn (k′x))/2 . This behavior is robust for a
wide range of the magnitudes of k and k′, extending over a good fraction of the supercell
Brillouin zone with a high degree of accuracy. The eigenfunctions of an SGS, for states with
small k, can be deduced from this result, together with results on the numerically obtained
wavefunctions, (also from analytic calculation: see Supporting Information) as having the
form of

ψs,k(r) = eif(x) 1√
2

(
1

s sgn (kx)

)
eik·r, (11.4)

where f(x) is a real function. Thus, the spinor in Eq. (11.4) is an eigenstate of σx. Therefore,
the direction of the pseudospin is quantized so that it is either parallel or anti-parallel to the
x direction, which is the direction of the periodicity of the superlattice potential (Fig. 11.1e),
and not to the wavevector k as is the case in pristine graphene (Fig. 11.1b). In other words,
the pseudospin in the SGS collapses into a backward (‘left’) or a forward (‘right’) state. The
resulting quasi-one-dimensionality in the energy dispersion relation and in the pseudospin of
quasiparticles in the SGS significantly changes the already unique properties of graphene.

11.4 Electron supercollimation

The quasi-one-dimensionality and specific chiral nature of the SGS makes it a natural
candidate for electron supercollimation. It is indeed the case that, when a wavepacket
of electron is injected into an SGS, the propagating packet exhibits essentially no spatial
spreading, i. e. , electron beam supercollimation is realized (Fig. 11.3). We have calculated
the time-evolution of a gaussian wave packet (with spatial extent along the x and the y
direction given by 2σx = 40 nm and 2σy = 200 nm, respectively) composed of states in
the first band above the Dirac point energy with a central wavevector kc (Fig. 11.3). To
provide a measure of the electron beam collimation, we compute the angle θc in which
direction the beam intensity is maximum and the angular spread ∆θ which gives half the
maximum intensity when the angle is at θc ± ∆θ. For a central wavevector kc parallel to
the x direction with energy E(kc) = E0 = h̄v0 0.1π/L = 0.02 eV, the angular spread ∆θ in
pristine graphene is ∆θ = 55 ◦ (Fig. 11.3a), whereas in the SGS, ∆θ = 0.3 ◦ (Fig. 11.3b),
about 200 times smaller than in graphene. Specifically, in the SGS, the spread of the wave
packet in the y direction after proceeding 0.1 mm along the x direction is only 500 nm.
Therefore, supercollimation of currents of nanoscale width in the SGS can, in principle, be
achieved and maintained as long as the ballistic transport occurs in the system.

Even when the experimental situation deviates from the ideal conditions for SGSs, su-
percollimation persists. Hence the phenomenon is quite robust. First, for example, if we
consider an imperfection in making a superlattice potential such that the periodicity is
slightly larger or smaller (∆L/L = ±5%), the calculated time-evolution of a gaussian wave
packet shows the angular spread ∆θ = 0.007◦ and 0.5◦, respectively (Figs. 11.3c and 11.3d).
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Figure 11.3: Special graphene superlattice as an electron supercollimator. (a), (e) and
(g) Time-integrated probability density of an electron wave packet,

∫ ∞
0

|Ψ(x, y, t)|2dt, in
graphene. The initial (t = 0) wave packet is a Gaussian localized at the coordinates origin
(middle of the left edge of each panel) |Ψ(x, y, 0)|2 ∼ exp

[
−

(
x2/2σ2

x + y2/2σ2
y

)]
where 2σx =

200 nm and 2σy = 40 nm. The wave packet in wavevector space is set to be localized around

a specific kc. In (a), kc is set by E(kc) = E0 = h̄v0 0.1π/L = 0.02 eV and k̂c = x̂. In (e), kc

is set by E(kc) = 2E0 and k̂c = x̂. In (g), kc is set by E(kc) = E0 and k̂c = x̂/
√

2 + ŷ/
√

2.
θc denotes the angle (defined with respect to the x-direction) along which direction the
intensity is maximal and ∆θ denotes the angular spread which gives half the maximum
intensity when the angle is at θc ±∆θ. (b), (f) and (h) Same quantities as in (a), (e) and (g)
for the considered SGS (U0 = 0.72 eV, L = 10 nm and w = 5 nm), respectively. (c) and (d),
Same quantities as in (b) for graphene superlattices corresponding to a superlattice potential
that is otherwise the same as the SGS studied but with a period L change of ∆L/L = 5%
and ∆L/L = −5%, respectively.
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Second, when considering doped SGSs or high energy electron injection such that E(kc) is
doubled, the angular spread is still very small (Fig. 11.3f). Third, even when kc is off from
the collimation direction (+x) by 45 ◦, the angular deviation is still negligible (θc = −1.1 ◦)
(Fig. 11.3h). In graphene, on the other hand, the propagation direction and spread of the
wave packet sensitively depends on the magnitude and the direction of the central wavevec-
tor kc (Figs. 11.3e and 11.3g). This robustness here is quite contrary to the case in optics
where the efficiency of supercollimator, superprism or superlens [231] depends sensitively
on the magnitude and the direction of the light wavevector and in general provides a very
narrow effective bandwidth [223, 224, 226, 227]. From our calculations, we expect that the
predicted supercollimation be observable in SGSs over a wide operation range.

11.5 Electronic analogue of optics

Lastly, we consider the tunneling properties of injected electrons into SGSs from pristine
graphene, which provides another measure of the efficiency of electronic devices based on
SGSs. When an electron is injected into an SGS with an incidence angle θ from the graphene
side, the wavevector of incident electron is given by ki = k0 cos θ x̂ + k0 sin θ ŷ and those
of the reflected and transmitted electrons by kr = −k0 cos θ x̂ + k0 sin θ ŷ and kt =
k0 x̂ + k0 sin θ ŷ, respectively (Fig. 11.4a). Here, we have made use of the continuity of
the transverse component of the wavevector and conservation of energy, together with the
novel dispersion relation given by Eq. (11.3). Using the continuity of the wavefunction in
the system described by Eqs. (11.1) and (11.4), we find that the reflectance R = |r|2 is

R(θ) = tan2 θ

2
. (11.5)

Interestingly, the reflectance is independent of the specific form of the external periodic
potential of the SGS. Equation (11.5) indicates that the transmittance is large for most in-
cidence angles. For example, even at θ = 45 ◦, the reflectance is less than 20 % (Fig. 11.4b).
Therefore, the SGS is not only an excellent electron supercollimator but also a good transmit-
ter in a graphene-SGS-graphene junction (Fig. 11.4c). Utilizing this property, an immediate
application could be made to demonstrate an electronic analogue of virtual imaging in this
configuration (Fig. 11.4c).

11.6 Perspectives

Given the recent rapid progress in graphene superlattices fabrication [193, 197, 207,
199], the manipulation of electrons in ways similar to that of photons in optics by using
the supercollimation effect discussed here together with other optics analogues [230, 80]
is expected to soon be practicable. The SGSs have the promise of playing a unique role
in devices based on the synergetic importing of concepts and techniques well developed in
optics to electronics.
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11.7 Supplementary discussion: Analytical solution of

electronic states of special graphene superlattices

When graphene is in a 1D external periodic potential V (x), the Hamiltonian for electrons
whose wavevectors are close to the K pointreads

H = h̄v0 (−iσx∂x + σyky + I V (x)/h̄v0) , (11.6)

where I is the 2× 2 identity matrix. In this case, we assume that the potential varies much
more slowly than the carbon-carbon distance. So, the inter-valley scattering can be neglected
safely [78, 79].

If a transform H ′ = U †HU is applied to Eq. (11.6) with the unitary matrix U =
exp (−iσx α(x)/2), where α(x) = 2

∫ x

0
V (x′)dx′/h̄v0 (we assume that a constant is subtracted

from V (x) to set its average to zero), the resulting Hamiltonian H ′ reads

H ′ = h̄v0 (−iσx∂x + ( cosα(x) σy − sinα(x) σz ) ky) . (11.7)

(A similar transform was applied to the Hamiltonian of a carbon nanotube under a sinusoidal
potential for the specific case of finding the band gap opening behavior at the supercell
Brillouin zone boundary [232, 233].) The terms having ky could be treated as a perturbation
if ky is small. The eigenstate of the unperturbed Hamiltonian is given by

ψ′
0 s,k(r) =

1√
2

(
1

s sgn (kx)

)
eik·r. (11.8)

Within second order perturbation theory, using Eqs. (11.7) and (11.8), the energy eigenvalue
of the superlattice is

Es,k = s h̄v0|kx| + h̄v0k
2
y

∑

s′,G

∣∣〈ψ′
0 s′,k+G |cosα(x) σy − sinα(x) σz|ψ′

0 s,k

〉∣∣2

s|kx| − s′|kx +Gx|
, (11.9)

and the wavefunction is

ψ′
s,k(r) = ψ′

0 s,k(r) + ky

∑

s′,G

〈
ψ′

0 s′,k+G |cosα(x) σy − sinα(x) σz|ψ′
0 s,k

〉

s|kx| − s′|kx +Gx|
ψ′

0 s,k+G(r) . (11.10)

Here, G’s are the superlattice reciprocal lattice vectors G = mG0, where G0 = (2π/L, 0)
and m is an integer. Therefore, in order for the superlattice to be an SGS, in which there
is negligible dispersion with respect to ky, the energy shift arising from the perturbation (or
ky) should be negligible. Assuming that k is small, the dominant summand is the case when
s′ = −s and m = 0. Thus, if

〈
ψ′
−s,k |cosα(x) σy − sinα(x) σz|ψ′

s,k

〉
= 0 , (11.11)
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the superlattice would be an SGS. Under this condition, the relative deviation of the en-
ergy dispersion relation, Eq. (11.9), from Es(k) = sh̄v0|kx| (Eq. (11.3) in the paper) is
O

(
k2

y/kxGx

)
and that of the wavefunction, Eq. (11.10), from Eq. (11.8) is O (ky/Gx). Sim-

ilar quantities in a normal graphene superlattice are O
(
k2

y/k
2
x

)
and O (ky/kx), respectively.

The eigenfunction ψs,k(r) of the Hamiltonian H in Eq. (11.6) is, to a good approximation,
obtained by ψs,k(r) = Uψ′

0 s,k(r) and is still an eigenstate of σx because U commutes with
σx.
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Chapter 12

Landau levels and quantum Hall
effect in graphene superlattices

12.1 Introduction

The physical properties of graphene [35, 36, 182] are currently among the most actively
investigated topics in condensed matter physics. Graphene has the unique feature that the
low-energy charge carriers are well described by the two-dimensional (2D) massless Dirac
equation, used for massless neutrinos, rather than by the Schrödinger equation [35, 36].
Moreover, graphene is considered to be a promising candidate for electronics and spintronics
applications [234].

It has been shown that, because of their gapless energy spectrum and chiral nature,
the charge carriers in graphene are not hindered by a slowly varying electrostatic potential
barrier at normal incidence [80], analogous to the Klein tunneling effect predicted in high-
energy physics. Direct evidences of Klein tunneling through a single barrier in graphene [80]
have been observed in recent experiments [235, 236].

Application of multiple barriers or periodic potentials, either electrostatic [202, 81, 237,
82, 83] or magnetic [238, 239, 240, 241], to graphene has been shown to modulate its elec-
tronic structure in unique ways and lead to fascinating new phenomena and possible appli-
cations. Periodic arrays of corrugations [204, 242, 243] have also been proposed as graphene
superlattices (GSs).

Experimentally, different classes of GSs have been fabricated recently. Patterns with
periodicity as small as 5 nm have been imprinted on graphene through electron-beam in-
duced deposition of adsorbates [193]. Epitaxially grown graphene on the (0001) surface of
ruthenium [197, 207, 199, 244, 245] and that on the (111) surface of iridium [246, 247, 248]
also show superlattice patterns with ∼3 nm lattice period. The amplitude of the periodic
potential applied to graphene in these surface systems has been estimated to be in the range
of a few tenths of an electron volt [207]. Fabrication of periodically patterned gate electrodes
is another possible way of making GSs with periodicity close to or larger than ∼20 nm.
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The quantum Hall plateaus in graphene take on the unusual values of 4(l+1/2) e2/h where
l is a non-negative integer [249]. The factor 4 comes from the spin and valley degeneracies.
In bilayer graphene, the quantum Hall plateaus are at 4l e2/h with l a positive integer [120].
These unconventional quantum Hall effects have been experimentally verified [35, 36, 250],
providing evidences for 2D massless particles in graphene and massive particles in bilayer
graphene.

In this chapter, we investigate the LLs and the quantum Hall effect in GSs formed by the
application of a one-dimensional (1D) electrostatic periodic potential and show that they
exhibit additional unusual properties. We find that, for a range of potential shapes and pa-
rameters, new branches of massless fermions are generated with electron-hole crossing energy
the same as that at the original Dirac point of pristine graphene. These additional massless
fermions affect the LLs qualitatively. In particular, the LLs with energy corresponding to
the Fermi energy at charge neutrality (i. e. , zero carrier density) become 4(2N + 1)-fold de-
generate (N = 0, 1, 2, ...), depending on the strength and the spatial period of the potential
(pristine graphene corresponds to N = 0). Accordingly, when sweeping the carrier density
from electron-like to hole-like, the quantum Hall conductivity in such a GS is predicted to
show an unconventional step size of 4(2N + 1) e2/h that may be tuned by adjusting the
external periodic potential.

12.2 Computational details

In our study, the electronic structure of the GSs is evaluated using the methods devel-
oped in Ref. [81]; we evaluate the bandstructure of the GS numerically by solving the 2D
massless Dirac equation with the external periodic potential included using a planewave ba-
sis. Similarly, to obtain the LLs, the eigenstates of the GSs under an external perpendicular
magnetic field are expanded with planewaves. We work in a Landau gauge with the vector
potential depending on the position coordinate along the direction of the periodicity of the
GS, and a zigzag form for the vector potential with a very large artificial periodicity (large
compared to the GS periodicity) is employed to mimic a constant magnetic field near the
origin in position space [251]. We have checked that the LLs are converged in energy to
within less than 1 % with respect to the size of the supercell for the vector potential and the
kinetic energy cutoff for the planewaves. The size of the largest supercell and that of the
smallest sampling distance in real space used are 400 and 0.05 in units of a single unit cell,
respectively.

12.3 Results and discussion

12.3.1 Emerging zero-energy modes

Figure 12.1(a) shows a GS formed by a Kronig-Penney type of electrostatic potential
periodic along the x direction, with lattice parameter L and barrier width L/2. Remarkably,
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Figure 12.1: (a) Schematic diagram of a Kronig-Penney type of potential applied to graphene
with strength U0/2 inside the gray regions and −U0/2 outside with lattice period L and
barrier width L/2. (b) Electron energy in units of εL (≡ h̄v0/L; for example, if L = 20 nm,
εL = 33 meV) versus wavevector near the Dirac point in pristine graphene. (c) The same
quantity as in (b) for a GS with U0 = 6πεL. (d) Number of Dirac points (not including spin
and valley degeneracies) in a GS versus U0.
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unlike that in graphene [Fig. 12.1(b)], the bandstructure in a GS [Fig. 12.1(c)] can have,
depending on the potential barrier height U0, more than one Dirac point with kx = 0 having
exactly the same electron-hole crossing energy [252]. As Fig. 12.1(c) shows, the number of
Dirac points for this type of GSs increases by two (without considering the spin and valley
degrees of freedom) whenever the potential amplitude exceeds a value of

UN
0 = 4πN h̄v0/L (12.1)

with N a positive integer. The value of the potential barrier given in Eq. (12.1) corresponds
to special GSs in which the group velocity along the ky direction vanishes for charge carriers
whose wavevector is near the original Dirac cone [e. g. , the Dirac cone at the center in
Fig. 12.1(c)] [253, 254]. All the findings in this study apply in general to GSs made from
a periodic potential which has both even and odd symmetries, like a sinusoidal type of
potential. The results for GSs whose odd or even symmetry is broken are discussed in the
Supplementary discussion.

Figure 12.2 shows the evolution of the energy of the electronic states with kx = 0 for
a GS depicted in Fig. 12.1 for several different values of U0. As stated above, the group
velocity along the ky direction becomes zero near ky = 0 when the barrier height is given by
Eq. (12.1) [Figs. 12.2(c) and 12.2(e)]. When U0 has a value between those specific values, the
position of the additional new Dirac points move away from the ky = 0 point along the ky

direction with increasing U0. The complex behavior of the zero-energy Dirac cones revealed
by our numerical calculations cannot be derived using perturbation theory [83] because ky

is not small compared to the superlattice reciprocal lattice spacing 2π/L. Moreover, the
pseudospin character of these additional massless fermions [e. g. , the left and the right Dirac
cones (not the center one) in Fig. 12.1(c)] are different from that of the original massless
Dirac fermions. For example, backscattering amplitude due to a slowly varying potential
within one of the new cones does not vanish (see the Supplementary discussion).

12.3.2 Landau levels and quantum Hall conductivity

A natural question arising from this peculiar behavior in the electronic structure of a GS,
which is topologically different from that of pristine graphene, is how the LLs are distributed.
Figure 12.3 shows the calculated LLs of the 1D Kronig-Penney GSs depicted in Fig. 12.1
for various values of U0 [255]. When the superlattice potential modulation is moderate
[Fig. 12.3(b)], the spacings between neighboring LLs become smaller than those in pristine
graphene [Fig. 12.3(a)], owing to a reduction in the band velocity. Once U0 becomes larger
than 4π h̄v0/L (= 0.4 eV for L = 20 nm), the zero-energy LLs (corresponding to zero carrier
density) become three-fold degenerate [Fig. 12.3(d)]. An important point to note is that
this degeneracy is insensitive to U0 over a range of U0 near 6π h̄v0/L because the topology
of the electron bands does not change with this variation [256, 257]. Moreover, even though
the massless particles of the different Dirac cones may have different band velocities, the
degeneracy of the zero-energy LLs is not affected.
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in Fig. 12.1 for several different values of barrier height U0 (specified in each panel in units
of εL).



120

−1

 0

 1

E
i (

ε B
)

(a) U0 = 0

−1

 0

 1
E

i (
ε B

)
(b) U0 = 2π εL

−1

 0

 1

E
i (

ε B
)

(c) U0 = 4π εL

−1

 0

 1

E
i (

ε B
)

(d) U0 = 6π εL

∆E

−1

 0

 1

E
i (

ε B
)

(e) U0 = 8π εL

−1

 0

 1

−6 −4 −2  0  2  4  6

Landau level index i

E
i (

ε B
)

(f) U0 = 10π εL

Figure 12.3: Landau level energy Ei (in units of εB ≡ h̄v0/lB with lB =
√
h̄c/eB) versus the

Landau level index i (i = 0, ±1, ±2, ... ) in GSs formed with a 1D Kronig-Penney potential
for several different values of barrier height U0, with lattice period L = 0.5lB. The LLs now
have a finite width ∆E (shown not to scale and exaggerated in the figure) arising from the
ky dependence of the energy of the electronic states in a perpendicular magnetic field [9].
Note the 3-fold and the 5-fold degeneracies around Ei = 0 in (d) and (f), respectively. (If the
spin and valley degeneracies are considered, those become 12-fold and 20-fold, respectively.)



121

−4

 0

 4

−4  0  4

n h / e B

σ x
y 

(e
2 /h

)

Figure 12.4: Hall conductivity σxy versus carrier density (with an artificial broadening for
illustration) for a 1D Kronig-Penney GS with U0 near 6πh̄v0/L (solid line) is compared to
that of pristine graphene (dashed line).
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The dependence of the Hall conductivity σxy on the charge carrier density n most directly
reflects the degeneracy of the LLs. Figure 12.4 schematically shows that, depending on the
superlattice potential parameters, σxy of the GSs considered has a 4(2N + 1) e2/h step as
the density is scanned from hole-like to electron-like carriers. (We have put in the additional
factor 4 coming from the spin and valley degeneracies in this discussion and in Fig. 12.4.)
Because the degeneracy of the LLs in the 1D GSs is insensitive to a variation in U0, this
qualitative difference in σxy of the 1D GSs from that of pristine graphene (Fig. 12.4) is
expected to be robust, and will provide a measurable signature of the unique electronic
structure of the 1D GSs.

12.4 Conclusion

In conclusion, we have shown that the electronic structure of 1D graphene superlattices
can have additional Dirac cones at the same energy as the original cones at the K and K’
points of pristine graphene. These new massless particles contribute to a 4(2N + 1)-fold
degeneracy in the zero-energy Landau levels, whose signature is reflected in a 4(2N +1) e2/h
Hall conductivity step where N = 0, 1, 2, ... depending on the superlattice potential param-
eters. This feature of the electronic structure of the 1D graphene superlattices gives rise
to new properties for the quantum Hall effect. Equally importantly, these new phenomena
may provide a direct way to characterize the peculiar electronic structure of these systems
experimentally.

12.5 Supplementary discussion

12.5.1 Sinusoidal superlattice

In previous sections, we state that the essential features in the electronic structure of
graphene superlattices (GSs) revealed by considering the Kronig-Penney type of potential
remain valid for GSs made with different types of periodic potentials. In this section, we sup-
port this by showing the results for GSs with sinusoidal types of external periodic potentials
[Fig. 12.5(a)].

The function α(x) defined by Eq. (6) in Ref. [83] for a sinusoidal type of external periodic
potential V (x) = V0 sin(2πx/L) is α(x) = −V0L/πh̄v0 · cos(2πx/L). Therefore, as shown in
Eqs. (9) and (15) of Ref. [83], the group velocity at the original Dirac point perpendicular
to the periodic direction is given by vy = f0v0, where v0 is the group velocity in pristine
graphene and f0 = J0(LV0/πh̄v0). Here, J0(x) is the zeroth order Bessel function of the first
kind. Our calculations show that a new pair of massless Dirac points are generated whenever
f0 = 0, i.e., V0 is equal to

V N
0 = πx0, N

h̄v0

L
, (12.2)

where x0, N is the N-th root of J0(x) (e.g., x0,1 = 2.405, x0,2 = 5.520, etc.) [Fig. 12.5(b)].
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Figure 12.5: (a) Schematic diagram of a sinusoidal type of potential applied to graphene
with lattice period L and potential amplitude V0 [V (x) = V0 sin(2πx/L)]. (b) Number of
Dirac points (not including the spin and valley degeneracies) in a GS versus V0 in units
of εL (≡ h̄v0/L; for example, if L = 20 nm, εL = 33 meV). (c) Electron energy versus
wavevector near the original Dirac point (kx = ky = 0) for a GS with V0 = 4.0πεL. (d)

Landau level energy Ei (in units of εB ≡ h̄v0/lB with lB =
√
h̄c/eB) versus the Landau level

index i (i = 0, ±1, ±2, ... ) in a GS formed with a sinusoidal potential with V0 = 4.0πεL

and L = 0.5lB. Note the 3-fold degeneracy (becoming 12-fold degeneracy when the spin and
valley degeneracies are considered) around Ei = 0.
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Figure 12.6: (a) Kronnig-Penney type of potential V (x) given by U0/2 for 0 < x < L/2 and
−U0/2 for L/2 < x < L with lattice period L. (b)Electron energy (in units of εL = h̄v0/L)
versus ky with kx = 0 in a GS formed by the periodic potential in (a) with U0 = 6πεL (c)

Landau level energy Ei (in units of εB ≡ h̄v0/lB with lB =
√
h̄c/eB) versus the Landau level

index i (i = 0, ±1, ±2, ... ) in a GS depicted in (b), with lattice period L = 0.5lB. (d) to (f):
Same quantities as in (a) to (c) for a periodic potential V (x) with a perturbation that breaks
the odd symmetry. The perturbing potential ∆V (x) within one unit cell is given by +10 %
of the potential amplitude (U0/2) for L/8 < x < 3L/8 and zero otherwise. Dashed circle
in (f) shows a three-fold degenerate set of Landau levels. (g) to (i): Same quantities as in
(a) to (c) for a periodic potential V (x) with a perturbation that breaks the even symmetry.
The perturbing potential ∆V (x) within one unit cell is given by +10 % and −10 % of the
potential amplitude (U0/2) for L/4 < x < L/2 and for L/2 < x < 3L/4, respectively, and
zero otherwise.

Figure 12.5(c) shows the energy bandstructure of a sinusoidal type of GS with V0 =
4.0π · h̄v0

L
. Because this value of V0 is between V 1

0 and V 2
0 , a pair of new zero-energy massless

Dirac cones are generated, and they clearly affect the Landau level degeneracy [Fig. 12.5(d)]
in the same way as discussed in previous sections for a Kronig-Penney type of GS.

12.5.2 Effects of symmetry breaking on the newly generated mass-
less fermions

In this section, we discuss the effect of symmetry breaking of the external periodic poten-
tial on the newly generated massless fermions. (The case of random perturbation is discussed
in Ref. [256]. In this section, we focus on a periodic perturbing potential that breaks the
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even or odd symmetry.)
Figure 12.6(a)-(c) repeats the results shown in previous sections for a Kronig-Penney type

of periodic potential having both even and odd symmetries. If the odd symmetry is broken
by adding an appropriate perturbation [Fig. 12.6(d)], new branches of massless fermions
are still generated [Fig. 12.6(e)]. The energy at these new massless Dirac points however is
different from that of the original Dirac point [Fig. 12.6(e)]. Even though Ei = 0 Landau
level does not have the degeneracy coming from multiple Dirac points, some lower-index
Landau levels still show this kind of degeneracy [Fig. 12.6(f)].

If the even symmetry is broken through a perturbing potential [Fig. 12.6(g)], new Dirac
points are not generated [Fig. 12.6(h)]. However, the signature of newly generated states
may still be probed with photoemission experiments or transport measurements [258].

12.5.3 Pseudospins of new massless fermions

The pseudospin character of the newly-generated massless states are different from that of
the original Dirac fermions. In order to illustrate the pseudospin character of these states, we

numerically calculate the overlap
∣∣〈ψs′,k′|ei(k′−k)·r|ψs,k

〉∣∣2 of two quasiparticle states ψs,k(r)
and ψs′,k′(r) in a GS having wavevectors k and k′ measured from the newly-generated Dirac
point (appearing when U0 = 4πεL and moving along the ky direction as U0 is increased
further). The behavior shown in Fig. 12.7, which corresponds to the overlap of the pseudospin
part of the wavefunctions, is robust if the magnitudes of k and k′ are smaller than ∼
0.05 × 2π/L.

As mentioned in previous sections, the pseudospin character of these additional massless
fermions [e. g. , the left and the right Dirac cones (not the center one) in Fig. 12.1(c)] are
different from that of the original massless Dirac fermions. Backscattering amplitude due to
a slowly varying potential within one of the new cones does not vanish (Fig. 12.7).
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Figure 12.7: (a) and (b): Calculated overlap of two quasiparticle states ψ0
s,k(r) and ψ0

s′,k′(r),∣∣〈ψ0
s′,k′|ei(k′−k)·r|ψ0

s,k

〉∣∣2, in a GS depicted in Fig. 12.5(a) with U0 = 6πεL versus θk and θk′

which are the angles between the kx axis and wavevectors k and k′, measured from the
newly-generated massless Dirac point (appearing when U0 = 4πεL and moving along the ky

direction as U0 is increased further), respectively. The overlap is shown in a gray scale (0 in
black and 1 in white). The results show negligible dependence on |k| and |k′| when they are
smaller than ∼ 0.05 × 2π/L (in the figures, |k| = |k′| = 0.02 × 2π/L). The two states are
in the same band (s′ = s) in (a) and are in different bands (s′ = −s) in (b). (c) and (d),
and, (e) and (f): Same quantities as in (a) and (b) for GSs with U0 = 8πεL and U0 = 10πεL,
respectively.
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Chapter 13

Making massless Dirac fermions from
patterned two-dimensional electron
gases

13.1 Introduction

Graphene [34, 35, 36, 182], a honeycomb lattice of carbon atoms, is composed of two
equivalent sublattices of atoms. The dynamics of the low-energy charge carriers in graphene
may be described to a high degree of accuracy by a massless Dirac equation with a two-
component pseudospin basis which denotes the amplitudes of the electronic states on these
two sublattices. The quasiparticles have a linear energy dispersion near the corners K
and K′ (the Dirac points) of the hexagonal Brillouin zone and an isotropic group velocity
independent of the propagation direction [77, 259, 78, 200]. Consequently, the density of
states (DOS) varies linearly and vanishes at the Dirac point energy. The sublattice degree of
freedom of the wavefunctions is given by a pseudospin vector that is either parallel or anti-
parallel to the wavevector measured from the Dirac point, giving rise to a chirality being 1 or
−1, respectively [77, 78, 200]. These two fundamental properties of graphene, linear energy
dispersion and the chiral nature of the quasiparticles, result in interesting phenomenon such
as half-integer quantum Hall effect [35, 36], room temperature quantum Hall effect [260],
Klein paradox [80], and suppression of backscattering [78, 200, 79], as well as some novel
predicted properties such as electron supercollimation in graphene superlattices [81, 82].

As a possible realization of another two-dimensional (2D) massless Dirac particle system,
theoretical studies on the physical properties of particles in optical honeycomb lattices [261]
have been performed [262, 263, 264, 265, 266]. The behaviors of ultra-cold atoms in a
honeycomb lattice potential were considered, in principle, to be equivalent to those of the
low-energy charge carriers in graphene [262].

In this chapter, we propose a different practical scheme for generating massless Dirac
fermions. We show through exact numerical calculations within an independent particle pic-
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ture that applying an appropriate nanometer-scale periodic potential with hexagonal symme-
try onto conventional two-dimensional electron gases (2DEGs) will generate massless Dirac
fermions at the corners of the supercell Brillouin zone (SBZ). We find that the potential con-
figurations needed should be within current laboratory capabilities, and this approach could
benefit from the highly developed experimental techniques of 2DEG physics [267] including
recent advances in self-assembly nanostructures [268, 269, 270].

We moreover find that the band velocity and the energy window within which the disper-
sion is linear may be varied by changing the superlattice parameters or the effective mass of
the host 2DEG, thus providing a different class of massless Dirac fermion systems for study
and application. Interestingly, the amplitude of the periodic potential does not affect the
band velocity about the Dirac points. But, if the external periodic potential is too weak,
there is no energy window within which the total DOS vanishes linearly. The linear energy
dispersion and the chiral nature of states around the Dirac points of these 2DEG super-
lattices are found to be identical to those of graphene. Also, the associated up and down
pseudospin states naturally correspond to states localizing, respectively, on two equivalent
sublattice sites formed by the superlattice potential.

13.2 Numerical results

Let us consider a 2DEG with E(p) = p2/2m∗ where m∗ is the electron effective mass.
This is a good approximation to the energy dispersion of the lowest conduction band in
diamond- or zinc-blende-type semiconductor quantum wells, which have effective masses
ranging from m∗ = 0.02 me ∼ 0.17 me where me is the free electron mass [271]. We shall
consider explicitly two cases in the numerical calculations: m∗ = 0.05 me and m∗ = 0.1 me.

Figure 13.1(a) shows the muffin-tin periodic potential considered in our numerical calcu-
lations, whose value is U0 (> 0) in a triangular array of disks of diameter d and zero outside.
Figure 13.1(b) is the corresponding Brillouin zone. The muffin-tin form is chosen for ease of
discussion; the conclusions presented here are generally valid for any hexagonal potential.

We shall first discuss our numerical results and later consider the approximate analytic
solutions. Figure 13.2 shows the calculated bandstructures of the lowest two bands for several
hexagonal 2DEG superlattices with different effective mass m∗, lattice parameter L (with
potential barrier diameter d = 0.663L [272]), and barrier height U0. As the barrier height
is decreased, the energy window within which the energy dispersion is linear is reduced
(Fig. 13.2). (The potential barrier heights used in our calculations are typical of values
employed in confining 2DEGs [267].) However, the group velocity at the Dirac point is
insensitive to the barrier height (Fig. 13.2). On the other hand, as the effective mass m∗ of
the 2DEG or the lattice parameter L is increased, the group velocity decreases (Fig. 13.2).

Figure 13.3 shows the DOS of a hexagonal 2DEG superlattice with m∗ = 0.05me, U0 =
0.45 eV, L = 10 nm and d = 6.6 nm. The DOS has a linear behavior around the Dirac
point energy within a ∼ 40 meV energy window. The charge density required to dope the
system to reach the Dirac point energy is 2.3 × 1012 cm−2, which is in the range of typical
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Figure 13.1: (a) A muffin-tin type of hexagonal periodic potential with a spatial period L.
The potential is U0 (> 0) inside the gray disks with diameter d and zero outside. (b) The
Brillouin zone of hexagonal lattice in (a).

value in 2DEG studies [267], and may be tuned by applying a gate voltage or by light
illumination [273].

13.3 Analytical calculation

With the above results established from the numerical calculations, to gain further insight,
we now present analytical expressions for the energy dispersion relation and wavefunctions
around the SBZ corners obtained from degenerate perturbation theory. We concentrate
on states with wavevector k + K near the K point in the SBZ, i. e. , |k| ≪ |K|. Let us
set the energy of the empty lattice bandstructure at the K point to zero, define W as
the Fourier component of the periodic potential connecting 1 → 2 , 2 → 3 and 3 → 1

in Fig. 13.1(b) [272], and denote v0 as the group velocity of the electron state at the K
point of the 2DEG before applying the periodic potential. [For E(p) = p2/2m∗, v0 =
h̄K/m∗. However, the derivation below is not confined to a quadratic energy dispersion for
the original 2DEG.] Due to the inversion symmetry of the system considered here, W is real.
The wavefunction ψk(r) may be approximately expressed as a linear combination of three
planewave states

ψk(r) =
1√
3Ac

[c1 exp (i(K1 + k) · r)

+c2 exp (i(K2 + k) · r) + c3 exp (i(K3 + k) · r)] ,
(13.1)
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Figure 13.2: Calculated energy bandstructure of the lowest two bands of a hexagonal 2DEG
superlattice shown in Fig. 13.1(a). (a) m∗ = 0.05me and L = 10 nm, (b) m∗ = 0.05me and
L = 20 nm, (c) m∗ = 0.1me and L = 10 nm, and (d) m∗ = 0.1me and L = 20 nm. The
diameter of the disks d is set to d = 0.663L (see text). Solid, dashed, and dash-dotted lines
show results for U0 equal to 0.45 eV, 0.15 eV, and 0.05 eV, respectively. The Dirac point
energy (i. e. , the energy at the crossing of the two bands at K) is set to zero.
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where Ac is the area of the 2DEG and K1 , K2 and K3 represent wavevectors at the SBZ
corners 1, 2 and 3, respectively, in Fig. 13.1(b). Equivalently, we could express the eigenstate
as a three-component column vector c = (c1 , c2 , c3 )T. Within this basis, the Hamiltonian
H , up to first order in k, is given by H = H0 +H1, where

H0 = W




0 1 1
1 0 1
1 1 0



 (13.2)

and

H1 = h̄v0 k




cos θk 0 0

0 cos
(
θk − 2π

3

)
0

0 0 cos
(
θk − 4π

3

)



 . (13.3)

Here θk is the polar angle of the wavevector k from the +x direction.
The eigenvalues of the unperturbed Hamiltonian H0 are

E0 = −W, −W, 2W , (13.4)

which are also the energies of the states of the superlattice at k = 0. We now focus on
the doubly-degenerate eigenstates with eigenvalue −W . We shall find the k-dependence of
the eigenenergies and eigenvectors of H corresponding to these two states within degenerate
perturbation theory by treating H1 as a perturbation, which is approximate for h̄ v0 k < W .
Also, for a wavefunction in the form of Eq. (13.1) to give a good description of the actual
wavefunction, the energy to the next planewave state [which is h̄2(2K)2/2m∗ − h̄2K2/2m∗]
should be smaller than W . Therefore, the approximation is valid within the regime h̄ v0 k <
W < 3h̄2K2

2m∗
, or, equivalently,

4πh̄2

3m∗L
k < W <

8π2h̄2

3m∗L2
, (13.5)

where we have used K = 4π/3L.
The two eigenvectors of H0 with eigenvalue −W are

c1 =
1√
2




0
1

−1


 and c2 =

1√
6




2
−1
−1


 . (13.6)

The term H1, when restricted to the sub-Hilbert-space spanned by the two vectors in
Eq. (13.6), is represented by a 2 × 2 matrix H̃1

H̃1 = h̄
v0

2

(
−kx −ky

−ky kx

)
, (13.7)

where kx = k cos θk and ky = k sin θk. After a similarity transform M = U †H̃1U with

U =
1

2

(
1 + i −1 − i

−1 + i −1 + i

)
, (13.8)
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we obtain
M = h̄

v0

2
(kxσx + kyσy) . (13.9)

Here, σx and σy are the Pauli matrices. Equation (13.9) is just the effective Hamiltonian of
graphene [77] with a group velocity

vg = v0/2 =
h̄K

2m∗ =
2πh̄

3m∗L
. (13.10)

Therefore, the group velocity is reduced if the effective mass is increased or the lattice
parameter of the superlattice is increased, but it is insensitive to the amplitude of the external
periodic potential, which explains the results of the numerical calculations shown in Fig. 13.2.
Also, the size of the linear energy dispersion window [Eq. (13.5)] is dictated by the value of
W, which for the muffin-tin potential in Fig. 13.1(a) with d = 0.663L is W = 0.172U0 [272]
in agreement with the numerical calculations.

The eigenvalues and the eigenvectors of M are

E(s,k) = s h̄
v0

2
k , (13.11)

and

|s,k〉 =
1√
2

(
1
0

)
+

1√
2
s eiθk

(
0
1

)
, (13.12)

respectively, where s = ±1 is a band index [77]. The vectors

(
1
0

)
and

(
0
1

)
are the up

and the down pseudospin eigenstates of σz, respectively [274].
The up and the down pseudospin eigenstates may be expressed within the basis of the

original Hamiltonian H using Eqs. (13.8) and (13.6) as

|↑〉 =
1√
3
ei 3π

4

(
1, e−i 2π

3 , e−i 4π
3

)T

(13.13)

and

|↓〉 =
1√
3
ei 3π

4

(
1, ei 2π

3 , ei 4π
3

)T

, (13.14)

respectively [275]. The real space pseudospin wavefunctions 〈r| ↑〉 and 〈r| ↓〉 are obtained
by putting the coefficients in Eqs. (13.13) and (13.14) into Eq. (13.1). Figures 13.4(a)
and 13.4(b) show |〈r| ↑〉|2 and |〈r| ↓〉|2, respectively. Note that the up and the down pseu-
dospin states are seen as localized at the two equivalent sublattices formed by the external
periodic potential, in perfect analogy with the behavior in graphene.

Let us now consider the Landau levels for the above hexagonal 2DEG superlattice in a
magnetic field B = B ẑ when the Fermi level is at the Dirac point energy. In exact analogy
with graphene, the low-energy Landau levels shifted by the energyW (i. e. , having the energy
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Figure 13.4: Probability densities of the pseudospin states in a hexagonal 2DEG superlattices
(a) |〈r| ↑〉|2 and (b) |〈r| ↓〉|2. Note that the amplitudes of the states are localized at two
different but equivalent sublattices. The centers of the potential barrier disks [Fig. 13.1(a)]
are shown as ‘x’ marks, and the honeycomb structure is drawn to illustrate the connection
to the superlattice structure.
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zero at the Dirac point energy) are En = h̄ωc sgn(n)
√

|n|, where ωc = v0

√
|e|B/2h̄c is the

cyclotron frequency [259]. Here, for an appropriately constructed superlattice potential, the
half-integer quantum Hall effect [35, 36] should be observable. Moreover, the spacing between
quantum Hall plateaus is tunable by changing the lattice parameter of the potential or the
effective mass of the original 2DEG.

13.4 Conclusion

In conclusion, we have shown that chiral massless Dirac fermions are generated if an
appropriate nanometer-scale periodic potential with hexagonal symmetry is applied to a
conventional 2DEG in semiconductors. These quasiparticles have a linear energy dispersion,
with a group velocity half the value of the states before applying the periodic potential,
and a wavefunction chiral structure exactly the same as that of graphene. The up and the
down pseudospin states are shown to be localized at two different but equivalent sublattices
formed by the superlattice potential. The quasiparticle group velocity moreover is tunable by
changing the effective mass of the original 2DEG or the lattice parameter of the superlattice
potential. Our findings thus provide a new class of systems for experimental investigations
and practical applications of 2D massless Dirac quasiparticles.
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Chapter 14

Energy gaps and Stark effect in boron
nitride nanoribbons

14.1 Introduction

Two-dimensional crystals, including graphene and single layer of hexagonal boron nitride
(BN), have recently been fabricated [34]. Among them, only graphene has been studied
extensively [72]. Unlike graphene, a hexagonal BN sheet is a wide gap insulator like bulk
hexagonal BN [276] and is a promising material in optics and opto-electronics [277].

Graphene nanoribbons (GNRs) [278] with width a few to a hundred nanometers have been
produced by lithographical patterning [185, 279] or chemical processing [280] of graphene.
We expect that boron nitride nanoribbons (BNNRs) could also be made using similar or
other techniques. Figures 14.1(a) and 14.1(b) show the structures of an armchair BNNR
with Na dimer lines (Na-aBNNR) and a zigzag BNNR with Nz zigzag chains (Nz-zBNNR),
respectively. A tight-binding study of the bandstructures of 21-aBNNR and 13-zBNNR
(corresponding to widths ∼ 3 nm) [281] and first-principles investigations of the electronic
properties of small width BNNRs [282, 283] have been reported. However, to our knowledge,
first-principles calculations on the electronic properties of experimentally realizable size of
BNNRs have not been performed.

Under a transverse electric field, carbon nanotubes with impurity atoms are expected to
show novel band gap opening behaviors [284], whereas zigzag GNRs reveal half-metallicity [184].
On the other hand, single-walled boron nitride nanotubes (SW-BNNTs), which are rolled
up BN sheets [285, 286, 287], have been predicted to show gigantic Stark effect in their
band gaps in response to a transverse electric field [288], and this effect has been confirmed
experimentally [289]. The effect becomes stronger in larger diameter SW-BNNTs [288]. A
similar phenomenon is expected in BNNRs. Unlike SW-BNNTs, however, BNNRs can be
arbitrarily wide. Therefore, the consequences of the Stark effect in BNNRs would be even
more dramatic than in SW-BNNTs.

In this study, we report first-principles calculations on the electronic properties of arm-
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Figure 14.1: Schematic of (a) 14-aBNNR and (b) 7-zBNNR passivated by hydrogen atoms.
Boron, nitrogen and hydrogen atoms are represented by white, black and grey spheres,
respectively. BNNRs are periodic along the y direction.
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chair and zigzag BNNRs up to width of 10 nm with hydrogen passivation of the edge carbon
atoms. We show that the band gaps of armchair and zigzag BNNRs do not converge to
the same value even when the ribbons are very wide. The band gap of armchair BNNRs,
obtained by density functional theory (DFT) calculations within the local density approx-
imation (LDA), converges to a value that is 0.02 eV smaller than the LDA band gap of
4.53 eV of a BN sheet [290]. Unlike armchair GNRs, the lowest unoccupied band of the
armchair BNNRs is composed of edge states with energy position asymptote to a fixed value
when the ribbon is wider than 3 nm, the decay length of the edge-state. The band gap of
the zigzag BNNRs, also determined by edge states, is monotonically reduced as a function
of increasing width and converges to a value that is 0.7 eV smaller than the LDA bulk
gap because, as discussed below, of an additional edge polarization charge effect. The DFT
Kohn-Sham eigenvalues within LDA in general underestimate the band gaps of materials;
an accurate first-principles calculation of band gaps requires a quasiparticle approach [20].
The basic physics discovered here however should not be changed.

When a transverse electric field is applied, the highest occupied and the lowest empty
states in armchair BNNRs become localized at the two different edges. Because of the
external electrostatic potential difference between the two edges, the band gap is reduced
with increased field strength. On the contrary, in zigzag BNNRs, depending on the field
direction, the states near the band gap either become more localized at the edges or less
so. Also, the band gaps and effective masses either decrease or increase depending on field
strength and direction. These novel properties could be used in manipulating the transport
properties of doped BNNRs.

14.2 Computational details

We performed ab initio pseudopotential DFT calculations within LDA in a supercell
configuration using the SIESTA computer code [291]. A double-zeta plus polarization basis
set was used and ghost orbitals were included to describe free-electron-like states [276, 288,
292]. A charge density cutoff of 300 Ry was used and atomic positions were relaxed so that
the force on each atom is less than 0.04 eV/Å. To eliminate spurious interactions between
periodic images, a supercell size of up to 20 nm×20 nm in the xz plane was used.

14.3 Results and discussion

14.3.1 Energy bandgaps and wavefunctions

The armchair BNNRs are found to have a direct gap at the zone center [left panel
of Fig. 14.2(a)]. The highest occupied state, the valence band maximum (VBM), has a
wavefunction which is localized at nitrogen atoms throughout the ribbon [right lower panel
of Fig. 14.2(a)]. The lowest empty state, the conduction band minimum (CBM), is however
an edge state with wavefunction localizing at the boron atoms on the edges [right upper panel
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Figure 14.2: LDA energy bandstructure (left) and the squared wavefunctions integrated
along z of the highest occupied state (right lower) and the lowest unoccupied state (right

upper) of 14-aBNNR under an external electric field ~Eext of strength (a) zero and (b) 0.1
eV/Å along +x direction. Dashed red lines in the bandstructure indicate the energies of
the band edge states. In the wavefunction plots, bright regions are associated with high
densities.
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of Fig. 14.2(a)]. In contrast, the corresponding state for an armchair GNRs is delocalized
throughout the ribbon [293]. The total potential near the edge of the armchair BNNRs is
different from that of the bulk. By incorporating this variation into the on-site potential

energies of a few BN dimer lines near the edges, one could reproduce the main features of
the states near the band gap within a tight-binding formulation.

The zigzag BNNRs have the VBM at a point between the X and the Γ points which has
wavefunction localized at the nitrogen edge and the CBM at the X point which has wave-
function localized at the boron edge [Fig. 14.3(a)], in agreement with results by Nakamura
et al. [282]

14.3.2 Stark effect: energy bandgap and carrier effective mass

Figure 14.4(a) shows the band gap variation of the armchair and the zigzag BNNRs with
width. The most interesting and somewhat counter-intuitive feature is that as the width
increases, band gaps of the armchair and the zigzag BNNRs converge to different values
neither of which is that of a BN sheet. This is because the CBM or the VBM are determined
by edge-states.

The edge-state band gaps of armchair BNNRs show a family behavior with respect to
the number of dimer lines Na [inset of Fig. 14.4(a)], the family with Na = 3n− 1 having the
smallest gaps where n is an integer. A similar trend is observed in armchair GNRs [294, 293,
183, 295, 296]. The edge-state band gaps of the armchair BNNRs converge to a near constant
value roughly when the ribbon is wider than 3 nm [Fig. 14.4(a)]. This characteristic length
is related to the decay length of the CBM edge-state. Figure 14.4(b) shows the squared
electron wavefunctions of the CBM states of 14-aBNNR and 26-aBNNR integrated in the yz
plane. These states are localized on the boron atoms near the two edges. When the width
is about 3 nm as in the 26-aBNNR, the wavefunction from the two edges begins to decouple
and thus stabling its energy position.

In zigzag BNNRs, the boron edge and the nitrogen edge are negatively and positively
charged (electronic plus ionic charge), respectively. Because of this polarization, the potential
felt by electrons is higher at the boron edge and lower at the nitrogen edge, contributing a
factor which increases the band gap of the narrow zBNNRs since the VBM and the CBM
are edge-states localized at the nitrogen edge and the boron edge, respectively [Fig. 14.3(a)].
However, as the ribbon becomes wider, the effective polarization line charge density σeff ,
defined as

σeff ≡ x̂ · 1

wzhz

∫

r ∈ unit cell

dr ρ(r) r

where ρ(r) is the total charge density including the core charge, and hz the spatial period
along the y direction [see Fig. 14.1(b)], decreases as ∼ 1/wz [Fig. 14.4(c)] due to an increased
screening, resulting in the decrease and convergence of the band gap as wz increases.

Figure 14.2(b) shows how the bandstructure and wavefunctions of a 14-aBNNR change
under a 0.1 eV/Å transverse electric field. Owing to the Stark effect, the wavefunctions of
the highest occupied and the lowest unoccupied states now localize at the opposite edges
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Figure 14.3: LDA energy bandstructure (left) and the squared wavefunctions integrated
along z of the highest occupied state (right lower) and the lowest unoccupied state (right

upper) of 7-zBNNR under an external electric field ~Eext of strength (a) zero, (b) 0.1 eV/Å
and (c) −0.1 eV/Å along the x direction. Dashed red lines in the bandstructure indicate
the energies of the band edge states. In the wavefunction plots, bright regions are associated
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where the external electrostatic potential felt by an electron is higher and lower, respectively
[right panel of Fig. 14.2(b)]. Thus, the band gaps of armchair BNNRs decrease when a
transverse electric field is applied [left panel of Fig. 14.2(b)]. A similar behavior has been
predicted [288] and observed [289] in BNNTs.

Figures 14.3(b) and 14.3(c) show how the bandstructure and the edge-state wavefunctions
of a 7-zBNNR change under a 0.1 eV/Å transverse electric field. When an electric field is
applied toward +x direction, the VBM and CBM edge-state wavefunctions do not change
qualitatively [right panel of Fig. 14.3(b)]. Thus, for a similar reason as in the armchair
BNNRs, the band gap decreases [left panel of Fig. 14.3(b)]. When the electric field is applied
along −x direction, the potential felt by an electron localized at the right edge (the nitrogen
edge) is decreased whereas that at the left edge (the boron edge) is increased. Therefore,
the energy gap between these two states increases as shown in Fig. 14.3(c). (Actually, the
energy of the original lowest empty state has been pushed upward by so much that the state
is no longer the CBM state.) At the same time, the VBM states tend to delocalize [right
lower panel of Fig. 14.3(c)].

Figures 14.5(a) and 14.5(b) show the band gap variation of BNNRs with field strength.
In armchair BNNRs, the band gap decreases when the field strength increases regardless of
its direction [Fig. 14.5(a)]. A similar behavior has been observed in SW-BNNTs [288]. For
example, for the 10 nm wide 84-aBNNR the LDA band gap is reduced from 4.5 eV to less
than 1.0 eV under a 0.1 eV/Å field. In zigzag BNNRs, at small field strength, the band
gap decreases when the field is along +x direction but increases when the field is reversed
[Fig. 14.5(b)]. In other words, zigzag BNNRs show asymmetric Stark effect. However, as
the field becomes stronger, the band gap decreases regardless of the direction. Moreover,
the band gap variations, when plotted against the difference in the external electrostatic
potential between the two edges, fall on a universal curve for ribbons with different widths
[insets of Figs. 14.5(a) and 14.5(b)]. This is because the gap determining states localize on
different edges as the field becomes strong; thus, the change in their energy difference is
directly related to the potential difference between the edges.

Figures 14.5(c) and 14.5(d) show the effective mass of the hole carrier at the VBM
for a range of external field strength. In armchair BNNRs, the hole mass of the VBM is
independent of the field strength. In contrast, the corresponding effective mass in zigzag
BNNRs changes with the external field, and even more interestingly, in an asymmetric way.
In particular, when the field is along −x direction, the effective mass decreases substantially.
Within ±0.02 eV/Å variation of the field, the effective mass can be varied by 50 % from
0.6 m0 to 0.9 m0 where m0 is the free electron mass. In the case of electron carriers in zigzag
BNNRs, a nearly-free-electron state [276, 288, 292] becomes the CBM if a field stronger than
a critical value, depending on the width, is applied [see Fig. 14.3(c)], and the characteristics
of charge carriers change significantly. These novel phenomena demonstrate the possibility
of tuning carrier mobilities of doped BNNRs by applying a transverse electric field.
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Figure 14.5: (a) and (c): LDA energy gaps and effective hole masses (in units of the free
electron mass m0) of the highest occupied band in 36-aBNNR (filled circles) and 84-aBNNR
(empty squares) under a transverse electric field versus the field strength. The inset in (a)
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14.4 Conclusion

In summary, we have studied the electronic properties of BNNRs as a function of width
with or without an external transverse electric fields. The band gap of the armchair BNNR
and that of the zigzag BNNR are determined by edge-states and thus converge to values
different from that of the bulk BN sheet. The electronic and the transport properties of
BNNRs are shown to be tunable by an external transverse electric field. Especially, zigzag
BNNRs are shown to exhibit asymmetric response to the electric field.
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Chapter 15

Excitons and many-electron effects in
the optical response of single-walled
boron nitride nanotubes

15.1 Introduction

Boron nitride nanotubes (BNNTs) are isoelectronic to carbon nanotubes (CNTs); how-
ever, their electronic properties are quite different. Whereas carbon nanotubes are metals
or semiconductors with different size bandgaps depending on diameter and chirality [297],
BN nanotubes are wide gap insulators [285, 286]. Although BNNTs have been synthe-
sized since 1995 [287], only recently optical measurement on single-walled (SW) BNNTs
has been performed [298, 299, 300]. Theoretical calculations [172, 301], as well as experi-
ments [302, 303, 304], have shown that excitonic effects dramatically alter the behavior of
the optical response of single-walled CNTs. For the BNNTs, these effects are expected to be
even more important due to the wide band gap nature of BNNTs.

Experimentally it is found that BN nanotubes favor zigzag structure in current synthesis
processes [305]. Thus, we focus our study on the zigzag tubes. Our calculations on the
(8,0) single-walled BNNT show that, indeed, many-electron effects lead to the formation of
strongly bound excitons of multi-band character with extraordinarily large binding energies,
which dramatically change its optical absorption spectrum.

15.2 Theory and computation

To compute the optical response, we use the method of Rohlfing and Louie [28] in which
electron-hole excitations and optical spectra are calculated from first principles in three
steps. First, we treat the electronic ground state with ab initio pseudopotential density-
functional theory in the local density approximation (LDA) [13]. Second, we obtain the
quasiparticle energies Enk within the GW approximation for the electron self-energy Σ [20],
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with wavefunctions and screening obtained from the LDA calculation, by solving the Dyson
equation: [

−∇2

2
+ Vion + VHartree + Σ(Enk)

]
ψnk = Enkψnk .

Finally, we calculate the coupled electron-hole excitation energies and optical spectrum by
solving the Bethe-Salpeter (BS) equation of the two-particle Green’s function [28, 306]:

(Eck − Evk)AS
vck +

∑

k′v′c′

〈vck|Keh|v′c′k′〉AS
v′c′k′ = ΩSAS

vck ,

where AS
vck is the exciton amplitude, Keh is the electron-hole interaction kernel, and |ck〉

and |vk〉 are the quasielectron and quasihole states, respectively.
The LDA calculations were carried out using a plane-wave basis [41] with an energy

cutoff of 100 Ry. Ab initio Troullier-Martins pseudopotentials [15] in the Kleinman-Bylander
form [17] were used. For convergent results to better than 0.05 eV, up to 32 k points in
the one-dimensional Brillouin zone were used for the GW calculations and for solving the
BS equation. All calculations were carried out in a supercell geometry with a wall-to-wall
intertube separation of 9.5 Å to mimic isolated tubes, together with a truncated Coulomb
interaction to eliminate unphysical interactions between periodic images on the different
tubes. The Coulomb interaction was truncated with a cutoff of 8 Å in the radial direction
and also a cutoff of 70 Å in the tube axis direction. As shown in Ref. [307], it is important to
truncate the Coulomb interaction because, if not, the unphysical intertube interactions would
increase the effective screening in the system and hence reduce both the self-energy correction
and the exciton binding energy. Because of depolarization effects in nanotubes [308], strong
optical response is only observed for light polarized along the tube axis (ẑ). We consider
only this polarization.

15.3 Results and discussion

15.3.1 Quasiparticle energy bandstructure

Figure 15.1(a) shows the quasiparticle energy corrections to the LDA energy eigenvalues.
These corrections are quite large, in comparison to those for bulk hexagonal BN (h-BN)
and SWCNTs. The quasiparticle corrections open the LDA gap of bulk h-BN by ≈1.58
eV near zone center or the Γ-point [276], while the gap opening in the (8,0) SWBNNT
near the Γ-point is ≈3.25 eV. This is a consequence of enhanced Coulomb interaction in
reduced dimension [301]. Also, due to its larger gap, the quasiparticle corrections to the
gap in the (8,0) SWBNNT are larger than those for a similar SWCNT (which are ≈ 1.15
eV near the Γ-point [301]). The quasiparticle corrections also have a complex band- and
energy-dependence, so for accurate results they cannot be obtained by a simple scissor shift
operation. The corrections depend on the character of the wavefunction. For example, states
of the fourth lowest conduction band in the LDA bandstructure are nearly-free-electron
(NFE) states localized inside the tube. These tubule states form a separate branch in
the quasiparticle correction diagram with significantly smaller corrections. Figure 15.1(b)
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depicts the quasiparticle bandstructure of the (8,0) SWBNNT. The arrows indicate the
optically allowed interband transitions between four pairs of bands which give rise to the
lowest-energy peak structures in the non-interacting optical spectrum in Fig. 15.2.

15.3.2 Optical response

Figure 15.2 depicts the optical absorption spectrum calculated with and without electron-
hole interaction effects. The plotted quantity is the imaginary part of the calculated dielectric
susceptibility, χ = (ǫ− 1)/4π, multiplied by the cross-sectional area of the supercell perpen-
dicular to the tube axis. This quantity α, as defined above, gives the polarizability per single
tube in units of nm2; so the susceptibility of an experimental sample containing a density
of n infinitely long tubes per unit area may be obtained directly as χ = nα if inter-tube
interaction is neglected. The absorption profile changes dramatically when the electron-hole
interaction is taken into account. We use the label I, I ′, and II to denote distinct series of
bright excitons. Subscripts 1, 2, 3 and 4 refer to the ground, first-excited, second-excited
and third-excited states of a particular bright exciton series, respectively. K refers to the
lowest energy exciton, which is dark. The first absorption peak at 5.72 eV corresponds to
a bound exciton (I1) with a binding energy of 2.3 eV. The area under this peak is 0.87
nm2eV. Excitons I1 and I ′1 are different states, made up of transitions from the same set of
four pairs of valence and conduction subbands of the (8,0) BNNT, all of which have similar
quasiparticle transition energies from 8.1 eV to 8.3 eV (See arrows in Fig. 15.1(b)). These
transitions are coupled strongly to each other by the electron-hole interaction to form the
lowest optically active states (the singly-degenerate I1 and doubly-degenerate I ′1). This be-
havior is very different from the (8,0) SWCNT in which the exciton states are composed
mainly of transitions between a single pair of quasiparticle bands.

15.3.3 Wavefunctions: comparison with carbon nanotubes

The mixing of transitions of different subbands alters the electron-hole wavefunction,
localizing further the electron amplitude with respect to the hole position in real space
and making it deviate from a one-dimensional behavior with spatial variations in directions
perpendicular to the tube axis. Figure 15.3(a) shows the isosurface plots of the electron
distribution |Φ(re, rh)|2 with the hole position rh fixed (the black star in the figure) for
the first bound exciton (I1). Figure 15.3(b) quantifies the electron-hole correlation for this
state by plotting |Φ|2 along the tube axis after integrating out the electron coordinates
in the perpendicular plane (the hole position is set at zero). The position of the peaks
in Fig. 15.3(b) corresponds to the position of plane of boron atoms, i.e., the photoexcited
electron is localized on the boron atoms near the hole. Thus, as expected, the photo-
excitation process corresponds to a transfer of electron from nitrogen atoms to nearby boron
atoms; but the resulting electron and hole amplitudes are strongly correlated with an extent
of only a few inter-atomic distances. Figure 15.3(c) showes the excited electron probability
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Figure 15.3: (a)-(c): Wavefunction of the lowest energy bright exciton of the (8,0) SWBNNT.
(a) Isosurface plot of electron probability distribution |Φ(re, rh)|2 with the hole fixed at the
position indicated by black star. (b) |Φ(re, rh)|2 averaged over tube cross section. Hole
position is set at zero. (c) |Φ(re, rh)|2 evaluated on a cross-sectional plane of the tube. (d)-
(f): Wavefunction of the lowest energy bright exciton of the (8,0) SWCNT. Plotted quantities
are similar to those in (a)-(c).
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Figure 15.4: Wavefunctions of excitons of the (8,0) SWBNNT. Plotted quantities are similar
to those in Fig. 15.3(b).

distribution in a plane perpendicular to the tube axis and containing the hole as well as
other nitrogen atoms.

As a comparison to carbon nanotubes, Fig. 15.3(d)-(f) shows similar quantities as in
Fig. 15.3(a)-(c) but for the first bright bound exciton in the (8,0) SWCNT [301]. In the
figure, the hole is fixed slightly above a carbon atom. The exciton in the (8,0) SWBNNT
is significantly more tightly bound than that in the (8,0) SWCNT and cannot really be
viewed as a one-dimensional object. The root-mean-square size of the exciton along the
tube axis is 3.67 Å for the (8,0) SWBNNT and 8.59 Å for the (8,0) SWCNT, and their
binding energies are 2.3 eV and 1.0 eV, respectively. This difference in behavior is due to
the wide bandgap and weaker screening in SWBNNT. Also, we note that while the binding
energy of the excitons in the bulk h-BN is only 0.7 eV [309, 310], the binding energy in the
(8,0) SWBNNT is more than three times larger.

Figures 15.4(a) and 15.4(b) show similar quantities as in Fig. 15.3(b) for the excitons I ′1
and I2. For exciton I ′1, the electron is less tightly bound to the hole than in exciton I1. The
state I2, which is an excited state of exciton I1, is also more diffuse than I1 and the electron
amplitude is not at a maximum near the hole which is the case for I1(Fig. 15.3(b)). We
also note that, for the (8,0) SWBNNT, there are numerous dark excitons distributed rather
uniformly in energy below and among the bright excitons shown in Fig. 15.2. The energy
of the lowest doubly-degenerate bound dark exciton (K) is at 4.63 eV. This dark exciton is
made up of transitions from the highest valence band to the lowest conduction band (the
NFE tubule state) in the quasiparticle bandstructure, and has a binding energy of 1.94 eV
with respect to these interband transition energies.

The various lowest-energy exciton states (for both bright and dark excitons) derived from
the various different sets of interband transitions, on the average, have a large binding energy
of about 1.9 eV. However, the binding energy of the first bright exciton is 2.3 eV. We ascribe
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this extra binding energy of about 0.4 eV to the fact that four different sets of interband
transitions are strongly coupled in forming the first bright exciton (I1). This strong coupling
mixes states from the different transitions, splits the excitation energy levels, and increases
the binding energy of the final lowest-energy exciton.

15.3.4 Comparison with experiment

Arenal et al. [299] and Aloni et al. [300] have recently done EELS measurements of the
optical gaps of SW and multiwalled BNNTs. The optical gaps measured in both experiments
are 5.8±0.2 eV, independent of the geometry of nanotubes, which is in very good agreement
with our calculation (5.72 eV).

Lauret et al. [298] measured directly the optical properties of SWBNNTs and observed
three absorption peaks at 4.45, 5.5 and 6.15 eV, respectively. The calculated first peak
position for the (8,0) tube is rather close to the observed 5.5 eV peak. Also, the difference
between the second and the third observed absorption peak position in the experiment is
0.65 eV, very close to the difference between the first and the second absorption peaks
in our calculation which is 0.62 eV, while the difference between the first and the second
observed peak position is 1.05 eV. We thus suspect that the observed second peak at 5.5
eV in Ref. [298] is likely due to an exciton, corresponding in nature to our first absorption
peak. Moreover, theory predicts that, for the (8,0) BNNT, there are many dark excitons
whose excitation energies are 4.63 eV and higher. The excitation energy difference between
the first dark exciton (K) and the first bright exciton (I1) in our calculation is 1.1 eV. This
suggests that the 4.45 eV peak in the experiment may be due to some dark excitons with
low excitation energies activated by external perturbations. Another possibility is that this
extra low-energy feature may arise from impurities. Small differences between calculated
excitation energies and measured values are unavoidable due to environmental effects. The
theory is for a perfectly isolated tube, whereas experimentally the tubes are surrounded by
a dielectric medium which can modify the excitation energies. For SWCNTs, the effect of
the surrounding dielectric medium on the optical spectrum is expected to be small (even
though it can be important for the exciton binding energy) due to an almost cancellation
between the quasiparticle self-energy correction and the binding energy of excitons [301].
For SWBNNTs, screening by external medium may be more important because intrinsic
screening of the BNNT is much weaker. In particular, for the isolated (8,0) SWBNNT,
we find that the energy difference between the quasiparticle self-energy correction and the
binding energy of the exciton is large (about 0.9 eV). In the presence of a dielectric medium,
we expect this to decrease, which would likely result in a red-shift in the excitation energies.

Although the average diameter of the tubes measured in the experiments [298, 299, 300]
(≈ 1.4 nm) is greater than the diameter of the relaxed (8,0) SWBNNT in our work (0.65
nm), we expect the comparison to be reasonable because the binding energy of SWBNNTs
is found to be an insensitive function of its diameter. For example, the exciton binding
energy (2.1 eV) of an isolated BN sheet [169], which is equivalent to an infinitely large
diameter SWBNNT, is only smaller than that of our (8,0) SWBNNT by 0.2 eV. Since the
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exciton binding energy is expected to increase with decreasing diameter, the exciton binding
energies for the SWBNNTs in the experiments would be smaller than our calculated value
by at most about 0.1-0.2 eV.

Among previous theories of the optical properties of BNNTs, Guo and Lin [311] carried
out LDA calculations without considering many-electron effects. Their optical absorption
spectra are qualitatively different from the present final results. From their results for the
(6,0) and (9,0) tubes, we can deduce an LDA-RPA peak position for the (8,0) tube to be near
4.9 eV, as we find in our LDA-RPA level calculation. The first peak position in Fig. 15.2 with
electron-hole interaction included is blue shifted by about 0.9 eV from that of the LDA-RPA
calculation.

15.4 Conclusion

In summary, we have done calculation on the (8,0) SWBNNT to study the effects of
many-electron interactions on its optical response. The GW corrections to the quasiparticle
excitation energies of the SWBNNTs are significantly larger than those for SWCNTs or
bulk h-BN. Also, the quasiparticle energy corrections are found to be complicated so that
interpolation by a simple scissor shift operation is not a good scheme for accurate calculation.
Theory predicts that, unlike the non-interacting case, the absorption spectrum of the (8,0)
SWBNNT is dominated by a huge peak at 5.72 eV, due to an exciton with a large binding
energy of 2.3 eV. This exciton state is made up of optically-allowed transitions between four
different pairs of subbands. Moreover, an intricate set of dark excitons is found to exist.
Self-energy and electron-hole interaction effects therefore are even more important in the
optical response of the SWBNNTs than in the SWCNTs.
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Chapter 16

Effects of stacking on the optical
response of hexagonal boron nitride

16.1 Introduction

Hexagonal boron nitride (hBN) [312] has a large bandgap applicable for some optical
applications, e. g. , ultraviolet lasers [277]. Also, hBN is a precursor in the synthesis of
boron nitride (BN) nanotubes [285, 286, 287, 169, 170] which could play an important role
in nano-optics or opto-electronics applications, or of BN nanoribbons [282, 283, 313, 314].
Recently, single or a few layer hBN has been fabricated [315, 316, 317, 318]. Therefore,
a basic understanding of the electronic and optical properties of hBN is quite important.
However, despite a large amount of experimental studies [319, 320, 321, 322, 323, 324, 325,
326, 327, 328] there is not yet a consensus in the bandgap of hBN; measured bandgaps range
from 3.6–7.1 eV [323].

In the commonly believed structure of hBN [Fig. 16.1(a)], boron (nitrogen) atoms in
one BN layer lie directly between nitrogen (boron) atoms in the two adjacent layers [312].
Recent density-functional calculations [329, 330, 331] have found that there are three ener-
getically stable structural configurations (global or local minima) containing two BN layers
per unit cell [Figs. 16.1(a), 16.1(c), and 16.1(e)], suggesting a way of explaining some of the
discrepancies in the measured bandgap.

Electron-hole (e-h) interactions have also been shown to be extremely important in the
optical response of hBN in the structure given in Fig. 16.1(a) due to its quasi two-dimensional
nature [332, 333]. In this chapter, we present first-principles calculations on the optical
response and the excitonic properties of hBN in the three energetically stable structures [329]
using the GW – Bethe-Salpeter equation (BSE) approach [20, 28]. We find that the optical
response and exciton binding energy of hBN depend significantly on the stacking scheme. We
show that the optical measurement could be better explained if these structural variations
are taken into account.
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Figure 16.1: (a) and (b): Ball-and-stick model [(a)] and LDA electronic bandstructure [(b)]
of hBN with structure A. In (a), empty circles and filled circles represent boron and nitrogen
atoms, respectively. In (b), arrows represent the dominant subband transitions responsible
for the lowest-energy bound exciton. (c) and (d), and (e) and (f): Same quantities as in (a)
and (b) for structures B and C, respectively.
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16.2 Theory and computation

We obtain the Kohn-Sham energy eigenvalues and wavefunctions within the local density
approximation (LDA) using a plane-wave basis set with a kinetic energy cutoff of 100 Ry.
The core-valence interaction is treated by means of norm-conserving pseudopotentials [15].
For convergent results to be better than 0.05 eV, 24× 24× 8 k points in a randomly shifted
grid are used in all the calculations. Dielectric matrices are calculated with a kinetic energy
cutoff of 20 Ry. We have used the generalized plasmon-pole model to take into account
dynamical effects [20]. We have included 100 conduction bands in the GW calculation for
the quasiparticle energies and 6 valence and 6 conduction bands in solving the BSE for the
optical spectrum.

We define structure A to be the commonly believed one of hBN [Fig. 16.1(a)]. Structures
B and C are obtained from A by shifting or rotating every alternate layer, respectively
(Fig. 16.1). The calculated LDA bandstructures in Fig. 16.1 are in good agreement with
previous work [329].

16.3 Results and discussion

The two lowest-energy conduction band states near K have wavefunctions that are lo-
calized at the boron atoms [276], and the energy separation between them are decided by
interlayer boron-boron interactions; hence, hBN in the form of structure B, where the boron
atoms in adjacent layers are in contact [Fig. 16.1(a)], shows the largest energy separation
between those two bands near K. This interlayer interaction makes a qualitative difference
in the optical response of hBN among different structures [see the arrows in Figs. 16.1(b),
16.1(d), and 16.1(f)]. In structure A, the first bound exciton, which is optically active, is
composed mainly of interband transitions near the H and M points, whereas in structures B
and C, those are composed mainly of transitions near the K point (Fig. 16.1).

Table 16.1 shows that, although the value of the bandgap itself is increased by the
GW quasiparticle corrections, its location in k-space is not changed from the LDA results.
Calculated quasiparticle bandgap (5.84 eV) and the binding energy of the first bound exciton
(0.69 eV) in structure A is in good agreement with Arnaud et al. [332] (5.95 eV and 0.72 eV,
respectively). Notably, the optical excitation energy of the first bound exciton in structure B
(4.79 eV) is 0.8 eV lower than that in structure A, and the binding energy of the lowest-energy
exciton in structure B (0.35 eV) is half of that in structure A. The results for structure C
are also different from those of structures A and B (Table 16.1). Therefore, the quasiparticle
and optical properties of hBN vary drastically with the way BN layers are stacked.

Now we move on to the optical absorption profile of hBN. We limit our discussion to the
absorbance of light linearly polarized in the BN plane, which is stronger than that for the
perpendicularly polarized light below 10 eV [332]. The imaginary part of the macroscopic
dielectric function ε2(ω) differs significantly among the three different structures, and e-
h interactions change this quantity qualitatively (Fig. 16.2). The absorption profile for
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Figure 16.2: (a), (b), and (c): Imaginary part of the dielectric function ε2(ω) of hBN in
structures A, B, and C, respectively, for in-plane linearly polarized light. Solid line and
dashed line in each figure show results for with and without e-h interactions, respectively.
(d): Absorbance per unit length. Solid and dashed lines are the calculated quantities for
hBN in structures A and B, respectively, and dash-dotted line is the experimental data [10].
Results for structure C (not shown) are similar to those for structure A. We have used an
energy broadening of 0.15 eV.
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Table 16.1: Calculated quasiparticle and optical bandgaps of hBN. Direct gap is the minimum
energy difference between the lowest conduction band and the highest valence band at a
particular wavevector specified in parenthesis. K′′ is a point in reciprocal space that lies
between K and Γ and the distance from Γ is 9.7 times as large as that from K. Eb is the
binding energy of the lowest-energy exciton.

Structure Method Fundamental gap (eV) Direct gap (eV)

A LDA 4.04 (K′′ →M) 4.45 (M)
GW 5.84 (K′′ →M) 6.31 (M)
BSE 5.63 (Eb = 0.69)

B LDA 3.38 (H→K) 3.41 (K)
GW 5.11 (H→K) 5.14 (K)
BSE 4.79 (Eb = 0.35)

C LDA 4.19 (H→M) 4.28 (K)
GW 6.03 (H→M) 6.15 (K)
BSE 5.65 (Eb = 0.51)

structure A [Fig. 16.2 (a)] is in good agreement with Arnaud et.al. [332]. For structure
B, ε2(ω) (including excitonic effects) has a shoulder around 4.8 − 5.4 eV [Fig. 16.2(b)].
This shoulder has its origin in the large dispersion of the lowest-energy conduction bands
in structure B, as we discussed (Fig. 16.1). Figure 16.2 (d) shows that the absorption
coefficient η, where the intensity of light after proceeding a distance z is given by I(z) =
I(0) e−ηz, measured from experiments [10] also shows a similar shoulder structure. Thus, the
experimental data can be explained better if structures other than A are taken into account.

Figure 16.3 shows the probability for the lowest-energy exciton state of finding an electron
at position re when the hole is fixed at the origin, which is 0.6 Å above one of the nitrogen
atoms, |Φ(re, rh = 0)|2: both the size and shape vary significantly with the structure. The
size is, as expected, smaller in structure with a larger binding energy, confirming that e-h
interactions in hBN are affected by the way the BN layers are stacked.

16.4 Conclusion

In summary, we have investigated the effects of BN layer stacking on the quasiparticle
bandstructure and the optical properties of hBN. We studied hBN in three different meta-
stable structures that are very close in their total energies. It is revealed that the stacking
scheme is quite important in determining the optical response of hBN. The binding energy of
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Figure 16.3: (a) The electron (at re) probability distribution |Φ(re, rh = 0)|2, with the hole
fixed at the origin (rh = 0) which is 0.6 Å above one of the nitrogen atoms, averaged over
the coordinates parallel to the BN layers for the lowest-energy bright exciton in structure
A. Here, ze is the out-of-plane component of the electron coordinate. The positions of BN
layers are indicated by blue disks. (b) Cross-sectional plot (ze = 0) of |Φ(re, rh = 0)|2 for
the same exciton as in (a). The hole is indicated by an an ‘x’ mark. (c) and (d), and (e)
and (f): Same quantities as in (a) and (b) for structures B and C, respectively.
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the lowest-energy exciton varies from 0.35 eV to 0.69 eV. The interpretation of experimental
optical spectrum with the calculated absorption spectra is found to become considerably
improved by including all three structures.
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Chapter 17

Hydrogen passivation reverses the
direction of electric dipole moments
in III-V and II-VI compound
nanostructures

17.1 Introduction

The electric dipole moment, which is one of the most basic concepts in electrostatics
and electrodynamics [116], in general dominantly determines the electric field from a charge-
neutral system at long distance and plays an important role in the chemistry or physics of
systems confined in one or more dimensions [116]. When neutral atoms gather to form a
compound, the electric dipole moment is determined by charge redistribution, following the
tendency of each atom or group of atoms to draw electrons.

This tendency to draw electrons, the electronegativity, was first proposed by Paul-
ing [334]. After Pauling’s proposal, a number of different ways to define electronegativity
have been introduced [335, 336, 337, 338]. They differ in their assignment of values for each
element, but the overall trend agrees among one another. In general, in the Periodic Table
of elements, electronegativity increases on passing from left to right along a row because the
effective nuclear charge seen by the valence electrons increases, and decreases on descending
along a column because the size of the atom increases, reducing the interaction between the
ionic core and the valence electron [339].

Along the line of this general trend, when two atoms on the same row belonging to
groups III and V (groups II and VI), respectively, form a binary molecule, the electric dipole
moment is generally accepted as being pointed along the direction from the atom in group
V (group VI) to the atom in group III (group II) [Fig. 17.1(b)].

On the other hand, often the edge or surface of a molecular or nanostructured system
passivated by groups or atoms that are not the main constituent of the compound, rather
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than existing with unstable dangling bonds. The passivation process thus makes the original
system stable against further chemical modifications at the surface. The kind of passivation
depends on the chemical reagents and procedures used in the fabrication step. Some of the
most common forms of passivations are hydrogen passivation, oxidation, and nitration [340].

In this chapter, we show that when a III-V or II-VI binary molecule or nanostructure is
passivated with hydrogen forming an sp2 or sp3 environment, the direction of the electric
dipole moment is reversed. This phenomenon is explained in terms of the electronegativity.
Our findings have a general implication on the chemistry and electrostatics of nanostructured
III-V or II-VI compound semiconductors in the forms of molecules, nanoribbons, nanoslabs,
edges, or surfaces, and point to an additional important role played by chemical passivations.

17.2 Theory and computation

In our study, first-principles density functional theory (DFT) calculations were performed
using a B3LYP exchange-correlation functional [341] and the lanl2dz basis set employing the
effective core potential [342, 343, 344] using the Gaussian03 package [345]. All the structures
were optimized by reducing the force on each atom to be less than 0.0006 Ry/a0 where a0 is
the Bohr radius.

For calculations on molecules composed of elements in the rows 2 to 4 of the Periodic
Table, we have repeated the calculations by using the all-electron cc-pVTZ basis set [346].

Also, for BN compound molecules or nanostructures, we have performed ab initio pseu-
dopotential DFT calculations within the local density approximation in a supercell config-
uration using the SIESTA computer code [291]. We used a double-zeta plus polarization
basis set and a charge density cutoff of 400 Ry. To eliminate spurious interactions between
periodic images, we used the supercell size (along the non-periodic directions) of up to 20 nm.

All the above calculations were in good agreement among one another: the difference
in the atomic position and that in the dipole moment were less than 0.02 a0 and 0.1 |e|a0,
respectively.

17.3 Results and discussion

To find the effects of hydrogen passivation, we performed calculations on the binary III-V
and II-VI molecules whose elements are on the same row in the Periodic Table. Figure 17.1(a)
shows the electric dipole moment [p =

∫
drρ(r)r where ρ(r) is the charge density at position

r] of a BN molecule and its hydrogenated forms HnBNHn where n=1, 2, and 3. When the
molecule is not passivated by hydrogen atoms, the electric dipole moment is, as expected
from the stronger electronegativity of N than B, pointed from N to B. However, the direction
of the dipole is reversed upon hydrogen passivation and the magnitude of the electric dipole
moment increases further as the number of hydrogen atoms n passivating each atom varies
from 1 to 3. The magnitude of the reversed dipole moment for the case n = 3 is about twice
as large as that of the original dipole moment before hydrogen passivation.
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Figure 17.1: (a) Calculated electric dipole moment of a HnBNHn molecule (which is along
the x direction) versus the number of H atoms n attached to B and N atoms. B and N atoms
are aligned as shown in (b). Here, e is the charge of an electron and a0 is the bohr radius
(=0.529 Å). The dashed lines are a guide to the eye. (b) Schematic showing the relative
position of B and N atoms in the BN molecule and the electron transfer from B to N (the
arrow). (c) Schematic showing the relative position of atoms in the HBNH molecule and the
electron transfers from B to H, B to N, and H to N (the arrows).
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Figures 17.1(b) and 17.1(c) schematically show the origin of this electric dipole rever-
sal phenomenon. The electronegativities of H, B, and N atoms according to the Pauling
scale [334] are 2.20, 2.04, and 3.04, respectively. In a BN molecule, because the electroneg-
ativity of the N atom is higher than that of the B atom, the N atom attracts electrons
from the B atom [Fig. 17.1(b)], resulting in a dipole moment pointing along the direction
from the N atom to the B atom. When the B and N atoms are passivated by hydrogen
atoms, the H atom on the left hand side attracts electrons from the B atom and the N atom
attracts electrons from the H atom on the right hand side [Fig. 17.1(c)]. These additional
polarizations add a dipole moment pointing in the opposite direction to the original one. In
fact, along this line of explanation based on the electronegativity concept, the passivation
always results in an additional reverse dipole moment independent of the electronegativity
of the passivating atoms, i. e. , the passivating atom does not have to have an electronegativ-
ity value in between those of the two originally bonded atoms (see Fig. 17.3). This reverse
dipole moment increases with the number of hydrogen atoms used in the passivation, even
to a degree that it eventually reverses the direction of the total dipole moment [Fig. 17.1(a)].
In the following, we support our claim through first-principles calculations.

Figures 17.2(a) and 17.2(b) show the difference in the valence charge density between that
of a superposition atomic results [ρa(r)] and that of the calculated results of the molecular
system [ρ(r)] integrated along the z direction, i. e. , ∆σ(x, y) ≡

∫
dz [ρ(r)− ρa(r)]. The func-

tion ∆σ(x, y) in H2BNH2 is qualitatively different from that in the non-passivated molecule
because the hydrogen atoms contribute in the redistribution of the charge density. Espe-
cially, it is noteworthy that the H atom near the B atom is electron-richer than the one
near the N atom in agreement with the simple picture schematically shown in Figs. 17.1(b)
and 17.1(c). Figure 17.2(c) clearly shows this point. When the BN molecule is passivated
by the H atoms, electrons are polarized in the way depicted in Fig. 17.1(c).

Figure 17.3 shows that reversal in the direction of an electric dipole moment upon hy-
drogen passivation is in fact quite general. We have calculated the electric dipole moment
of other III-V and II-VI molecular compounds, whose binary elements are on the same row
of the Periodic Table. In all the cases considered, the electric dipole moment reverses its
direction upon hydrogen passivation. The magnitude of the reversed electric dipole moment
due to hydrogen passivation monotonically decreases on descending along a column in the
Periodic Table, in contrast to a non-trivial trend observed in the magnitude of the electric
dipole moment of molecules without hydrogen passivation. Also, the II-VI compounds have
larger electric dipole moment than the III-V ones in the same row for molecules both with
and without hydrogen passivation.

Next, we show that the hydrogen-passivation-induced dipole moment reversing behavior
in III-V and II-VI compounds are not restricted to molecules but also predicted in nanosys-
tems periodic in one or two dimensions. Figure 17.4 shows that the direction of the electric
dipole moment of BN nanoribbons with zigzag type of edge on both sides is reversed upon
hydrogen passivation. In our previous calculations on the hydrogen-passivated BN nanorib-
bons with zigzag type of edges [314], we reported that the reason why the dipole moment is
pointing in the +x direction [Fig. 17.4(b)] is because the B atoms are more negatively charged
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Figure 17.2: (a) and (b): Optimized structure and difference between the calculated va-
lence charge density and atomic valence charge density integrated along the z direction
∆σ(x, y) ≡

∫
dz [ρ(r) − ρa(r)] for (a) a BN molecule and (b) a H2BNH2 molecule. We use

the convention that the electron charge density is negative, i. e. , −|e| is the charge of an elec-
tron and electrons are taken away from the blue regime and put into the red regime when
forming a compound molecule. The direction and magnitude of the electric dipole moment
is represented by an arrow in each panel. (c) The charge density difference integrated in the
yz plane ∆λ(x) ≡

∫
dy dz [ρ(r) − ρa(r)]. The positions along x of atoms for H2BNH2 are

represented by the corresponding spheres.
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Te, respectively.) Empty symbols and filled ones are quantities for molecules without and
with hydrogen passivation (three H atoms per each of the above atom), respectively. The
dashed lines are a guide to the eye.



168

−0.2

 0

 0.2

 0.4

−8 −4  0  4  8

∆λ
 (

|e
|/a

0)

x (a0)

(BN)3
 H (BN)3 H

x

y

z
B
N
H

+0.13 

+0.08 
+0.03 

−0.08 

−0.03 

−0.13 

(| |    ) ∆ σ e a0
−2

(c)

= −0.95 0e ap x̂

= +0.62 0e ap x̂ (b)

(a)| |

| |

Figure 17.4: (a) and (b): Optimized structure and difference between the calculated valence
charge density and atomic valence charge density integrated along the z direction ∆σ(x, y) ≡∫
dz [ρ(r)− ρa(r)] for zigzag BN ribbons (periodic in the y direction) having 3 BN pairs per

unit cell (a) without and (b) with hydrogen passivation. The rectangle shows the unit cell
in each panel. Electrons are taken away from the blue regime and put into the red regime.
The direction and magnitude of the electric dipole moment per unit cell is represented
by an arrow in each panel. (c) The charge density difference integrated in the yz plane
∆λ(x) ≡

∫
unitcell

dy
∫
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represented by the corresponding spheres.
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than the N atoms. However, this interpretation was not correct and we have shown here
that hydrogen passivation plays the key role. The results have a direct implication on the
electronic properties of binary compound nanowires or nanoribbons [347, 348, 349, 350, 351].

A similar calculation on a slab of BN with zinc blende structure truncated at the B and
N faces, whose surface normal is parallel to −x and +x directions, respectively, has been
performed. The particular structure considered here is periodic in the y and z directions,
and has a unit cell with 3 BN pairs. The electric dipole moment per unit cell along the
x-direction px changes from −0.063 |e| a0 to +1.27 |e| a0 upon hydrogen passivation, i. e. ,
reverses the direction. These results on confined and periodic systems are especially impor-
tant considering that fabrication techniques for nanostructures with different passivations
are rapidly developing nowadays.

Finally, we believe that the dipole moment direction reversal due to hydrogen passivation
would be a general phenomenon in other binary systems composed of atoms with different
electronegativity than the III-V or II-VI compounds composed of elements in the same row
according to our simple argument (Fig. 17.1).

17.4 Conclusion

In conclusion, we have studied the novel phenomenon of hydrogen-passivation-induced
electric dipole moment reversal in the III-V or II-VI compounds in various forms such as
molecules or nanostructures. Our findings provide an insight in understanding the electro-
static and chemical properties of these materials, and encourage studies on the effects of
different types of passivations. Indeed, the introduced simple argument for the dipole mo-
ment reversal phenomenon based on the concept of electronegativity suggests that similar
behaviors are expected for other kinds of passivations in general.
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3.21 Å and 3.26 Å, respectively. The relaxed lattice parameters for monolayer graphene
and for graphite are in good agreement with previous calculations [354] as well as with
experiments [355, 356].

[120] E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

[121] K. Sugawara, T. Sato, S. Souma, T. Takahashi, and H. Suematsu, Phys. Rev. Lett.
98, 036801 (2007).

[122] C. S. Leem, B. J. Kim, C. Kim, S. R. Park, T. Ohta, A. Bostwick, E. Rotenberg, H. D.
Kim, M. K. Kim, H. J. Choi, and C. Kim, Phys. Rev. Lett. 100, 016802 (2008).

[123] C. D. Spataru, M. A. Cazalilla, A. Rubio, L. X. Benedict, P. M. Echenique, and S. G.
Louie, Phys. Rev. Lett. 87, 246405 (2001).



177
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[270] E. Ribeiro, R. Jäggi, T. Heinzel, K. Ensslin, T. G. Medeiros-Ribeiro, and P. M. Petroff,
Microelectron. Eng. 61, 674 (1999).

[271] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials

Properties (Springer, New York, 2001).

[272] The Fourier component W , defined to be the value of the external periodic potential
[Fig. 13.1(a)] in Fourier space at the smallest reciprocal lattice vector, is given by

W = d
2L
J1

(
2πd√
3L

)
U0 where J1(x) is the first-order Bessel function. For a given U0, the

maximum value of W is W = 0.172U0 at d = 0.663L. In our numerical calculations,
we take advantage of this. For comparison, if d = 0.5L, W = 0.145U0.

[273] C. Albrecht, J. H. Smet, D. Weiss, K. von Klitzing, R. Hennig, M. Langenbuch, M.
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