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Abstract. Pulsed photothermal radiometry (PPTR) is a non-contact method for determining
the temperature increase in subsurface chromophore layers immediately following pulsed laser
irradiation. In this paper the inherent limitations of PPTR are identified.

A time record of infrared emission from a test material due to laser heating of a subsurface
chromophore layer is calculated and used as input data for a non-negatively constrained
conjugate gradient algorithm. Position and magnitude of temperature increase in a model
chromophore layer immediately following pulsed laser irradiation are computed. Differences
between simulated and computed temperature increase are reported as a function of thickness,
depth and signal-to-noise ratio (SNR).

The average depth of the chromophore layer and integral of temperature increase in the test
material are accurately predicted by the algorithm. When the thickness/depth ratio is less than
25%, the computed peak temperature increase is always significantly less than the true value.
Moreover, the computed thickness of the chromophore layer is much larger than the true value.

The accuracy of the computed subsurface temperature distribution is investigated with the
singular value decomposition of the kernel matrix. The relatively small number of right singular
vectors that may be used (8% of the rank of the kernel matrix) to represent the simulated
temperature increase in the test material limits the accuracy of PPTR. We show that relative
error between simulated and computed temperature increase is essentially constant for a particular
thickness/depth ratio.

1. Introduction

Pulsed photothermal radiometry (PPTR) is a non-contact method for obtaining information
on subsurface chromophores in a test material. A fast infrared detector is used to measure
increase in infrared emission at the test material surface following pulsed laser irradiation
(Milner et al 1995a, b). From the time record of infrared emission increase, estimates of
thickness and depth of subsurface chromophores can be computed. Reported applications of
PPTR include the evaluation of surface coating thickness in industrial components (Crostack
et al 1989), the identification of subsurface microcracks in aircraft structures (Favroet al
1993), the determination of the optical absorption coefficients in human arteries (Long and
Deutsch 1987) and biliary calculi (Longet al 1987) and the characterization of port wine
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stain birthmarks (Jacqueset al 1993). Analysis of the performance of PPTR to accurately
compute the size and position of blood vessels in a port wine stain (PWS) is of particular
interest. Efficacy of the pulsed laser treatment of PWS can be improved if the size and
position of blood vessels is known (Kimelet al 1994).

While several authors have reported on the use of PPTR (Jacqueset al 1993, Vitkinet al
1994, Milneret al 1995a, b, 1996a, b), theoretical limits on the accuracy of the estimated
position and magnitude of the temperature increase in discrete laser-heated subsurface
chromophores have not been proposed or established. In this paper, we investigate the
fundamental limitations of PPTR.

A non-negatively constrained conjugate gradient algorithm is used to compute the
position and magnitude of temperature increase within a test material from the time record
of infrared emission following pulsed laser irradiation.

Results from the non-negatively constrained conjugate gradient algorithm are verified
using a singular value decomposition (SVD) analysis of the PPTR kernel functionK(t, z).
Since each model temperature increase may be resolved as a superposition of variable
number of right singular vectors of the PPTR kernel matrix, limitations on the computed
thickness, depth and magnitude of temperature increase are established for various signal-
to-noise ratios (SNR).

2. Method

The skin model (figure 1) contains a single chromophore layer. The laser spot diameter at
the model surface is assumed to be large relative to the thermal and optical diffusion lengths
so that heat transport is only considered along the depth (z) axis. Immediately following
pulsed laser irradiation (t = 0), the simulated temperature increase within the skin model
is given by1Ts(z) (◦C). The relationship between increase in PPTR signal,1S (◦C), and
1Ts is given by a Fredholm integral of the first kind (equation (1)) (Milneret al 1995a)

1S(t) =
∫
z

1Ts(z)K(t, z)dz+ n(t) (1)

where time is represented byt (s) and distance into the tissue, measured normal to the
surface, is given byz (mm). Including effects of infrared emission and a convective
boundary condition, the kernel functionK(t, z) (Milner et al 1995a), is

K(t, z) = µir

2
exp

(−z2

4Dt

)[
erfcx(µ+(t, z))+ erfcx(µ−(t, z))

+ −2h

h− µir (erfcx(µ+(t, z))− erfcx(µ1(t, z)))

]
(2)

where erfcx(u) = exp(u2) × erfc(u) is the exponential complementary error function.
Functionsµ±(t, z) andµ1(t, z) are defined as

µ±(t, z) = µir
√
Dt ± z

2
√
Dt

(3)

µ1(t, z) = h
√
Dt + z

2
√
Dt
. (4)

Signal noise,n(t), an inherent component of the system is taken as a zero-mean, white,
Gaussian distributed function. The signal-to-noise variance〈n2〉 is related to the SNR of
the infrared detection system

SNR= 〈1S(t)〉/〈n2〉1/2 (5)
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where 〈x〉 represents a time average of the quantityx. Physical constants used in the
skin model (from Robertson and Williams 1971, Duck 1990, Incropera and DeWitt 1985)
are: thermal diffusivityD (1.1 × 10−2 mm2 s−1), infrared absorption coefficientµir
(45× 10−2 mm−1), and free convection heat-transfer coefficient,h (0.03 mm−1).

Figure 1. Skin model. Mean chromophore layer depth iszm (µm), and thickness 2r (µm).
Maximum depth of the simulation is 1.5 mm.

A tophat shaped simulated temperature increase distribution (equation (6)) was used to
represent the temperature change within tissue. Such a temperature increase distribution
is difficult to reconstruct since it contains abrupt changes in value. Consequently this
temperature distribution provides an excellent test for the reconstruction algorithm and any
deficiencies will become apparent

1Tst (z) =
{
T0 z > zm − r andz 6 zm + r
0 otherwise.

(6)

The PPTR signal from the model, (1S(t)), was determined from

1S(t) = V (t, zm − r)− V (t, zm + r)+ n(t) (7)

where

V (t, z) = T0

2
exp

(−z2

4Dt

)[
erfcx(µ+(t, z))− erfcx(µ−(t, z))

+ 2

h− µir (µir erfcx(µ1(t, z))− h erfcx(µ+(t, z)))
]

(8)

and derived from equation (1).
Computation of temperature increase in the skin model, given the PPTR signal as input

data, is a severely ill-posed inverse problem. The problem is converted to a matrix equation
and vector quantities representing1S(t) and1T (z) are denoted by boldface symbols1S
and1T . A non-negatively constrained conjugate gradient algorithm (see, for example,
Goodmanet al 1993) was used to compute the temperature increase within skin att = 0.
Briefly, this iterative method computes anith estimate for the temperature increase within
skin (1Tcg(i)) (initially a null field for i = 0) and the corresponding PPTR signal.1Tcg(i)
is compared with1S, and a revised estimate of (1Tcg(i)) is computed based upon conjugate
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gradient direction. As temperature increase within skin is always positive, the solution is
constrained so that negative values are not allowed (1Tcg(i) > 0).

The iterative process is terminated when the difference between the computed PPTR
signal and1S is less than the noise level (Groetsch 1984) or the difference ceases to
change between successive iterations, or a preset number of iterations have been exceeded
(Goodmanet al 1993, Frank and Friedman 1993, Stone and Brooks 1990).

In our simulations, 256 uniformly spaced nodes were used to represent temperature
increase in a 1.5 mm tissue depth. PPTR signal over a 3 speriod immediately following
pulsed laser irradiation was stored in a 512-element array.

3. Results

Computed temperature increase (1Tcg) was calculated (figure 2) after 100 iterations of the
non-negatively constrained conjugate gradient algorithm forzm = 0.5 mm and thicknesses
(2r) between 0.032 and 0.5 mm. Error in the computed peak temperature increase was less
than 15% for chromophore layers of thicknesses 0.25 and 0.50 mm and increased to 77%
for the thinnest chromophore layer (2r = 0.032 mm). Note, however, that the depthzm and∫
1Tcg dz are still predicted accurately, even when the computed peak temperature increase

is much less thanT0.

Figure 2. Computed temperature increase in skin model immediately following pulsed laser
irradiation. Chromophore layer thicknesses are 0.5 mm (——), 0.25 mm (– – –), 0.125 mm
(- - - -), 0.063 mm (· · · · · ·) and 0.032 mm (—· · —), at depth 0.5 mm.T0 was set to 40◦C.

In each of the following simulations results were obtained after 100 iterations of the non-
negatively constrained conjugate gradient algorithm, and regularized by early termination
(Milner et al 1995a). For one particular1Tts , repeated solutions of equation (1) yields a
slight variation in the computed temperature increase(1Tcg), because1S contains a noise
component,n. Thus, 20 inversions for each simulated temperature increase were computed
and subsequent plots show mean and standard deviation of the displayed values.

The effect of source chromophore layer thickness is shown forzm = 0.2 mm (figure 3).
The computed peak temperature increase toT0 is reported for three values ofT0 (5, 10
and 40◦C), and the chromophore layer thickness 2r is between 0.025 and 0.30 mm. When
the chromophore layer thickness is greater than 0.1 mm, the computed peak temperature



Computed subsurface temperature distributions 2457

increase differs fromT0 by less than 20%. As the chromophore layer thickness increases,
the difference between the computed peak temperature increase andT0 becomes less. For
values of 2r < 0.1 mm, the difference increases as the thickness of the source chromophore
layer decreases.

Figure 3. Ratio of computed peak temperature increase andT0, for a chromophore layer of
variable thickness at a depth of 0.2 mm. Chromophore layer temperatures used: 5◦C (——),
10◦C (– – –) and 40◦C (- - - -).

The thickness/depth ratio has a significant effect on computed temperature increase
(figure 4). Chromophore layer depths used were 0.1, 0.2, 0.5 and 1.0 mm. For a
thickness/depth ratio of 25%, the computed peak temperature increase is always less than
T0. The difference is significant for a shallow chromophore layer, and especially so when
T0 is less than 25◦C. For a thickness/depth ratio of 50%, the difference between computed
peak temperature increase andT0 is reduced (figure 4). Only whenT0 is 5◦C or less, and
the chromophore layer thickness is 0.025 mm, is the computed peak temperature increase
less than 60% ofT0.

For a chromophore layer thickness of 0.025 mm, centred at a depth of 0.1 mm, influence
of SNR is significant. The computed peak temperature increase is greater than 65% ofT0

for SNR ratios of 100, 200 and 1000 (figure 5). WhenT0 exceeds 25◦C, SNR becomes
irrelevant. For an SNR of 1000, the computed peak temperature increase is essentially
unaffected by the source temperatureT0.

The difference between the computed peak temperature increase andT0 is greatest
whenT0 is less than 25◦C, and SNR is less than 1000. At the extreme, the computed peak
temperature increase/T0 ratio is 12% whenT0 is 2.5 ◦C and SNR is 100.

In our calculations, the mean (first moment) of the deduced temperature increase
distribution and

∫
1Tcg dz were predicted accurately (±10%), except for cases of:

(i) thickness/depth ratio less than 10%, (ii) SNR below 10, or (iii)T0 less than 5◦C. In these
cases, the PPTR signal from the model (1S) is very small, and cannot be distinguished by
the non-negatively constrained conjugate gradient algorithm from the background radiation
level.
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Figure 4. Ratio of computed peak temperature increase andT0, for a chromophore layer at a
depth of 0.1 mm (——), 0.2 mm (– – –), 0.5 mm (- - - -) and 1.0 mm (· · · · · ·). Thickness/depth
ratios used: (a) 25% and (b) 50%. In (b), because computed peak temperature increases did
not change appreciably for values ofT0 greater than 20◦C, these values are not displayed.

4. Discussion

It is to be expected that the non-negatively constrained conjugate gradient algorithm will
perform poorly in cases whereT0 is low and SNR is high, since the PPTR signal from
the model chromophore is obscured by the background radiation. To show why the
thickness/depth ratio has a significant influence on the computed result, we use the singular
value decomposition (SVD) of the kernel matrix,K . Thus

K =
r∑
i=1

δi · σi · τ T
i (9)

whereσi and τ i are orthonormal left and right singular vectors ofK and form a basis
for the respective vector spaces containing the PPTR signal (1S) and temperature increase
(1T ); δi is the ith singular value of the PPTR kernel matrixK , whereδi > δj and i < j .
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Figure 5. Computed peak temperature increase, as a percentage ofT0, when the SNR values are:
100 (——), 200 (– – –) and 1000 (- - - -). Chromophore layer depth is 0.1 mm, and thickness
is 0.025 mm.

As {τ i} forms an orthonormal basis for the vector space spanning the simulated
temperature increase (1Ts), a solution estimate (1Tsvd(k)) may be expanded in terms
of a variable number (k) of right singular vectors (equation (10))

Tsvd(k) =
i6k∑
i=1

(τ i ·1Ts)τ i . (10)

Since the singular values,δi , rapidly decrease with increasing indexi, (δi ≈ A−i) whereA is
constant, the PPTR inversion problem is severely ill-posed and it is physically meaningless
to include a large number of terms in the solution estimate (equation (10)). The maximum
number of singular vectors in the solution estimate is determined by the SNR of the infrared
detection system, which is limited by background photon noise. From Milneret al (1995a),
when SNR is between 100 and 1000,k is ≈5–10, which is less than 8% of the rank of the
kernel matrix.

An example of the effect of thickness/depth ratio on the computed temperature increase
is given in figure 6, where1Tsvd(k) for variousk are indicated. Solution estimates (1Tsvd )
are computed for superficial and deep chromophore layers of varying thickness. In all cases,
greater accuracy of the solution estimate is obtained by increasing the number (k) of right
singular vectors (τ i) included. Accuracy of the solution estimate represented by a thin
(0.1 mm) chromophore layer is best at superficial depths; inclusion of seven right singular
values is sufficient for a reasonably accurate representation of the simulated temperature
increase (figure 6(a)). In comparison, when the same chromophore layer is positioned
1 mm below the skin model surface and consequently the thickness/depth ratio is reduced,
inclusion of 17 right singular vectors results in an estimate with significant error (figure 6(b)).
Alternatively, when the thickness of the same chromophore layer is increased to 0.5 mm,
the relative error of the solution estimate is improved significantly (figure 6(c)). Figure 6
illustrates a trend observed: when the thickness/depth ratio is less than 25% the computed
peak temperature increase is always significantly less thanT0. Also, the thickness of the
computed temperature increase is always larger than1Tts .



2460 D J Smithies et al

Figure 6. 1Tsvd calculated from a simulated temperature increase, where the chromophore layer
has dimensions: (a) 0.1 mm thickness, depth 0.2 mm, (b) 0.1 mm thickness, depth 1.0 mm and
(c) 0.5 mm thickness, depth 1.0 mm. Simulated temperature increase (——), 7 vectors (– – –),
17 vectors (—· · —) and 37 vectors (· · · · · ·).

Next we compute the relative error (ε(k), equation (11)) of the solution estimate (Tsvd ),
corresponding to a family of subsurface chromophore layers of varying thickness (2r)
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and depth (zm)

ε(k) = ‖1Tsvd(k)−1Ts‖1

‖1Ts‖1
. (11)

In figure 7ε(k) is depicted in a contour plot for various tophat shaped simulated temperature
increase functions (1Tst ). Values of 2r and zm which give rise to temperature increase
outside of the 0–1.5 mm depth range are not considered. Individual contour lines show a
small oscillation that originates from the relatively few singular vectors used in the expansion
(10) when calculating the relative error. A similar effect is observed when computing a
Fourier expansion of an arbitrary function using relatively few sinusoidal terms. When the
thickness/depth ratio is greater than 25%, the relative error (ε(k)) is essentially constant.

Figure 7. Relative error,ε(k), when (a) 10 and (b) 20 right singular vectors are used to represent
various tophat shaped simulated temperature increase distributions (1Tst ). Depth and thickness
are specified by the axes, and contour lines are shown for solution estimates of 10%, 20%, 50%,
100% and 200%. The broken lines represent thickness/depth ratios of 25% (- - - -) and 50%
(— · —). Values of thickness and depth not considered are indicated by the hatched regions.

In a PWS, the temperature distribution following pulsed laser irradiation decays
approximately as an exponential with depth, commensurate with decreased fluence levels
within blood (van Gemertet al 1986a). To simulate this, we describe temperature increase
due to laser heated PWS blood vessels by an exponential distribution

1Tes(z) =

 T0 exp

(
−z− d

L0

)
z > d

0 otherwise.
(12)

Here,L0 is the exponential decay length,d is the minimum depth at which blood is
found, T0 is the peak temperature atz = d. Values for exponential decay lengthL0 and
depthsd which introduced a discontinuity atz = 1.5 mm (i.e.1Tes(z = 1.5 mm) > 0.1T0)
and significantly increased the relative error,ε(k), were not considered. The three-
dimensional reconstruction of one PWS (Smithieset al 1997) indicates that the exponential
temperature distribution is a reasonable approximation. There was a high concentration
of vessels close to the surface, with the blood volume fraction approximately inversely
proportional to depth. Following laser irradiation, the average temperature increase at each
depth point will be similar to that described by equation (12).
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Figure 8. Relative error,ε(k), when (a) 10 and (b) 20 right singular vectors are used to
represent various simulated temperature increase distributions (1Tes ). Exponential decay length
and minimum depth are specified by the axes and contour lines are shown for solution estimates
of 10%, 20%, 50%, 100% and 200%. Values of exponential decay length and depth which were
not considered are indicated by the hatched region.

In figure 8ε(k) is depicted in a contour plot for various exponential shaped simulated
temperature increase functions (1Tes). Individual contour lines show a small oscillation
that originates from the relatively few singular vectors used in the expansion (10) when
calculating the relative error. A similar effect is observed in figure 7. Relative error (ε(k))
is essentially constant for a given exponential decay length/depth ratio.

5. Conclusion

Our results indicate the circumstances when PPTR may be used to accurately predict the
thickness, depth and magnitude of temperature increase in the chromophore layer contained
in a test material.

The mean (first moment) of the deduced temperature distribution and
∫
1Tcg(z) dz were

predicted accurately (±10%), except for cases of (i) thickness/depth ratio less than 10%,
(ii) SNR below 10, or (iii)T0 less than 5◦C.

When thickness/depth ratio is less than 25%, the difference between simulated and
computed temperature increase is sufficiently large that the utility of the calculation is
minimal. For these cases, the computed peak temperature increase is always significantly
less thanT0, and the computed thickness of the chromophore layer is significantly larger,
so that their product remains constant. Conversely, with a thickness/depth ratio greater
than 25%, the computed peak temperature increase and chromophore layer thickness is
much closer to the true value. Thus, PPTR alone cannot distinguish between a thin deep
chromophore layer that reaches a high temperature and a relatively cool, thick and deep
chromophore layer.

From the singular value decomposition of the kernel matrix, we verify results computed
by application of the non-negatively constrained conjugate gradient algorithm, that the
relative error is essentially constant for a particular thickness/depth ratio. The relatively
small number of right singular vectors that may be used limits the accuracy of the computed
temperature increase.
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