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ABSTRACT OF THE DISSERTATION 
 
 

Effects of Toxicant Exposure on Honey Bee and Bumble Bee Microbiomes and Impacts 
on Host Health 

 
by 

 
 

Jason Rothman 
 

Doctor of Philosophy, Graduate Program in Microbiology 
University of California, Riverside, June 2019 

Dr. Quinn McFrederick, Chairperson 
 
 

 Bees are important insect pollinators in both agricultural and natural settings who 

may encounter toxicants while foraging on plants growing in contaminated soils. How 

these chemicals affect the bee microbiome, which confers many health benefits to the 

host, is an important but understudied aspect of pollinator health. Through a combination 

of 16S rRNA gene sequencing, LC-MS metabolomics, ICP-OES spectroscopy, 

quantitative PCR, culturing, microbiome manipulation, and whole organism exposure 

studies, I attempt to establish the effects that toxicants have on social bees and their 

associated microbes. 

  The microbiome of animals has been shown to reduce metalloid toxicity, so I 

exposed microbiome-inoculated or uninoculated bumble bees to 0.75 mg/L selenate and 

found that inoculated bees survive longer when compared to uninoculated bees. I also 

showed that selenate exposure altered the composition of the bumble bee microbiome and 

that the growth of two major gut symbionts – Snodgrassella alvi and Lactobacillus 

bombicola – was unaffected by this exposure.  



 vii 

 Due to the pervasiveness of environmental pollution in bee habitats, I exposed 

bumble bees to cadmium, copper, selenate, imidacloprid, and hydrogen peroxide and 

found that each of these compounds can be lethal to bees. I also showed that most of 

these chemicals can affect the diversity of the bee microbiome and that there is interstrain 

variation in toxicant tolerance genes in the major bee symbionts Snodgrassella alvi and 

Gilliamella apicola. 

 As exposure to cadmium or selenate has been shown to affect animal-associated 

microbes, I assayed the effects of these chemicals on honey bees and observed shifts in 

the bee microbiome at multiple timepoints. I also found that exposure to selenate and 

cadmium changes the overall bee metabolome and may cause oxidative damage to 

proteins and lipids. Lastly, I found that bee-associated bacteria can bioaccumulate 

cadmium but generally not selenate. 

 In this dissertation I demonstrated that bee-associated bacteria are generally 

robust to toxicant exposure, but that chemicals can alter the composition of both bumble 

bee and honey bee microbiomes. I also show that toxicants affect bee metabolism, and 

that the bee microbiome plays an important role in maintaining host health when 

challenged with toxicants.  
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Chapter One: 

Introduction 
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Introduction 

 

Pollination is a vital service that insects provide for both wild and managed 

ecosystems. For example, agricultural production of many crops is greatly enhanced with 

insect pollination [1], and in the United States alone, bee pollination provides over $10 

billion annually in crop yields [2]. As the largest group of insect pollinators, bees 

diversified following flowering plants, indicating a history of millions of years of 

coevolution [3]. There are approximately 20,000 species comprising the bee clade 

Anthophilia (Order: Hymenoptera) [4], with varied lifestyles ranging from completely 

solitary to eusocial [4]. Examples of insect pollinators found specifically in the state of 

California include nearly 1,600 species of native bees [5], and introduced and managed 

species such as the alfalfa leafcutting bee (Megachile rotundata), the blue orchard bee 

(Osmia lignaria), the European honey bee (Apis mellifera) and bumble bees (Bombus 

spp.) [2]. In this dissertation, I will focus on experiments involving two species of 

commercially-available, social bees: Apis mellifera and the common eastern bumble bee 

Bombus impatiens.  

 Recent studies have shown that the populations of several bee species are 

declining in various parts of the world. For example, bee species richness was shown to 

decline in parts of Europe by over 50% since 1980 [6], wild bumble bee populations are 

declining in North America (with some declining over 90%) [7, 8] and Europe [9], and 

managed honey bee colonies have steadily declined in the United States [10]. While it is 

unlikely that one single stressor is responsible for bee decline, research has shown that 
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the combination of lack of floral resources driven by land-use change, parasites, and 

pesticides is driving major bee population reduction in both natural and agricultural 

regions [11]. Specifically, much of the current research is focused on pathogen spillover 

from commercial bee colonies [12], Deformed Wing Virus and its vector, Varroa 

destructor [13], nontarget exposure to neonicotinoid pesticides [14], and habitat loss [15]. 

While these stressors are likely the major causes of bee decline, bees face other 

environmental pressures such as metal or metalloid exposure when foraging on plants 

growing in polluted areas [16, 17]. Because bees may face many simultaneous and 

diverse stressors [18, 19], more research into neglected stressors such as metals and 

metalloids should be conducted.             

 Heavy metals, metalloid, and other xenobiotic contamination can be found in 

industrialized areas around the world [20, 21]. For example, the non-essential heavy 

metal cadmium can be found in soils near heavy industries such as mining and battery 

production [22], copper can be deposited from mining [23], selenium (both elemental and 

ionic forms) through lubricant production and other industries [24], and neonicotinoid 

pesticides from agriculture [14]. As mentioned previously, bees can come into contact 

with compounds such as those listed above through foraging on plants growing in 

contaminated areas, and bees have been shown to bring those chemicals to their colony 

[16]. For example, Stanleya pinnata can biomagnify selenate and these plants have been 

found to contain over 2000 mg/kg selenate [25]. As an even more extreme example, 

Chamaecrista fasciculata can accumulate cadmium to over 4000 mg/kg [26]. Bees 

appear to tolerate levels of metals and metalloids similar to other insects, however larvae 
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are particularly sensitive, which may cause negative colony-wide effects and ultimately 

cause the colony to collapse [27–30]. Bees generally cannot detect the presence of metals 

in flowers, as bees will forage on selenate- [31] and aluminum-containing [32] nectar, 

although bees seem to avoid nectar containing nickel [32]. Aside from mortality, metals 

exposure can cause behavioral and metabolic effects: copper alters feeding behaviors 

[33], manganese increases foraging time [17], multiple heavy metals increase cellular 

detoxification and redox activity [19, 34, 35], and metal exposure reduces 

immunocompetence [36].  

 Eusocial corbiculate bees – which includes the honey bees, bumble bees, and 

stingless bees – harbor simple and distinct microbiomes that are fairly consistent in 

colonies worldwide [37, 38]. This close microbial relationship in corbiculate bees is in 

contrast to the largely environmentally-acquired microbes that solitary and primitively 

eusocial non-corbiculate bees associate with [39–41]. It is thought that the bee 

microbiome is transmitted largely through contact with colony mates [42], and is the 

result of a long history of symbiosis between the host and microbes [37]. Over 95% of 

the honey bee gut bacterial community is populated by nine species clusters [43]: 

Snodgrassella alvi [44], Gilliamella apicola [44], two lactobacilli clades (Lactobacillus 

Firm-4 and Firm-5) [38, 45], Frischella perrara [46], Bartonella apis [47], 

Bifidobacterium asteroides [48], Parasaccharibacter apium [49], an Acetobacteraceae 

clade now thought to be Commensalibacter intestini [38], and Bombella apis [50]. 

Bumble bees have a distinct microbiota that differs somewhat from honey bees but shares 

the same ancestry [37]: Bombus species tend to harbor Snodgrassella alvi, Gilliamella 
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apicola, Lactobacillus Firm-4 (generally less abundant than in honey bees) and Firm-5, 

and Acetobacteraceae clade bacteria, while possessing their own unique species of 

Bifidobacterium [51], Bombiscardovia coagulans [52], and Candidatus Schmidhempelia 

bombi [53]. The bumble bee microbiome appears more labile than the honey bee 

microbiome, as there may be other bumble bee gut enterotypes present [54]. Aside from 

the “core” microbiota, social bees associate with other species of bacteria often present in 

the colony or environment, such as Lactobacillus kunkeei [55] and species within the 

family Enterobacteriaceae [56]. While the microbiomes of social bees are largely 

consistent, considerable strain variation exists in many of the major symbionts, so deeper 

analyses of these microbiomes is needed [57–59].  

The symbiotic bee microbiome has been shown to provide numerous benefits to 

the bee host including defense against pathogens such as trypanosomes [60–62] and 

bacteria [63], immune system stimulation [64], body mass gain [65], and the digestion of 

pectin and toxic sugars [66, 67]. Similarly, when the microbiome is in a state of dysbiosis 

or absent, bees are more susceptible to bacterial or fungal infections [68, 69], although 

strains of core bacteria may positively associate with Nosema ceranae infections so the 

intricacies of host/microbe/pathogen still need further study [70, 71].   

Investigating the effects of metals pollution on animal-associated microbes is 

becoming an important sub-field of microbial ecology and ecotoxicology [72, 73], and 

bees are well-suited to this type of research due to their simple rearing conditions and 

consistent microbiome [74]. Research in the field of metal and metalloid exposure on 

animal microbiomes is gaining popularity and impact: for example, studies have shown 
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that cadmium exposure affects the microbiomes of earthworms [75] and rats [76], copper 

on mice [77], and selenium in mice [78, 79] and bumble bees [80]. In addition to shifting 

the composition of the host-associated microbiome, recent research has begun 

investigating the potential for the animal microbiome to protect the host against metals 

and metalloid toxicity. It has been shown that animal microbiomes reduce mortality in 

insects challenged with chromium and lead [81], and in mice challenged with arsenic 

[82], copper, [83], cadmium, [84, 85], chromium [86], and aluminum [87], and we extend 

this growing body of research to bee-associated bacteria through work in this dissertation. 

The major goal of this dissertation is to test novel hypotheses involving the 

exposure of metals, metalloids, and other toxicants on bumble bees and honey bees, their 

symbiotic microbiomes, and isolated microbes: 1) Does selenate exposure affect the 

bumble bee microbiome and its major symbionts, and does the microbiome reduce 

mortality upon selenate challenge? 2) Is cadmium, copper, selenate, imidacloprid, or 

hydrogen peroxide harmful to bumble bees, do these chemicals affect the bee 

microbiome, what genes are present in bee symbionts that may affect toxicant tolerance 

or susceptibility, and is there interstrain variation in these genes in major bee symbionts? 

3) Does cadmium or selenate exposure affect the honey bee microbiome and 

metabolome, and can bee-associated bacteria bioaccumulate these chemicals? 

We attempt to test the above-mentioned hypotheses through the experiments 

spanning the following three dissertation chapters: Chapter two investigates the effects 

that selenate exposure has on the bumble bee microbiome through 16S rRNA gene 

sequencing, in vitro exposure to two major gut symbionts – Snodgrassella alvi and 
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Lactobacillus bombicola – and the ability of the microbiome to reduce mortality upon 

selenate challenge. Chapter three assays the effects of cadmium, copper, selenate, 

imidacloprid, and hydrogen peroxide on bumble bee mortality and the composition of the 

microbiome through 16S rRNA gene sequencing. We also survey possible genetic bases 

in detoxification or tolerance in the genomes of 120 total strains of the major gut 

symbionts Snodgrassella alvi and Gilliamella apicola through Rapid Annotation using 

Subsystem Technology (RAST) genome annotations [88]. Lastly, Chapter four examines 

the longitudinal effects of selenate and cadmium exposure on the honey bee microbiome 

through 16S rRNA gene sequencing, the consequences of these exposures on the honey 

bee metabolome through untargeted metabolomics, and the bioaccumulation potential of 

nine strains of bee-associated bacteria through in vitro culturing and inductively coupled 

plasma optical emission spectroscopy (ICP-OES).  
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Abstract 

 

Bumble bees are important and widespread insect pollinators who face many 

environmental challenges. For example, bees are exposed to the metalloid selenate when 

foraging on pollen and nectar from plants growing in contaminated soils. As it has been 

shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability 

of the bee microbiome to increase survivorship against selenate challenge. We exposed 

uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose 

of 0.75 mg/L selenate and found that microbiota-inoculated bees survive slightly, but 

significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found 

that selenate exposure altered gut microbial community composition and relative 

abundance of specific core bacteria. We also grew two core bumble bee microbes – 

Snodgrassella alvi and Lactobacillus bombicola – in selenate-spiked media and found 

that these bacteria grew in the tested concentrations of 0.001 mg/L to 10 mg/L selenate. 

Furthermore, the genomes of these microbes harbor genes involved in selenate 

detoxification. The bumble bee microbiome slightly increases survivorship when the host 

is exposed to selenate, but the specific mechanisms and colony-level benefits under 

natural settings require further study.
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Introduction 

 

 Bumble bees (Bombus spp.) are important insect pollinators for a multitude of 

food crops and native plants [1]. Commercially, over one million bumble bee colonies are 

used annually to pollinate high-value greenhouse crops such as tomatoes and peppers [2]. 

Recently, it has been established that many wild bumble bee populations are steadily 

declining in North America [3] with some species having declined over 90% [4]. 

European bumble bees are simultaneously facing serious decline [5]. Much of these 

declines have been attributed to exposure to land use change, pesticides [6], parasites and 

pathogens [7], and heavy metals [8]. 

 Selenium pollution is a worldwide problem stemming from industries such as 

mining, coal combustion and lubricant production as well as the leaching of selenium 

from seleniferous soils through rainfall or agricultural irrigation [9]. Plants growing in 

selenium-contaminated areas can accumulate high levels of the metalloid in their pollen 

and nectar which, once foraged upon by bees and other insect pollinators, can be toxic 

[10]. For example, in 2011, Quinn et al. found that bumble bees are not deterred from 

foraging on the selenium-accumulating plants Brassica juncea and Stanleya pinnata 

(flowers were found to contain up to 3200 mg/kg selenium) and that elevated levels of 

selenium accumulated both in their corbicular pollen and inside of the foraging bees [11]. 

Likewise, in 2012, Hladun et al. found that honey bees (Apis mellifera) readily foraged 

on Raphanus sativus plants that were grown in seleniferous soil and collected pollen 

containing up to 2830 mg/kg selenium [12]. Accumulating selenium in the tissues of 
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foraging honey bees has been shown to be detrimental to both the individual forager bees 

plus the health of the whole colony [13–15]. Metals may also have sub-lethal effects on 

bees, as foraging efficiency is decreased when honey bees are exposed to manganese [16] 

and bumble bees are exposed to nickel [17, 18]. 

 Selenium-tolerant microbes have been identified in a wide variety of 

environments, including bacteria isolated from beetle larvae [19], polluted water [20], 

mangrove soil [21], bioreactors [22], and endophytic bacteria from hyperaccumulator 

plants [23]. Additionally, some bacteria are known to reduce pernicious selenate and 

selenite ions to elemental selenium, thus significantly reducing toxicity [24], and 

facilitating removal from the bacterial cell [25]. Not all bacteria, however, can tolerate 

metals and metalloids. For example, the microbiota of mice can be altered when exposed 

to lead, cadmium [26] or selenium [27]; human gut microbes change in response to 

arsenic and lead [28]; and the gut microbial community of the Mongolian Toad is 

affected by a combination of copper, cadmium, zinc and lead [29]. In light of these 

studies, using the microbiome to reduce metalloid toxicity is now starting to be explored, 

with Coryell et al. establishing that the mouse gut community assists in reducing host 

mortality upon arsenic exposure [30].  

Previous research shows that the microbial associates of insects can detoxify 

some metals from the environment. In 2013, Senderovich and Halpern found that the 

bacteria associated with the pollution-tolerant chironomid midges (Diptera: 

Chironomidae) detoxified lead and hexavalent chromium, which potentially reduces 

metals’ harmful effects [31]. Likewise, Wang et al. showed that a strain of Alcaligenes 
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faecalis isolated from  beetle larvae (Monochamus alternatus) reduced selenite to the less 

toxic form of elemental selenium [19]. Still, there is little published research on the 

effects of selenium exposure on the microbiome of insects, despite the pervasive nature 

of selenium contamination in the environment [32] and the importance of considering the 

microbiome of insects in entomological studies [33]. We seek to address this gap in the 

literature using bees, as in addition to being an emerging as a model for this type of 

research [34], bees are frequently exposed to toxicants such as selenium when foraging, 

while the effects of environmental pollution on bumble bees and other wild bees is still 

an understudied field [35]. 

 Bumble bees are known to host a simple and distinct gut microbiome that 

comprises core bacterial species within the genera Snodgrassella, Gilliamella, 

Lactobacillus, Bombiscardovia, Schmidhempelia and Bifidobacterium [36–40]. The 

honey bee and bumble bee microbiota is transmitted throughout the colony by social 

interactions between nest mates [36] resulting in host specific relationships within each 

clade of the corbiculate Apids (subfamily: Apinae) [38]. The microbiota has been shown 

to defend bumble bees against pathogens such as Crithidia spp. [36, 41] and microbial 

dysbiosis of the core microbes has been suggested to encourage Nosema spp. 

establishment in honey bees [42]. Likewise, the honey bee microbiome is known to 

positively affect host health, by promoting weight gain [43], metabolizing toxic sugars 

[44], degrading pectin [45] and stimulating immune function [46]. 

 Here we investigate the complex interplay between selenate exposure and the 

bumble bee microbiome using in vitro, in vivo and in silico methods. First, we ask: Does 
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the Bombus impatiens microbiome increase survivorship against selenate toxicity? 

Second, are there effects of selenate exposure on the bees’ microbial gut community and 

individual bacterial strains? Third, is there natural resistance against selenate exposure in 

the bumble bee core gut bacteria Snodgrassella alvi and Lactobacillus bombicola in vitro, 

and is there a possible genomic basis of bacterial selenate tolerance? 
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Materials and Methods 

 

Bee Husbandry for the Selenate-Challenge Experiment 

 

We conducted two separate experiments to assay the effects of microbiome 

inoculation on selenate-challenged bees. For a pilot experiment (Experiment 1, see below 

for experimental design details), we obtained three commercial Bombus impatiens 

colonies from the Biobest Group (Biobest USA Inc., Romulus, MI), and for the fully 

factorial experiment (Experiment 2, see below for experimental design details), we 

obtained four commercial B. impatiens colonies from Koppert Biological Systems, Inc. 

(Howell, MI). Each colony contained approximately 50 workers, a gravid queen, pollen 

and a proprietary sugar solution. As the supplied sugar solution typically contains 

antibiotics and antifungal compounds [47], we immediately replaced it with sterile 60% 

sucrose and allowed the bees access ad libitum. We also provided the colony with pollen 

patties ad libitum and kept the colonies in environmentally-controlled rooms at 29°C 

under constant darkness at the University of California, Riverside. We allowed the 

colonies to grow undisturbed for two weeks before starting the experiment.  

 

Uninoculated and Microbiome-Inoculated Bumble bees  

 

In order to manipulate the bumble bee gut microbiota, we used a modified version 

of previously-described protocols [36, 43, 48]. We removed dark-colored cocoons from 
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each of the three bee colonies and aseptically extracted the pupa from within each 

cocoon. We then placed pupae in a sterile, 48-well tissue culture plate (Corning, Corning, 

NY) and incubated the plates at 29°C with 70% humidity. Once the bees had eclosed, we 

placed them into cohorts of 6 colony mates in 475mL polypropylene containers 

(WebstaurantStore, Lancaster, PA). We then autoclaved a mixture of 40% sucrose and 

pollen and provided the bees with this mixture ad libitum for two days. 

 To determine whether a healthy microbiota increases survivorship in bumble bees 

under selenate challenge, we fed selenate or a sterile sucrose control to bees that we 

either inoculated with gut microbes or left uninoculated. In order to inoculate bees with a 

stable microbial community, we fed cohorts of bees microbes harvested from workers 

corresponding to their source colony. To do this, we aseptically dissected the whole guts 

from three mature workers and macerated these in an autoclaved 40% sucrose and pollen 

solution. We then fed this homogenate ad libitum to the bees for two days, followed by 

sterile 40% sucrose for a total of five days to allow the microbes to stably colonize the 

gut [49]. The uninoculated bees did not receive microbes and were given a solution of 

sterile 40% sucrose and sterile pollen only. 

 

Selenate Exposure Challenge and Statistics 

   

We conducted two separate experiments to determine if the microbiota can 

increase bumble bee survival when challenged with field-realistic levels of selenate. In a 

preliminary experiment (Exp. 1), we challenged N = 87 sham-inoculated bees and N = 68 
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microbiota-inoculated bees with 0.75 mg/L selenate. This concentration was designed to 

represent exposure to a conservative concentration of selenate compared to what bees 

may naturally encounter when foraging upon plants in highly contaminated areas (up to 

3200 mg/kg) [11], and from past greenhouse experiments (nectar up to 110 mg/kg and 

pollen 710 mg/kg) [10], as well as previously reported selenate toxicity to honey bees 

[15]. As this preliminary experiment did not control for the effects of inoculation on 

bumble bee survival, we ran a second fully factorial experiment that crossed two factors: 

microbiota or sham inoculation and selenate spiked sucrose feed or sucrose only feed to 

control for the effects of a microbiome on control bees (Exp. 2). We challenged 80 bees 

(40 microbe-inoculated and 40 uninoculated) assigned to cohorts of 4-7 colony mates 

with a solution of either 0.75 mg/L sodium selenate (Alfa Aesar, Ward Hill, MA) or 0 

mg/L sodium selenate in 40% sucrose. In addition to the treatments, we also concurrently 

exposed 80 bees (43 microbe-inoculated and 37 uninoculated) bees to 40% sucrose with 

no selenate to serve as controls. We allowed bees to feed ad libitum for up to 10 days, 

censused mortality daily, and removed dead bees immediately upon discovery.  

We analyzed the mortality data using the Cox Proportional Hazards function with 

Mixed Effects [50] on colony of origin, microbe-inoculation, and selenate treatment in R. 

We also checked to ensure that our data did not violate the proportional hazards 

assumptions of the Cox Regression with the function “cox.zph” in the R package 

“Survival,” [51], and graphed the survivorship data with the “survminer” package in R 

[52]. We used Schwartz’s Bayesian Information Criterion (BIC) to choose the model that 

best fit our data and compensated for mixed effects through a penalized log likelihood.  
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Effects of Sub-Lethal Doses of Selenate on the Bumble Bee Microbiome 

 

To explore the effect of selenate on the bumble bee microbiome, we acquired 

three new bumble bee (Bombus impatiens) colonies containing less than 10 workers, a 

gravid queen, pollen and proprietary sugar solution (Koppert Biological Systems). We 

maintained the colonies in the same way as described above. We then isolated 20 

individual mature workers from each colony (N=60 total) in 60mL polypropylene 

containers (WebstaurantStore, Lancaster, PA) and provided them either 60% sucrose 

(control, N = 30) or 60% sucrose spiked with 0.5 mg/L sodium selenate (treatment, N = 

30). Bees fed ad libitum for four days before we assessed mortality and stored the bees at 

-80°C. We used these bees for DNA extraction and 16S rRNA gene amplicon sequencing 

as described below.  

 

DNA Extraction and Next-Generation Sequencing of the Bacterial 16S rRNA gene 

 

We used a modified DNA extraction protocol based on Engel et al. 2013, [53], 

Pennington et al. 2017 [54] and Pennington et al. 2018 [55]. Using sterile technique, we 

dissected whole guts out of each bee and placed them into 96-well bead-beating plates 

(Qiagen, Valencia, CA) containing 50-100 µL of 0.1mm glass beads, one 3.4mm steel-

chrome bead (Biospec, Bartlesville, OK), and Qiagen lysis buffer, then homogenized the 

mixture with a Qiagen Tissuelyser at 30 Hz for 6 minutes. We included four blanks to 

control for contamination, which were included in all library preparation and sequence 
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processing steps. We extracted total DNA from each sample with the DNeasy Blood and 

Tissue Kit (Qiagen, Valencia, CA) by following the manufacturer’s protocol for tissue 

samples.  

We prepared Illumina MiSeq libraries for paired-end sequencing as in 

McFrederick and Rehan 2016 [56], Pennington et al. 2017 [57], and Rothman et al. 2018 

[58]. We incorporated the genomic DNA primer sequence, an eight-mer barcode 

sequence, and Illumina adapter sequence as in [59]. We used the primers 799F-mod3 

(CMGGATTAGATACCCKGG) [60] and 1115R (AGGGTTGCGCTCGTTG) [59] to 

amplify the V5-V6 region of the 16S rRNA gene. We used the following reaction 

conditions for PCR: 4 µL of DNA, 0.5 µL of 10µM 799F-mod3 primer, 0.5 µL of 10µM 

1115R primer, 10 µL sterile water and 10 µL 2x Pfusion High-Fidelity DNA polymerase 

(New England Biolabs, Ipswich, MA), an annealing temperature of 52°C, and 25 cycles 

in a C1000 Touch thermal cycler (BioRad, Hercules, CA). We then used the PureLink 

Pro 96 PCR Purification Kit (Invitrogen, Carlsbad, CA) to clean up the resulting 

amplicons. We subsequently performed a second PCR reaction using 1 µL of the cleaned 

PCR amplicons as a template with the primers PCR2F 

(CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC) and PCR2R 

(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG) to 

generate the Illumina adapter sequence [59]. We performed PCR with the following 

reaction conditions: 0.5 µL of 10µM PCR2F primer, 0.5 µL of 10µM PCR2R primer, 1 

µL of cleaned PCR amplicon, 13 µL of sterile water and 10 µL of 2x Pfusion High-

Fidelity DNA polymerase for 15 cycles at an annealing temperature of 58°C. We used 18 
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µL of the resulting amplicons for normalization with the SequalPrep Normalization kit 

and followed the supplied protocol (ThermoFisher Scientific, Waltham, MA). We pooled 

5 µL of each of the normalized library and performed a final clean up with a PureLink 

PCR Purification Kit (Invitrogen, Carlsbad, CA). We then quality checked the amplicons 

on a 2100 Bioanalyzer (Agilent, Santa Clara, CA) and sequenced the libraries using a V3 

Reagent Kit at 2 X 300 cycles on an Illumina MiSeq Sequencer (Illumina, San Diego, 

CA) in the UC Riverside Genomics Core Facility.  

Raw sequencing data are available on the NCBI Sequence Read Archive (SRA) 

under accession numbers SRR6788889-SRR6788898, SRR6788969-SRR6788978, 

SRR6788989- SRR6789000 and SRR6789009-SRR6789022. 

 

16S rRNA Gene Quantitative PCR for Bacterial Abundance in Bees 

 

 We used quantitative PCR (qPCR) to validate our methods of rearing 

uninoculated or microbe-inoculated bees. We extracted DNA in the same way as above 

from individual control-treated bees that survived the full 10 days, as there was likely 

bacterial proliferation or degradation in bees that died during the experiment. We then ran 

16S rRNA gene qPCR on the extracted DNA in triplicate using the following recipe: 2 

μL DNA, 5 μL SsoAdvanced master mix (BioRad, Hercules, CA), 0.2 μL 10 μM forward 

primer (TCCTACGGGAGGCAGCAGT), 0.2 μL 10 μM reverse primer 

(GGACTACCAGGGTATCTAATCCTGTT) [61], and 2.6 μL of sterile ultrapure water. 

We used a protocol consisting of an initial denaturation step of 95 °C for three minutes, 
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followed by 95 °C for 10 seconds and an annealing/extension step of 59 °C for 30 

seconds repeated 39 times on a BioRad C1000 Touch thermal cycler. We compared our 

samples to a standard curve of 1 x 102 – 1 X 108 copies of the 16S rRNA gene cloned into 

a TOPO-TA plasmid (Invitrogen, Carlsbad, CA), with all qPCR efficiencies between 

90% - 100% and R2 above 0.98 and tested our data for statistical significance using 

Welch’s two-tailed t-test in R. Lastly, we validated the DNA extractions by running PCR 

targeting a region of the bee 18S rRNA gene on each sample and verifying that there was 

a positive band on an agarose gel, as in Meeus et al. 2009 [62]. 

 

Bioinformatics and Statistics 

 

We used QIME2-2017.12 [63] to process the 16S rRNA gene sequences. We 

viewed the sequence quality of our sequences and removed the low-quality ends. Then, 

we used DADA2 [64] to identify exact sequence variants (ESVs; 16S rRNA gene 

sequences that are identical), remove chimeric sequences and quality filter the data. We 

assigned taxonomy to the ESVs using the q2-feature-classifier [65] with the SILVA 16S 

rRNA gene database [66]. We also conducted local BLASTn searches against the NCBI 

16S ribosomal RNA sequences database (accessed March 2018). We then removed reads 

matching mitochondria and contaminants [67] as identified in our blank samples from the 

feature tables. After filtering out contaminants, we aligned the representative sequences 

against the SILVA reference alignment with MAFFT [68] and generated a phylogenetic 

tree using FastTree v2.1.3 [69]. We used this tree and the filtered feature table to analyze 
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alpha diversity, sampling depth, and to generate a Generalized UniFrac distance matrix 

[70]. We visualized the UniFrac distance through Principal Coordinates Analysis 

(PCoA), Non-metric Multidimensional Scaling (NMDS), and used R v3.4.1 [71] to plot 

the data. We analyzed the alpha diversity of our samples through the Shannon Diversity 

Index and assessed statistical significance through the Kruskal-Wallis test in QIIME2. 

We also used the R packages “vegan” [72] to test for statistical significance through 

Adonis on the distance matrix, “ggplot2” for graphing and “DESeq2” to analyze 

differentially abundant ESVs representing at least 1% proportional abundance between 

treatments [73]. To minimize the likelihood of a Type I error due to differential data 

dispersion in our Adonis testing, we analyzed the distance matrix with PERMDISP 

(permutational dispersion of beta diversity with 999 permutations).  

 

Bacterial Culture Conditions and Inhibitory Concentration Analyses 

 

To determine inhibitory concentrations of field-realistic doses of selenate on two 

representative members of the bumble bee core gut microbiota, we grew liquid cultures 

of Snodgrassella alvi wkB12 in Tryptic Soy Broth (TSB) (Becton, Dickinson and Co., 

Franklin Lakes, NJ) and Lactobacillus bombicola DSM-28793 in De Man, Rogosa and 

Sharpe + 0.05% cysteine (MRSC) broth (Research Products International, Mt. Prospect, 

IL). We incubated each culture at 37°C under a 5% CO2 atmosphere inside a Type C 

Biobag (Becton, Dickinson and Co., Franklin Lakes, NJ) with a CO2 generation ampule 

and grew the cultures to an OD600 of 1.0. We then transferred 1 µL of the cultures to 199 
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µL of TSB or MRSC spiked with five concentrations of sodium selenate (0.001 mg/L, 

0.01 mg/L, 0.1 mg/L, 1.0 mg/L and 10 mg/L) in triplicate along with 0 mg/L selenate 

controls and media blanks under the same conditions as above. We allowed the cultures 

to grow for 48 hours and read the cultures’ OD600 with a VarioSkan Lux microplate 

reader (ThermoFisher Scientific, Waltham, MA). We then tested statistical significance 

with one-way ANOVA, Tukey’s HSD post-hoc testing, and normality through the 

Shapiro-Wilk test with the R package “car” [74].  

 

Genomic Basis of Resistance to Selenate  

 

 We used the National Microbial Pathogen Data Resource’s Rapid Annotations 

using Subsystem Technology (RAST) server to annotate the publicly available genomes 

of bacteria usually found within the bumble bee gut and other bacteria that were found to 

be differentially abundant between selenate exposure and controls [75, 76]. We then 

searched through the genomes’ subsystems for genes encoding selenium-containing 

proteins and functional genes corresponding to selenate reductases, selenocysteine acid 

metabolism, and the genes involved in uptake of selenate/selenite. To verify the accuracy 

of the RAST annotations, we also searched for protein homology using Swiss-Prot [77] 

and considered proteins with greater than 50% amino acid sequence identity to be 

homologous. Accession numbers for each representative strains’ assembled genome are 

as follows: Bifidobacterium bohemicum DSM-22767 (GCA_000741525.1), 

Bifidobacterium bombi  DSM-19703 (GCA_000737845.1), Bifidobacterium commune R-
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52791 (GCA_900094885.1), Bombiscardovia coagulans DSM-22924 

(GCA_002259585.1), Commensalibacter intestini A911  (GCA_000231445.2), 

Gilliamella apicola wkB30 (GCA_000695585.1), Gilliamella bombi LMG-29879 

(GCA_900103255.1), Gilliamella intestini R-53144 (GCA_900094935.1), Lactobacillus 

apis Hma11 (GCA_000970735.1), Lactobacillus bombicola R-53102 

(GCA_900112665.1), Lactobacillus mellis Hon2 (GCA_000967245.1), Candidatus 

Schmidhempelia bombi Bimp (GCA_000471645.1), Serratia marcescens WW4 

(GCA_000336425.1), and Snodgrassella alvi wkB12 (GCA_000695565.1).  
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Results 

 

The Bumble Bee Microbiome Increases Survival Against Selenate Toxicity 

 

In both the preliminary experiment (Exp. 1) and the fully factorial experiment 

(Exp. 2), the inoculated bumble bee microbiome significantly increased bee survival 

when exposed to selenate. In the preliminary experiment (Exp. 1) the inoculated 

microbiome significantly increased bee survival (N = 155, Z = -3.27, P = 0.001); (Cox 

mixed-effects model fitted with penalized log-likelihood: χ2 = 54.34, d.f. = 2.7, P < 

0.001, BIC = 40.70), with microbiome-inoculated bees experiencing a 42% increase in 

mean survival, although no bees lived the full 10 days. This result was replicated in Exp. 

2 (N = 160, Z = -3.12, P = 0.002); (Cox mixed-effects model fitted with penalized log-

likelihood: χ2 = 88.81, d.f. = 3.6, P < 0.001, BIC = 73.00) with proper controls. We 

continued Exp. 2 for 10 days and found that selenate-challenged bees inoculated with a 

microbiome experienced a 20% increase in mean survival (Fig. 2.1). In the absence of 

selenate exposure microbe inoculation did not significantly affect mortality when 

compared to uninoculated bees (N = 80, Z = -0.57, P = 0.57). Our selenate exposure data 

did not violate the assumptions of the Cox Proportional Hazards Model by inoculation 

treatment (ρ = -0.09, χ2 = 0.63, P = 0.43), colony of origin (ρ = -0.05, χ2 = 0.26, P = 

0.68), selenate treatment (ρ = 0.19, χ2 = 3.61, P = 0.06) or globally (χ2 = 4.53, P = 0.48). 

Lastly, we verified that the uninoculated bees had depauperate microbiota 

compared to inoculated bees in our fully factorial experiment (Exp. 2) through qPCR 
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targeting the bacterial 16S rRNA gene on our control samples as in Powell et al 2014 and 

Kesnerova et al 2017 [49, 78]. Inoculated bees had a mean 16S rRNA gene copy number 

of 6.88 x 108 versus 8.89 x 104 for uninoculated bees (Welch’s two-tailed t-test, t = 3.13, 

P = 0.004).    

 

Sub-Lethal Selenate Exposure Alters the Microbiome of Bumble Bees 

 

Alpha Diversity and Library Coverage 

 

 There was a total of 276,126 quality-filtered reads with an average of 5,210 reads 

per sample (N = 53) that were clustered into 86 filtered Exact Sequence Variants (ESVs). 

Through rarefaction analysis, we determined that we had representative coverage of 

bacterial species diversity at a depth of 2,385 reads per sample. We found that there was a 

significant increase in the alpha diversity (as measured by the Shannon Diversity Index) 

of the bees’ microbial community when treated with sodium selenate (H = 7.95, P = 

0.005). 

 

Beta Diversity and Differential Abundance of Bacterial Taxa 

 

In order to discern patterns in the beta diversity of the whole microbial gut 

community of the bumble bees, we plotted the relative proportional abundance of ESVs 

comprising at least 1% of each sample (Fig. 2.2). Overall, we found our samples were 
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dominated by the genera Snodgrassella, Gilliamella, Lactobacillus, Bifidobacterium, 

Commensalibacter, Bombiscardovia and Serratia. We also performed Principal 

Coordinates Analysis (PCoA) and Non-Metric Multidimensional Scaling (NMDS) 

analysis on the Generalized UniFrac distance matrix that compared selenate-treated bees 

with controls (Fig. 2.3). Overall, there was no obvious clustering by treatment in both the 

two-dimensional NMDS (stress = 0.18) and PCoA ordinations. As we performed the 

experiment on individual bees from three separate colonies, we then analyzed the 

UniFrac distance matrix with Adonis (PERMANOVA with 999 permutations) using both 

treatment and colony of origin as explanatory variables in the model. We found that there 

was a significant effect of selenate treatment (F = 2.9, R2 = 0.05, P < 0.001), colony (F = 

3.30, R2 = 0.12, P < 0.001) and interaction between treatment and colony (F = 1.87, R2 = 

0.07, P = 0.005) after four days of continuous exposure, and that our data was not 

heterogeneously dispersed (F = 0.89, P = 0.35). Our analyses found that while there are 

significant effects of treatment and colony, the small R2 indicates that the impact of 

treatment on the overall beta diversity is slight, and the more physiologically important 

effects of selenate exposure are likely found at the individual ESV level.  

We analyzed the 16S amplicon data with “DESeq2” to identify ESV changes 

within the bumble bee microbiome. Through analyzing ESVs present at greater than 1% 

proportional abundance, we found nine differentially abundant ESVs (Benjamini and 

Hochberg corrected for multiple comparisons Padj < 0.05) between selenate-treated bees 

and controls in the following genera: 2 ESVs of Commensalibacter intestini, 3 ESVs of 

Gilliamella apicola, 2 ESVs of Lactobacillus bombicola and 2 ESVs of Snodgrassella 
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alvi. Each of the ESVs were less proportionally abundant in selenate-treated bees except 

C. intestini (Fig. 2.4). 

 

Genes Involved in Selenium Ion Uptake and Processing 

 

 By using RAST subsystem analyses and UniProt BLAST searches, we identified 

the presence or absence of genes that encode the production of selenium-containing 

proteins, selenate reductases, selenocysteine metabolism and genes involved in selenium 

ion uptake/release. We found that G. apicola wkB30 and S. alvi wkB12 only had one 

putative selenocysteine-containing enzyme each (both had formate dehydrogenase EC 

1.17.1.9 based on sequence homology), while no other bacteria commonly found in 

bumble bee guts or our samples contained any selenoproteins. Many of the non-bumble 

bee-specific taxa had at least some active selenoproteins. Each of the other core bumble 

bee gut bacteria or non-core bacteria that were differentially abundant in our study had 

putative genes corresponding to the sulfate and thiosulfate import ATP-binding protein 

CysA [79], the putative [80] selenite-inducible transporter TsgA [80], the 

selenate/selenite transporter DedA [81], L-seryl-tRNA(Sec) selenium transferase SelA 

[82], the selenocysteine-specific translation elongation factor SelB [83], the 

selenide/water dikinase SelD [84] and the selenophosphate-dependent tRNA 2-

selenouridine synthase 2-SeU [85]. Only Candidatus Schmidhempelia bombi had no 

enzymes for the uptake or release of selenium ions or selenoprotein metabolism. 
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Members of the Bumble Bee Microbiota React Differently to Selenate Exposure 

 

 Through ANOVA testing, we did not detect an overall significant difference in 

bacterial growth after 48 hours for either Snodgrassella alvi wkB12 (F(5,12) = 2.389, P = 

0.101) or Lactobacillus bombicola (F(5,12) = 0.282, P = 0.914), at any dose of sodium 

selenate (Tukey’s HSD Padj > 0.05 for each concentration) (Fig. 2.5). Our data did not 

violate the assumption of normality, based on the Shapiro-Wilk Test (P = 0.892 and 

0.613, respectively). We note that these bacteria grew somewhat poorly, indicating that 

our culturing conditions are not optimal for bee symbionts.  Similar OD readings, 

however, have been reported in other studies using different strains of these bacteria [86].   
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Discussion 

 

The Bombus impatiens microbiome plays a role in the reduction of host mortality 

when bees are exposed to field-realistic doses of selenium. We found that selenate 

toxicity was slightly higher in uninoculated bees than in those that we inoculated with a 

microbial community obtained from their colony mates, and that lacking a microbiome 

did not affect survivorship of bees receiving only control treatments. To the best of our 

knowledge, this is the first time that the gut microbiome of any insect has been shown to 

increase the survivorship of its host against selenate poisoning. We show that while 

ingestion of selenate inflicts mortality on all tested bumblebees, the microbiome-

inoculated bees have slightly reduced mortality, which on a wider colony level, may have 

a positive effect on resource-gathering, colony hygiene, and ultimately overall colony 

health. Future research into the colony-level effects of selenate poisoning on bumble bees 

should be investigated in a similar manner to Hladun et al 2015 [14], who showed that 

selenate had a deleterious effect on honey bee colony health.     

Other work has linked the insect microbiota to metal/metalloid detoxification. 

Senderovich and Halpern [31] showed that bacteria associated with Chironomus 

transvaalensis egg masses and larvae reduced lead- and hexavalent chromium-induced 

mortality. Our research extends this work, as Chironomus spp. typically exhibit a lifestyle 

whereby adults do not feed [87], do not possess a functional microbiome, and are 

unlikely to orally ingest pollutants. Likewise, Wang et al. recently showed that a strain of 

bacteria isolated from beetle larvae can reduce selenite [19], although as beetles undergo 
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complete metamorphosis, this bacteria is unlikely to persist into the adult stage. These are 

important distinctions, as our study shows that the microbiome of adult bumble bees 

increases survivorship upon metalloid challenge during their final life stage. Furthermore, 

socially acquired core bumble bee gut bacteria appear to mainly drive the increase in 

survivorship. As pupal bees shed their larval gut and lose any alimentary tract bacteria 

upon eclosion [36], any microbially-mediated effect on larvae may be lost before the 

adult bees are exposed to the toxicant. Additionally, as we are studying coevolved, 

socially-transmitted core microbes, these symbiotic bacteria share an intricate 

relationship with their host that includes defensive functions [36]. Our system serves as a 

useful model for studying transmittable symbiont-induced phenotypes that increase 

survival against environmental toxicants in social insects. Lastly, it has been shown that 

the gut microbiota is involved in reducing arsenic-induced mouse mortality [30], and our 

research contributes to the growing body of literature that implicates the animal 

microbiome in increased host survival when challenged with metalloids.  

We found ESVs of the gut symbionts S. alvi, G. apicola and L. bombicola in 

lower proportional abundance in selenate-treated bees versus controls. We also found two 

C. intestini ESVs in higher proportional abundance of in selenate-treated bees. This 

contrasts with our culture-based results in which S. alvi and L. bombicola were not 

affected by field-realistic, low doses of selenate. This conflicting result may be due to the 

compositional nature of microbiome data [88] in which other changes in proportional 

abundance may not reflect changes in absolute abundance. Likewise, these bacteria grew 

poorly in culture, which may mask the true effects of dose-dependent selenate exposure 
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as an artifact, although strains of S. alvi and other Firm-5 lactobacilli have grown to 

similar OD600 readings in previous studies [86]. We also cannot examine genomic 

differences between cultured strains and taxa identified in our bee samples as we are 

unable to discern their entire genomes from a 16S rRNA gene sequencing survey. Strain 

level diversity in the honey bee gut microbiota is high [45], and future experiments are 

needed to fully understand selenotolerance in the bumble bee microbiota. While there is 

no published research on the interactions of bee symbionts and selenium, non-bee-

associated bacteria are known to accumulate selenium in culture (Calomme, Van den 

Branden, and Vanden Berghe 1995), or can respire less toxic elemental selenium [19, 24, 

25]. This may be a mechanism for increasing host survivorship upon selenate challenge, 

and future studies should investigate the ability of symbionts to accumulate or respire 

selenium. 

There are interesting patterns that develop when examining the genomes of 

bacterial genera typically associated with bumble bees: Bifidobacterium spp., 

Bombiscardovia coagulans and Lactobacillus spp. appear only to uptake selenium ions 

via the transporter DedA. Snodgrassella alvi wkB12 possesses DedA along with CysA, 

which is involved in selenium ion transport and can incorporate selenocysteine into 

proteins which may contribute to selenate resistance. Candidatus S. bombi and G. apicola 

wkB30 also use selenocysteine but lack any obvious method of selenate uptake, although 

G. apicola genomes may vary between strains [44] and more investigation into their 

selenium metabolism is needed. While most differentially abundant bacteria were less 

proportionally abundant in the selenate treatments, one taxon was notably more abundant: 
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Commensalibacter. The effects of selenium on this genus are unknown, although it does 

not possess DedA, but appears selenotolerant in vivo. Notably, we only obtained ESVs of 

Commensalibacter and the opportunistic bee pathogen Serratia (Sánchez-Bayo et al. 

2016) from one colony, indicating this colony may be suffering from dysbiosis or disease 

and the apparent selenotolerance may be due of the compositional nature of our data. 

Selenoproteins are common throughout several insects species, and their genomes 

often contain enzymes for selenium metabolism [89]. Conversely, bumble bees and other 

hymenopterans are not known to incorporate selenium into proteins [90]. However, the 

mechanisms of increased bee survival may be host-mediated, as gut microbes could 

induce changes in host gene expression to generally allow for detoxification. Likewise, 

selenate-induced stress may synergize with the lack of a microbiome in our uninoculated 

bees, and we may be observing the combination of multiple insults on bee health. This 

may decrease host survivorship rather than the microbiome itself increasing survivorship, 

and more research needs to be conducted to understand the mechanisms of multiple 

stressors on bees. Microbial inducement of the immune system has been shown in honey 

bees [46] and stimulation of detoxification gene expression and immune function has 

been shown to occur in bumble bees [91], so the presence of the bees’ microbiota may be 

influencing the bees ability to detoxify selenate. Lastly, the bacteria may simply be 

forming a physical barrier, but more research is needed to test these competing 

hypotheses.  

 Our results illustrate that the bumble bee microbiome slightly increases host 

survival when exposed to selenate and that bacteria within the core microbiome are 
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tolerant to field-realistic doses of selenate. Selenate causes shifts in the relative 

abundance of core microbes at the individual ESV level. As the mechanisms of the 

microbiome-induced increase in host survival upon selenate challenge are unknown, 

future research should investigate the ability of bacterial symbionts to metabolize and 

detoxify selenate in the host. Similarly, many bee species commonly encounter metal and 

metalloid contamination in the environment [8] and more studies are needed to assess the 

effects of other toxicants on their microbes.



 42 

References Cited 

 
 
1.  Klein A-M, Vaissière BE, Cane JH, et al (2007) Importance of pollinators in 

changing landscapes for world crops. Proc Biol Sci 274:303–313. 
https://doi.org/10.1098/rspb.2006.3721 

2.  Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee 
domestication and the economic and environmental aspects of its 
commercialization for pollination. Apidologie 37:421–451. 
https://doi.org/10.1051/apido:2006019 

3.  Cameron SA, Lozier JD, Strange JP, et al (2011) Patterns of widespread decline in 
North American bumble bees. Proc Natl Acad Sci U S A 108:662–667. 
https://doi.org/10.1073/pnas.1014743108 

4.  Colla SR, Gadallah F, Richardson LL, et al (2012) Assessing declines of North 
American bumble bees (Bombus spp.) using museum specimens. Biodivers 
Conserv 21:3585–3595. https://doi.org/10.1007/s10531-012-0383-2 

5.  Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. 
Annu Rev Entomol 53:191–208. 
https://doi.org/10.1146/annurev.ento.53.103106.093454 

6.  Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by 
combined stress from parasites, pesticides, and lack of flowers. Science (80- ) 
347:1255957–1255957. https://doi.org/10.1126/science.1255957 

7.  Graystock P, Blane EJ, McFrederick QS, et al (2016) Do managed bees drive 
parasite spread and emergence in wild bees? Int J Parasitol Parasites Wildl 5:64–
75. https://doi.org/10.1016/j.ijppaw.2015.10.001 

8.  Kosior A, Celary W, Olejniczak P, et al (2007) The decline of the bumble bees and 
cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. 
Oryx 41:79. https://doi.org/10.1017/S0030605307001597 

9.  Vickerman DB, Trumble JT, George GN, et al (2004) Selenium 
biotransformations in an insect ecosystem: Effects of insects on phytoremediation. 
Environ Sci Technol 38:3581–3586. https://doi.org/10.1021/es049941s 

10.  Hladun KR, Parker DR, Trumble JT (2011) Selenium accumulation in the floral 
tissues of two Brassicaceae species and its impact on floral traits and plant 
performance. Environ Exp Bot 74:90–97. 
https://doi.org/10.1016/j.envexpbot.2011.05.003 



 43 

11.  Quinn CF, Prins CN, Freeman JL, et al (2011) Selenium accumulation in flowers 
and its effects on pollination. New Phytol 192:727–737. 
https://doi.org/10.1111/j.1469-8137.2011.03832.x 

12.  Hladun KR, Parker DR, Tran KD, Trumble JT (2012) Effects of selenium 
accumulation on phytotoxicity, herbivory, and pollination ecology in radish 
(Raphanus sativus L.). Environ Pollut 172:70–5. 
https://doi.org/10.1016/j.envpol.2012.08.009 

13.  Hladun KR, Smith BH, Mustard JA, et al (2012) Selenium toxicity to honey bee 
(Apis mellifera L.) pollinators: effects on behaviors and survival. PLoS One 
7:e34137. https://doi.org/10.1371/journal.pone.0034137 

14.  Hladun KR, Di N, Liu T-XX, Trumble JT (2015) Metal contaminant accumulation 
in the hive: Consequences for whole-colony health and brood production in the 
honey bee (Apis mellifera L.). Environ Toxicol Chem 35:322–329. 
https://doi.org/10.1002/etc.3273 

15.  Hladun KR, Kaftanoglu O, Parker DR, et al (2013) Effects of selenium on 
development, survival, and accumulation in the honeybee (Apis mellifera L.). 
Environ Toxicol Chem 32:2584–2592. https://doi.org/10.1002/etc.2357 

16.  Sovik E, Perry CJ, LaMora A, et al (2015) Negative impact of manganese on 
honeybee foraging. Biol Lett 11:. https://doi.org/10.1098/rsbl.2014.0989 

17.  Meindl GA, Ashman T-L (2014) Nickel accumulation by Streptanthus 
polygaloides (Brassicaceae) reduces floral visitation rate. J Chem Ecol 40:128–
135. https://doi.org/10.1007/s10886-014-0380-x 

18.  Meindl GA, Ashman T-L (2013) The effects of aluminum and nickel in nectar on 
the foraging behavior of bumblebees. Environ Pollut 177:78–81. 
https://doi.org/10.1016/j.envpol.2013.02.017 

19.  Wang Y, Shu X, Zhou Q, et al (2018) Selenite reduction and the biogenesis of 
selenium nanoparticles by Alcaligenes faecalis se03 isolated from the gut of 
Monochamus alternatus (Coleoptera: Cerambycidae). Int J Mol Sci 19:. 
https://doi.org/10.3390/ijms19092799 

20.  Oremland RS, Herbel MJ, Blum JS, et al (2004) Structural and spectral features of 
selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 
70:52–60. https://doi.org/10.1128/AEM.70.1.52-60.2004 

21.  Mishra RR, Prajapati S, Das J, et al (2011) Reduction of selenite to red elemental 
selenium by moderately halotolerant Bacillus megaterium strains isolated from 
Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 
84:1231–1237. https://doi.org/10.1016/j.chemosphere.2011.05.025 



 44 

22.  Soda S, Kashiwa M, Kagami T, et al (2011) Laboratory-scale bioreactors for 
soluble selenium removal from selenium refinery wastewater using anaerobic 
sludge. Desalination 279:433–438. https://doi.org/10.1016/j.desal.2011.06.031 

23.  Sura-de Jong M, Reynolds RJB, Richterova K, et al (2015) Selenium 
hyperaccumulators harbor a diverse endophytic bacterial community characterized 
by high selenium resistance and plant growth promoting properties. Front Plant Sci 
6:113. https://doi.org/10.3389/fpls.2015.00113 

24.  Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS 
Microbiol Rev 27:411–425. https://doi.org/10.1016/S0168-6445(03)00044-5 

25.  Debieux CM, Dridge EJ, Mueller CM, et al (2011) A bacterial process for 
selenium nanosphere assembly. Proc Natl Acad Sci U S A 108:13480–5. 
https://doi.org/10.1073/pnas.1105959108 

26.  Breton J, Massart S, Vandamme P, et al (2013) Ecotoxicology inside the gut: 
impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol 
14:62. https://doi.org/10.1186/2050-6511-14-62 

27.  Kasaikina M V, Kravtsova MA, Lee BC, et al (2011) Dietary selenium affects host 
selenoproteome expression by influencing the gut microbiota. FASEB J 25:2492–
2499. https://doi.org/10.1096/fj.11-181990 

28.  Bisanz JE, Enos MK, Mwanga JR, et al (2014) Randomized open-label pilot study 
of the influence of probiotics and the gut microbiome on toxic metal levels in 
Tanzanian pregnant women and school children. MBio 5:e01580-14. 
https://doi.org/10.1128/mBio.01580-14 

29.  Zhang W, Guo R, Yang Y, et al (2016) Long-term effect of heavy-metal pollution 
on diversity of gastrointestinal microbial community of Bufo raddei. Toxicol Lett. 
https://doi.org/10.1016/j.toxlet.2016.07.003 

30.  Coryell M, McAlpine M, Pinkham N V., et al (2018) The gut microbiome is 
required for full protection against acute arsenic toxicity in mouse models. Nat 
Commun 9:5424. https://doi.org/10.1038/s41467-018-07803-9 

31.  Senderovich Y, Halpern M (2013) The protective role of endogenous bacterial 
communities in chironomid egg masses and larvae. ISME J 7:2147–2158. 
https://doi.org/10.1038/ismej.2013.100 

32.  Lemly AD (2004) Aquatic selenium pollution is a global environmental safety 
issue. Ecotoxicol Environ Saf 59:44–56. https://doi.org/10.1016/S0147-
6513(03)00095-2 

33.  Douglas AE (2015) Multiorganismal insects: Diversity and function of resident 
microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-
ento-010814-020822 



 45 

34.  Engel P, Kwong WK, McFrederick QS, et al (2016) The bee microbiome: Impact 
on bee health and model for evolution and ecology of host-microbe interactions. 
MBio 7:e02164-15. https://doi.org/10.1128/mBio.02164-15 

35.  Botías C, David A, Hill EM, Goulson D (2017) Quantifying exposure of wild 
bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. 
Environ Pollut 222:73–82. https://doi.org/10.1016/j.envpol.2017.01.001 

36.  Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect 
bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288–
19292. https://doi.org/10.1073/pnas.1110474108 

37.  Koch H, Schmid-Hempel P (2011) Bacterial communities in Central European 
bumblebees: Low diversity and high specificity. Microb Ecol 62:121–133. 
https://doi.org/10.1007/s00248-011-9854-3 

38.  Kwong WK, Medina LA, Koch H, et al (2017) Dynamic microbiome evolution in 
social bees. Sci Adv 3:e1600513. https://doi.org/10.1126/sciadv.1600513 

39.  Martinson VG, Danforth BN, Minckley RL, et al (2011) A simple and distinctive 
microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628. 
https://doi.org/10.1111/j.1365-294X.2010.04959.x 

40.  Powell JE, Ratnayeke N, Moran NA (2016) Strain diversity and host specificity in 
a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 25:4461–
4471. https://doi.org/10.1111/mec.13787 

41.  Palmer-Young EC, Raffel TR, McFrederick QS (2018) Temperature-mediated 
inhibition of a bumblebee parasite by an intestinal symbiont. Proc R Soc B Biol 
Sci 285:20182041. https://doi.org/10.1098/rspb.2018.2041 

42.  Maes P, Rodrigues P, Oliver R, et al (2016) Diet related gut bacterial dysbiosis 
correlates with impaired development, increased mortality and Nosema disease in 
the honey bee Apis mellifera. Mol Ecol 25:5439–5450. 
https://doi.org/10.1111/mec.13862 

43.  Zheng H, Powell JE, Steele MI, et al (2017) Honeybee gut microbiota promotes 
host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad 
Sci USA 114:4775–4780. https://doi.org/10.1073/pnas.1701819114 

44.  Zheng H, Nishida A, Kwong WK, et al (2016) Metabolism of toxic sugars by 
strains of the bee gut symbiont Gilliamella apicola. MBio 7:e01326-16. 
https://doi.org/10.1128/mBio.01326-16 

45.  Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple 
gut microbiota of the honey bee. Proc Natl Acad Sci U S A 109:11002–11007. 
https://doi.org/10.1073/pnas.1202970109 



 46 

46.  Kwong WK, Mancenido AL, Moran NA (2017) Immune system stimulation by the 
native gut microbiota of honey bees. R Soc Open Sci 4:170003. 
https://doi.org/10.1098/rsos.170003 

47.  Billiet A, Meeus I, Van Nieuwerburgh F, et al (2016) Impact of sugar syrup and 
pollen diet on the bacterial diversity in the gut of indoor-reared bumblebees 
(Bombus terrestris). Apidologie 47:548–560. https://doi.org/10.1007/s13592-015-
0399-1 

48.  Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host 
specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U 
S A 111:11509–11514. https://doi.org/10.1073/pnas.1405838111 

49.  Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of 
acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ 
Microbiol 80:7378–7387. https://doi.org/10.1128/AEM.01861-14 

50.  Therneau TM (2015) coxme: Mixed Effects Cox Models 

51.  Therneau TM (2015) A Package for Survival Analysis in S 

52.  Kassambara A, Kosinski M (2018) survminer: Drawing Survival Curves using 
“ggplot2” 

53.  Engel P, James RR, Koga R, et al (2013) Standard methods for research on Apis 
mellifera gut symbionts. J Apic Res 52:1–24. 
https://doi.org/10.3896/IBRA.1.52.4.07 

54.  Pennington MJ, Rothman JA, Jones MB, et al (2017) Effects of contaminants of 
emerging concern on Megaselia scalaris (Lowe, Diptera: Phoridae) and its 
microbial community. Sci Rep 7:8165. https://doi.org/10.1038/s41598-017-08683-
7 

55.  Pennington MJ, Rothman JA, Jones MB, et al (2018) Effects of contaminants of 
emerging concern on Myzus persicae (Sulzer, Hemiptera: Aphididae) biology and 
on their host plant, Capsicum annuum. Environ Monit Assess 190:125. 
https://doi.org/10.1007/s10661-018-6503-z 

56.  McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial 
community composition in brood provisions of a small carpenter bee. Mol Ecol 
25:2302–2311. https://doi.org/10.1111/mec.13608 

57.  Pennington MJ, Rothman JA, Dudley SL, et al (2017) Contaminants of emerging 
concern affect Trichoplusia ni growth and development on artificial diets and a 
key host plant. Proc Natl Acad Sci 114:E9923–E9931. 
https://doi.org/10.1073/pnas.1713385114 



 47 

58.  Rothman JA, Carroll MJ, Meikle WG, et al (2018) Longitudinal effects of 
supplemental forage on the honey bee (Apis mellifera) microbiota and inter- and 
intra-colony variability. Microb Ecol. https://doi.org/10.1007/s00248-018-1151-y 

59.  Kembel SW, O’Connor TK, Arnold HK, et al (2014) Relationships between 
phyllosphere bacterial communities and plant functional traits in a neotropical 
forest. Proc Natl Acad Sci USA 111:13715–13720. 
https://doi.org/10.1073/pnas.1216057111 

60.  Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast 
contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial 
communities. J Microbiol Methods 95:149–155. 
https://doi.org/10.1016/j.mimet.2013.08.007 

61.  Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of 
bacterial load by real-time PCR using a broad-range (universal) probe and primers 
set. Microbiology 148:257–266. https://doi.org/10.1099/00221287-148-1-257 

62.  Meeus I, De Graaf DC, Jans K, Smagghe G (2009) Multiplex PCR detection of 
slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-
range primers. J Appl Microbiol 109:no-no. https://doi.org/10.1111/j.1365-
2672.2009.04635.x 

63.  Bolyen E, Rideout JR, Dillon MR, et al (2018) QIIME 2 : Reproducible, 
interactive, scalable, and extensible microbiome data science. PeerJ 9–10. 
https://doi.org/10.7287/peerj.preprints.27295v2 

64.  Callahan BJ, McMurdie PJ, Rosen MJ, et al (2016) DADA2: High-resolution 
sample inference from Illumina amplicon data. Nat Methods 13:581–583. 
https://doi.org/10.1038/nmeth.3869 

65.  Bokulich NA, Kaehler BD, Rideout JR, et al (2018) Optimizing taxonomic 
classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-
classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z 

66.  Quast C, Pruesse E, Yilmaz P, et al (2013) The SILVA ribosomal RNA gene 
database project: Improved data processing and web-based tools. Nucleic Acids 
Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219 

67.  Salter SJ, Cox MJ, Turek EM, et al (2014) Reagent and laboratory contamination 
can critically impact sequence-based microbiome analyses. BMC Biol 12:87. 
https://doi.org/10.1186/s12915-014-0087-z 

68.  Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol Biol Evol 30:772–80. 
https://doi.org/10.1093/molbev/mst010 



 48 

69.  Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-
likelihood trees for large alignments. PLoS One 5:e9490 

70.  Chen J, Bittinger K, Charlson ES, et al (2012) Associating microbiome 
composition with environmental covariates using generalized UniFrac distances. 
Bioinformatics 28:2106–13. https://doi.org/10.1093/bioinformatics/bts342 

71.  R Core Team (2018) R: A language and environment for statistical computing 

72.  Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: Community Ecology 
Package 

73.  Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. 
https://doi.org/10.1186/s13059-014-0550-8 

74.  Fox J, Weisberg S (2011) An {R} Companion to Applied Regression, Second 
Edition. 

75.  Aziz RK, Bartels D, Best AA, et al (2008) The RAST Server: rapid annotations 
using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-
2164-9-75 

76.  Overbeek R, Begley T, Butler RM, et al (2005) The subsystems approach to 
genome annotation and its use in the project to annotate 1000 genomes. Nucleic 
Acids Res 33:5691–5702. https://doi.org/10.1093/nar/gki866 

77.  Bateman A, Martin MJ, O’Donovan C, et al (2017) UniProt: the universal protein 
knowledgebase. Nucleic Acids Res 45:D158–D169. 
https://doi.org/10.1093/nar/gkw1099 

78.  Kesnerova L, Mars RAT, Ellegaard KM, et al (2017) Disentangling metabolic 
functions of bacteria in the honey bee gut. PLOS Biol 15:e2003467. 
https://doi.org/10.1371/journal.pbio.2003467 

79.  Lindblow-Kull C, Kull FJ, Shrift A (1985) Single transporter for sulfate, selenate, 
and selenite in Escherichia coli K-12. J Bacteriol 163:1267–1269 

80.  Guzzo J, Dubow MS (2000) A novel selenite- and tellurite-inducible gene in 
Escherichia coli. Appl Environ Microbiol 66:4972–8. 
https://doi.org/10.1128/AEM.66.11.4972-4978.2000 

81.  Ledgham F, Quest B, Vallaeys T, et al (2005) A probable link between the DedA 
protein and resistance to selenite. Res Microbiol 156:367–374. 
https://doi.org/10.1016/j.resmic.2004.11.003 

82.  Forchhammer K, Bock A (1991) Selenocysteine synthase from Escherichia coli. J 
Biol Chem 266:6324–6328 



 49 

83.  Rother M, Wilting R, Commans S, Böck A (2000) Identification and 
characterisation of the selenocysteine-specific translation factor SelB from the 
archaeon Methanococcus jannaschii. J Mol Biol 299:351–358. 
https://doi.org/10.1006/JMBI.2000.3756 

84.  Veres Z, Tsai L, Scholz TD, et al (1992) Synthesis of 5-methylaminomethyl-2-
selenouridine in tRNAs: 31P NMR studies show the labile selenium donor 
synthesized by the selD gene product contains selenium bonded to phosphorus. 
Proc Natl Acad Sci 89: 

85.  Veres Z, Stadtman TC (1994) A purified selenophosphate-dependent enzyme from 
Salmonella typhimurium catalyzes the replacement of sulfur in 2-thiouridine 
residues in tRNAs with selenium. Proc Natl Acad Sci 91: 

86.  Raymann K, Motta EVS, Girard C, et al (2018) Imidacloprid decreases honey bee 
survival rates but does not affect the gut microbiome. Appl Environ Microbiol 
84:AEM.00545-18. https://doi.org/10.1128/AEM.00545-18 

87.  Pinder LC V (1986) Biology of freshwater chironomidae. Ann Rev Entornol 31:1–
23 

88.  Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome 
datasets are compositional: And this is not optional. Front Microbiol 8:2224. 
https://doi.org/10.3389/fmicb.2017.02224 

89.  Chapple CE, Guigó R (2008) Relaxation of selective constraints causes 
independent selenoprotein extinction in insect genomes. PLoS One 3:e2968. 
https://doi.org/10.1371/journal.pone.0002968 

90.  Sadd BM, Barribeau SM, Bloch G, et al (2015) The genomes of two key 
bumblebee species with primitive eusocial organization. Genome Biol 16:76. 
https://doi.org/10.1186/s13059-015-0623-3 

91.  Näpflin K, Schmid-Hempel P (2016) Immune response and gut microbial 
community structure in bumblebees after microbiota transplants. Proc R Soc B 
Biol Sci 283:20160312. https://doi.org/10.1098/rspb.2016.0312 



 50 

 

 



 51 

Figure 2.1: Survival plot of the fully factorial experiment 2. Microbiome-inoculated bees 

lived significantly longer than uninoculated bees when challenge with 0.75 mg/L sodium 

selenate (N = 160, Z = -3.12, P = 0.002). Microbe inoculation did not affect mortality 

when compared to uninoculated bees in our controls (N = 80, Z = -0.57, P = 0.57). 

Shaded areas signify 95% confidence intervals, and dashed lines indicate 50% survival 

probability.
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Figure 2.2: Stacked bar plot showing the relative proportion of bacterial genera that were 

present at greater than 0.1% abundance in each sample. Individual sample treatments are 

indicated by “C” for control and “Se” for selenate exposure, and colony of origin is 

denoted by H3, H6 or H9. 
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Figure 2.3: A) Nonmetric Multidimensional Scaling (stress= 0.18) and B) Principal 

Coordinates Analysis plot of the Generalized UniFrac distance matrices of individual 

bumble bee worker guts when exposed to sodium selenate versus controls. Red points 

indicate control treatments and blue points denote selenate treatments. Colored ellipses 

designate 95% confidence intervals around the centroid median of the points.
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Figure 2.4: Log2fold change of the proportionally differentially abundant Exact Sequence 

Variants as measured by DESeq2 between selenate-treated bees and controls, colored by 

genus. We analyzed ESVs that were present in at least 1% proportional abundance, and 

each of the illustrated ESVs were found to be significantly different (Padj < 0.05). Error 

bars denote the standard error of the Log2fold change. 
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Figure 2.5: Bar plots of the effects of sodium selenate exposure on Snodgrassella alvi and 

Lactobacillus bombicola growth after 48 hours. Growth was not significantly affected for 

either S. alvi (F(5,12) = 2.389, P = 0.101) or L. bombicola (F(5,12) = 0.282, P = 0.914) at 

any concentration. Error bars denote standard error. 
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Chapter Three: 

The effects of cadmium, copper, selenate, hydrogen peroxide, and imidacloprid on 

the bumble bee microbiome and the lethality of these compounds 



 61 

Abstract 

 

Bumble bees (Bombus spp.) are important and widespread insect pollinators that 

can be exposed to environmental toxicants through foraging upon plants growing in 

contaminated soils. How these compounds affect the bumble bee microbiome, which 

confers many health benefits to the host, is an important but unknown aspect of bee 

health. As these toxicants take many forms, we exposed Bombus impatiens workers to 

varying concentrations of selenate, cadmium, copper, the neonicotinoid pesticide 

imidacloprid, and hydrogen peroxide spiked into their diet. We first measured each 

chemicals’ LC50. Due to the importance of the microbiome, we also exposed bumble bee 

workers to sublethal concentrations of each chemical and sequenced the 16S rRNA gene 

to survey their gut microbial communities. We show that each compound tested except 

imidacloprid significantly altered the composition of the bee microbiome and may cause 

gut dysbiosis. Lastly, we annotated bumble bee symbiont genomes to understand the 

potential genomic basis for toxicant tolerance and show that there is inter-strain variation 

in the symbionts’ genomic repertoire. Overall, our study shows that environmental 

toxicants can cause bee mortality and affect the bee microbiome. 
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Introduction 
 

Bumble bees (Bombus spp.) are valuable pollinators for both managed crops and 

wild flowering plants worldwide [1]. For example, wild bumble bees were found to  

provide sufficient pollination services at a majority of watermelon farms in the Eastern 

United States [2]. Over one million managed bumble bee colonies per year are 

responsible for the pollination of many greenhouse-grown crops [3]. It is therefore 

worrisome that bumble bee populations are declining in both Europe [4] and North 

America [5], with the main contributors likely being habitat destruction, pesticides, and 

disease [6, 7]. While these stressors are likely the major causes of bee decline, other 

environmental insults such as foraging on metal- and metalloid-contaminated food 

sources can negatively impact honey bees living in polluted areas [8, 9], and effects of 

these toxicants on other bee species such as bumble bees warrants further investigation. 

 Bumble bees harbor a distinct gut microbiome that is largely consistent 

worldwide and mainly contains members from the bacterial genera Bombiscardovia, 

Bifidobacterium, Gilliamella, Lactobacillus, Candidatus Schmidhempelia, and 

Snodgrassella [10–14], although a second, possibly pathogen-associated enterotype has 

also been identified [15]. As with other eusocial bees, this simple microbiota is mainly 

transmissible through contact between members of the colony, which ultimately 

maintains a strong symbiotic fidelity between the bees and their microbial associates 

[13]. While the members of the microbiome remain generally consistent, factors such as 

land cover and forage availability [16, 17], antibiotic exposure [18] Nosema infection, 

[19], and pesticides [20] have been shown to alter the proportions of individual taxa of 
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the gut microbial community. The bee microbiome positively affects bee health, 

including protection against the trypanosome pathogens Crithidia [11, 21] and Lotmaria 

[22], metabolism of toxic sugars and weight gain [23], immune system stimulation [24], 

and defense against the opportunistic bacterial pathogen Serratia marcescens [25]. 

Similarly, in the absence of a healthy microbiome, bees experience increased mortality 

[26], gut epithelial scabs [27], and possible multi-disease infections [28].  

 While flowers provide the nutrition that nearly all bees need to thrive, flowers can 

also harbor compounds that are toxic to bees. Some of the toxicants that occur in pollen 

and nectar are translocated from contaminated soils, while others are used as plant 

defenses. For example, selenium and its ions are found throughout many environments, 

having been deposited by industry and leaching from seleniferous soils [29]. Copper can 

be deposited from mining [30] and agricultural use as a broad-spectrum biocide [31]. 

Cadmium is a toxic, non-essential metal found in polluted soils near production of 

batteries, pigments, and metal alloys [32] and is considered a worldwide health concern. 

Bees also encounter non-metallic compounds such as imidacloprid, an extremely toxic 

manmade neonicotinoid insecticide widely used for pest control in agriculture [33] and 

hydrogen peroxide, a defense compound commonly found in flower nectar [34] that bees 

can encounter during floral visitation.  

Bees can contact selenium ions, copper, or cadmium by foraging on the pollen 

and nectar of plants growing in contaminated areas, and in turn will bring these pollutants 

back to their colony [35]. For example, the hyperaccumulator plant Stanleya pinnata can 

biomagnify selenium into its nectar at concentrations over 2000 mg/L [36]. Little 
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research has been done on the toxicity of these elements on bumble bees, as only the 

Median Lethal Concentration (the concentration of a substance that will kill 50% of a 

population after a certain amount of time; hereafter LC50) for cadmium has been 

established in Bombus terrestris [37]. Similarly, the LC50 of selenium ions, copper, and 

cadmium is known in honey bees as reported by Hladun et al. in 2012 [38] and Di et al. 

in 2016 [39] but has not been reported in B. impatiens. The LC50 of imidacloprid has been 

established for several species of bee including Apis mellifera, Bombus impatiens, Osmia 

lignaria, and Megachile rotundata along with deleterious effects at sublethal 

concentrations ranging from reduced feeding to inhibiting the proboscis extension 

response to death [40], and there is no known literature on the lethality of hydrogen 

peroxide on any bee species. 

 The effects of metals and metalloids on the microbiomes of animals is emerging 

as an integral part of the ecotoxicology of harmful compounds [41]. Cadmium [42], 

selenium [43], and copper [44] alter mouse microbiomes, while cadmium alters spider 

and carp microbiomes [45, 46], and copper and cadmium affect Mongolian Toad 

microbiomes [47]. The effects of imidacloprid have been shown to alter the larval 

microbial community of Drosophila melanogaster [48], although conversely, did not 

affect the microbiome of honey bees [49]. Lastly, reactive oxygen species (ROS; as 

measured by hydrogen peroxide) reduced the abundance of alimentary tract bacteria in 

Aedes aegypti mosquitos, which indicates a sensitivity of gut microbes to ROS [50]. The 

microbiome potentially protects its host from metal(loid) toxicity: Chironomid-associated 

bacteria detoxified chromium and lead [51], in mice models, microbes detoxified copper 
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[52], and arsenic [53], beetle larvae-associated bacteria reduced selenite [54], and the 

microbiome of bumble bees reduced selenate-induced mortality [55].  

Given the importance of environmental toxicants and the microbiome in host 

health, we investigated the interactions between multiple poisons, B. impatiens, and its 

associated microbes. We addressed three major questions: First: What is the lethality of 

these toxicants to bumble bees? Second: Does selenate, copper, cadmium, imidacloprid 

or hydrogen peroxide affect the bumble bee microbial community and if so, how? Third: 

Are there genes associated with detoxification to those compounds in major bumble bee 

gut symbionts and do those genes vary between strains of Snodgrassella alvi and 

Gilliamella apicola? 
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Materials and Methods 
 

Bumble bee rearing and determination of the bumble bee LC50 for each compound 

 

 In order to establish the LC50 (concentration of a substance that causes mortality 

in 50% of a population) we purchased 10 new commercial bumble bee (Bombus 

impatiens) colonies from Koppert Biological Systems, Inc. (Howell, MI) that contained a 

mated queen, pollen, and proprietary sugar solution. We immediately replaced the 

proprietary sugar solution with 60% sucrose and provided the colonies with pollen patties 

ad libitum. To allow the colonies to develop, we kept them under constant darkness at 

29°C at the University of California, Riverside. We allowed the colonies to populate 

undisturbed for two weeks before starting the experiment, then collected 60 bees from 

each of three colonies (N = 180 bees for each treatment) and sorted them by colony into 

cohorts of five bees in 475mL polypropylene containers (WebstaurantStore, Lancaster, 

PA). We exposed the bees to the following treatments: 10 mg/L, 1.0 mg/L, 0.1 mg/L, 

0.01 mg/L, 0.001 mg/L, and 0 mg/L spiked into 60% sucrose for sodium selenate, 

cadmium chloride, and imidacloprid. We used the concentrations of 100 mg/L, 10 mg/L, 

1.0 mg/L, 0.1 mg/L, 0.01 mg/L and 0 mg/L copper chloride spiked into 60% sucrose, and 

1.25 mM, 1.0 mM, 0.5 mM, 0.25mM, 0.01 mM, 0.001 mM, 0.0001 mM, and 0 mM 

hydrogen peroxide spiked into 60% sucrose. We allowed the bees to feed ad libitum for 

14 days while we recorded mortality daily and used R to calculate statistical values 

through ANVOA tests and the R package “drc” [56] to calculate LC50 values. 

 



 67 

Bumble bee microbiome response to sub-lethal doses of toxicants 

 

We purchased three bumble bee colonies from Koppert Biological Systems, Inc 

and reared the bees in the same manner as above. To expose bees to toxicants, we 

isolated 60 mature workers from each colony (N = 180) in 60mL polypropylene 

containers (WebstaurantStore, Lancaster, PA). We exposed bees to the chemical 

treatments by chronically feeding 30 bees 60% sucrose spiked with either 0.25 mg/L 

cadmium chloride (Sigma Aldrich, St. Louis, MO), 0.5 mg/L sodium selenate (Alfa 

Aesar, Ward Hill, MA), 25 mg/L copper chloride (Sigma Aldrich, St. Louis, MO), 0.001 

mg/L imidacloprid (Sigma Aldrich, St. Louis, MO), 0.85 mg/L hydrogen peroxide 

(Fisher Scientific, Waltham, MA), or 60% sucrose as a control (N = 30 per treatment). 

We allowed the bees to feed on either toxicant-spiked or control sucrose ad libitum for 

four days and then stored the bees at -80°C. 

 

DNA extractions and 16S rRNA gene sequencing library preparation  

  

 We used a DNA extraction protocol based on Engel et al 2013, [57], Pennington 

et al 2017 [58], and Rothman et al 2018 [59]. We first surface sterilized the bees using a 

0.1% sodium hypochlorite wash followed by three rinses with ultrapure water. We then 

used sterile forceps to dissect the whole gut out of each bee and transferred the gut into 

DNeasy Blood and Tissue Kit lysis plates (Qiagen, Valencia, CA) containing 

approximately 100 µL of 0.1mm glass beads, one 3.4mm steel-chrome bead (Biospec, 



 68 

Bartlesville, OK) and 180 µL of buffer ATL, followed by homogenization with a Qiagen 

Tissuelyser at 30 Hz for 6 minutes. We followed the remainder of the Qiagen DNeasy 

Blood and Tissue Kit protocol after homogenization. We also included four blanks to 

control for reagent contamination, which we extracted, prepared and sequenced in the 

same way as samples.  

We prepared 16S rRNA gene libraries for paired-end Illumina MiSeq sequencing 

using the protocol from McFrederick and Rehan 2016 [60], Pennington et al. 2017 [61] 

and Rothman et al. 2018 [17]. We incorporated the 16S rRNA gene primer sequence, 

unique barcode sequence, and Illumina adapter sequence as in [62]. We used the primers 

799F-mod3 [63] and 1115R [62] to amplify the V5-V6 region of the 16S rRNA gene. We 

used the following reaction conditions for PCR: 4 µL of template DNA, 0.5 µL of 10µM 

799F-mod3, 0.5 µL of 10µM 1115R, 10 µL PCR grade water and 10 µL Pfusion DNA 

polymerase (New England Biolabs, Ipswich, MA), and an annealing temperature of 52°C 

for 30 cycles in a C1000 Touch thermal cycler (BioRad, Hercules, CA). We then 

removed excess primers and dNTPs with a PureLink Pro 96 PCR Purification Kit 

(Invitrogen, Carlsbad, CA). We used the cleaned PCR products as template for a second 

PCR reaction using 1 µL of the cleaned PCR amplicons as a template with the primers 

PCR2F and PCR2R to complete the Illumina adapter sequence [62]. We performed PCR 

with the following reaction conditions: 0.5 µL of 10µM forward primer, 0.5 µL of 10µM 

reverse primer, 1 µL of template, 13 µL of ultrapure water and 10 µL of Pfusion DNA 

polymerase at an annealing temperature of 58°C for 15 cycles. We normalized the 

resulting libraries with a SequalPrep Normalization kit by following the supplied protocol 
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(ThermoFisher Scientific, Waltham, MA). We pooled 5 µL of each normalized library 

and performed a final clean up with a single column PureLink PCR Purification Kit. We 

checked the normalized amplicons on a 2100 Bioanalyzer (Agilent, Santa Clara, CA) and 

sequenced the multiplexed libraries using a V3 Reagent Kit at 2 X 300 cycles on an 

Illumina MiSeq Sequencer (Illumina, San Diego, CA) in the UC Riverside Genomics 

Core Facility. Raw sequencing data are available on the NCBI Sequence Read Archive 

(SRA) under accession numbers SRR6788889 – SRR6789022, and microbiome data of 

selenate versus control treatments have been published in Rothman et al. 2019 [55]. 

 

Microbiome bioinformatics and statistics 

 

We used QIME2-2018.6 [64] to process the 16S rRNA gene sequence libraries. 

First, we trimmed the low-quality ends off the reads with QIIME2 and then used DADA2 

[65] to bin our sequences into exact sequence variants (ESVs; 16S rRNA gene sequences 

that are 100% matches), remove chimeras, and remove reads with more than two 

expected errors. We assigned taxonomy to the ESVs using the q2-feature-classifer [66] 

trained to the 799-1115 region of the 16S rRNA gene with the SILVA database [67]. We 

also conducted local BLASTn searches against the NCBI 16S microbial database (July 

2018). We filtered out ESVs from the resulting feature table that corresponded to reagent 

contaminants as identified in our blanks or were assigned as chloroplast or mitochondria 

by the feature-classifier. We used the MAFFT aligner [68] and FastTree v2.1.3 to 

generate a phylogenetic tree of our sequences [69]. We then used this tree and ESV table 
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to analyze alpha diversity and to tabulate UniFrac distance matrices. We visualized the 

UniFrac distances through two-dimensional Non-metric Multidimensional Scaling 

(NMDS) and Principal Coordinates Analysis (PCoA) with the R package “ggplot2” [70]. 

We analyzed the alpha diversity of our samples through the Shannon Diversity Index and 

the Kruskal-Wallis test in QIIME2. Lastly, we tested our beta diversity data for statistical 

significance in R v3.5.1 [71] with the packages “vegan” [72] and “DESeq2” [73]. 

 

Genome annotations 

  

 To identify the genomic basis for toxicant tolerance/susceptibility we annotated 

the genomes of bee symbionts with The RAST Server (Rapid Annotations using 

Subsystems Technology) [74] using whole genome sequencing data obtained from the 

National Center for Biotechnology Information (NCBI). We annotated genomes from 

strains of the following species: Bifidobacterium bombi, Bifidobacterium commune, 

Bombiscardovia coagulans, Candidatus Schmidhempelia bombi, Commensalibacter 

intestini, Gilliamella apicola, Lactobacillus bombicola, Serratia marcescens, and 

Snodgrassella alvi. 
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Results 
 

Bumble bee mortality and LC50 results to chemical exposure 

  

 We found that each of the compounds tested significantly reduced B. impatiens 

survivorship after seven days of continuous exposure: Selenate (F(5,30) = 30.04, P < 0.001, 

Tukey’s HSD Padj < 0.05 for 1 and 10 mg/L), imidacloprid (F(5,30) = 15.18, P < 0.001, 

Tukey’s HSD Padj < 0.05 for 0.1, 1, and 10 mg/L), cadmium (F(5,30) = 24.03, P < 0.001, 

Tukey’s HSD Padj < 0.05 for 1 and 10 mg/L), copper (F(5,30) = 19.29, P < 0.001, Tukey’s 

HSD Padj < 0.05 for 100 mg/L only), and hydrogen peroxide (F(10,40) = 31.54, P < 0.001, 

Tukey’s HSD Padj < 0.05 for 0.5, 0.75, 1, and 1.25 mM). We also calculated the LC50 

after seven days continuous exposure for each of the toxicants: Selenate: 0.78 mg/L, 

imidacloprid: 0.28 mg/L, cadmium: 0.86 mg/L, copper: 70.8 mg/L, and hydrogen 

peroxide 0.12 mM (Fig. 3.1). We exposed bees to treatments for a total of 14 days, but 

we found high mortality in the control treatments after seven days, so we did not 

calculate LC50 concentrations for the later time points. 

 

Amplicon sequencing alpha diversity and library statistics 

 

 We obtained 743,529 quality-filtered 16S rRNA gene sequences with a mean 

frequency of 5,467 reads per sample (N = 136) that were clustered into 113 Exact 

Sequence Variants (ESVs; sequences that are 100% identical). We determined that our 

samples had a representative coverage of bacterial diversity at a sequencing depth of 
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2,182 reads through rarefaction analysis, as the curves reached saturation at 

approximately 1,110 reads. Overall, alpha diversity was significantly different due to 

treatment (Shannon’s H = 24.21, P < 0.001), although pairwise Kruskal-Wallis testing 

indicated that only selenate treatments had significantly higher diversity as compared to 

controls (Benjamini-Hochberg corrected Padj < 0.05). 

 

Beta diversity and differential abundance of bacterial taxa 

 

 Regardless of treatment, we found that the gut communities of our samples were 

composed of bacteria of the genera Gilliamella, Snodgrassella, Lactobacillus, 

Bifidobacterium, Bombiscardovia, Commensalibacter, and Serratia, while other genera 

accounted for less than 1% of the relative abundance. To clearly visualize the bumble bee 

gut microbiota, we graphed the taxonomy of bacteria present in greater than 1% 

proportional relative abundance in each sample as a stacked bar plot (Fig. 3.2) and beta-

diversity through Principal Components Analysis (PCA, Fig. 3.3), with only copper 

clearly clustering separately from control. We analyzed the Generalized UniFrac distance 

matrix of our samples with Adonis (999 permutations PERMANOVA) using both colony 

and treatment as covariates and found that overall, there was a significant effect of 

treatment (F = 4.57, R2 = 0.14, P < 0.001), colony (F = 6.71, R2 = 0.08, P < 0.001) and 

interaction of these factors (F = 1.63, R2 = 0.10, P < 0.001). As we had multiple separate 

treatments in our experiment, we analyzed the pairwise interactions between each unique 

treatment versus control and found that each treatment except imidacloprid caused a 
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significant change to the beta diversity of the bees’ microbiomes (Benjamini-Hochberg 

corrected for each treatment Padj < 0.02; imidacloprid: Padj = 0.96). 

 We used the R package “DESeq2” to observe changes in the relative proportional 

abundances of ESVs in our treatments versus controls. Several ESVs significantly 

differed in abundance (Padj = < 0.05, Fig. 3.4): In cadmium treatments: one 

Commensalibacter ESV; copper treatments: two Serratia, four Gilliamella, two 

Bombiscardovia, one Commensalibacter, and two Lactobacillus ESVs; hydrogen 

peroxide: one Commensalibacter ESV; selenate treatments: two Commensalibacter, two 

Lactobacillus, two Snodgrassella, and two Gilliamella ESVs; lastly, we did not find any 

differentially abundant ESVs in our imidacloprid-treated bees. 

 

Genomic basis of chemical resistance 

 

 Through our RAST annotations, we identified several genes that are involved in 

resistance to the compounds assayed in our experiments. We used the following RAST 

subsystems to narrow our searches: “Cobalt-zinc-cadmium resistance”, “copper 

homeostasis”, “copper homeostasis copper tolerance”, “copper transport system”, 

“oxidative stress tolerance”, “selenate/selenite uptake”, and “selenocysteine metabolism”. 

Several bee symbionts and other bacteria identified by our next-generation sequencing 

study had some or all of the following genes annotated in their genomes. For selenium 

ion resistance, we found genes corresponding to the selenium ion transporters DedA [75], 

TsgA [76], and putative selenium ion and sulfate importer CysA [77]. For cadmium ion 
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resistance, we found the genes CzcABC, which encode the components of a cation 

transporter [78], along with its response regulator CzcD [79], and a cadmium-responsive 

transcriptional regulator, CadR [80]. We identified the following genes involved in 

copper resistance: A copper-translocating ATPase [81], two copper-binding multicopper 

oxidases [82, 83] (SufI and CueO, respectively), genes encoding the likely copper-

binding proteins ScsABCD and CutEF [84], components of a copper-sequestering protein 

complex CopCD [85], and a copper-responsive transcriptional regulator, CueR [86]. 

Lastly, we searched for genes involved in responding to oxidative stress and found genes 

encoding the antioxidant DNA binding protein Dps [87], paraquat-inducible superoxide 

dismutase (SOD) PqiAB, Mn- and Fe-SODs [88], the SOD response regulon SoxS [89], a 

LysR-family peroxide-inducible transcriptional regulator [90], ferroxidase, a ferric uptake 

regulation protein (FUR) [91], the zinc/copper uptake regulation protein Zur, which may 

protect against oxidative stress [92], the antioxidant gene NnrS [93], an Fnr-like 

transcriptional regulator [94], catalase/peroxidase [95], and alkyl hyperoxide reductase C 

(AhpC) [96]. As S. alvi and G. apicola genomes are known to vary widely between 

strains [97, 98] and there are several genomes for each taxon publicly available, we 

specifically compared the above-mentioned detoxification/tolerance genes across strains 

within these species (53 strains of S. alvi and 67 strains of G. apicola). We found that G. 

apicola had notable variation across genes involved in responding to oxidative stress 

(specifically NnrS, SoxS, Fnr, and catalase), copper tolerance (the copper-translocating 

ATPase and SufI), cadmium tolerance (CadR), and overall selenate tolerance. There was 

less overall variation in detoxification/tolerance genes across S. alvi strains: We found 
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strain variation in copper (CueR, CueO, and the copper-translocating ATPase) and 

cadmium tolerance (CzcA and CadR), while there was no genetic variation in oxidative 

stress response or selenate tolerance (Fig. 3.5). 
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Discussion 
 

 The bumble bee microbiome is affected by exposure to selenium, cadmium, 

copper, and hydrogen peroxide, but not the insecticide imidacloprid. Furthermore, there 

are individual ESVs of symbiotic or pathogenic bacteria that are tolerant or susceptible to 

these chemicals. When bumble bees forage for pollen and nectar, they are likely often 

also obtaining compounds that alter the composition of their gut microbiomes. Antibiotic 

perturbation to the honey bee gut microbiome increases mortality and alters the bees’ 

susceptibility to the opportunistic pathogen Serratia [18], and it is likely that 

environmental toxicants have similar effects. As we were not able to assess mortality in 

germ-free versus bees with conventional microbiomes in our current work, however, 

future work elucidating the fitness consequences of the toxicant-induced microbiome 

perturbations that we show here is needed. Previous studies have examined whether the 

microbiome is affected by poisons in honey bees or Drosophila melanogaster exposed to 

imidacloprid [48, 49], mice to cadmium or copper [44], spiders and carp to cadmium [45, 

46], and bumble bees to selenate [55]. We extend this work by screening a broad panel of 

toxicants and further show that members of the bee microbiota vary in their tolerance to 

the chemicals. While other studies have isolated metal-tolerant [51, 99, 100], and 

imidacloprid-tolerant microbes [49] from animal hosts, ours is the first to study the 

effects of metal(loid)s and peroxide on the entire microbial community. Lastly, we 

establish the LC50 of each of the tested chemicals in the common eastern bumble bee, 

Bombus impatiens, showing that field-realistic doses of most of these chemicals can 

cause mortality.  
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 By exposing bees to either selenate, cadmium, copper, imidacloprid or hydrogen 

peroxide, we show that each toxicant is lethal to bumble bees in varying concentrations. 

For example, the seven-day LC50 for selenate is under that which bees can commonly 

encounter on flowers in contaminated areas [101]. Bombus impatiens is sensitive to 

cadmium, with a seven-day LC50 of 0.86 mg/L, which is within the range of levels found 

in plants growing in polluted soil or in greenhouse experiments [102]. The LC50 of 

bumble bee foragers exposed to copper is similar to honey bee foragers (70.8 mg/L 

versus 72 mg/L) [39]. While these concentrations are above the levels likely encountered 

when foraging on plants in contaminated areas [102], studies have shown that larvae are 

much more sensitive to copper than adult foragers and could be killed by field-relevant 

doses of copper being brought back to the colony [39]. The LC50 of imidacloprid for B. 

impatiens is 0.28 mg/L which is within the scope of previously-reported results [103]. 

Although sub-LC50 doses did not cause significant mortality, it is likely that bees exposed 

to neonicotinoids at sublethal doses suffer other effects, including reduced brood 

production [104], reduced foraging [105], and susceptibility to pathogens [49]. Lastly, we 

show that H2O2 is toxic to bees at an LC50 of 0.12 mM and that bees appeared to avoid 

the highest doses. This represents a fairly low dose, considering that H2O2 can be found 

in the nectar of some plants in concentrations of over 4 mM [34]. While the acute effects 

of consuming peroxide are unknown, our data suggests that bumble bees are sensitive to 

peroxide exposure, possibly due to possessing fewer detoxification genes than most 

insects [106], although we note that honey bees are known to produce H2O2 as an 

immune response [107] and both honey bees and bumble bees are capable of detoxifying 
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physiological H2O2 levels [108, 109]. Our data suggest that exposure to these chemicals 

should be studied further, and studies should focus on the complex interactions between 

bees, gut microbes, parasites, and their environment, so that we may understand more 

about the subtle effects of stressors on pollinator health. 

The bumble bee gut microbiome exhibited a variety of responses to the various 

toxicants that we challenged them with. Copper led to an increase of the opportunistic 

pathogen Serratia, which suggests that this chemical leads to gut dysbiosis, or a departure 

from the normal and presumably healthy gut community (Rayman, Shaffer, Moran 2017, 

Raymann, Coon et al. 2018). Similarly, alpha diversity of the bumble bee microbiome 

increased with selenate exposure. Selenate exposure allowed non-core bacteria to 

proliferate, while core symbiont ESVs were less proportionally abundant, further 

supporting our hypothesis of dysbiosis [110]. Copper exposure had the most dramatic 

effect on the bees’ microbial communities as the samples showed the clearest separation 

in our PCoA ordination and copper exposure changed the proportional abundance of 13 

individual ESVs. When challenged with copper, most ESVs increased in proportional 

abundance, including a striking proportional increase in Serratia. Two G. apicola ESVs 

and two S. alvi ESVs, however, decreased in abundance. The decrease in proportional 

abundance of two G. apicola ESVs is noteworthy, as there were also two G. apicola 

ESVs that significantly increased in abundance, suggesting that there is variation between 

copper tolerance within this taxon, similar to other genomic differences within bee 

symbionts [97]. Lastly, due to the compositional nature of whole-microbiome sequencing 
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data [111], we may simply be seeing an overgrowth of S. marcescens in copper 

treatments and may not truly be reducing the absolute abundance of symbiotic bacteria. 

Genomic analyses suggest putative mechanisms by which the bumble bee gut 

microbiome is affected by copper and selenate. Each core symbiont varies in its 

complement of selenium ion resistance genes, with Bifidobacterium bombi, 

Bombiscardovia coagulans, L. bombicola, and S. alvi [98, 112, 113] all possessing the 

selenate transporter DedA [75], while G. apicola does not. All annotated strains of S. alvi 

possess the sulfate/selenium ion transporter CysA, while some strains of G. apicola 

possess this gene, along with the selenium ion transporter TsgA [76]. There is variation in 

the selenium ion transport genes between strains of G. apicola, with strains having zero 

or one copy of CysA, and zero to three copies of TsgA. Copper resistance genes include: 

the suppressor of copper sensitivity genes ScsABCD and copper tolerance lipoprotein 

genes CutEF [84], multicopper oxidases CueO [83] and SufI [82], cytochrome c heme-

copper lyase [114], Copper Resistance Protein D [114], a copper-responsive 

transcriptional regulator (CueR) [86], and a copper-translocating ATPase. Similar to 

selenium ion tolerance genes, between-strain variation exists in copper tolerance within 

the bacterial species S. alvi and G. apicola: Strains of S. alvi contain varying numbers of 

genes of CueO, CueR, and a copper-translocating ATPase, while G. apicola exhibited 

strain variation in SufI and copper-translocating ATPase genes. The strain variation in G. 

apicola copper translocating genes may underlie the differential abundance of G. apicola 

strains under selenate challenge, although our 16S rRNA gene data do not allow us to 
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determine if the ESVs that became proportionally more abundant have these copper-

translocating genes. 

Cadmium, imidacloprid, and hydrogen peroxide all had moderate (cadmium and 

hydrogen peroxide) to no (imidacloprid) effects on the microbiome. Cadmium 

significantly changed the bumble bees’ bacterial community but resulted in the decreased 

proportional abundance of only one ESV of Commensalibacter. Imidacloprid had no 

significant effects on the diversity of the gut microbiome in B. impatiens. These results 

agree with a previous experiment that found imidacloprid did not affect the microbial 

community of honey bees, and that the bee gut community does not appear to metabolize 

the neurotoxin [49]. As imidacloprid targets acetylcholine receptors in insects [115] it is 

perhaps not surprising that the bumble bee gut microbiome is not affected by this 

insecticide. Hydrogen peroxide modestly changed the microbial community of B. 

impatiens at our field-realistic treatment dose and increased the proportional abundance 

of one ESV of Commensalibacter. Hydrogen peroxide can be found at high levels in 

flower nectar and is thought to be an antimicrobial defense [116], so the bumble bee gut 

microbiome may therefore be routinely and persistently exposed to hydrogen peroxide.  

This history of hydrogen peroxide exposure may explain why each of the 

members of the core bee gut microbiome have various combinations of genes to cope 

with oxidative stress, including: the antioxidant protein Dps [87], H2O2-inducible 

regulator [90], a superoxide response regulator [89], catalase [95], paraquat-inducible- 

and other superoxide dismutases [117], the antioxidant gene NnrS [93], and others. While 

S. alvi did not exhibit any genetic strain variation in oxidative stress response, G. apicola 
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did: There was a variable presence of SoxS and an Fnr regulator, while few strains 

possessed NnrS. Cadmium resistance is not as clear, as Commensalibacter intestini 

possesses a full complement of the genes CzcABC that code for a cadmium efflux pump 

[78], along with two regulators for cadmium resistance [79, 80], but is still susceptible to 

the treatment in vivo. Core bumble bee symbionts’ cadmium resistance pathways are 

more depauperate with Bifidobacterium bombi, Bombiscardovia coagulans, G. apicola, 

L. bombicola, possessing two or fewer cadmium resistance transcriptional regulators 

(CadR), and no functional CzcABC genes [98, 112, 113]. The symbiont G. apicola had 

some variation in CadR, while S. alvi exhibited substantial strain variation, with few 

strains possessing CzcA, and strains containing zero to three copies of CadR. These 

results suggest that individual core members of the bee microbiome are largely resilient 

to cadmium on a community-level scale, and we hypothesize that the bacteria may be 

partitioning the detoxification of cadmium between each other, as has been shown in 

other metabolic processes [98]. 
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Conclusion 

 

 Bees have been recognized for their use as bioindicators to monitor environmental 

pollution [118], and the bee microbiome is rapidly becoming a useful model to study 

host-microbe interactions [119]. Our interdisciplinary study reports the LC50 for selenate, 

cadmium, copper, imidacloprid, and hydrogen peroxide, and shows that the composition 

of the bumble bee microbiome can be altered through exposure to metals, a metalloid, 

and oxidative stress, but not a neonicotinoid pesticide. Through RAST subsystem 

analyses, we identified several potential genomic bases for tolerance or susceptibility to 

each toxicant, and that in some cases, there is substantial between-strain variation in these 

genes in the core gut bacteria S. alvi and G. apicola. This variation suggests that the bee 

gut microbiome harbors diverse strains that may be resilient to various environmental 

challenges. As we have indicated, there is a wide diversity in stress response genes 

between bee symbiont strains, and culture-based toxicology assays should be conducted 

to characterize their individual susceptibility to toxicants in vitro. We suggest that future 

studies investigate the multipartite interactions between host, symbiont and their habitats, 

and the potential for microbiomes and hosts to reciprocally protect each other from 

environmental insults. 
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Figure 3.1: Bar plots indicating the survivorship after seven days when exposed to 

varying doses of cadmium, copper, imidacloprid, hydrogen peroxide, and selenate. Each 

chemical significantly increased mortality after seven days of constant exposure (P < 

0.001). Error bars denote the standard error of the mean, and asterisks indicate which 

concentration of each chemical significantly increased mortality compared to control 

(Tukey’s post-hoc HSD Padj < 0.05). 
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Figure 3.2: Stacked bar plot showing bacterial genera that were present at greater than 

1% abundance in each sample. Individual sample treatments are indicated by “C” for 

control, “Cd” for cadmium, “Cu” for copper, “I” for imidacloprid, “P” for hydrogen 

peroxide, and “Se” for selenate exposure. Colony of origin is denoted by H3, H6, or H9.  
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Figure 3.3: PCA plot of the Generalized UniFrac distance matrix of our samples. Overall, 

treatment (F = 4.57, R2 = 0.14, P < 0.001), colony (F = 6.71, R2 = 0.08, P < 0.001), and 

an interaction of these factors (F = 1.63, R2 = 0.10, P < 0.001) significantly affected the 

microbiomes of our samples. Post-hoc testing showed that each treatment except 

imidacloprid significantly altered the beta diversity of the bees’ microbiomes (BH 

corrected Padj < 0.02; imidacloprid: Padj = 0.96). 
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Figure 3.4: Log2fold change of proportionally differentially abundant Exact Sequence 

Variants (ESV) between treatments and controls, colored by genus. Each treatment had at 

least one significantly different ESV except imidacloprid (BH corrected Padj < 0.05). 

Error bars denote the standard error of the Log2fold change.  
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Figure 3.5: Illustration of the toxicant-tolerance genes found in strains of Snodgrassella 

alvi and Gilliamella apicola as annotated by RAST. Colored cells represent the copy 

number of each gene, row names indicate the bacterial strain, and column names denote 

the gene abbreviation or name. Nonstandard gene abbreviations are as follows: 

“H2O2.activator” is a peroxide-inducible genes activator, “FUR” is a ferric uptake 

regulation protein, “Fnr” is a fumarate and nitrate reduction regulatory protein, 

“Zn.Cu.UR” is a zinc/copper uptake regulation protein, and “Cu.ATPase” is a copper-

translocating ATPase. 
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Chapter Four: 

Cadmium and selenate exposure affects the honey bee microbiome and metabolome 

while bee-associated bacteria show potential for bioaccumulation 
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Abstract 

 

 Honey bees are important insect pollinators used heavily in agriculture and can be 

found in diverse environments. Bees may encounter toxicants such as cadmium and 

selenate by foraging on plants growing in contaminated areas, which can result in 

negative health effects. Honey bees are known to have a simple and consistent 

microbiome that conveys many benefits to the host, and toxicant exposure may impact 

this symbiotic microbial community. We used 16s rRNA gene sequencing to assay the 

effects that sublethal cadmium and selenate treatments had over seven days and found 

that both treatments significantly altered the composition of the bee microbiome. Next, 

we exposed bees to cadmium and selenate then used untargeted LC-MS metabolomics to 

show that chemical exposure changed the bees’ metabolite profiles and that compounds 

which may be involved in proteolysis and lipolysis were more abundant in treatments. 

Lastly, we exposed several strains of bee-associated bacteria in liquid culture and found 

that each strain removed cadmium from their media, but only Lactobacillus Firm-5 

microbes assimilated selenate, indicating a possible probiotic use for these microbes to 

reduce metals burden on their host. Overall, our study shows that metal and metalloid 

exposure can affect the honey bee microbiome and metabolome, and that strains of bee-

associated bacteria can bioaccumulate these toxicants.   
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Introduction 
 

Pollination services provided by bees are critical to agricultural crop production 

and native plant fitness. These insects are responsible for increasing the yield of over half 

of food crops, and benefiting a wide variety of natural flora [1, 2]. Of the pollinating 

insects, European honey bees (Apis mellifera) are the most intensely-used species of bee 

in agriculture and contribute billions of dollars in food production in the United States 

alone [3]. Along with other species, bee populations are declining around the world, most 

likely due to a combination of disease, pesticides, and land use change resulting in a lack 

of floral forage [4]. Relatively unstudied stressors include metals and metalloids that are 

harmful to bees and can affect their overall health when bees forage on plants grown in 

contaminated areas [5, 6]. As bees may encounter various pollutants across environments 

[7], the capacity for diverse environmental stressors to affect bee health needs to be 

understood and mitigated. 

 Heavy metal and metalloid contamination can be found in industrialized areas 

around the world [5]. Here, we chose to study cadmium and selenium due to their 

importance in agricultural and industrialized areas. Cadmium is a non-essential toxic 

heavy metal that is deposited near industries such as mining and battery production [8] 

and has been found in croplands [9]. Selenate is an ionic form of selenium that is found in 

soils near such industries as glass making and ink production or is deposited in naturally 

seleniferous agricultural soils [10]. As mentioned above, bees may contact metals and 

metalloids when foraging on plants growing in polluted areas [11, 12]. Plants can 

translocate toxicants from the soil into their pollen and nectar, which bees then forage 
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upon and bring back to their colonies [5]. The biomagnification potential of plants with 

different metals and metalloids varies widely. For example, flowers of the 

hyperaccumulator plant Stanleya pinnata have been found to contain over 2000 mg/kg 

selenate [13], and partridge pea pollen was shown to accumulate over 4000 mg/kg 

cadmium in greenhouse experiments [14]. In contrast, radishes grown in high 

concentrations of lead did not accumulate the metal in their flowers [11]. As the 

concentrations of cadmium or selenate that have been measured in flowers are well above 

the levels shown to elicit effects in honey bee foragers and larvae [5, 15], bees living in 

contaminated areas are likely stressed and less healthy than those living in pristine areas. 

Bees are often unaware of the metallic content of nectar and pollen, as bees will freely 

forage on plants grown in selenate-contaminated soil [12] and aluminum-containing 

nectar [16]. Conversely, bumble bees tend to avoid nectar spiked with nickel [16], 

indicating that bees are able to detect some metals. The ability of diverse bees to detect 

diverse metals and metalloids warrants further study.  

Honey bees harbor a simple and distinct microbiome that is largely consistent in 

all colonies worldwide [17, 18]. This symbiotic relationship between microbe and host is 

thought to be the result of a long-lasting coevolutionary history [19] and is largely 

maintained through contact between colonymates [20]. The bee microbiome is involved 

in many aspects of host health including metabolizing toxic sugars [21], resistance to 

trypanosomes [22–24], bacterial pathogen defense [25], stimulating the immune system 

[26], and increasing weight gain in adult bees [27]. Due to the importance of the bee 

microbiome, one would expect reduced vitality when this symbiotic microbiome is absent 
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or in a state of dysbiosis [28]. Indeed, when the microbiome of social bees is perturbed or 

absent, bees are more susceptible to Nosema and Serratia infection [29–31], gut scab 

formation by Frischella perrara [32], and selenate toxicity [33].  

The interaction between environmental metal pollution and animal microbiomes 

is an emerging field of study [34, 35], and bees are rapidly becoming excellent model 

organisms for this type of research [36]. There has been a fair amount of investigation 

into the interactions between cadmium and animal microbiomes [37]. Previous work has 

shown that cadmium exposure significantly alters the microbiome of rats [38], mice [39–

41], earthworms [42], and spiders [43]. To date, no research has investigated these 

interactions in any insect species. Much less is known about the effects of selenium on 

gut microbial communities, but it has been shown that there are subtle alterations in these 

microbe populations when exposed to selenium ions in mice [44, 45] and through our 

work with bumble bees [33]. In light of the effects of toxicant exposure on the 

microbiome, research is now being conducted on the ability of this microbial community 

to protect its host against environmental insults. For example, it was recently shown that 

the gut microbiome protects against arsenic challenge in mice [46], selenate toxicity in 

bumble bees [33], and lead or chromium exposure in chironomids [47]. Likewise, various 

Lactobacillus spp. are known to accumulate copper [48], cadmium [49–51], aluminum 

[52], and chromium [53], which suggests that members of this genus have the potential to 

be administered as probiotics to reduce host metal burden.  

While mortality in bees is relatively straightforward to assess, sublethal doses of 

toxicants can affect alter bee physiology in more subtle ways. For example, at the 
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organismal level, exposure to manganese increases bee foraging time [6], copper affects 

feeding behavior [54], and imidacloprid alters nest behaviors [55]. Metabolically, 

exposing bees to heavy metals increases detoxification enzyme activity [56, 57] and 

metallothionein-like protein levels [58], while affecting their overall redox system [59] 

which may indicate a general response to toxic metal stress. Similarly, metals have been 

shown to hamper immunocompetence in bees [60], ants [61], and moths [62]. While 

studies that investigate individual pathways or enzymes are useful, they may be missing 

subtle and important changes in the overall metabolism of an organism. By using 

untargeted metabolomics, we can now examine many metabolic compounds and 

pathways simultaneously [63] and attempt to broadly cover the metabolism of toxicants 

in bees. Metabolomics have been used to characterize bees’ metabolism of the 

insecticidal compounds thiacloprid [64] and nicotine [65], but neither metals nor 

metalloids. Here we use untargeted metabolomics to investigate the metabolites bees 

produce in response to selenate and cadmium exposure.        

 Here we investigate the interactions between the honey bee, its symbiotic 

microbiome, and exposure to selenate and cadmium. We ask three questions: First, is the 

bee microbiome affected by exposure to selenate or cadmium, and does the microbial 

response vary over time? Second, what is the bioaccumulation potential of bee-associated 

bacteria grown in media spiked with selenate or cadmium? Third, what are the metabolic 

effects of selenate and cadmium exposure as measured through untargeted LC-MS 

metabolomics?     
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Materials and Methods  
 

Bee Care and Cage Rearing 

 

We moved one frame of brood each from five healthy honey bee colonies with 

marked Italian queens and housed them in a hive body at 35°C and 50% humidity under 

constant darkness. We then allowed the bees to emerge, mixed the newly emerged 

workers (NEWs) to randomize their colony of origin and placed NEWs into 13 cm x 10.5 

cm x 6.5 cm wire cages equipped with feeders containing 35mL of deionized water and 

35mL 50% sucrose. We also provided a pollen patty to each cage of bees consisting of 

269g corn syrup, 113g sucrose and 113g of Bee Pro (Mann Lake, Hackensack, MN). To 

inoculate the newly emerged workers with their “core” microbiome, we collected 50 mL 

of foragers from the source hives of the NEWs, immobilized the bees at 4°C, aseptically 

dissected out the abdomens and macerated the whole abdomens in 50% sucrose. We 

added 1 mL of the resulting slurry to 34 mL of 50% sucrose solution and fed it to the 

NEWs. We allowed the bees to feed ad libitium on the mixture for two days before 

replacing the feeders with 50% sucrose. We allowed the bees to feed for three more days 

to fully establish a microbiome [20].       

 Once the bees had an established microbiome, we prepared treatment feeding 

solutions of 50% sucrose (as a no metal/metalloid control), 50% sucrose spiked with 0.6 

mg/L sodium selenate or 50% sucrose with 0.24 mg/L cadmium chloride (Alfa Aesar, 

Ward Hill, MA) and pollen patties spiked with either 6.0 mg/L selenium or 0.46 mg/L 

cadmium as in Hladun et al 2015 [5]. We again allowed the bees to feed ad libitium. We 
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sampled three bees from each cage after two, four, and seven days of exposure and 

immediately placed the samples on dry ice, followed by long-term storage at -80 °C. 

 

DNA Extractions and 16S rRNA Gene Sequencing Library Preparation  

  

 We used a DNA extraction protocol based on Engel et al 2013, [66], Pennington 

et al 2017 [67] and Rothman et al 2018 [68]. We gently vortexed whole bee samples in 

0.1% sodium hypochlorite followed by three rinses with ultrapure water for surface-

sterilization. We then used sterile forceps to dissect the whole gut out of each bee and 

transferred the gut into DNeasy Blood and Tissue Kit lysis plates (Qiagen, Valencia, CA) 

containing approximately 100 µL of 0.1mm glass beads, one 3.4mm steel-chrome bead 

(Biospec, Bartlesville, OK) and 180 µL of buffer ATL. We then homogenized the guts 

with a Qiagen Tissuelyser at 30 Hz for 6 minutes. We followed the remainder of the 

Qiagen blood and Tissue protocol after homogenization. We also included blanks to 

control for reagent contamination, which we extracted, prepared and sequenced in the 

same fashion as samples.  

We prepared 16S rRNA gene libraries for paired-end Illumina MiSeq sequencing 

using the protocol from McFrederick and Rehan 2016 [69], Pennington et al. 2017 [70] 

and Rothman et al. 2018 [71]. We incorporated the 16S rRNA gene primer sequence, 

unique barcode sequence, and Illumina adapter sequence as in [72]. We used the primers 

799F-mod3 [73] and 1115R [72] to amplify the V5-V6 region of the 16S rRNA gene 

with the following PCR reaction conditions: 4 µL of template DNA, 0.5 µL of 10µM 
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799F-mod3, 0.5 µL of 10µM 1115R, 10 µL PCR grade water and 10 µL Pfusion DNA 

polymerase (New England Biolabs, Ipswich, MA), with an annealing temperature of 

52°C for 30 cycles in a C1000 Touch thermal cycler (BioRad, Hercules, CA). We then 

removed excess primers and dNTPs with a PureLink Pro 96 PCR Purification Kit 

(Invitrogen, Carlsbad, CA). We used the cleaned PCR products as template for a second 

PCR reaction using 1 µL of the cleaned PCR amplicons as a template with the primers 

PCR2F and PCR2R to complete the Illumina adapter sequence [72]. We performed PCR 

with the following reaction conditions: 0.5 µL of 10µM forward primer, 0.5 µL of 10µM 

reverse primer, 1 µL of template, 13 µL of ultrapure water and 10 µL of Pfusion DNA 

polymerase at an annealing temperature of 58 °C for 15 cycles. We normalized the 

resulting libraries with a SequalPrep Normalization kit following the supplied protocol 

(ThermoFisher Scientific, Waltham, MA). We pooled 5 µL of each normalized library 

and performed a final clean up with a single column PureLink PCR Purification Kit. 

Lastly, we checked the normalized amplicons on a 2100 Bioanalyzer (Agilent, Santa 

Clara, CA) and sequenced the multiplexed libraries using a V3 Reagent Kit at 2 X 300 

cycles on an Illumina MiSeq Sequencer (Illumina, San Diego, CA) in the UC Riverside 

Genomics Core Facility. 
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Bioinformatics and Statistics 

 

We used QIME2-2019.1 [74] to process the 16S rRNA gene sequence libraries. 

First, we visualized and trimmed the low-quality ends of the reads with QIIME2, then 

used DADA2 [75] to assign our sequences into exact sequence variants (ESVs; 16S 

rRNA gene sequences that are 100% matches), remove chimeras, and remove reads with 

more than two expected errors. We assigned taxonomy to the ESVs using a the q2-

feature-classifer [76] trained to the 799-1115 region of the 16S rRNA gene with the 

SILVA database [77]. We also conducted local BLASTn searches against the NCBI 16S 

microbial database and nt/nr (accessed April 2019). We filtered out features from the 

resulting ESV table that corresponded to contaminants as identified in our blanks [78] or 

were present at only one read (singletons). We used the MAFFT aligner [79] and 

FastTree v2.1.3 to generate a phylogenetic tree of our sequences [80]. We used the 

resulting tree and ESV table to analyze alpha diversity and to tabulate a generalized 

UniFrac distance matrix [81] for beta diversity comparisons. We visualized the UniFrac 

distances through two-dimensional Principal Components Analysis (PCA) with the R 

package “ggplot2” [82]. We analyzed the alpha diversity of our samples through 

Shannon’s diversity index and Faith’s phylogenetic diversity using the Kruskal-Wallis 

test in QIIME2. We tested our beta diversity data for statistical significance in R v3.5.1 

[83] with the packages “vegan” [84] and “DESeq2 [85].  
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Bacterial Accumulation of Cadmium or Selenate 

 

 In order to assay the ability of bee-associated bacterial species to remove 

cadmium or selenate from their environment, we streaked out individual colonies of the 

strains wkB2 and wkB12 of Snodgrassella alvi on plates containing tryptic soy agar 

(Neogen, Lansing, MI)  + 5% defibrinated sheep blood (Hemostat Labs, Dixon, CA) 

(TSAB) in a 5% CO2 environment, Lactobacillus bombicola, and the Lactobacillus 

Firm-5 strain wkB8 on De Man Rogosa and Sharpe (MRS) + 0.05% cysteine agar 

(MRSC, Research Products Inc., Mt. Prospect, IL), and L. micheneri, L. timberlakei, L. 

quenuiae, L. kunkeei strain 3L, and L. apinorum in MRS + 2% fructose agar (MRSF, 

Research Products Inc., Mt. Prospect, IL). We then transferred individual colonies of the 

S. alvi strains into 15 mL of Insectagro media (Corning Inc., Corning, NY), L. bombicola, 

and Lactobacillus sp. wkB8 into 15mL of MRSC media, and L. micheneri, L. 

timberlakei, L. quenuiae, L. kunkeei, and L. apinorum into 15mL of MRSF media spiked 

with either 1 mg/L sodium selenate or 1 mg/L cadmium chloride (Alfa Aesar, Ward Hill, 

MA). We incubated the S. alvi cultures at 37°C in a 5% CO2 atmosphere without shaking 

and the Lactobacillus spp. at 32°C shaking at 150 rpm for two days. All assays were 

conducted in triplicate and we also included sterile media samples spiked with or without 

1 mg/L of each treatment as controls.  

    After incubation, we pelleted the bacterial samples via centrifugation at 5,000 rpm 

for 10 minutes, followed by three washes with 18 MΩ ultrapure water and subsequent 

centrifugations. We then transferred the supernatant and washes to 110 mL Teflon-lined 



 115 

vessels and added 5 mL of TraceMetal Grade concentrated HNO3 (ThermoFisher 

Scientific, Waltham, MA) followed by digestion in a 570 W microwave oven (CEM 

Corp., Matthews, NC) for 20 minutes. Lastly, we diluted the samples with TraceMetal 

grade 6 M HCl (ThermoFisher Scientific, Waltham, MA), heated them for 20 minutes at 

90 °C, and filtered the samples through a 0.45-micron syringe filter as in Hladun et al 

2015 [5]. We then analyzed the selenium and cadmium concentrations in the samples via 

inductively coupled plasma spectroscopy (ICP) with a Perkin-Elmer Optima 7300DV 

ICP-OES in the Environmental Sciences Research Laboratory at UC Riverside and 

analyzed our bacterial accumulation data by one-way ANOVA with Tukey’s HSD for 

post-hoc comparisons.  

 

Sample preparation for untargeted metabolomics 

 

We sampled three bees from 13 cages after four days of continuous exposure to 

the above-mentioned treatments and immediately placed the samples on dry ice, followed 

by long-term storage at -80 °C. We then pooled three bee abdomens from each cage, 

freeze-dried the samples, and homogenized the abdomens to a fine powder at 4° C using 

a bead mill homogenizer. Next, we extracted 10-12 mg of the powder in a 1.5 mL tube 

with 100 µL of ice-cold extraction solvent (30:30:20:20 

acetonitrile:methanol:water:isopropanol) per 1 mg of tissue. We sonicated the samples 

for 5 minutes in an ice bath, then vortexed them for 30 min at 4° C. Lastly, we 
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centrifuged the samples at 16,000 x g for 15 min at 4° C and analyzed the supernatant 

with Liquid Chromatography - Mass Spectrometry (LC-MS). 

 

Untargeted LC-MS metabolomics 

 

We used a Synapt G2-Si quadrupole time-of-flight mass spectrometer (Waters, 

Milford, MA) coupled to an I-class UPLC system (Waters) for LC-MS analyses in the 

UC Riverside Metabolomics Core Facility. We carried out separations on a CSH phenyl-

hexyl column (2.1 x 100 mm, 1.7 µM) (Waters, Milford, MA), with the following mobile 

phases: A. Water with 0.1% formic acid and B. Acetonitrile with 0.1% formic acid at a 

flow rate of 250 µL/min at 40° C. We injected 2 µL of sample extract, and the gradient 

was as follows: 0 min, 1% B; 1 min, 1% B; 8 min, 40% B; 24 min, 100% B; 26.5 min, 

100% B; 27 min, 1% B. We operated the MS in positive ion mode (50 to 1200 m/z) with 

a 100 ms scan time and acquired MS/MS data at 1 MS/MS scan per MS scan. We set 

source and desolvation temperatures to 150° C and 600° C, respectively. We set the 

desolvation gas flow to 1100 L/hr and cone gas flow to 150 L/h, with all gases being 

nitrogen except the collision gas, which was argon, and set capillary voltage to 1 kV. We 

generated a quality control sample by pooling equal aliquots of each sample and analyzed 

this pool every 3-4 injections to monitor system stability and performance. We analyzed 

samples in random order and used a leucine enkephalin infusion for mass correction. 
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Metabolomics data processing 
 

We processed the metabolite data (peak picking, alignment, deconvolution, 

integration, normalization, and spectral matching) with Progenesis Qi software 

(Nonlinear Dynamics, Durham, NC). We normalized the resulting data to total ion 

abundance and removed features with a coefficient of variation greater than 20% or an 

average abundance less than 200 in the quality control injections as in Barupal et al. 2018 

and Dunn et al. 2011 [86, 87]. To aid in the identification of features belonging to the 

same metabolite, we assigned features a cluster ID using RAMClust [88]. We searched 

against several mass spectral metabolite databases including Metlin, Massbank of North 

America [91, 92], and an in-house database in the UC Riverside Metabolomics Core 

Facility. After metabolites were identified and quantified, we used MetaboAnalyst v4.0 

[93] for data handling, log2-normalization, statistical testing through Welch’s t-test 

(identified metabolites only), ordination generation, quantitative metabolite pathway 

enrichment analysis (MSEA), and heatmap plotting. Additionally, we built Jaccard 

distance matrices and tested our treatments for statistical significance through Adonis 

testing (PERMANOVA with 999 permutations) in the “vegan” R package [84]. 

 

Genomic annotations and metal/metalloid detoxification genes 

 

We downloaded publicly-accessible genome sequences from the National Center 

for Biotechnology Information (NCBI) for the following bacterial species: Bartonella 

apis, Bifidobacterium asteroides, Bombella intestini, Commensalibacter intestini, 
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Frischella perrara, Gilliamella apicola, Lactobacillus apinorum, L. apis, L. bombicola, 

L. helsingborgensis, L. kullabergensis, L. kunkeei, L. mellifer, L. melliventris, L. 

micheneri, L. quenuiae, Lactobacillus sp. wkB8 (Firm-5), L. timberlakei, and 

Snodgrassella alvi (see supplemental file SF1 for accession numbers). We then used the 

RAST Server (Rapid Annotations using Subsystems Technology) [94] to annotate the 

genomes and identify genes from the subsystem categories “Cobalt-zinc-cadmium 

resistance,” “Uptake of selenate and selenite,” and “Selenocysteine metabolism” to find a  

genomic basis for toxicant tolerance and uptake. 
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Results 
 

Alpha diversity of the honey bee gut microbiome when exposed to selenate or cadmium 

 

 We obtained 6,879,949 quality-filtered 16S rRNA gene reads that clustered into 

126 Exact Sequence Variants (ESVs) across 263 samples, with an average of 26,160 

reads per sample. Through rarefaction analyses, we determined that we had acceptable 

diversity and coverage at a sequencing depth of 10,340 reads per sample, which left us 

with 249 samples which we used for diversity analyses. We did not find that treatment 

exposure or sampling timepoint significantly affected alpha diversity as measured by 

Shannon’s diversity index (P = 0.22 and P = 0.06, respectively) or Faith’s phylogenetic 

diversity (P = 0.82 and P = 0.15, respectively).  

 

Beta diversity of the honey bee gut microbiome when exposed to selenate or cadmium 

 

 Across all of our samples, we found the following genera of bacteria present at 

greater than 1% proportional abundance of 16S rRNA gene reads: Lactobacillus, 

Snodgrassella, Bartonella, Gilliamella, Bifidobacterium, Commensalibacter, Frischella, 

and Bombella (Fig. 4.1). We analyzed the beta diversity of our samples through Adonis 

testing (PERMANOVA with 999 permutations) of the generalized UniFrac distances and 

found that overall, treatment (F = 2.96, R2 = 0.02, P = 0.004), sampling timepoint (F = 

2.11, R2 = 0.02, P = 0.017), and the interaction between treatment and timepoint (F = 

1.68, R2 = 0.02, P = 0.023) significantly affected the microbiome of our samples, 
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although our PCA ordinations did not show any obvious clustering by these terms (Fig. 

4.2). As we had two toxicant treatments, we also analyzed the generalized UniFrac 

distances of each treatment versus controls. We found that within cadmium exposure, 

treatment (F = 2.39, R2 = 0.02, P = 0.036), timepoint (F = 2.19, R2 = 0.03, P = 0.016), and 

the interaction between treatment and timepoint (F = 2.33, R2 = 0.03, P = 0.01) all 

significantly affected the bee microbiome. Similarly, we analyzed the beta diversity of 

our selenate-exposed samples, and found that treatment (F = 3.13, R2 = 0.02, P = 0.005), 

and the interaction between treatment and timepoint (F = 1.78, R2 = 0.02, P = 0.044) 

significantly altered the bee gut community, while timepoint alone did not (F = 1.55, R2 = 

0.02, P = 0.105). As the effects of treatment and timepoint on the bees’ gut microbial 

communities were subtle, we then proceeded to analyze the differential abundance of 

individual ESVs. 

 

Differential abundance of individual ESVs by treatment and sampling timepoint 

 

 To establish more biologically meaningful effects, we analyzed the differential 

abundance of individual ESVs present in at least 1% proportional abundance across all 

samples using DESeq2. As we had multiple treatments and multiple sampling timepoints, 

we compared ESVs in treatments versus control at each timepoint and found the 

following ESVs to be significantly differentially proportional across our analyses 

(Benjamini-Hochberg corrected Padj < 0.05, Fig. 4.3): After two days continuous 

exposure, we observed an increase of one Commensalibacter ESV in both treatments, a 
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decrease of one ESV each of Frischella and Lactobacillus and increase in another ESV of 

Lactobacillus and Bartonella in selenate treatments, and a decrease of an ESV of 

Lactobacillus,  Snodgrassella, and Bartonella in cadmium treatments. After four days 

continuous exposure, we saw a decrease in an ESV of Bifidobacterium and Lactobacillus 

but an increase in another Lactobacillus ESV in both treatments, an increase in an ESV of 

Lactobacillus and Snodgrassella in selenate treatments, and a decrease in an ESV of 

Bartonella and Commensalibacter, three ESVs of Lactobacillus and an increase in an 

ESV of Gilliamella. Our last sampling timepoint was seven days of continuous exposure, 

where we saw a decrease of two Lactobacillus and one Snodgrassella ESV, and an 

increase in another Lactobacillus ESV in both treatments, while we observed a decrease 

in a Lactobacillus ESV in cadmium treatments only.   

The response of individual ESVs to treatments varied throughout the experiment. 

For example, several ESVs of Lactobacillus Firm-5 were affected by the treatments: 

“Lactobacillus25” was negatively impacted by both toxicants, while “Lactobacillus29” 

grew to a much higher proportional abundance after seven days of exposure. Other ESVs 

showed interesting trends: After two days of continuous exposure to cadmium, an ESV of 

Bartonella apis showed a slight decrease in proportional abundance, while selenate 

caused a large upshift in abundance, then these proportions generally leveled off for the 

remainder of the experiment. Similarly, an ESV of Commensalibacter showed a pattern 

of increase proportional abundance after two days of exposure to both treatments, then 

again leveled off. Lastly, an ESV of S. alvi (“Snodgrassella9”) was generally found in 

less proportional abundance in treatments compared to controls 
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Bacterial accumulation of selenate or cadmium 

 

 As our bacteria grew in three separate types of media, we separately analyzed the 

ability of our bacterial strains to remove selenium and cadmium from their respective 

media. We found that overall, S. alvi strains significantly removed cadmium from their 

media (F(2,4) = 18.16, P = 0.01), and post-hoc testing indicated that both strains did so 

significantly (wkB12 Padj = 0.010, wkB2 Padj = 0.022). Neither S. alvi strain accumulated 

selenium (F(2,5) = 1.35, P = 0.34, Tukey’s HSD Padj > 0.05). Next, we found that both L. 

bombicola and wkB8 removed cadmium (F(2,5) = 9.58, P < 0.001, Tukey’s HSD Padj < 

0.001 for each), and selenium (F(2,5) = 8.25, P = 0.026, Tukey’s HSD Padj = 0.05 and 0.02 

respectively). We also found that each strain grown in MRSF significantly removed 

cadmium from their media (F(5,11) = 17.15, P < 0.001) with Tukey’s HSD testing 

indicating that each strain accumulated cadmium (Padj < 0.009 for all strains). Lastly, 

while the overall model showed significance, none of the MRSF strains significantly 

removed selenium from their media (F(4,8) = 5.57, P = 0.02, Tukey’s HSD Padj > 0.05 for 

all post-hoc analyses) (Fig. 4.4). We also analyzed each media without bacterial 

inoculation or toxicant addition in duplicate and found that no media contained 

measurable cadmium, while each medium contained selenium (Insectagro: 0.142 mg/L, 

MRSC: 0.260 mg/L, and MRSF: 0.308 mg/L), albeit at levels lower than our treatment. 

Overall metabolite diversity and effect of treatment 
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 We compared the metabolomic profiles of our samples through univariate and 

multivariate statistics. We generated Jaccard distance matrices of the metabolites 

identified from our LC-MS to assess the overall differences in composition. We then used 

Adonis to analyze our results for statistical significance and generated Partial Least 

Squares - Discriminant Analysis (PLS-DA) plots to visualize the effects of treatments on 

our samples. Overall, exposure to cadmium and selenate significantly altered the honey 

bee metabolome (Cd: F = 2.14, R2 = 0.26, P = 0.047; Se: F = 5.23, R2 = 0.43, P = 0.013). 

Likewise, we saw obvious clustering by treatment and calculated good model fitting for 

our PLS-DA ordinations for both cadmium (R2 = 0.83, Q2 = 0.69, Fig. 4.5) and selenate 

treatment (R2 = 0.96, Q2 = 0.86, Fig. 4.5) on the honey bee metabolome.  

 

Differential abundance of individual metabolites and biochemical pathways 

 

 We performed two-tailed Welch’s t-tests on log2-transformed individual 

metabolites identified in our samples between treatments to assess statistical significance 

and corrected for multiple comparisons with a Benjamini-Hochberg adjusted p-value 

(Padj). We then generated performed MSEA analyses to assay the effects that treatment 

may have had on the bees’ metabolic pathways. We obtained a profile of 391 metabolites, 

of which were able to positively identify 58. When examining honey bees treated with 

cadmium versus controls, we found two metabolites significantly differed between 

treatment and control (Padj < 0.05): A coumaric acid-like molecule and a tetrasaccharide. 

MSEA analysis indicated that the phospholipid biosynthesis pathway was significantly 
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different (Padj = 0.004; Fig. 4.6). Next, we examined the effects of selenate exposure on 

honey bees, and found that seven metabolites were significantly different between 

selenate and control treatments (Padj < 0.05): A coumaric acid-like molecule, a 

tetrasaccharide, two short-chain peptides, a LysoPC(16:0), a LysoPC(16:1), and 

phosphocholine. Again, MSEA analyses showed that phospholipid biosynthesis was 

impacted by treatment (Padj = 0.01; Fig. 4.6).   

 

Genes involved in cadmium or selenate resistance/transport 

  

 We annotated the genomes of bee-associated bacteria present in our amplicon 

sequencing study or selenium/cadmium accumulation experiment with RAST and found 

some or all of the following genes present in each genome: The selenium ion transporters 

DedA [95], TsgA [96], and putative selenium ion and sulfate importer CysA [97], 

components of selenocysteine metabolism, SelA, SelB, and SelD [98], the genes 

CzcABC, which encode the components of a cation transporter involved in cadmium 

resistance [99], the cadmium response regulator CzcD [100], and a cadmium-responsive 

transcriptional regulator, CadR [101].  

Each strain of bacteria analyzed had the genes corresponding to cadmium 

resistance CadR and CzcD, although only C. intestini had a complete CzcABC protein 

complex, and presumably higher cadmium tolerance. Likewise, each bacterial strain also 

had one or more of the putative sulfate/selenium ion transporters TsgA, DedA, and CysA, 
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which may confer selenate resistance, while only B. apis and L. mellifer had genes (SelA, 

SelB, and SelD) corresponding to selenocysteine metabolism.   
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Discussion 
 

Exposure to cadmium or selenate impacted both the microbiomes and 

metabolomes of honey bees. Cadmium or selenate treatments subtly changed the 

composition of the honey bee microbiome and changed the proportional abundance of 

several ESVs of core symbiotic taxa. While the overall community effects of treatment 

were slight, we found that core bacteria vary in their response to toxicant exposure. 

Variation in toxicant tolerance is therefore the likely mechanism driving differential 

abundance of core taxa in the control and toxicant treatments. We also show that species 

of bee-associated bacteria can uptake cadmium but generally not selenate, which may 

provide protection against heavy metals but not metalloid exposure. Lastly, through 

untargeted metabolomics, we show that there are metabolic responses in bees to sublethal 

toxicant exposure including likely protein and lipid degradation and increased 

carbohydrate use.  

Previous studies have examined the effects of cadmium on the microbes 

associated with mice [102], spiders [43], and selenate on bumble bee microbes [33]. 

Similarly, studies have suggested that microbes can detoxify or sequester toxic metals 

including arsenic [46], selenate [33], lead and chromium [47], copper [48], and cadmium 

[49–51]. Our research extends this work by showing that bee-associated microbes can be 

affected by metal(loid) exposure, are able to bioaccumulate some of these compounds, 

and that the metabolome is changed in response to selenate and cadmium poisoning. 

 Overall, treatment with either selenate or cadmium slightly altered the honey bee 

microbiome over the course of our experiment. While the community-wide effects of 
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treatments were subtle, there were remarkable shifts in the proportional abundance of 

individual ESVs. Changes in the relative abundance of specific ESVs suggest that 

exposure to cadmium and selenate can negatively affect symbiont growth in vivo, which 

may cause gut dysbiosis and allow disease-causing bacteria or parasites to proliferate in 

stressed bees [28, 30]. While our results suggest that individual ESVs can be harmed by 

metal or metalloid exposure, our data are proportional [103] and we may be observing 

growth in the overall microbiome instead of reduction in individual ESVs or vice versa.  

Similar research has been conducted in earthworms showing that cadmium 

exposure alters the proportional abundance of several ESVs, and that those taxa may be 

used as bioindicators of cadmium pollution [42], and in mice, where cadmium 

moderately affects the microbiome [38]. Our results also agree with a previous 

experiment exposing bumble bees to selenate, where the microbiome was slightly altered, 

and treatment had an overall apparent negative affect on several gut symbionts [33].  

Mouse-associated bacterial taxa also vary in their response to selenite [45], suggesting 

that toxicants may cause similar changes in the microbiomes of diverse hosts.  

 As mentioned above, the proportional abundance of several ESVs were reduced 

or increased by cadmium or selenate treatment while others were apparently unaffected. 

We used RAST annotations to search for putative mechanisms for toxicant tolerance or 

sensitivity in bacteria commonly associated with bees. While the RAST annotations show 

that cadmium resistance and selenium transporter genes are common, the bacterial 

species that have unique toxicant resistance genes showed ESV-level variation in 

response to toxicant challenge. As honey bee symbionts have functionally diverse 
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genomes [104–107], strain variation may therefore explain the discrepancies in treatment 

response between individual ESVs of bacteria corresponding to the same species. 

Furthermore, putative toxicant-resistance genes may not predict symbiont response to 

toxicants in the dynamic environment of the bee gut, within which diverse host/microbe 

interactions occur [108]. In the case of the bees’ responses to toxicant exposure, immune 

function may be hampered which could allow for suboptimal population control of gut-

associated bacteria [26] leading to the microbiome being in a state of flux. Lastly, as we 

are sampling at distinct timepoints, we are likely only seeing a snapshot of the bee 

microbiome and deeper sampling or metagenomic data may be needed to truly 

understand community-wide responses to toxicant exposure.      

 The potential for bacteria to protect their host from toxic metal exposure through 

bioaccumulation is an emerging topic of investigation in several systems including 

humans [50, 109], mice [48, 51], and insects [47]. We exposed strains of bee-associated 

bacteria to cadmium in vitro, we and found that all assayed taxa removed a significant 

amount of cadmium from their growth media after two days of incubation. Notably, 

strains that removed the most cadmium are enteric bacteria isolated from social bees 

(Lactobacillus sp. wkB8, L. bombicola, and both strains of S. alvi) [110], which indicates 

that these symbionts may remove metal from the gut and protect their host when foraging 

on plants grown in polluted environments. We also found that bacteria associated with 

solitary bees (L. micheneri, L. quenuiae, L. timberlakei) [111] and bee honey stomachs 

(L. apinorum and L. kunkeei) [112, 113] removed less cadmium than enteric symbionts, 

but still may provide some protection to host bees. We exposed the same bacteria to 
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selenate in vitro and found that only Firm-5 lactobacilli (Lactobacillus sp. wkB8 and L. 

bombicola) removed a small but significant amount of the metalloid, while no other strain 

removed a significant quantity from their media. Although our tested strains of bacteria 

do not appear to accumulate selenate inside their cells, other bacteria associated with 

insects has been shown to reduce selenite to elemental selenium [114] and reduce 

mortality upon selenate challenge [33], so bee-associated taxa may be able to reduce 

selenate as well. As our sample processing methods involved acidifying the media, we 

may have overlooked the ability of bee-associated taxa to reduce selenate because any 

elemental selenium produced would have been redissolved, so future research should 

continue examining the possibility of bee- and other insect-associated bacteria to produce 

elemental selenium nanoparticles from selenium ions. Lastly, we note that there are 

several other bee symbionts that have not been tested for their bioaccumulation potential, 

so more experiments into the interactions between these bacteria and metals should be 

conducted. 

We used untargeted LC-MS analyses to assay the metabolites present in 

cadmium- or selenate-treated bees as compared to controls and found that both treatments 

altered the overall metabolome of the bees along with several individual metabolites. 

Two metabolites were differentially abundant in both treatments: A tetrasaccharide 

(lower in treatments) and a coumaric acid-like molecule (higher in treatments). The 

reduction of tetrasaccharide in toxicant-exposed samples may be due to the increased 

metabolic demands of coping with added stress, as organisms exposed to metals may 

expend more energy for repair and detoxification [115], which should deplete 
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carbohydrates in the bees. The role of the coumaric acid-like molecule is less clear, as 

bees are not known to produce coumaric acid, and must obtain it from their diet [116]. 

Coumaric acid has been implicated in upregulating detoxification genes in honey bees 

[117], but its breakdown products (if any) are unknown, so the “coumaric acid-like” 

compound that we detected may be part of the bees’ metabolism in response to toxic 

stress. Further metabolic analyses of coumaric acid under toxicant stress should be 

investigated. We also observed a fairly large increase in short-chain peptides in selenate-

exposed bees, which probably indicates protein degradation as a response to treatment 

[118] as selenium ions have been shown to increase protein degradation in cell models 

[119, 120]. Likewise, we saw an insignificant but suggestive increase in short-chain 

peptide metabolites in cadmium-treated bees which indicates that protein degradation 

may be a general consequence of metal(loid) exposure [121]. Lastly, we saw a higher 

proportional abundance of the phospholipid precursor molecule phosphocholine [122] 

and two lysophosphatidylcholines – products of oxidized phospholipids [123] – in 

selenate treatments, as well as MSEA indicating an over expression of phospholipid 

biosynthesis metabolites in both treatments. We posit that the higher proportional 

abundance of these phospholipid metabolites may be due to the oxidative stress that toxic 

doses of metals and metalloids can produce [121]. Previous work has shown that the 

bumble bee microbiome reduces mortality when exposed to selenate [33] and that the bee 

microbiome is involved in suppressing oxidative damage [27, 29]. The increase in 

oxidative damage under selenate stress coupled with a hampering of antioxidant activity 

due to a lack of functional microbiome may explain why mortality is increased in 
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microbiome-free bees upon selenate challenge. We therefore suggest that future research 

investigate the ability of antioxidants to remedy the effects of toxicant exposure on 

insects.   
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Conclusion 
  

Bees are important insect pollinators that have become an excellent model for 

studying host/microbe interactions [36] and the toxicology of chemical compounds [124]. 

Our interdisciplinary study indicates that the honey bee microbiome can be affected by 

cadmium and selenate exposure, and that there are potentially tolerant or susceptible 

strains of core symbionts. We also show that several bee-associated strains of bacteria 

can bioaccumulate cadmium – and to a lesser degree selenate – which may provide a 

protective mechanism for bees against metal and metalloid pollution and provide putative 

genes involved in detoxification to these chemicals. Lastly, we report metabolic 

responses by honey bees upon toxicant exposure and posit that these compounds may 

cause oxidative damage to proteins and lipids, although much more investigation into the 

bee metabolome is needed. We suggest that future research investigate the interactions of 

toxicants and subcellular through organismal responses of both symbionts and honey 

bees to understand the complex interplay within this system.
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Figure 4.1: Stacked bar plot showing bacterial genera present at greater than 1% 

proportional abundance in each sample. Treatments and sampling timepoints are 

separated by vertical lines. 
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Figure 4.2: PCA plot of the generalized UniFrac distances of all samples. Overall, 

treatment (F = 2.96, R2 = 0.02, P = 0.004), sampling timepoint (F = 2.11, R2 = 0.02, P = 

0.017), and the interaction between treatment and timepoint (F = 1.68, R2 = 0.02, P = 

0.023) significantly affected the bee microbiome. Post-hoc testing showed that both 

selenate and cadmium treatments significantly affected the beta diversity of our samples 

(P < 0.04 for each). 
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Figure 4.3: Proportional abundance of individual exact sequence variants (ESVs) that 

were significantly different between at least one treatment and control as analyzed by 

“DESeq2,” separated by timepoint. “*” denotes significant differences between treatment 

and control and error bars denote standard error. 
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Figure 4.4: Bar plot showing the amount of cadmium or selenium (mg/L) present in 

either bacteria-inoculated (gray bars) or uninoculated media (black bars) after two days of 

incubation separated by bacterial strain. “*” denotes significantly different as analyzed by 

one-way ANOVA and Tukey’s HSD post-hoc tests (BH corrected Padj < 0.05), and error 

bars denote standard error. 
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Figure 4.5: Partial Least Squares – Discriminant Analysis (PLS-DA) plots of the 

individual bee metabolomes in treatments versus control. Exposure to cadmium and 

selenate significantly altered the honey bee metabolome (Cd: F = 2.14, R2 = 0.26, P = 

0.047; Se: F = 5.23, R2 = 0.43, P = 0.013).  
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Figure 4.6: Metabolite Set Enrichment Analysis (MSEA) bar plots indicating the fold 

enrichment of metabolites from biochemical pathways with P value indicated by heat 

color. The phospholipid biosynthesis pathway was enriched in both cadmium and 

selenate treatments versus control samples (BH corrected Padj < 0.05). 
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Chapter Five: 

Conclusion 
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Conclusion 

 

Metal, metalloid, and xenobiotic pollution is widespread and can impact 

pollinators who forage on plants growing in contaminated areas. Likewise, studies 

involving animal-associate microbiomes and environmental stress continue to be vital to 

our understanding of how complex symbioses impact the health of both host and 

microbiome. We have determined the broad effects of two metals, a metalloid, a 

neonicotinoid pesticide, and a floral oxidative compound on the health and microbial 

community of the honey bee (Apis mellifera) and a species of bumble bee (Bombus 

impatiens). Through research conducted in this dissertation, we have also established 

selenate tolerance in two major gut symbionts of bees, the potential for the bumble bee 

microbiome to reduce mortality upon selenate challenge, and possible genomic bases for 

toxicant tolerance in bee symbionts. Likewise, we investigated within-strain variation in 

these toxicant tolerance genes in two major bee symbionts, the lethality of these 

compounds, the metabolomic consequences of metal and metalloid exposure on honey 

bees, and the potential probiotic use of bee-associated bacteria to reduce metal and 

metalloid burden on the host. 

 We showed that the gut microbial community of bumble bees plays an important 

role in reducing host mortality when challenged with the metalloid ion selenate. Even so, 

the microbiome can be altered through selenate exposure, with several exact sequence 

variants (ESVs) of symbiotic bacteria appearing less abundant. We also show that two 

strains of bee gut-associated bacteria – Snodgrassella alvi and Lactobacillus bombicola – 
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tolerate selenate exposure in vitro, and that many of the bumble bee microbiome taxa 

contain genes putatively involved in selenium ion tolerance. We hypothesized that 

bacteria are accumulating selenate or reducing it to the less toxic form of elemental 

selenium, or the presence of a microbiome is somehow stimulating the bees’ own 

inherent detoxification mechanisms, but these hypotheses need further study. Likewise, 

we also posited that the microbiome may be forming a physical barrier to selenate, or that 

we are simply observing the synergistic effects of two stressors: A lack of stable 

microbiome and selenate toxicity, which may cause higher mortality to microbiome-free 

bees versus microbiome-inoculated bees. 

 We characterized the median lethal dose (LC50) of cadmium, copper, selenate, the 

neonicotinoid pesticide imidacloprid, and hydrogen peroxide exposure on bumble bees 

and showed that each of these compounds except imidacloprid affected the composition 

of the bees’ symbiotic microbiome. Within this study, we examined the effects that each 

compound had on individual bacterial ESVs within the bumble bee gut community and 

found that there are ESVs that appear tolerant to chemical exposure in vivo, while some 

ESVs appeared susceptible. These contrasting results suggest that there is strain variation 

within the bee gut microbial community. Lastly, we annotated genomes from 120 total 

strains of the major symbionts Snodgrassella alvi and Gilliamella apicola and found that 

substantial strain variation exists in the genetic subsystems corresponding to toxicant 

tolerance and resistance. These results suggest that strain variation is involved in the 

microbial response to toxicants and the susceptibility of bees to chemical exposure, and 
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more genome sequences from diverse strains are needed to understand the dynamic 

within the bees’ microbiome. 

 We investigated the effects of selenate and cadmium exposure on the honey bee 

microbiome through 16s rRNA gene sequencing and found that exposure to these 

chemicals slightly alters the composition of the gut community. Furthermore, we also 

showed that individual ESVs of gut symbionts are likely tolerant or susceptible to 

toxicant exposure and that these effects vary over time. We then used untargeted LC-MS 

metabolomics to characterize the metabolome of honey bees exposed to selenate and 

cadmium and observed an overall change in metabolic composition, as well as increases 

in metabolites that correspond to protein and lipid degradation. Finally, we cultured 

strains of bee-associated bacteria in cadmium- or selenate-spiked media and show that 

these bacteria can bioaccumulate cadmium but generally not selenate. Collectively, these 

results suggest that toxicant exposure can shift the composition of the honey bee 

microbiome, cause metabolic changes that may be associated with oxidative stress and 

cellular damage, and that bee-associated bacteria can accumulate metals from their 

environment which may ultimately reduce exposure to toxic metal stress. 

  The experimental results obtained from this dissertation have shed light into the 

interactions between social bees, their associated microbes, and environmental toxicants. 

We were able to show that the symbiotic microbiome of bees can reduce mortality upon 

metalloid exposure, bioaccumulate metals, and is generally robust against exposure to 

two metals, a metalloid, a neonicotinoid pesticide, and a floral oxidative compound, 

although these microbiomes and some individual microbial taxa can be affected by these 
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toxicants. Likewise, we showed that major gut symbionts – Snodgrassella alvi and 

Gilliamella apicola – exhibit considerable interstrain variation in their toxicant tolerance 

genes, and that S. alvi and Lactobacillus bombicola are tolerant of field-realistic 

metalloid exposure. These collective results suggest that the microbiomes of social bees 

play a vital role in bee health by reducing the hazards associated with toxicant exposure 

in agricultural and natural ecosystems. While this dissertation contributes to the literature 

and collective knowledge in the interdisciplinary fields of microbial ecology, 

ecotoxicology, and entomology, more research is needed to continue investigating the 

multipartite interactions between symbionts, their hosts, and the environment. Future 

research should further investigate the ability of the microbes associated with both social 

and solitary bees to positively affect pollinator health and cope with environmental stress. 

 

 

 

 

 

  




