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Abstract: Platinum group metal-free (PGM-free) catalysts based on transition metal-nitrogen-carbon
nanomaterials have been studied by a combination of ex situ and in situ synchrotron X-ray
spectroscopy techniques; high-resolution Transmission Electron Microscope (TEM); Mößbauer
spectroscopy combined with electrochemical methods and Density Functional Theory (DFT)
modeling/theoretical approaches. The main objective of this study was to correlate the HO2

−

generation with the chemical nature and surface availability of active sites in iron-nitrogen-carbon
(Fe-N-C) catalysts derived by sacrificial support method (SSM). These nanomaterials present a
carbonaceous matrix with nitrogen-doped sites and atomically dispersed and; in some cases;
iron and nanoparticles embedded in the carbonaceous matrix. Fe-N-C oxygen reduction
reaction electrocatalysts were synthesized by varying several synthetic parameters to obtain
nanomaterials with different composition and morphology. Combining spectroscopy, microscopy
and electrochemical reactivity allowed the building of structure-to-properties correlations which
demonstrate the contributions of these moieties to the catalyst activity, and mechanistically assign
the active sites to individual reaction steps. Associated with Fe-Nx motive and the presence of Fe
metallic particles in the electrocatalysts showed the clear differences in the variation of composition;
processing and treatment conditions of SSM. From the results of material characterization; catalytic
activity and theoretical studies; Fe metallic particles (coated with carbon) are main contributors into
the HO2

− generation.

Keywords: anion exchange membrane fuel cells (AEMFCs); iron-nitrogen-carbon electrocatalysts
(Fe-N-C); HO2

− generation; oxygen reduction reaction
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1. Introduction

Platinum has a limited availability on Earth, and its substitution with a platinum group metal-free
(PGM-free) electrocatalyst is needed in order for the fuel cell to become feasible and widely spread
technology [1–3].

Among several classes of PGM-free catalysts, transition metal-nitrogen-carbon (M-N-C)
nanomaterials, where the transition metal (M) is usually Fe, Ni, Co (or few others) are most often
studied and discussed. M-N-C nanomaterials are highly active electrocatalysts for oxygen reduction
reaction (ORR). An iron-nitrogen-carbon electrocatalyst (Fe-N-C) has attracted attention due to its
highest ORR activity among the other M-N-C electrocatalysts and demonstrated multiple synthesis
protocols to yield desired nanomaterial. Fe-N-C have been employed in experimental proton exchange
membrane fuel cells (PEMFC) and have demonstrated promise, while still being much inferior to PGM
catalysts [4]. In contrast, in alkaline media M-N-C demonstrate performance at par with PGM, as such
find applications as cathode materials in Anion Exchange Membrane Fuel Cells (AEMFCs) [5].

In general, Fe-N-Cs are synthesized through pyrolysis of an N-containing organic precursor,
serving as a source of the carbonaceous matrix and a transition metal salt as a source of the
metal-containing moieties in the final nanomaterial [6]. Often, the metal is present in the precursor
compound, as in metal organic frameworks (MOF) or is introduced in a specific stage of the catalyst
preparation [7–9]. Substantial efforts have been made towards identifying the structure of the active
sites in M-N-C nanomaterials. Current understanding of the M-N-C (and specifically Fe-N-C) catalyst
structure involves two central hypotheses: (i) transition metal is atomically dispersed and is built into
N-containing carbonaceous matrix and is the site on which di-oxygen binds prior to electro-reduction
steps [10,11], and (ii) transition metal form nano-particles of ether reduced metal or metal carbide,
which are immersed in carbonaceous matrix and induce ORR catalytic properties onto that matrix,
without directly participating in the reaction [12]. Explicit understanding of the chemical structure of
the active sites in M-N-C nanomaterials is additionally obscured by the fact that several Fe-containing
and N-containing moieties are catalytically active in various individual steps of ORR [13]. This interplay
between multiplicity of the chemical structure of the individual active sites and their participation in
reaction mechanism, especially in the generation of intermediate HO2

−, have yet to be revealed in full.
Under alkaline conditions, the kinetics of the Oxygen Reduction Reaction (ORR) on the cathode is

enhanced leading to improved overall fuel cell efficiency. Anion exchange membrane fuel cells
(AEMFCs) with an alkaline liquid electrolyte such as KOH (aq) are the best performing of all
known conventional hydrogen oxygen fuel cell types. The application of alkaline conditions at the
electrodes opens the potential to use a range of low-cost PGM-free catalysts. In order to enable liquid
electrolyte-free AEMFCs, a number of groups have begun research efforts devoted to fabrication and
engineering of anion-exchange membranes and ionomer solutions [14–20]. Also, there are incentives
to develop novel materials for AEMFC systems that have the potential to alleviate or eliminate the
technical issues associated with liquid electrolyte systems. This may include the use of a much more
diverse selection of potential fuels that are thermodynamically favorable in alkaline media.

As one of the most promising ORR electrocatalysts for AEMFC, transition metal-nitrogen-carbon
catalysts (M-N-C) have been intensively studied [21]. The performance of these catalysts is remarkably
better in a direct hydrazine fuel (DHFC) cell in comparison with a polymer electrolyte fuel cell reaching
a power density of 500 mW/cm2 [1,21,22]. Jasinski was the first to show the potential of utilizing
a transition metal macrocycle compounds for alkaline oxygen electroreduction [23]. In order for
the M-N-C catalysts to achieve their highest overall performance, they must have a well-developed
morphology and high density of active sites [24–26].

For over a decade, the University of New Mexico has been developing an original synthetic
method for M-N-C catalysts preparation called the Sacrificial Support Method (SSM) [4,27].
An industrial application for the SSM was successfully brought onto the catalyst market by Pajarito
Powder under the trademarked name VariPore™ [28]. The SSM synthesis produces material with
multiple controlled surface defects within a carbonaceous network and an internal network of
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connected pores with adjustable pore size distribution (PSD). The key chemical features of these
electrocatalysts result in high activity and excellent stability. Additionally, it is significant that
the formulations, processing and treatment conditions of SSM can be optimized for the best ORR
performance at AEMFCs conditions.

To rationally design active and durable electrocatalysts for AEMFCs, the mechanism and the
nature active site of ORR in alkaline conditions need to be identified. Especially, it is crucially required
to reveal the mechanism of HO2

− species generation because HO2
− is a source of OH radical [29]

which decreases the longevity of anion-exchange membranes and ionomer dispersions.
To reveal the mechanism of HO2

− generation, Fe-N-C ORR electrocatalysts synthesized
with variation of several parameters were analyzed by synchrotron X-ray radiation to build
structure-to-properties correlations on the basis of our previous works [30–33]. The structure of
electrocatalysts, which is associated with Fe-Nx motive and the presence of Fe metallic particle showed
the clear difference in the variation of composition, processing and treatment conditions of SSM.
From the results of material characterization X-ray Absorption Fine Structure (XAFS), Scanning
Transmission Electron Microscope (STEM), catalytic activity test (Rotating Ring Disk Electrode, RRDE)
and theoretical studies (DFT calculation), it was indisputably shown that Fe metallic particle (coated
with carbon) are main contributors to the HO2

− generation.
In parallel to the analysis of the mechanism of HO2

− generation, we performed Mößbauer
spectroscopy measurements and in situ XAFS analysis of the iron species to derive a guideline for the
design of highly active ORR catalysts.

2. Materials and Methods

2.1. Catalyst Preparation

The catalysts were synthesized by modified SSM [30,31]. Iron nitrate (2.5 g, Fe(NO3)3·9H2O,
Sigma Aldrich) was mechanically mixed with 25 g of the nitrogen-rich organic precursors (Nicarbazin
and Pipemidic acid) and 10 g of LM-150 fumed silica (Cabot Cab-O-sil®, surface area ~150 m2/g).
The pre-mixed material was loaded into a 100 mL agate ball-mill jar with 16 agate balls (diameter
1 cm). The mixture was subjected to ball-milling at 450 rpm for 1 h. The homogeneous powder was
pyrolyzed at T = 950 ◦C, t = 30 min in the flow of Ultra High Purity (UHP) Nitrogen, 100 ccm. After
heat treatment, silica was removed by 20 wt. % HF (1st acid treatment), followed by washing with DI
water until neutral pH was reached. The obtained powder was dried overnight at T = 85 ◦C. In order
to remove Fe metallic particles, the catalysts were acid treated with 1 M HNO3 (2nd acid treatment).
The abbreviations of each catalyst sample are shown in Table 1 together with the precursor and acid
treatment history.

Table 1. Synthesized Fe-N-C electrocatalysts.

Catalyst (Abbreviation) Precursor 1st Acid Treatment 2nd Acid Treatment

NCB Nicarbazin 20 wt. % HF -
NCB-N Nicarbazin 20 wt. % HF 1 M HNO3
PPM-N Pipemidic acid 20 wt. % HF 1 M HNO3

2.2. XAFS Data Collection and Analysis

X-ray absorption fine structure (XAFS) measurements were carried out at line BL14B2 line of
SPring-8 as in our previous work [32,33]. During in-situ XAFS analysis, potential was set at 0.25 V, 0 V,
−0.20 V, −0.40 V, −0.60 V, −0.75 V and −0.90 V vs. Hg/HgO (1.174 V, 0.924 V, 0.724 V, 0.524 V, 0.324 V,
0.174 V and 0.024 V vs. RHE). XAFS data processing was done using EXAFS analysis software (Ifeffit;
University of Chicago, Chicago, IL, USA) for fitting.



Nanomaterials 2018, 8, 965 4 of 14

2.3. Rotating Ring-Disk Electrode (RRDE) Preparation and Testing

The catalyst layer setup to the disk electrode and electrochemical measurement has been done as
our previous work [32]. The ratio of HO2

− generation was calculated using Equation (1).

P(HO2
−) (%) = 2 × Ir/(N × Id + Ir) × 100

(N = 0.38 in this work)
(1)

2.4. STEM Analysis

Scanning Transmission Electron Microscope (STEM) and STEM-EDS (JEM-ARM200F, Japan
Electron Optics Laboratory Company Limited; Tokyo, Japan) with the voltage acceleration of 200 kV
were performed to analyze catalyst morphology and composition.

2.5. HAXPES Analysis

Hard X-ray Photo Electron Spectroscopy (HAXPES) measurements were carried out at BL46XU
and BL47XU of SPring-8; Hyogo, Japan. The source X-ray energy was 7940 eV. Fe2p spectra were
acquired. Spectra were charge calibrated to the binding energy for Au standard plate of 84 eV (Au4f).

2.6. 57Fe Mößbauer Spectroscopy

Mößbauer measurements were made to characterize the iron compounds within each catalyst. The
spectra were recorded at room temperature with a CMCA-550 (WissEl; Starnberg, Germany) equipped
with a constant electronic drive system with a triangular reference waveform (Halder Electronics).
A 57Co source was used, and the velocity scale and isomer shift δiso were calibrated with natural iron
(α-Fe-foil, 25 mm thick, 99.99% purity). An assignment of the iron species was made by a comparison
of the Mößbauer parameters to literature data [34,35].

2.7. Computational Study

Calculations were done by using the spin-polarized DFT under Kohn–Sham formalism,
implemented in Quantum Espresso [36]. Projector augmented wave (PAW) was used to represent core
electrons [36]. Exchange-correlation energy functional was expressed by using generalized gradient
approximation by Perdew–Burke–Ernzerhoff (GGA-PBE) [37]. Plane-wave basis sets were used with
energy cut-off of 400 eV. The integration on Brillouin zone is done in 4 × 4 × 1 grid. 2 type surfaces
are modeled to evaluate HO2

− generating process. Two type surfaces were (a) Fe coated with carbon
using graphene on 4 layers of Fe(001) and (b) graphene as a reference. Adsorption molecule, graphene
and upper half layers of Fe(001) were relaxed and lower half layers of Fe(001) were fixed to evaluate
the most stable structure of the adsorbed molecules. For calculations of O2

2− adsorption as an initial
state [38], the total charge in the unit cell was −2 (two additional electrons).

3. Results

Figure 1 shows Fourier-transforms of the Fe K-edge extended X-ray absorption fine structure
(ex-situ EXAFS) spectra for three samples of electrocatalysts. Synthesized Fe-N-C electrocatalysts have
two peaks. The first nearest neighbor peak around 1.6 Å is assigned to the Fe-Nx structure [39]. The
second peak around 2.2 Å is assigned to Fe-Fe originating from Fe metallic particles. NCB represents
the peak of Fe-Fe higher than NCB-N and PPM-N, indicating that acid treatment with HNO3 facilitates
removal of Fe metallic particles. PPM-N represents the lowest peak of Fe-Fe and a higher peak of Fe-Nx

rather than the others, indicating that using PIPEM as precursor reduces the amount of Fe metallic
particles and increases the amount of Fe-Nx structures. To reveal the relationship between the structure
of Fe-N-C electrocatalysts and ORR activity (Equations (2) and (3)), RRDE analysis were done.
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Dual ORR reactions consist of the following two reactions:

O2 + H2O + 2e− → HO2
− + OH− (E0 = +0.761 V vs. RHE, pH = 14) (2)

HO2
− + H2O +2e− → 3OH− (E0 = +1.693 V vs. RHE, pH = 14) (3)

Figure 1. Radial structure function around Fe, calculated from the Fourier-transforms of the Fe K-edge
extended X-ray absorption fine structure (EXAFS) spectra of NCB, NCB-N, and PPM-N.

Figure 2 and Table 2 show a comparison of RRDE results. NCB produces high amounts of HO2
−

and results in low kinetic currents and onset/half wave potential. It suggests that the process to
generate HO2

− via Equation (2) is enhanced and HO2
− reduction via Equation (3) does not progress.

On the other hands, PPM-N produces low amounts of HO2
− and results in high kinetic currents and

onset/half wave potential because some of the remaining Fe particles are removed by the second
leach of HNO3. This suggests that the reduction of HO2

− via Equation (3) is more active for PPM-N
than for NCB. NCB-N is in between NCB and PPM-C. To discuss the effect of Fe-N-C structures (from
Figure 1 and Table 3) to HO2

− generation, the relationship between P(HO2
−) and the ratio of Fe

metallic particles/Fe-Nx is plotted in Figure 3. Figure 3 represents that P(HO2
−) is in proportion to

the ratio of Fe metallic particles/Fe-Nx. From this result, it is hypothesized that Fe metallic particles
enhance HO2

− generation represented by Equation (2). To confirm this hypothesis, it is necessary
to discuss ORR mechanism on the surface of Fe metallic particles. STEM analysis has been done to
investigate surface structure of Fe metallic particles.
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Figure 2. Voltammograms on NCB, NCB-N, and PPM-N of oxygen reduction reaction with rotating
ring-disk electrode in 1.0 M KOH at room temperature.

Table 2. Electrochemical performance of NCB, NCB-N, and PPM-N using RRDE.

Catalyst P(HO2
−)

N = 0.38
Id (mA) @ 0.2 V

vs. RHE
Onset Potential (V)

vs. RHE
Half Wave Potential (V)

vs. RHE

NCB 44.6 −0.35 1.01 0.57
NCB-N 28.6 −0.44 1.04 0.74
PPM-N 8.4 −0.67 1.04 0.78

Table 3. Ratio of Fe-Fe/Fe-Nx which is calculated from EXAFS fitting.

Catalyst Fe-Nx (Area) Fe-Fe (Area) Fe-Fe/Fe-Nx (ratio)

NCB 0.68 0.53 0.78
NCB-N 0.65 0.24 0.37
PPM-N 0.81 0.09 0.11

Figure 3. Voltammograms on NCB, NCB-N, and PPM-N of oxygen reduction reaction with rotating
ring-disk electrode in 1.0 M KOH at room temperature.
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Figure 4 shows HAADF-STEM images and EDS mapping images of Fe for NCB, which represents
the high amount of Fe metallic particles, and PPM-C as a reference. The results presented on Figure 4
represent good agreement with the results of EXAFS in Figure 1. Aggregated Fe metallic particles from
10 to 100 nm were observed in NCB (Figure 4a). Atomically distributed Fe, which was assigned as
Fe-Nx, was observed in PPM-N (Figure 4b).

Figure 4. HAADF-STEM images and EDS mapping images of Fe, (a) NCB and (b) PPM-N.

In Figure 5, HAXPES shows the difference in amount of Fe metallic particles between NCB
and PPM-N. These results also represent good agreement with the results of EXAFS in Figure 1 and
HAADF-STEM in Figure 4.

Additionally, Figure 4a shows that Fe metallic particles were coated with a carbon layer. It is well
known that carbon in alkaline condition is a strong HO2

− generator [40]. Therefore, it is assumed that
HO2

− generation by carbon is enhanced by Fe metallic particle substrate. To investigate the interaction
between Fe metallic particle substrate and carbon overlay, theoretical studies (DFT calculation) were
done. Figure 6 presents the energy diagrams for the reaction on carbon (graphene) with Fe substrate
(Fe(001) slab [41]) and on only carbon as a reference. It is well known that the edge structure of carbon
enhances HO2

− generation rather than terrace structure [42]. We assumed that the effect of Fe substrate
would be present on the terrace but not on the edge. Hence DFT calculations were done based on
graphene (as terrace carbon) on Fe(001) slab.

In this computational part, we focused on the calculation of the energy diagrams of the following
reactions [32,39]:

O2 + H2O + 2e− → *O2
2− + H2O: O2 adsorption (4)

*O2
2− +H2O→ *(O2 + H2O)2−: H2O adsorption (5)

*(O2 + H2O)2− → *HO2
− + OH−: HO2

− formation (6)

*HO2
− +OH− → *O− + 2OH−: HO2

− reduction (7)
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*HO2
− +OH− → HO2

− + OH−: HO2
− dissociation (8)

* represents the adsorbed X molecule on the surfaces. We compared the energy diagram on
graphene with Fe(001) and graphene. By making such comparisons, we could observe the possible
rate-limiting step for HO2

− generation on each surface.
In the case of graphene, the step of O2 adsorption (Equation (4)) required high energy as shown

in Figure 6. This indicates that graphene without Fe metallic particle substrate was not so active for
HO2

− or OH− generation.

Figure 5. Fe2p HAXPES spectra of NCB and PPM-N. The dot line represents binding energy of metallic
Fe: 707 eV.

Figure 6. The energy diagrams for the reactions from O2 adsorption to generate HO2
− or OH−.

On the other hand, there is no energy barrier in case of graphene with Fe(001), just requiring
endothermic energy to generate HO2

−: +1.78 eV/OH−: +2.86 eV. Moreover, O2 and H2O adsorption
energy: −2.18 eV is available on graphene with Fe(001). This indicates that endothermic energy
required for the process from O2 to HO2

− is given by another O2 and H2O adsorption. From these
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results, it is confirmed that Fe metallic particle substrate enhanced HO2
− generation. To reveal this

mechanism, the investigations of the density of state (DOS) of graphene without/with Fe(001) were
done. The comparison of DOS is shown in Figure 7.

Figure 7. DOS of (a) graphene, and (b) graphene with Fe(001).

Figure 7a shows that graphene without Fe(001) had a band gap around Fermi energy, indicating
semiconductive character. On the other hands, Figure 7b shows that graphene with Fe(001) had an
electric state around Fermi energy, indicating conductive character. Therefore, charge transfer from
graphene to adsorbed O2 was more favorable on graphene with Fe(001) rather than graphene without
Fe(001). We conclude that this difference of DOS affected required energy for O2 adsorption (energy
barrier for HO2

− generation).
From the ex-situ XAFS, RRDE, STEM, HAXPES and theoretical studies, we confirmed that Fe

metallic particles enhance HO2
− generation. To design reactive Fe-N-C catalysts, the role and active

site of the other type of Fe structure present: Fe-Nx should be investigated. To identify the detail of
Fe-Nx structures and reveal the relationship between Fe-Nx structure and catalytic activity, Mößbauer
measurements were done. Figure 8 and Table 4 show the results.
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Figure 8. Deconvoluted Mößbauer spectra of (a) NCB and (b) PPM-N.

Table 4. Difference of components of the Fe-N-C electrocatalysts by Mößbauer spectroscopy.

Catalyst S1 (γ-Fe) Se1 (FeC) Se2 (α-Fe) D1 D2 D3

NCB 10.8 15.3 2.9 36.9 21.8 12.3
NCB-N 10.0 0.0 0.7 36.1 37.0 16.2
PPM-N 1.1 0.0 0.5 39.8 45.7 12.9

The results of Mößbauer measurements represented good agreement with the results of EXAFS
in Figure 1 and HAADF-STEM in Figure 4. The high amount of Fe metallic particles assigned γ-Fe,
FeC and α-Fe were detected in NCB and high amount of Fe-Nx structure assigned D1, D2 and D3 sites
were detected in PPM-N as shown in Table 4. Here, D1 was assigned to FeIIN4/C (low spin), D2 was
assigned to FeIIN4 (like Fe-Phthalocyanine) and D3 was assigned to N-FeIIN2+2/C (high spin) sites,
respectively [34,35]. The amount of D2 is in proportion to the catalytic activity (confirmed by kinetic
currents, half-wave potential and onset potential in Table 2). From these results, it is hypothesized that
D2 enhances ORR occur-ring through Equations (2) and (3). To confirm this hypothesis, in-situ XAFS
analysis was done to investigate the change of adsorption structure in ORR.

Figure 9 shows the results of in-situ analysis of EXAFS on NCB and PPM-N, respectively.
To discuss the change of coordination number of Fe-Nx, peak shift at first nearest neighbor peak
of Fe around 1.6 Å is plotted in Figure 9. Figure 9 represents that the peak of PPM-N is decreased by
the potential shift from 0.25 V to −0.9 V (vs. Hg/HgO). This suggests that adsorbed O2 at the initial
state (0.25 V vs. Hg/HgO) on the surface of PPM-N is dissociated and reduced to OH−.
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Figure 9. FT peak shift vs initial calculated from in-situ EXAFS data for NCB and PPM-N.

From the results of Mößbauer measurements and in-situ XAFS, we assumed that D2 enhances
ORR process. However, in-situ XAFS does not directly suggest a change in the structure of D2
(including D1 and D3). For certification of this assumption, more studies (e.g., DFT calculation for
ORR on D1, D2 and D3) are required in future work.

4. Conclusions

To reveal the mechanism of HO2
− generation from Fe-N-C catalysts, three different Fe-N-C

catalysts were analyzed with ex-situ XAFS, STEM, RRDE and DFT calculations. It was revealed that
carbon overlay on Fe metallic particles changes the material from a semiconductor to a conductor and
enhanced HO2

− generation.
Additionally, Mößbauer measurements and in-situ XAFS analysis were performed to better

understand the structure of active sites. They suggested that a D2, assigned to FeIIN4 (like
Fe-Phthalocyanine), structure enhances catalytic activity. It is expected that the research will contribute
to the further development of PGM-free electrocatalysts as nanomaterials, leading to widespread
popularization of environmentally friendly fuel cells.
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