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Abstract

Karl DeVries

Independence Friendly Dynamic Semantics: Integrating Exceptional Scope,

Anaphora and their Interactions

The goal of this dissertation is to provide a semantic account for exceptional

scope indefinites in terms of independence friendly reasoning. I take the view that

an indefinite takes exceptional scope when its witness is required not to vary with

the value of a variable introduced by a syntactically higher quantifier. This disser-

tation shows that a straightforward implementation of this view in a static logic

results in a system that assigns truth conditions to sentences containing wide scope

indefinites that are too strong. I show, surprisingly, that a better implementation of

this intuition requires dynamic logic. While using a dynamic logic is a necessary

ingredient in the analysis of wide scope indefinites in terms of independence, it

is not a sufficient one. I survey a number of recent dynamic systems, examine

possible definitions of maximization, and show that only some of these permit the

proposed analysis of wide scope indefinites. I show that a system of dynamic plu-

ral logic (DPlL) with unselective maximization can be modified to fully account

for wide scope indefinites in terms of independent witness choice.âĂŃ
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Chapter 1

Introduction

This dissertation considers two empirical phenomena. The first, examined in chapter 2,

is the treatment of bare cardinal partitives like that in (1).

(1) That book could belong to one of three people. (Ladusaw, 1982)

The second, more widely studied phenomena, is the semantics of exceptional scope

indefinites. Uniting these two phenomena is a series of logics in which formulas are

interpreted relative to sets of assignment functions instead of single assignment func-

tions.

This dissertation consists of four contentful chapters. Chapter 2 discusses the se-

mantics of partitives. This chapter offers an in depth description of this construction

and isolates four uses to which it can be put, only two of which have been previously

described in the literature. It also presents new data that suggest logical similarities

between the readings of bare cardinal partitives and the adjectives same and differ-

ent. Uniting this chapter with the subsequent chapters is the formal proposal which

is couched in terms of a logic in which formulas are evaluated with respect to plural

information states (sets of assignment functions) that encode dependencies between the

values a variable can take on.
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Chapter 3 takes up the analysis exceptional scope indefinites. Brasoveanu and

Farkas (2011) argues that wide scope indefinites can be conceptualized in terms of

independence. An indefinite can take wide scope in the semantics by signalling that the

variable introduced by the indefinite cannot vary with respect to the value of another

variable.

(2) Everyx student read ay paper.

A narrow scope reading of the sentence above arises when the witness for the indefinite

is allowed to vary from student to student. If the value of the paper is not allowed to vary

from student to student a wide scope reading arises. Crucially in a semantics in which

indefinites can signal non-variation while appearing in the scope of other quantifiers,

wide scope can be achieved without LF movement of the indefinite or any other LF

operation (e.g. existentially binding choice/skolem function variables).

In order to implement their analysis Brasoveanu and Farkas (2011) utilize a logic

like the one developed in chapter 2. Formulas are evaluated with respect to sets of

assignment functions. The contribution of chapter 3 is an argument against the imple-

mentation of this idea in Brasoveanu and Farkas (2011). I show that the static logic they

provide does not quite capture the truth conditions of sentences containing exceptional

scope indefinites. Instead show that a dynamic logic is needed in order to capture the

correct truth conditions; the basic conclusion is that universal quantifiers need to be

sensitive not only to the fact that an independent witness was chosen for an indefinite

in their scope but also the identity of the particular witness. This requires maximization

over output assignments.

Chapter 4 turns to Dynamic Plural Logic (van den Berg, 1996), a dynamic logic

which contains the resources to manage dependencies between variables while han-

dling plural discourse reference. I discuss some of the maximization operations that
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have been proposed in the literature, and show that only some of these allow wide

scope indefinites to be analysed in terms of independence. I show that the simplest

maximization operator, one that returns the largest set of potential output assignments

allows for the intuition underlying Brasoveanu and Farkas (2011) to be correctly im-

plemented.

In Dynamic Plural Logic dependencies are managed by means of distributivity op-

erators. Only assignment updates occurring in the scope of distributivity operators can

introduce variables that depend on the values of previous variables. Capturing wide

scope interpretations thus reduces to managing the scope of distributivity operators

within Dynamic Plural Logic.

Chapter 5 provides a final analysis of wide scope indefinites. An analysis of wide

scope indefinites in Dynamic Plural logic leaves one with a syntax-semantic interface

problem. If dependencies are managed by controlling the scope of distributivity op-

erators, then wide scope indefinites must be equipped with some way of semantically

escaping the scope of a distributivity operator. I accomplish this by decomposing dis-

tributivity into two operators, a signalling operator, ↓x, that indicates that x should be

distributed over and an operator ∆ that implements distributivity. This is accomplished

by enriching the interpretive resources of the logic to include a store of variables that

should be distributed over. The signalling operator adds a variable to the store while the

distributivity operator empties the store of variables while distributing over them. By

breaking distributivity up into two components a new operator ↑x can be defined that

removes variables from the store. This in effect keeps a formula in the scope of ↑x from

being interpreted distributively with respect to x. By equipping wide scope indefinites

with ↑x operators they are able to control which variables they are allowed to vary with

respect to. Thus like in Brasoveanu and Farkas (2011) indefinites are able to choose

their scope.
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Chapter 2

Bare Cardinal Partitives

2.1 Introduction

This chapter discusses the semantics of BARE CARDINAL PARTITIVES; a celebrated

example is given in (3).

(3) That book could belong to one of three people. (Ladusaw, 1982)

I distinguish bare cardinal partitives, which have the form given in (4), from what I

will call DEFINITE CARDINAL PARTITIVES by which I mean DPs of the form given in

(5), and from ORDINAL PARTITIVES, like those given in (6).

(4) pn of k NPq, e.g. BARE CARDINAL PARTITIVE

a. one of two truth values
b. two of four candidates for local office
c. one of twenty two roses sitting in a vase on the table

(5) pn of the k NPq, e.g. DEFINITE CARDINAL PARTITIVE

a. one of the two truth values
b. two of the four candidates for local office
c. one of the twenty two roses sitting in a vase on the table

(6) pn/a kth of the NPq, e.g. ORDINAL PARTITIVE

a. A fourth of the roses
b. Two thirds of the tomatoes
c. One Sixth of the book

4



Throughout this chapter I will refer to the syntactically higher but numerically lower

numeral as the OUTER CARDINAL (or OUTER NUMERAL). In the case of (4), n is the

outer cardinal. I refer to the syntactically lower but numerically higher numeral as

the INNER CARDINAL (or INNER NUMERAL). In (4), k is the inner cardinal. I will

often need to refer to the NP or the set of entities that satisfy the NP in a partitive; I

sometimes refer to the NP in (4) as the restrictor of the inner cardinal and sometimes

as the restrictor of the partitive as a whole. When I use the term restrictor set when

discussing English partitives, I am referring to the set of entities picked out by the NP;

when I use the term restrictor set when referring to an quantifier in a formula of a formal

system I refer to the set of entities that satisfy the syntactic restrictor of some quantifier,

i.e. to φ in a formula like [Qx : φ ]ψ .

This chapter makes three contributions to the literature:

i. This chapter offers the first in depth description of bare cardinal partitives. I

isolate four uses to which bare cardinal partitives can be put: (a) a partial ig-

norance use identified by Ladusaw (1982), (b) an exhaustive use identified by

Barker (1998), (c) a cumulative use which is available when a bare cardinal par-

titive appears in the scope of a quantifier, and (c) a fractional use, in which a bare

cardinal partitive teams up with an adverbial quantifier to communicate the same

content as a ordinal partitive.

ii. This chapter presents new empirical data showing that adjuncts PPs headed by

in/across have similar effects on the interpretation of sentence internal readings

of the adjectives same and different and on the interpretation of cumulative read-

ings of bare cardinal partitives. This suggests an logical connection between the

analysis of adjectives like same/different and bare cardinal partitives.

iii. This chapter proposes a novel analysis of bare cardinal partitives in terms of a
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static plural logic similar to C-FOL developed in Brasoveanu and Farkas (2011).

In this logic formulas are interpreted relative to plural information states (sets

of assignment functions) that encode not only the values a certain variable can

take but also the relationships between the values of different variables. This

is broadly the same type of mechanism that can be used to analyse adjectives

like same and different (see e.g. Kuhn (2015) for a recent attempt). The system

I propose also utilizes two types of pluralities: informational pluralities (sets

of assignment functions) and ontological pluralities (those familiar from Link

(1983)).

My formal proposal also bears certain similarities to a proposal by Bumford (2016) in

that I treat the determination of the witness of both the inner and outer cardinals as a

simultaneous constraint satisfaction problem—the two are ‘scopeless’ with respect to

one another.

The remainder of the chapter is organized as follows. §2.2 provides a broad overview

of the previous literature and the empirical landscape. It also develops the central in-

tuitions that guide the development of the analysis. §2.3 delves into the data, isolating

the different readings of bare cardinal partitives. §2.4 develops a formal analysis of

bare cardinal partitives. In this section I show that FOL does not provide the resources

to handle bare cardinal partitives and instead propose an analysis couched in a logic

in which formulas are evaluated with respect to multiple assignment functions. §2.5

concludes.
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2.2 Overview

2.2.1 Previous Literature

In the previous literature bare cardinal partitives have played a relatively modest role,

appearing in lists of sentences counter-exemplifying the partitive constraint (see e.g.

Ladusaw 1982; Reed 1991; Abbott 1996; de Hoop 1997; Barker 1998; Zamparelli

1998; Ionin et al. 2006; Chen 2011). The partitive constraint has been cashed out in

several different ways (see (7)), but roughly the partitive constraint requires that the

embedded DP in a partitive construction be (in some sense) definite (Jackendoff, 1977;

Selkirk, 1977).

(7) THE PARTITIVE CONSTRAINT:

In an of-N”’ construction interpreted as a partitive, the N”’ must have a

demonstrative or a genitive specifier. (Jackendoff, 1977)

The Partitive Constraint can be stated. . . by requiring that the NP in a par-

titive phrase always denotes an individual (Ladusaw, 1982)

The Partitive Constraint can be restated such that the embedded NP within

a partitive construction must always denote an individual, either entity level

or group level. That is, of NP yields the components of the generator set

if the NP denotes and individual, and is undefined otherwise. (de Hoop,

1997)

Empirically speaking, the Partitive Constraint describes the restrictions on

[the embedded NP]. First of all [it] cannot be quantified or bare. . . Secondly,

[it] can be a definite plural, or an indefinite one if it is specific/referential in

7



the sense of Fodor and Sag 1982 — the unique entity such that the speaker

intends to refer to it. . . (Ionin et al., 2006)

...

Since the focus of previous literature has been reconciling sentences like (3) with

the partitive constraint, there has been no systematic investigation of the semantics of

bare cardinal partitives in their own right. In particular, the literature contains very

little discussion about possible interpretations or uses of bare cardinal partitives, nor

has there been a serious attempt to tease out possible differences between bare cardinal

partitives and definite cardinal partitives. The absence of empirical interest is reflected

in a paucity of formal treatments: as far as I am aware, only Winter (2000, 2005)

formalizes a sentence like (3).

2.2.2 Expanding the Empirical Landscape

The central empirical contribution of this chapter is an in-depth exploration of the in-

terpretation of bare cardinal partitives. I identity four uses of bare cardinal partitives.

The first, which I will call the PARTIAL IGNORANCE use, is exemplified in (8). The

sentence in (8) could be used naturally by a speaker who is uncertain about which poem

Otis recited, but who is not completely ignorant about which poems Otis might have

recited. The sense one gets from (8) is that the speaker is partially ignorant about the

identity of the poem Otis recited.

(8) Otis recited one of three poems. PARTIAL IGNORANCE

⇒Otis recited one poem, but I’m not sure which; there are three possibilities.

A second use, which I will call the EXHAUSTIVE use, is exemplified in (9). The

sentence in (9) can normally only be used if there are exactly three people Otis admires.

If Otis admires more than three people, then (9) is unacceptable.1

8



(9) Sybil is one of three people Otis admires. EXHAUSTIVE

⇒ Sybil is one person Otis admires and there are three people Otis admires.

A third use, which I will call the CUMULATIVE use, is exemplified in (10). Ut-

tering (10) allows a speaker to communicate two facts about which local businesses

endorsed which candidates: first, (10) conveys that each local business endorsed one

candidate — I will call this the DISTRIBUTIVE INFERENCE—and second, (10) conveys

that between every local business three candidates were endorsed overall—I will call

this the CUMULATIVE INFERENCE. This interpretation differs from both the partial

ignorance and the exhaustive uses. A speaker uttering (10) need not have three spe-

cific candidates in mind, nor must she be ignorant about which candidate any business

endorsed. Likewise, (10) does not commit the speaker to the belief that there are only

three candidates—(10) in fact seems to suggest that there are more than three candi-

dates.

(10) Every local business endorsed one of three candidates for city council. CUMU-
LATIVE

⇒ Every local business endorsed one candidate for city council and three
candidates were endorsed overall.

The fourth use, which I will call the FRACTIONAL use, is exemplified in (11). In

its fractional use, a bare cardinal partitive is equivalent to an ordinal partitive or some

other fractional expression, e.g. 25%, every third, etc. Fractional uses occur when a

bare cardinal partitive occurs in sentences that are generic in some sense.

(11) Generally, students read one of four assigned papers. FRACTIONAL

⇒ Generally, students read a fourth of the papers assigned.
1The only way to salvage (9) in the case in which Otis admires more than three people is to give (9)

a partial ignorance interpretation. The only way to set this up given the fact that (9) is an identification
sentence is to imagine a scenario in which the speaker knows who Otis admires under names other than
Sybil. The speaker could then use (9) to indicate that they were partially ignorant about how to line up
the description Sybil with the description of one of the (many) people Otis admires.

9



I will not have much to say about fractional uses in this paper and will set them

aside. Nevertheless, it is important to keep the possibility of a fractional interpretation

in mind when deciding how a sentences should be judged, as I will sometimes mark

with a # sentences that are acceptable on readings other than those I am interested in.

The most empirically rich descriptions of bare cardinal partitives are found in Ladu-

saw (1982) and Barker (1998), both of which discuss ways of reconciling bare cardinal

partitives with the partitive constraint. Ladusaw, discussing the example given earlier

in (3), writes:

The [sentence] in [(3) is] appropriately used only when the user has

a particular group of individuals in mind. [(3)] invites a continuation:

“namely, John, Mary and Bill”. . . The indefinite NPs which would nor-

mally introduce individuals which later may be referred to by definite NPs

are used here to simultaneously introduce and refer to a group of individu-

als. (Ladusaw, 1982)

The intuition expressed above is most consistent with a partial ignorance interpre-

tation. The speaker using a bare cardinal partitive has some specific set of entities in

mind. In my terms: the inner cardinal expresses the size of a speaker’s set of epistemic

possibilities for the identity of witness for the outer cardinal. This is the intuition fol-

lowed by Winter (2000, 2005) who tries to formalize this reading by means of choice

functions.

Barker, discussing an example from Abbott (1996) given in (12), gives the examples

in (13):

(12) He brought back several of twenty of his roses that were sick to get a refund,
but had to just throw out the rest, which was about fifteen. (Abbott, 1996)

(13) a. Fortunately, two truth values suffice for most purposes. (Barker, 1998)
b. Because each proposition denotes at most one of two truth values. . .

10



Barker suggests that bare cardinal partitives are acceptable if the inner cardinal

gives the cardinality of the restrictor set:

. . . in a context in which true and false are the only (relevant) truth values,

the indefinite NP two truth values accidentally denotes the same general-

ized quantifier as the two truth values. . . indefinite examples like those in

[(13b)] will be acceptable only in contexts in which the indefinite NPs have

denotations that are accidentally (isomorphic to) group individuals. One

prediction is that indefinites will be unacceptable in contexts that en-

tail the existence of additional entities with the relevant properties. . .

[The context in (12)] renders the indefinite twenty of his roses that were

sick acceptable as a partitive NP only on the implicit assumption that the

set of twenty roses exhausts the set of sick roses. If there were 24 roses in

total, and 22 of them were sick, then [(12)] is out. (Barker, 1998)

Here Barker is describing the exhaustive use of bare cardinal partitives. The inner

cardinal gives the cardinality of the set of entities that there are; it is thus equivalent to

a sentence containing a definite cardinal partitive in its place.

If the uses discussed in Ladusaw (1982) and Barker (1998) exhausted the uses to

which bare cardinal partitives can be put, we would expect the condition in (14) to

govern all uses of bare cardinal partitives.

(14) A sentence, S, containing a bare cardinal partitive, n-of-k Ps can be used iff
a. the speaker has k Ps in mind, and these are the speaker’s epistemic possi-

bilities for the identity of the n Ps involved in the eventuality described by
S or

b. there are exactly k Ps.

In this chapter I introduce novel data suggesting that not all uses of bare cardinal

partitives are governed by (14). Consider the contrast in (15).
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(15) a. # Otis recited one of three poems, but I have no idea which three.
b. Every student recited one of three poems, but I have no idea which three.

The sentence in (15a) is predicted to be out given:

i. which three Ps requires that there be more than three salient Ps.

ii. The sluice as a whole denies that the speaker has three candidates in mind.

iii. The bare cardinal partitive requires, pace (14), either that there be exactly three

candidates or that the speaker have three candidates in mind.

Since (i-iii) are jointly inconsistent, the acceptability of (15a) is expected. However,

since (14) makes no reference to the presence or absence of an additional quantifier,

the same reasoning predicts the unacceptability of (15b). Changing the subject from a

name to a quantifier seems to call off the requirements of (14).

The empirical contribution of this chapter consists of motivating in detail the re-

placement of (14) with the condition in (16).2

(16) A sentence, S, containing a bare cardinal partitive, n-of-k Ps can be used iff
a. the speaker has k Ps in mind, and these are the speaker’s epistemic possi-

bilities for the identity of the n Ps involved in the eventuality described by
S,

b. there are exactly k Ps, or
c. if S contains a quantified DP Q, then for each Q n Ps participated in the

eventuality described by S and k Ps participated overall.

2.2.3 Outline of the Analysis

My analysis will focus on cumulative uses, since these are the most difficult to achieve

compositionally. My analysis exploits a proposed similarity between cumulative read-

ings of bare cardinal partitives and the semantics of same/different. Imagine that you

2Here I am ignoring the fractional use of bare cardinal partitives.
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set out to verify a sentence like (17) using a piece of scratch paper. You might first

create a list of dogs, then list for each dog which cat(s) they chased, and finally look

back on your list to make sure that no cat appears twice.

(17) Every dog chased a different cat.

Fido Whiskers
}

the cat Fido chased

Rex Socks

Spot Evander

...
...

︸ ︷︷ ︸
Every dog

︸ ︷︷ ︸
no repeats

Adjectives like same/different are special because they involve column-wise rea-

soning. You have to look at every row at once to when evaluating (17).

I will argue that similar reasoning is involved in the interpretation of bare cardinal

partitives. If you set out to verify a sentence like (18) with a piece of scratch paper, you

would make a list of dogs, then list the cat each chased, and finally look back to make

sure your list includes exactly three cats.

(18) Every dog chased one of three cats.

Fido Whiskers
}

the one cat Fido chased

Rex Socks

Spot Evander

...
...

︸ ︷︷ ︸
Every dog

︸ ︷︷ ︸
three cats

My formal analysis builds on a plural logic, First Order Logic with Choice (C-FOL)

(Brasoveanu and Farkas, 2011)3. This logic implements the ‘scratch paper reasoning’

13



laid out above by evaluating expressions with respect to sets of assignment functions.

Each assignment function in a set of assignment functions corresponds to a row on our

scratch paper. Row-wise reasoning involves looking at single assignment functions and

column-wise reasoning involves looking at the set of values a variable takes on across

assignment functions. I argue that cumulative uses of bare cardinal partitives occur

when the ontological plurality picked out by the inner cardinal is identified with the

informational plurality picked out by the outer cardinal.

The analysis I propose allows partial ignorance and cumulative uses to be unified.

If we accept that utterances are understood as implicitly embedded under an epistemic

necessity operator (either as part of the pragmatic reasoning process or covertly at LF as

in Meyer (2013)), then we can treat partial ignorance as cumulation across a speaker’s

epistemically accessible worlds. To say Otis recited one of three poems communicates

that in each world one regards as epistemically possible Otis recited one poem and

summing up the poems across these worlds gives you a set of three poems.

We arrive at the conclusion that the witness for embedded DP cannot be any arbi-

trary subset of the restrictor set. In the case of definite cardinal partitives, this is trivial

since the definite presupposes a familiar or unique referent. In the case of exhaustive

interpretations, the witness is just the maximal plural individual that exhausts the re-

strictor set. In the case of cumulative interpretations, the witness set is the maximal

plural individual consisting of those individuals who participate distributively in the

eventuality of described by the sentence. Schematically, we have the options in (19):

(19) Every student recited one of three poems.
a. |{x : poem(x)}|= 3 or EXHAUSTIVE

3C-FOL is related to several other frameworks including Dynamic Plural Logic van den Berg (1996)
and independence friendly logics Hintikka (1973); Väänänen (2007). I choose C-FOL since it utilizes
both ontological pluralities (familiar from Link (1983)) and informational pluralities (i.e. the value(s)
that a variable may take on), see Brasoveanu (2008); Henderson (2014) for discussion in related dynamic
frameworks.
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b. |{x : poem(x)∧ [∃y : student(y)]recite(y,x)}|= 3 CUMULATIVE

{x : poem(x)}

{x : poem(x)∧ [∃y : student(y)]recite(y,x)}

The inner cardinal can give the cardinality either of its restrictor as in (19a) in which

case an exhaustive interpretation arises, or it can give the cardinality of the smallest set

of relevant entities that participated in the event as in (19b) in which case a cumu-

lative reading arises. The inner cardinal cannot give the cardinality of some arbitrary

intermediate set. This is only possible for definite cardinal partitives which can give the

cardinality of any subset of the restrictor that is already familiar/unique in the discourse.

2.3 Three Readings of Bare Cardinal Partitives

This section discusses three readings of bare cardinal partitives, the PARTIAL IGNO-

RANCE, EXHAUSTIVE, and CUMULATIVE readings. I exclude here the FRACTIONAL

interpretations. The discussion is divided into several subsections based on the com-

plexity of the sentences in which the bare cardinal partitive occurs. In §2.3.1 I ex-

amine bare cardinal partitives in simple sentences with no additional quantifiers. In

such sentences only the partial ignorance and exhaustive uses can be detected. Next in

§2.3.2 I examine bare cardinal partitives in sentences containing other quantifiers. Here

the cumulative interpretations become detectable. The near total absence of examples

containing both bare cardinal partitives and other quantifiers in the literature largely ex-

plains why these interpretations have not been previously recognized. Finally, in §2.3.3

I note an empirical similarity between the interaction between in/accross adjuncts and
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adjectives like same/different and the interaction between in/across adjuncts and the

cumulative interpretation of bare cardinal partitives. Although I will not provide an

analysis of the difference between in/across, the empirical similarity provides a hint

that a plural logic capable of providing an analysis of same/different is an appropriate

tool to handle bare cardinal partitives.

2.3.1 Bare Cardinal Partitives in Sentences Without Quantifiers

In this section, I examine bare cardinal partitives in simple sentences (i.e. sentence

without any quantificational elements). I will be particularly interested in one question:

Under what conditions can a partitive of the form pn of k NPq be used felicitously in

contexts in which there are more than k relevant things?

2.3.1.1 Bare Cardinal Partitives Signal Ignorance

Consider the two sentences in (20), which seem at first blush to have nearly identical

truth conditions.

(20) a. Otis read one paper.
b. Otis read one of three papers.

Both sentences in (20) require that Otis read one paper. If Otis read didn’t read any

papers or read more than one paper, then both sentences would be judged false. The

sentence in (20b) carries an additional requirement that there be (at least) three papers

under discussion. For example, if one was discussing the readings assigned for a partic-

ular class on a particular day and it was known to all participants that only two papers

were assigned, (20a) could be used felicitously while (20b) would be unacceptable.

A further difference between the examples in (20) can be brought about by consid-

ering each sentence relative to different questions under discussion (QUDs) (Ginzburg,
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1996; Roberts, 1996; Büring, 2003). Consider each sentence as an answer to a HOW-

MANY question.

(21) How many papers did Otis read?
a. Otis read one paper.
b. #4 Otis read one of three papers.

As an answer to (21) the sentence in (21a) containing a bare numeral seems felicitous—

it is a direct answer to the question. In the same context, the sentence in (21b) con-

taining a bare cardinal partitive seems odd. Since the question under discussion is how

many papers Otis read, the additional information that the one paper Otis read is among

three is superfluous resulting in a feeling of infelicity.

Next consider the sentences in (20) as answers to a which question.

(22) Which paper did Otis read?
a. # Otis read one paper.
b. Otis read one of three papers.

In response to the question in (22) the acceptability of the two answers flips. The

sentence in (22a) containing only a bare numeral seems uncooperative. Note that (22a)

seems much worse than (21b). Intuitively, this feeling arises due to the fact that the

question in (22) contains a presupposition that Otis read a paper (Belnap, 1963) and the

response in (22a) merely restates the presupposition of (22). The sentence (22a) thus

fails to answer the question or even advance the conversation toward an answer. If all

one can truthfully say in response to (22) is (22a), then one should instead admit igno-

rance: I’m not sure is the appropriate response. More interesting is the acceptability

of (22b) in this context. Intuitively, (22b) does advance the conversation by signalling

that the speaker has some information about which papers Otis read. But, crucially, the

answer in (22b) communicates ignorance about the particular paper Otis read.
4Here I follow a long tradition of severely overloading the #. In this particular case the feeling is one

of getting slightly more information than was asked for.
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I will refer to the ignorance inference discussed above as the IGNORANCE CONDI-

TION, which is provided in (23).

(23) IGNORANCE CONDITION: A sentence pn of k Ps Qedq conveys that the speaker
is not aware of which particular n Ps Qed.

Since we have not yet discussed the interpretation of n-of-k partitives in sentences

with quantifiers, I restrict the ignorance condition to just these cases.

2.3.1.2 Refining the Ignorance Condition

Although (22b) does communicate ignorance, it communicates only partial ignorance.

(22b) does not suggest that the speaker does not have any idea which papers Otis read.

In fact, it suggests that the speaker can eliminate some possibilities. Consider the ex-

change in (24).

(24) Sybil: Which paper about partitives did Otis read?
Kashif: I’m not sure, I know he read one of three papers.
Sybil: That’s potentially very helpful, which three?
a. Kashif: It was either Ladusaw ’82, Abbott ’96, or Barker ’98
b. # Kashif: Oh, I don’t know that either.

The dialogue in (24) begins in the same way as (22). However, it contains a follow-

up question in which Sybil asks for further clarification about which candidates Kashif

has in mind. If Kashif comes back with a list of papers as in (24a), then the conversation

seems fine. If instead Kashif responds by claiming further ignorance as in (24b), the

conversation seems deviant. The contrast between (24a) and (24b) suggests that by

using a bare cardinal partitive to convey ignorance Kashif puts himself on the hook to

provide additional information about potential candidates. A partitive of the form pn of

k NPq thus seems to require that the speaker have some specific k things in mind.

I will refer to this inference as the SPECIFICITY CONDITION which is defined in

(25).
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(25) SPECIFICITY CONDITION: A sentence pn of k Ps Q-edq communicates that
the speaker has k particular Q’s in mind.

The specificity condition is stated somewhat vaguely here, but it captures Ladusaw’s

(1982) characterization of the requirements imposed by bare cardinal partitives.

By putting the ignorance and specificity conditions together, we can come to a more

precise characterization of PARTIAL IGNORANCE.

(26) PARTIAL IGNORANCE: An utterance, S, containing a bare cardinal partitive,
like pn of k Ps Q-edq communicates partial ignorance iff S communicates
that the speaker

a. is unaware of which n Ps Q-ed and
b. has k candidates in mind.

2.3.1.3 Exhaustive Interpretations

We can now ask whether every bare cardinal partitive conveys partial ignorance, i.e.

if it is subject to the ignorance and specificity conditions, or if there are uses of bare

cardinal partitives which do not convey partial ignorance. To answer this question, we

need to engage in a closer examination of the data.

The discussion of (22) and (24) above has left one aspect of the context implicit,

viz. how many papers are under consideration when the question is posed. In both (22)

and (24) it is natural to assume a context in which there are several possible papers that

Otis could have read. In fact, as seen in (27) if we set up the context so that there are

only five salient papers, we will discover that the bare cardinal partitive requires that

inner cardinal is less than five.

(27) Sybil has created a list five of semantics papers available to her class and
requires that every student read at least one of these papers. Sybil is interested
in knowing what a particular student Otis has decided to read and she asks
Yngve:
Which paper did Otis read?
Yngve replies:
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a. Otis read one of three papers.
b. # Otis read one of five papers. (cf. # Otis read one paper.)

Yngve’s response in (27a) is acceptable. It conveys Yngve’s ignorance, but suggests

that he is able to provide Sybil with some information. The response in (27b), however,

is infelicitous. Intuitively, the feeling of infelicity arises because (27b) does not provide

any information that cannot be recovered between the presupposition of the question

and the details explicitly mentioned in the context. If Yngve considers all five papers

to be live possibilities, then his ignorance is not partial. The requirement on partial

ignorance uses examined above can be stated in terms of the relative size of the domain

and the inner cardinal. The size of the restrictor set in a context must be larger than the

inner numeral for a partial ignorance reading to arise.

The above data might lead one to believe that bare cardinal partitives require that

the context include more items in the restrictor set than the inner cardinal. However, it

is easy to show that this is not the case. To illustrate the point it is helpful to turn to

identification sentences like (28).

(28) Sam is a doctor.

While the indefinite in (28) can be analysed as a predicate, identification sentences

can contain also contain quantifiers as seen in (29).

(29) a. Sam and Kari are some doctors Yngve admires.
b. (?) Sam and Kari are all the doctors Yngve admires.

While (29b) seems slightly degraded both sentences are readily interpretable. Both

examples in (29) communicate that Sam and Kari are doctors that Yngve admires. The

sentence in (29a) implicates, additionally, that there are other doctors Yngve admires,

while the example in (29b) entails that Yngve admires no doctors except Sam and Kari.
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It is easy to show that the inference associated with (29a) is an implicature. It can easily

be called off in a cancellation test as seen in (30).

(30) Sam and Kari are some doctors Yngve admires, and, in fact, they are the only
doctors Yngve admires.

Like some and all bare numerals can also occur in identification sentences. Con-

sider the example in (31).

(31) Warren and Otis are two people Sybil admires.

The example in (31) leads to same inference present in (29a). It suggests that Sybil

admires Warren and Otis, but that Sybil admires other people as well. Again, this

inference is readily cancellable, as shown in (32).

(32) Warren and Otis are two people Sybil admires, and, in fact, they are the only
two people Sybil admires.

Now consider the interpretation of a bare cardinal partitive in an identification sen-

tence. One such example is given in (33).

(33) Warren and Otis are two of five people Sybil admires.

There is no hint of partial ignorance about (33). This sentence like those in (29)

and (31) entails that Sybil admires Warren and Otis. However, it conveys some ad-

ditional information. First, (33), like (29a) and (31) communicates that the speaker

admires other people besides Warren and Otis. Unlike (29a) and (31), this inference is

an entailment of (33). It cannot be cancelled as seen in (34).

(34) # Warren and Otis are two of five people Yngve admires, and, in fact, they are
the only two people Yngve admires.

Second, (33) communicates that there are (exactly) five people Yngve admires. The

infelicity of the sentence given in (35) shows that this inference is also an entailment of

(33).
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(35) # Warren and Otis are two of five people Sybil admires, but, in fact there are{
fewer
more

}
than five people Sybil admires.

In identification sentences bare cardinal partitives do not convey ignorance, but

instead convey the size of restrictor set in a context. This is the EXHAUSTIVE use,

which I define in (36).

(36) EXHUASTIVE: An utterance, S, containing a bare cardinal partitive, like pn
of k Psq communicates exhuastivity iff S communicates that the speaker
believes there to be only k Ps.

It is unsurprising that identification sentences provide excellent examples in which

bare cardinal partitives communicate exhustivity. It would be very odd to say that

Warren is one of the people you admire, but you’re not sure which one of the people

you admire he is. To the extent that such a scenario makes sense one has to think that

you know none of the people you admire by the name ‘Warren’ but have been informed

that one of the people you admire is also someone you know (in a different context) as

Warren. You might then have some speculation about which of the people you admire

goes by Warren. Note that in the course of coercing a partial ignorance interpretation,

one looses the inference that the speaker admires only three people.

It is extremely easy to find naturally occurring examples of bare cardinal partitives

that convey exhuastivity. A google search turns up countless examples like those in

(37) in which bare cardinal partitives are used in identification sentences.

(37) a. γ Fischer’s 100-footer Ragamuffin is one of four supermaxis vying for
line honours along with the defending champion Wild Oats, fellow Aus-
tralian Perpetual Loyal and the American invader Comanche.

b. γ McNamara and Vaughan are two of five alternates for this year’s Ti-
tans of Mavericks competition and set out Thursday morning at first
light to practice on the challenging break.

The example in (37a) comes from a discussion of the 2015 Sydney-Hobart race.

The n-of-k partitive is used to indicate that Ragamuffin is a supermaxi and that there
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are exactly four supermaxis in the race; (37a) would be unequivocally false had a fifth

supermaxi entered the race. The example in (37b) comes from the Santa Cruz Sen-

tential discussing a particularly nasty wipeout on Steamer Lane that was recorded by

onlookers. This example clearly communicates that the Titans of Mavericks competi-

tion has five alternates this year.

It is also easy to find examples of bare cardinal partitives which convey exhuastivity

that do not occur in identification sentences. Consider the example in (38).

(38) γ A Tennessee couple holding one of three winning tickets for this week’s
record $1.6 billion U.S. Powerball lottery jackpot said on Friday they will
keep their jobs because “you just can’t sit down and do nothing.”

The example in (38) occurs in a newspaper article discussing the recent power-ball

lottery. This example is not an identification sentence, yet the context makes clear that

the identity of the ticket the couple is holding is not unknown (it’s not even clear what

it would mean for it to be unknown—the ticket they are holding is the ticket they are

holding and that’s all that matters). In this sentence it is clear that the inner cardinal,

three in (38) conveys the total number of winning tickets.

2.3.1.4 Summary

The data discussed in this section lend themselves to the following conclusion: bare

cardinal partitives convey either exhaustivity or partial ignorance in sentences without

other quantificational expressions. Moreover, it appears that whether the partitive con-

veys domain exhaustivity or partial ignorance is dependent on the relative size of the

restrictor set and the inner cardinal. If the set is larger than than the inner cardinal,

then the partitive conveys partial ignorance. If one the other hand, the partitive does not

convey partial ignorance, then it communicates that the restrictor set has cardinality of

the inner numeral. An bare cardinal partitive like (39) has two paraphrases, given in
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(39a) and (39b).

(39) Otis read one of three papers.
a. There are three papers Otis could have read.
b. There are three (contextually salient) papers and Otis read one paper.

Both paraphrase in (39) are modelled on Ladusaw’s (1982) paraphrase of (3). The

first, in (39a), suggests ignorance about the particular paper Otis read and the second,

in (39b), gives information about the number of papers in the domain.

In the next section, I turn to more complex sentences that contain quantificational

expressions. However, one should keep in mind that partial ignorance and exhaustive

uses of bare cardinal partitives are expected to be present in all sentences. The interest-

ing question that I tackle in the next section is whether there are additional readings of

bare cardinal partitives that are not covered by these two uses.

2.3.2 Bare Cardinal Partitives in Quantified Sentences

This section examines the behaviour of n-of-k partitives that occur in the scope of overt

universal quantifiers. I will show that when an n-of-k partitive occurs in the scope

of a universal quantifier it can convey the range of variation that potential witnesses

take with respect to the quantifier. A sentence like (40) conveys (i) that each business

endorsed one candidate and (ii) that overall three candidates were endorsed by local

Businesses.

(40) Every local business endorsed one of three candidates for City Council.

This use of n-of-k partitives allows one to convey the number of candidates en-

dorsed both distributively (one) and cumulatively (three). In this section I will also

show that in sentences like (40) there is no specificity requirement on n-of-k partitives.
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Scenarios can easily be constructed in which a sentence like (40) can be used by a

speaker who does not have any three candidates in mind.

Imagine that Sybil, a professor, wanting her students to be well read, makes avail-

able a list of ten papers relevant to a course, and, not wanting to overburden her stu-

dents, tells them that they should each read at least one of the papers. To keep track

of which papers students have read, Sybil instructs her teaching assistants to make a

database that records for each student the papers that they have read. We can now

imagine our professor making queries to the data-base and think about the inferences

the answers justify.

(41) Sybil wonders which paper a particular student, Yngve, has read. She queries
the database and it returns “Shelah & Rudin 1978”. She concludes:

a. Yngve read one paper.
b. # Yngve read one of three papers.

(42) Sybil wonders which paper(s) Yngve read. She queries the database in it
returns “Shelah & Rudin 1973”. Sybil realizes there is a problem, because
there is no paper corresponding to that citation on the list. The list does
however contain: Shelah & Rudin 1978, Rudin & Erdös 1973, and Shelah
& Erdös 1973. She reasons that this entry must have either the wrong date
or one wrong name. She concludes:

a. Yngve read one paper.
b. Yngve read one of three papers.

The data in (41-42) confirm the empirical generalizations developed in the previ-

ous section. The initial scenario indicates that the context contains ten papers, thus

prohibiting a domain exhaustivity use of an n-of-k partitive. The scenario described in

(41) sets up a situation in which Sybil knows exactly how many papers Yngve read,

permitting the conclusion in (41a) containing a bare numeral. Scenario (41) does not,

however, permit the conclusion in (41b) since Sybil knows which paper Yngve read

and thus lacks partial ignorance. The scenario described in (42) sets up a situation in
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which Sybil knows how many papers Yngve read but does not know its exact identity.

Scenario (42) thus licenses both conclusion (42a) containing a bare numeral and con-

clusion (42b) containing an n-of-k partitive. Notice that to permit the conclusion (42b)

Sybil has to have some idea of which particular papers Yngve might have read. If no

paper written by Shelah or by Rudin or in 1973 was present in the list, giving Sybil

nothing to go on, (42b) would not be a felicitous conclusion.

Now consider the scenario described in (43).

(43) Sybil wonders how many papers students have been reading. She queries the
database and finds that every student has read only one paper. Wondering if,
perhaps, as a group, they are well read, she queries the database about how
many papers have been read. And finds to her surprise that it returns “3”.
She concludes:

a. Every student read one paper.
b. Every student read one of three papers.

In this scenario, Sybil has complete ignorance about both (i) which students read

which papers and (ii) which papers were read by any students. Instead Sbyil knows

(i) how many papers every student read and (ii) how many papers were read by some

student or other. In such a scenario both conclusion (43a) containing a bare numeral

and (43b) containing an n-of-k partitive are permitted. This suggests that the n-of-k

partitive in (43b) is compatible with complete ignorance about the identity of the three

papers.

The same point can be made by observing sentences with two universal quantifiers

like (44).

(44) In every section, every student read one of three papers.

On its most natural interpretation the sentence provided in (44) describes a situation

in which (i) every student read one paper and (ii) in every section three papers were read

overall. On this reading, the three papers read vary from section to section, but (44)
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conveys that within each section only three papers were read. On this interpretation

(44) does not suggest anything about the speaker’s state of knowledge with respect to

which student read which papers or which papers were read in which section.

The data above strongly suggest that in the scope of universal quantifiers n-of-k

partitives have readings which convey neither domain exhuastivity nor partial igno-

rance. In order to better characterize their meanings, I draw attention to the distribu-

tive/cumulative ambiguities that arise between bare numerals and universal quantifiers.

(45) Two dogs chased every cat.

a. Two dogs each chased every cat.
b. Two dogs chased every cat between them.

Sentences like (45) have two readings, a distributive reading paraphrased in (45a)

and a cumulative reading paraphrased in (45b). In contrast, universal quantifiers with

bare numerals in their scope allow only distributive readings:

(46) Every dog chased two cats.

The sentence in (46) can only mean that each dog has chased two cats. It cannot

be used to describe a situation in which each dog chased some cat and two cats were

chased overall. Now consider the sentence in (47) which contains an n-of-k partitive in

the scope of a universal.

(47) Every dog chased two of three cats.

The sentence in (47) seems to get at both a distributive interpretation relative to

the outer numeral (two) and a cumulative interpretation relative to the inner numeral

(three). The sentence (47) is true if (i) every dog chased two cats and (ii) three cats

were chased overall. On this way of looking at things n-of-k partitives allow speakers

to access normally unavailable cumulative readings. One can also characterize the

meaning of (47) in terms of variation. When verifying a sentence like (46) one checks
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each dog and makes sure that one can find exactly two cats that it chased. The choice

of cats can vary without constraint from dog to dog. In (47), on the other hand, one has

to select dog after dog two cats from the same set of three.

I refer to the use of n-of-k partitives under discussion here in terms of partial varia-

tion which I define in (48).

(48) PARTIAL VARIATION: An utterance S, p Every P Q-ed n-of-k Rsq, contain-
ing an n-of-k partitive occuring in the scope of a quantificational expression
conveys partial varation iff S conveys that the speaker believes that p Every
P Q-ed n Rsq and that these n Rs are drawn from the same set of k Rs.

Before turning to the next section, it is worth considering two additional questions.

First, which determiners license the partial variation interpretation of n-of-k partitives?

Second, how does the partial variation interpretation interact with distributivity in gen-

eral?

Beginning with the first question, we can see that in addition to universal quantifiers

like each, every, and all proportional quantifiers also licence partial variation readings.

(49)


Most of

The majority of
A fourth of

 the students read one of three papers.

The expressions in (49) all express proportional quantifiers, and each has an inter-

pretation in which the n-of-k partitive expresses partial variation. If most of the students

read one of three papers, this suggests that if one were to look at all of the students, one

would find more than three papers read overall.

Definite descriptions can also license partial variation interpretations, but only if

they take distributive interpretations.

(50) a. The students each read one of three papers.
b. # The students read one of three papers altogether.
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The sentence in (50a) which contains distributive each has a reading in which the

students each read one paper and overall three papers were read. The sentence in (50b)

which contains the anti-distributive adverbial altogether does not have a reading in

which each student read one paper and overall three papers were read. Instead (50b)

has only the familiar readings from the previous section; it can convey either that there

are only three contextually salient papers or that the speaker is unsure of exactly which

one paper the students read.

The adverbial between them can be used to bleed the inherent distributivity of the

universal quantifier every as seen in (51). The sentence in (51) does not require that

every dog chased every cat, but only that every dog chased some cat and every cat was

chased by some dog.

(51) Between them, every dog chased every cat.

The deep connection between distributivity and partial variation readings is also

illustrated by example (52).

(52) # There were ten cats around, and every dog chased one of three cats, between
them.

The sentence in (52) sounds odd because every use of the n-of-k partitive is pre-

cluded: the exhuastive use of the partitive is inconsistent with the first conjunct, the

ignorance interpretation would require that every dog chase one cat, in which case the

anti-distributive between them is superfluous, and the partial variation reading is bled

by the anti-distributive adjunct.

2.3.3 in/across, same/different, and cumulative readings

In this section, I call attention to a data point that suggests that cumulative readings of

bare cardinal partitives are sensitive to the same expressions as sentence internal read-
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ings of adjectives like same and different. In particular I will focus on how adverbial

PPs headed by in vs. across have different effects on the interpretation of same and dif-

ferent and that these effects are identical to the effects in vs. across have on cumulative

readings of bare cardinal partitives.

Carlson (1987) describes two readings of adjectives like same and different. These

adjectives can have EXTERNAL readings, exemplified in (53). In (53a) the DP the same

cat refers to the cat Otis saw introduced in the first conjunct. Likewise, in (53b) a

different dog cannot refer to the dog introduced in the first conjunct. Carlson refers to

these uses as sentence external because the adjective compares/contrasts its value with

some previously mentioned individual.

(53) a. Otis saw one cat in the morning, and Warren saw the same cat in the after-
noon.

b. Otis saw one dog in the morning, and Warren saw a different dog in the
afternoon.

In addition to their sentence external use, adjectives like same and different have IN-

TERNAL readings that are available in the presence of other quantificational elements.

These uses are exemplified in (54).

(54) a. Every student recited the same poem.
b. Every student recited a different poem.

These readings are called internal because the sentence itself sets up the context on

which same/different operate.

Now, imagine a situation in which a class is divided into a number of discussion

sections s.t. every student is in exactly one section. Say that each student is tasked with

picking a poem to recite during their section. After the recitations, one might utter the

sentence in (55).

(55) In every section, every student recited the same poem.
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The sentence in (55) would be false if no two students in the same section recited the

same poem, but could be true even if two students from different sections recited the

same poem. Now, consider what happens if we replace in with across as in (56).

(56) Across every section, every student recited the same poem.

The sentence in (56) would be false if two students from different sections recited the

different poems. Intuitively, (55) involves partitioning the set of students according

to which section they attend and then predicating recited the same poem of each cell

of the partition. The sentence in (56) does not partition the set of students but rather

predicates recited the same poem of the entire set of students.

The same data can be replicated for different:

(57) a. In every section, every student recited a different poem.
b. Across every section, every student recited a different poem.

The sentence in (57a) might be true even if two students from different sections recited

the same poem; as long as no two students from the same section both recited a single

poem (57a) is true. The sentence in (57b) is stronger—it would be false if any two

students from any section both recited the same poem.

Interestingly, the pattern above can be replicated for cumulative readings of bare

cardinal partitives. Consider the data in (58).

(58) a. In every section, every student recited one of three poems.
b. Across every section, every student recited one of three poems.

The sentence in (58a) conveys that within each section three poems were recited—

(58a) could be true if three different poems were read in each section. The sentence in

(58b) would be false if more than three poems were read by students in the class taken

as a whole.
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Though, I will not offer a full account of the distinction between in and across as it

occurs in (55-58), the pattern suggests that in is distributive while across is cumulative.

Moreover, bare cardinal partitives in their cumulative use and same and different show

exactly the same behaviour with respect to in and across. This suggests that the seman-

tic account of cumulative readings should make use of similar logical mechanisms.

2.4 Analysis of Bare Cardinal Partitives

In this section, I develop an analysis of n-of-k partitives in several steps. My approach is

novel in several respects. First, I will not worry about the partitive constraint. Second,

I will defer the discussion of the scope of the inner (k) cardinal as long as possible; the

analysis takes us through two logics and not until the second logic will we come to any

firm conclusions about where the inner (k) cardinal takes scope.

The first section outlines an initial logic that is fairly standard in the semantics

literature. It includes the usual expressions and interpretations familiar from first order

logic (FOL) enriched with a domain of plural individuals and the standard array of

distributive and maximization operators. An important aspect of the logic we develop

will be its ability to cleanly, if not compositionally, handle van Bentham’s puzzle (van

Benthem, 1986); this will allow us to develop a ‘scopeless’ analysis of n-of-k partitives

allowing us to dodge the scope issue in order to focus on the underlying logic.

The second section shows that with only these standard resources we can easily

capture only domain exhuastivity readings: I will show that FOL does not provide the

resources necessary to handle partial variation readings.

The third section introduces a logic in which formulas are interpreted relative to

sets of assignment functions. This logic allow one to talk about all the values a variable

might take while calculating the semantic value of a formula. I show that the additional
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resources provided by this logic allow for a relatively straightforward account for partial

variation readings.

The fourth section provides the final analysis. I show that exhaustive and cumula-

tive readings can be captured in the system and argue that partial ignorance uses can be

unified with cumulative interpretations: partial ignorance arises as a result of a cumu-

lative interpretation across epistemically accessible worlds.

2.4.1 Initial Logic: Structured Domains & First Order

Interpretation

This section provides a leisurely development of a relatively standard logic capable

of translating plurals and bare numerals. The logic handles plurals by means of a

structured domain, i.e. a domain consisting of both atomic and non-atomic individ-

uals along with designated symbols ≺, ⊕, and δ that permit the logic to access the

underlying semi-lattice formed by the sum operation. Quantification over this domain

is completely standard: constants take individuals in the domain as their semantic value

and formulas are interpreted relative to single assignment functions that map variables

to individuals in the domain of the model. I show that the logic can provide clean and

truth conditionally adequate translations of sentences involving cumulative/distributive

ambiguities, one- and two-sided interpretations of numerals, and sentences containing

multiple numerals.

We begin with models familiar from Link (1983) that consists of a domain of in-

dividuals, D that consists of the power-set of a set of atomic entities, Ind, minus the

empty set, i.e. D :=℘(Ind)− /0 and an interpretation function, I. Formulas are inter-

preted relative to a model M := 〈D,I〉 and an assignment function. I assume the usual

definitions of ¬,∧,∨,=,∃, and ∀.
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To handle quantification we define assignment function difference for single vari-

ables and generalization to sequences of variables.

(59) h[v]g := h differs from g at most with respect to the value assigned to v

(60) h[v1,v2, . . . ,vn]g := there exists a k s.t. h[v1]k and k[v2, . . . ,vn]g

Individual terms are interpreted as elements of D in the usual way.

(61) a. If c is an individual constant (in practice: a,b,c, j . . . ), then JcKM,g = I(c)
b. If v is an individual variable (in practice: x,y,z, . . . ), then JvKM,g = g(v)

Note that since our domain consists of both atomic individuals, i.e. singleton sub-

sets of Ind, and plural individuals, i.e. non-singleton subsets of Ind, I will sometimes

talk about ‘one individual’ in which case I mean one element (singular or plural) in D.

If I mean to indicate only singular individuals I will use the phrase ‘atomic individual’

and to pick out pluralities I will use the term ‘non-atomic individual’ or ‘plurality’.

To handle plural individuals we define sum formation, ⊕, as set union, and desig-

nate ≺ as the ‘part-of’ relation defined as the subset relation.

(62) a. Jt1⊕ t2KM,g = Jt1KM,g∪ Jt2KM,g

b. Jt1 ≺ t2KM,g = T iff Jt1KM,g ⊂ Jt2KM,g

n-ary predicates are interpreted as elements of Dn, and predication is handled stan-

dardly.

(63) JP(t1, . . . tn)Kg,M = T iff 〈Jt1Kg,M, . . .JtnKg,M〉 ∈ I(P)

In addition, for every predicate, P, we define a predicate FP that consists of the

cumulative closure of P which is defined in (64).

(64) For any predicate P, FP denotes the cumulative closure of P, i.e. I(FP) is the
smallest set s.t. if 〈a1, . . .an〉,〈b1, . . .bn〉 ∈ I(P), then 〈a1⊕ b1, . . .an⊕ bn〉 ∈
I(FP)
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I assume that some predicates, e.g. dog, will include only atomic individuals while

others, e.g. gather, will include only non-atomic individuals. If a predicate like dog

includes only atomic individuals, the predicate Fdog contains every plural individual

consisting of individuals included in the denotation of dog as illustrated in (65).

(65)
I(dog) = {Fido, Rex, Spot}

I(Fdog) =



Fido⊕Rex⊕Spot

Fido⊕Rex

Fido

Fido⊕Spot

Rex

Rex⊕Spot

Spot


Since the distinction between atomic and plural individuals plays a significant role

in our discussion, we designate the predicate atom to pick out all the atomic individuals

in D.

(66) Jatom(t)Kg,M = T iff |JtKg,M|= 1

We can get away with the definition above because we’ve chosen to model plural in-

dividual as sets of atomic individuals. We can take the cardinality of a plural individual

directly, since each plural is just a set of elements of Ind.

In order to ‘look inside’ non-atomic individuals we define a distributive operator,

δ , which distributes a predicate across the atomic subparts of a non-atomic individual.

(67) δxφ := [∀y : y≺ x∧atom(y)]φ(y/x), where φ(y/x) is the formula obtained by
replacing the variable x in φ with the fresh variable y.

(68) A variable v is fresh in a formula φ iff v does not occur in φ .

The distributive operator δ allows us to capture the difference between cumulative

and distributive uses of conjunctions. The sentence in (69) has three readings.

(69) Otis and Mary lifted a piano.
a. [∃x : x = Otis⊕Mary][∃y : piano(y)]lift(x,y)
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b. [∃x : x = Otis⊕Mary][∃y : piano(y)]δxlift(x,y)
c. [∃x : x = Otis⊕Mary]δx[∃y : piano(y)]lift(x,y)

On its cumulative reading reading, (69) entails that Otis and Mary jointly lifted

a piano. The formula in (69a) captures this reading, since it requires that the plural

individual Otis⊕Mary lifted some piano. In addition to a cumulative reading, (69)

has two distributive readings. One in which Otis and Mary separately lifted the same

piano, and one in which Otis and Mary separately lifted two different pianos. The first

distributive reading is captured by the formula in (69b), which holds that each atomic

individual in Otis⊕Mary lifted some piano, i.e. that there is a piano that Otis lifted and

Mary lifted. The second distributive reading is captured by the formula in (69c), which

entails that Otis lifted a piano and Mary lifted a piano, but does not require that the two

pianos be the same.

I want to flag one important, but easily overlooked entailment of this particular

definition: no sentence like that in (70) can be expressed in terms of the δ -operator as

defined in (67).

(70) [∃x : φ ][∀y : y≺ x∧atom(y)]R(x,y)

To see why consider how one would unpack the sentence [∃x : φ ]δxR(x,x):

(71)
[∃x : φ ]δxψ(x,x) = [∃x : φ ][∀y : y≺ x∧atom(y)]R(y,y)

6= [∃x : φ ][∀y : y≺ x∧atom(y)]R(x,y)

The sentence (70) cannot be expressed in terms of δ , since the δ -operator overrides all

instances of a variable x. The upshot is that sentences that can be expressed in terms of

δ cannot directly express relationships between wholes and their parts within the scope

of δ . We could imagine an alternative distributive operator D that would allow us to

express (70). Such an operator could be defined as in (72):

(72) Dx
yφ := [∀y : y≺ x∧atom(y)]φ
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The definition of D provided above is not defined in terms of variable change and thus

allows us to abbreviate (70) as [∃x : φ ]Dx
yψ(x,y).

I can think of two reasons to prefer the δ -notation to the D-notation. The first is

psychological: the δ -notation allows us to write formulas with fewer variables and

more transparent connections between their subparts. The second is logical and less

obvious: δ -notation interfaces more cleanly with maximization operators since {x :

δxφ} is a join-semilattice, closed under ⊕, while {x : Dx
yφ} is not guaranteed to have

a greatest upper bound. I first show that {x : δxφ} is always a join-semilattice: From

the definition of δ , it follows that a ∈ {x : δxφ} iff every atomic part of a, a′, is s.t.

a′ ∈ {x : φ}. Now, assume b,c ∈ {x : δxφ}, it follows that every atomic part of b is in

{x : δxφ}, as is every atomic part of c. But that means every atomic part of b⊕ c is in

{x : δxφ}, since there is no atomic part of b⊕ c that is not an atomic part of either b

or c. So we conclude, b⊕ c ∈ {x : δxφ}. Thus, {x : δxφ} is a join-semilattice. I now

show that {x : Dx
yφ} need not be a join-semilattice. Let φ = R(x,y) and let I(R) =

{〈a⊕ b,a〉,〈a⊕ b,b〉〈c⊕ d,c〉,〈c⊕ d,d〉}, where a,b,c,d are all atomic. Obviously,

a⊕ b ∈ {x : Dx
yR(x,y)} and c⊕ d ∈ {x : Dx

yR(x,y)}. However, a⊕ b⊕ c⊕ d /∈ {x :

Dx
yR(x,y)}. Hence, {x : Dx

yφ} may not be a join-semilattice.

To enable us to talk about the size of pluralities, we introduce numerical terms of

the form n.atoms which pick out individuals that contain n atomic individuals.

(73) Jn.atoms(t)KM,g = |JtKM,g|= n

Again, we can get away with the definition above because we have chosen to interpret

all individuals as non-empty subsets of Ind. This choice privileges the atomic entities

allowing us to count the atomic subparts of a non-atomic individual directly.

We are now in a position to start translating sentences containing bare numerals.

A bare numeral like two can be translated by means of an existential and a cardinality
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operator.

(74) two λPet .λQet .[∃x : P(x)∧δxQ(x)]2.atoms(x)
(75) Two dogs barked.  [∃x : Fdog(x)∧δx

Fbark(x)]2.atoms(x)

The interpretation of the bare numeral in (74) involves first finding a (possibly non-

atomic) individual that satisfies the restrictor and nuclear scope and then checking that

the individual contains two atomic parts. In (75) one first finds a non-atomic individual

d consisting of dogs that barked and then checks that d consists of two individuals.

The translation of the bare numeral above is ultimately inadequate since it captures

only one interpretation of the bare numeral. Bare numerals have both one- (at least)

and two- (exact) sided interpretations. These two types of readings are illustrated in

(76).

(76) a. A: Are you 21?
B: Yes, I’m 28 in fact.

b. A: Are you 28?
B: No, I’m 30.

In (76a) B’s agreeing response to A’s question suggests that A took 21 to mean at

least 21. This is a plausible interpretation on B’s part if we imagine that A is a bouncer

asking B whether they should be allowed into a bar. Since 21 years is the cut-off for

being allowed in, a one-sided (at least) reading is plausible. In (76b), B’s disagreeing

response to A’s question suggests that A took 28 to mean exactly 28. While the ‘clas-

sical’ analysis (Horn, 1972) of two-sided numerals relies on a scalar implicature from

n to not n+ 1, data like that in (76) has convinced researches that one- and two-sided

meanings arise as a matter of semantics (see Kennedy (2013) for a recent overview).

The formula in (74) captures only the one-sided (at least) reading of the bare nu-

meral in (75). To see why, consider a scenario in which three dogs, Fido, Rex, and Spot

all barked. In this scenario it will also be true that the plural individual Fido and Rex
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barked. There will then be a witness for the existential in (75), viz. Fido⊕Rex, that con-

sists of barking dogs and has cardinality two. Note that that the cardinality check in (74)

is exact, we do check that the witness consists of exactly two atomic individuals—the

one-sidedness arises because the witness is allowed to be non-maximal. The translation

in (74) does not ensure that the witness includes every dog that barked.

To handle two-sided (exact) interpretations of bare numerals, we introduce a maxi-

mization operator, σ , defined below.

(77) J[σv : φ ](ψ)KM,g = their exists an h[v]g s.t.
a. JφKM,h = T and there is no h′[v]g s.t. h(v)≺ h′(v) and JφKM,h′ = T
b. JψKM,h = T

The maximization operator finds an individual d that satisfies its restrictor, ensures that

there is no individual d′ that properly includes d that also satisfies its restrictor and then

passes d to its nuclear scope.

With the help of σ we can capture two-sided interpretations of numerals.

(78) two λPetλQet .[σx : P(x)∧δxQ(x)]2.atoms(x)
(79) Two dogs barked.  [σx : Fdog(x)∧δx

Fbark(x)]2.atoms(x)

The formula in (79) requires that the maximal set of dogs, each of whom barked

consists of two dogs. This captures the intuitive truth conditions of sentences containing

bare numerals on their two-sided readings.

Notice, that the translations for bare numerals which we have so far considered have

involved distributive operators over their nuclear scope. This seems right, but will pre-

vent us from captureing various cumulative uses of numerical expressions. Consider

the sentence in (80). This sentence has both distributive and cumulative interpreta-

tions. Ignoring inverse scope, the distributive interpretation of (80) requires that there

be exactly two dogs each of whom chased exactly three cats.

(80) (Exactly) two dogs chased (exactly) three cats
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The distributive reading can be captured by the formalism developed so far. We

would associate the sentence (80) with the translation in (81). This formula captures

the intuitive truth conditions of (80) on its distributive reading. It collects the maximal

set of dogs that chased exactly three cats and checks that this set contains just two dogs.

(81) [σx : Fdog(x)∧δx[σy : Fcat(y)∧δy
Fchase(x,y)]3.atoms(y)]2.atoms(x)

On its cumulative reading (80) requires (i) that there are two dogs that chased any

cats and (ii) there are three cats that were chased by any dogs. To capture this reading,

we need to simultaneously maximize over both dogs and cats that stand in the chase

relation.

To account for (80) we generalize the σ operator to handle more than one variable

at a time.

(82) J[σv1,...,vn : φ ](ψ)KM,g = their exists an h[v1, . . . ,vn]g s.t.

a. JφKM,h = T
b. there is no h′[v1, . . . ,vn]g s.t. h(v1) ≺ h′(v1), . . . , or h(vn) ≺ h′(vn) and

JφKM,h′ = T
c. JψKM,h = T

With generalized maximization in hand, we are in a position to formalize the cu-

mulative reading of (80). The formalization, given in (83), first maximizes over the

dog-cat pairs that stand in the chase relation and then checks that two dogs and three

cats are involved overall. Thus, (83) captures the reading of (80) in which exactly two

dogs chased any cats and exactly three cats were chased by any dogs.

(83) [σx,y : Fdog(x)∧Fcat(y)∧Fchase(x,y)](2.atoms(x)∧ 3.atoms(y))

The crucial aspect of the representation in (83) is the ‘scopeless’ nature of the two

numerals. Maximization is simultaneous and the cardinalities of the two plural indi-

viduals are checked only after they are arrived at jointly by the σ operator. I will not

at present describe how to arrive at the representation in (83) compositionally. See
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van Benthem (1986) for further analysis of the problem and Brasoveanu (2013) for a

compositional treatment.

The logic laid out in this section is quite expressive. It can handle a variety of

cumulative and distributive interpretations and handle both one- and two-sided inter-

pretations of numerals. It even allows the formalization of various ‘scopeless’ readings

of numerical expressions. Its hands are tied in only one way: it involves first order

interpretation, i.e. variables are assigned single values by single assignment functions.

In the next section we turn to n-of-k partitives and see how far in formalizing their

meaning we can get with our initial logic.

2.4.2 Bare Cardinal Partitives in FOL

In this section I develop a preliminary account of bare cardinal partitives. The account

developed here has several crucial components. First, the two numerals are ‘scopeless’

with respect to one another. The account utilizes simultaneous maximization over two

variables. Second, the account assumes that bare cardinal partitives take low scope. In

this way the account differs from previous treatments available in the literature which

all assume that the inner numeral takes exceptionally wide scope (see e.g. Winter (2000,

2005)). Third, I show that the first order logic in the previous section cannot capture the

full range of readings. In particular a unified account of cumulative readings occurring

in the scope of both universal and proportional quantifiers will elude a logic that limits

its interpretive resources to single assignment functions.

The account developed in this section has a few downsides. First, it is not strictly

compositional. The two numerals do not make independent contributions but con-

tribute to the semantics I assign to the structure as a whole. I have chosen not to pursue

a strictly compositional analysis so that I can focus on the relationship between the

meaning of the bare cardinal partitive and other quantificational elements in the sen-
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tence. Second, my analysis does not make use of current degree-theoretical analyses of

the interpretation of numerals (e.g. Kennedy (2015)). I have chosen not to pursue this

tack because there has been no worked out solution to van Benthem’s puzzle around

which I can base my denotations.

We begin with a definition of bare cardinal partitives in (84). Here we treat n-of-k

partitives as quantifiers.

(84) pn-of-kq λPetλQet [σx,y : P(y)∧ x4 y∧Q(x)](n.atoms(x)∧k.atoms(y))

(85) Otis read one of three papers.
 [σx,y : Fpaper(y)∧ x4 y∧Fread(Otis,x)](1.atoms(x)∧3.atoms(y))

The formula in (85) captures the exhaustive use of the bare cardinal partitive. To see

this clearly it is helpful to pull out the restrictor of σx,y.

(86) {〈x,y〉 : Fpaper(y)∧ x4 y∧Fread(Otis,x)}

Notice how the conjuncts work together in the restrictor of the quantifier. Any variable

assignment satisfying the first conjunct, Fpaper(y), along with the second conjunct,

x4 y, will also satisfy Fpaper(x). Together with the third conjunct, Fread(Otis,x), we

should be satisfied that x must store the largest set of papers that Otis read. Hence, (85)

entails that Otis read one paper. Notice that ≺ is transitive, i.e. x ≺ y and y ≺ z, then

x ≺ z. This ensures that given Fpaper(x) both Fpaper(y) and x 4 y can be satisfied

by an assignment that assigns to y the sum of papers in the model and to x the sum of

papers that Otis read. Hence, we should be satisfied that (85) conveys that there are

three papers total present in the model.

While the representation in (84-85) are enough to account for the exhaustive inter-

pretation, it will not convey partial ignorance, nor will it scale up to cases cumulative

interpretation. Take for instance the translation in (87).

(87) Every student read one of three papers.
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 [∀z : student(z)][σx,y :Fpaper(y)∧x4 y∧Fread(z,x)](1.atoms(x)∧3.atoms(y))

The exact same reasoning applied to (85) can be applied to (87). This sentence

entails that every student read one paper, and that there are three papers overall. It does

not indicate that not all three papers were read. It is initially tempting to blame this

state of affairs on my analysis’ (unjustified) requirement that the two numerals are both

(a) scopeless and (b) low with respect to the universal. If the inner (k) numeral were

allowed to take wide scope, the correct reading might be forthcoming.

Implementing such an idea would result in the representation in (88).

(88) [σy :Fpaper(y)∧[∀z : student(z)][σx : x≺ y∧Fread(z,x)]1.atoms(x)]3.atoms(y)
In prose: there is a set of three papers s.t. every student read one of them and
didn’t read the other two and every paper that isn’t one of those three was read
by some student or other.

The formula in (88) is insidiously wrong. It is simultaneously too weak and too

strong. Too weak because it does not entail either (i) that every student read (exactly)

one paper nor (ii) that (exactly) three papers were read overall. Too strong because if

every student read exactly one paper, it entails that there are exactly three papers. To

see this consider that the restrictor in (88) picks out the maximal member of the set

given in (89).

(89) {y : Fpaper(y)∧ [∀z : student(z)][σx : x≺ y∧Fread(z,x)]1.atoms(x)}

The set in (89) contains just those pluralities of papers s.t. every student read exactly

one of them. If there were a plural individual p consisting of four papers s.t. some

student read two of them, then p would not be included in (89). Hence, (88) does not

entail that every student read only one paper, nor does it entail that only three papers

were read overall. The closest paraphrase for (88) is “there is a set of three papers s.t.

every student read one of them and didn’t read the other two and every paper that isn’t

one of those three was read by some student or other”. This is not a reading associated
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with the partial variation reading, and indeed does not seem to be available for n-of-k

partitives at all.

The issue with (88) arises because the maximization operator associated with the

outer (n) numeral is inside the restrictor of the maximization operator associated with

the inner (k) numeral. The formula in (88) sends one on a quest for the maximal set

of papers, s.t. every student read exactly one of them. A scopeless analysis avoids this

problem since it simultaneously maximizes over both variables.

One might try to get around this by giving the inner (k) numeral a one-sided in-

terpretation when it takes wide scope. This move would result in the translation in

(90).

(90) [∃y : Fpaper(y)∧ [∀z : student(z)][σx : x≺ y∧Fread(z,x)]1.atoms(x)]
3.atoms(y)

This translation suffers from similar deficiencies. Like (88), this sentence does not

entail either (i) that every student read (exactly) one paper nor (ii) that (at least) three

papers were read overall. The formula in (90) will be true just in case, there are three

papers s.t. every student read exactly one of them—perhaps every student read the

same paper and as for other papers perhaps they were read and perhaps they weren’t.

Likewise, one cannot allow both the inner (k) and the outer (n) numerals to take

one-sided readings. The result, given in (91), does not improve upon (90).

(91) [∃y : Fpaper(y)∧ [∀z : student(z)][∃x : x≺ y∧Fread(z,x)]1.atoms(x)]
3.atoms(y)

The formula in (91) again does not entail either (i) that every student read (exactly)

one paper nor (ii) that (exactly) three papers were read overall. Instead it says there

there are three papers such that every student read at least one of them—it could be that

every student read the same paper of these three or that they read any number of papers

beyond these three.
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For the sake of completeness we should consider what would happen if we allowed

the inner (k) cardinal to take wide scope and a two-sided meaning and the outter (n)

numeral to take narrow scope and a one-sided interpretation. The result is given in (92).

(92) [σy : Fpaper(y)∧ [∀z : student(z)][∃x : x≺ y∧Fread(z,x)]1.atoms(x)]
3.atoms(y)

Unlike (88, 90-91), the formula in (92) does correspond to a reading of associated

with n-of-k partitives. However, it is one we have seen before, viz. the exhaustive read-

ing. To sum up this brief discussion, scope alone cannot account for partial variation

readings.

The previous discussion should make two points clear. The first and more important

takeaway is that cumulative readings cannot be analysed by scoping the inner cardinal

above the quantifier. This is an important point since Winter (2000, 2005) which con-

tains the only formally explicit analyses of bare cardinal partitives in the literature does

exactly this. In Winter’s analysis the inner cardinal contributes a property that is true of

pluralities of 3 papers. This property is then bound by a choice function at the matrix

level resulting in either of the two readings given below depending on whether the outer

cardinal is given a two-sided or one sided interpretation.

(93) a. ∃ f : [∀z : student(z)]
[∃x : x≺ f ({y : Fpaper(y)∧3.atoms(y)})∧Fread(z,x)]

1.atoms(x)
b. ∃ f : [∀z : student(z)]

[σx : x≺ f ({y : Fpaper(y)∧3.atoms(y)})∧Fread(z,x)]
1.atoms(x)

Notice that these formulas assign one-sided interpretations to the inner numeral; the

sentence could just as well be true if {y : Fpaper(y)∧3.atoms(y)} were replaced with

the set {y :Fpaper(y)∧4.atoms(y)}. Depending on whether the outer cardinal is given

a one-sided interpretation (as in (93a)) or a two-sided interpretation (as in (93b)), Win-
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ter’s analysis derives truth conditions equivolent to (90) or (91), neither of which are

adequate.

The second and less important takeaway is that it is not necessary to scope the inner

cardinal out in order to arrive at sensible truth conditions. Although the formula in (92)

does derive sensible truth conditions, the scopeless analysis achieves equivalent results.

This observation is important since a common assumption in the previous literature is

that non-definite partitives, to the extent that they can be analysed as bona-fide quanti-

fiers necessarily take scope over the DP that hosts them (see e.g. Abbott (1996); Chen

(2011)).

The way forward with the scopless analysis is to reflect on how the exhaustive

reading arises. This reading arises in (85-87) due to the fact that ≺ is transitive. If the

first conjunct, Fpaper(y), were missing, the resulting sentence would indicate the size

of the entire domain since the σ operator could keep finding larger and larger pluralities

until the domain of the entire model was exhausted. The first conjunct puts a break on

this process of accumulation. The way forward then is to find a way to put the breaks

on maximization before reaching the full set of papers and to instead stop maximization

once every paper that some student or other read is included in the plurality.

Put this way, our goal is to identify some formula φ that added to the restrictor of

n-of-k partitives that says that every atom was read by some student or other. The idea

is to assign a translation like that in (94) to (87).

(94) [∀z : student(z)]
[σx,y : φ ∧Fpaper(y)∧ x≺ y∧Fread(z,x)](n.atoms(x)∧k.atoms(y)),

where φ = δy[∃u : student(u)]Fread(u,y)]

In (94) we’ve added a formula φ to put the brakes on the accumulation of papers for

the inner (k) cardinal. The additional requirement says that every part of y must have

been read by some student or other. So, if a paper wasn’t read by any student it will
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not satisfy φ and will not be included in the final count. As an analysis, (94) has one

glaring flaw: the extra restriction is cobbled together from other parts of the sentence.

The predicate student appears twice: first as the restrictor of the universal and second

as the restrictor of an existential quantifier inside the n-of-k partitive. Likewise, the

predicate Fread appears twice, once to restrict maximization for the outer (n) cardinal,

and again to apply to parts of the inner (k) cardinal.

A further complication arises when we consider sentences involving proportional

quantifiers like most.

(95) Most students read one of three papers.

To handle (95) we will have to decide how to translate most. There seem to me to

be two options. We could simply assume that most Ps Qed involves showing that P∩Q

is at least half as large as P. A second options would be to treat most as an existential

quantifier over plural individuals that picks out some plural individual consisting of at

least half the Ps. I will take the second strategy because it seems easiest to implement

in this system5.

(96) most λPetλQet.[Mx : P(x)]δxQ(x)

(97) [Mx : P(x)]Q(x) := [∃x : P(x)∧ [σy : P(y)] |x||y| ≥
1
2 ]Q(x)

With the translation of most we can see what happens when we try to translate (95).

(98) [Mz : student(z)]δz[σx,y : φ ∧Fpaper(y)∧ x ≺ y∧Fread(z,x)](1.atoms(x)∧
3.atoms(y)),

where φ = δy[∃u : student(u)]Fread(u,y)]

The formula in (98) is actually too strong since it entails that only three papers were

read by any student. This entailment is fine in the case of (94) since the partitive occurs
5By making this decision I am essentially treating most as denoting the same thing as a majority.

Nothing here turns on this.
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in the scope of a universal quantifier. In (98), however, only a majority of students are

under consideration. The sentence in (95) does not entail that only three papers were

read overall. Consider the sentence in (99).

(99) Most of the students read one of three papers, and most of the rest read a
fourth.

The sentence in (99) is not consistent with the formula given in (98), which max-

imizes over the set of papers that any student read. In other words, (98) entails that

only three papers were read between all the students. The sentence in (99) however is

consistent with there being any number of papers that were read by some student or

other. This suggests that φ is deeply sensitive to which quantifier appears above it.

2.4.3 Plural Logic with Structured Domains

In plural logic (PL) we retain the same model structure, but enrich the interpretive con-

text. A formula in PL is evaluated with respect to a set G of total variable assignments.

A set of variable assignments can be conceptualized as a matrix that encodes dependen-

cies between the values a variable can take on. Consider the set of assignment functions

depicted in (100).

(100)
. . . x y . . .
. . . Fido Whiskers . . .
. . . Rex Evander . . .

The first row stores Fido in the x slot and Whiskers in the y slot, while the second

row stores Rex in the x slot and Evander in the y slot. This assignment could be used

to evaluate a formula like chase(x,y) in which case it would be true iff Fido chased

Whiskers and Rex chased Evander.

An atomic formula expressing a lexical relation, φ , is true relative to a set of as-

signment functionsG iff φ is true relative to each g ∈ G:
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(101) JR(x1, . . . ,xn)KG = T iff 〈g(x1), . . . ,g(xn)〉 ∈ I(R), for all g ∈ G

Normal lexical items are thus evaluated row-wise across the matrix of assignment func-

tions. Notice that according to the definition above the empty set of assignment func-

tions satisfies every lexical relation. This is because the size of G is inversely correlated

with the information it contains; to say that a set of assignments G satisfies a formula

φ is to say that at least the values stored in G satisfy the formula φ—the smaller G is

the weaker this claim.

To handle quantification we need to generalize assignment update from single as-

signment functions to sets of assignment functions.

(102) H[x]G := ∀g∈G : ∃h∈H : g[x]h & ∀h∈H : ∃g∈G : h[x]x

The definition above says that every assignment in G has some H-counterpart that dif-

fers from it at most with respect to the values assigned to x and likewise that every

assignment in H has some G-counterpart that differs from it at most with respect to

the values assigned to x. This ensures that every assignment in G is mapped to some

assignment in H and every assignment in H is mapped to from some assignment in G.

If we lose the first conjunct we would allow assignment updates in which some assign-

ments in G ‘go missing’ in the transition to H, while losing the second conjunct would

allow new assignments to arrive as we transition to H.

Universal quantification involves maximizing over potential updates:

(103) Universal Quantification:
J[∀x : φ ]ψKG = T iff JψKH = T, for some H that is maximal relative to x,φ
and G

(104) H is maximal relative to x, φ , and G iff

a. H[x]G and JφKH = T
b. there is no K ) H s.t. H ′[x]G and JφKK = T
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A universal quantifier evaluates its restrictor with as large as set of assignments as

could possibly satisfy its scope.

In order to fully implement the analysis we need to define a maximization opera-

tor that finds maximal plural individuals in a point-wise manner. The definition that

accomplishes this is given in (105).

(105) J[σx : φ ]ψKG = T iff there is some H[x]G s.t.

a. JφKH = T
b. there is no K[x]G s.t. JφKK = T and H ≺x K
c. JψKH = T

(106) a. H Jv K := H[x]K and for every h ∈ H,k ∈ K if h[x]k, then h(x)4 k(x)
b. H 4v K := H = K or H Jv K

The definitions of Jv and 4v require some comment: 4v is defined as the reflexive

closure of Jv because, Jv is (i) transitive, (ii) anti-symmetric, but (iii) only sometimes

reflexive6. In other words it does not quite define a partial order.

(107) Jv is transitive.

Proof: Assume (i) G Jv H and (ii) H Jv K. The first conjunct is trivial:

From (i) infer G[v]H and from (ii) H[v]K. So we have G[v]K. Let g,h,k

be assignment functions s.t g ∈ G, h ∈ H and h[v]g and k ∈ K and k[v]h.

It follows immediately that g[v]k. From (i) infer g(v) 4 h(v) and from (ii)

h(v) 4 k(v). Hence, g(v) 4 k(v). Since g,k are arbitrary we infer that for

every g ∈ G, k ∈ K, if k[v]g, then g(v)4 k(v). So, GJv K.

(108) Jv is antisymmetric.

6This is why we do not use J in place of ≺ in (105b)—we might get in trouble when dealing with
those assignment functions G s.t. GJv G.
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Proof: Assume (i) G Jv H and (ii) H Jv G. Let g name an arbitrary as-

signment function s.t. g ∈ G. From (i) (or (ii)) we infer that G[v]H and

therefore that there exists a h ∈H s.t. g[v]h. From (i) infer g(v)4 h(v) and

from (ii) infer h(v)4 g(v). We conclude g(v) = h(v) and therefore g ∈ H.

Since g is arbitrary conclude G ⊆ H. We can prove H ⊆ G by identical

reasoning, therefore G = H.

(109) Jv is not always reflexive.

Proof: Let G = {g : g(x) = a}∪{g : g(x) = a⊕b}, for some a,b s.t. a ≺

a⊕b. We have G 6J G.

In order to understand how the maximization operator above works, it is extremely

helpful to go through a few cases. My methodology here will be to display two sets of

assignment functions and ask whether (a) one is larger than the other or (b) the two are

incomparable7. This will allow us to develop an intuitive sense of how σ works and

what it does.

Consider first the two sets of assignment functions below:

(110) A =
. . . x . . .
. . . Evander . . . B =

. . . x . . .

. . . Evander⊕Whiskers . . .

The sets A and B have rows which are identical except that each row in A assigns x

just Whiskers while each row in B assigns to x the plurality consisting of Evander and

Whiskers. It is then the case that for every assignment in a ∈ A and b ∈ A s.t. a[x]b it is

the case that b(x)< a(x). So it follows that BIv A. It is also clear that A 6Iv B.
7The existence of incomparable sets of assignment functions introduces the possibility that σ may

not return a unique set of assignment functions for a given restrictor—it may deliver a set of assignment
functions with point-wise maximal individuals and not the maximal set. In other words 4x may define
a partial order over sets of assignment functions and any particular restrictor φ may or may not be
compatible with a set of assignment functions that contains multiple maximal elements.
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Next consider the pair of assignments below:

(111) A =

. . . x . . .

. . . Evander . . .

. . . Evander⊕Whiskers . . .
B =

. . . x . . .

. . . Evander⊕Whiskers . . .

Now for every row in B there are two rows in A which are identical except for the values

assigned to x. For each row in b ∈ B there is a row a ∈ A s.t. a assigns Evander to x and

a second row a′ ∈ A that assigns the plurality consisting of Evander and Whiskers to x.

That means that when we consider pairs a ∈ A and b ∈ B s.t. a[x]b, we can find some in

which we can find some in which b(x)≺ a(x), namely when we consider an assignment

from A that maps x to Evander and its (lone) counterpart in B that maps x to Evander

and Whiskers. However, when we consider these pairs we will find that each of them

satisfies b(x) 4 a(x) because when we start with an assignment from B, we will find

that both of its counterparts in A store individuals that are no greater than the individual

stored by b. This pair of assignment functions shows that σ delivers compact sets of

assignment functions whenever possible. Note also that A is such that A 6J A.

Let’s go through a few examples to see how pointwise maximization works:

(112) Rex chased (exactly) two cats.  [σx : Fcat(x)∧ chase(Rex,x)]2.atoms(x)

. . . . . . . . .

. . . . . . . . .
[σx :Fcat(x)∧Fchase(Rex,x)]
================⇒ . . . x . . .

. . . Evander⊕Whiskers . . .
2.atoms(x)
======⇒ T

The σ quantifier delivers the largest plural individual consisting of cats that Rex chased.

The updated set of assignment functions is then passed to to the nuclear scope where

it is checked to make sure that each row contains a plurality of two. If we assume that

Rex chased only Evander and Whiskers, the sentence as a whole will come out true.

Generalized maximization is handled just like maximization over a single variable:

(113) J[σv1,...,vn : φ ]ψKG = T iff there is some H[x]G s.t.

a. JφKH = T
b. there is no K[x]G s.t. JφKH = T and H ≺v1,...,vn K
c. JψKH = T
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(114) a. H Jv1,...,vn K := H[v1, . . . ,vn]K & ∀h∈H : ∀k∈K : if h[v1, . . . ,vn]k then
h(v1)4 k(vn) & , . . . , & h(vn)4 k(vn)

b. H 4v1,...,vn K := H = K or H Jv1,...,vn K

Proofs that Jv1,...,vn has the same relation properties as Jv go through identically, since

h(v1) 4 k(vn) & , . . . , & h(vn) 4 k(vn) is a transitive and anti-symmetric relation over

single assignment functions.

2.4.4 Bare Cardinal Partitives in Plural Logic

With generalized maximization in our new logic we can provide a full analysis of bare

cardinal partitives. I will first show that our previous analysis for exhaustive interpre-

tations still works in this new setting. Next I will show how the interpretation of the

partitive relation can be enriched so that it places appropriate breaks on the maximiza-

tion operation so that the inner cardinal picks out the maximal set of papers that some

student or other read. Finally, I will extend the analysis to partial ignorance readings,

arguing that these readings are a species of cumulative readings in which cumulation

occurs over the set of epistemicly accessible worlds.

2.4.4.1 Exhaustive Readings

Exhaustive readings are captured by our familiar mechanisms. Consider the sentence

below, in which we have interpreted the partitive in terms of the simple part-whole re-

lation. If we imagine a situation in which there are more than three papers, the formula

below comes out false.

(115) Every student read one of three papers.
 [∀z : student(z)][σx,y : Fpaper(y)∧ xC y∧Fread(z,x)]

(1.atoms(x)∧3.atoms(y))
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. . . . . . . . .

. . . . . . . . .
[∀z:student(z)]
=========⇒

. . . z . . .

. . . S1 . . .

. . . S2 . . .

. . . S3 . . .

. . . S4 . . .
...

...
...

[σx,y:Fpaper(y)∧x4y∧Fread(z,x)]
=====================⇒

. . . z x y . . .

. . . S1 P1

P1⊕P2⊕P3⊕·· ·⊕Pn

. . .
. . . S2 P2 . . .
. . . S3 P3 . . .
. . . S4 P1 . . .
...

...
...

...

1.atoms(x)∧3.atoms(y)
=============⇒ F

To see why this result obtains, consider the formula that is being maximized over:

Fpaper(y)∧ x4 y∧Fread(z,x). This formula will be true of a set of assignment func-

tions just in case the following constraints are jointly satisfied: (i) y stores a plurality of

papers, (ii) z stores a plurality that x read, and (iii) x is pointwise smaller than y. Like

we noted above, the cumulation of y-papers can go on until the domain of papers is ex-

hausted. Notice also that the plurality of y-papers is the same for every value of x and

z. This result arises organically: at each point the cumulation can continue until the do-

main of papers is reached because y is related to each z-student only indirectly—since

y must contain every paper y must contain every paper z read.

2.4.4.2 Cumulative Readings

With our new logical resources it becomes possible to define an enrichment to the part-

of relation that allows us to formalize cumulative readings as well.

We do so by defining the relation C:

(116) JxC yKG = T iff

a. Jx4 yKG = T
b.

⊕
G(x) = g(y), for all g ∈ G

The relation C has two requirements. The first clause contains a condition that can

be evaluated point-wise. It says that x stores an atomic part of y. The second clause

contains a condition that relates the individuals stored in x and y globally. It says that
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y stores the value that would be obtained by summing every individual stored as the

value of x anywhere. The function of C is to make available both a single value x and

the plural individual consisting of the values of x—y is the ontologically plural entity

that corresponds to x’s informational plurality.

We can see how this would work below:

(117) Every student read one of three papers.
 [∀z : student(z)][σx,y : Fpaper(y)∧ xC y∧Fread(z,x)]

(1.atoms(x)∧3.atoms(y))

. . . . . . . . .

. . . . . . . . .
[∀z:student(z)]
=========⇒

. . . z . . .

. . . S1 . . .

. . . S2 . . .

. . . S3 . . .

. . . S4 . . .
...

...
...

[σx,y:Fpaper(y)∧xCy∧Fread(z,x)]
=====================⇒

. . . z x y . . .

. . . S1 P1

P1⊕P2⊕P3

. . .
. . . S2 P2 . . .
. . . S3 P3 . . .
. . . S4 P1 . . .
...

...
...

...

1.atoms(x)∧3.atoms(y)
=============⇒ T

When we maximize over x and y simultaneously we capture the right reading. The

restrictor here ensures that both x and y are pluralities of papers since we require that

Fpaper(y) and since x C y entails that x 4 y. Likewise, we ensure that x consists of

papers that the local student read since we have Fread(z,x). Moreover, we capture the

cumulative interpretation since xC y entails that the y stores the value of that is the sum

of the values that x can take. As a result, y stores the sum of papers that were read by

some student or other. The C relation puts the breaks on cumulation for y—now y can

only be a sum of values that appear in x somewhere.

2.4.4.3 Partial Ignorance Readings

To handle partial ignorance readings I assume that sentences are interpreted relative

to a speakers epistemically accessible states. An utterance of φ is interpreted as [∀w :

Doxspkr(w)]φ(w). Cashed out this way, partial ignorance readings are simply cumu-
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lative readings interacting not with an overt quantificational expression but with an

implicit and perhaps pragmatically inferred epistemic universal:

(118) Otis read one of three papers.
 [∀w : Doxspkr(w)][σx,y : Fpaperw(y)∧ xC y∧Freadw(Otis,x)]

(1.atoms(x)∧3.atoms(y))

. . . . . . . . .

. . . . . . . . .
[∀w:Doxspkr(w)]
=========⇒

. . . z . . .

. . . w1 . . .

. . . w2 . . .

. . . w3 . . .

. . .
... . . .

. . . wn . . .

[σx,y:Fpaperw(y)∧xCy∧Freadw(Otis,x)]
========================⇒

. . . z x y . . .

. . . w1 P1

P1⊕P2⊕P3

. . .
. . . w2 P2 . . .
. . . w3 P3 . . .

. . .
...

... . . .
. . . wn P1 . . .

1.atoms(x)∧3.atoms(y)
=============⇒ T

As we can see the particular paper that Otis read varies from world to world as we

examine the worlds epistemically accessible to the speaker. However, when we look

across all these worlds we see the same three papers arise over and over. Thus the

speaker communicates not only that Otis read one paper in every world consistent with

their beliefs but also that they only consider three papers to be papers that Otis might

have read.

2.5 Conclusions

This chapter provided new data examining bare cardinal partitives. I identified and

distinguished several readings. I also argued that standard first order logic could not

capture cumulative interpretations of bare cardinal partitives, and provided a formal

analysis of bare cardinal partitives in a simple plural logic that included both atomic and

non-atomic entities. I argued that cumulative readings arise when the part-of relation

is enriched so that it forces identity between the ontological plurality provided by the

inner cardinal and the informational plurality associated with the outer cardinal.
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One interesting aspect of my analysis that I have not commented upon is the ‘scope-

less’ nature of the inner and outer cardinal. While this may at first seem exotic, my

analysis bares a certain similarity to other definite descriptions.

Imagine a situation in which there are two hats and two rabbits: a rabbit in a hat

(and thus a hat with a rabbit), and a rabbit not in a hat (and thus a hat without a rabbit).

In such a situation it seems felicitous to utter either of the following sentences:

(119) a. The rabbit in the hat is eating grass.
b. The hat with the rabbit in it is big.

The felicity of these sentences is somewhat unexpected because the scenario as de-

scribed contains neither a unique or salient hat nor a unique or salient rabbit. Instead

there is a unique rabbit that is in a hat and a unique hat that has a rabbit in it. Only when

the entire description is taken into account can the participants be jointly and uniquely

identified.

Bumford (2016) provides a split-scope analysis of sentences like these by decom-

posing definiteness into (i) an existential component and (ii) a maximization compo-

nent. The existential component delivers a meaning like that below:

(120) {〈x,y〉 : rabbit(x)∧hat(y)∧ in(x,y)}

The maximization component then indicates that the x and y satisfying the description

are both unique. The two definite thus act as if both had wide scope over the entire

description. Scoplessness thus may not be exotic at all.
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Appendix A

Technical Appendix

A.1 Notational Conventions

(121) ASSIGNMENT UPDATE:
H[x]G := ∀g∈G : ∃h∈H : g[x]h & ∀h∈H : ∃g∈G : h[x]x

(122) MEASURING ONTOLOGICAL PLURALITIES:
a. H Jv1,...,vn K := H[v1, . . . ,vn]K & ∀h∈H : ∀k∈K : if h[v1, . . . ,vn]k then

h(v1)4 k(vn) & , . . . , & h(vn)4 k(vn)

b. H 4v1,...,vn K := H = K or H Jv1,...,vn K

A.2 Plural Logic with Structured Domains

(123) LEXICAL RELATIONS:
JR(x1, . . . ,xn)KG = T iff 〈g(x1), . . . ,g(xn)〉 ∈ I(R), for all g ∈ G

(124) UNIVERSAL QUANTIFICATION:
J[∀x : φ ]ψKG = T iff JψKH = T, for some H that is maximal relative to x,φ and
G

(125) H is maximal relative to x, φ , and G iff
a. H[x]G and JφKH = T
b. there is no K ) H s.t. H ′[x]G and JφKK = T

(126) POINT-WISE MAXIMIZATION:
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J[σx : φ ]ψKG = T iff there is some H[x]G s.t.
a. JφKH = T
b. there is no K[x]G s.t. JφKK = T and H ≺x K
c. JψKH = T
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Chapter 3

First Order Logic With Choice

3.1 Introduction

The previous chapter offered a novel empirical argument for interpreting formulas rel-

ative to sets of assignment functions. This chapter takes a more in depth look at this

idea focusing on another domain, the interpretation of indefinites, in which these tools

have been put to use. I will be focusing in particular on the interpretation of wide scope

indefinites. There are two basic claims from the literature that I will take as read in this

chapter: first, indefinites can take arbitrarily high scope even out of scope islands, and,

second, the scope of indefinites is constrained by the appearance of a bound pronoun

inside their restrictors—an indefinite cannot take scope beyond a quantifier that binds

into its restrictor.

The first claim is illustrated by the sentences given below in (127). In this sentence

the indefinite a (certain) dock can take wide scope over the universal every boat.

(127) Every boat that was launched from a (certain) dock did well in the race.

(128) A boat that was launched from every dock did well in the race.

Notice that if the indefinite were replaced with the universal every dock a wide scope
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reading is impossible despite the fact it is implausible that any boat be launched from

every dock and world knowledge thus militates against a narrow scope reading of the

universal.

The second claim is illustrated by the sentence given below in (129). In this sen-

tence the indefinite a problem contains a pronoun that is bound by the quantifier every

student. Notice that this sentence does not have an interpretation in which the indefinite

takes scope over the universal.

(129) Everyx student that picked a problem that interested herx wrote a good paper.

Brasoveanu and Farkas (2011) dub the constraint illustrated by (129) the binder roof

constraint (sometimes called the integrity condition (see e.g. Schwarz (2001); Chier-

chia (2001))) because the binder every student limits the upward scope of the indefinite.

In this chapter I will primarily be interested in the claim advanced in Brasoveanu

and Farkas (2011) that exceptional scope can be reduced to independence between the

values different variables can take on. Their claim, in brief, is that wide scope indef-

inites occur when an indefinite is unable to vary with respect to the value of variable

introduced by another quantifier. Non-variation amounts to wide scope. Since this

mechanism is available without recourse to syntactic movement the ability of indefi-

nites to take scope outside of scope islands is thereby explained.1

In this chapter I offer a critique, not of the intuition underling Brasoveanu and

Farkas (2011), but of their formal implementation. I will show that their logic delivers

sentences that are systematically stronger than their natural language counterparts. The

sentences that give them trouble are those in (130) in which a wide scope indefinite

occurs inside the restrictor of a universal quantifier.

1Note that this claim is different from claims advanced in the late 70s that wide scope interpretations
of indefinites could be reduced to narrow scope interpretations + vagueness about whether there was
accidental variation between the entities involved (see e.g. Reinhart (1976, 1979); Cooper (1979)).
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(130) Every dog that chased a certain cat barked.

The semantics Brasoveanu and Farkas assign to sentences like (130) works by first

finding a maximal group of dogs for which an independent choice of cat can be made

and saying that each of the dogs barked. The trouble for this account arises when we

consider a situation in which two dogs, Fido and Rex, that chased a cat, Whiskers, and

barked and three dogs, Fido, Rex, and Dudley chased a cat, Socks, and did not (all)

bark. In such a scenario the largest set of dogs for which an independent choice of cat

can be made is Fido, Rex, and Dudley because they all chased Socks. I will show that

in their semantics Whiskers cannot act as a witness for the indefinite in (130).

The problem presented by the example in (130) is more formal than conceptual. In

the static logic in which Brasoveanu and Farkas present their idea, universal quantifiers

do not have access to information about how discourse referents will be assigned by

indefinites inside their scope. I will show that a dynamic implementation of their logic

does capture the correct truth conditions. The surprising lesson is that a full implemen-

tation of Brasoveanu and Farkas (2011) requires a dynamic logic.

I end the chapter on a critical note: the straightforward re-implementation of their

logic in a dynamic system gets the truth conditions of single sentences right but is ill

suited to handle discourse dynamics. It does not admit of a coherent theory of structured

singular and plural discourse reference.

In the following chapter I will explore the range of systems that can handle plural

discourse reference and settle on a new system Dynamic Plural Logic with Unselective

Maximization that can handle a broad range of phenomena while offering the raw ingre-

dients needed re-implement the basic ideas present in Brasoveanu and Farkas (2011).
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3.2 Wide Scope Indefinites & The Binder Roof

Constraint

It has been long noted that indefinites are not subject to the same constraints on upward

scope as other quantifiers (see e.g. Farkas (1981), Fodor & Sag (1982), Abusch (1994),

a.o.). This contrast is exemplified by the sentences in (131).

(131) a. John read ax paper that everyy professor recommended. Brasoveanu and
Farkas (2011)

b. John read everyx paper that ay professor recommended.

In (131a) the quantifier every occurs in a relative clause attached to a paper. Moreover,

this sentence does not have a reading in which papers can co-vary with professors, i.e.

(131a) does not have an interpretation in which for every professor there is some paper

that they recommended which John read. This leads to the conclusion that the usual

mechanisms responsible for inverse scope will not deliver an inverse scope reading for

(131). However, in (131b) has an interpretation in which the indefinite, a professor

takes scope outside of the relative clause over every paper, i.e. the sentence in (131b)

has an interpretation in which there is one professor s.t. John read every paper that

professor recommended—he may or may not have read any papers that were only rec-

ommended by other professors.

In response to data like that in (131), Fodor and Sag (1982) analyse indefinites as

being potentially referential. The reading of (131a) in which the indefinite takes wide

scope is analysed in terms of a referential interpretation of the indefinite.

Others, notably Farkas (1981), have argued that indefinites are always quantifica-

tional and thus that wide scope readings of sentences like (131) are not the result of

referential interpretations. The strongest argument for this position comes form the

existence of intermediate readings.
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(132) Every studentx read every papery that Brasoveanu and Farkas (2011)
az professor recommended.
a. Narrow Scope (NS):

for every student x,
for every paper y s.t.

there is a professor z that recommended y,
x read y.

b. Intermediate Scope (IS):
for every student x,

there is a professor z
for every paper y s.t. that z recommended y,

x read y.
c. Widest Scope (WS):

there is a professor z
for every student x,

for every paper y s.t. that z recommended y,
x read y.

The sentence in (132) has three readings, a narrow scope reading provided in (132a) in

which the indefinite takes narrow scope with respect to both universal quantifiers, an

intermediate scope reading provided in (132b) in which the indefinite takes scope over

every paper but occurs in the scope of every student, and a wide scope reading pro-

vided in (132c) in which the indefinite takes scope over both quantifiers. The existence

of the intermediate scope reading suggests that the indefinite can take scope beyond

the relative clause without simply taking on a referential interpretation. The contrast

initially given between (131a-b) thus supports broad theoretical architecture in which

there are at least two scope taking mechanisms. One that handles bona fide quantifiers

like every and another that handles indefinites like a. Notice we can be quite agnostic

about what the ‘usual’ mechanisms responsible for inverse scope are. They could be

relatively standard mechanisms like QR or alternative mechanisms involving continu-

ations, type-shifting, cooper storage, etc. The important point here is that something

prevents every from taking scope over the indefinite in (131a) but no such constraints
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are placed on the indefinite in (131b).

At the same time indefinites are not completely unconstrained in their ability to take

wide scope (see Ruys (1992), Abusch (1994), Chierchia (2001), Schwarz (2001), a.o.).

An indefinite cannot take wide scope over an quantifier that binds into its restrictor as

the pair in (133) shows.

(133) a. Everyx student read everyy paper that onez professor recommended.
b. Everyx student read everyy paper that onez of hisx favourite authors recom-

mended.

The sentence in (133) has the familiar NS, IS, and WS readings; one professor can

take scope over both universals, only every paper or neither universal. However, the

sentence in (133b) has only the IS and NS readings; one of his favourite authors cannot

take scope over every student. The only difference between these two is the presence of

the bound pronoun in the restrictor of the indefinite. The fact that every student binds

into the restrictor of one of his favourite authors places an upper bound on how high

the indefinite can scope. Brasoveanu and Farkas dub this the binder roof constraint.

One goal of this chapter is to lay out how Brasoveanu and Farkas account for (i)

the ability of indefinites to take upward scope in a way that is not usually available to

quantificational expressions and (ii) the binder roof constraint. I will advance the idea

that their intuitions are fundamentally sound, but that a fully adequate formal imple-

mentation of their analysis requires a dynamic logic.

3.3 From FOL to C-FOL

This section lays out the background necessary for the remainder of the chapter. First,

I introduce first order models and partial assignment functions and quickly review first

order interpretation relative to single assignment functions. Next, I introduce plural in-
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formation states (sets of partial assignment functions in which every element is defined

for the same set of variables) and show that they can be viewed as a matrix or database

like that depicted below:

. . . x y . . .

. . . Henrik Sybil . . .

. . . Albert Kashif . . .
...

...
...

...

I then define the notions of PROJECTION (a way of extracting a vertical slice from a

database) and SUB-STATE (a way of shrinking a database horizontally). Using these

notions I show that notions of DEPENDENCE and INDEPENDENCE can be defined.

I close this section with a discussion of the conceptual relationship between plu-

ral information states and run-of-the-mill first order interpretation. In first order logic

the interpretation of a universally quantified formula involves ‘visiting’ many different

assignment functions. Each row in a plural information state can be viewed as one of

these assignments. Seen this way plural information states represent a ‘God’s eye of

view’ of first order interpretation.

3.3.1 First order models

The models we work with in this section are familiar from FOL. A model is a pair

〈D,I〉 consisting of a domain, D of individuals and an interpretation function I that

determines the meaning of lexical expressions in the language; each n-ary predicate P

is associated with a subset of Dn:

(134) I(Pn)⊆Dn, e.g.
a. I(dog) = {fido, rex,spot}
b. I(chase) = {〈fido, rex〉,〈rex,spot〉}
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3.3.2 Partial assignment functions

A partial assignment function is a function between a subset of the variables in a lan-

guage L and and the domain of the model. We can think of the variables in the domain

of a partial assignment function as a set of discourse referents. As a formula is pro-

cessed discourse referents can be changed in controlled ways. To manage assignment

updates we utilize the notation h[x]g defined below:

(135) h[x]g := h differs from g at most with respect to the value (if any) associated
with x

As defined in (135) assignment difference does not care about whether x is defined in

g or h or both: x may or may not be in the domain of g, x may or may not be in the

domain of h, and if x is in the domain of g and h it may or may not be assigned the same

value. The condition h[x]g is really about other variables; it holds just in case (i) every

variable besides x is either defined in both g and h or defined in neither g nor h and (ii)

every variable besides x that is defined in both g and h is assigned the same value by

both g and h. The relation h[x]g is transitive, reflexive, and symmetric.

When working with partial assignment functions a useful notion is assignment func-

tion extension, which is defined in (136).

(136) h≥ g := ∀v : (v /∈ Dom(g) or h(v) = g(v))

The definition in (136) says that an assignment h is an extension of g just in case, for

every variable in the language either g is undefined for v or g and h assign v the same

value.

With assignment extension defined we can define guarded non-destructive update

of an assignment function with respect to a single variable.

(137) h x⇐= g := x /∈ Dom(g) & h≥ g & h[x]g
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An assignment function h is an x-extension of g just in case (i) x is undefined in g, (ii) h

is an non-trivial extension of g and (ii) h and g differ at most with respect to the variable

x. The⇐x relation represents the growth of the discourse context—x is not tracked in

g but is in h.

3.3.3 First order interpretation

In static first order logic all expressions are interpreted with the help of an assignment

function; an assignment function is (i) used to interpret variables, (ii) incremented by

quantifiers, and (iii) passed down unchanged to conjuncts.

(138) Some expressions of FOL:

a. JR(v1, . . . ,vn)Kg,M = T iff 〈g(v1), . . . ,g(vn)〉 ∈ I(R)
b. i. J[∀v : φ ]ψKg,M=T iff for every h⇐v g if JφKh,M=T, then JψKh,M=T

ii. J[∃v : φ ]ψKg,M = T iff
there is some h⇐v g, s.t. JφKh,M = T and JψKh,M = T

c. Jφ ∧ψKg,M = T iff JφKg,M = T and JψKg,M = T

In the logic, truth for a formula is defined relative to the empty assignment function:

(139) JφKM = T iff JφK /0,M = T

When we consider the interpretation of natural language we will occasionally want

to consider the interpretation of a formula relative to a partial assignment function in

which the values of some variables are already defined. These values are a partial rep-

resentation of the context of conversation: they indicate which entities may be referred

to by means of pronouns.

3.3.4 Sets of assignment functions

Formulas in C-FOL are interpreted relative to sets of partial assignment functions which

I will refer to as a plural information state.
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A set of partial assignment functions might take the following form:

(140) G = {g1,g2}= {{〈x,a〉,〈y,d〉},{〈x,b〉,〈y,e〉}}

This set of assignment functions can be perspicuously depicted as a matrix. The set in

(140) can be unpacked as follows:

(141) G =
x y

g1 a d
g2 b e

The rows of the matrix in (141) correspond to the assignment functions in G, while

the columns correspond to the values associated with each variable. For instance x is

associated with {a,b}, while y is associated with {d,e}. In addition to representing

the set associated with a variable, the matrix representation in (141) reveals that plural

information states represent dependencies between variables; the value associated with

y in any given row varies depending on the value of x in the same row.

When working with sets of partial assignment functions we need to confront the

possibility that different variable assignments in a set might be defined for different

variables. Since allowing this possibility would only complicate matters, I assume that

all sets of variable assignments we work with contain no elements which are defined

over different sets of variables. The condition in (142) holds throughout my discussion.

(142) ∀g,g′∈G : Dom(g) = Dom(g′)

Working with partial assignment functions it is also helpful to designate the as-

signment function for which no values are defined. This assignment function is the

empty-set when we consider single assignment functions. When we consider sets of

assignment functions the intial state must be the singleton set containing the empty-set.

Since this is cumbersome to write I designate the initial state as 0:

(143) 0 := { /0}, i.e. the set containing the assignment function with an empty domain.
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3.3.5 Projections and Sub-states

Since we only allow sets of assignment functions that have the same domain, we can

identify the domain of the entire state as the domain of any particular component.

(144) DOMAIN of G:
Dom(G) := {v : v ∈ Dom(g)}, where g is any member of G.
‘The names of the columns’

To recover the plurality associated with an plural information state, we collect all

the values associated with a variable x in any row. The set of values associated with a

variable x in a plural information state G is called the PROJECTION of x in G. This is

defined below:

(145) PROJECTION (for single variables):
G(x) := {g(x) : g ∈ G}, if x ∈ Dom(G) and /0 otherwise.
‘The values found in the x column’

The projection of a variable x recovers a horizontal slice of the matrix. Notice that if x

is not in the domain of G, the projection of x in G is the empty set. Projections can be

generalized to include multiple variables:

(146) PROJECTION (for sequences variables):

G(v1, ...,vn) :=


{〈g(v1), . . . ,g(vn)〉 : g ∈ G},

if v1 ∈ Dom(G), & . . . , & vn ∈ Dom(G)

/0 otherwise.

The projection of two variables, say x and y, is a relation between the values of x and

the values of y, and provides us with a way of talking about the dependencies between x

and y. If G(x,y) = G(x)×G(y), then there is no special association between the values

of x and the values of y; every y value is related to every x value.

Another concept that is useful is that of a SUB-STATE. A sub-state of a plural

information state G is just a subset of G that has a fixed (possibly singleton) set of

values for some variable x. To pick out such sub-states we adopt the following notation:
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(147) SUB-STATES:

G|x=d := {g : g ∈ G & g(x) = d}
G|x∈D := {g : g ∈ G & g(x) ∈ D}
G|x/∈D := {g : g ∈ G & g(x) /∈ D}

We have three ways of picking out sub-states; the first picks out the sub-state of G in

which x has a single value, the second picks out a sub-state where x has any one of

a set of values, and the third picks out a sub-state in which x takes a value outside of

some domain. Notice that these sub-states will return the empty set if x is not defined

in G. The notation in (147) will play a role in the definitions of dependence and the

distributive operator.

Several sub-states are illustrated below:

(148)

x y

G =
a d
b e
c f

x y
G|x=a = a d

x y

G|x∈{a,b} =
a d
b e

x y
G|x/∈{a,b} = c f

3.3.6 Dependence and Independence

A notion of DEPENDENCE can be defined in either in terms of sub-states or in terms of

the projection of multiple variables: In terms of sub-states variable y is said to depend

on a variable x in a state G iff there are sub-states G|x=d, G|x=d′ that disagree with

respect to the values assigned to y. This is formalised below:

(149) DEPENDENCE (sub-state version):
y depends on x in G iff ∃d,d′∈G(x) : G|x=d(y) 6= G|x=d′(y)

In terms of the projection of two values. A variable x is said to depend on a variable

x in a state G iff the projection of the two variables is a strict subset of the cross-product

of the projections of the variables individually.

(150) DEPENDENCE (projection version):
y depends on x in G iff G(x,y)( G(x)×G(y)

71



Notice that these two definitions are equivalent. If G(x,y) = G(x)×G(y), then for

every d ∈ G(x) the sub-state G|x=d will contain every value associated with y in G.

Likewise, if x is associated with the same values of y in every sub-state in which x takes

on a particular value, then G(x,y) = G(x)×G(y).

Let’s take two examples. The first, given in (151), shows a plural state H in which

y depends on x. This can be verified by noting that H|x=a(y) = {c,d} 6= H|x=b(y) =

{c,e}.

(151)

x y

H =
a

c
d

b
c
e

x y

H|x=a = a
c
d

H|x=a(y) = {c,d}

x y

H|x=b = b
c
e

H|x=b(y) = {c,e}

H(x,y) = {〈a,c〉,〈a,d〉,〈b,c〉,〈bd〉} ⊂ {a,b}×{c,d}= H(x)×H(y)

The second example, given in (152), shows a plural state in which y does not depend

on x.

(152)

x y

a
c
d

b
c
d

Notice that here we can find no sub-states in which different values of x are associated

with different values of y.

3.4 Plural information states provide a God’s eye view

of first order interpretation

It is not uncommon when teaching a introductory logic or semantics course to help

students get a feel for the operation of assignment functions by depicting the evaluation

of a formula by means of a tree:
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[∀x : φ ]ψ

ψ

g

h0 . . . hn where {h0, . . .hn}= {h : h x⇐= g & JφKh = T}

The top formula is true relative to the assignment function on its tier iff the formula

below it is satisfied by every assignment function on its tier. In the above example the

formula [∀x : φ ]ψ is satisfied by g iff ψ is satisfied by each of h0, . . . ,hn.

Quantifiers also impose requirements on the general shape of the tree. An existential

quantifier would simply generate a single daughter:

(153)

[∃x : φ ]ψ

ψ

g

h where h[x]g & JφKh = T

The effects of an existential in the scope of a universal quantifier generate variation:

(154)

[∀x : φ ][∃y : ψ]θ

[∃y : ψ]θ

θ

g

h0

k0

. . .

. . .

hn

kn

where {h0, . . .hn}= {h : h x⇐= g & JφKh = T}

where ki
x⇐= hi & JψKki = T

There is no guarantee that k0, . . .kn assign the same value to y. The choice is entirely

free and can change depending on the values of x assigned to the assignment functions

h0, . . . ,hn. Of course there is likewise no requirement that k0, . . . ,kn assign different

values to y—they may all happen to assign the same value to y.

If an existential takes scope outside a universal, there is no chance for variation

since the existential requires only one changed variable assignment.

(155)

[∃y : ψ][∀x : φ ]θ

[∀x : φ ]θ

θ

g

h

k0 . . . kn

where h[y]g & JψKh = T

where {k0, . . .kn}= {k : k[x]h & JφKk = T}
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The intuition underlying Brasoveanu and Farkas (2011) is that wide scope and de-

pendent indefinites are able to signal how the value of their witness depends or does

not depend on the values that are taken by other variables, i.e. that indefinites can talk

about the relationship between k0, . . . ,kn. This idea cannot be expressed in FOL, since

formulas are evaluated only with respect to single assignment functions—there is no

way to talk about the other assignment functions that might be looked at when calcu-

lating the truth conditions of a sentence. Instead Brasoveanu and Farkas need a logic

that can access global aspects of the computation.

The key insight leading toward C-FOL is that each tier of the trees above can be

represented as a set of assignment functions.

(156)

[∀x : φ ][∃y : ψ]θ

[∃y : ψ]θ

θ

g

h0

k0

. . .

. . .

hn

kn

{g}

{h0, . . . ,hn}

{k0, . . . ,kn}

By enriching the context of evaluation so that it includes sets of assignment functions

instead of single assignment functions, formulas can be made aware of the entire com-

putation of the truth conditions.

3.5 Exceptional Scope in C-FOL

3.5.1 Preliminaries

In the logic presented in Brasoveanu and Farkas (2011), formulas are evaluated with

respect to pairs 〈G,V 〉 consisting of a set of total assignment functions G and a set of

‘live variables’ V . Tracking the set of live variables is necessary because Brasoveanu

and Farkas work with sets of total variable assignments. When working with sets of
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partial variable assignments, the set of live variables can be read directly off the domain

of G. In our logic Dom(G) will serve as a stand in for Brasoveanu and Farkas’s V .

Lexical relations are interpreted in a distributive fashion relative to a set of assign-

ment functions:

(157) LEXICAL RELATIONS: JR(x1, . . . ,xn)KG = T iff
a. G 6= /0
b. {x1, . . . ,xn} ⊆ Dom(G)

c. 〈g(x1), . . . ,g(xn)〉 ∈ I(R), for all g ∈ G

The interpretation of a lexical relation has three components:

i. The first conjunct requires that the set of assignment functions be non-empty.

ii. The second conjunct requires that every variable appearing in the atomic formula

be in the domain of G. This ensures that every variable is assigned some value or

other by every assignment function in G.

iii. The third conjunct takes every assignment function g ∈ G and evaluates the

atomic formula with respect to g in the way familiar from first order logic. The

evaluation here is essentially distributive. Atomic formula are checked row by

row.

The distributive interpretation of lexical relations sheds light on the connection between

FOL and C-FOL. In FOL lexical relations are interpreted with respect to single assign-

ment functions. The goal of C-FOL is to provide existential quantifiers with a way of

restricting the dependencies in which a variable x can be involved. Lexical relations in

C-FOL essentially drop back into a FOL-like interpretation.

Conjunction in C-FOL is defined exactly as it is in FOL:

(158) CONJUNCTION:
Jφ ∧ψKG = T iff JφKG = T and JψKG = T
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Since we work with partial assignment functions we define bottom line truth in

terms of the set consisting of the empty assignment function:

(159) TRUTH:
JφK = T iff JφK0 = T, where φ contains no free variables.

Interpretation starts with an empty context and slowly builds up discourse referents.

3.5.2 Existential Quantification

To define existential quantification we require two auxiliary components. First, ex-

tension is generalized to from single variable assignments to sets of partial variable

assignments:

(160) H x⇐= G := ∀h∈H : ∃g∈G : h x⇐= g & ∀g∈G : ∃h∈H : h x⇐= g

The definition above says that every assignment in H is an x-extension of some variable

assignment in G. And that every variable assignment in G is extended by some variable

assignment in H—i.e. the domain of the x⇐= relation is G and its range is H. Note

that H may have multiple assignment functions that are extensions of the same variable

assignment in G. This means that the cardinality of H may be greater than or equal to

G.

Second, we define the partialization of a set of variable assignments with respect to

a set of variables. Let V be a set of variables and G a set of partial variable assignments.

We define the restriction of G to V , written GV as follows:

(161) RESTRICTION OF G TO V :

GV := {h : h⊆ g & Dom(h) = V & g ∈ G}

We obtain GV by taking each element of g and removing from g’s domain any variables

that are not in the set V . We can think of GV as representing a stage of the derivation

before the variables in V were added to G:
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(162) G =

x y

Rex
Whiskers
Evander

Spot Socks

(163) G{x} =
x

Rex
Spot

Notice that in the examples above, that by restricting G to just the variable x we actually

eliminate one of the rows. In general, restriction can only reduce the size of G.

Existential quantification in C-FOL comes parametrized with a set U of variables

upon which the introduced variable’s value may depend:

(164) EXISTENTIAL QUANTIFICATION:
J[∃U x : φ ]ψKG = T iff U ⊆ Dom(G) & JψKH = T for some H s.t.

a. H x⇐= G
b. JφKHU ∪{x} = T
c. h(x) = h′(x), for all h,h′ ∈ H that are U -identical

(165) h,h′ are U -identical iff ∀u∈U : h(u) = h′(u)

The first conjunct, U ⊆ Dom(G), requires that the existential depend only on the

values that have been previously introduced2. The second conjunct checks that there

is some assignment H that makes the nuclear scope true and has the following three

properties:

i. The first clause ensures that H is an x-extension of G.

ii. The second clause requires that the restrictor be true relative to HU ∪{x}, i.e. we

roll back the derivation to a point in which only the variables in U were defined

and show that this point can be extended with x in a way that makes the restrictor

true.3

2The may-depend-upon relation is actually transitive. If y depends on x and z is introduced in such
a way that in the resulting set of assignments H h(z) = h′(z), for all h,h′ ∈H that are {x}-identical, then
z may still depend on y insofar as x depends on y.
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iii. The final clause is the most complicated. It says that if any two assignment

functions h,h′ ∈ H assign the same values to every variable in U , then h,h′ also

assign the same value to x. In other words, the value assigned to x can vary with

the value assigned to another variable iff there is corresponding variation in the

value assigned to some other variable in U . I will refer to this condition as the

FIXED VALUE CONDITION.

Clauses (ii) and (iii) both account for different sets of empirical phenomena. Clause (ii)

together with the interpretation of lexical relations entails the binder roof constraint.

Clause (iii) on the other hand is the component of the definition that allows existential

quantifiers in C-FOL to behave (in some instances) as if they took scope beyond higher

quantifiers.

The first thing to note is that the restrictor is evaluated with respect to a (potentially)

smaller set of assignment functions than the nuclear scope, since only the variables x

can depend on are present. Second, notice that the existential never splits rows:

(166) a.
x
a
∃{x}y
==⇒ x y

a b

b.
x
a �

��∃{x}y
==⇒

x y

a
b
c

The transition in (166b) is illicit because it violates the fixed value condition. Notice

that the two rows are {x}-identical (since both assign x the value a), yet they differ

with respect to the value assigned to the variable y. The problem here is that the output

contains assignment functions h,h′ are non-identical x-extensions of the same input

row.
3The corresponding clause in Brasoveanu and Farkas (2011) makes use of the set of ‘live variables’

and as a result looks highly stipulative. In contrast when working with partial variable assignments
this move can be seen to represent a concrete intuition about the mechanics wide scope indefinites. An
indefinite takes exceptional wide scope by unwinding the interpretation to a previous state. This idea
aligns my presentation of C-FOL with the proposal in Farkas (1997).
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This point is general. To see why, consider the fact that H x⇐= G is defined so that

for every g ∈ G, there is at least one h ∈ H s.t. for every variable for which they are

both defined. At the same time the existential requires that every h,h′ ∈ H are U -

identical for some U . Now, let g be some arbitrary assignment function in G and let

H x⇐=g
:= {h : h x⇐= g & h ∈ H}, i.e. the set of h’s that are x-extensions of g. Now, let

h,h′ name arbitrary elements of H x⇐=g
. Now, for any set of variables U that does not

include x, every element of H x⇐=g
will be U -identical. This lets us derive h(x) = h′(x),

but we also know that h,h′ have the same values of every other variable as well. Hence,

h = h′. There is thus a one-to-one correspondence between the initial value provided

to the existential and the manipulated set of variable assignments that is passed to its

nuclear scope.

The easiest way to see how existential quantification works by working through an

example in which an existentially quantified formula is evaluated with respect to some

set of assignment functions in which some variables are already live:

(167) [∃ /0/{x}/{x,y}z : φ ]ψ

a.

x y

a
c
d

b
e
f

∃ /0z
=⇒

x y z

a
c

g
d

b
e
f

ψ
=⇒ T, where

z
g

φ
=⇒ T

b.

x y

a
c
d

b
e
f

∃{x}z
==⇒

x y z

a
c

g
d

b
e

h
f

ψ
=⇒ T, where

x z
a g
b h

φ
=⇒ T

c.

x y

a
c
d

b
e
f

∃{x,y}z
===⇒

x y z

a
c g
d h

b
e i
f j

ψ
=⇒ T, where

x y z

a
c g
d h

b
e i
f j

φ
=⇒ T
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Note that in the diagrams above, the update sequence terminates in the symbol T.

This is to emphasize that C-FOL is static. Passing a set of assignment functions across

a quantifier increments them but updates are lost once the interpretation encounters a

lexical relation. It also means that C-FOL does not pass variables introduced inside

the restrictor of a quantifier into the nuclear scope of a quantifier. These are like in

FOL evaluated on ‘separate tracks’ this is why I split the evaluation of the restrictor

and nuclear scope in the above diagram4.

3.5.3 Universal Quantification (Preliminary)

We turn now to universal quantification. Brasoveanu and Farkas give a preliminary

(flawed) definition of universal quantification in terms of maximization:

(168) UNIVERSAL QUANTIFICATION (preliminary):
J[∀x : φ ]ψKG =T iff JψKH =T, where H is the maximal set of assignments that
satisfies φ relative to x and G

(169) H is the maximal set of assignments that satisfies φ relative to the variable x,
the set of assignments G and the set of variables iff

H =
⋃

g∈G

{
h : h x⇐= g & JφK{h} = T

}
The universal quantifier finds the maximal set of assignment functions satisfying its

restrictor and evaluates its nuclear scope with respect to this set. The maximal set is

found by going through each assignment function g ∈ G, then collecting the set of

singleton sets {h} s.t. h x⇐= g and JφK{h} = T. Taking all these together gives the

maximal set.
4I hope that these diagrams also serve to illustrate that all logics are dynamic in some sense or other.

So called ‘static logics’ simply restrict all dynamics to the syntactic scope. Contexts are passed down
not across. In fact I can think of no a priori reason one could not define a logic that utilized both ‘static’
context passing and ‘dynamic’ context passing for different aspects of the context of evaluation. Whether
this would ever be a good idea is another question.
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Let us assume that the model contains some children, c1, . . . ,cn. We can calculate

the max set relative to the sentence child(x) by taking each row of the input and includ-

ing every way of adding to that row one of the children. Below I have depicted the

calculation of the maximal set of assignments5:

(170)

v
v1
...

vk

∀x:child(x)
======⇒

v x

v1

c1
...

cn
...

...

vk

c1
...

cn

=

v
v1

[x]
=⇒ v x

v1 c1

child(x)
====⇒ T

...
v
v1

[x]
=⇒ v x

vk cn

child(x)
====⇒ T

...
v
vk

[x]
=⇒ v x

vk c1

child(x)
====⇒ T

...
v
vk

[x]
=⇒ v x

vk cn

child(x)
====⇒ T

There are two key observations here. First, the universal quantifier does not introduce

any dependencies because the set of children will be the same for each set of values

assigned to variables in the initial set. Second, the universal quantifier can (and usually

will) split rows. The intuition here is exactly that underlying the tree representation of

FOL quantification. A universal induces branching while the existential creates a single

daughter.

3.5.4 Truth Conditions I: some in the nuclear scope of every

The first case we tackle is the interpretation of wide scope existentials that appear in

inside the nuclear scope of a universal. In this section I will show that in C-FOL exis-

tential quantifiers can take unbounded upward scope from the restrictors of any number
5The output assignment does not terminate in a truth value in this diagram because it represents the

set of assignments that would be passed to the restrictor of the universal which I have chosen not to
picture.
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of universal quantifiers. I will illustrate this by showing how narrow, intermediate, and

wide scope readings can be derived for the sentence in (171)

One sentence that illustrates this configuration is given in (171).

(171) Everyx student noticed that every professor recommended az paper about scope.

a. NS: everyx� everyy� az

On this reading the sentence is consistent with a situation in which different
students noticed different professors recommending different papers.

b. IS: everyx� az� everyy

On this reading every student noticed that there is a paper that every pro-
fessor recommended. It may have been that multiple papers about scope
were recommended by every professor and that different students noticed
different that different books were recommended.

c. WS: az� everyx� everyy

On this interpretation there is at least one paper s.t. every student noticed
that every professor recommended that paper.

Since I am not interested in the lexical semantics of noticing or the compositional se-

mantics of the sentence in (171) , I will interpret it with the help of a three place relation

note.rec(x,y,z) which should be read ‘x noticed that y recommended z’. The semantic

representations associated with these readings is given below:

(172) a. NS: [∀x : stud(x)][∀y : prof(y)][∃{x,y}z : paper(z)]note.rec(x,y,z)
b. IS: [∀x : stud(x)][∀y : prof(y)][∃{x}z : paper(z)]note.rec(x,y,z)
c. WS: [∀x : stud(x)][∀y : prof(y)][∃ /0z : paper(z)]note.rec(x,y,z)

The narrow scope reading is the simplest and is depicted below:
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(173) 0
[∀x:stud(x)]
======⇒

x
S1
...

Sn

[∀y:prof(y)]
======⇒

x y

S1

P1
...

Pk
...

...

Sn

P1
...

Pk

∃{x,y}z
===⇒

x y z

S1

P1 A1,1
...

...
Pk A1,k

...
...

Sn

P1 An,1
...

...
Pk An,k

note.rec(x,y,z)
========⇒ T,

where

x y z

S1

P1 A1,1
...

...
Pk A1,k

...
...

...

Sn

P1 An,1
...

...
Pk An,k

paper(z)
====⇒ T

The two universal quantifiers first introduce maximal sets of students and professors.

The existential can then generate one article per row as long as the output is s.t. (i) the

same article shows up in every row that is {x,y}-identical and (ii) the restrictor is true

relative to the entire initial assignment function.

The intermediate scope reading is depicted below:

(174) 0
[∀x:stud(x)][∀y:prof(y)]
=============⇒

x y

S1

P1
...

Pk
...

...

Sn

P1
...

Pk

∃{x}z
==⇒

x y z

S1

P1
A1...

Pk
...

...
...

Sn

P1
An...

Pk

note.rec(x,y,z)
========⇒ T, where

x z
S1 A1
...

...
Sn A2

paper(z)
====⇒ T

Notice that here the fixed value condition requires that the articles vary only with the

students and not with the professors. This means that for every student x there is some

paper z s.t. for every professor y is s.t. x noticed that y recommended z.

For completeness the wide scope reading is depicted below:
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(175) 0
[∀x:stud(x)][∀y:prof(y)]
=============⇒

x y

S1

P1
...

Pk
...

...

Sn

P1
...

Pk

∃{x}z
==⇒

x y z

S1

P1

A

...
Pk

...
...

Sn

P1
...

Pk

note.rec(x,y,z)
========⇒ T, where

z
A

paper(z)
====⇒ T

Here articles are not allowed to vary with either papers or students. There must be a

single article s.t. every student noticed that every professor recommended it.

3.5.5 The Binder Roof Constraint

The logic set out so far manages to account for the binder roof constraint. Consider the

sentence below:

(176) Everyx professor assigned ay paper shex liked.

This sentence lacks a wide scope reading. The indefinite cannot take scope over the

universal. To see that the theory so far presented accounts for this fact consider the

derivation of a hypothetical wide scope reading:

(177) [∀x : professor(x)][∃ /0y : paper(y)∧ like(x,y)]assign(x,y)

(178) 0
[∀x:stud(x)]
======⇒

x
P1
...

Pn

∃ /0y
=⇒

x y
P1

A...
Pn

assign(x,y)
======⇒ T, but

y
A

paper(y)∧like(x,y)
==========⇒ F

The restrictor of the existential comes out false, because x is not defined in the

restricted state over which the restrictor of the existential is defined.

3.5.6 Truth Conditions II: some in the restrictor every

The definition of universal quantification in (168) breaks down when we consider in-

definites in the scope of a the restrictor of the universal. Lets take the sentence like

(179) which has a reading in which every dog that chased, say, Whiskers is a good dog,

but dogs that chased Evander are not.
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(179) Every dog that chased a certain cat is a good dog.
 [∀x : dog(x)∧ [∃ /0y : cat(y)]chase(x,y)]goodDog(x)

The desired interpretation for the formula in (179) is one in which there is a certain cat,

c, s.t. every dog who chased c is a good dog. However, the formula in (179) given the

definition of maximality in (169) will be true just in case every dog who chased any cat

is a good dog.

We begin by setting up a scenario:

(180) I(Dog) = {f, r,d,s}
I(cat) = {w,e}
I(chase) = {〈f,w〉,〈r,w〉,〈d,e〉,〈s,e〉}
I(good) = {f, r}

This model makes the English sentence (179) true on the reading in which the indefinite

scopes above every dog, since every dog that chased w is good, but false on the reading

where the indefinite scopes below every dog because some dogs that chased cats are

not good, viz. d,s chased e but are not good dogs.

Consider which set assignment functions H is maximal with respect to x and the

formula dog(x)∧ [∃ /0y : cat(y)]chase(x,y), i.e. the set of assignment functions H s.t.

for all h if Jdog(x)∧ [∃ /0y : cat(y)]chase(x,y)K{h} = T, then h ∈ H. Looking at the four

possible singleton sets of assignment functions we see that every singleton assignment

function in which x maps to a dog satisfies the formula:

(181) a.
x
f

dog(x)
===⇒= T &

x
f
∃ /0y
=⇒ x y

f w
chase(x,y)
=====⇒ T where

y
w

cat(y)
===⇒ T

b.
x
r

dog(x)
===⇒= T &

x
r
∃ /0y
=⇒ x y

r w
chase(x,y)
=====⇒ T where

y
w

cat(y)
===⇒ T

c.
x
d

dog(x)
===⇒ T &

x
d
∃ /0y
=⇒ x y

d e
chase(x,y)
=====⇒ T where

y
e

cat(y)
===⇒ T

d.
x
s

dog(x)
===⇒ T &

x
s
∃ /0y
=⇒ x y

s e
chase(x,y)
=====⇒ T where

y
e

cat(y)
===⇒ T
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Each assignment given above satisfies the formula dog(x)∧ [∃ /0y : cat(y)]chase(x,y)

by itself. Since each stores only a single value for x, the values for y after updating will

show non-variation trivially. Because of this, H = {(181a), (181b), (181c), (181d)} is

the maximal assignment assignment relative to the restrictor:

(182) H =

x
f
r
s
d

goodDog(x)
======⇒ F

The problem with H is that it includes dogs that did not chase the same cat, which is

part of our desired interpretation.

This problem is general: definition (169) examines only one assignment function

h in a potential H at a time. This guarantees the fixed-value condition contributed by

the existential quantifier will be satisfied trivially. Since, the set {h} of assignment

functions contains only h it trivially satisfies the final clause of (169) which has the

form: ∀h,h′ ∈ {h} : if h,h′ are {x}-identical, then h(y) = h′(y). This is can be satisfied

simply by finding a cat that the dog in question chased.

The definition in (169) does not succeed in ensuring that the same y-cat is present

for each x-dog in H. The problem is with the definition of maximization. This def-

inition evaluates its restrictor with respect to each row considered by itself. When

evaluating the fixed value condition, we want to evaluate it with respect to the entire set

of assignment functions.

The lesson is general: for the fixed value condition to do its work we can never

break up the set of assignment functions into sub-states and evaluate formulas rela-

tive to them. If we do, we evaluated the fixed value condition only against each sub-

state—once we add the pieces back together we have no guarantee that the fixed value

condition will hold globally.
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Brasoveanu and Farkas are aware of this problem and propose an amended defini-

tion for universal quantification:

(183) UNIVERSAL QUANTIFICATION (revised):

J[∀x : φ ]ψKG =T iff JψKH =T, for some H that is maximal relative to x,φ , and
G

(184) H is maximal relative to x, φ , and G iff

a. H x⇐= G and JφKH = T
b. there is no H ′ 6= H s.t. H ⊆ H ′ and H ′ x⇐= G and JφKH ′ = T

While definition (169) finds the maximal set of assignment functions H, the revised

definition (184) finds a maximal set of assignment functions. Definition (184) also

makes available to the formula in the restrictor of a universal the full set of assignment

functions that could satisfy it.

Since definition (184) finds a maximal set of assignments, it can be thought of in

two steps. Step one (corresponding to clause (184a)) finds a witness set, H, that satisfies

the restrictor. Step two (corresponding to clause (184b)) ensures that there is no larger

set of assignments, H ′, that also satisfies the restrictor. Importantly the search for a

larger H ′ is conditioned on the original witness set, because clause (184b) requires that

H ⊆ H ′.

Consider the scenario from (180) again and the sets of assignment functions in

(185):

(185) a.
x
f
r

dog(x)
===⇒ T &

x
f
r

∃ /0y
=⇒

x y
f

w
r

chase(x,y)
=====⇒ T

b.
x
s
d

dog(x)
===⇒ T &

x
s
d

∃ /0y
=⇒

x y
s

e
d

chase(x,y)
=====⇒ T
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c.

x
f
r
s
d

dog(x)
===⇒ T but

x
f
r
s
d

�
�∃ /0y

=⇒

x y
f

w
r
s

e
d

chase(x,y)
=====⇒ T

Both assignments in (185a-b) satisfy the formula [∃ /0y : cat(y)]chase(x,y). Notice that

the set of assignments given in (185c) cannot. The only way to satisfy chase(x,y) runs

afoul of the fixed value condition contributed by the existential. If instead, one were

to select just one cat, one would fail to satisfy chase(x,y) since there is no cat that

every dog chased. Thus both (185a) and (185b) are maximal with respect the formula

[∃ /0y : cat(y)]chase(x,y) and the initial empty set of assignments.

With the revised definition the logic delivers the right result for the formula (179)

when evaluating it in the scenario given in (180):

(186) 0
[∀x:dog(x)∧[∃ /0y:cat(y)]chase(x,y)]
===================⇒

x
f
r

goodDog(x)
======⇒ T

3.6 Revisiting some in the restrictor of every

In this section, I will show that static C-FOL cannot account for exceptional wide scope

indefinites. I will show that when a widest scope existential occurs inside the restrictor

of a universal, the truth conditions of the resulting formulas are systematically stronger

than their natural language counterparts.

Consider the following model:

(187) I(dog) = {f, r,d}
I(cat) = {w,e}
I(chase) = {〈f,w〉,〈r,w〉,〈f,e〉,〈r,e〉,〈d,e〉}
I(bark) = { f ,r}

The model above makes the English sentence given in (188) true on the reading in

which the existential takes wide scope out of the relative clause. On this reading (188)
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is true because there is a cat, viz. w, such that every dog that chased it barked.

(188) Every dog that chased a certain cat barked.

This model we are considering differs minimally from the model I provided in the

previous section. In the previous model the set of w-chasers and the set of e-chasers

was disjoint. In the model above, the set of w-chasers is a strict subset of the set of e-

chasers. In order to capture the widest scope reading of (188) both the set of w-chasers

and the set of e-chasers will have to count as maximal with respect to the formula in

the restrictor of the universal in (189):

(189) [∀x : dog(x)∧ [∃ /0y : cat(y)]chase(x,y)]bark(x)

I will show that the above formula comes out false relative to the scenario under consid-

eration. The issue arises because, as defined, maximization attempts to find a maximal

set of dogs that are all chasing the same cat. It doesn’t look for the maximal set of dogs

that are chasing e or the maximal set of dogs that are chasing w.

Recall the definition of maximization given above:

(190) H is maximal relative to x, φ , and G iff

a. H x⇐= G and JφKH = T
b. there is no H ′ 6= H s.t. H ⊆ H ′ and H ′ x⇐= G and JφKH ′ = T

To show that (189) is false, we need to show that the set of assignment functions given

in (191) is not maximal with respect to the formula dog(x)∧ [∃ /0y : cat(y)]chase(x,y).

(191) H =

x
f
r

To show that (191) is not maximal, we need to find some H ′ and verify that (i) H ′ ⊃ H

and (ii) Jdog(x)∧ [∃ /0y : cat(y)]chase(x,y)KH ′ = T.

It is in fact easy to find such an H ′. Consider the set of assignment functions given

in (192):
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(192) H ′ =

x
f
r
d

It is clear that H ′ ⊃ H meeting criteria (i). It is also the case that H ′ satisfies the

restrictor of the universal in (189).

(193)

x
f
r
d

dog(x)
===⇒ T &

x
f
r
d

∃ /0y
=⇒

x y
f

er
d

chase(x,y)
=====⇒ T where

y
e

cat(y)
===⇒ T

Since H ′ also satisfies the restrictor it meets criteria (ii) above. Hence H does not count

as a maximal assignment function relative to the formula dog(x)∧[∃ /0y : cat(y)]chase(x,y).

Instead the only maximal assignment function that does satisfy the restrictor in our sce-

nario is H ′. The problem is that H ′ does not satisfy the nuclear scope of the formula in

(189).

(194)

x
f
r
d

bark(x)
====⇒ F

We are led to the conclusion that (189) is false in our scenario. Thus C-FOL does not

deliver the correct truth conditions for the English sentence given in (188).

To see what the problem is, we should briefly show that H itself does satisfy the

restrictor of (189):

(195)
x
f
r

dog(x)
===⇒ T &

x
f
r

∃ /0y
=⇒

x y
f

w
r

chase(x,y)
=====⇒ T where

y
w

cat(y)
===⇒

Comparing the derivation in (193) to the derivation in (195) we see that they rely on

picking different different cats as the witness for the existential. This is allowed by the

definition of maximization given in (190), since the only comparisons are between H

and H ′: it is important only that (i) one is larger than the other and (ii) both satisfy
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the restrictor. It does not matter that they satisfy the restrictor by picking different

witnesses for the existential. The scenario is set up in such a way that every dog that

chased e also chased w. The set of e-chasers and the set of w-chasers will both satisfy

the restrictor of (189). However, since the set of w-chasers is larger, only this set will

be maximal.

The problem with the definition of maximisation in (190) comes down to the fact

that it is not dynamic. Maximization needs to compare not only the input to the restric-

tor but also the output; it must be sensitive to the fact that assignment functions H and

H ′ are completed in different ways—they require picking different witnesses for the

existential and should not compete with each other.

3.7 Dynamic Predicate Logic with Choice

In this section I will develop a dynamic version of C-FOL based largely on DPL. I call

this logic Dynamic Predicate Logic with Choice (C-DPL). While developing the logic,

my strategy will be to divide the work performed by the complex definitions of C-FOL

quantifiers into as many pieces as possible:

• Random assignment, [x], captures the common features of universal and existen-

tial quantification, viz. that the set of assignment functions is changed.

• To capture the fixed value condition, I define a formula, fix(_), that requires that

its argument vary only with the variables already available in the context.

• An operator I call ‘jump’, x
U (φ), causes a formula φ to be evaluated with respect

to a prior context in which only the variables in U are present. This operator

does the work of set-indexing on the existential in C-FOL.
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• Universal quantification is handled in terms of a maximization operator, Mx(φ),

that maximizes its output in a way that avoids the objection to C-FOL given in

the previous section.

I will show that while C-DPL avoids the major issue confronting C-FOL it is ill

suited for analysis of the dynamics of natural language. In particular is suffers from

two major flaws that I will spell out in the final section:

• C-DPL does not have a way of keeping universal quantification dynamically

closed. Universal quantifiers take semantic scope over everything conjoined to

their left.

• C-DPL does not admit of a coherent analysis of plural and singular discourse

reference.

Though these objections are unrelated to the interpretation of indefinites, they are

important for understanding the broader landscape of plural logics.

3.7.1 Preliminaries

Lexical relations in C-DPL are tests, i.e. they do not change their input. Like in C-FOL,

lexical relations are evaluated row-by-row in C-DPL.

(196) JR(x1, . . . ,xn)KG,H = T iff
a. G = H
b. G 6= /0
c. {x1, . . . ,xn} ⊆ Dom(G)

d. 〈g(x1), . . . ,g(xn)〉 ∈ I(R), for all g ∈ G

The only change we make is the addition of the first conjunct that requires that G = H,

i.e. that the input and the output be identical.
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All quantifiers in C-DPL will invoke random assignment, [v], in some way or an-

other. We define random assignment in (197). The first conjunct, (197a), ensures that x

is fresh in the previous context. The second conjunct, (197b), requires the output state

H be an x-extension of the input assignment G.

(197) J[x]KG,H = T iff
a. x /∈ Dom(G)

b. H x⇐= G

Random assignment will play a role in both the definitions of existential and universal

quantification, as such we do not require that the output satisfy the fixed value condition

or be maximal in any respect, but instead provide separate operators to handle these

properties.

Dynamic conjunction is defined in the standard way.

(198) Jφ ∧ψKG,H = T iff there exists a K s.t. JφKG,K = T and JψKK,H = T

Dynamic conjunction simply evaluates the first conjunct and then passes its updates, if

any, to the second conjunct.

3.7.2 The fixed value condition

To handle the fixed value condition we define a predicate fix:

(199) Jfix(x)KG,H = T iff
a. G = H
b. for all g,g′ ∈ G if g[x]g′, then g(x) = g′(x)

The first clause ensures that fix is a test. The second clause ensures that values of x

do not vary from assignment function to assignment function unless the value of some

other variable also varies, i.e. there are no assignment functions that differ with respect

to x and only x.
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The predicate fix provides an injunction against splitting rows:

(200) [x]∧fix(x)

a. 0
[x]
=⇒

x
a
x
a
b

fix(x)
===⇒ x

a

b.
z
c
d

[x]
=⇒

z x
c a
d b
z x
c a

c
b
e

fix(x)
===⇒

z x
c a
d b

In (200a-b) we see random updates to the empty assignment function. The first update,

(200a), satisfies the fixed value condition because it contains only one value for the

variable x. The second, (200b), does not satisfy the fixed value condition because the

update contains multiple values for x despite there being no other values for x to vary

with respect to. The third update, in (200b), updates an assignment function that already

has two values for the variable z. Here multiple updates to x can satisfy the fixed value

condition because the values of x can vary with the values of z.

3.7.3 Interpolating Assignment Updates: Merge

To help define exceptional wide-scope existentials we must first define a function merge

that combines two sets of assignment functions. The goal is a function that takes sets

G,H of assignment functions and combines them into a new set K in the following

way: we will find pairs g,h from G and H that agree with respect to all variables in the

domain of both g and h and combine them into a single assignment function k. Taking

all such assignment functions k together will give us the new set K.

(201) MERGE:
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merge(G,H) = {g∪h : g ∈ G & h ∈ H & ∀v∈Dom(g)∩Dom(h) : g(v) = h(v)}

The formula above takes pairs of assignment functions from G and H that agree with

respect to all the variables they both assign values to and puts them together.

I’ve provided some examples below:

(202) G =

x
a
b

H =

y
c
d

merge(G,H) =

x y

a
c
d

b
c
d

In the example above we see that the domains of G and H are completely disjoint.

Putting them together involves taking the union of the two elements from the cross

product.

(203) G =

x y
a c
b d

H =

x z
a e
b f

merge(G,H) =

x y z
a c e
b d f

In the example above we see that the domains of G and H overlap with respect to the

variable x. So for every element of g we combine it with the corresponding elements

of H that agree with g with respect to the variable assigned to x.

One interesting case concerns the merger of a set of assignments G,H where G⊆H.

In this case merge(G,H) = G. To see why consider that for arbitrary sets g ∈ G and

h ∈H, if ∀v ∈Dom(G)∪Dom(H) it is the case that g(v) = h(v), then it is the case that

g = h. Since these are the only pairs meeting the description in the definition of merge

it follows that the only assignments in the merged sets will be those in G. Note that this

does not hold if one of the merged sets is the emptyset. In this case the merger of the

two sets will be the non-empty set of assignments.
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3.7.4 Existential Quantification

Existential quantification can be defined in terms of dynamic conjunction, random as-

signment, and the fix predicate:

(204) [∃x : φ ]ψ := ([x]∧fix(x)∧φ)∧ψ

Going through an example will require cheating a bit and assuming that we have a

working definition of universal quantification. Waving our hands for a moment, let us

assume that against the empty input a universal quantifier can give us the output in

(205).

(205) /0
everyx student
==========⇒

x
Student1
Student2
Student3

...

[y]∧fix(y),Xpaper(y),Xread(x,y)
==================⇒

x y
Student1 Paper1
Student2 Paper2
Student3 Paper3

...
...

Against this backdrop we can consider the update provided by an existential like [∃y :

paper(y)]read(x,y). We first feed the output of (205) to the formula ([y];fix(y)∧paper(y))∧

read(x,y) and expect an output like the final output above. Above we see that random

assignment [y] initiates an update, fix(y) ensures that we can vary papers with the stu-

dents assigned to x, the restrictor paper(y) ensures that each row stores a paper, and the

nuclear scope read(x,y) checks that each x-student read each y-paper.

Turning to wide scope existentials, we would like to implement the following pro-

cedure:

i. Pick a subset, U , of the variables defined in the incoming assignment function

G.

ii. Feed the restriction of G to U , i.e. GU , into the restrictor of the existential:

([x]∧fix(x)∧φ) and obtain an output K. Given the formula fix(x) present in the

existential, this will ensure that x varies only with the variables in U .
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iii. Make sure that Dom(K)∩Dom(G) = U , i.e. that evaluating ([x]∧ fix(x)∧ φ)

does not involve adding variables already defined in G. If Dom(G) = {z,y} and

U = {y}, we would not want a K that included values of z, since this would

amount to overwriting the values already in the input G.

iv. Combine K with the original input G to obtain the output H. For this step we will

use the merge function.

The formula to accomplish this task is given in (206).

(206) JxU φKG,H = T iff

a. U ⊆ Dom(G)

b. there exists a K s.t. JφKGU ,K = T
i. Dom(K)∩Dom(G) = U

ii. H = merge(G,K)

The first clause of (206) ensures that the variables in U exist in the previous context.

The second clause then gets an update from φ against the input GU , which consists of

G restricted to only those variables in U . The output K is then interpolated back into G

to get the global output H.

We can now define exceptional wide scope indefinites:

(207) [∃zx : φ ]ψ := x
z ([x]∧fix(x)∧φ)∧ψ

Lets return to our example in (205) to see how this works:

(208) 0
everyx student
==========⇒

x
Student1
Student2
Student3

...

x
/0 ([y]∧fix(y)∧paper(y))

=============⇒???

To get a handle on this, lets explore the complex update that occurs after we update

with every student. The first thing that happens is that the formula in the scope of x
x is
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evaluated with respect to a rolled back state, in this case the empty state. This part of

the computation is depicted in (209).

(209) 0
[y]fix(y)∧paper(y)
==========⇒ y

Paper1

The last part of the computation involves putting together the output of (209) and the

output of every student from (208). This occurs first by checking every pair of rows

from the two outputs and seeing if they agree with respect to the values assigned to

variables in their common domain. If they do, then we combine that pair of rows and

add it to the output. In this particular case, the task is easy: since the domains are

disjoint, all the rows agree vacuously and so we should just combine every pair of rows

from the two outputs:

(210) 0
everyx student
==========⇒

x
Student1
Student2
Student3

...

x
/0 ([y]∧fix(y)∧paper(y))

=============⇒

x y
Student1

Paper1
Student2
Student3

...

read(x,y)
=====⇒

Our new operator x
U will let existential quantifiers take scope over universals, but

it will not allow universal quantifiers to take scope over existential quantifiers. We can

satisfy ourselves that this is true before we even have a satisfactory translation of uni-

versal quantification, since we can use our hypothesised output from (205). Consider

the following derivation:

(211) 0
[y]∧fix(y)∧paper(y)
===========⇒ y

Paper1

x
/0 (everyx student)

============⇒???

Again, we evaluate every student against the rolled back assignment function, giving

us the output familiar from (205) and (208). When we get to the combination stage we

realize what the problem is, there is still only one paper available when it comes time

to re-combine the assignment functions. This means that we end up with the same set

of assignment functions:
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(212) /0
[y]∧fix(y)∧paper(y)
===========⇒ y

Paper1

x
/0 (everyx student)

============⇒

x y
Student1

Paper1
Student2
Student3

...

read(x,y)
=====⇒

I will assume, that since there is no truth conditional affect of x
v when taking scope

over universal quantifiers, that this option is unavailable for building non-existential

quantifiers.

I now turn to the question of defining universal quantification. In normal DPlL,

universal quantification is defined in terms of a maximization operator M and dynamic

conjunction. The maximization operator finds some maximal set of assignment func-

tions that satisfies the restrictor and then passes this set to the nuclear scope of the

universal. Since we already have a dynamic conjunction, our task is to define the max-

imization operator M. I will argue at length for the definition below in the subsequent

chapter, but here I simply note that maximization defined in terms of the subset operator

will work for our purposes here.

(213) JMxφKG,H = T iff
a. J[x]∧φKG,H = T
b. there is no K ) H s.t. J[x]∧φKG,K = T,

This definition says that Mxφ is true of an output H relative to an input G and a

formula φ iff H is an allowable output given the input G and formula [x]∧φ and there

is no larger output that also satisfies this formula relative to the input G.

(214) Every student left.  Mxstudent(x); left(x)

(215) /0
Mxstudent(x)
=======⇒???

The desired output should be the largest of every possible update available to [x]∧

student(x). There are three such updates shown in (216).
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(216) a. 0
[x]∧student(x)
========⇒

x
Otis
Sybil

b. 0
[x];student(x)
=======⇒ x

Sybil

c. 0
[x];student(x)
=======⇒ x

Otis

If we take the largest of these possible updates, then we get the update in (216a). Hence,

the output for Mxstudent(x) should be the output of (216a). The end result is the update

in (217).

(217) 0
Mxstudent(x)
=======⇒

x
Otis
Sybil

Now, let us consider a case in which we have a wide scope indefinite in the scope

of the Mx-operator.

(218) Every student that read a (certain) paper succeeded.
 Mx(student(x)∧ x

{x}([y]∧paper(y))∧ read(x,y))∧ succeed(x)

(219) /0
Mx(student(x)∧ x

{x} ([y]∧paper(y))∧read(x,y))
=========================⇒???

Let’s assume that Henrik, Otis, and Sybil are students, that Henrik and Otis both read

paper1, and that Henrik, Otis, and Sybil read paper2. Let’s also assume for simplicity

that no other students read any other papers. Recall that this is the configuration that

C-FOL has trouble with because the readers of paper1 are a proper subset of the readers

of paper2.

(220) a. 0
[x∧student(x)]
========⇒ x

Otis

x
{x} ([y]∧paper(y))∧read(x,y)
================⇒ y x

Paper1 Otis

b. 0
[x∧student(x)]
========⇒ x

Henrik

x
{x} ([y]∧paper(y))∧read(x,y)
================⇒ y x

Paper1 Henrik

c. 0
[x∧student(x)]
========⇒

x
Otis

Henrik

x
{x} ([y]∧paper(y))∧read(x,y)
================⇒

y x

Paper1
Otis

Henrik
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The question is, which of these are maximal outputs? They all satisfy J[x]∧student(x)∧
x
x ([x]∧ paper(y))KG /0,Hy,x = T. Notice that (220c) contains (220a-b). So, unless there

is some other set of assignment functions H satisfying J[x] ∧ student(x) ∧ x
x ([x] ∧

paper(y))KG /0,Hy,x = T that properly includes the output of (220c), then we conclude

that (220c) is maximal. Now, since the model does not contain any more students who

read paper1, there is no output that contains more students but contains paper1 in the y

slot. Consider the output in (221) that gave us trouble for C-FOL:

(221) 0
[x∧student(x)]
========⇒

x
Otis

Henrik
Sybil

x
{x} ([y]∧paper(y))∧read(x,y)
================⇒

y x

Paper2

Otis
Henrik
Sybil

So, the question is: does (221) properly include (220c)? The answer is no, since the

output of (220c) and the output of (221) differ with respect to the paper introduced at y.

The conclusion we reach is that by maximizing over output assignments we can

generate a system that behaves appropriately with respect to wide scope indefinites in

the scope of maximization operators.

3.8 Problems (and basic solutions) for C-DPL

There are two objections to utilizing C-DPL for analysing natural language expres-

sions. The first objection stems from the fact that the universal quantifier in C-DPL is

dynamically open. It takes scope over everything conjoined to its right:

(222) ([∀x : φ ]ψ)∧χ := (Mx(φ)∧ψ)∧χ = Mx(φ)∧ψ ∧χ

(223) [∀x : φ ](ψ ∧χ) := Mx(φ)∧ (ψ ∧χ) = Mx(φ)∧ψ ∧χ

In similar systems this does not end up being a problem because existential are by de-

fault outfitted with some means of enforcing non-variation with previously introduced

plural discourse referents. For instance in van den Berg’s Dynamic Plural Logic an
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indefinite can only vary with a quantifier if it occurs inside the scope of a distributivity

operator. Here however we allow indefinites to vary with the values of any variables

previously introduced. This will end up being a problem for discourses like the follow-

ing:

(224) Every student left the bar. A local entered.

On our current account expect that this discourse to have a reading in which a local

takes scope under every student and thus have a reading in which there are potentially

as many locals entering the bar as there are students leaving the bar. However on any

sensible interpretation the second sentence in this discourse introduces only a single

individual.

One way to manage this problem is to collapse informational pluralities down into

ontological pluralities after we are done processing the nuclear scope of the universal.

A definition like the one below would accomplish this:

(225) J[∀x : φ ]ψKG,H = T there is some K s.t.
a. JMxφ ∧ψKG,K = T
b. H = {{〈v,

⊕
K(v)〉 : v ∈ Dom(K)}}

The first conjunct of the definition packs together the familiar analysis of universal from

the main body of the chapter. It takes the input and finds some output K that consists of

a plural information state of the type we have been working with. The second conjunct

indicates that the output of the entire quantifier is built by taking each variable v in the

domain of the output assignment and associating it with the ontological plurality that

is formed by summing up all the values that v takes on in K. Notice that at this stage

there will be only a single assignment function in H and so indefinites in subsequent

sentences will not be able to be able to vary with the values introduced by the universal.

Several basic facts concerning plural discourse reference to sets will also be cap-

tured. A plural pronoun like they will be able to pick up a variable x that had a non-
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singleton projection in a previous sentence.

(226) Everyx student left herx bike at home. Theyx had to take the bus.

(227) Every tourist caught ax fish. Theyy were very big.

Cases like those above can be handled because the singular pronoun her appears in the

scope of the universal quantifier when each value is (presumably) atomic. After the

sentence is interpreted the students are packed together into an ontological plurality

which can be refered to with the plural pronoun they. Similar considerations apply to

the second sentence.

The downside of such an analysis is that it annihilates the structure that obtains be-

tween variables introduced by sentences like (227). Dependencies between variables

are destroyed when they are packed wholesale into ontological pluralities. Thus phe-

nomena that show that these dependencies can be picked back up on in subsequent

discourse will be impossible to handle.

3.9 Conclusion

This chapter advanced the argument that C-FOL did not deliver the correct truth condi-

tions for sentences in which an existential occurs in the restrictor of a universal quan-

tifier. I showed that a dynamic variant could provided the correct truth conditions but

would not work as a general analysis. In particular, I showed that a dynamic variant of

C-FOL faced problems acting as a theory of discourse reference. In order to keep a uni-

versal quantifier from taking unbounded rightward scope it is necessary to collapse the

structural information generated while it is processed. In the next two chapters I will

take up the task of embedding the intuition underlying Brasoveanu & Farkas (2011) in

a system that is already designed to handle plural discourse reference.
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Appendix B

Technical Appendix

B.1 Notational Conventions

(228) Dom(G) := {v : v ∈ Dom(g)}, where g is any member of G.

(229) 0 := { /0}, i.e. the set containing the assignment function with an empty domain.

(230) G(x) := {g(x) : g ∈ G}, if x ∈ Dom(G) and /0 otherwise.

(231) G(v1, ...,vn) :=


{〈g(v1), . . . ,g(vn)〉 : g ∈ G},

if v1 ∈ Dom(G), & . . . , & vn ∈ Dom(G)

/0 otherwise.

(232) H x⇐= G := ∀h∈H : ∃g∈G : h x⇐= g & ∀g∈G : ∃h∈H : h x⇐= g

(233) GV :=
⋃

g∈G
{h : h⊆ g & Dom(h) = V }

(234) merge(G,H) = {g∪h : g ∈ G & h ∈ H & ∀v∈Dom(g)∩Dom(h) : g(v) = h(v)}

B.2 First Order Logic with Choice

(235) LEXICAL RELATIONS: JR(x1, . . . ,xn)KG = T iff
a. G 6= /0
b. {x1, . . . ,xn} ⊆ Dom(G)

c. 〈g(x1), . . . ,g(xn)〉 ∈ I(R), for all g ∈ G
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(236) CONJUNCTION:
Jφ ∧ψKG = T iff JφKG = T and JψKG = T

(237) EXISTENTIAL QUANTIFICATION:
J[∃U x : φ ]ψKG = T iff U ⊆ Dom(G) & JψKH = T for some H s.t.

a. H x⇐= G
b. JφKHU ∪{x} = T
c. h(x) = h′(x), for all h,h′ ∈ H that are U -identical

(238) h,h′ are U -identical iff ∀u∈U : h(u) = h′(u)

(239) UNIVERSAL QUANTIFICATION:
J[∀x : φ ]ψKG =T iff JψKH =T, for some H that is maximal relative to x,φ , and
G

(240) H is maximal relative to x, φ , and G iff

a. H x⇐= G and JφKH = T
b. there is no H ′ 6= H s.t. H ⊆ H ′ and H ′ x⇐= G and JφKH ′ = T

B.3 Dynamic Predicate Logic with Choice

(241) LEXICAL RELATIONS:
JR(x1, . . . ,xn)KG,H = T iff
a. G = H
b. G 6= /0
c. {x1, . . . ,xn} ⊆ Dom(G)

d. 〈g(x1), . . . ,g(xn)〉 ∈ I(R), for all g ∈ G

(242) CONJUNCTION:
Jφ ∧ψKG,H = T iff there exists a K s.t. JφKG,K = T and JψKK,H = T

(243) ASSIGNMENT UPDATE:
J[x]KG,H = T iff
a. x /∈ Dom(G)

b. H x⇐= G

(244) FIXED VALUE CONDITION:
Jfix(x)KG,H = T iff
a. G = H
b. for all g,g′ ∈ G if g[x]g′, then g(x) = g′(x)

(245) JUMP:
JxU φKG,H = T iff
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a. U ⊆ Dom(G)

b. there exists a K s.t. JφKGU ,K = T
i. Dom(K)∩Dom(G) = U

ii. H = merge(G,K)

(246) MAXIMIZATION:
JMxφKG,H = T iff
a. J[x]∧φKG,H = T
b. there is no K ) H s.t. J[x]∧φKG,K = T,

(247) UNIVERSAL QUANTIFICATION:
J[∀x : φ ]ψKG,H = T there is some K s.t.
a. JMxφ ∧ψKG,K = T
b. H = {{〈v,

⊕
K(v)〉 : v ∈ Dom(K)}}
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Chapter 4

Dynamic Plural Logic with Unselective

Maximization

4.1 Introduction

The previous chapter showed that while C-DPL could adequately handle exceptional

scope indefinites within a single sentence, it did not scale up to handle multiple sen-

tences. The logic needed to be outfitted either with a mechanism that compressed

informational pluralities into ontological pluralities at various points. Either route

would result in a serious decrease in empirical coverage when compared to theories

that utilize systems like Dynamic Plural Logic (DPlL) (van den Berg, 1994, 1996;

Nouwen, 2003), or Plural Compositional Discourse Representation Theory (PCDRT)

(Brasoveanu, 2007). In each of these theories universals are dynamically open and in-

formation about the relationships between the values of different variables stays avail-

able and so can be elaborated upon in subsequent discourse. These theories aim to cover

not only plural discourse reference but also a variety of donkey sentences, telescoping,

and quantificational and modal subordination.
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In this chapter I introduce the logic that will form the basis of the remainder of the

dissertation. The basic system needs two basic properties:

i. The logic must support structured plural and singular discourse reference—universals

should be dynamically open passing not only information about the set of enti-

ties quantified over but also information about the relationships between these

entities and other discourse referents.

ii. The logic should have some natural way of controlling when dependencies be-

tween variables can be introduced—the fix test from the previous section was

ultimately ad hoc. We want a system in which there are more principled ways to

control dependencies between the values of different variables.

I will argue that van den Berg’s (1996) DPlL offers the best jumping off point as it

meets both criteria outlined above:

i. DPlL keeps every expression dynamically open. Like in C-FOL/C-DPL, expres-

sions in DPlL are interpreted relative to sets of assignment functions. Unlike

these logics however the sets of assignment functions are used both to keep track

of the relations between the values of different variables and also to stand in

for pluralities wherever they are needed (there are no ontological pluralities in

DPlL).

ii. DPlL utilizes an assignment update operation εx that updates a set of assign-

ments in a way that does not introduce any dependencies between x and any

previously introduced variables. The εx update offers an even more general way

than the fixed value condition for managing dependencies. Where the fixed value

condition disallowed row-splitting the εx update allows row splitting while still

preventing new dependencies from arising. Dependencies in DPlL can only arise
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when an εx update occurs in the scope of a distributivity operator δv giving DPlL

a natural way of constraining how and where dependencies can enter into the

interpretation of a sentence.

I develop the logic in several steps. First I contrast two broad families of dynamic

plural systems, one based on work by van den Berg (1996) and Nouwen (2003) which

features (i) collective (as opposed to distributive) interpretation of lexical items and

(ii) assignment updates that do not introduce dependencies and a second based heav-

ily on work by Brasoveanu (and followed by Henderson (2014); Kuhn (2015)) which

features (i) distributive interpretation of lexical items and (ii) assignment updates that

do introduce dependencies. I show that the basic system laid out by van den Berg and

Nouwen offers finder grained control over dependencies and so forms the better basis

for development of the final logic.1

In the system we will arrive at the problem of wide scope indefinites will be reduced

to the problem of the scope of distributivity operators. As the formulas in (248) below

show, the difference between a wide and narrow scope reading comes down to whether

the restrictor of the indefinite is inside the scope of the distributivity operator associated

with the quantifier:

(248) Every student who read a (certain) paper succeeded.
a. NS target:

MR(εx∧δx(student(x)∧ εy∧paper(y)︸ ︷︷ ︸
a paper

∧δyread(x,y)))∧δxsucceed(x)

b. WS target:
1It is important that my argument not be misconstrued. Brasoveanu (2007) makes a convincing

case that at least some assignment updates need to allow uncontrolled dependencies to be introduced.
Interestingly, van den Berg (1996) also includes a number of assignment updates that allow different
levels of freedom with respect to what sorts of dependencies can be generated by default. Since the only
most constrained systems are most conducive to my goals in this dissertation, I will not spend much time
going through the various arguments.
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MR(εx∧ εy∧paper(y)︸ ︷︷ ︸
a paper

∧δx(student(x)∧δyread(x,y)))∧δxsucceed(x)

In the formula above MR is a maximization operator that finds the R-greatest output

of the formula in its scope. In the narrow scope target formula the εy update occurs in

the scope of the distributivity operator δx. This means that the formula in the scope of

the maximization operator allows updates in which y varies with x. In the wide scope

target formula the εy update is not inside the restrictor of the distributivity operator δx

and so the value of y cannot vary with the value of x. The analysis in this chapter thus

retains the same basic semantic intuitions developed in the previous chapter; all that is

new is the logic in which these intuitions are embedded.

The second part of the chapter is concerned with examining exactly which relations

can do the work of R in the example above. I show that not every maximality operator

that has been proposed in the literature generates the right predictions when slotted into

the formulas in (248). In particular I will show that the maximization operator utilized

by Brasoveanu (2007), Henderson (2014), and Kuhn (2015) is subject to the same class

of counter-examples that afflicted C-FOL.

The third part of the chapter generalizes the account so that it can handle a wide

variety of quantifiers. Here I stay very close to van den Berg’s account. Generalized

quantifiers have their semantics broken up into lexical and a dynamic components and

are expressed by means of formulas like that below:

(249)

Dynamic︷ ︸︸ ︷
MR(εx∧δxφ)︸ ︷︷ ︸

restrictor

∧MR(εx′⊆x∧δx′ψ)︸ ︷︷ ︸
scope

∧
Lexical︷ ︸︸ ︷

every(x,x′)

The dynamic component first finds the maximal set of x’s consistent with the formula

in the restrictor of the quantifier. The scope then finds the maximal subset of the x’s that

satisfy the nuclear scope of the quantifier (this is done utilizing a copy-by-value assign-

110



ment update: εx′⊆x). Finally the lexical aspect takes over indicating in the case above

that the sentence is true just in case x and x′ contain the same plurality of individuals.2

Even after the logic is updated to include generalized quantifiers, the basic analysis

of wide scope indefinites in terms of the scope of distributivity operators remains. The

chapter thus leaves off with a syntax semantics interface problem: if distributivity op-

erators are provided by the quantifiers as suggested by the formula in (249) suggests,

how do wide scope indefinites escape the scope of distributivity operators? While a full

answer to this question will have to wait until the next chapter, a preview of the final

analysis will help situate some of the decisions made in this chapter. In the final anal-

ysis I will suggest that distributivity operators should be decomposed into two parts:

one part is responsible for signalling distributivity and the second part is responsible

for contributing the quantificational force. This idea is sketched below:

(250) δx(φ ∧ψ) =↓x (
∆φ ∧ ∆ψ)

In this formula the ↓x signals to its scope that x is among the variables that are being

distributed over (this information is passed down the tree in the recursive definition

of truth). The operators ∆ then contribute quantificational force; φ and ψ separately

look at the atomic elements of x. This creates space for an operator ↑x that calls off

distributivity over the variable x to intervene before a ∆-operator has a chance to force

distributive interpretation. In the final analysis indefinites will be able to remove them-

selves from the scope of distributivity operators.

Since the final analysis involves decomposing distributivity operators, one of the
2An alternative route for accounting for generalized determiners in this framework is perused by

Brasoveanu (2007). In his system an input state G is fed first through the formula φ associated with the
restrictor and a maximal output H is collected. Then G is fed through the formula φ ∧ψ and a maximal
output H ′ is collected. The values assigned to a variable in H can be compared to those assigned to the
same variable in H ′. I have not yet found anything that might turn on this distinction, but it is not obvious
to me that the two formulations are equivalent.
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concerns in this chapter will be the extent to which distributivity operators can be

pushed around without effecting the truth conditions of a sentence. We will see that,

minimally, distributivity operators distribute over conjunction and that for some values

of R they can even be pushed past maximization operators without effecting the truth

conditions of a sentence.

Lastly, its worth pointing out the extent to which various aspects of this chapter

are severable from the analysis proposed in the subsequent chapter. I think here the

main contribution is in spelling out the typology of maximization. In this chapter I

show that not all ways of defining the maximization operator will lead to intuitively

correct truth conditions for formulas of the form in (248). These results will stand even

if one wanted to find another route to enforce independence between a variable intro-

duced by an indefinite and a variable introduced by a syntactically higher quantifier.

If one thinks of the previous chapter as an extended argument showing that a dynamic

semantics is necessary to capture wide scope indefinites, then the current chapter is

an extended argument showing that dynamic semantics is not by itself sufficient; only

certain maximization operators will do.

The rest of this chapter is structured as follows: I first describe two flavours of

dynamic plural logic that one could imagine. I will ultimately adopt a flavour in which

random assignment updates by default do not introduce new dependencies. I then cover

the typology of maximization operators. I show that the simplest maximization operator

can meet both of the desideratum outlined above. Then I turn to generalized quantifiers

showing how the system can scale up to handle arbitrary generalized quantifiers. This

is important since our analysis of wide scope indefinites should not be limited to cases

in which they appear in the restrictor or nuclear scope of a universal.

112



4.2 Two Flavours of Dynamic Plural Logic

In this section I will outline two flavours of DPlL that have been proposed in the liter-

ature. The first is a simplified variant of the logic proposed by van den Berg (van den

Berg, 1994, 1996) and Nouwen (2003). Its overarching goal is to account for plural dis-

course reference. In this logic, lexical relations are interpreted collectively with respect

to the sets of assignment functions that serve as the input-output contexts, and assign-

ment update operators generate no dependencies between introduced and previously

available discourse referents. The dependency structure is managed entirely by dis-

tributivity operators: a distributivity operator generates local contexts that allow for (i)

distributive interpretations of lexical relations and (ii) new (global) dependencies that

arise outside the scope of the distributivity operator. The second logic is based around

PCDRT3(Brasoveanu (2007)) and following work especially Henderson (2014); Kuhn

(2015). In this logic, lexical relations are interpreted distributively (as in C-FOL or

C-DPL) and assignment updates can introduce new dependencies (again similar to C-

FOL and C-DPL). In such a logic distributivity operators have a smaller role to play as

they are required neither to (i) achieve distributive interpretations of lexical items nor

(ii) allow new dependencies to arise. This system has an easier time accounting for

cumulative interpretations.

I will examine the relative merits of these systems through the lens of sentences like

(251).

(251) Two dogs chased two cats.

The sentence above has three interpretations of interest: (i) a distributive interpretation

in which two dogs chased two cats each, (ii) a collective interpretation in which two
3These systems are different in that PCDRT offers a compositional system in a dynamic type logic

that builds on CDRT (Muskens, 1996) while van den Berg’s DPlL simply offers a dynamic logic.
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dogs as a group chased two cats as a group, and (ii) a cumulative interpretation in

which two dogs chased two cats between them, i.e. dog A chased cat A while dog

B chased cat B. I will show that the van den Berg-Nouwen system has an easy time

capturing readings (i) and (ii), but struggles to capture the cumulative reading. On the

other hand the Brasoveanu-Henderson-Kuhn system easily captures readings (ii) and

(iii), but struggles with the first reading (i) without introducing additional interpretive

resources or plural individuals.

One of the key takeaways from this discussion is that collective lexical relations

(van den Berg-Nouwen style) are useful for capturing collective readings, while depen-

dency introducing assignment updates (Brasoveanu-Henderson-Kuhn style) are needed

to capture the cumulative readings. However, Kuhn (2015) provides an argument

against combining these two features into a single logic.

Ultimately, for the current purposes, I come down in favour of the system set up by

van den Berg. In order to handle wide scope indefinites in the way outlined in the intro-

duction, it will be necessary to have assignment update operations that are dependency

free. Such updates will form the basic building blocks for indefinites capable of taking

unbounded upward scope.

The remainder of this section is organized as follows. First, I will discuss the com-

mon features of the two systems: both conjunction and distributivity are defined iden-

tically in both logics. Second, I will discuss a simplified version of van den Berg’s

system and show that it is capable of accounting for collective and distributive interpre-

tations of simple sentences like (251). Next, I discus Brasoveanu’s system and show

how it handles both cumulative and distributive interpretations of these sentences. I

close the section by considering Kuhn’s (2015) argument against systems that combine

collective interpretation and dependency introducing assignment update.
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4.2.0.1 Conjunction & Distributivity

Conjunction in all forms of DPlL is defined like its counterpart in DPL. Dynamic con-

junction simply takes the output of the first formula and passes it to the second formula.

A conjunction φ ∧ψ is true relative to an input G and an output H iff there is some K

s.t. φ is true relative to input G and output K and ψ is true relative to input K and output

H.

(252) DYNAMIC CONJUNCTION :
Jφ ∧ψKG,H = T iff ∃K : JφKG,K = T & JψKK,H = T

All variants of DPlL utilize a distributivity operator, δ . The distributivity operator

δx, takes an input assignment function, breaks it up into sub-states corresponding to

each value x takes in the output, passes each state on to the input, and knits together

each of these outputs and returns them as a single a global output.

(253) DISTRIBUTIVITY:
JδxφKG,H = T iff
a. x ∈ Dom(G) and G(x) = H(x)
b. ∀d∈G(x) : JφKG|x=d ,H|x=d = T

The first conjunct ensures that no new values for x are added to H that are not already

present in the input. Since G(x) = H(x), there is a one-to-one function between ele-

ments of {G|x=d : d ∈ G(x)} and {H|x=d : d ∈ H(x)}. The second conjunct conjunct

breaks the input assignment one sub-state for each value x can take and passes it on to

φ .

One point bares emphasis: the semantic effect of a distributivity operator varies be-

tween various systems. I will show that in van den Berg’s original logic a distributivity

operator performs two roles (i) it allows for non-collective interpretations of predi-

cates and (ii) provides a semantic context in which dependencies can be introduced.

In alternative systems distributivity operators are not needed to handle non-collective
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interpretations or for the introduction of dependencies. Instead distributivity operators

serve to block cumulative interpretations.4

4.2.1 van den Berg-Nouwen Style DPlL

In this section, I will outline a variant of DPlL based heavily on work by van den Berg

(1996) and Nouwen (2003), though it simplifies their systems in several respects: first,

I present a bivalent logic that conflates the definedness and truth conditions given by

van den Berg and Nouwen.5Second, I ignore in this section the dummy value, ?, that

indicates that a value is undefined in a particular assignment function in the plural state.

While this value has its uses and will play a role in the final substantive portion of this

chapter, it introduces several complications that are not pertinent at this juncture.

4.2.1.1 Model

The models van den Berg works with are almost entirely standard. A model M is an

ordered pair 〈D,I〉, consisting of a domain, D, of (atomic) individuals and an interpre-

tation function, I. The interesting difference between the model of DPlL and models

of FOL comes with the interpretation of predicates.

A one-place predicate is interpreted as a subset of ℘+(D) =℘(D)− /0, i.e. a set

of sets of entities. A simple predicate like dog, could have as its interpretation the set

of singleton sets containing dogs,6while a collective predicate like gather would have

only non-singleton sets in its denotation.
4The point here is this: the semantic effect of a distributivity operator can’t just be read off the

recursive definitions of truth for the operator. It is the interaction between distributivity operators and
other elements of the logic that determines what the semantic effects of a distributivity operator are.

5Conflating falsity and definedness seems to be a standard move in the literature (see e.g. Brasoveanu
(2007); Kuhn (2015)). If nothing else this move eases the exposition and facilitates the comparison
between various systems.

6This is meant for expository purposes only, to model natural language the denotation of dog should
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(254) I(dog) = {{f},{r},{s}, . . .}
(255) I(gather) = {{a,b,c},{d,e, f}, . . .}

A two-place predicate is interpreted as a subset of ℘+(D)×℘+(D), i.e. as a re-

lation between sets of entities. Consider the predicate chase below. It sets up a rela-

tionship between the singleton containing f and the singleton containing w indicating

that f chased w. It also sets up a relationship between the non-singleton {a,b} and the

singleton set containing c indicating that a and b chased c together, but not necessarily

separately.

(256) I(chase) = {〈{f},{w}〉,〈{a,b},{c}〉, . . .}

Notice that the model I have provided does not close the predicates under sum-formation/set-

union by default. Instead we build these basic predicates so that they encode collective

readings. If we deem a predicate to be cumulatively closed it must be modeled as a set

of sets that is closed under set-union.

In this set-up there are no plural individuals in the domain, but there may be plural-

ities in the denotations of predicates. Pluralities play a role only in the interpretation of

predicates. Van den Berg’s goal is to replace ontological pluralities entirely with plural

information states. In this way van den Berg’s logic differs in a fundamental way from

C-FOL and C-DPL despite utilizing similar data structures. Where C-FOL grants one

a gods-eye-view of first order quantification, van den Berg’s DPlL gives one a way to

talk about pluralities without structuring the domain.

4.2.1.2 Lexical Relations

In van den Berg’s system, lexical relations are interpreted cumulatively with respect to

their input/output state. This is necessary if one is to represent plural individuals only

be modelled as cumulatively closed. Here I mean only to indicate that one place relations are properties

of sets of entities—any property of sets of entities will do.
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by means of plural information states. The truth conditions of a lexical relation feed

the sets associated with each variable into the interpretation of the predicate. These sets

thus play the role of plural individuals. Dependencies between variables are lost at this

stage of interpretation since lexical relations are interpreted as relations between sets

and do not make any reference to any relations between the values of the variables that

might be encoded in the plural information states.

(257) LEXICAL RELATIONS:
JR(v1, . . . ,v2)KG,H = T iff
a. G = H
b. 〈G(v1), . . . ,G(v2)〉 ∈ I(R)

The first conjunct is familiar: it simply says that lexical relations are tests. The second

conjunct differs from the definitions of lexical relations that we have seen so far. Notice

that lexical relations between two or more variables are not evaluated with respect to the

projection of those variables. Instead they are evaluated with respect to the unstructured

sets of values that the variables take on. In other words if a lexical relation R(x,y) is

true of the input-output state G, it is because 〈G(x),G(y)〉 ∈ I(R). This in itself places

no constraints at all on G(x,y)—any relation at all between the two variables will be

consistent with the lexical relation.

To handle number morphology in this system we introduce two special predicates

sg and pl. These predicates are evaluated exactly like lexical relations. The formula

sg(x) is true in a context iff x is assigned only one value, while pl(x) is true whenever

x is assigned more than one value.

(258) SINGULAR and PLURAL:

a. Jsg(x)KG,H = T iff G = H & |G(x)|= 1
b. Jpl(x)KG,H = T iff G = H & |G(x)|> 1

Numerals can be handled in a similar fashion. We define a series of one place

predicates 1,2, . . . that are true only of pluralities of a certain cardinality:
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(259) NUMERALS:
Jn(x)KG,H = T iff G = H & |G(x)|= n

4.2.1.3 Dependency Free Assignment Update & Collective Readings

Assignment updates in van den Berg’s system are number neutral and dependency-free,

i.e. an assignment update is define in such a way that it is compatible with both singular

and plural updates but it will never introduce a dependency between the new variable

and any previously introduced variable.

(Dependency-Free) assignment update is defined below. The first conjunct ensures

that updates are non-destructive. Random assignment never over-writes variables that

are already in use. The second conjunct says that for every g∈G and d ∈D, H contains

the assignment g[x→d]. Note that |H|= |G|×|D| and that εx does not introduce any new

dependencies between x and any other variable.

(260) (DEPENDENCY-FREE) RANDOM ASSIGNMENT:
JεxKG,H = T iff

a. x /∈ Dom(G)

b. ∃D⊆D : H = {g[x→d] : g ∈ G & d ∈ D}

The workings of ε are illustrated below for an update of the variable y with the values in

D = {c,d}. The update in (261) is well formed since every input assignment is updated

with every value in D. Notice that the output in (262) does not have any dependencies

between the variables x and y. The update in (262) does not satisfy εx. Notice that it

does induce dependencies between x and y. However, there are input assignments, e.g.

g = {〈x,a〉}, that are not updated with every value in D.

(261)
x
a
b

εy
=⇒

x y

a
c
d

b
c
d
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(262)
x
a
b

�
�εy
=⇒

x y
a c
b d

With the material already at hand we can generate reasonable representations of

sentences with collective predicates.

(263) Two boys met in the park.  εx∧boy(x)∧2(x)∧meet.in.park(x)

0
εx∧boy(x)
=====⇒

x
Mike

x
John

x
Erik

x
Mike
John

x
John
Erik

x
Mike
Erik

x
Mike
John
Erik

2(x)
==⇒

x
Mike
John

x
John
Erik

x
Mike
Erik

meet.in.park(x)
========⇒

x
John
Mike

The first update, εx ∧ boy(x), is compatible with any update in which x contains a set

of boys.7The next update 2(x) is compatible only with those sets of assignments in

which x contains two elements. The final update meet.in.park then removes any sets of

assignments in which the x-boys did not collectively meet in the park.

Collective interpretations of other predicates like chase or lift will also be the default

case in the logic we have developed.

(264) Two dogs chased two cats.
 εx∧dog(x)∧2(x)∧ εy∧ cat(y)∧2(y)∧ chase(x,y))

(265) 0
εx∧dog(x)∧2(x)
=========⇒

x
d1
d2

εy∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d1
c1
c2

d2
c1
c2

7I am assuming here that the predicate boy is cumulatively closed. If however we wanted to treat the
predicate boy as picking out only single boys, then we would have to modify the formula here to contain
δxboy(x)
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First we update with a set of two dogs, next we update with a set of two cats that the

two dogs collectively chased in a dependency free way. Notice that when we interpret

any predicates we gather up the set of dogs and the set of cats.

4.2.2 Distributivity & Distributive Readings

The dependency free assignment update εx by itself will never introduce any dependen-

cies. New dependencies come into the state by means of the distributive operator, δx.

In the scope of a distributivity operator assignment updates are able to introduce new

dependencies.

(266)
x
a
b
?

δx=⇒


x
a

εy
=⇒ x y

a c
x
b

εy
=⇒ x y

b d

 =⇒
x y
a c
b d

The distributivity operator breaks up the set of assignments into sub-states defined in

terms of the value taken on by x. The assignment update εy then operates on each

of these sub-states separately. In none of these local updates are any dependencies

introduced. However, when taken together a global dependency can arise.

Distributivity operators can also change the number associated with a variable. Un-

der a distributivity operator a global context that assigns a plurality to a variable x will

by definition contain only a single value in each of the sub-states that would be accessed

by distributing over x.

(267)
x
a
b

pl(x)∧δx
====⇒


x
a

sg(x)
==⇒ x

a
x
b

sg(x)
==⇒ x

b

⇒ x
a
b

In the global state, x is associated with the plurality {a,b}, but when being distributed

over x contains only a single value. In this way a distributivity operator manipulates

the number associated with a variable.

With distributive operators we can provide interpretations for distributive interpre-

tations for simple sentences like that in (251).
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(268) Two dogs chased two cats.
 εx∧dog(x)∧2(x)∧δx(εy∧ cat(y)∧2(y)∧δychase(x,y))

(269) 0
εx∧dog(x)∧2(x)
=========⇒

x
d1
d2

δx=⇒


x
d1

εy∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d1
c1
c2

x
d2

εy∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d2
c3
c4

⇒
x y

d1
c1
c2

d2
c3
c4

Because we break up the set of assignments up into sub-states for each dog we ulti-

mately end up relating two (possibly) different cats to each dog. Likewise, because the

predicate chase(x,y) is evaluated within the scope of two distributivity operators it will

be evaluated relative to sub-states corresponding to each row. That is, in each row the

x-dog must have chased the y-cat.

4.2.2.1 Interim Summary

In summary van den Berg-Nouwen style DPlL has the following three properties:

i. Collective interpretation of lexical relations by default.

ii. Dependency free assignment updates.

iii. Distributivity operators that open up the possibility of dependencies and alter the

interpretation of all lexical items including cardinality predicates.

4.2.3 Brasoveanu-Henderson-Kuhn Style

This section describes a variety of DPlL that can be extracted from work by Brasoveanu

(2007); Henderson (2014); Kuhn (2015).

4.2.3.1 Models

The models here entirely standard. Crucially the interpretation function assigns n-ary

predicates denotations that are subsets of Dn. Unless the domain itself contains plural
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individuals, lexical relations denote relations only between atomic entities, not relations

between sets of entities as in van den Berg’s logic.

4.2.3.2 Lexical Relations

Lexical relations in Brasoveanu-Henderson-Kuhn style DPlL are interpreted distribu-

tively as they are in C-FOL and C-DPL.

(270) LEXICAL RELATIONS:
JR(v1, . . . ,v2)KG,H = T iff

a. G = H
b. ∀g∈G : 〈g(v1), . . . ,g(v2)〉 ∈ I(R)

The first conjunct ensures that the input and output assignments are identical. The

second checks each assignment function in the plural state against the lexical relation.

Notice that unlike the definition in (257) the definition above is not neutral with respect

to the dependency structure in the input state. The relationships between variables

matters when evaluating lexical relations.

Interestingly, number cannot be handled in terms of lexical relations. This is be-

cause a lexical relation is always evaluated with respect to each assignment function

in the plural state. In order to determine whether a plural state actually contains any

particular number of entities as a whole requires looking at more than one assignment

function at a time. Although this is the default case in van den Berg style DPlL, a vari-

ant that utilizes distributive interpretation for lexical relations needs special predicates

to handle number morphology.

(271) NUMBER MORPHOLOGY:
a. Jsg(x)KG,H = T iff G = H & |G(x)|= 1
b. Jpl(x)KG,H = T iff G = H & |G(x)|> 1
c. Jn(x)KG,H = T iff G = H & |G(x)|= n
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Notice that the definitions above are exactly the same as those provided for in van den

Berg style DPlL. However, they have a different status since they are not simple lexical

relations.

4.2.3.3 Random Assignment

Assignment update is defined entirely in terms of variable difference.

(272) (DEPENDENCY-INTRODUCING) RANDOM ASSIGNMENT:
J[x]KG,H = T iff

a. x /∈ Dom(G)

b. i. ∀g∈G : ∃h∈H : h⇐x g
ii. ∀h∈H : ∃g∈G : h⇐x g

The first conjunct here is familiar; it guards against overwriting a variable that is already

introduced in the input state. The second conjunct ensures that every element of g is

extended by some element of h and that every element of h is an extension of some

element of g. The update created by the formula [x] is compatible with outputs that

generate dependencies between x and previously introduced variables.

Consider the examples below which contrast updates that assign to y the set {a,b}

that are possible with εy and [y]:

(273)
x
a
b

εy
=⇒

x y

a
c
d

b
c
d
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(274)
x
a
b

[y]
=⇒

x y

a
c
d

b
c
d

x y
a d

b
c
d

x y

a
c
d

b c
...

x y
a c
b d

These examples show that [x] is more permissive than εx. There is only one way

to update y that is permitted by εy because it always generates the cross product of the

original set of of assignment functions and the set it is updating with. In contrast the [y]

update allows any relation to obtain between any variable in the input and the variable

introduced by the update.

4.2.3.4 Distributivity

Its worth pausing to reflect on the semantic effect of a distributivity operator in the sys-

tem we are now considering. First, since lexical relations are interpreted distributively

by default, a distributivity operator will not figure in an account of distributive vs col-

lective interpretations of simple predicates. Second, since random assignment updates

can introduce dependencies between the introduced variable and previously introduced

discourse referents, distributivity operators will not be needed to license dependencies

between variables.

Distributivity operators are thus limited in their effect: they only provide local con-

texts which effect the evaluation of expressions used to encode number morphology.

Since these expressions retain the same collective interpretation that they had in van

den Berg style DPlL, they retain the same behaviour with respect to distributivity oper-
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ators.

4.2.3.5 Distributive vs Cumulative Interpretation

The system developed so far does a nice job of capturing both cumulative and distribu-

tive interpretations. Consider our previous cats and dogs example. The distributive

interpretation looks exactly like the one provided in the van den Berg system modulo

the change in the assignment updates.

(275) Two dogs chased two cats.
 [x]∧dog(x)∧2(x)∧δx([y]∧ cat(y)∧2(y)∧δychase(x,y))

(276) /0
[x]∧dog(x)∧2(x)
=========⇒

x
d1

d2

δx=⇒


x
d1

[y]∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d1
c1
c2

x
d2

[y]∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d2
c3
c4

⇒
x y

d1
c1
c2

d2
c3
c4

The first set of updates introduces the variable x with and assigns it two dogs. The

sub-states corresponding to each dog are then updated distributively with the complex

update [y]∧ cat(y)∧ 2(y)∧ chase(x,y). The action occurs when we evaluated the ex-

pression 2(y) in the scope of δx. The lexical relation checks that two y-cats are assigned

in the sub-state associated with each dog. This leads ensures that d1 chased two cats

and d2 chased two cats.

In order to achieve the cumulative interpretation we simply remove the distributivity

operator associated with x. The resulting interpretation is shown below.

(277) Two dogs chased two cats.
 [x]∧dog(x)∧2(x)∧ [y]∧ cat(y)∧2(y)∧ chase(x,y)

(278) /0
[x]∧dog(x)∧2(x)
=========⇒

x
d1

d2

[y]∧cat(y)∧2(y)∧chase(x,y)
===============⇒

x y
d1 c1

d2 c2
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The first set of updates again introduces a set of two dogs. The second update introduces

two cats, since the assignment update can generate new dependencies, it can match d1

with c1 and d2 with c2. Furthermore, since 2(y) is not evaluated within the scope of

a distributivity operator, it is not necessary that there be two cats associated with each

dog. Finally, since the interpretation of lexical relations is distributive the predicate

chase(x,y) requires that the chase relation holds in each row. It does not, as in van den

Berg’s system, require that the plurality {d1,d2} have chased the plurality {c1,c2}.

Notice that this analysis is not open to us in the van den Berg-Nouwen style system

because it crucially depends on the possibility of an assignment update introducing new

dependencies.

4.2.3.6 Interim Summary

In summary the Brasoveanu-Henderson-Kuhn style DPlL has the following three fea-

tures:

i. Lexical relations are interpreted distributively always.

ii. Assignment updates are fully random and can generate new dependencies.

iii. Distributivity operators only effect the interpretation of cardinality checks, which

are interpreted collectively.

4.2.4 Issues with Hybrid Systems

In the discussion above we saw that a system that featured collective interpretation of

predicates made it easy to handle collective readings, while a system that had depen-

dency introducing random assignments made it easy to handle cumulative readings.

This raises the question of whether these two features should be combined into a single
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system that features both (a) collective interpretation of predicates and (b) dependency

introducing random assignments.

Kuhn (2015) considers this possibility but notices the following problem: a system

that combines collective interpretation with dependency introducing assignment can

account for all three readings, but over-generates dependencies with collective readings.

Distributive readings are accomplished in the familiar way. A distributivity operator

takes scope over the material in the nuclear scope of the both numerals:

(279) Two dogs chased two cats. [x]∧dog∧2(x)∧δx([y]∧cat(y)∧2(y)∧δychase(x,y))

(280) /0
[x]∧dog(x)∧2(x)
=========⇒

x
d1

d2

δx=⇒


x
d1

[y]∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d1
c1
c2

x
d2

[y]∧cat(y)∧2(y)∧δychase(x,y)
================⇒

x y

d2
c3
c4

⇒
x y

d1
c1
c2

d2
c3
c4

This derivation looks exactly like the derivation used to derive distributive readings in

van den Berg’s system.

To handle cumulative readings we leave only the distributivity operator associated

with the syntactically lower numeral. Imagine a situation in which dog1 chased cat1

and dog2 chased cat2. We would then get an update like that below:

(281) Two dogs chased two cats.
 [x]∧dog∧2(x)∧ [y]∧ cat(y)∧2(y)∧δychase(x,y)

(282) /0
[x]∧dog(x)∧2(x)
=========⇒

x
d1

d2

[y]∧cat(y)∧2(y)∧
=========⇒

x y
d1 c1

d2 c2

x y
d1 c2

d2 c1
...

δychase(x,y)
======⇒

x y
d1 c1

d2 c2

The update again starts with a set of two dogs followed by a set of cats which can

depend on the dogs. Finally since the distributivity operator associated with y takes
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scope over chase(x,y) we look at each y-cat and make sure it was chased by the corre-

sponding set of x-dogs. This filters out output sets of assignments which don’t get the

dependencies between cats and dogs right.

Collective readings can also be captured by translations in which distributivity op-

erators are entirely absent. The problem with these readings is that they are agnostic

about the dependency structure that holds between the two variables. Consider the

calculation below:

(283) Two dogs chased two cats.  [x]∧dog∧2(x)∧ [y]∧ cat(y)∧2(y)∧ chase(x,y)

(284) /0
[x]∧dog(x)∧2(x)
=========⇒

x
d1

d2

[y]∧cat(y)∧2(y)
========⇒

x y

d1
c1
c2

d2
c1
c2

...
x y
d1 c1

d2 c2

x y
d1 c2

d2 c1

chase(x,y)
=====⇒

x y

d1
c1
c2

d2
c1
c2

...
x y
d1 c1

d2 c2

x y
d1 c2

d2 c1

The first set of updates delivers a plurality of dogs. The second group of updates de-

livers plurality of cats. Because assignment update is dependency introducing the full

range of relations between the cats and the dogs is generated. Finally, the predicate

chase(x,y) is interpreted collectively. Since each set of assignment functions assigns

the same set to the projections of both x and y none of these cases are filtered out. The

set of available outputs can accommodate any relation between the dogs and the cats.

Ideally we would like only top output in which there is no dependency between cats

and dogs. Indeed discourses like the one below suggest that the output of collective

interpretations does not provide an articulated relationship between the dogs and the

cats that can be accessed in subsequent discourse.8
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(285) Two dogs collectively chased two cats. # They each caught it. / They caught
them.

One cannot distribute over the dogs and find a single cat associated with each. Instead,

one can only reference the plurality of dogs and the plurality of cats. This would only

be predicted by a system that allowed only a dependency free output for collective inter-

pretations. If collective interpretations provided outputs that allowed for dependencies

one would expect to be able to elaborate on the structure in subsequent discourse.

4.2.5 Summary

In this section I have described two variants of DPlL. The first is based heavily on van

den Berg’s original formulation while the second utilizes alternative choices made in

the systems used by Brasoveanu (2007); Henderson (2014); Kuhn (2015). Because

the overall goal of this project is to interpret wide scope indefinites in the spirit of

Brasoveanu and Farkas (2011), I will utilize a van den Berg style logic. This is because

we want the underlying system to limit dependencies to just those indefinites that occur

in the scope of distributivity operators.

At the same time this section has highlighted a shortcoming of the resulting system:

cumulative interpretations. These seem to require dependency introducing assignment

(as argued in Brasoveanu (2012)). Brasoveanu (2007) also points to mixed weak/strong

readings of donkey sentences as a reason to countenance dependency introducing ran-

dom assignment. Additionally Kuhn (2015) points out a system with both collective

interpretation and dependency introducing random assignment seems untenable.
8Though see Brasoveanu (2007) for an argument against this perspective based on mixed

weak/strong readings of donkey anaphora. A sentence like Everyone who bought a book on amazon.com
and has a credit card used it to pay for it seems to make reference not only to the books people bought
on amazon.com and the credit cards they have but also the relationship between books and credit cards.
This suggests that when the nuclear scope of the universal is processed it allows outputs in which there
are dependencies between books and credit cards despite the absence of linguistic material that would
force them to arise at that point in the interpretation.
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4.3 The Typology of Maximization

This section argues for the inclusion into the logic of an unselective maximization op-

erator, i.e. a maximization operator that maximizes the output set of assignments in

a way that does not privilege any particular variable over another. The maximization

operator I propose is defined simply in terms of the subset relation—an output H is

maximal relative to an input G and a sentence φ iff (i) JφKG,H = T and (ii) there is no

K⊃H s.t. JφKG,K =T. This maximization operator offers two advantages over its com-

petitors: (i) non-deterministic updates in φ are correctly percolated to maximal output

assignments and (ii) this maximization operator supports distributive normal form, i.e.

a distributivity operator can be freely permuted with a maximization operator defined

this way.

I will also show in this section that other maximization operators proposed in the

literature lack one or both of these properties. A maximization operator proposed by

Brasoveanu (2007) and utilized widely in the literature, lacks the first property—it

does not correctly percolate non-determinism generated by a formula in its scope. The

maximization operator proposed by van den Berg (1996) and utilized in closely related

work, e.g. Nouwen (2003), does correctly percolate non-deterministic updates but does

not support distributive normal form. This property while not strictly necessary for the

analysis sketched in the introduction will become important in the next chapter where

I present a system in which wide scope indefinites can be derived compositionally.

Moreover, I show that neither of these maximization operators suppress dependen-

cies. That is both the Brasoveanu (2007) maximization and van den Berg (1996) maxi-

mization will non-deterministically allow outputs that have more structural information

than is supported by the material in the scope of the maximization operators.

This remainder of this section is split into several parts. The first section discusses
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two abstract schema that can be used to define a number of maximization operators.

The first schema, which I attribute to van den Berg, is simplest: it parametrises max-

imization with respect to a relation R that is used to determine which among a set of

potential outputs are maximal. One perversity of this schema is that a maximization

operator can take scope over a test in which case the operator is necessarily vacuous.

In all natural language applications, maximization operators take scope over dynamic

formulas. This has lead subsequent authors to define maximization in terms of both

a relation R and a variable x. The maximization operator itself updates the discourse

with values for x. This change is subtle and has not been remarked on in the literature

as far as I am aware. I will argue for a system in which maximization is parametrized

only with respect to a relation R and does not include assignment update in its own

definition. I will show that in the system we are working with, in which assignment

updates do not introduce any new dependencies outside the scope of a maximization

operator, maximization operators that themselves update the assignment function do

not support distributive normal form.

The second section forms the logical core of this chapter. It develops a typology

of maximization operators and defines a number of properties possessed (or not) by

different maximization operators proposed in the literature. The most important are

(i) whether the maximization operator handles non-deterministic updates in a way that

will support the analysis of wide scope indefinites sketched in the introduction and (ii)

whether the maximization operator supports distributive normal form.

4.3.1 Maximization Schema

This section sets out the general notation I will use for defining maximization opera-

tors. There are two recipes for defining maximization operators that can be extracted

from the literature. The first comes from van den Berg’s early work on DPlL, while
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the second I have extracted from much of the subsequent literature. The difference be-

tween these two recipes is almost always functionally non-existent. However, for my

current project there are logical reasons to prefer definitions of maximization more in

line with van den Berg’s: with van den Berg’s definition it becomes possible to define

maximization operators that support distributive normal form; more recent definitions

of maximality operators prevent this possibility.

The first recipe for maximization, I attribute to van den Berg. Note that this is not a

definition he explicitly provides, but his initial output maximization operator can be fit

into this schema:

(286) Van den Berg Recipe:
JMR(φ)KG,H = T iff
a. JφKG,H = T
b. ¬∃KRH : JφKG,K = T

The definition in (286) will provide a maximization operator as long as R is a transitive,

asymmetric, and antireflexive relation (i.e. a partial order without the reflexive links).

This maximization operator finds and delivers an R-largest output consistent with (i)

the formula in its scope and (ii) its input assignment.

An astute reader may notice that if the sentence φ is a test, the restrictor will only be

true for outputs identical to the input and so maximization will be trivial; in order for a

maximization to have a non-trivial effect it must take scope over a externally dynamic

formula. The practising semanticist will always find herself utilising formulas like

those in (287) in which a maximization operator takes scope over a conjunction that

contains at least (i) an assignment update operation and (ii) a test that restricts possible

values assigned to the variable.

(287) MR(εx∧P(x))

This observation has lead subsequent authors to amend van den Berg’s recipe along the
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lines shown in (288).

(288) Brasoveanu Recipe:
JMR

x (φ)KG,H = T iff

a. Jεx∧φKG,H = T
b. ¬∃KRH : Jεx∧φKG,K = T

The definition in (288) adds an assignment update to van den Berg’s definition. This

ensures that the maximization operator is never vacuous and provides a generally more

compact notation to the working semanticist. For instance, the expression in (287) can

be more perspicuously expressed using the notation in (288).

(289) MR
x P(x)

While it bares emphasis that there is little substantive difference between the nota-

tion given in (287) and that in (288), there are trade-offs between the two notations. The

Brasoveanu recipe has several concrete advantages for natural language semantics: it

is not clear maximization in natural language would ever fail to involve an assignment

update and the definition in (288) builds this property into the notation. However, there

are two disadvantages to the Brasoveanu Recipe in the current context:

i. This recipe obscures the relationship between the variable x and the relation R.

Consider the maximization operator obtained by setting R to the strict subset

relation. The variable x plays no special role in determining which potential out-

puts are maximal. The Brasoveanu recipe notationally privileges the variable x

despite the fact that it has no special role to play in determining maximal outputs.

In other candidates for maximization particular variables do play important roles

in determining the set of maximal outputs to the exclusion of other variables. In

these cases we will see that R is parametrized with these variables. The van den

Berg recipe thus wears its (un)selectivity on its sleeve.
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ii. One logical issue that will take special importance in the next chapter is the is-

sue of distributive normal form. A maximisation operator M supports DNF iff

δvMφ = Mδvφ . No maximization operator put into the Brasoveanu notation

supports DNF unless it also utilizes dependency introducing random assignment:

since the assignment update is baked into the maximization operator, pushing

the distributivity operator past the maximization operator also pushes it past the

implicit assignment update. This is important when we are working with as-

signment updates that can only introduce new dependencies when they occur in

the scope of distributivity operators. Pushing the distributivity operator past the

maximization operator necessarily changes the set of allowable outputs because

it restricts possible dependency relations in the set of possible outputs.

Note that the second criticism of the Brasoveanu recipe is only applicable to the current

context. Recall that Brasoveanu’s system utilizes assignment updates that can introduce

new dependencies. The assignment update [x] is such that δv([x]∧φ) = δv[x]∧ δvφ =

[x]∧ δvφ so criticism (ii) above does not apply; it is only when we utilize dependency

free assignment update that trouble arises since δvεx 6= εx.

In the rest of the chapter I will adopt the van den Berg recipe for maximization.

I will assume that as a matter of fact natural language does not involve maximization

over tests and that the translations of quantifiers with involve not only maximization

operators but also assignment updates in their scope.

4.3.2 Two Selective Maximization Operators

The two maximization operators I discuss in this section are both taken from the litera-

ture. The first, which comes from Brasoveanu (2007); Henderson (2014); Kuhn (2015)

a.o., is altered in two ways: first, I have altered it to fit the maximization scheme dis-
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cussed above, and, second, I have defined it in terms of dependency free assignment

update. The second comes directly from van den Berg (1996). Both of these maxi-

mization operators are selective, i.e. there is a specific variable that plays a privileged

role in the relation over which the output is maximized. I will show that Brasoveanu’s

maximization operator is not suited for a logic that attempts to account for wide scope

indefinites in terms of the scope of distributivity operators and included dependency

free assignment update. In fact, using this maximization operator falls prey to exactly

the same counter-example as the original C-FOL was subject to. Van den Berg’s maxi-

mization operator, however, is immune to this particular criticism.

The first selective maximization operator I will discuss is defined in terms of the

relation ⊃x defined below:

(290) K ⊃x H := K(x)⊃ H(x)

The operator defined in terms of the relation in (290) finds outputs that associate as

many values with the variable x as possible:

(291) GJM⊃x(φ)KH iff GJφKH & ¬∃K⊃xH : GJφKK

This definition is well suited to Brasoveanu’s purposes; it plays a crucial role in his

account of cumulative readings of numerals and quantifiers like every and works well

in systems in which variable assignment has the potential to introduce new variables.9

However, the maximization operator given in (291) will not allow us to handle wide

scope indefinites in the manner outlined in the introduction to this chapter. Recall that

our target analysis is one in which the wide scope of an indefinite can be reduced to

its scope relative, not to the maximization operator, but to the scope of a distributivity
9Brasoveanu’s maximization operator also gives one a sort of dynamic λ -abstraction. See

Brasoveanu (2007) §3.4 when combined correctly with other elements of his system.

136



operator. The problem with the definitions in (290-291) can be seen by considering the

scenario which proved impossible to handle in C-FOL.

Recall that we have a situation in which every dog that chased Whiskers barked,

not every dog that chased Evander barked, and every dog that chased Whiskers also

chased Evander. In this scenario the sentence in (292) is intuitively true on its wide

scope interpretation.

(292) Every dog that chased a certain cat barked.

The target translation of the sentence in (292) is given below:

(293) M⊃x(εx∧dog(x)∧ εy∧ cat.sg(y)∧δxδychase(x,y))∧δxbark(x)

The first update will deliver a maximal output that (i) contains a set of dogs as the value

of x, (ii) a set of cats as the value of y, (iii) no dependencies between the cats and the

dogs (since εy is not in the scope of a δx), s.t. every dog x chased the cat(s) y associated

with it. If we assume that Fido, Rex, and Dudley chased Evander, while only Fido

and Rex chased Whiskers, we can depict the dynamics of the sentence in (293) in the

following way.

(294) /0 M⊃x
==⇒


/0

εx∧dog(x)∧εy∧cat.sg(y)∧δxδychase(x,y)
======================⇒

x x
f

er
d

x x
f

w
r

...


⇒

x x
f

er
d

δxbark(x)
=====⇒ F

The formula in the scope of the maximization operator is itself compatible with out-

puts in which all the dogs chased Evander and outputs in which all the dogs chased

Whiskers. However, since the Whiskers-chasers are a proper subset of the Evander-

chasers, the relation ⊃x selects only the output consisting of all the Evander-chasers.
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This results in the entire sentence being evaluated as false since not all the Evander

chasing dogs barked. This problem is exactly the problem that confronted C-FOL.

The trouble with the maximization operator defined in (291) is that it is too selec-

tive. It selects maximal output assignments in a way that is sensitive only to the values

assigned to the variable x. If we wish to define a maximization operation that allows

both outputs depicted in (294), then the maximization operator will have to be sensitive

to the values of other variables as well. This is not to say that it is must attempt to max-

imize over other variables, but that it must not compare outputs that differ with respect

to the values taken on by other variables.

Interestingly van den Berg was aware of this behaviour when he defined his maxi-

mization operator in terms of the more complicated relation >x defined in (295):

(295) K >x H := K(x)⊃ H(x) & K ⊇ H

Van den Berg’s definition simply adds a condition to Brasoveanu’s. His definition re-

quires that comparable information states must stand in a subset/superset relation. This

relation allows us to define the following maximization operator:

(296) GJM>x(φ)KH iff GJφKH & ¬∃K>xH : GJφKK

If we use this definition of maximization in our target translation, we see that the correct

results are achieved:

(297) /0 M≥x
==⇒


/0

εx∧dog(x)∧εy∧cat.sg(y)∧δxδychase(x,y)
======================⇒

x y
f

er
d

x y
f

w
r

...


⇒

x y
f

er
d

x y
f

w
r

δxbark(x)
=====⇒

x y
f

w
r
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Notice that both desired outputs from the maximization operator are now allowed. They

are both candidates because they do not stand in a subset/superset relation and thus are

not comparable in terms of the >x relation.

Interestingly, van den Berg made this argument on purely logical grounds. His

justification is worth quoting in full:

. . . consider why there might be different output states for a given input

state. The only reason for different outputs are random assignments inside

φ adding variables to the input with different values. In the case of x. . . the

extra variable y introduced need not be dependent on x, and in that case we

need to be careful. Suppose that y can take the values {a}. if x is {c} and y

is {b} if {c,d} Then we do not want to lose the value {a} just because x is

maximized. It stays a matter of further research whether such cases every

really occur.

This justification fits exactly the scenario described above. Van den Berg thus defined

his maximization operator so that it correctly percolates indeterminacy from its nuclear

scope. Moreover, as the final sentence in the quotation above makes clear, van den

Berg did not have wide scope indefinites in mind as a justification for his maximality

operator.

4.3.3 Dependency Suppressing Maximization

In this section, I will discuss a maximization operator that is of only logical interest.

This is the dependency suppressing maximization operator. A maximization operator

that is dependency suppressing should select outputs that have as few dependencies as

possible given the formula in its scope. It should not attempt to increase the values
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assigned to variables in its scope but instead rule out output states that have more de-

pendencies than are justified given (i) the values assigned to the variables in the output

and (ii) the formula in the scope of the maximization operator.

The dependency suppressing maximization operator holds logical interest for two

reasons. First, it helps us isolate the property of the relation R that will make any

maximality operator dependency suppressing. Second, recall Kunh’s (2015) criticism

against the inclusion of fully dependency introducing assignment updates, [x], into a

system that utilized collective interpretations of lexical relations: dependency intro-

ducing assignment updates created arbitrary and unjustified dependencies in potential

outputs. If such assignment updates occur inside the scope of a dependency suppress-

ing maximality operator, this criticism would be avoided. The maximization operator

would ensure that no dependencies that were not justified by the lexical material could

occur in the output.

In order to accomplish this task we will need a way to measure two output as-

signments H and K and determine (i) if H and K are comparable with respect to one

another and (ii) if so, whether H has more are less dependencies between its variables

than K. This requires being more fine grained in our discussion of dependence and

independence between two or more variables than we have up till now. We have only

said that in an assignment H the variables v1, . . . ,vn are independent of one another iff

H(v1, . . . ,vn) = H(v1)×·· ·×H(vn), i.e. we take the n-place relation H assigns to the

variables v1, . . . ,vn and determine if it is simply the cross-product of the values that H

assigns to each of the variables independently.

For any assignment function K, we can generate a set of assignment functions K′ s.t.

K(v) = K′(v) for every variable v and K′ that also contains no dependencies between

any variables defined in the info state K. To pick out such a state, I will use the notation

in (298).
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(298) DEPENDENCY SCRAMBLING:
K+ := {k : ∀v : ∃k′∈K : k′(v) = k(v)}

The definition of K+ scrambles the variable assignments in the state K: K+ consists of

those assignment functions k s.t. for every variable, there is some k′ ∈ K s.t. k and k′

agree on the value assigned to that variable. This ensures first that for every variable v

K(v) = K+(v) and second that if 〈a,b〉 ∈ K(x)×K(y), then 〈a,b〉 ∈ K+(x,y), i.e. that

there are no dependencies between any variables in K+.

The + operation places an upper bound on which output states should be considered

to have fewer dependencies between the variables present in a particular output. If an

output H ⊃ K+, then there must be some variable v s.t. H(v) ⊃ K(v), i.e. H assigns

more values to some variable than K assigns to that variable, and thus the two should not

be compared by the dependency suppressing maximization operator, since the operator

aims only to prevent dependencies that are not justified by the material in its scope from

entering into the computation.

A dependency suppressing maximization operator can be defined in terms of the

relation ⊃+ given below:

(299) K ⊃+ H := H+ ⊇ K ⊃ H

If K ⊃+ H holds then two requirements must be met: (i) K must be a (improper) subset

of H+, i.e. it must not include any more values for any variables that are already present

in H, and (ii) K must be a proper superset of H, i.e. it must include strictly more rows

than H. Since these additional rows cannot include new values for any variables they

must hold between values already present in H.

The maximization operator defined in terms of ⊃+ is given below:

(300) DEPENDENCY SUPPRESSING MAXIMIZATION:
JM⊃+

(φ)KG,H = T iff

a. JφKG,H = T
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b. ¬∃K⊃+H : JφKG,K

Interestingly, the dependency suppressing maximization operator gives us a way

of re-introducing dependency introducing assignment updates into a system with col-

lective interpretation of lexical items. Recall that collective interpretations proved to

be a problem in this system because the final output states could encode arbitrary re-

lationships between pluralities. If instead we wrap collective interpretations inside a

dependency suppressing maximization operator, collective interpretations will only de-

liver outputs which include no dependencies between the pluralities in question:

(301) Two dogs chased two cats.  M⊃+
([x]∧ dog ∧ 2(x)∧ [y]∧ cat(y)∧ 2(y)∧

chase(x,y))

(302) /0 M⊃+
==⇒



/0
[x]∧dog(x)∧2(x)∧[y]∧cat(y)∧2(y)∧chase(x,y)
=========================⇒

x y

d1
c1
c2

d2
c1
c2

...
x y
d1 c1

d2 c2

x y
d1 c2

d2 c1



⇒

x y

d1
c1
c2

d2
c1
c2

The formula in the scope of the maximality operator is consistent with any relationship

between dogs and cats since the predicate chase(x,y) is interpreted collectively, i.e.

without reference to the relationship encoded in the plural information state. From the

among potential outputs, the dependency suppressing maximality operator selects only

the output in which the x-dogs and y-cats do not depend upon one another.

The maximality operator is defined in terms of the smallest relation that will sup-

press arbitrary dependencies in the output information state. We can ask under what

circumstances a maximality relation defined in terms of a relation R will suppress ar-
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bitrary dependencies. In fact, any relation that meets the criteria below will have the

effect of suppressing dependencies.

(303) A relation R defines a dependency suppressing maximization operator iff K⊃+

H⇒ KRH

The criteria above states that any relation R that is entailed by the ⊃+ relation will

suppress dependencies. The ⊃+ relation is the smallest relation in terms of which a

dependency suppressing maximization operator can be defined.

It turns out that neither of the selective maximality operators defined above suppress

arbitrary dependencies. Both K >x H and K ⊃x H entail that K(x)⊃H(x) which in turn

entails that H+ 6⊇K as required by the⊃+ relation. Neither the Brasoveanu nor the van

den Berg maximality operators suppress dependencies.

4.3.4 Unselective Maximization

In this section I describe the simplest possible maximization operator, one defined in

terms of the subset relation directly. This maximization operator (i) correctly handles

non-determinism in the scope of maximization, (ii) eliminates arbitrary dependencies

generated inside its scope, and (iii) supports distributive normal form. This is the max-

imization operator I will use for the remainder of the dissertation.

Unselective maximization is defined below:

(304) UNSELECTIVE MAXIMIZATION:
JM(φ)KG,H = T iff

a. JφKG,H = T
b. ¬∃K⊃H : JφKG,K = T

Since, this maximization operator is the primary maximization operator for the remain-

der of the dissertation, I simply use M, leaving off the superset relation.
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Non-determinism is correctly handled by this maximization operator. The dynamics

of our target translation are given below:

(305) /0 M
=⇒


/0

εx∧dog(x)∧εy∧cat.sg(y)∧δxδychase(x,y)
======================⇒

x y
f

er
d

x y
f

w
r

...


⇒

x y
f

er
d

x y
f

w
r

δxbark(x)
=====⇒

x y
f

w
r

The dynamics are exactly like those of the maximization operator defined in terms of

the >x relation in this case. There are however minor differences between the two

relations. Consider what happens if we alter the formula in (305) so that we do not

require that the y to denote only a singleton cat, i.e. we replace cat.sg with the predicate

cat In such a case the maximality operator defined in terms of >x delivers three possible

outputs:

(306) /0 M≥x
==⇒



/0
εx∧dog(x)∧εy∧cat(y)∧δxδychase(x,y)
====================⇒

x y
f

er
d

x y

f
e
w

r
e
w

x y
f

w
r

...



⇒

x y
f

er
d

x y

f
e
w

r
e
w

x y
f

w
r

δxbark(x)
=====⇒

x y
f

w
r

x y

f
e
w

r
e
w

Since the predicate cat is true of any plurality of cats, and since both Fido and Rex in

our scenario chased both Evander and Whiskers the output of the scope of the maxi-

mality operator can generate more outputs than the we saw in the formula above. All

three outputs are maximal as determined by the >x relation. The first output is not
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comparable to the two below it because it does not stand in a subset-superset relation

with either. The middle output is not comparable with the bottom output because they

assign the same set of values to the variable x. Notice that both of the bottom two out-

puts survive the update by the formula δxbark(x) because they assign to x the same set

of dogs.

If instead we utilize the unselective maximality operator, we see that we have a

restricted range of possible outputs.

(307) /0 M
=⇒



/0
εx∧dog(x)∧εy∧cat(y)∧δxδychase(x,y)
====================⇒

x y
f

er
d

x y

f
e
w

r
e
w

x y
f

w
r

...



⇒

x y
f

er
d

x y

f
e
w

r
e
w

δxbark(x)
=====⇒

x y

f
e
w

r
e
w

In the case depicted above, we again see that the formula in the scope of the maximiza-

tion operator delivers the same set of potential outputs. However, of the bottom two

outputs only the middle output is selected because it is a strict subset of the bottom out-

put. This is what makes the maximization operator unselective—it tries to find as many

values as can be associated with any variable not just those associated with a specific

variable. Note, however, that the formula in the scope of the maximization operator is

responsible for determining the candidates. Predicates sensitive to the cardinality of the

set like sg(y) or n(y) and updates that restrict possible relations between two variables,

like εy will constrain which sets are even candidates for maximization.

Unslective maximization is also dependency suppressing. This is easy to show.

Notice that K ⊃+ H contains as part of its definition that K ⊃ H. So, if K outranks H
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with respect to the ⊃+ relation, K will also outrank H with respect to the ⊃ relation.

Unselective maximization thus guarantees the prevention of arbitrary dependencies.

The final point I would like to make is the most complicated. The unselective max-

imization operator defined above, unlike the selective maximization operators utilized

by van den Berg and Brasoveanu, supports distributive normal form. A distributivity

operator can be pushed past an unselective maximization operator without any affect

on the available output assignments.

(308) δxM⊃x(φ) 6= M⊃x(δxφ)

(309) δxM>x(φ) 6= M>x(δxφ)

(310) δxM(φ) = M(δxφ)

It is easy to create a counter example showing that the selective maximization operators

do not support distributive normal form. To do so we need (i) an input assignment

in which the variable x has multiple values (so that the distributivity operator is not

vacuous), (ii) a concrete formula to fill in for φ that introduces at least one variable and

relates it to x, and (iii) a model specification.

Let our input assignment be one that assigns to x the dogs Fido and Rex. Let

φ = εy ∧ cat(y)∧ δychase(x,y). And let the model be our previous model, i.e. one in

which Evander and Whiskers are cats and both Fido and Rex chased both Evander and

Whiskers. Let’s first consider van den Berg’s maximality operator:

(311)
x
f
r

δx=⇒



x
f

M>y
==⇒


x
f

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

f
e
w

x y
f e
x y
f w


⇒

x y

f
e
w

x
r

M>y
==⇒


x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

r
e
w

x y
r e
x y
r w


⇒

x y

r
e
w



⇒

x y

f
e
w

r
e
w
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The input state contains two values for the variable x which the distributivity operator

immediately breaks up into sub-states corresponding to each value that x takes. The

maximality operators are then applied pointwise. The scope of each maximality oper-

ator is consistent with three possible output states: one containing just Whiskers, one

containing just Evander, and one containing both cats (n.b. the fact that the cats are the

same for both dogs is the result of the model under consideration). The maximization

operator selects the outputs with the most cats. At each point these happen to be unique

so there is only one way to re-combine the pointwise outputs to generate the final output

state: one in which relates both Fido and Rex to both Evander and Whiskers.

Now consider the update associated with the formula in which the distributivity

operator is pushed past the maximization operator:

(312)
x
f
r

M>y
==⇒



x
f
r

δx=⇒



x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

f
e
w

x y
f e
x y
f w

x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

r
e
w

x y
r e
x y
r w



⇒

x y

f
e
w

r
e
w

x y

f
e
w

r e
x y

f
e

w
r
x y
f

e
r

w
x y
f w

r
e
w

x y
f e
r w
x y
f w
r e
x y
f

e
r
x y
f

w
r



⇒

x y

f
e
w

r
e
w

x y

f
e
w

r e
x y

f
e

w
r
x y
f

e
r

w
x y
f w

r
e
w

x y
f e
r w
x y
f w
r e

Here maximization takes scope over a formula that is evaluated pointwise instead of
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maximizing pointwise over a formula. Inside the scope of the maximality operator the

distributivity operator breaks the state into substates corresponding to each value taken

on by x. Again, the scope of the distributivity operator generates three potential outputs

for each state. This generates nine possible outputs for the entire formula. The maxi-

mization operator eliminates only two of these outputs (the bottom two). The remaining

outputs all count as maximal since each assign the same set of values to y—only the

dependencies differ. We conclude that van den Berg’s maximality operator does not

support distributive normal form: pushing a distributivity operator past a maximality

operator generates new possible outputs for a given input assignment.

If we run the same example using an unselective maximality operator we will see

that we get the same set of outputs regardless of which side of the maximality operator

the distributivity operator occurs on. If the maximality operator occurs in the scope

of a distributivity operator we get the same result we saw for van den Berg’s selective

maximality operator:

(313)
x
f
r

δx=⇒



x
f

M
=⇒


x
f

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

f
e
w

x y
f e
x y
f w


⇒

x y

f
e
w

x
r

M
=⇒


x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

r
e
w

x y
r e
x y
r w


⇒

x y

r
e
w



⇒

x y

f
e
w

r
e
w

The dynamics are exactly the same for this maximization operator as we saw for van

den Berg’s maximization operator and the results are thus the same.

When we permute the distributivity and maximization operators we get the same

result for the final output:
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(314)
x
f
r

M
=⇒



x
f
r

δx=⇒



x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

f
e
w

x y
f e
x y
f w

x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

r
e
w

x y
r e
x y
r w



⇒

x y

f
e
w

r
e
w

x y

f
e
w

r e
x y

f
e

w
r
x y
f

e
r

w
x y
f w

r
e
w

x y
f e
r w
x y
f w
r e
x y
f

e
r
x y
f

w
r



⇒

x y

f
e
w

r
e
w

Here things work exactly as they did with van den Berg’s selective maximality operator

until the maximization operator kicks in. Only the top candidate is chosen because each

other output candidate is a subset of it. Because unselective maximization compares the

values associated with every variable and the dependencies between variables, it selects

from the outputs licensed by the distributive update in its scope only those outputs that

are also pointwise maximal.

4.3.5 Summary

In this section, I reviewed two maximization operators from the literature and provided

arguments against utilizing either. Brasoveanu’s max operator, which is defined by

the ⊃x relation, will not allow us to correctly handle wide scope indefinites that occur

inside the restrictor of universal quantifiers. Van den Berg’s max operator, defined by
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the >x relation, does correctly percolate non-deterministic updates generated inside the

scope of a max operator. However, I showed that van den Berg’s max operator does not

freely permute with distributivity operators. Any logic that utilized this max operator

will not support distributive normal form.

Instead I argued for utilizing an unselective max operator, which is defined by the

⊃ relation. I have showed that this operator has three properties:

i. It correctly percolates non-deterministic updates generated by formulas inside its

scope to its output. This will allow an analysis of exceptional scope indefinites

in terms of the scope that distributivity operators take.

ii. It can be freely permuted with distributivity operators. A logic utilising uns-

elective maximization may (depending on other operators) support distributive

normal form.

iii. Unselective maximization also prevents arbitrary dependencies from arising from

the formula in its scope. Because it selects the largest outputs full stop, it natu-

rally favours outputs that encode fewer dependencies.

This third point is important since the encoding of arbitrary dependencies in output

states was one of the arguments advanced against the inclusion of both dependency

introducing variable assignment updates and cumulatively interpreted lexical relations.

The full logic that we adopt is given below:

(315) JR(v1, . . . ,vn)KG,H = T iff
a. G = H
b. 〈G(v1), . . .G(vn)〉 ∈ I(R)

(316) JεvKG,H = T iff
a. G(v) = /0
b. ∃D⊆D : H = {g[v→d] : d ∈ D & g ∈ G}

(317) Jφ ∧ψKG,H = T iff ∃K : JφKG,K = T & JψKK,H = T
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(318) JMφKG,H = T iff
a. JφKG,H = T
b. ¬∃K⊃H : JφKG,K = T

(319) JδvφKG,H = T iff
a. G(v) = H(v)
b. ∀d∈G(v) : G|v=dJφKH|v=d

In the next section we will see how to extend this logic to include arbitrary generalized

quantifiers.

4.4 Adding Generalized Quantifiers

In this section I describe how the system can be extended to handle not only universal

quantifiers but the full range of quantifiers found in natural language. This is done by

means of introducing a designated value ? that stands in for the row being unfilled. That

is we can distinguish between a variable being outside the domain of our assignment

functions and a row having no value (from the model). We work with partial assignment

functions like those below:

(320) For ? /∈ D, a partial assignment function g is a function from variables v to
elements of D∪{?}.

We can now express sets of partial assignment functions like those below:

(321)

x y

G =
g1 a d
g2 b e
g3 c ?

The interpretation of this should be as follows: the variables x and y are both present,

but in g3 y is not mapped to anything in the model. In other words, all the assign-

ment functions in G have the same domain, but not all of them map every variable to

something in the domain of the model: y ∈ Dom(g3) but g3(y) /∈D.
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This means that when we collect the projection of a variable x in G we need to

exclude cases in which g(x) = ? because no set containing the ?-value is in any lexical

relation which are defined as elements of ℘+(D)n. To recover the plurality associated

with an assignment function, we must collect all the values associated with a variable

x in any row, while discarding rows which map x to ?:

(322) PROJECTION (for single variables):
G(x) := {g(x) : g ∈ G & g(x) 6= ?}

When we generalize projection to multiple variables we take care to exclude any rows

in which any of the variables in question are undefined:

(323) PROJECTION (for multiple variables):
G(v1, ...,vn) := {〈g(v1), . . . ,g(vn)〉 : g ∈ G & g(v1) 6= ? & . . . & g(vn) 6= ?}

One final thing we will need to be careful of: we can no longer assume that if

G(x) = /0 that x /∈ Dom(G). If every element of G maps x to ?, then G(x) = ?, but

x ∈ Dom(G). We are in a sense juggling two ways for an assignment function to be

partial: it can fail to assign a variable to anything, or it could assign that variable to the

dummy object.

Our sub-state notation can be modified to pick out just those rows in which a vari-

able is undefined:

(324) NEW SUB-STATE:

G|x=? := {g : g ∈ G & g(x) = ?}

4.4.1 Lexical Relations & Conjunction

Lexical relations retain their previous definitions. Notice that since we exclude ? values

from the projection of any variable, the presence or absence of such values will be

invisible to lexical relations.
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(325) LEXICAL RELATIONS:
JR(v1, . . . ,v2)KG,H = T iff
a. G = H
b. 〈G(v1), . . . ,G(v2)〉 ∈ I(R)

Conjunction also retains its familiar definition. A conjunction φ ∧ψ is true relative

to an input G and an output H iff there is some K s.t. φ is true relative to input G and

output K and ψ is true relative to input K and output H.

(326) CONJUNCTION :
Jφ ∧ψK iff ∃K : JφKG,K = T & JψKK,H = T

Dynamic conjunction simply takes the output of the first formula and passes it to the

second formula.

4.4.2 Assignment Update

(Dependency-Free) random assignment has to be slightly modified. Instead of updating

with any subset of D we update with an element of D? :=℘+(D)∪{{?}}. That is we

select a non-empty subset of D updating each row in the input with each element of

our selection or we pick the set contain ? and assign ? to every row. This allows us

to register the fact that we have updated a variable assignment with a new variable

without populating any of the rows with elements of the model. Think of this as adding

a column name to a database without populating any the rows with values.

The first conjunct ensures that updates are non-destructive. Random assignment

never over-writes variables that are already in use. The second conjunct says that for

every g ∈ G and d ∈ D, H contains the assignment g[x→d]. Note that |H| = |G| × |D|

and that εx does not introduce any new dependencies between x and any other variable.

(327) (DEPENDENCY-FREE) RANDOM ASSIGNMENT:
JεxKG,H iff

a. x /∈ Dom(G)
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b. ∃D ∈D? : H = {g[x→d] : g ∈ G & d ∈ D}

One key property of εx in this new context is that it does not necessarily add any

additional values. We allow empty updates as well:

(328)
x
a
b

εy
=⇒

x y
a

?
b
x y
a

c
b

...

In addition to ε , van den Berg provides a number of variants of random assignment.

The most important is the subset assignment, εx⊆y. This operation is a copy-by-value

update of the variable x. It takes some subset of the values that y stores on and copies

them over to x. The remainder of the xs are assigned the dummy value ?.

(329) (DEPENDENCY-PRESERVING) SUBSET ASSIGNMENT:
Jεx⊆yKG,H iff

a. x /∈ Dom(G)

b. ∃D∈G(y) : H = {g[x→g(y)] : g ∈ G|y∈D}∪{g[x→?] : g ∈ G|y/∈D}

The first clause again serves to prevent destructive updates. The second clause requires

some unpacking. For some D ⊆ G(y) we generate an output consisting of the union

of two sets: the first set is constructed by taking the every g ∈ G|y∈D and duplicating

g’s y value into the value g assigns to x, i.e. g[x→g(y)]—this covers those rows where y

takes some value in D; the second set is generated by assigning x to ? in the sub-state

G|y/∈D. Subset assignment thus extends a state G by copying some values from y to x

and giving x a place-holder value everywhere else.

The operation of subset assignment is illustrated in below. Notice that an update

εz⊆x to an input G has |℘(G(x))| possible output assignments, one corresponding to

every subset of G(x). For each of these subsets the output is unique.
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(330)
x y
a c
b d

εz⊆x
==⇒

x y z
a c a
b d b

(331)
x y
a c
b d

εz⊆x
==⇒

x y z
a c a
b d ?

(332)
x y
a c
b d

εz⊆x
==⇒

x y z
a c ?
b d b

(333)
x y
a c
b d

εz⊆x
==⇒

x y z
a c ?
b d ?

Notice that subset assignment does not introduce any new dependencies but simply

copies over values. This allows the new variable to depend on other variables but only

in the same way as the source variable. Notice also that the last update above is trivial

since it maps z to the empty subset of x.

4.4.3 Distributivity

The definition of distributivity has to be modified to deal with rows in which a variable

is mapped to ?:

(334) DISTRIBUTIVITY:
Jδx(φ)KG,H = T iff

a. G(x) = H(x)
b. H|x=? = {g[v→?] : v ∈ Dom(H)−Dom(G) & g ∈ G|x=?}
c. ∀d∈G(x) : JφKG|x=d ,H|x=d = T
d. ∀d∈H(x) : JφKG|x=d ,H|x=d = T

The first conjunct ensures that no new values for x are added to H that are not already

present in the input. The remaining conjuncts break the input into sub-states defined

so that each takes on a single value for x: the second conjunct says that in any row in

which G assigns x the value ?, H assigns not only assigns x to ? but also assigns ? to all
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the new values introduced in the course of evaluating φ , and the third conjunct breaks

the input assignment one sub-state for each value x can take and passes them on to φ .

In the scope of a distributivity operator random assignment is able to introduce new

dependencies:

(335)

x
a
b
?

δx=⇒



x
a

εy
=⇒ x y

a c
x
b

εy
=⇒ x y

b d
x
?

=⇒ x y
? ?

 =⇒

x y
a c
b d
? ?

The distributivity operator breaks up the set of assignments into sub-states defined in

terms of the value taken on by x. The assignment update εy then operates on each of

these sub-states separately. Notice that the update does not apply to the sub-state in

which x is undefined. This substate is passed on directly without modification.

One case is worth remarking on. If G(x) = /0, then Jδx(φ)KG,G = T. Notice that

the first two conjuncts are satisfied trivially, since G = G, hence G(x) = G(x) and

G|x=? = G|x=?. The third conjunct is satisfied vacuously since there is no d ∈ G(x)

since G(x) = /0. The conclusion to draw is that distributing over a variable which has

only ? values results in a trivially true formula.

4.4.4 Unselective Maximization

Unselective maximization is more difficult to define now that we work with sets of

partial assignment functions with dummy values. The issue is that we would like max-

imization to militate against output assignments that assign dummy values to variables

whenever possible. If we define maximization in terms of the subset relation, however,

we will end up in trouble.

Let’s consider a few cases. First, consider the two assignment functions in (336). It

seams clear that a suitable relation should make (336a) < (336b), since (336b) assigns
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more values to both x and y than (336a).

(336) a.
x y
a b

b.
x y
a b
c d

One simple way to get the right results for the cases above would be to follow our

previous definition to the letter and identify < with ⊂. We would say that one set of

assignments A was greater than B iff A⊃ B.

Next, consider the two sets of assignment functions in (337). Here it seems that

(337a) < (337b), since (337b) assigns as many values to x and more values to y than

(337a). At the same time it is not the case that (337a) ⊂ (337b), so we should not

identify < with the subset relation.

(337) a.
x y
a c
b ?

b.
x y
a c
b d

In the case of (337) we would like to say that (337b) is strictly greater than (337a)

because the second row in (337b) assigns a value (from the model) to y while the

second row in (337a) does not (recall that our aim here is unselective maximization—

so if a formula in the scope of a maximization operator is consistent with both these

updates we need to select only the output that maximizes the values assigned to the x

and the values assigned to the y while minimizing the dependencies between them). In

this case we need to select (337b).

If we want a relation that agrees with our intuitions regarding the pairs in (336) and

(337), we can adopt the definitions in (338):

(338) a. g� h := Dom(g) = Dom(h) & ∀v∈Dom(g) : (g(v) = ? or g(v) = h(v))
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b. G- H := ∀g∈G : ∃h∈H : g� h

The definition in (338a) compares single assignment functions. It says that if two as-

signment functions g and h are such that for every variable either (i) g fails to assign it

some value from the model or (ii) h agrees with g with respect to v, then g � h. The

definition in (338b) generalizes to sets of assignment functions. It says that G�H just

in case for every assignment function in G, there is some assignment function in H that

is larger in the sense of (338a).10

It is easy to verify that the � relation determines a partial order over single assign-

ment functions. However, over sets of assignment functions the- relation defines only

a preorder (i.e. it is not anti-symmetric). Consider the two sets of assignments depicted

below:

(339) a.
x y
a c
b d

b.

x y
a c

b
d
?

We can first show that (339a)- (339b). Since the two first rows are identical, each row

in (339a) � than the corresponding row in (339b). Hence, (339a) - (339b). However,

we can also show that (339b) - (339a). We embrace identical reasoning for the first

two rows and note that the third row of (339b)� the second row of (339a) since (i) they

agree about the value of x and (ii) the second row of (339a) is defined for more values

than the third row of (339b). Hence, (339b) - (339a).
10Notice that we can define the subset relation in very similar form: G ⊆ H := ∀g∈G∃h∈H : g = h.

The definition of - establishes the same type of relation between G and H as the subset relation. Every
thing in g must have a corresponding member in h but not necessarily the other way around—this allows
for H to have more rows than G and gives maximization its tendency to expand the set of assignments
vertically.
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Worse yet are the following two sets of assignment functions:

(340) a.

x y

a
?
c

b d

b.

x y
a c

b
d
?

Here were compare the last two rows of (340a) to the first two rows of (340b), the first

row of (340a) to the first row of (340b), and the last row of (340b) to the last row (340a).

At this point I would like to make one observational comment: in both the cases I

have constructed above, at least one of the sets of assignment functions contains two

assignment functions g, g′ s.t. g≺ g′. Such rows seem redundant: why would we care

to store the same value for a variable twice—one with some other variable defined and

again with the same variable undefined.

In fact we can show that for any G,H s.t. G - H and H - G and G 6= H it is the

case that either in G or in H there are two assignment functions s.t. a ≺ b. To prove

this let g name some arbitrary element of G. From G- H we know that there is some

h ∈ H s.t. g � h, and from H - G we know there is some g′ � h in G. We conclude

that g′ � h � g. If g′ ≺ g, we have the result we want. If on the other hand g = g′ we

have g = h and therefore G ⊆ H. We reason in the same manner from H concluding

the either that H has two assignment functions that are non-identical and stand in the≺

relation to one another or H ⊆G. If we conclude the later we contradict the assumption

that G 6= H.

The observation above suggests that the problems with (339-340) are surmountable.

There are in fact two ways of surmounting the problem:

i. One could show that - determines a partial over over the set of output contexts
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generated by sentences of the logic.

ii. One could define a suitable < relation in terms of � and some other tie-breaking

relation.

Each strategy has its advantages. The first strategy will tell us something about the

types of output contexts that can be generated by DPlL and so lead us to consider

constraints on potential additions to the logic, so it is the strategy I will pursue.

We note, first, that the designated start state is such that ¬∃g,g′∈0 : g ≺ g′. This is

trivial since there is only one element in 0. Next we show that if ¬∃g,g′∈G : g ≺ g′,

then no formula φ in the language is such that there exists an H s.t. JφKG,H = T and

∃h,h′∈H : h≺ h′.

First note that if φ is a test then JφKI,O requires that I = O, so the result follows.

Second, note that neither of our assignment updates will generate such results; if εv

assigns ? as the value of v in any, row it assigns ? as the value of v in every row. The

update εv⊆v′ partitions the set into two parts. To one it assigns the value v′ to v in a row

and in the other it assigns v the value ?.

Conjunction is easy: if φ and ψ don’t generate outputs which contain rows g,g′ ∈G

are s.t. g≺ g′, then neither will φ ∧ψ .

Distributivity is somewhat harder, if ¬∃g,g′∈G : g ≺ g′, then none of the subsets of

G that are passed to the scope of δv will host such assignments either. Notice that

cells across the partition of G into sub-states will never stand in the ≺ relation either

(because they assign different non-? values to v) so when they are joined at the end no

such pairs will generate. We have to worry about states in which a variable v is given

the value ?. Notice that from the assumption that the input state had no pairs g,g′ s.t.

g ≺ g′ that none of the assignments in the sub-state where v = ? will stand in the ≺

relation with anything else in the input state. This cannot be because of the value they
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assign to x so it must be that for each of these rows there is some other value of some

other variable that prevents them from standing in the ≺ relation with any other row.

This will persist even after the rows are updated with the new ? values.

Finally, maximization, however defined, delivers only as subset of the output states

that are consistent with its scope, viz. the maximal ones. So if the formula φ does not

generate sub-states with problematic pairs of rows, then neither will MR(φ) for any

relation R.

The upshot is that we do not need to worry about the fact that - defines a pre-order

over sets of assignment functions because the pairs of information states G,G′ that are

equal with respect to the relation are either identical or at least one of them can never

be generated by the logic.

Maximization is then defined in the usual way:

(341) UNSELECTIVE MAXIMIZATION:
JMφKG,H = T iff

a. JφKG,H = T
b. ¬∃K�H : JφKG,K = T

Note that maximization still permutes with distributivity operators. To simplify

things for ourselves let’s consider a situation in which Fido chased Whiskers and Rex

chased Evander and Whiskers.11Our story looks exactly like before except that now we

have to consider updates in which no cat is present.

11Notice that I have scoped the δy operator over the predicate cat. This is not part of our official
translations of indefinites. I do this because scoping out the δy like this allows us to get ? updates for y
that come out true—i.e. we actually bleed the existential import. I do this for expository purposes, we
want to see that M and δ still permute when there are ?’s in the mix.
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(342)
x
f
r

δx=⇒



x
f

M
=⇒

 x
f

εy∧δy(cat(y)∧chase(x,y))
==============⇒

x y
f w
x y
f ?

⇒ x y
f w

x
r

M
=⇒


x
r

εy∧δy(cat(y)∧chase(x,y))
==============⇒

x y

r
e
w

x y
r e
x y
r w
x y
r ?


⇒

x y

r
e
w



⇒

x y
f w

r
e
w

The dynamics are exactly the same for this maximization operator as we saw for van

den Berg’s maximization operator and the results are thus the same.

When we permute the distributivity and maximization operators we get the same

result for the final output:

(343)
x
f
r

M
=⇒



x
f
r

δx=⇒



x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y
f w
x y
f ?

x
r

εy∧cat(y)∧δychase(x,y)
=============⇒

x y

r
e
w

x y
r e
x y
r w
x y
r ?



⇒

x y
f w

r
e
w

x y
f w
r e
x y
f

w
r
x y
f w
r ?
x y
f ?

r
e
w

x y
f ?
r e
x y
f ?
r w
x y
f

?
r



⇒

x y
f w

r
e
w

Notice again the formula in the scope of the maximization operator generates a

large number of potential outputs. However, the max operator picks up only the output

that is also point-wise maximal.
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4.4.5 Definitions For Generalized Quantifiers

Since generalized quantifier can be seen as relations between sets (Barwise and Cooper,

1981) the truth conditional aspects of their meanings can be encapsulated by lexical

relations in DPlL.

(344) I(every) = {〈A,B〉 : A = A∩B}
(345) I(most) =

{
〈A,B〉 : A∩B

A > 1
2

}
(346) I(no) = {〈A,B〉 : A∩B = /0}

Having parcelled up the truth conditional components of their meanings, the dy-

namic aspects of quantifiers can be dealt with:

(347) Qφsψed M(εx∧δxφ)∧M(εx′⊆x∧δx′ψ)∧Q(x,x′)

The formula above first collects the maximal set of x’s that satisfy φ , then it collects

the maximal subset of x’s that satisfy ψ by copying over only those values of x to x′

that satisfy ψ . Finally the lexical relation determined by the quantifier ensures that the

sentences a whole has the right truth conditions.

Indefinites can be translated in terms of an ε operator:

(348) a poem εx∧poem(x)

We are now in a position to see the system in action. Consider the sentence and

its translation into DPlL below. Here I have provided an interpretation in which the

indefinite takes scope below the universal.

(349) Every student wrote a poem.
 M(εx∧δxstudent(x))∧

M(εx′⊆x∧δx(εy∧poem(y)∧write(x,y)))∧ every(x,x′)

Let us assume that every student si read only one poem pi. In that case we expect the

sentence above to be true and below we can see the computation of it’s truth conditions:
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(350) 0
M(εx∧δxstudent(x))
===========⇒

x
s1
...
sn

M(εx′⊆x∧δx(εy∧poem(y)∧write(x,y)))
======================⇒

x x′ y
s1 s1 p1
...

...
...

sn sn pn

every(x,x′)
======⇒

x x′ y
s1 s1 p1
...

...
...

sn sn pn

The first conjunct maximizes over students and assigns to x the set of students.

The next conjunct finds the maximal subset of x that wrote a poem. Here were are

able to a choose a poem or poems for each student because εy is inside the scope of

the distributivity operator. In the final output assignment given above we see that y

is associated with multiple values. Reference back to y should now require a plural

pronoun.

Proportional Quantifiers like most can also be handled by the system we have de-

veloped.

(351) Most students wrote a poem.
 M(εx∧δxstudent(x))∧

M(εx′⊆x∧δx(εy∧poem(y)∧write(x,y)))∧most(x,x′)

Again The first conjunct maximizes over students and assigns to x the set of students.

The next conjunct finds the maximal subset of x that wrote a poem. Below I have

assumed that only a subset of students wrote poems. Notice that poems are filled in

only for students who wrote poems.

(352) /0
Mεx (δxstudent(x))
==========⇒

x
s1
...
sn

M(εx′⊆x∧δx(εy∧poem(y)∧write(x,y)))
======================⇒

x x′ y
s1 s1 p1
...

...
...

sk sk pk
sk+1

? ?...
sn

most(x,x′)
=====⇒

x x′ y
s1 s1 p1
...

...
...

sk sk pk
sk+1

? ?...
sn

4.4.6 Summary

This section introduced plural information states with designated dummy values. This

allowed us to encode the lexical information associated with generalized quantifiers

164



while keeping the dynamics identical. I showed that unselective maximization can be

retained in this framework and that it can still permute with distributivity.

4.5 Conclusion

This chapter sets the stage for embedding the intuition behind Brasoveanu and Farkas

(2011) into a plural logic that allows discourse reference to both discourse pluralities

and relations between variables. I showed how in van den Berg’s DPlL dependence and

independence are managed by means of distributivity operators. In addition I showed

that the exact definition of maximization plays a large role in whether the intuition

underlying Brasoveanu & Farkas (2011) can be adequately implemented. It would be

fair to state that the broad conclusion of this chapter is that a dynamic semantics is

not sufficient to capture wide scope indefinites in terms of independence. The right

definition of maximization is also needed.

I also showed that unselective maximization has several desirable formal properties.

First it provides a logic that can be easily syntactically manipulated because it allows

distributivity operators to be pushed past maximization without affecting the underly-

ing truth conditions of the sentence. Unselective maximization was also seen to be

dependency suppressing. This might pave the way for the reintroduction dependency

introducing random assignments.
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Appendix C

Technical Appendix

C.1 Notational Conventions

(353) For ? /∈ D, a partial assignment function g is a function from variables v to
elements of D∪{{?}}.

(354) G(x) := {g(x) : g ∈ G & g(x) 6= ?}
(355) G(v1, ...,vn) := {〈g(v1), . . . ,g(vn)〉 : g ∈ G & g(v1) 6= ? & . . . & g(vn) 6= ?}
(356) D? :=℘+(D)∪{{?}}

C.2 Relations Defined Over Sets of Assignments

(357) K ⊃x H := K(x)⊃ H(x)

(358) K >x H := K(x)⊃ H(x) & K ⊇ H

(359) K ⊃+ H := H+ ⊇ K ⊃ H

(360) a. g� h := Dom(g) = Dom(h) & ∀v∈Dom(g) : (g(v) = ? or g(v) = h(v))
b. G- H := ∀g∈G : ∃h∈H : g� h
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C.3 Dynamic Plural Logic With Unselective

Maximization

(361) LEXICAL RELATIONS:
JR(v1, . . . ,v2)KG,H = T iff
a. G = H
b. 〈G(v1), . . . ,G(v2)〉 ∈ I(R)

(362) CONJUNCTION:
Jφ ∧ψK iff ∃K : JφKG,K = T & JψKK,H = T

(363) (DEPENDENCY-FREE) RANDOM ASSIGNMENT:
JεxKG,H iff

a. x /∈ Dom(G)

b. ∃D ∈D? : H = {g[x→d] : g ∈ G & d ∈ D}
(364) (DEPENDENCY-PRESERVING) SUBSET ASSIGNMENT:

Jεx⊆yKG,H iff

a. x /∈ Dom(G)

b. ∃D∈G(y) : H = {g[x→g(y)] : g ∈ G|y∈D}∪{g[x→?] : g ∈ G|y/∈D

(365) DISTRIBUTIVITY:
Jδx(φ)KG,H = T iff

a. G(x) = H(x)
b. H|x=? = {g[v→?] : v ∈ Dom(H)−Dom(G) & g ∈ G|x=?}
c. ∀d∈G(x) : JφKG|x=d ,H|x=d = T
d. ∀d∈H(x) : JφKG|x=d ,H|x=d = T

(366) UNSELECTIVE MAXIMIZATION:
JMφKG,H = T iff

a. JφKG,H = T
b. ¬∃K%H : JφKG,K = T
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Chapter 5

Wide scope indefinites and

Decomposed Distributivity

5.1 Introduction

This chapter has three goals. First, it expands on the data surrounding the binder roof

constraint. I will come to several novel empirical generalizations:

i. The binder roof constraint applies not only to bound pronouns but also to donkey

pronouns, i.e. an indefinite with a donkey pronoun in its restrictor cannot take

wide scope with respect to the universal that hosts the donkey indefinite.

ii. The binder roof constraint applies only to singular pronouns, i.e. an indefinite can

take wide scope with respect to a universal that a plural pronoun in its restrictor

is anaphoric too. This holds regardless of whether the pronoun is anaphoric to a

quantifier or a donkey indefinite.

Second, I will sketch an account of wide scope indefinites in which the scope of the

indefinite is reduced to the scope of various distributivity operators provided by syntac-
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tically higher quantifiers. The purpose of this exercise is to show that in a system like

the one developed at the end of the previous chapter in which new dependencies and

cardinality checks are similarly effected by distributivity operators predicts different

effects singular and plural anaphora on the possibility of wide scope interpretations of

indefinites.

Third, this chapter provides a final analysis of wide scope indefinites in terms of

decomposed distributivity operators. A distributivity operator, δx, consists of two com-

ponents:

i. A variable v which is be distributed over.

ii. Universal quantification over sub-states defined in terms of v.

I will present a logic which will split these two components apart. Distributivity will

consist of two operations1:

i. ↓v which enters v into a cache of variables V .

ii. ∆ which empties the cache of variables and contributes universal quantification

over the sub-states definable in terms of the variables in V .

In this logic a quantifier does not itself contribute distributivity but rather indicates

which variables should be distributed over. Operators like ∆ can then make use of these

variables to generate both (i) distributive readings of lexical items and (ii) assignment

updates which can introduce new dependencies. With ↓ and ∆ defined, it becomes
1This proposal joins a long line of proposals that decompose quantification in certain ways. The

dynamic logics we have already encountered offer one example; quantification is decomposed into as-
signment updates and operators that generate quantificational force. Hybrid logics offer another example
in these logics binding and quantificational force are severed (Blackburn, 2000). The proposal also bears
some similarity to the system put forward by Steedman (2007) in which inverse scope is handled in part
by adding a parameter that stores the variables being quantified over to the interpretation of sentences.
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possible to define a third operation ↑v that removes v from the cache of stored variables

without distributing over it. This prevents formulas in the scope of ↑v from being

interpreted distributively with respect to the values that v stores. In this way the logic

provides a way for the scope of distributivity operators to be controlled by lexical items

themselves.

Since the resulting logic is somewhat cumbersome, I make use of a wide range of

truth preserving inference rules that allow formulas containing these new operators to

be simplified. For instance we will see equivalences like the one below:

(367) Every student who takes a class . . . 

a. every B a:
M(εx∧ ↓x (

∆student(x)∧ ∆εy∧ ∆class(y)∧ ∆take(x,y)))
⇔M(εx∧ ↓x

∆(student(x)∧ εy∧ class(y)∧ take(x,y)))
⇔M(εx∧δx(student(x)∧ εy∧ class(y)∧ take(x,y)))

b. a B every:
M(εx∧ ↓x (

∆student(x)∧ ↑x (
∆εy∧ ∆class(y))∧ ∆take(x,y)))

⇔M(εx∧ ↓x
∆student(x)∧ ↓x↑x

∆(εy∧ class(y))∧ ↓x
∆take(x,y)))

⇔M(εx∧ ↓x
∆student(x)∧ εy∧ class(y)∧ ↓x

∆take(x,y)))
⇔M(εx∧δxstudent(x)∧ εy∧ class(y)∧δxtake(x,y)))

↑’s provide a way for a formula to escape the universal force of a distributivity

operator. This is because the universal force is not contributed by the ↓-operator itself,

but is contributed many times very locally by the ∆-operators. We can get away with this

move only because the underlying logic allows us to (i) distribute δx over conjunction

and (ii) permute M and δx. The nice thing about the resulting logic is that the new

symbols (and thus the new interpretive resources) can always be eliminated.

The remainder of the chapter is structured as follows. In §5.1 I provide a broad

overview of the chapter that informally walks through a few data points and their asso-

ciated formal representations. In §5.2 I re-examine the binder roof constraint. Here I

argue that the constraint applies not only to binding but also to various anaphoric pro-

cesses, e.g. donkey anaphora. I also show in this section that the binder roof constraint
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is limited to singular binding/anaphora and that plural discourse reference and donkey

anaphora do not place any constraints on the upward scope of indefinites. In §5.3 I

show how the formal tools developed in chapter 4 can be applied to handle both wide

scope indefinites and the new data surrounding the binder roof constraint. In §5.4 I put

in place the final system that splits the scope of distributivity operators between ↓ and

∆ operators. §5.5 concludes.

5.2 Overview

This section provides a broad overview of the analysis presented in the following three

sections. This chapter is concerned with contrasts like the one provided in (368). Both

sentences in (368) contain indefinites that have pronouns in their scope that are co-

indexed with a variable introduced by a previous quantifier.

(368) a. Everyx student presented on ay topic that interested herx.
b. Everyx student presented on ay topic that interested themx (all).

The only difference between the sentences in (368) is the number of the bound/anaphoric

pronoun. In (368a) the pronoun is singular while in (368) the pronoun is plural. More-

over this distinction in number tracks a distinction in the scope which the indefinite

can take. In (368a) in which the pronoun is singular, the indefinite cannot take wide

scope with respect to the universal. However, in (368b) in which the pronoun is plural

a wide scope interpretation of the indefinite is possible. §5.3 will provide additional

data arguing in favour of this empirical generalization.

The logic developed in chapter 4 allows wide scope of the indefinite to be reduced

to the scope of a distributivity operator. A sentence like (369) can be translated either

by means of the formula in (370a) which corresponds to a narrow scope interpretation

or by means of (370b) which corresponds to a narrow scope reading.
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(369) Every student noticed that John recommended a (certain) paper about seman-
tics.

(370) a. M(εx∧δxstudent(x))∧
M(εx′⊆x∧δx′ (εy∧ sem.paper(y)∧note.recommend(x′, j,y)︸ ︷︷ ︸

scope of δx′

))∧every(x,x′)

b. M(εx∧δxstudent(x))∧
M(εx′⊆x∧ εy∧ sem.paper(y)∧δx′ note.recommend(x′, j,y)︸ ︷︷ ︸

scope of δx′

)∧ every(x,x′)

The formula in (370) is interpreted as follows. The first conjunct finds the maximal

set of students and stores it as the value of x. The second conjunct finds the maximal

subset of x (which will be stored in x′) and maximal y s.t. y is a semantics paper that x′

noticed that John recommended. Since the assignment update associated with y occurs

inside the scope of the distributivity operator the papers are allowed to vary with the

x′-students. The final conjunct ensures that every value in x is also in x′. The formula

in (370) is interpreted as follows. The first conjunct again finds the maximal set of

students and stores it as the value of x. The second conjunct is consistent with any

maximal output in which x′ stores a subset of x and y stores a semantics paper that each

x noticed that John recommended. Since the assignment update associated with y does

not occur in the scope of the distributivity operator δx′ the variable assigned to y will

not vary with respect to the value of x′ (which tracks the value of x). Since the scope

of a distributivity operator also determines whether a variable will be picked up by a

singular or plural pronoun this explanation will automatically capture the correlation

between the availability of wide scope readings and the number morphology of an

anaphoric pronoun in the scope of an indefinite. This argument is developed in more

detail in §5.3.

The account outlined above replaces one syntax-semantics interface issue with an-

other. Left unexplained is how indefinites manage to control the scope of distributivity

operators introduced by other elements. To account for this I argue for a decomposition
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of distributivity into two components. First a component introduced by the quantifier

↓x (the mnemonic is: we look down into the atomic elements of x) that enters x into

a cache of variables that are being quantified over. This cache can then be made use

of by subsequent ∆ operators to actually implement distributivity using the variables in

the cache. This allows an operator ↑x to intervene between (i) the point at which x is

entered into the cache of variables to be distributed over and (ii) the implementation of

distributivity. The ↑x operator has the effect of removing the variable x from the cache

of variables and calls off distributivity for x.

The interaction between these operators is schematized in (371). ↓-operators gen-

erate contexts in which formulas are interpreted distributively while ↑-operators can

create sub-contexts that are immune to distributive interpretation.

(371) ↓x (. . . ↑x (

not in scope of δx︷ ︸︸ ︷
. . . ∆

φ . . . ) . . .)︸ ︷︷ ︸
scope of δx

A compositional treatment of indefinites would then equip them with the ability to

chose to have their restrictors interpreted in a non-distributive context.

In order to implement this analysis formulas will be interpreted relative not only to

input and output states but also a set of variables V that indicate which variables are to

be distributed over. This interpretive parameter is passed statically from a conjunction

to each conjunct identically:

(372) Jφ ∧ψKG,H,V = T iff ∃K : JφKG,K,V = T and JψKK,H,V = T

Notice that G and H are treated as an input-output pair. We find an output for the first

conjunct and feed it in as the input for the second conjunct. The cache of variables V

is treated statically. It is passed unchanged to each individual conjunct much like the

assignment functions in FOL. §5.4 spells out this analysis in detail.
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5.3 Revisiting the Binder Roof Constraint

Many authors have noticed that the presence of a bound pronoun in the scope of an

indefinite places a constraint on its otherwise unbounded upward scope:

(373) Everyx professor will rejoice if az student of hisx cheats on the exam. (Ruys,
1992)

(374) Everyx professor rewarded everyy student who read az book hex had recom-
mended. (Abusch, 1994)

(375) Every studentx read ay book I had recommended to himx. (Schwarz, 2001)

Notice that in each of these cases the pronoun inside the restrictor of the indefinite is

(i) bound by a syntactically c-commanding element that (ii) matches the number of the

element that binds it.

We can test if both these conditions are necessary by examining first cases in which

the pronoun is not bound by a c-commanding element but instead is anaphoric to an

indefinite in the scope of a c-commanding universal, i.e. donkey sentences. Examples

like those below show that donkey anaphora also triggers binder-roof effects:

(376) Everyx department that hired ay faculty member asked az (certain) professor
that knew hery for a letter of recommendation.

(377) Everyonex who owns ay credit card was turned down by az (certain) company
that refused to accept ity.

The sentence in (376) does not have an interpretation in which every department asked

the same professor for a letter for every candidate. Even with the presence of certain

only a functional reading—not a wide scope reading—seems to arise. Likewise, the

sentence in (377) does not have a reading in which the same company turned down

every credit card owner. The binder roof constraint thus seems to apply to cases of

donkey anaphora. Notice that in these cases even the presence of the adjective certain

is not able to facilitate a wide scope interpretation.
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Examples like those below show that the binder roof constraint can be called off if

the pronoun in the restrictor of the indefinite is plural:

(378) Everyx professor will rejoice if ay student of theirsx cheats on the exam.

(379) Everyx professor rewarded everyy student who read az book theyx (all) had
recommended.

As soon as the pronoun in the restrictor of the indefinite is plural, that wide scope

readings become available. There are good reasons not to accept data like that above

as a reason to reject the binder roof constraint for plural pronouns. First, we might

worry about the actual existence of wide scope readings for sentences like (378-379).

It is unclear whether these are cases of genuine exceptional scope or cases of accidental

non-variation that can be confused with wide scope interpretation.

Second, it is not clear that the pronouns above are bound as opposed to anaphoric.

In fact good evidence that they are anaphoric comes from the ability of plural epithets

to replace the plural pronouns in these sentences.

(380) Everyx corrupt inspector rewarded every business that used a (certain) contrac-
tor that [the bastards]x had recommended.

Singular epithets in the same sentence seem distinctly odd.

(381) ?? Everyx corrupt inspector rewarded every business that used a (certain) con-
tractor that [the bastard]x had recommended.

Note that with a singular epithet the sentence does not seem to have an interpretation

in which the indefinite takes widest scope.

A third issue with data like (378-379) arises when we consider that plausible con-

texts for uttering these sentences will be ones in which there is already salient a set of

professors. In this case it is not clear that the plural pronoun depends on the quantifier

in any way for its interpretation.
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Starting with the first objection, we need to turn to quantifiers like no in which

accidental non-variation cannot provide an explanation for apparent wide scope effects.

(382) Nox professor will rejoice if ay certain student of theirsx cheats on the exam.

(383) Nox professor rewarded everyy student who read az (certain) book theyz (all)
had recommended.

While the judgement for (382) is unclear2it does seem to me that (383) has a reading in

which there is some book that every professor recommended and no professor rewarded

every student who read that book. This reading is especially facilitated by the presence

of all after the pronoun which I believe suppresses a singular-they interpretation of the

pronoun and explains the difficulty with determining the judgements for (382).

The second and third objections can be met by considering donkey sentences like

those in (376-377) in contrast to the sentence in (384). In the donkey sentences given

earlier the donkey pronoun was singular and the binder roof constraint was seen to hold.

This suggests that the binder roof constraint should be described in broad terms so that

it includes not only binding but also other anaphoric interpretations. The example in

(384) shows that plural pronouns also call off the binder roof constraint as it applies to

donkey anaphora.

(384) Everyx manager that had ay new employee bought [him or her]y az t-shirt in av

colour that theyy (all) found acceptable.

The sentence in (384) seems to have a reading in which there is one colour that every

new employee found acceptable s.t. every manager who had a new employee bought

that employee a t-shirt in that colour. This reading suggests that a colour can take
2I believe the judgement is unclear due to the fact that their can be interpreted as singular and

gender neutral. The wide scope interpretation of (383) is facilitated since the all can suppress singular
interpretation of they. Some speakers in fact report a near total inability to interpret they as plural in
sentences like these without either (i) including a modifier like all or (ii) ensuring that the antecedent is
non-human.
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widest scope despite the presence of the plural pronoun anaphoric to the donkey indefi-

nite. Moreover it is not clear that the set of new employees that were hired by managers

would be previously available in a context that makes uttering (384) plausible. Thus

the set referred to by they only becomes available after the quantifier is processed.

There do however appear to be counter-examples to the claim that this wide scope

reading requires a plural pronoun. Consider the example below which is a minimal pair

with the example in (384).3

(385) Everyx manager that had ay new employee bought himy az t-shirt in av colour
that hey and all the others found acceptable.

Despite the singular donkey pronoun in the restrictor of a colour the example in (385)

seems to have a reading in which there is a single colour shirt that is bought for every

employee. This example thus seems to show that even singular donkey pronouns do

not prevent indefinites from taking wide scope.

Before deciding that these examples truly show that the binder roof constraint does

not apply to donkey pronouns even when singular, we should consider the possibility

that the wide scope interpretation could be the result of accidental non-variation. For

instance it makes sense to think that all the t-shirts a bunch of managers would buy

would all be the same colour. Once again to test if these are genuinely wide scope

interpretations, we need to use a quantifier like no.

(386) a. Nox manager that had ay new employee bought [him or her]y az t-shirt in av

colour that theyy (all) found acceptable.
b. Nox manager that had ay new employee bought himy az t-shirt in av colour

that hey and all the others found acceptable.4

3I thank Pranav Anand for bringing examples like these to my attention.
4Adrian Brasoveanu points out that a natural reaction this sentence is to pronounce the relative clause

that he and all the others found acceptable with comma intonation suggesting it’s natural interpretation
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Consider a situation in which all the new employees find both red and yellow acceptable

colours for a t-shirt and all the managers decided to buy their employees red t-shirts. It

seems to me that there is a reading on which (386a) is true in such a situation: there is a

colour, viz. yellow, s.t. no manager that had a new employee bought him or her a shirt

that was yellow (i.e. in a colour that they all found acceptable). On the other hand, it

is much less clear that (386b) has a reading in which it is true in this scenario. If this

judgement stands, then these example provide evidence that the binder roof constraint

does in fact apply to donkey pronouns while differentiating between singular and plural

anaphora.

The data presented in this section suggest first that the binder roof constraint should

be expanded to include donkey anaphora and second that the binder roof constraint

applies to singular but not plural anaphora. The central data that I will try to explain in

the next section is the correlation between the number of the pronoun and the scope of

the indefinite.

5.4 Distributivity and the Scope of Indefinites

In this section I will reprise the analysis of exceptional scope indefinites sketched in

the introduction of the preceding chapter. I will show how wide and narrow scope for

indefinites in both the restrictor and the nuclear scope of universal quantifiers can be

reduced to the relative scope of the distributivity operator associated with the universal

quantifier. My goal is to demonstrate two things:

i. The logic developed in the previous chapter has the expressive capacity to handle

is as a non-restrictive relative clause. In this case the contribution of the relative clause would be not-
at-issue (Potts, 2005). It is unclear how non-restrictive relative clauses could be worked into the current
account but see AnderBois et al. (2015) for an account of non-restrictive relative clauses in a very similar
framework to the one proposed here.

178



a variety of wide scope and dependent indefinites. One can write formulas that

have the same truth conditions as sentences containing such indefinites.

ii. The difference between a formula translating a sentence containing a wide scope

indefinite vs one containing a narrow scope indefinite comes down to the extent

to which material contributed by the indefinite is inside or outside the scope of a

distributivity operator associated with some other quantifier.

It is this second point that will ultimately renders the analyses sketched in this sec-

tion non-compositional. Since distributivity operators are generally associated with the

translations of universal quantifiers (see (387)), it is impossible to take scope beyond

the distributivity operator without taking syntactic scope beyond the quantifier itself.

Moreover even if maximality and distributivity were split up in the syntax, one would

not expect an indefinite to be able to take scope over two or more universals—only

intermediate readings would be predicted.

(387) every P Qed M(εx∧δxP(x))∧M(εx′⊆x∧δx′Q(x))∧ every(x,x′)

We will translate indefinites in terms of ε-updates and number morphology:

(388) A P Qed εx∧ sg(x)∧P(x)∧Q(x)

These simple rules of thumb will result in translations that capture a variety of narrow

scope readings, but we will need to depart from them in order to capture exceptional

scope interpretations.

(389) Every student read a paper.

The sentence in (389) is ambiguous. On its narrow scope interpretation, it expressed

that every student read some paper or other, leaving open the possibility that different

students read different papers. This reading is easily captured using our heuristic inter-
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pretive procedure outlined above. We would assign the sentence in (389) the translation

given below in (390).

(390) M(εx∧δxstudent(x))∧

M(εx′⊆x∧δx′ (

NS of a paper︷ ︸︸ ︷
εy∧ sg(y)∧paper(y)∧read(x′,y))︸ ︷︷ ︸

scope of δx′

)∧ every(x,x′)

Notice that the formula translating a paper in (390) occurs in the scope of the dis-

tributivity operator associated with the universal quantifier. The calculation of the truth

conditions, depicted below in (391) shows how the narrow scope reading of (389) is

captured.

(391) 0
M(εx∧δxstudent(x))
===========⇒

x
s1
s2
...
sn

M
=⇒



x
s1
s2
...
sn

εx′⊆x∧δx′ (εy∧sg(y)∧paper(y)∧read(x′,y))
=======================⇒

x x′ y
s1 s1 p1
s2 s2 p2
...

...
...

sn sn pn
x x′ y
s1 s1 p1
s2 ? ?

...
...

...
sn sn pn

...



⇒

x x′ y
s1 s1 p1
s2 s2 p2
...

...
...

sn sn pn

every(x,x′)
======⇒

The first step depicted in (391) delivers the maximal set of students. Set of students that

distributively each read a book are non-deterministically copied over by the formula in

the scope of the maximality operator. Of these only the largest is selected and passed on

to the final test. The final output assignment function assigns to x a plurality of students

and to y a plurality of papers while also encoding a non-trivial relation between students

and papers. The y-papers depend on the x-students. Assuming that every student read a

book, the set of x′-students who read books is identical to the set of x-students and the

sentence is true.
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By shrinking the scope of the distributivity operator so that it doesn’t encompass

linguistic material associated with the restrictor of a paper we arrive at the representa-

tion in (392).

(392) M(εx∧δxstudent(x))∧

M(εx′⊆x∧
NS of a paper︷ ︸︸ ︷

εy∧ sg(y)∧paper(y)∧δx′ read(x′,y)︸ ︷︷ ︸
scope of δx′

)∧ every(x,x′)

Notice that the formula translating a paper in (392) occurs outside the scope of the

distributivity operator associated with the universal quantifier. Let us assume that every

student read p1 and that p1 was the only paper every student read. The calculation of

the truth conditions, depicted below in (393) show how the wide scope reading of (389)

is captured.

(393) 0
M(εx∧δxstudent(x))
===========⇒

x
s1
...
sn

M(εx′⊆x∧εy∧sg(y)∧paper(y)∧δx′ read(x
′,y))

=========================⇒

x x′ y
s1 s1

p1
s2 s2
...

...
sn sn
x x′ y
s1 s1

p2
s2 s2
s3

?...
sn

...

every(x,x′)
======⇒

x x′ y
s1 s1

p1
s2 s2
...

...
sn sn

Again the first step delivers the maximal set of students. The next conjunct allows for

non-deterministic updates. There are as many ways to update x′ and y by copying over

as many x′’s as read a single y-paper as there are papers that at least one student read,

so a number of updates is possible. Notice that y cannot depend on x′ because the εy

update does not occur inside the scope of a distributivity operator δx′ . This is also why

y is defined even in rows in which x′ is not—these rows are not eliminated when εy

is contributed as they would be if εy were to occur in the scope of δx′ . Additionally y

can only contain a single paper due to the number requirement on the predicate paper.
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The final update eliminates all but one of the possible outputs since only p1 was read

by each x-student. Also consider what would happen if there were no papers. In this

case there would be no output that satisfied the restrictor of the universal and the whole

sentence would be false—existential import would be achieved.

5.4.1 The Binder Roof Constraint & Singular Pronouns

The sentence in (394), unlike the sentence in (389) is unambiguous. It only has a

reading in which a paper that interested him takes narrow scope with respect to the

quantifier every student.

(394) Everyx student read a paper that interested himx.

This is a result of the fact that the pronoun bound by every student is singular. Consider

the translation of (394) given in (395) below:

(395) M(εx∧δxstudent(x))∧

M(εx′⊆x∧δx′ (

NS of a paper︷ ︸︸ ︷
εy∧ sg(y)∧paper(y)∧ sg(x′)∧ interest(y,x′)∧read(x′,y))︸ ︷︷ ︸

scope of δx′

)∧

every(x,x′)

In the formula in (395), the relative clause is translated as interest(x,y)∧ sg(x)—the

number morphology of the pronoun contributes a test indicating that x contains only

one value. Moreover, like the narrow scope translation of (389) given in (390) above,

the material introduced by the restrictor of the indefinite appears inside the scope of the

distributivity operator provided by the universal quantifier.

If we assume that every student, si, read a paper, pi, that interests him, we expect the

formula in (395) to come out true and deliver an output contexts which contains every

student and their associated paper. The calculation of the truth conditions depicted in

(396) shows that this result obtains.
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(396) 0
M(εx∧δxstudent(x))
===========⇒

x
s1
s2
...
sn

M(εx′⊆x∧δx′ εy∧sg(y)∧paper(y)∧sg(x′)∧interest(y,x′)∧read(x′,y)))∧every(x,x′)
=============================================⇒

x x′ y
s1 s1 p1
s2 s2 p2
...

...
...

sn sn pn

The only new component of the calculation depicted above is the evaluation of the text

sg(x′) in the scope of the distributivity operator. Notice that since the distributivity

operator has broken apart its input information state into sub-states in which x stores

only one value. The test thus applies to each of these sub-states individually. Since

these sub-states are defined so that x′ is atomic in each, the test will always be satisfied.

The argument for treating number morphology as part of the indefinite comes from

Brasoveanu (2007) who works with pairs like those in (397) from Karttunen (1976).

(397) a. Harvey courts a woman at every convention. She is very beautiful.
b. Harvey courts a woman at every convention. She is always very beautiful.

In (397a) the use of the singular pronoun to refer back to a woman forces a unique /

wide scope interpretation of the indefinite a woman in the previous sentence. If however

a quantificational adverb like always appears in the sentence this inference is called off.

These facts fall out of a system in which singular pronouns require singular antecedents:

in (397a) if there are multiple women at multiple conventions there will not be a single

woman to refer back to unless the pronoun appears in the scope of an operator that

distributes over conventions—and even here there must be one woman per convention.5

If instead we attempt to translate (394) along the lines of the wide scope translation

of (389) given in (392) we end up with a formula that is necessarily false unless there
5In order to capture this we would have to translate a woman without checking the number on

the indefinite a woman in the initial sentence. This would cause us to treat indefinites as ambiguous
between readings in which their number morphology contributes a test and readings in which the number
morphology is semantically uninterpreted. This is probably a good thing since we uniqueness condition
appears must less robust than the uniqueness condition associated with (397a) and is subject to a number
of pragmatic and discourse factors (Heim, 1982; Kadmon, 1990; Roberts, 2003). Moreover treating
indefinites as ambiguous in some way plays a large role in some theories that try to capture the distinction
between weak and strong donkey readings (van den Berg, 1996; Brasoveanu, 2007).
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is exactly one student.

(398) 0
M(εx∧δxstudent(x))
===========⇒

x
s1
...
sn

M(εx′⊆x∧εy∧sg(y)∧paper(y)∧sg(x′)∧interest(y,x′)∧δx′ read(x
′,y))

=====================================⇒

x x′ y
s1 s1

p1
s2

?...
sn
x x′ y
s1 ?

p2
s2 s1
...

?
sn

...

every(x,x′)
======⇒ F

The translation in (398) takes the restrictor of the indefinite out of the scope of the

distributivity operator associated with the universal. Crucially this also removes the

test associated with the singular bound pronoun from the scope of the distributivity op-

erator. Since the test sg(x′) does not occur in the scope of the distributivity operator,

it is evaluated relative to an plural information state in which x contains many values

(again assuming that there are several students). Thus any formula satisfying the re-

strictor of the second max formula will only copy a single value for x′ so it will never

satisfy the formula every(x,x′) This ensures that the sentence cannot be true as long as

there is more than one student. Note that this result obtains merely due to the number

morphology of the pronoun.

5.4.2 The Binder Roof Constraint & Plural Pronouns

Now consider the sentence in (399) which forms a minimal pair with the sentence in

(395)—the singular bound pronoun has been replaced with a plural pronoun anaphoric

to the same quantifier.

(399) Everyx student read a paper that interested themx (all).

Notice that the sentence in (399) does have a reading in which the indefinite takes scope

over the universal. This reading can be represented by means of the translation given
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below in (400).

(400) M(εx∧δxstudent(x))∧

M(εx′⊆x∧δx′ (

NS of a paper︷ ︸︸ ︷
εy∧ sg(y)∧paper(y)∧pl(x′)∧ interest(y,x′)∧read(x′,y))︸ ︷︷ ︸

scope of δx′

)∧

every(x,x′)

(401) 0
M(εx∧δxstudent(x))
===========⇒

x
s1
...
sn

M(εx′⊆x∧εy∧sg(y)∧paper(y)∧δx′ read(x
′,y))∧pl(x′)∧interest(y,x′)

=====================================⇒

x x′ y
s1 s1

p1
s2 s2
...

...
sn sn
x x′ y
s1 s1

p2
s2 s2
s3

?...
sn

...

every(x,x′)
======⇒

x x′ y
s1 s1

p1
s2 s2
...

...
sn sn

The formula in (400) differs from the formula in (398) only with respect to the number

assigned to the pronoun. The derivation begins in exactly the same way as the deriva-

tion in (393). The first step delivers the maximal set of the students, and the next few

updates introduce non-deterministically single papers in a way that ensures papers do

not depend upon students. Notice here that the derivation does not terminate because

the plurality condition imposed on the x variable is met since the test pl(x′) does not oc-

cur in the scope of a distributivity operator, δ ′x. This leaves only two potential updates,

which are shaved down to one by the final test. Notice that the universal still binds into

the restrictor of the indefinite, but it is still able to take wide scope with respect to it.

Because wide scope is achieved by manipulating the scope of a distributivity operator,

it will have ramifications for tests in the restrictor of indefinites that make reference to

the cardinality of other variables.
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5.4.3 The Binder Roof Constrain & Donkey Anaphora

This analysis extends naturally to donkey pronouns as well. Consider the sentence

given below in (402), in which a singular donkey pronoun occurs in the restrictor of the

indefinite in the scope of the universal.

(402) Every student who picked a problem talked to a professor who know about it.

Like the sentence in (395), the sentence given above in (402) does not have a reading

in which the indefinite, a professor takes semantic scope outside the universal every

student.

The absence of a wide scope interpretation follows exactly in exactly the same way

for donkey pronouns as it does for bound pronouns. A putative wide scope translation

involves removing the indefinite from the scope of the distributivity operator associated

with the universal resulting in a translation like that given below in (403).

(403) M(εx∧δx(student(x)∧ εy∧problem(y)∧ sg(y)∧pick(x,y)))∧

M(εx′⊆x∧
NS of a prof. . .︷ ︸︸ ︷

εz∧prof(z)∧ sg(z)∧k.about(z,y)∧ sg(y)∧δx′ talk.to(x,z)︸ ︷︷ ︸
scope of δ ′x

∧

every(x,x′)

Now consider a scenario in which students s1, . . . ,sn picked problems p1, . . . ,pn,

there are two professors, t1, t2, who both know about every problem, and students s1−n

talked to professor t1 and no other professor was talked to by every student who picked

a problem. In this scenario the sentence in (402) is true on its wide scope interpretation

because there is a professor t1 who knows about all the problems picked by the students

and every student who picked a problem talked talked to t1.

Even in this scenario the translation in (403) comes out false due to the cardinality

check associated with the pronoun; the calculation of the truth conditions comes to a

halt when the cardinality test is met. Because there are multiple y-problems (one per
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student in fact) y is not associated with an atomic individual when the statement sg(y)

is encountered. Notice that when y is first introduced it is inside the scope of δx this

means that y can vary with x and that because of the test sg(y) that there is only one

value of y per value of x but multiple values can be associated with y overall.

Notice that if we alter the sentence in (402) so that the donkey pronoun is plural, a

wide scope reading for the indefinite is available:

(404) Every student who picked a problem talked to a professor who know about
them (all).

The translation of (404) is given below in (405). Notice that this translation is

identical to the formula in (403) except that the test sg(y) has been replaced by the test

pl(y).

(405) M(εx∧δx(student(x)∧ εy∧problem(y)∧ sg(y)∧pick(x,y)))∧

M(εx′⊆x∧
NS of a prof. . .︷ ︸︸ ︷

εz∧prof(z)∧ sg(z)∧k.about(z,y)∧pl(y)∧δx′ talk.to(x,z)︸ ︷︷ ︸
scope of δ ′x

∧

every(x,x′)

The calculation of the truth conditions for the formula in (405) begins exactly like

the calculation of (403) except that when we encounter the test associated with the

pronoun we do see a plurality of y-problems. Here we don’t expect to encounter any

difficulties because although y is introduced as singular it is introduced in the scope

of a distributivity operator. When it is later picked back up and said to be plural in

the formula in (405) the test pl(y) is outside the scope of any distributivity operator so

there will be a plurality of values stored in the y column.

Note that since distributivity operators in our system tightly couple (i) whether a

variable can be referenced via a singular or plural pronoun and (ii) whether an indefinite

can vary with that pronoun or not. This predicts a more fine grained version of the
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binder roof constraint which is sensitive not only to binding but also discourse anaphora

and in addition is sensitive to the morphological number associated with the anaphoric

pronoun.

5.5 Decomposing Distributivity

In this section I outline a logic in which distributivity operators are split into two com-

ponent pieces: a component that determines which variables are being distributed over

and a component that distributes over them. This involves enriching the evaluation

function to include three parameters: an input state, G, an output state, H, and a stock

of stored variables V . The input-output states will be passed dynamically from one

conjunct to the other while the store of variables will be passed statically to each con-

junct separately.

Pursuing this analysis requires us to think about how multiple variables could be

distributed over at the same time. In our definitions so far we have only ever distributed

over a single variable at a time. If instead we have have input-output sets G and H and a

stock of variables over which we will be distributing, then we will need a way to define

distributivity with respect to all of the variables in the stock V simultaneously. We can

get at an appropriate definition by defining the set GV to be the set of local contexts

that would be available in DPlL if the variables in V were all distributed over:

(406) GV :=
{G}, if V = /0
{G|v1=d1,...,vn=dn : {v1, . . . ,vn}= V & 〈d1, . . . ,dn〉 ∈ G(v1, . . . ,vn)},otherwise

The definition in (406) defines a set of subsets of G in terms of the values of the vari-

ables in V . Each cell consists of a sub-state G|v1=d1,...,vn=dn , where v1, . . . ,vn are

the variables in V , and 〈d1, . . . ,dn〉 is an element in G(v1, . . . ,vn). Recall that the

set G(v1, . . . ,vn) consists of just those n-tuples containing values of of the variables
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v1, . . . ,vn that co-occur in a single assignment function. This ensures that every unique

n-tuple receives its own sub-state in GV . Recall also that G(v1, . . . ,vn) excludes any

rows in which any of the variables are mapped to the value ?. This ensures that any

assignment in G that sets the value of any v ∈ V to the ? value is not in any sub-

state contained in GV . This is the desired behaviour since distributivity operators in a

sequence would each shave off all the assignment functions in which their particular

values were assigned the ? value.

Below I give some examples of the sets that can be formed from an underlying set

of assignments G and a set of variables V :

(407)

G /0 =

x y

a
c
d

b
c
d

G{x} =

x y

a
c
d

b
c
d

G{x,y} =

x y
a c

a d

b c

b d

Notice that in each of the above examples each cell contains only one value for the

sequence of relevant variables. The set GV thus contains all those sub-states that would

be obtained by distributing over the variables in V .

5.5.1 Conjunction

Conjunction is defined so that the input-output states are treated dynamically while the

cache of variables is treated statically.

(408) Jφ ∧ψKG,H,V = T iff there is some K s.t. JφKG,K,V = T and JψKK,H,V = T

Notice that this definition looks exactly like the definition of conjunction for DPlL ex-

cept that in addition to finding an intermediate set of assignment functions it also passes

the stock of stored variables V down to each conjunct. This is because distributivity

189



is itself non-dynamic. Distributing over a variable has the same effects on both the

input and output contexts in DPlL: both are split up and later re-assembled. This fact

is mirrored in the definition of conjunction—the stock of variables is treated statically

while the input-output states are handled dynamically.

Notice also that the way that the set V is passed between conjuncts mirrors the

manner in which distributivity operators in DPlL distribute over conjunction.

(409) δx(φ ∧ψ) = δxφ ∧δxψ

5.5.2 Distributivity

We define the distributivity operator ↓x to simply modify the input context so that and

additional variable is being distributed over:

(410) ↓-DISTRIBUTIVITY:
J↓x (φ)KG,H,V = T iff JφKG,H,V ∪{x} = T

Notice that the ↓-operator has several of the same properties as the distributivity

operator with respect to (i) sequences of distributivity operators, (ii) permutation of

distributivity operators, and (iii) distributing over conjunction:

(411) INFERENCES WITH ↓:
a. ↓x↓x φ =↓x φ

b. ↓x↓y φ =↓y↓x φ

c. ↓x (φ ∧ψ) =↓x φ∧ ↓x ψ

All of these inferences are easy enough to prove. The first follows since V ∪{x}∪

{x} = V ∪ {x}. The second follows from the fact thatV ∪ {x} ∪ {y} = V ∪ {y} ∪

{x}. The third follows from the fact that conjunction simply passes down the store of

variables to each conjunct. It doesn’t matter if the variables are added then passed down

or added to the store for each conjunct separately.
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The key difference between ↓x and δx is that ↓x does not itself break apart the

input or the output states. They remain whole and so operations in the scope of ↓x can

make use of all the information available in the information state instead of just the

subcomponents available to formula’s in the scope of δx. This is because ↓x is in a real

sense not a distributivity operator but an operator that signals that a variable should be

distributed over.

In order to actually distribute over the variables in the store, we define a distribu-

tivity operator ∆ that breaks apart the incoming set of assignment functions and passes

them on to its nuclear scope piece by piece.

(412) ∆-DISTRIBUTIVITY:
J∆φKG,H,V = T iff

a. G(V ) = H(V )

b. ∀G′∈GV : JφKG′,H|∀v∈V :v=G′(v), /0 = T

c. ∀H ′∈HV : JφKG|∀v∈V :v=H′(v),H
′, /0

= T
d. H|∃v∈V :v=? = {h : ∃g∈G|∃v∈V :v=?

: ∀v∈Dom(G) : h(v) = g(v)

& ∀v∈Dom(H)−Dom(G) : h(v) = ?}

The truth conditions are relatively complex. It is worth going through each conjunct:

a. G(V ) = H(V )

This condition says that G and H have the same projections for the set of variables

in V that is they contain the same values and the same relations between these

values.

b. ∀G′∈GV : JφKG′,H|∀v∈V :v=G′(v), /0 = T

This condition starts by breaking apart G into the sub-states defined by GV . It

then says that for each such sub-state in G′ has as its output. relative to the scope

of ∆ the sub-state H|∀v∈V :v=G′(v). This is the sub-state of H that assigns the same
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values to the variables in V as are assigned by G′. This is the sub-state in HV

that corresponds to G′.

c. ∀H ′∈HV : JφKG|∀v∈V :v=H′(v),H
′, /0

= T

This condition works exactly like the first conjunct except that we make sure that

for every sub-state in HV we can find an origin sub-state in GV . Together with

the first conjunct this makes sure that every sub-state in GV has a destination in

HV and every destination in HV has some origin in GV .

d. H|∃v∈V :v=? = {h : ∃g∈G|∃v∈V :v=?
: ∀v∈Dom(G) : h(v) = g(v)

& ∀v∈Dom(H)−Dom(G) : h(v) = ?}

This condition relates the sets H|∃v∈V :v=? and G|∃v∈V :v=?. These are the subsets

of H and G in which one or more of the values in V is given the ? value. That

is the set of rows that are not in any sub-state in HV or GV respectively. The

condition itself states that every h ∈ H|∃v∈V :v=? is an extension of some element

of G|∃v∈V :v=? that (i) agrees with g with respect to all values in their common

domain and (ii) assigns ? values to all the variables which are in the domain of

H but not G.

A final point with emphasizing about this definition is that ∆-operators zero-out the

values being distributed over. They are removed from the set of values being distributed

over. By emptying the stock of variable this operator signals to the formula in its scope

that there is nothing that needs to be distributed over.

Before providing the rest of the logic, I want to address a few logical matters. First,

if no variables are being distributed over, then ∆ can freely added or deleted:

(413) JφKG,H, /0 = J∆φKG,H, /0
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To see why we only need to recall that G /0 = {G} (likewise H /0 = {H}). In other

words the ∆-operator in these circumstances creates only the trivial partition over the

assignment function and passes the entire assignment function to its scope.

It then becomes obvious that a sequence of ∆-operators is equivalent to a single

∆-operator:

(414) ∆ . . .∆φ = ∆φ

This follows since the first operator empties the cache of variables and the semantics of

the remaining operators is vacuous.

Additionally, a ∆-operator can be prefixed to a formula ↓x
∆φ harmlessly.

(415) ↓x (
∆(φ)) = ∆(↓x (

∆(φ)))

This inference holds because the order in which variables are distributed over does

not matter. We can either add x to a set V and distribute over V ∪ {x} or we can

distribute first over the variables in V and then distribute over the variables in {x}.

Finally, ∆, like δv, distributes over conjunction:

(416) ∆(φ ∧ψ) = ∆φ ∧ ∆ψ

One last operation that is useful to define for peace of mind is the distributivity

operator δv:

(417) δ -DISTRIBUTIVITY:
JδxφKG,H,V = T iff

a. V = /0
b. G(x) = H(x)

c. ∀G′∈G{x} : JφKG′,H||x=G′(x), /0 = T

d. ∀H ′∈H{x} : JφKG|x=H′(x),H
′, /0 = T

e. H|x=? = {h : ∃g∈G|x=?
: ∀v∈Dom(G) : h(v) = g(v)

& ∀v∈Dom(H)−Dom(G) : h(v) = ?}
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Notice that the definition above (i) is exactly like the definition of ∆ except that we

(a) utilize a singleton set to find the sets we distribute over and (b) require that V = /0

and (ii) that this definition is substantively identical to the definition of distributivity in

DPlL modulo these two changes.

Turning back to logical matters, it becomes clear that we can use δ -operators cancel

out ↓ and ∆ operators.

(418) ↓x
∆φ = ∆δxφ

We reason first from ↓x
∆φ to ∆ ↓x

∆φ , then note that when we evaluate ↓x
∆φ the store of

variables will be empty (due to the initial ∆). When we next evaluate ∆φ it will contain

only x. This leads to an interpretation that is identical to the interpretation of δxφ .

5.5.3 Lexical Relations & Assignment Updates

Lexical relations are defined almost identically to their DPlL counterparts. The truth

conditions for a lexical relation is given (419).

(419) LEXICAL RELATIONS: JR(v1, . . . ,vn)KG,H,V = T iff
a. V = /0
b. G = H
c. 〈G(v1), . . . ,G(vn)〉 ∈ I(R)

The truth conditions are familiar; the lexical relation is defined only for identical input-

output pairs and lexical relations are interpreted collectively. The only new addition

is the first conjunct which requires that the store of variables be empty. That is to say

either (i) no variables were entered into the set at all in which case the lexical relation

should be interpreted collectively or (ii) the store has been emptied of variables by a ∆

operator that distributes over these variables.

194



The work here is done when we translate expressions from English into the logic.

We always prefix predicates with ∆-operators to ensure that appropriate variables are

being distributed over and the store is zeroed out.

(420) a. dog ∆dog(x)
b. chase ∆chase(x,y)

In essence formulas like ∆dog(x) say, "when distributing over the variables over which

I have been told to distribute, I find that x stores a value in the interpretation of dog".

The next alteration we need to make is to the definition of assignment update. Again

we minimally alter the definition to include the requirement that the store of variables

being distributed over is empty.

(421) ASSIGNMENT UPDATE:
JεxKG,H,V = T iff
a. V = /0
b. x /∈ Dom(G)

c. ∃D∈D? : H = {g[x→d] : d ∈ D & g ∈ G}
(422) SUBSET ASSIGNMENT UPDATE:

Jεx′⊆xKG,H,V = T iff
a. V = /0
b. x′ /∈ Dom(G)

c. ∃D⊆G(x) : H = {g[x′→g(x)] : g ∈ G|x∈D}∪{g[x
′→?] : g ∈ G|x/∈D}

Notice again that these definitions are identical to their DPlL counterparts except that

we require that the store of variables be empty.

Again we ensure that no variables are being distributed over in the intput-output

by prefixing random assignment operators with a ∆-operator whenever we would use

random assignment when translating something into DPlL:

(423) an egg ∆εx∧ ∆egg(x) = ∆(εx∧ egg(x))
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5.5.4 Maximization

We keep unselective maximization exactly as is. Since δv can normally permute with

M, we simply pass the store of variables to be distributed over to the scope of the

maximization operator.

(424) MAXIMIZATION:
JM(φ)KG,H,V = T iff

a. JφKG,H,V = T
b. ¬∃K⊃H : JφKG,K,V = T

Sentences with quantifiers are translated exactly as before modulo two changes: (i)

we now use ↓-operators lieu on δ -operators and (ii) we attach ∆-operators locally to all

lexical relations and assignment updates.

(425) Every student read a paper.
 M(∆εx∧ ↓x

∆student)∧
M(∆εx′⊆x∧ ↓x′ (

∆εy∧ ∆paper.sg(y)∧ ∆read(x,y))∧ ∆every(x,x′)

5.5.5 Truth

Truth for a sentence is defined in terms of the initial state 0 and the empty cache of

variables:

(426) TRUTH:
JφK = T iff ∃H : JφK0,H, /0 = T

Because our definition of truth always starts with the empty store, if we write out

formulas that are string identical to the formulas in DPlL, then we end up with the same

truth conditions, as their DPlL counterparts. This is because the store of variables will

never be incremented and so the only conjuncts that differ in the recursive definitions of

truth for the two languages (i.e. the ones referring to the store) will be trivially satisfied.

The empty store will just be passed down through conjunction and maximization until
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it hits a lexical relation, an assignment update, or one of the δx operators (which itself

will not change the store).

Additionally, if there are no occurances of ↓x in a formula we can immediately

remove any occurrences of ∆. If the store of variables starts empty and stays that way,

then any ∆-operators that occur in the formula will have only a semantically vacuous

effect.

One of the other benefits of the current system is that we can manipulate these

representations syntactically. Consider the example from (425). This can be simplified

just by manipulating the ∆ and ↓-operators:

(427) M(∆εx∧↓x
∆student)∧M(∆εx′⊆x∧↓x′ (

∆εy∧∆paper(y)∧∆read(x,y))∧∆every(x,x′)
⇔M(∆εx∧↓x

∆student)∧M(∆εx′⊆x∧↓x′
∆(εy∧paper(y)∧read(x,y))∧∆every(x,x′)

⇔M(∆εx∧∆δxstudent)∧M(∆εx′⊆x∧∆δx′(εy∧paper(y)∧read(x,y))∧∆every(x,x′)
⇔M(εx∧δxstudent)∧M(εx′⊆x∧δx′(εy∧paper(y)∧ read(x,y))∧ every(x,x′)

In the first step we bring ∆ out from single conjuncts to take scope over whole con-

junctions. In the next step we simplify the sequence ↓v
∆ to ∆δv. In the final step we

remove any ∆ operators that are not inside the scope of any ↓-operators since these will

be semantically vacuous. Since this formula no longer contains any of the new symbols

(↓x, ∆) its truth conditions are exactly the same as the identical sentence of DPlL. Thus

this sentence captures a reading in which the indefinite takes scope below the universal

quantifier.

5.6 Scope Control

The only operator we need to implement wide scope indefinites is the ↑v-operator. This

operator un-distributes over v by removing it from the stock of variables in V :

(428) ↑-SCOPE CONTROL:
J↑v φKG,H,V = T iff JφKG,H,V −{v} = T
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The formula above shares much in common with the distributivity operator ↓v. The

only difference is that instead of adding a variable to the store of those to be distributed

over, it removes a variable from the store without doing anything with it.

If we think of the ↓x-operator as sending a signal to its scope that the variable x

must be distributed over, then the ↑x-operator contravenes this instruction ensuring that

its scope is not evaluated distributively with respect to x.

This gives u a new set of inference rules that handle the ↑-operator:

(429) INFERENCE RULES FOR ↑:
a. ↓x↑x φ =↑x φ

b. ↑x↓x φ =↑x↑y φ

Together these two inferences tell us that sequence of ↑- and ↓-operators (that work

with the same variable) reduce to the final operator in the sequence. This means that

↓-operators can be cancelled and distributivity can be called off.

Wide scope indefinites can now be translated with the help of these operators. Con-

sider just the interpretation of the restrictor of a universal hosting a wide scope indefi-

nite.

(430) Every student who read a certain paper . . .
 M(∆εx∧ ↓x

∆student(x))∧ ↓x (↑x (
∆εy∧ ∆sg(y)∧ ∆paper(y))∧ ∆read(x,y))

Notice that the indefinite a certain paper has been translated with an ↑x wrapped

around its restrictor. In other words this indefinite comes with an instruction to prevent

its restrictor from being interpreted distributively with respect to the variable x.

The representation above can be simplified in several steps. First, we can distribute

↓x over the conjunction:

(431) M(∆εx∧ ↓x
∆student(x))∧ ↓x↑x (

∆εy∧ ∆sg(y)∧ ∆paper(y))∧ ↓x
∆read(x,y))

Next we simplify the sequence ↓x↑x (. . .) by cancelling the outer ↓x-operator.
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(432) M(∆εx∧ ↓x
∆student(x))∧ ∆εy∧ ∆sg(y)∧ ∆paper(y)∧ ↓x

∆read(x,y))

Next we reduce sequences of ↓x
∆ to ∆δx.

(433) M(∆εx∧ ∆δxstudent(x))∧ ∆εy∧ ∆sg(y)∧ ∆paper(y)∧ ∆δxread(x,y))

Finally we remove any ∆’s that are not in the scope of any ↓ operator since their

contribution is semantically vacuous:

(434) M(εx∧δxstudent(x))∧ εy∧ sg(y)∧paper(y)∧δxread(x,y))

Notice that this gives us exactly the representation outlined in the previous section.

Exceptional scope indefinites can thus choose not to be in the scope of any given dis-

tributivity operator. This will have predictable effects as far as (i) whether they can

vary with a particular variable—no unless they are in the scope of distributivity—and

(ii) whether singular or plural pronouns in their restrictors are required to pick up a par-

ticular variable—again this will depend on whether or not they come with an ↑-operator

that shelters them from the scope of other distributivity operators.

5.7 Conclusions

In this chapter I outlined a logic that differed minimally from DPlL with unselective

maximization. I broke distributivity up into two components. A signalling operator

↓x that indicates that x is to be distributed over and an distributivity operator ∆ that

implements distributivity. For this to work formulas of the logic have to be interpreted

relative to a store indicating which variables were to be distributed over.

This allowed the logic to be enriched with an operator ↑x that removed x from

the store of variables, thus sheltering a formula in its scope from being interpreted

distributively with respect to x. In this system wide scope indefinites achieve their

interpretation by signalling non-variation with the values of a variable introduced by a
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syntactically higher quantifier. They do this by manipulating the scope of distributivity

operators.
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Appendix D

DPlL with Decomposed Distributivity

NOTATIONAL CONVENTIONS:

(435) GV :=
{G}, if V = /0
{G|v1=d1,...,vn=dn : {v1, . . . ,vn}= V & 〈d1, . . . ,dn〉 ∈ G(v1, . . . ,vn)},otherwise

RECURSIVE DEFINITION OF TRUTH:

(436) LEXICAL RELATIONS: JR(v1, . . . ,vn)KG,H,V = T iff
a. V = /0
b. G = H
c. 〈G(v1), . . . ,G(vn)〉 ∈ I(R)

(437) ASSIGNMENT UPDATE:
JεxKG,H,V = T iff
a. V = /0
b. x /∈ Dom(G)

c. ∃D∈D? : H = {g[x→d] : d ∈ D & g ∈ G}
(438) SUBSET ASSIGNMENT UPDATE:

Jεx′⊆xKG,H,V = T iff
a. V = /0
b. x′ /∈ Dom(G)

c. ∃D⊆G(x) : H = {g[x′→g(x)] : g ∈ G|x∈D}∪{g[x
′→?] : g ∈ G|x/∈D}

(439) MAXIMIZATION:
JM(φ)KG,H,V = T iff

a. JφKG,H,V = T
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b. ¬∃K⊃H : JφKG,K,V = T
(440) δ -DISTRIBUTIVITY:

JδxφKG,H,V = T iff

a. V = /0
b. G(x) = H(x)

c. ∀G′∈G{x} : JφKG′,H||x=G′(x), /0 = T

d. ∀H ′∈H{x} : JφKG|x=H′(x),H
′, /0 = T

e. H|x=? = {h : ∃g∈G|x=?
: ∀v∈Dom(G) : h(v) = g(v)

& ∀v∈Dom(H)−Dom(G) : h(v) = ?}
(441) ↓-DISTRIBUTIVITY:

J↓x (φ)KG,H,V = T iff JφKG,H,V ∪{x} = T
(442) ↑-SCOPE CONTROL:

J↑v φKG,H,V = T iff JφKG,H,V −{v} = T
(443) ∆-DISTRIBUTIVITY:

J∆φKG,H,V = T iff

a. G(V ) = H(V )

b. ∀G′∈GV : JφKG′,H|∀v∈V :v=G′(v), /0 = T

c. ∀H ′∈HV : JφKG|∀v∈V :v=H′(v),H
′, /0

= T
d. H|∃v∈V :v=? = {h : ∃g∈G|∃v∈V :v=?

: ∀v∈Dom(G) : h(v) = g(v)

& ∀v∈Dom(H)−Dom(G) : h(v) = ?}
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Chapter 6

Conclusions

The bulk of this dissertation has been devoted to providing a solution to the prob-

lem of wide scope indefinites that follows the central intuitions guiding the account in

Brasoveanu and Farkas (2011). Indefinites can take wide semantic scope outside of

scope islands by signalling non-variation with respect to the values of variables intro-

duced by other expressions. In my system variation and non-variation are controlled

by distributivity operators and so indefinites signal non-variation by exercising control

over the scope of distributivity operators introduced by other elements. Formally this

is implemented by splitting distributivity operators into two parts: a signalling oper-

ator, ↓v, that a variable needs to be distributed over and an operator that contributes

quantificational force, ∆.

One of the interesting formal elements of the system is that it blends static and dy-

namic style reasoning. Input-output plural information states are passed from one con-

junct to another dynamically left to right, while the store of variables to be distributed

over is passed top down, from the conjunction to each conjunct identically.

At this point in the dissertation, it is worth stepping back from the particular formal

implementation to discuss broader claims that will apply to other potential implemen-

203



tations of the same basic intuition.1

i. In chapter 3 I argued that the intuition that indefinites signal independence has to

be embedded inside a dynamic logic. This way a universal quantifier can be made

aware of the particular way in which the updates associated with a wide scope

existential in its scope will be completed. It is not enough to look for a maximal

set of entities x for which an independent choice of y can be made. One needs to

look for the maximal set of entities x for which a particular independence choice

of y can be made, and this necessitates looking at an output set of assignments.

ii. In chapter 4 we learn that an dynamic logic by itself does not guarantee that inde-

pendence amounts to wide scope. Instead only a logic with certain maximization

operators will achieve correct interpretations for sentences containing wide scope

indefinites.

iii. In chapter 5 I showed that utilizing DPlL indefinites could signal independence

by means of controlling the scope of a distributivity operators associated with

higher quantifiers. It bears emphasis that the particular implementation in this

chapter is one many potential implementations of this idea.

6.1 Extensions

Below I outline two extensions to the basic system that that may extend its empirical

coverage.
1It seems to me that there may be alternative routes to allow indefinites to signal non-variation while

still sitting in the syntactic scope of a quantifier (the analysis at the end of chapter 3 is a case in point).
This would be an overly parochial contribution if nothing could be learned from it about alternative
routes.
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6.1.1 Disjunction

Evaluating formulas with respect to sets of assignment functions allows us to analyse

disjunction as a sort of conjunction and account for its wide scope behaviour. In essence

we have a disjunction split up the incoming set of assignment functions into two pieces

sending one to each disjunct.

(444) Jφ1∨T φ2KG,H =T iff T ⊆Dom(G) and ∃D1,D2⊆G(V ) s.t. there are sets G1,G2,H1,
and H2 s.t.
a. G1(T ) = D1 and G2(T ) = D2 and H1(T ) = D1 and H2(T ) = D2

b. G1∪G2 = G & H1∪H2 = H
c. JφKG1,H2 = T
d. JψKG1,H2 = T

Going through the definition step-by-step. Six sets are quantified over existentially:

• D1,D2 which are subsets of G(T ) that jointly exhaust G(T ). Recall that G(T )

is the set of tuples of values that the alphabetized variables in T in G. So, D1,D2

are each sets of tuples of values that these variables can take on.

• G1,G2 are subsets of G that have as their projections of the variables in T the

sets of values in D1,D2 respectively.

• H1,H2 which are subsets of the output assignment H that jointly exhaust H.

The final clause links D1 with H1 and D2 with H2. For D1/2, the state G1/2 is used

as the input for the conjunct, φ1/2 obtaining the output H1/2.

If we assume that all sentences are taken as being implicitly embedded under an

epistemic necessity operator, this definition will help derive ignorance inferences for

disjunctions.

Let us say that φ(w) holds for w1, . . . ,wk and ψ(w) holds for wk+1, . . . ,wn. Let’s

also say that w1, . . .wn represent a speaker α’s belief worlds. We want to get the fact
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that a utterance “φ or ψ” should indicate that a speaker believes both φ and ψ to be

possible. Let’s see how this works:

(445) Mεw(Doxα(w))∧ (φ(w)∨w ψ(w))

(446) 0
M(εw∧Doxα (w))
=========⇒

w
w0

...
wk

wk+1

...
wn

∨{w}
==⇒



w
w0

...
wk

φ(w)
==⇒

w
w0

...
wk

w
wk+1

...
wn

φ(w)
==⇒

w
wk+1

...
wn


⇒ . . .

The first conjunct populates the variable assignment with the set of epistemically

accessible worlds. Then the disjunction partitions G based on the values assigned to w

and feeds them into one or the other disjunct. This indicates that the speaker thinks that

worlds in which both φ and ψ hold are possible.

We can now see how exceptional scope disjunction would work. For simplicity’s

sake, let’s assume that the domains of every world are the same and that the same

individuals are students in every world.

(447) M(εw∧Doxα(w))∧M(εx∧ student(x))∧ (leave(x,w)∨w stay(x,w))

(448) /0
M(εw∧Doxα (w))
=========⇒

w
w0

...
wk

wk+1

...
wn

M(εx∧student(x))
==========⇒

w x

w0

s1
...
s j

...
...

wk

s1
...
s j

wk+1

s1
...
s j

...
...

wn

s1
...
s j

∨{w}
==⇒



w x

w0

s1
...
s j

...
...

wk

s1
...
s j

leave(x,w)
=====⇒

w x

wk+1

s1
...
s j

...
...

wn

s1
...
s j

stay(x,w)
=====⇒
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Notice that because the disjunction is only indexed with world variables it can only

break up the set of assignments by worlds, not students. This results in an interpretation

of the disjunction in which it takes wide scope over the universal.

If instead we index the disjunction with both world and student variables, then we

would allow the set of assignment functions to be partitioned along lines of arbitrary

world-student pairs.

(449) M(εw∧Doxα(w))∧M(εx∧ student(x))∧ (leave(x,w)∨w,x stay(x,w))

The sentence above would be true as long as every world-student pair satisfied the

predicate leave or the predicate student. Once we allow ∨ to depend on two variables

the set of models that can be described really opens up. It might be that the speaker

has belief worlds in which every student left and others in which every student stayed

or that their belief worlds are all such that some students left and other students stayed

but different students left or stayed in different worlds, etc. All that is required is that

there every world-student pair is s.t. the student left in that world or the student stayed

in that world.

One benefit of this account is that it ties the ignorance inference to the scope taken

by the disjunction. It predicts that an ignorance inference associated with disjunction

should be attenuated when it appears in the scope of another quantifier.

This account would hopefully scale up to handle cases of donkey anaphora like the

sentence below:

(450) Every tourist that saw a certain pigeon or a pelican took a picture of it.

On its most natural interpretation the indefinite a pigeon takes scope above the univer-

sal, while both the disjunction and the indefinite a pelican scope below the universal.

The pronoun it is then anaphoric to either the pelican or the pigeon as the case may

be. By splitting up the set of assignment functions one hopes an account of disjunction
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developed along the lines about would allow the indefinite a certain pigeon to signal

its independence from the variable introduce by every in the part of the global state

that it was fed. The narrow scope indefinite, a pelican, could signal dependence within

its part of the global state. Taken together a single variable could then store tourist-

pigeon/pelican pairs.

6.1.2 Extraposed Relative Clauses

Restrictive relative clauses can appear well after the DP that hosts them. Consider the

examples below:

(451) a. A man left who had been looking angry for a while.
b. Every student did well who took their studies seriously.

The semantic difficulty associated with extraposed relative clauses arises form the

need to interpret them as if they occurred in the restrictor of a DP. For instance (451b)

does not require that every student do well; the sentence is true as long as the students

who took their studies seriously did well.

With the semantic resources available in DPlL we can define an operator S—

pronounced ‘shave’—that can interpret extraposed restrictive relative clauses in situ,

i.e. outside the restrictor of the DP they modify.

(452) SHAVE:
JS(φ)KG,H = T iff ∃G′⊆G : JφKG′,H and ¬∃K⊃H : ∃G⊆G : JφKG′′,K = T

S(φ) works by finding the a subset of the input context that can satisfy its scope s.t.

there is no other subset of the input that would lead to a greater output set. In essence

S(φ) shaves off rows from the input assignment that render it incompatible with the

formula φ . This means that we will be able to begin the interpretation of the sentence

in (451b) by first collecting the full set of students. Then we can shrink down the set to
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include only those students who take their studies seriously. Finally we can ensure that

every student in this modified set took their studies seriously.
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