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The Role of Episodic Memory in Storytelling:
Comparing Large Language Models with Humans
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{charlotte.cornell, shuning.jin, qiong.z}@rutgers.edu
a Department of Psychology, b Department of Computer Science,
Rutgers University–New Brunswick, Piscataway, NJ, USA 08854

Abstract

We compare storytelling in GPT-3.5, a recent large language
model, with human storytelling. Although GPT models are
capable of solving novel and challenging tasks and matching
human-level performance, it is not well understood if GPT
processes information similarly as humans. We hypothesized
that GPT differs from humans in the kind of memories it pos-
sesses, and thus could perform differently on tasks influenced
by memory, such as storytelling. Storytelling is an important
task for comparison as GPT becomes an increasingly popu-
lar writing and narrative tool. We used an existing dataset of
human stories, either recalled or imagined (Sap et al., 2022),
and generated GPT stories with prompts designed to align with
human instructions. We found that GPT’s stories followed a
common narrative flow of the story prompt (analogous to se-
mantic memory in humans) more than details occurring in the
specific context of the event (analogous to episodic memory in
humans). Furthermore, despite lacking episodic details, GPT-
generated stories exhibited language with greater word affect
(valence, arousal, and dominance). When provided with ex-
amples of human stories (through few-shot prompting), GPT
was able to align its stories’ narrative flow with human imag-
ined stories but not human recalled stories. GPT was unable
to match its affective aspects with either human imagined or
recalled stories. We discuss these results in relation to GPT’s
training data as well as the way it was trained.

Keywords: episodic memory, storytelling, narrative flow,
word affect, large language models

GPT (Generative Pre-trained Transformer) is a family of
large language models trained to predict the next word on a
vast amount of text corpora (T. Brown et al., 2020; Bubeck et
al., 2023). This extensive training, along with the increased
complexity of more recent model architectures, has allowed
GPT models to perform far beyond mere text generation and
conversational skills. For example, the latest GPT models can
solve novel and challenging tasks that span mathematics, cod-
ing, law, psychology, and more (Bubeck et al., 2023; Singhal
et al., 2023; Katz, Bommarito, Gao, & Arredondo, 2023).
Despite its ability to produce human-like texts and achieve
human-level performance, we do not know very well if GPT
learns, thinks, and decides like humans (Binz & Schulz,
2023). In the current work, we hypothesize that GPT differs
from humans in an important aspect of cognition – episodic
memory, which could produce differences in the way GPT
tells stories compared with humans.

*CAC and SJ contributed equally and should be considered co-
first authors

Figure 1: Excerpts from a human recalled story and a GPT-
generated story. Human stories include autobiographical de-
tails drawn from episodic memory in addition to semantic de-
tails mentioned by both GPT and humans. We hypothesize
that GPT possesses primarily semantic memory, and there-
fore, writes more generic stories.

In humans, information retrieved from the past can be di-
vided into two distinct types, episodic memory and seman-
tic memory (Tulving, 1972). Episodic memory refers to our
ability to remember individual experiences or events that oc-
curred in particular spatial and temporal contexts; in contrast,
semantic memory refers to general knowledge we have about
the world, formed across multiple experiences (Squire, 1992;
Tulving, 1972; Squire & Zola, 1998). Despite GPT’s train-
ing data containing a wide variety of events and knowledge
that could provide the basis for episodic memory, we hypoth-
esize that GPT possesses primarily semantic memory, as it
is trained to extract regularities from the training data rather
than memorize from it (McCoy, Smolensky, Linzen, Gao, &
Celikyilmaz, 2023). This is consistent with past observations
where GPT is capable of predicting factual statements about
the world, such as predicting “Seattle” given the prefix “The
Space Needle is located in the city of” (Meng, Bau, Ando-
nian, & Belinkov, 2022), but makes errors on factual informa-
tion that it can only learn over one or a few occurrences (as
much as 55% on bibliographic citations; Walters & Wilder,
2023). Thus it stands to reason that on tasks that rely strongly
on episodic details, like storytelling, GPT would behave dif-
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ferently. For example, when GPT generates a story about a
baseball game, we predict its narrative to follow a typical se-
quence of events, such as the intensity of the game leading to
an “electric” atmosphere and getting “swept up in the drama”
(see Figure 1). When humans recall an event though, we
rely both on common knowledge, such as the game being ex-
citing (Gilboa, Rosenbaum, & Mendelsohn, 2018; Graesser,
Robertson, & Anderson, 1981; Hyman Jr & Loftus, 1998), as
well as autobiographical details about the event such as “in-
vite one of my friends from work”, “paying for each other’s
hot dogs and hot pretzels”, and “not remembering much about
the game itself” (Conway, Collins, Gathercole, & Anderson,
1996; Tulving, 1972).

As GPT becomes increasingly popular as a writing tool, it
is important to understand how it writes stories compared to
human storytelling. Recent research has shown that GPT can
write coherent stories (Fan, Lewis, & Dauphin, 2018; See,
Pappu, Saxena, Yerukola, & Manning, 2019) and collabora-
tively add to stories, back and forth with human respondents
(Branch, Mirowski, & Mathewson, 2021; Nichols, Gao, &
Gomez, 2020). As episodic memory heavily influences how
humans tell stories (Conway et al., 1996; Conway, Pleydell-
Pearce, Whitecross, & Sharpe, 2003), we hypothesize that
there are important differences between GPT and humans
in storytelling related to the role of episodic memory. One
way in which psychological studies have previously analyzed
the engagement of episodic memory is narrative flow. Sap
et al. (2022) recently developed a metric of sequentiality to
compare human recall and imagination, reasoning that hu-
man imagination relies more on semantic knowledge where
each sentence depends strongly on the prior sentences. Au-
tobiographical stories, however, have a less predictable se-
quence as episodic memories can deviate from the seman-
tic knowledge associated with an event (Zwaan & Radvan-
sky, 1998; Reichardt, Polner, & Simor, 2020). Another way
episodic memory has been analyzed is to measure its affective
content, as autobiographical memories with episodic details
are associated with higher affect (Berntsen & Rubin, 2002;
R. Brown & Kulik, 1977). We propose to capture the af-
fective content of a story’s language by using three of the
most important, and largely independent, dimensions of word
meaning: valence (positiveness–negativeness), arousal (ac-
tive–passive), and dominance (dominant–submissive). Large
VAD lexicons made possible through crowdsourcing allow
us to obtain word ratings for words in prose-like text (e.g.,
Mohammad, 2018). As we hypothesize that GPT lacks the
kind of episodic details observed in human stories, we pre-
dict that, GPT (1) will write stories more sequentially and (2)
will use language that is low in word affect compared with
human storytelling.

To test our hypotheses, we follow human experiments by
prompting GPT to tell stories similarly to how humans were
prompted in a storytelling task (Sap et al., 2022). We fur-
ther provide GPT with examples of how humans wrote sto-
ries, both when recalling events and imagining them, to see if

GPT can write stories more similarly to humans (i.e., few-
shot prompting). To foreshadow our results, we find that
GPT-generated stories are more sequential than human stories
(especially human recalled stories), supporting our hypoth-
esis that GPT-generated stories contain fewer episodic de-
tails than humans. Contrary to our expectations, we also find
that GPT-generated stories have higher VAD ratings along all
three word affect dimensions. Upon providing GPT with ex-
amples of human stories (through few-shot prompting), we
find that GPT can align its stories’ narrative flow with human
imagined stories but not human recalled stories. GPT can-
not match its affective aspects with either human imagined or
recalled stories.

Method
In this section, we first overview Sap et al. (2022)’s HIP-
POCORPUS dataset which contains stories that humans re-
called and imagined. We then discuss how we created
datasets of GPT-generated stories. Finally, we discuss the two
measures used to analyze these datasets: sequentiality (Sap et
al., 2022) and word affect (Mohammad, 2018).

HIPPOCORPUS Dataset
The HIPPOCORPUS dataset contains 6,854 stories that hu-
mans recalled, imagined, or retold (Sap et al., 2022). In
the recalled condition, participants wrote a 15-25 sentence
story about a memorable event they experienced in the past
6 months and then summarized it in 2-3 sentences. In the
imagined condition, a second group of participants received
one of those summaries and wrote a 15-25 sentence diary-
like entry imagining that event. We did not use the retold
stories. We only included stories for which there was both a
recalled event and an imagined event in the dataset, and we
excluded any repeated imagined stories (as sometimes differ-
ent participants in the imagined condition were assigned the
same recalled prompt). This left us with N = 2,572 recalled
stories and N = 2,572 imagined stories.

GPT Datasets
Zero-shot Prompting Within the GPT family, we focused
on GPT-3.5, based on InstructGPT (Ouyang et al., 2022) that
extends GPT-3 (T. Brown et al., 2020). We prompted GPT
with human summaries from recall stories (similarly to how
human participants generated imagined stories based on sum-
maries), giving us N = 2,572 GPT-generated stories. While
humans saw an entire page of instructional text, the instruc-
tions we gave to GPT were a condensed version, focusing on
the key instructions humans were given and controlling for
the length of output: “Given a short prompt summary, write
an imagined story about an event. Write using a first-person
perspective. The story must have at least 15 sentences and at
most 25 sentences. The story must have at least 120 words
and at most 600 words.” GPT saw the full prompt template
as follows: “{instructions} Summary: {summary} Story:”,
and generated the corresponding story as continuation. For
implementation details, we used the “gpt-3.5-turbo” endpoint
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through OpenAI’s API and used greedy decoding (i.e., gen-
erate the next most probable token).

Few-shot Prompting Beyond testing how GPT tells sto-
ries without any learning, we also wanted to explore if GPT
would align its stories to be more like human stories if it was
provided with human story examples. Few-shot prompting
(i.e., providing a sequence of input-output pairs as the task
demonstration) can enable GPT to generate higher-quality
answers by prompting it with example responses (T. Brown
et al., 2020). The effectiveness is rooted in a surprising
ability of GPT: it can learn from the examples on the fly
without explicit training (i.e., fine-tuning of model parame-
ters). To do this, we randomly sampled 40 example stories
from the imagined dataset (as the API allowed for a maxi-
mum of 16,385 tokens per prompt). We then prompted GPT
with the same instructions accompanied by these 40 examples
within the prompt. Specifically, the few-shot prompt template
was: “{instructions} {examples} {instructions} Summary:
{summary} Story:”. We repeated the instructions twice be-
cause the model tended to deviate from the instructions after
seeing the long sequence of examples. For each story gen-
eration, we used the same samples but randomized the order
(as language models use information from different positions
of a long prompt differently; Liu et al., 2023). In addition
to human examples from the imagined dataset, we separately
repeated the above process by prompting GPT with human
examples from the recalled dataset.

Linguistic Measures
Sequentiality We quantified a response’s narrative flow by
following Sap et al. (2022)’s metric, sequentiality. Given a
topic summary and a story, it considers how each sentence in
the story is causally determined by the topic and its preced-
ing sentences. Intuitively, a sentence of high sequentiality is
mainly driven by its preceding sentences, whereas one with
low sequentiality is driven by the topic itself. Formally, the
sequentiality of the i-th sentence (si) is the difference between
two log-likelihoods, normalized by the sentence length:

SEQ(si) =
1
|si|

[log pLM(si | T ,s<i)

contextual

− log pLM(si | T )

topical

].

The first term is log-likelihood under a contextual model
(conditioned on the summary T and all prior sentences s<i),
and the second term is the log-likelihood under a topical
model (conditioned on the summary T alone). Following Sap
et al. (2022), we used a neural language model to measure
these likelihoods, i.e., GPT-3. The sequentiality of a story is
the average score of its sentences.

Word Affect We measured the affective content of sto-
ries using the NRC-VAD lexicon which contains valence,
arousal, and dominance ratings for over 20,000 English
words (Mohammad, 2018). VAD ratings range from 0 to 1
and higher ratings correspond to language that is more posi-
tive, more active, and more dominant (respectively). For each

story, we calculated the average word rating for each dimen-
sion. Stop words, such as “and” or “the” or “my” (Nothman,
Qin, & Yurchak, 2018), do not contain much affective infor-
mation and were removed from the analysis (56% of human
stories and 54% of GPT stories) as were any other words not
covered in the NRC-VAD lexicon (8% of words in human
stories and 6% in GPT stories).

Results
In this section, we compare human recalled and imagined sto-
ries with GPT-generated stories. We first examine GPT’s sto-
ries that responded to a prompt similar to what human imag-
ined group saw (zero-shot prompting). Then, we compare
GPT’s results with alternative prompts to test the robustness
of the results. Last, we examine GPT’s stories when GPT was
given both our original instructions along with 40 examples
of human stories (few-shot prompting).

Zero-shot Prompting
Figure 2A displays the sequentiality scores in the human
recalled, human imagined, and GPT-generated stories. We
first replicated Sap et al. (2022)’s results for human stories:
Using a paired-samples t-test, where recalled and imagined
stories were paired if sharing the summary prompt, we ob-
served that imagined stories were significantly more sequen-
tial than recalled stories (t(2571) = 31.93, p < .001), sug-
gesting that recalled stories contain more episodic details and
flow in a less expected manner than imagined stories. When
prompting GPT with instructions similar to human partici-
pants’, its stories had greater sequentiality than human recall
(t(2571) = 52.84, p < .001), supporting our hypothesis that
GPT relies primarily on semantic memory and writes stories
with greater narrative flow, as opposed to human recall which
draws on episodic details. We do not have a strong hypothesis
on the comparison between GPT-generated stories and human
imagined stories; nevertheless, we observed a small but sig-
nificant difference between them (t(2571)= 10.50, p< .001),
although this effect no longer holds when using alternative
large language models (GPT-2 or Llama2-7B; Touvron et al.,
2023) for evaluating sequentiality. Meanwhile, human re-
called stories are robustly less sequential than GPT-generated
stories and human imagined stories when using alternative
large language models for evaluating sequentiality.

Regarding the average word affect within stories (Fig-
ure 2B–D), human imagined stories contained language that
was more positive (t(2571) = 2.21, p = .027) than human re-
call, but there was no significant difference in measures of
arousal (t(2571) = 1.00, p = .32) or dominance (t(2571) =
0.64, p = .52). In contrast to human stories, GPT-generated
stories were more positive (recalled: t(2571) = 28.97, p <
.001; imagined: t(2571) = 23.82, p < .001). Additionally,
GPT had higher ratings than human stories along the other di-
mensions: its language was more active (recalled: t(2571) =
19.30, p < .001; imagined: t(2571) = 17.17, p < .001) and
more dominant (recalled: t(2571) = 29.14, p < .001; imag-
ined: t(2571) = 26.08, p < .001). This result was surprising
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Figure 2: GPT-generated stories (A) were more sequential
and (B) contained language that was more positive, (C) ac-
tive, and (D) dominant than both human recall and imagi-
nation. Error bars represent the standard error of the mean
(SEM).

as we predicted GPT to write with less affective language,
and we later discuss this in the general discussion.

Next, we explored if GPT’s results of higher sequentiality
and VAD ratings were sensitive to certain words in the origi-
nal instructional prompt it received (Prompt 1). For one, we
explored if GPT was sensitive to the words “imagined story”
as it may rely on exaggerated, fictional stories in its training
data to inform its storytelling. Therefore, we changed these
words to “event” (Prompt 2). Nonetheless, GPT-generated
stories had significantly more sequentiality than with the
original prompt (t(2571) = 2.88, p = 0.004) and had lan-
guage that was more positive (t(2571) = 11.98, p < .001),
more active (t(2571) = 11.87, p < .001), and more domi-
nant (t(2571) = 16.48, p < .001) compared to the original
prompt. Thus, using the word “event” instead of “story” did
not align GPT’s storytelling closer to human writing (see Fig-
ure 3). We also tried another prompt version (Prompt 3) in
which we added the instruction to imagine a story that was
“memorable or surprising”, which the human recall group
was also asked, but we did not include in the original prompt
to reduce biases. However, again, the sequentiality of GPT-
generated stories was significantly greater than the original
prompt (t(2571) = 10.55, p < .001), the arousal rating of
GPT’s language increased (t(2571) = 9.88, p < .001), and
the dominance rating did not change significantly (t(2571) =
−1.67, p = 0.095). Interestingly, GPT used less positive lan-
guage with this additional instruction (t(2571) =−2.22, p =
.027), though it was still more positive than both human
imagination (t(2571) = 22.62, p < .001) and human recall

Figure 3: Our major conclusions about GPT’s sequential-
ity and word affect were not overly sensitive to our original
prompt’s wording. (A) GPT’s stories were more sequential
with the new prompt alternatives than the original Prompt-1.
(B) The average valence of GPT’s language increased with
Prompt-2 and did not change with Prompt-3. (C) Arousal
and (D) dominance increased with both prompt alternatives.
Error bars represent SEM.

(t(2571) = 27.51, p < .001). In sum, our major conclusions
about the narrative flow and word affect in GPT storytelling
stay unchanged under alternative prompt wordings.

Few-shot Prompting

With our original and alternative prompts, GPT-generated
stories consistently showed higher sequentiality and VAD rat-
ings than humans. Next, we examined if additionally pro-
viding examples of human stories would help GPT align the
language of its stories (both sequentiality and average word
affect) closer to that of human stories. When providing 40
example imagined stories along with our original prompt, the
sequentiality of GPT-generated stories significantly reduced
from zero-shot prompting (t(2571) =−18.84, p < .001) such
that it was similar to human imagination (t(2571) = 1.94, p=
.053). When providing 40 example recalled stories, the se-
quentiality of GPT-generated stories was also lower than with
zero-shot prompting (t(2571) =−24.70, p < .001); however,
its sequentiality was still greater than observed in human re-
call (t(2571) = 40.45, p < .001). Thus, these story examples
were effective at helping GPT write with less sequentiality to
the extent of human imagination, but not effective enough for
the narrative flow of GPT-generated stories to align with that
of human recall (Figure 4A).

Further, when provided with human examples, the aver-
age word affect of GPT-generated stories increased (instead
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Figure 4: Effects of providing GPT with randomly-selected
human story examples. (A) GPT wrote with less narrative
flow when given examples than with zero-shot prompting.
With imagined examples, GPT’s sequentiality was similar to
that of human imagination. GPT’s language was more (B)
positive, (C) active, and (D) dominant with few-shot prompt-
ing than with zero-shot prompting. Error bars represent SEM.

of decreased) with few-shot prompting compared to the zero-
shot stories (Figures 4B–D). That is, after seeing 40 exam-
ples of imagined stories, GPT wrote with greater valence
(t(2571) = 18.64, p < .001), arousal (t(2571) = 15.04, p <
.001), and dominance on average (t(2571) = 19.85, p <
.001); and when GPT received examples of recalled stories,
the same trend held along valence (t(2571) = 22.09, p <
.001), arousal (t(2571) = 17.57, p < .001) and dominance
(t(2571) = 24.22, p < .001). This result is surprising because
the examples of human stories had lower VAD ratings.

The few-shot prompting we used so far provided GPT with
40 randomly selected examples of imagined and recalled sto-
ries. Next, we explored if specifically selecting the 40 most
(or least) sequential stories or the stories with the most (or
least) valence would lead GPT to align its storytelling more
closely to these more extreme examples (Figures 5A and 5C
display the distributions of the sequentiality of the three sets
of example stories in few-shot prompting, showing that the
random stories were indeed centered between the most and
least sequential stories). Compared to the 40 random ex-
ample stories, the sequentiality of GPT-generated stories in-
creased when providing the 40 most sequential stories (re-
called: t(2571) = 13.23, p < .001; imagined: t(2571) =
13.96, p < .001) and decreased when providing the 40 least
sequential stories (recalled: t(2571) = −11.54, p < .001;
imagined: t(2571) =−14.16, p < .001), indicating that GPT
was sensitive to the amount of narrative flow in the exam-

Figure 5: Effects of providing GPT with the most or least
sequential or valenced human story examples. Distribution
of the 40 random or most/least sequential examples from
(A) recalled and (C) imagined stories. The sequentiality
of GPT stories increased/decreased when provided with the
most/least sequential stories; (B) it was still greater than hu-
man recalled stories but (C) similar to that of human imag-
ined stories. The valence of GPT stories increased/decreased
when provided with the most/least valenced (E) recalled or
(F) imagined stories as examples, though it was still greater
than observed in human stories. Error bars represent SEM.

ples it saw (Figures 5B and 5D). While GPT’s sequentiality
was still greater than human imagination when prompted with
the most sequential examples (t(2571) = 7.99, p < .001), the
sequentiality of GPT-generated stories was less than that of
human imagined stories when given examples of the least
sequential stories (t(2571) = −4.38, p < .001). However,
GPT was unable to write with less sequentiality to the ex-
tent of human recalled stories when we provided the most
(t(2571) = 46.10, p < .001) and even the least (t(2571) =
34.58, p < .001) sequential examples of human recalled sto-
ries in the prompt. Taken together, while GPT did not write
less sequentially to the extent of human recall, it was able to
align its narrative flow with human imagination.

We repeated a similar analysis by providing GPT with ex-
amples of stories with the highest or lowest average valence
rating. Compared to few-shot prompting with 40 random
examples of recalled stories, the average valence of GPT-
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generated stories increased when given the 40 stories with
the greatest average valence (t(2571) = 13.03, p < .001) and
decreased when given the 40 stories with the lowest average
valence (t(2571) = −10.18, p < .001). Nonetheless, GPT-
generated stories’ average valence was still greater than in
human recall stories when provided with the most (t(2571) =
51.30, p < .001) and least (t(2571) = 36.73, p < .001) va-
lenced examples during few-shot prompting (Figure 5E).
Similar results held when we compared the three sets of few-
shot prompting with 40 imagined examples (Figure 5F). That
is, compared to the 40 random examples of imagined sto-
ries, GPT’s average valence increased when provided with
the 40 most valenced stories (t(2571) = 15.75, p < .001) and
decreased when provided with the 40 least valenced stories
(t(2571) =−8.55, p < .001). Again, GPT’s valence was still
greater than human imagination with the most (t(2571) =
43.16, p < .001) and least (t(2571) = 28.97, p < .001) va-
lenced examples. Taken together, GPT was sensitive to the
average valence of the example stories; however, this selec-
tive few-shot prompting was not effective for GPT to write
with affect to the same extent as human stories.

General Discussion

In this paper, we explored differences in storytelling between
humans and GPT which may stem from episodic memory
differences. We followed prior ways that episodic memory
has been analyzed in human stories, namely narrative flow
and word affect, and we compared GPT-generated stories to
an existing dataset of human recalled and imagined stories.
We found that without providing GPT with human story ex-
amples, GPT consistently wrote more sequentially and used
language that, on average, had greater valence, arousal, and
dominance ratings as compared to human stories (especially
human recalled stories; see a summary of main results in Fig-
ure 6, visualizing this in the two-dimensional space of se-
quentiality scores and valence ratings). Providing GPT with
human story examples assisted it in writing with similar se-
quentiality as human imagination but not human recall. How-
ever, human story examples were not effective at helping GPT
to write with language lower in affect to the same extent as
human stories. We now turn to a discussion of these results.

We hypothesized that, when storytelling, GPT is driven
primarily by semantic memory as it has been trained to ex-
tract regularities from its training data (analogous to semantic
memory in humans) rather than memorize from it (analogous
to episodic memory in humans). Our finding that GPT gen-
erates stories with greater sequentiality than humans supports
this hypothesis and suggests that GPT’s stories followed an
expected or common narrative flow of the story prompt (se-
mantic memory) more than details occurring in the specific
context of the event (episodic memory). Furthermore, as hu-
man imagined stories primarily rely on common knowledge
and less so on episodic details, it is not surprising that, the dif-
ference in sequentiality between human imagined stories and
GPT-generated stories is small, and that when GPT is pro-

Figure 6: A summary of our main results. Log-transformed
sequentiality scores and valence ratings for human re-
called/imagined stories, as well as GPT zero-shot/few-shot
prompting with examples from recalled/imagined stories. Er-
ror bars represent SEM.

vided with humans examples (through few-shot prompting),
it was able to align its narrative flow with the human imagined
stories but not human recalled stories.

We also hypothesized that GPT writes stories with lan-
guage lower in affect, as it lacks the kind of episodic details
human autobiographical memories have. However, we ob-
served the opposite trend that GPT wrote stories with higher
affect than human stories. Consider again the baseball story
excerpt from Figure 1: GPT’s story has language that was
higher in affect (e.g., “intense”, “electric”, “swept up in the
drama”) whereas the human recalled story mentioned once
that “it was an exciting game” but did not detail the emotion
of the game. Though our sequentiality results suggest GPT-
generated stories lacked episodic details, it might be trained
with data high in affect. For instance, GPT’s training data
contains WebText2 (Radford et al., 2019; Kaplan et al., 2020),
with links to external webpages upvoted by Reddit users that
may include stories with language high in VAD ratings. Addi-
tionally, GPT-3.5 goes through supervised fine-tuning on hu-
man demonstration and reinforcement learning with human
preference as a reward (Ouyang et al., 2022).

Prior work shows that few-shot prompting enables general-
purpose language models to better recognize the task in hand
and has the potential to override its pre-training prior (Wei et
al., 2023; Pan, Gao, Chen, & Chen, 2023). However, even
upon few-shot prompting using human recalled stories as ex-
amples, GPT was unable to write with a similar narrative flow.
This result suggests that the way GPT was trained (in extract-
ing regularities from its training data) limits its ability to write
with low narrative flow as seen in humans recall. Similarly,
GPT also was unable to align its average word affect with
that of human stories upon seeing examples. However, we
acknowledge that such an effect in word affect could be only
an indication of GPT’s training data about event knowledge
(but not in general), as the human experiments we compared
GPT with are centered around descriptions of events.
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