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Abstract. The effective thermal conductivity of composite materials with thermal con-
tact resistance at interfaces is studied by lattice Boltzmann modeling in this work. We
modified the non-dimensional partial bounce-back scheme, proposed by Han et al.
[Int. J. Thermal Sci., 2008. 47: 1276-1283], to introduce a real thermal contact resistance
at interfaces into the thermal lattice Boltzmann framework by re-deriving the redistri-
bution function of heat at the phase interfaces for a corrected dimensional formulation.
The modified scheme was validated in several cases with good agreement between the
simulation results and the corresponding theoretical solutions. Furthermore, we pre-
dicted the effective thermal conductivities of composite materials using this method
where the contact thermal resistance was not negligible, and revealed the effects of
particle volume fraction, thermal contact resistance and particle size. The results in
this study may provide a useful support for materials design and structure optimiza-
tion.

PACS: 65.80.-g

Key words: Lattice Boltzmann method, partial bounce-back scheme, thermal contact resistance,
effective thermal conductivity.

1 Introduction

It is well known that the thermal contact resistance (TCR) is caused by the low-conductivity
interfacial gap between two contact surfaces, which has significant impact in many en-
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gineering applications, such as electronic packaging [1, 2] and composite materials man-
ufacture and design [3, 4]. Because of the often tiny scale and complex shape involved,
experimental investigation is often cumbersome and even impossible, many efforts have
been made in developing theoretical model to investigate the TCR, based on two basic
surface contact modes: the conforming rough surfaces mode [5] and the nonconforming
rough surfaces mode [6, 7]. However, in practical issues there are always a lot surfaces
with irregular shapes in contact, such as the particle-particle contact in particle-reinforced
composites. Thus comes many difficulties in predicting the thermal properties of these
composites when the inner TCR is concerned. To the best of our knowledge, few remedies
are available to deal with this thorny problem, and numerical methods have therefore be-
come the alternative.

In recent years, the lattice Boltzmann method (LBM) has been developed into a suc-
cessful numerical scheme for fluid flow simulation [8, 9]. Compared with the tradi-
tional CFD methods, LBM has advantages especially for applications involving large
number of interfaces or/and complex geometries. Besides for hydrodynamics, efforts
have also been made to apply LBM to solving various fluid transport problems coupled
with electrokinetics, magnetic, thermodynamics or even chemical reactions [10–17]. At-
tempts have been made in using LBM to study the interfacial heat transfer process, and
a few models have been developed in the lattice Boltzmann method for simulation of the
thermo-hydrodynamics since 1993 [18–25]. More specifically, a single distribution func-
tion model was introduced into the lattice Boltzmann method to simulate the Rayleigh-
Bénard convection. It was however admitted that with severe numerical instability, the
applicable temperature range is limited to a narrow scope [18–20]. To overcome the draw-
back, a double distribution function model was developed [21–23], in which a density
distribution function is introduced to simulate the hydrodynamics (fluid flow), while an
internal energy distribution function to tackle the thermodynamics (heat transfer). He et
al. [23] proved that such double distribution model can appropriately treat the viscous
heat dissipation and compression work done by the pressure. However, Hes method is
too complicated to use so that several simplified versions have been subsequently de-
veloped. For instance, Peng et al. [24] proposed a simple internal energy function evo-
lution method for cases with negligible heat dissipation and compression work. Wang
et al. [25] developed a general scheme for fluid-solid interfacial conjugate heat transfer
process. Consequently, this type of method has gained wide application in predictions of
effective thermal properties of engineering multiphase materials, with results validated
by experimental data [26–30].

Furthermore, in analyzing macroscopic engineering materials, an important assump-
tion is the continuity held at interfaces, i.e., thermal contact resistance is negligible. One
result this assumption led to is that the effective thermal conductivity of granular porous
materials increases with the decreased pore size for a given porosity [31], which agreed
well with experimental data from both natural and engineering materials [32, 33]. How-
ever, some recent measurements for nanoporous materials have shown some contradic-
tory results that the effective thermal conductivity actually decreases with the reduced
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pore size [34] or particle size as in silica aerogels [35]. It is now known that the impact
of all interfacial mechanisms become more significant at smaller, especially nanoscale
[36,37]. Growing importance of the thermal contact resistance and the increased number
of interfaces in finer particles were ascribed to cause the conflicting predictions. Again
for more accurate prediction, the thermal contact resistance has to be considered, how-
ever tough and challenging. Wang et al. [38] tackled the problem by assuming that the
thermal contact resistance layers between the particles forming a network frame in a
composite system so as to take the thermal contact resistance into account. However this
method is limited by this assumed uniform contact resistance. Very recently, Yoshida et
al. [39] proposed a prospective boundary scheme for two-phase interface: using two sim-
ple modifications of the collision and streaming process, the continuities of the physical
variable and its flux are simultaneously satisfied in a transient analysis. However, the ac-
tual interfacial thermal contact resistance between two phases is still ignored. To take the
thermal contact resistance into consideration more explicitly, Han et al. [40] proposed a
partial bounce back (PBB) scheme for the LBM framework. Han’s strategy seems promis-
ing; however, their derivation of TCR expression is dimensionally inhomogeneous and
hence wrong, as discussed in detail later.

Therefore in this work, the PBB scheme will be revisited and re-derived to obtain its
correct dimensional formula for TCR. After discussing its applicability, we validate the
new scheme for some simple cases by comparisons with the corresponding theoretical
resolutions. Furthermore, we will apply this modified scheme to predict the effective
thermal conductivity of particle-reinforced composites where the TCR is non-negligible,
so as to explore the major factors that influence the effective thermal properties of the
materials.

2 Numerical methods

2.1 LBM scheme for thermal conduction

Consider a pure thermal conduction in a composite material without any heat source.
The general governing equation (Poisson equation) for heat transfer is

ρcp
∂T

∂t
=∇·(λ∇T), (2.1)

where T is the temperature, ρ the density, λ the thermal conductivity which may depend
on position, and cp the specific heat capacity. To solve Eq. (2.1) in such multiphase system
with high computational efficiency, a simplified thermal lattice Boltzmann method has
been proposed [24,25]. Accordingly the energy evolution equation can be generally given
as

gi (x+eiδt,t+δt)−gi (x,t)=−
1

τg

[

gi (x,t)−g
eq
i (x,t)

]

, (2.2)
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where gi and g
eq
i are respectively the internal energy distribution function and corre-

sponding equilibrium distribution function with discrete lattice velocity ei along the i-th
direction; δt is the time step and τg is the relaxation time for gi. For a two-dimensional
nine-speed (D2Q9) model, there are

ei =







(0,0) i=0,
(±1,0)c,(0,±1)c i=1 to 4,
(±1,±1)c i=5 to 8,

(2.3)

g
eq
i =























(0,0) i=0,

1

6
ρcpT i=1 to 4,

1

12
ρcpT i=5 to 8,

(2.4)

and

τg=
3

2

λ

ρcpc2δt
+0.5; (2.5)

while for a three-dimensional fifteen-speed (D3Q15) model, there are instead

ei=







(0,0,0) i=0,
(±1,0,0)c,(0,±1,0)c,(0,0,±1)c i=1 to 6,
(±1,±1,±1)c i=7 to 14,

(2.6)

g
eq
i =























0 i=0,

1

9
ρcpT i=1 to 6,

1

24
ρcpT i=7 to 14,

(2.7)

and

τg =
9

5

λ

ρcpc2δt
+0.5, (2.8)

where c is the lattice speed that theoretically can take any positive value only to insure
the τg value within (0.5,2) [25, 41]. According to Ref. [42], the temperature and the heat
flux can be calculated as

T=
1

ρcp
∑

i

gi, (2.9)

q=

(

∑
i

eigi

)

τg−0.5

τg
. (2.10)
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Finally, the effective thermal conductivity λe f f can be determined by the solved tem-
perature field:

λe f f =
L∫ q·dA

∆T∫ dA
, (2.11)

where q is the steady heat flux through the cross section area dA between the temperature
difference ∆T with a distance L.

Thus the unsteady heat conduction described by Eq. (2.1) can be described and solved
through such a form of energy evolution in the framework of Eqs. (2.2)-(2.10), termed as
thermal lattice Boltzmann method (TLBM). Then, steady-state heat conduction can be
simply treated as a special case when the time-dependent term vanishes.

The critical issue here however is the ambiguity which one is the solved property,
thermal conductivity (λ) or thermal diffusivity (a = λ/ρcp). An expedient solution for
this problem was to assume ρcp = 1 [26, 43], so that λ is numerically equal to a. This
assumption ρcp = 1 has been adopted widely and works well for cases with negligible
thermal contact resistance [26–30, 44] However when the temperature and heat flux at
interfaces have to be considered, the assumption (ρcp=1) may lead to conflict so that the
entire framework needs to be reformulated.

So for steady-state heat conduction in a multi-component system, the time-dependent
term vanished and Eq. (2.1) reduces into the simple Laplace equation,

∇·(λ̃∇T)=0. (2.12)

To proceed within the thermal lattice Boltzmann framework, it can be treated as the
temperature “diffusing” through the multiphase lattice system. The position-dependent
temperature diffusivity, λ̃, has the same value as the real thermal conductivity, but with
a different dimension (m2/s). We rebuild a temperature evolution equation

g̃i (x+eiδt,t+δt)− g̃i (x,t)=−
1

τg̃

[

g̃i (x,t)− g̃
eq
i (x,t)

]

. (2.13)

The equilibrium distribution functions and the relaxation times in the temperature evo-
lution equations for D2Q9 are:

g̃
eq
i =























0 i=0,

1

6
T i=1 to 4,

1

12
T i=5 to 8,

(2.14)

and

τg̃ =
3

2

λ̃

c2δt
+0.5, (2.15)
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for D3Q15, we have

g̃
eq
i =























0 i=0,
1

9
T i=1 to 6,

1

24
T i=7 to 14,

(2.16)

and

τg̃ =
9

5

λ̃

c2δt
+0.5. (2.17)

It is worth mentioning that the dimensions of these two sets of equilibrium distribu-
tion functions, Eq. (2.4) vs. Eq. (2.14) and Eq. (2.7) vs. Eq. (2.16), are different. As a result,
the local macroscopic temperature and heat flux at each node are statistically calculated
by

T=∑
i

g̃i, (2.18)

q=

(

ρcp∑
i

ei g̃i

)

τg̃−0.5

τg̃
. (2.19)

Note that the formula of heat flux differs from the previous works [40] as it depends
not only on the temperature distribution function but also on the heat capacity of local
phase.

2.2 Revisit of PBB formulation for TCR

To account for the TCR within the LBM framework, a PBB scheme [40] was proposed by
introducing a non-dimensional parameter δ whose value is within [0, 1], representing the
bounced-back fraction of temperature distribution when trying to stream through the
phase interface. Fig. 1(a) illustrates its simple idea that, at the interface only a fraction
(1−δ) of the evolution quantity on a boundary node I of object Ω1 can be propagated
to the boundary node J of object Ω2. Clearly, the adjacent boundary of two phases is
completely insulated if δ= 1; while the TCR is negligible if δ= 0. Logically, if the TCR
at an interface is non-negligible, then 0< δ<1. Thus, all the complicities in dealing with
intricate interfacial contact are condensed into determining this single parameter δ.

The connection between this PBB parameter, δ, and the effective TCR, Rc, at two con-
tacting phases was established by Han et al [40] using the continuity of heat flux at the
interface as

Rc=
3δ

1−δ
. (2.20)
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(a)

(b)

Figure 1: (a) The schematic of the partial bounce-back scheme at interface: only a fraction (1−δ) of the
streamed function can be propagated from one object (Ω1) to the other (Ω2). Rc is the thermal contact
resistance. (b) A 1D heat conduction problem without thermal contact resistance, heat flows only in the x
direction from the node I to node J.

This correlation looks simple and easy, and has been used for qualitative analysis
of TCR effects on materials properties [40]. However, it is noticed that such a non-
dimensional formula is hard to connect the predictions with practical applications, and
as a result the quantitative investigation of TCR effects is unavailable. Therefore a recon-
sideration of this PBB scheme becomes necessary and demanded.

2.3 A corrected PBB scheme for dimensional TCR

Here, we are to correct the formula of dimensional TCR based on the PBB scheme. As no
heat source is considered there, the existence of TCR may change the local temperature
but not the continuity of heat flux. Considering the contact interface of two objects with
the same heat capacity (ρcp), we re-derived and obtained the dimensional TCR as

Rc=
3δ

ρcp(1−δ)c
, (2.21)
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where the dimension of Rc is correctly m2K/W. Two main reasons might lead to the
incorrect dimensionless formula of TCR in the previous work [40]: one was the incorrect
expression of heat flux, and the other was the non-dimensional LBM framework used in
Ref. [40] which led to the lattice speed c missing in the formula.

Further, if the heat capacities (ρcp) of the two contact objects are different, we obtained
a new dimensional TCR as

Rc=
3δ(T I−T J)

[(ρcp)1T I−(ρcp)2T J ](1−δ)c
, (2.22)

where the subscripts “1” and “2” correspond to objects Ω1 and Ω2 respectively, the super-
scripts “I” and “J” correspond to the adjacent nodes I and J shown in Fig. 1(b). Detailed
derivation process for Eq. (2.22) is presented in the Appendix.

This is an implicit scheme for TCR because Rc and the temperatures adjacent to the
interface (T I ,T J) influence each other. For two contact particles with different heat ca-
pacities, Eq. (2.22) indicates that the interface temperature cannot be eliminated from the
formula as before. This is a bad news for us which brings much trouble for applications,
and we are still putting efforts to find a better way to embed the dimensional TCR in the
thermal LBM framework.

Therefore, in the present study hereafter, we are still focusing on the particle-reinforced
composites with only one type of particles. Even though the liquid-solid interfacial ther-
mal resistance exists, it is generally negligibly small compared with the solid-solid ther-
mal contact resistance in composite systems. This work will demonstrate how the solid-
solid TCR influences the effective thermal conductivity of the composite materials.

3 Results and discussion

Furthermore our simulation is confined in a domain with top and bottom as the isother-
mal boundaries and the surrounds as the insulated boundaries. For such given domain
boundaries, we can follow the non-equilibrium bounce-back rule proposed by Zou and
He [45] for the isothermal ones, and the Neumann method [24,25] for the insulated ones,
respectively.

3.1 Benchmarks

To validate the new dimensional PBB scheme, we compare the results for some simple
cases already with known theoretical solutions. Consider pure steady-state heat con-
duction between two rectangular contacting solids with the same properties shown in
Fig. 2(a). Thermal conductivities of the solids are λ1 =λ2 = 100W/(mK), and the width
h=1m. The top and bottom of the domain are isothermal at T1=100◦C and T2=0◦C, and
the left and right sides are insulated. Thence, the heat flux q and the effective thermal
conductivity λe f f have analytical solutions for a given TCR Rc.
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(a)

(b)

Figure 2: Validations of the modified PBB scheme. (a) sketch of a pure steady state heat conduction prob-
lem between two rectangular contacting solids; (b) Temperature profiles in the y-direction for given different
dimensional Rc.

In our simulations, we used 100 lattices in the vertical y direction, and the lattice space
was 0.01 m consequently. To insure the value of τg within (0.5, 2), we set the lattice speed
at c= 20000m/s. For these given parameters, the PBB parameter δ can be calculated by
Eq. (2.20) for any given Rc. Fig. 2(b) shows the vertical temperature profiles for five dif-
ferent Rc. The temperature is continuous when Rc=0 at the interface and no heat flux go



1046 C. Xie et al. / Commun. Comput. Phys., 17 (2015), pp. 1037-1055

Table 1: Comparisons between simulation results and analytical solutions for different Rc.

Parameters Results

q(W/m2) λe f f (W/(mK))

Rc(m2K/W) δ Analytical Present Analytical Present

values simulations values simulations

0 0 5000 5000 100.00 100.00

0.001 20/23 4761.9 4761.9 95.238 95.238

0.01 200/203 3333.3 3333.3 66.667 66.667

0.1 2000/2003 833.33 833.33 16.667 16.667

1 20000/20003 98.039 98.039 1.9608 1.9608

∞ 1 0.0000 0.0000 0.0000 0.0000

through the interface when Rc=∞. For finite Rc, the modeling results are compared with
the analytical solutions in Table 1. Excellent agreements validate the derived dimensional
PBB scheme within the thermal LBM framework.

3.2 Applications for particle-reinforced composites

After validation, we use this scheme to predict the effective thermal property of particle-
reinforced composites. Considering the random distribution and arbitrary geometry
characteristics of particles in composites, we used the quartet structure generation set
(QSGS) algorithms [26] to generate microstructures of the composites. Some generated
structures with various particle volume fractions are shown in Fig. 3. Different from the
previous work which used 0 or 1 to only recognize particle or matrix materials [38], we
here assign each generated particle a unique number to distinguish it from others, so that
we can recognize the interfaces between particles.

Unless specified, the following simulations were performed in a two-dimensional 0.2
× 0.2 mm2 domain on a 200×200 grid. The boundary temperatures are T1 =10◦C at the
top and T2 = 0◦C at the bottom, respectively. The left and right sides are adiabatic. The
other simulation parameters include: the average diameter of particles d=10µm, the ther-
mal conductivities for matrix phase λm=1W/(mK) and for particles λp=100W/(mK), the
lattice speed c=3×108m/s. We estimated the thermal contact resistance between particles
at Rc=1×10−6m2K/W by utilizing the Clausing and Chao’s model [6], and neglected the
thermal contact resistance between the particles and the low thermally conductive matrix
phase.

We studied the impact of Rc on the effective thermal conductivity of composites, λe f f ,

for a given Rc value, 1×10−6m2K/W at first, compared with the case without TCR, Rc=0
as shown in Fig. 4(a). TCR lowers the effective thermal conductivity and the TCR effect
increases with the particle volume fraction. Significant deviations between the two cases
are found once the particle volume fraction (ϕ) is higher than 0.5. The reason lies in the
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(a) (b) 

  (c) (d) 

Figure 3: Generated microstructures of particle-reinforced composites with different particle volume fractions ϕ
by QSGS. (a) ϕ= 0.2. (b) ϕ= 0.4. (c) ϕ= 0.6. (d) ϕ= 0.8. The gray area represents particles and the pure
black represents matrix phase. Each particle is given a number to be recognized. The domain is 2 mm×2 mm
and the grid is 200×200. The averaged diameter of particles is d=10µm.

increased contact areas with rising ϕ value. When the particle volume fraction is very
small (such as ϕ<0.3), the particle-particle contacts are quite rare, as shown in Fig. 3(a),
and therefore the effect of TCR is negligible. Fig. 4(b) shows the temperature contours
for the same geometry at ϕ= 0.8 with or without TCR. When the TCR is not negligible
(Rc=1×10−6m2K/W), the temperature contours are broken into finer pieces by the solid-
solid contact interfaces and the temperature drop at each contact interface will reduce the
overall thermal conductivity of the composite materials.

For structure design of particle-reinforced composites, the size effect of particles on
the effective thermal conductivity is a significant issue. As stated before, the negligible
TCR assumption, which is suitable for most macroscopic engineering materials [32, 33],
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(a)

(without TCR) (with TCR) 

(b)

Figure 4: Thermal conductions for different particle volume fractions with (Rc = 1×10−6m2KW) or without
(Rc=0) thermal contact resistance. (a) Effective thermal conductivities; (b) Temperature contours at ϕ=0.8.

leads to an increasing effective thermal conductivity with the decreased particle size at
a given porosity [31]. However, for nanoporous materials such as in silica aerogels [35],
experimental data has shown an opposite trend with the reduced particle size [34]. The
increased number of interfaces for finer particles and thus non-negligible thermal resis-
tance cause the conflicting results. By assuming the thermal contact resistance layers
between particles as a gas layer network frame in the composite system, Wang et al. [38]
obtained the same trend of particle size effect as the experiments of nanoporous ma-
terials. However assumption of uniform and constant contact resistance, equal to that
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Figure 5: Effect of particle size on composite effective thermal conductivity for different Rc at ϕ=0.8.

of the matrix phase, limits the applicability of the method. Using the dimensional PBB
scheme developed in this work, we can alter the value of TCR independently and the
particle size, so as to re-examine the particle size effect on the overall effective thermal
conductivity. The TCR value between particles varies from 0 to 1×10−6m2K/W, and we
consider four statistically averaged diameters of particles of d= 5, 10, 15 or 20µm. The
solid particle fraction is ϕ= 0.8. Fig. 5 shows the effective thermal conductivity against
the particle size, and mixed trends are shown. With a low thermal contact resistance,
Rc, between solid particles, the effective thermal conductivity of composites, λe f f , de-
creases with the increasing particle size, which agrees with the reported results from
the engineering macroscopic materials. Conversely when Rc is beyond a certain level,
Rc > 10−8m2K/W in our simulations, λe f f increases with the particle size. This means
that if the thermal contact resistance is not negligible, the smaller the particles, the lower
the effective thermal conductivity of composites for a given particle volume fraction. This
trend agrees with the observations for nanoporous materials. Smaller particles increase
the chance of particle-particle contact, hence denser interfaces, and more significant im-
pact of TCR: this may provide a useful insight for designs and structure optimizations
for nanomaterials.

4 Conclusions

To study the effective thermal conductivity of composite materials with thermal con-
tact resistance at particle-particle interfaces, we developed the partial bounce-back (PBB)
scheme to include the thermal contact resistance at interfaces into the thermal lattice
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Boltzmann framework by re-deriving the redistribution function of heat at the phase
interfaces for a corrected dimensional TCR formulation. The mechanism of simplified lat-
tice Boltzmann scheme for solving the stead-state heat conduction equation is re-examined
and revealed. After validation of the simulation results with the corresponding theo-
retical solution for a simple case, we applied this new method to the effective thermal
conductivities of composite materials where the contract thermal resistance was not neg-
ligible, and demonstrated the effects of the particle volume fraction, the value of ther-
mal contact resistance and the particle size. The results showed that (1) the existence of
TCR lowered the effective thermal conductivity and the TCR effect increased with the
particle-particle interfaces; (2) the connection between the effective thermal conductivity
and particle size is complex. With a low thermal contact resistance, the effective ther-
mal conductivity of composites decreased with the increasing particle size, which agreed
with the facts in macroscopic engineering materials. However if the thermal contact re-
sistance was not negligible, a smaller average size of particles led to a lower effective
thermal conductivity of composites for a given volume fraction, which agreed with the
observations for nanoporous materials.
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A Derivation of the dimensional TCR

Here we present the details in obtaining Eqs. (2.21) and (2.22) for the dimensional TCR.
For the system shown in Fig. 1(a), the thermal contact resistance Rc can be obtained

from subtraction of the total thermal resistance RT between nodes I and J and the thermal
resistance per lattice grid Rg as

Rc=RT−Rg. (A.1)

Since the thermal resistance is defined as

R=
∆T

q
=

T I−T J

q
, (A.2)

we need to find the relation between the temperature difference and heat flux from node
I to J for RT and Rg respectively.

In order to get the lattice gird resistance Rg, we consider a 1D heat conduction prob-
lem as shown in Fig. 1(b). Heat flows from node I to J. For steady state, we can establish
the following relations for the temperature distribution functions:

g̃2 = g̃4= g̃
eq
2 =

1

6
T; g̃5= g̃8; g̃6= g̃7. (A.3)
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Based on Eq. (2.19), the axial (denoted by x) heat flux is calculated as

qx =(ρcp)1

(

∑ei,x g̃I
i

) τg̃−0.5

τg̃
=(ρcp)2

(

∑ei,x g̃J
i

) τg̃−0.5

τg̃
. (A.4)

Denoting q′x =ρcp ∑ei,x g̃i, we have

q′x =(ρcp)1c
[

g̃I
1− g̃I

3+2
(

g̃I
5− g̃I

7

)]

=(ρcp)2c
[

g̃J
1− g̃J

3+2
(

g̃J
5− g̃J

7

)]

. (A.5)

By using Eq. (A.3), the temperature at node I is

2

3
T I = g̃I

1+ g̃I
3+2

(

g̃I
5+ g̃I

7

)

. (A.6)

Combining Eqs. (A.5) and (A.6) gives















g̃I
1+2g̃I

5 =
1

3
T I+

1

2

q′x
c(ρcp)1

,

g̃I
3+2g̃I

7 =
1

3
T I−

1

2

q′x
c(ρcp)1

.

(A.7)

Similarly, for node J:














g̃J
1+2g̃J

5 =
1

3
T J+

1

2

q′x
c(ρcp)2

,

g̃J
3+2g̃J

7 =
1

3
T J−

1

2

q′x
c(ρcp)2

.

(A.8)

According to the evolution equation of the temperature distribution functions, we get















(ρcp)2g̃J
1 =(ρcp)1

[

g̃I
1−

1

τg̃

(

g̃I
1−

1

6
T I

)]

,

(ρcp)2g̃J
5 =(ρcp)1

[

g̃I
5−

1

τg̃

(

g̃I
5−

1

12
T I

)]

.

(A.9)

By substituting Eq. (A.9) into Eqs. (A.7) and (A.8),

q′x =
2cτg̃

3

[

(

ρcp

)

1
T I−

(

ρcp

)

2
T J
]

, (A.10)

and

qx =
τg̃−0.5

τg̃
q′x =

2c

3
(τg̃−0.5)

[

(

ρcp

)

1
T I−

(

ρcp

)

2
T J
]

. (A.11)

Based on the definition, the thermal resistance per lattice grid Rg is

Rg=
∆T

qx
=

3(T I−T J)

2c(τg̃−0.5)
[(

ρcp

)

1
T I−

(

ρcp

)

2
T J
] . (A.12)
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Next, we need to obtain the total thermal resistance RT between nodes I and J for the
system shown in Fig. 1(a). Multiplying the temperature distribution function g̃ by the
heat capacity (ρcp), and based on the PBB scheme mentioned in Section 2.2, we recover
the energy redistribution correlation as







(ρcp)1g̃J
3=(ρcp)1δǧI

1+(ρcp)2(1−δ)ǧJ
3, (A.13a)

(ρcp)1g̃J
7=(ρcp)1δǧI

5+(ρcp)2(1−δ)ǧJ
7, (A.13b)

where






























































ǧI
1= g̃I

1−
1

τg̃

(

g̃I
1−

1

6
T I

)

, (A.14a)

ǧI
5= g̃I

5−
1

τg̃

(

g̃I
5−

1

12
T I

)

, (A.14b)

ǧJ
3= g̃J

3−
1

τg̃

(

g̃J
3−

1

6
T J

)

, (A.14c)

ǧJ
7= g̃J

7−
1

τg̃

(

g̃J
7−

1

12
T J

)

(A.14d)

are the post-collision temperature distribution functions.
Combining Eqs. (A.14a) and (A.14b) leads to

ǧI
1+2ǧI

5 =

(

1−
1

τg̃

)

(

g̃I
1+2g̃I

5

)

+
T I

3τg̃
. (A.15a)

Similarly, for node J:

ǧJ
3+2ǧJ

7 =

(

1−
1

τg̃

)

(

g̃J
3+2g̃J

7

)

+
T J

3τg̃
. (A.15b)

Summing Eqs. (A.13a) and (A.13b) and using Eq. (A.7) give

g̃I
3+2g̃I

7=δ
(

ǧI
1+2ǧI

5

)

+
(ρcp)2

(ρcp)1
(1−δ)

(

ǧJ
3+2ǧJ

7

)

=
1

3
T I−

1

2

q′x
c(ρcp)1

. (A.16)

Substituting Eq. (A.15) into Eq. (A.16), we have

q′x =
1−δ

3

τg̃

δ(τg̃−1)+0.5
c
[

(ρcp)1T I−(ρcp)2T J
]

, (A.17)

and

qx =
τg̃−0.5

τg̃
q′x =

1−δ

3δ(τg̃−1)+1.5
c(τg̃−0.5)

[

(ρcp)1T I−(ρcp)2T J
]

. (A.18)
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Based on Eq. (A.2), the total thermal resistance RT is

RT =
3δ(T I−T J)

c(1−δ)
[

(ρcp)1T I−(ρcp)2T J
]+

3(T I−T J)

2c(τg̃−0.5)
[

(ρcp)1T I−(ρcp)2T J
] . (A.19)

Finally, by substituting Eqs. (A.12) and (A.19) into Eq. (A.1), the thermal contact resis-
tance Rc is obtained, as the form of Eq. (2.22).
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