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Abstract

Proteins are effector molecules that mediate the functions of genes!-2 and modulate
comorbidities3-19, behaviors and drug treatments!!. They represent an enormous potential
resource for personalized, systemic and data-driven diagnosis, prevention, monitoring and
treatment. However, the concept of using plasma proteins for individualized health assessment
across many health conditions simultaneously has not been tested. Here, we show that plasma
protein expression patterns strongly encode for multiple different health states, future disease risks
and lifestyle behaviors. We developed and validated protein-phenotype models for 11 different
health indicators: liver fat, kidney filtration, percentage body fat, visceral fat mass, lean body
mass, cardiopulmonary fitness, physical activity, alcohol consumption, cigarette smoking, diabetes
risk and primary cardiovascular event risk. The analyses were prospectively planned, documented
and executed at scale on archived samples and clinical data, with a total of ~85million protein
measurements in 16,894participants. Our proof-of-concept study demonstrates that protein
expression patterns reliably encode for many different health issues, and that large-scale protein
scanning?2-16 coupled with machine learning is viable for the development and future
simultaneous delivery of multiple measures of health. We anticipate that, with further validation
and the addition of more protein-phenotype models, this approach could enable a single-source,
individualized so-called liquid health check.

As populations worldwide are increasingly affected by multimorbidity and avoidable chronic
health conditions, the need to prevent illness is increasing!’. In response, healthcare
providers have instituted preventative medicine programs. For example, the UK National
Health Service has implemented a triple prevention strategyl8 with initiatives such as Health
Check?®, Healthier You2® and the National Diabetes Prevention Programme20, The
advantages of such approaches are that they are inexpensive, cost effective and scalable2C.
However, the tools key to making them useful could be improved beyond taking medical
history, a limited number of laboratory tests and group participation in health coaching.
While the low-cost tests and assessments of lifestyle are prognostic on a population level,
long-term adherence is difficult to sustain?! and a process that is not individualized cannot
be optimal for everyone.

Nat Med. Author manuscript; available in PMC 2020 June 02.
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Applications of big data and systems medicine have been suggested to provide additional
information to transform healthcare2223, but these claims depend on the degree to which the
information sought is encoded within the data source and whether it can be easily extracted.
There is some evidence for reduced healthcare utilization associated with information-rich
physiologic health measurements24, but scalability is limited by the high cost of generating
these data. This study evaluates whether protein scanning can fill the gap between
contemporary demands for practicality and low cost and the future promise of the impact of
personalized, systemic and data-driven medicine.

Proteins regulate biological processes and can integrate the effects of genes with those of the
environment, age, comorbidities, behaviors and drugs?. There are about 19,000 human genes
coding for approximately 30,000 proteins?®. Of these, up to 2,200 proteins enter the
bloodstream by purposeful secretion to orchestrate biological processes in health or in
disease, including hormones, cytokines, chemokines, adipokines and growth factors2. Other
proteins enter plasma through leakage from cell damage and cell death. Both secreted and
leakage proteins can inform health status and disease risk. We therefore hypothesized that
protein scanning could deliver comprehensive individualized health assessments—but with
single-source convenience and greater usability in typical medical practice. While this
approach using modified aptamers has gained provenance for discovering and understanding
gene—-protein interactions?, drug pharmacology!?, biological control systems2, biomarkers in
individual diseases and risks3-8, aging® and obesity?, it has not been evaluated previously
as a potentially holistic, quantitative health assessment for simultaneous evaluation of
multiple health issues.

In this proof-of-concept study based on five observational cohorts in 16,894 participants, we
evaluated the ability of the scanning of ~5,000 proteins in each plasma sample to
simultaneously capture the individualized imprints of current health status, the impact of
modifiable behaviors and incident risk of cardiometabolic diseases (diabetes, coronary heart
disease, stroke or heart failure).

Models were developed for 11 of 13 predefined health measures; their performance metrics
are shown in Table 1 and graphically in Fig. 1. Success was defined as at least equivalent
performance of a validated model to the best available comparator (cardiovascular (CV) risk
and incident diabetes risk, measured by C-statistic and/or net reclassification index
(NRI27:28) (versus reference American College of Cardiology (ACC)/American Heart
Association (AHA) risk score)). Where there was no comparator, success was a high degree
of correlation with a truth standard (Spearman correlation coefficients >0.6 (that is, /2 >
0.36) or, for binary measures, an area under the curve for receiver operating characteristic
(AUC) > 0.7).

For current health states, protein-phenotype model performance metrics in the validation
datasets are as follows: predicting presence/absence of liver fat by ultrasound: AUC = 0.83
for proteins, AUC = 0.64 for the best clinical model using age, sex, alcohol, statins and pre-
diabetes status; predicting kidney function, estimated glomerular filtration rate (eGFR)
above/below 60 ml min~1: AUC = 0.94; predicting percentage body fat (kg) by DEXA: /2 =
0.92 for proteins and 0.74 for the best clinical model using sex, height and weight;
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predicting visceral fat (kg) by DEXA: /2 = 0.70; predicting lean body mass (kg) by DEXA:
72 = 0.82 for proteins and 0.74 for the best clinical model using age, sex and height;
predicting cardiopulmonary fitness (VO, max ml min~1 kg=1): 2 =0.71.

For modifiable behaviors, model validation performance metrics are as follows: predicting
average daily physical activity energy expenditure (kJ kg~ d™1) from individually calibrated
heart rate and movement sensing: 72 = 0.38; predicting alcohol consumption on self-reported
questionnaires above or below UK guidelines of 14 units per week, separate models for men
and women: AUC = 0.86 for women and 0.82 for men; predicting current cigarette smoking
on self-reported questionnaires: AUC = 0.82.

For future cardiometabolic risks, model validation performance metrics are as follows:
predicting incident diabetes in pre-diabetics within 10 years: accuracy 67% versus 61% for
the best oral glucose tolerance model trained in the same participants using combined fasting
and peak glucose levels; predicting primary CV events (myocardial infarction, stroke,
hospitalization for heart failure or CV death) within 5 years: C-statistic of 0.66 and NRI =
+0.21 versus the reference 2013 ACC/AHA atherosclerotic CV (ASCVD) risk score, which
had a C-statistic of 0.65.

There were two unsuccessful model attempts: we found no significant proteins that predicted
future body weight 5 years after blood sampling when evaluated in the incident diabetes
subset of Whitehall 11; and preliminary model correlations within the Fenland study
predicting macronutrient intake by questionnaire (dietary fat, carbohydrate and protein
intake) had /2 values of only ~0.1 each.

Overall, each successful model incorporated between 13 and 375 protein measurements,
with a total of 891 unique human proteins incorporated across all models. The top three
proteins with the largest mathematical contribution to each model, along with their
biological relevance to the phenotype, are shown in Table 2, and complete protein lists for all
the models can be found in Supplementary Table 1. The proportionate degree of protein
overlap across phenotype models is shown in Table 3. Overall, the degree to which proteins
in one model were represented in another was modest, with a mean of 12% shared. The most
frequently selected individual protein was leptin, which was important for percentage total
body fat, visceral fat, physical activity and cardiorespiratory fitness. Within the 110 possible
cross-model comparisons in Table 3, only 12 had >25% overlap in proteins shared across
models. The highest combined overlap was between visceral fat and liver fat (38% of
visceral fat proteins were represented in the liver fat model and (coincidentally) 38% of the
liver fat proteins were represented in the visceral fat model). Of the 96 proteins in the model
for visceral fat, 29, 29 and 38% were shared with incident diabetes, lean body mass and liver
fat, respectively. Of the 115 proteins in the protein-phenotype model for lean body mass, 29,
26 and 26% were shared with the visceral fat, physical activity and VO, max models,
respectively.

Nat Med. Author manuscript; available in PMC 2020 June 02.
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Discussion

In this large proteomic study representing a set of prospectively defined analyses of
retrospective, archived samples and data from five well-characterized cohorts, approximately
5,000 proteins were measured in nearly 17,000 participants, resulting in ~85 million
individual protein measurements. The results were analyzed rigorously by predefined
statistical plans that relied on several state-of-the-art supervised machine learning
approaches.

The intent of this proof-of-concept study was to evaluate the potential of protein scanning in
becoming a sole information source capable of characterizing multiple elements of an
individual’s current health state, modifiable behaviors and future cardiometabolic health
risks from a single blood sample. Capturing health information in each of these domains
would be a prerequisite for an idea of a future so-called liquid health check.

The objectives were largely fulfilled. Patterns of scanned plasma proteins were validated for
six current health states, three behaviors and two key future disease risks. The validation of
these protein-phenotype models, each consisting of 13-375 protein measurements involving
a total of 891 human proteins, provides proof of concept for a scalable, individualized and
holistic proteomic health assessment that might be delivered from plasma proteins alone.

The models we developed predicted results from some of the best clinical or physiological
measures relevant to preventative health?%-34, Acquiring the same information using
standard techniques would require physician examination, laboratory testing, exercise stress
testing and imaging assessments, with up to nine different patient appointments and
potentially thousands of pounds in costs per patient, as shown in Supplementary Table 2.
While some of the models demonstrated high performance (for example, the /2 of 0.91 for
percentage body fat), others had only modest prognostic power (for example, the C-statistic
of 0.66-0.69 for CV events); however, this was still modestly better than traditional risk
factors and could also add value in overcoming the incomplete utilization of risk calculation
in primary care.

An important feature of our study is the use of a sole information source (that is, a single
blood draw) for protein-phenotype models. This was a key objective of our health check
proof of concept, and therefore we did not include demographic or known risk factors in the
models—unless absolutely necessary to achieve desired performance. This approach enabled
the machine learning algorithms to include proteins that represented the biology of clinical
and demographic factors where useful. For the same reason, we also did not test whether the
models could be further enhanced by the addition of other features (history, physical signs,
laboratory tests or genetic information). It is possible that these multi-source models could
improve absolute models’ performance, although their inclusion has potential implications
for increasing costs and loss of convenience.

Another nonconforming feature of this study is its separation from biological analysis. We
did not use any biological plausibility or causality information from the literature for feature
selection, because most proteins scanned have never been measured at scale and because
some of the proteins in our models are leakage proteins that might inform cell injury rather
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than biological causality. A full biological analysis of proteins in the models is ongoing;
however, this is made complex by the algorithms’ biases for correlated features and their
selection of proteins for normalizing adjustments not related to the target physiology.
Nevertheless, as a simplified alternative, we present the biological functions of the top three
proteins that make the greatest mathematical contribution to each of the 11 successful
models in Table 2. All proteins included in the 11 successful models can be perused in
Supplementary Table 1, and all proteins measured in Supplementary Table 3. The degree of
sharing of proteins across phenotype models shown in Table 3 was modest, averaging 12%
(range 0-38%). The individual proteins’ functions and the sharing of proteins between
models were largely physiologically plausible. The individual protein with highest impact in
multiple models was the appetite and metabolism regulator, leptin, which was included in
percentage body fat, visceral fat, physical activity and cardiopulmonary fitness models. The
highest overlap across models was the coincident inclusion of proteins in the models of liver
fat, visceral fat and incident diabetes.

One limitation of our study is the nature of the truth standards we used for model training. In
some cases, other good techniques exist (for example, liver biopsy or magnetic resonance
imaging as alternatives to ultrasound for detection of liver fat) but in all cases the chosen
reference measures we used have widespread use in medicine. In other cases, self-reported
measures such as alcohol and smoking are subject to individuals’ truthfulness, in which case
we depended on the careful evaluations made across the cohort studies that can now be
applied to individuals.

Another limitation of our study is that the populations’ characteristics may limit the potential
generalizability of the results; in particular, a Caucasian bias in some of our cohorts will
demand calibration testing in different populations. Similarly, there is a bias in model
development thus far towards metabolic health that limits claims of comprehensiveness. An
obvious omission here is cancer, to which earlier versions of the SomaScan modified-
aptamer assay have been applied3®36, but these cancer findings have not yet been translated
to the current, more advanced, platform. Finally, the greatest potential value for such
assessments is likely to come from their sensitivity to longitudinal change in health status or
risks; future studies will have to investigate this question.

In conclusion, this proof-of-concept study shows that scanned protein expression patterns
encode for several markedly different types of health information. It is thus conceivable that,
with further validation and the potential for expansion of the number of tests, a
comprehensive, holistic health evaluation using a battery of protein models derived from a
single blood sample could be performed. The next step is to test the applicability of the
protein models that we have derived and validated in observational cohorts under research
conditions in real-world healthcare systems.

Study design.

We prespecified 13 distinct measures of current health, modifiable behaviors and incident
disease risks that are recognized by health experts as useful and/or commonly used for
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preventative health?%-33, These have been well characterized in at least one of five
independent cohort studies as the truth standards for deriving and validating proteomic
model predictions: the UK Whitehall Il and Fenland, the Norwegian HUNT3 and the US
Covance and HERITAGE Family studies. EDTA plasma samples had been collected from all
these studies and the samples were centrifuged and frozen typically 2-10 h after collection, a
timeframe that is representative of how blood is handled in typical medical practice.
Aliquots of these samples were assayed on the proteomic platform without further
processing after transport and thawing.

The study designs and sample selections were from whole cohorts or case-cohort fractions
throughout, intended to reduce selection and spectrum biases3”:38, The multi-cohort study
approach was needed as no single cohort has all the specified clinical measures or outcomes.
Protein model outputs were deliberately simplified with primary care practitioners and
patients in mind as the key target users. The flowchart for the proteomic program, including
the source of the samples, data, model training and replication, is shown in Extended Data
Fig. 1. Extended Data Fig. 2 shows details of the five parent cohort studies, and Extended
Data Figs. 3—6 the participant characteristics for each model endpoint. The Nature Research
Reporting Summary for this study is available as part of the online publication.

Proteomic platform.

The modified aptamer binding reagents!2, and SomaScan assay!3 and its performance
characteristics®16, have previously been described. The annotated menu for all ~5,000
modified-aptamer binding reagents is shown in Supplementary Table 3.

The SomaScan Assay begins in each well of a 96-well plate, as a mix of thousands of slow
off-rate modified aptamers (SOMAmer reagents). These are labeled with a5’ fluorophore,
photocleavable linker and biotin and immobilized on streptavidin-coated beads through
biotin—streptavidin interaction. A plasma sample from each participant is diluted and added
to each well.

Cognate and nonspecific SOMAmer—protein complexes form on the beads. After washing
away unbound proteins, captured proteins are labeled with biotin. SOMAmer—protein
complexes are released from the beads by photocleavage of the linker with ultraviolet light
and incubated in a buffer containing an unlabeled polyanionic competitor. This competes
with the nonspecific binding of the ‘incorrect’ protein to any SOMAmMmer reagents that
dissociate rapidly owing to the fast off-rate of such interactions, whereas the cognate
(intended) SOMAmer—protein interaction has a much slower off-rate (this is part of the
original reagent selection process). This differential in kinetics, coupled with polyanionic
competition, represents a second element of specificity (the first being the high affinity,
enhanced by modifications to the aptamers), analogous to the effect of adding a second
antibody in a conventional immunoassay.

SOMAmer—protein complexes are recaptured on a second set of streptavidin-coated beads
through biotin-labeled proteins, followed by additional washing steps that facilitate further
removal of nonspecifically bound SOMAmer reagents. SOMAmMmer reagents are then released
from the complex in a denaturing buffer.

Nat Med. Author manuscript; available in PMC 2020 June 02.
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For readout, SOMAmer reagents are hybridized to complementary sequences on a DNA
microarray chip and quantified by fluorescence. Fluorescence intensity in the SomaScan
assay for each reagent is related to the relative availability of the three-dimensional shape-
charge epitope on each protein (the binding site of the SOMAmer reagent) in the original
sample. This is a reflection of each protein’s abundance (concentration), the shape of the
protein itself (which may be impacted by a genetic variant or by modification) or by a
circulating competitor (physiologic or a therapeutic antibody).

Median intra- and interassay coefficients of variation are ~5%16 and assay sensitivity is
comparable to that of typical immunoassays, with a median lower limit of detection in the
femtomolar range.

Specificity of the modified aptamer reagents has been established in several ways. The
binding affinity of 1,612 reagents has been tested against structurally related proteins as
described by the manufacturer, in the succeeding paragraphs in this section. Because many
proteins share structural and functional features, it is possible that the structural epitope to
which a reagent binds is present on proteins other than the one initially used to select the
reagent. Indeed, we have observed that a minority of reagents are able to bind with some
degree of affinity to highly similar proteins, presumably through such a shared structural
epitope, although not always with the same high affinity. Because the assay is performed in a
complex biological sample containing thousands of different proteins, experimentally
determining which reagents may also target other proteins to some degree can be extremely
valuable in interpreting biomarker discovery data.

We first analyzed publicly available databases of known human protein sequences using
sequence alignment tools (for example, BLAST) to identify those ‘relevant relative’ proteins
that share significant homology with proteins used to select the modified aptamer reagents.
Proteins with significant homology to the target protein (that is, proteins with >40% amino
acid sequence identity with the target protein) were tested experimentally if available in the
inventory or commercially available as full-length proteins from reliable vendors.

Available related proteins were analyzed with affinity-capture experiments similar to
immunoprecipitation protocols. Modified aptamer reagents were immobilized on
streptavidin-coated beads and then incubated with either the target protein or the identified
related protein. The reagent—protein complexes were then washed, and the proteins labeled
with a fluorophore. The complexes were then eluted and the recovery of bound versus input
protein was analyzed by SDS-PAGE and fluorescent imaging. When any reagent binding to
proteins other than the SELEX target was observed, we performed solution-affinity
measurements to determine whether the reagent has similar or different affinities for the
target protein and related protein. If the solution dissociation constant (Kg) was within
tenfold of that for the SELEX target, the reagent was reported to bind the SELEX target and
other proteins with ‘similar affinity’. If the measured affinity differed by greater than
tenfold, we reported that the reagent binds to the protein(s) other than the SELEX target with
‘at least tenfold weaker affinity’. Although this is a broad statement regarding specific
affinity, we do not report exact Kj values because of the high variability observed in both the
quality and reported concentrations of commercially obtained purified proteins.

Nat Med. Author manuscript; available in PMC 2020 June 02.
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For 73% of cases in which proteins related to the SELEX target were available for testing,
we observed binding of the reagent to the specific SELEX target and not to any of the
related proteins. For example, a reagent selected to bind the protein tissue inhibitor of
metalloproteinase-1 (TIMP-1) was also tested against the related proteins TIMP-2 (60%
identical), TIMP-3 (31% identical) and TIMP-4 (40% identical). When this same TIMP-1
SOMAmer reagent was used in affinity enrichment from human plasma, four unique
peptides corresponding to endogenous TIMP-1 were identified by liquid chromatography—
tandem mass spectrometry in the enriched sample, and no peptides corresponding to any
other member of the TIMP protein family were identified. Additionally, no peptides
corresponding to TIMP-1 were identified in any other plasma pulldown samples performed
using 142 different SOMAmer reagents, including a TIMP-2-specific reagent. In another
representative example of highly specific binding, a reagent specific for matrix
metalloproteinase-10 (MMP-10) does not bind MMP-12 (61% identical), MMP-13 (57%
identical), MMP-3 (80% identical), MMP-1 (61% identical) or MMP-8 (50% identical).

Whenever we observed any binding to proteins other than the SELEX target (27% of the
reagents tested) in initial pulldown tests, we followed up with measurements of solution
affinity. We typically measure the association of radiolabeled reagent with protein and then
capture the complex using a protein-affinity chromatography medium. Saturation-binding
curves are then generated by titrating increasing amounts of protein in the presence of a
constant, limiting amount of reagent. The Kj is determined to be the protein concentration at
which half-maximal binding is observed. In one typical example, initial pulldown tests
indicated that one reagent binds not only to its original SELEX target (pyrophosphatase 1
(PPA1)), but also to the related protein PPA2, which shares 68% amino acid sequence
identity. However, solution-affinity measurements determined that the affinity was greater
than tenfold stronger for PPA1 than for PPA2.

We observed that 13% of the reagents tested bound to members of a protein family with
similar affinities. As previously noted, this recognition most often occurs when proteins
share extensive sequence identity. Presumably, the structural epitope to which the reagent
was selected is highly conserved and biochemically indistinguishable by solution
equilibrium-binding affinities. In fact, of the reagents that could bind a related target, ~6%
(that is, almost half of the 13%), were products of the same gene with a common epitope
(for example, splice variants such as vascular endothelial growth factor 121 and 165
isoforms) or shared subunits in a multi-subunit complex (for example, cyclin-dependent
kinase 1/cyclin B1 complex, in which the reagent binds to the cyclin B1 subunit). The
remaining ~7% appears to bind to epitopes shared amongst highly related families of
proteins. For example, a reagent that binds to its SELEX target calcium/calmodulin-
dependent protein kinase Il delta (CAMK2D) also binds the closely related proteins
CAMK2A (91% identical) and CAMKZ2B (87% identical). Solution-affinity comparisons
determined that this reagent has a similar binding affinity, of ~2 nM, for all three proteins.
As expected, the amino acid sequence identity tended to be greater for those pairs that
exhibited cross-reactivity: 48% mean for pairs that exhibited no cross-reactivity (no positive
pulldown results), 62% for pairs with greater than tenfold lower affinity but positive
pulldown results, and 70% for pairs with similar affinity.

Nat Med. Author manuscript; available in PMC 2020 June 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Williams et al.

Page 10

In summary, we have tested binding to related proteins for 1,612 modified reagents to date.
We were unable to detect binding to any related proteins for 73% of those tested. When
binding to related proteins was detected, about half of these reagents exhibited binding to at
least one related protein with similar affinity while the other half bound to related proteins,
but with at least tenfold weaker affinity. Specific target enrichment by pulldowns from
human plasma has been confirmed for 123 of the SOMAmMmer reagents.

In orthogonal tests of specificity, the effect of cis genetic variants on protein expression in
the assay has been published for 552 (ref.1) and 1,046 (ref.2) variants, and orthogonal
validation by mass spectrometry has been performed for ~1,000 reagents?.

In addition to mitigations arising from reagent specificity and affinity, the impact of
nonspecific binding is further reduced through a kinetic challenge during the assay. During a
series of wash steps, excess unlabeled polyanion is added (aptamers are also polyanions)
which successfully competes with modified aptamers associated with highly abundant
plasma proteins with low-affinity, nonspecific binding, and capitalizes on the slow off-rates
(disassociation rates) of aptamers from their intended targets.

Derivation and validation of protein-phenotype models.

Models of current health state.

Liver fat (predicting liver ultrasound result of no fat or excess fat (excess defined as the
combined mild/moderate/severe grades of fat)).: Within the Fenland study, 10,077
participants underwent liver ultrasound; 75% had no fat and 25% had mild, moderate or
severe fat. An elastic net model was derived, refined and validated in 70, 15 and 15% of the
entire sample set, respectively.

Kidney filtration (predicting normal or impaired eGFR (= or <60 ml min~1)).: Within
the 2,515 HUNTS3 participants in the CV events program, 87% had eGFR =60 ml min~1 1.73
m~2 and 13% <60 ml min~1 1.73 m~2 using the creatinine-based CKD—EPI equation3°. An
elastic net model was derived and refined on 80 and 20% of these participants, respectively.
Validation was performed using Covance, an independent sample set with 1,029 participants,
of whom 93 and 7% had eGFR of > or <60 ml min~1 1.73 m~2, respectively.

Body composition (predicting dual-energy X-ray absorption (DEXA)

components).: Within the Fenland study, 11,471 participants had DEXA scans to assess
percentage body fat, lean body mass (kg) and visceral fat (kg), although the last of these was
not measurable in 20 subjects. An elastic net linear regression model with continuous output
on the same scales as the original measurements was derived, refined and validated on 70,
15 and 15%, respectively, of the total population.

Cardiopulmonary fitness (predicting maximal oxygen uptake on a treadmill (VO,
max), ml kg~ min~1).: Within the HERITAGE Family study, 648 participants completed
maximal exercise tests and had blood samples and measures of VO, max at baseline and
after a 20-week exercise-regimen. An unpaired cross-over sampling method (with 50% of
samples from participants at baseline and 50% from participants post-exercise) was used to
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avoid correlation from pairs and to increase the observed range of fitness values in the
dataset. An elastic net linear regression model was derived, refined and validated on 80, 10
and 10% of participants, respectively.

Modifiable behavioral factors.

Alcohol consumption (predicting self-reported consumption above or below UK
guidelines (14 units/week for men and women)).: Within the Fenland study there were
4,851 women, of whom 11% reported consumption above UK guidelines, and 4,803 men, of
whom 31% reported consumption above guidelines. Elastic net regression models were
derived, refined and validated using the same 70/15/15% sample distribution; separate
models were created for men and women to account for residual error differences associated
with participants’ sex.

Physical activity (predicting average daily physical activity energy expenditure
estimated from combined heart rate and movement sensing for 1 week (kJ kg~td~1 or
kcal d1)).: This was calculated for the 11,695 participants within the Fenland study with
this measure available, using the same 70/15/15% fractions for derivation/refinement/
validation as for body composition. An elastic net linear regression model was validated
with a kcal d~1 output.

Current cigarette smoking (predicting self-reported questionnaire results).: Of the
1,025 Covance participants 15% self-reported as current smokers and 85% former or never
smokers. An elastic net regression model was derived and validated in 80 and 20% of the
participants, respectively.

Future cardiometabolic health risks.

Incident diabetes (predicting future diagnosis in people with pre-diabetes).: There were
413 participants within the Whitehall 1l study at baseline who had pre-diabetic fasting
glucose (5.5-6.9 mmol 171) or elevated 2-h glucose (7.8-11.0 mmol 171) during an oral
glucose tolerance test, of whom 23% became diabetic within 10 years. An elastic net Cox
proportional hazards model was derived on 80% of this pre-diabetic fraction and then
validated on a 20% blinded holdout fraction. A decision risk threshold of greater than
threefold (in reference to the average risk score in all Whitehall participants in our study, not
just the pre-diabetic fraction) was defined and applied to the pre-diabetic participants.

Incident CV events (predicting any type of first event or CV death within 5 years).: A
fully parametric accelerated failure time (AFT) survival model was derived from HUNT3
using a case-cohort design. There were 1,050 cases with an incident ‘hard’ CV event (CV
death, myocardial infarction, stroke or hospitalization for heart failure) and a random
fraction of 1,414 participants selected from the overall cohort, for a total of 2,464
participants. The model was derived and refined on 80 and 20% of HUNT3, respectively. It
was validated in Whitehall 11 using samples from all 101 cases with an incident CV event
within 5 years and a random fraction of the cohort (164 participants) without an incident CV
event within 5 years. The model is capable of relative risk stratification ranging from <one-
to =sixfold compared to low-risk individuals at an absolute event rate of <2.5% in 5 years.
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Quality control and data normalization.

All samples from all studies were run on the SomaScan assay, and standard SomalLogic
normalization, calibration and data quality control processes were applied as described in
detail below.

Quality control over the first year of production for the SomaScan V4 Assay was performed
on an average of 2,000 samples per week using 24 assay runs, which include 11 control
replicates from three control lots and a maximum of 85 samples per run. Reference
standards, expected values for each protein control replicate lot for each SOMAmMmer reagent,
are derived during assay qualification. Five calibrator replicates per run are used with a
reference standard to control for batch effects. Three quality control replicates per run are
used with a reference standard to evaluate the accuracy of the assay after data
standardization. Standard assay run acceptance criteria require that 85% of the content is
accurate to within 20% of the reference; in practice, an average of 96% of the content meets
the acceptance standard. The lifetime median precision of the assay over ~3,000 plasma
quality control replicates and 5,207 SOMAmer reagents to protein targets is 6.2% (fifth
percentile, 3.4%; 95th percentile, 19.1%). In addition to standard acceptance criteria,
alternate assay summary metrics—including overall run signal bias from the reference,
calibration scale factor percentage outside of 0.6—1.4, quality control replicate five-plate
running precision and buffer background or estimated lower limit of detection—are
monitored for failures or trends over time on a daily basis by production bioinformatics and
quality assurance.

To correct for assay-intrinsic variation such as that due to minor variation in sample dilutions
by the pipetting robot, we have generally used (in previous studies) typical median
normalization—scaling the total fluorescence from a given sample to the median on the
same 96-well assay plate. This has two limitations: first, the scaling of any one sample can
be impacted by the other samples on the plate that establish the median; second, there are
assay-extrinsic sources of variation in the sample that can affect overall fluorescence, such
as sample quality (where plasma from samples with lysed cells is ‘brighter’ because of the
leakage of intracellular proteins) and kidney function (where lower filtration rates lead to the
elevation of a large proportion of the proteome and again ‘brighter” samples). In this study,
both these limitations were overcome: the former by using an external reference for the
median, rather than the other samples on the same plate, and the latter by restricting the
analytes used for normalization to those not impacted by sample quality or disease. This was
accomplished by comparing each analyte in a new sample to its counterpart in a reference
well-collected ‘healthy’ population (the Covance study described in this manuscript). The
subset of analytes in the test sample that were within the expected population distribution of
fluorescence in the reference sample were used for calculation of the normalization scale
factors.

Statistical analysis and machine learning.

Statistical analysis plans for each model were prospectively documented and filed to an
auditable software regulatory document vault (Meeva Vault (Veeva, Inc.)) before analysis,
such that the studies became “virtual prospective trials’ on retrospectively assayed, archived
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samples. Sample-size calculations were not carried out prospectively as the probable effect
sizes were hitherto unknown.

Supervised machine learning is the process whereby a computer uses an algorithm applied to
data to ‘train’ a model—to derive a fixed equation relating the features chosen to a
predesignated truth standard. The algorithm makes predictions on the training data, the error
between predicted and actual values of the truth standard is assessed and the algorithm is
applied iteratively with small changes in parameters to reduce the predictive error. Learning
can stop when the algorithm achieves its highest level of performance assessed after cross-
validation (multiple iterations of model assessment on different splits in the training data). In
this study, the features in a model are the protein measurements and the truth standards are
the health outcomes or measures of behavior.

When developing predictive models using machine learning techniques, to avoid over-fitting
it is common practice to use multiple datasets or fractions of datasets to identify and test or
validate the model that has the most reliable predictive capabilities. To this end, we applied
the following tactics for splitting data. If the dataset is large (thousands, for example,
Fenland), the data are split into three sets: a derivation set, used for identifying top models
through cross-validation (typically a 70% fraction and five repeats of tenfold cross-
validation), a refinement set (a second derivation set that allows us to tune the parameters of
the top models, typically 15%) and a validation set (a holdout set that is used only to assess
the final model and is not used for model development, typically 15%). If the dataset is
smaller (hundreds, for example, Covance), the data are split into two sets: a derivation set of
80% that again uses cross-validation (typically tenfold 90/10% derivation/refinement splits
within that 80% fraction) and a validation set of 20% not used for model development. If the
dataset contains pairs of samples from the same subjects (for example, Heritage), the data
are split into two sets: a derivation set (80-90%) and a validation set (10-20%). Within the
derivation set, the model is derived on time point 1 from half the participants and on time
point 2 from the other half (avoiding pairs of samples from the same participants). The
model is verified on samples with the opposite time points in the same participants, and then
validated in the holdout test set data not used for derivation.

Because of the intent to test the extent to which proteins could be a sole information source,
demographic features or other laboratory test results were deliberately excluded from the
feature selection process, with two exceptions: (1) if the predefined minimum performance
could not be reached, the most impactful demographic factor could be added; and (2) if the
residual errors within a model were related to a demographic feature. In practice, these
exceptions were triggered only twice: to include age interactions in the CV model to exceed
the performance of the 2013 ACC/AHA ASCVD risk score, and to use sex to create separate
alcohol models for men and women to overcome a sex-related residual error distribution.

The sequence of events for model development was initiated with the definition and
documentation of the analysis plan, the truth standard (the variable against which the model
is trained) and minimum acceptable performance standard for a model. This was followed
by normalization and calibration of the proteins measured in the datasets, the assessment of
sample quality, the exclusion of any measured proteins failing to meet the quality control
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measures described above from model development, and the division of the available
datasets into training, refinement and validation as shown in Extended Data Fig. 1.

This was followed by univariate ranking and filtering of proteins’ statistical association with
the truth standard within the training data, and automated application to the training data of
several different types of machine learning algorithms with different methodological
approaches#041,

A semi-automated approach to univariate testing and machine learning analyses was
designed to understand efficiently whether there is any evidence of signal for the endpoint of
interest, and to identify the model type that is the best match for the data. The derivation
dataset was used for univariate tests and preliminary machine learning models.

For continuous measurements (lean body mass, percentage body fat, alcohol consumption,
energy expenditure from physical activity, visceral adipose tissue, cardiopulmonary fitness
VO, max, weight trajectory and OGTT) we used regression methods. The associations
between each analyte and endpoint (lean body mass or percentage body fat), on a univariate
level, were assessed using the univariate tests for coefficients/importance metrics from linear
and robust regression models, Spearman’s correlation coefficient and random forest
(importance scores calculated). Following the univariate analyses, candidate features were
ranked based on false discovery rate (FDR)-corrected P values. At this stage, fairly lenient
FDR-corrected Pvalues of 0.1 or even 0.2 were used to enrich the lists because the truly
multivariate models would not depend on univariate significance, but nonetheless there is a
need to perform some reduction in dimensionality. Using this subset of features, the
following types of models were fit: elastic net linear models (which combine LASSO and
ridge penalties for feature reduction), support vector machines (which are more robust to
outliers) and random forests (a nonlinear, tree-based approach).

For dichotomous measurements (liver fat, current cigarette smoking and kidney filtration)
we used classification methods. The associations between each analyte and endpoint (liver
steatosis, cigarette smoking or kidney filtration), on a univariate level, were assessed using #
tests, Mann—Whitney, logistic regression and random forest (importance scores calculated).
The same approach to utilizing univariate FDR-corrected P value ranking to aid
dimensionality reduction was used as for continuous measurements. For the preliminary
multivariate models, five repeats of tenfold cross-validation were used in derivation. The
following multivariate, machine learning models were then run: elastic net logistic
regression model (which combines LASSO and ridge penalties for feature reduction), linear
discriminant analysis (similar to Naive Bayes, but handles correlated features better) and
random forest (a nonlinear, tree-based approach).

For survival data (diabetes diagnosis within 10 years and CV primary event risk), we used
survival models. The association between each aptamer and the rate of diagnosis (binary
outcome and time to event or censoring) on a univariate level was assessed using AFT
survival models and Cox proportional hazards models. Again, FDR-corrected Pvalues were
used to reduce the number of candidate features to 200. This reduction was done so that the
AFT and Cox proportional hazards algorithms converged. For the preliminary multivariate
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models, five repeats of tenfold cross-validation were used. The following multivariate,
machine learning models were run: elastic net AFT models (which combine the ridge and
LASSO penalties) and proportional hazards elastic net models.

Given that the elastic nets routine consistently gave the best result and was ultimately
selected for each model, we describe here the processes specific to that algorithm. There are
two penalization parameters (variables that add a penalty to each new feature added to a
model). The first parameter is associated with specific penalization of any correlated
features, and the second is associated with penalization of the overall number of features in
the model. Without such penalization, some algorithms would include all the measured
proteins. Readers more familiar with the LASSO algorithm may be interested to know that it
is equivalent to setting the elastic nets correlated feature penalty to its maximum setting so
that these are eliminated®?. In contrast, elastic nets allows the inclusion of more correlated
features as that penalty is reduced. The optimal values of these parameters are determined
during the cross-validation phase during which each of the two parameters are varied at
fixed increments, and model performance is assessed for each combination of settings. The
parameter values associated with the model that has the best predictive performance are then
selected as the final values.

During model refinement and before validation, advanced feature selection techniques were
applied to the features that passed the FDR cutoff, such as forward selection, backward
selection and stability selection. Ensemble methods and approaches were employed to
develop the optimal model. In the cross-validation stage, models were optimized based on
AUC, sensitivity and specificity for classification and survival models, and adjusted /2
values for continuous endpoint models. For survival models, the C-index, Brier score and net
NRI38 were also examined. These predictive metrics were confirmed in analyzing the test or
holdout datasets. The number of features within a model was determined simply by the
algorithmic selection of the optimal number (for example, by elastic net or LASSO).

The best derived models from the previous step were then examined in more detail. Each of
the best models was assessed to determine whether the predefined performance standard
could be met without the addition of nonprotein features. Additionally, unwanted
associations of errors with sex or sample quality were evaluated, and decision thresholds (or
risk-bins) defined to stratify the populations in a simple but informative way.

Validation was performed by applying the final model from derivation and refinement, with
its predefined decision thresholds, to the validation dataset. Ideally this would be a truly
independent replication dataset (such as with the CV, kidney models). However, where such
a matching dataset was not available at this time, a random fraction of the same study (10—
20% depending on study size) with data not used in training was used for testing the
predictive accuracy of the model.

The restriction to people with pre-diabetes for the incident diabetes prediction model

reflected the intended-use population for the first clinical application and the assumption that
a diabetes prognostic model would be highly impacted by pre-diabetes status. Further results
of the diabetes, kidney and CV models are described in Supplementary Tables 4-6. All other
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models were derived in the general study populations (Extended Data Figs. 2—6), with
performance in the participants with pre-diabetes (typically >30%) confirmed when
possible.

Extended Data
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Available models

10-year
diabetesriskin
pre-diabetes

S-year primary
cardiovascular
event risk

Kidney function
(eGFR<60)

Current
smoking

VO,max.
(cardio-
pulmonary
fitness)

Liver fat (present /absent)
Body fat (%)

Lean body mass (kg.)
Visceral fat (kg.)

Physical activity (keal. /day)
Alcohol excess (=14 units)

Extended Data Fig. 1 |. Descriptors of parent studies and fractions used for model derivation and

validation.

Solid black arrows designate how fractions of samples and clinical data were utilized
independently; blue dashed arrows designate the validation of finalized models either in new
fractions of the same dataset or in independent datasets. eGFR = estimated glomerular
filtration rate; VO,max. = maximum rate of oxygen consumption; kg. = kilograms. *For
Fenland, the precise numbers available for 70%/15%/15% fractions depended on the
numbers of participants with data for each endpoint as follows: n=9654 for self-reported
alcohol units, n = 11,471 with DEXA scans for body composition, n=10,077 with ultrasound
for liver fat, n=11,695 with individually calibrated heart rate and movement sensing for
caloric expenditure due to physical activity. **For HERITAGE the model was trained on the
pre-training time point from half the 523 participants and the post training time point from
the other half of the participants. The model was tested on samples with the opposite time
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points in the same participants and finally replicated in the 10% fraction not used for
training.
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Dataset Name

Inclusion Criteria

Exclusion Criteria

Fenland (n=12,435) | # Men and women born between | e  Clinically diagnosed diabetes
Collected 2005-2015 1950-1975 registered at| e  Clinically diagnosed psychoticillness
participating GP  practices in| e  Terminalillness
Cambridge, Ely, Wisbech, UK. e Pregnancy
e Inability to walk unaided

Whitehall IT(n=10,308)
Collected 1985-1988

British Civil Servants workingin the
London offices of the 20 Whitehall
departments in 1985-1988

Age 35t0 55

Able to give informed consent

Not a British Civil Servantaged 35-55

HUNTS3 (n=50,807)
Collected 2006-2008

Resident of Nord-Trendelag
(Norway)

Age 20 or older

Able to give informed consent

Not a citizen of Nord-Trendelag county

Covance (n=1029)
Collected 2008

Males or females, between 20 and
80" years ofage, inclusive

No history of problems with blood
draws, and assessmentthat veins will
allow successful blood draws

Being able to comprehend and willing
to sign an Informed Consent Form
(ICF).

Uncontrolled hypertension (i.e., 2 measures >
160/95, 10 minutes apart)

Self-reported treatment for a malignancy other than
squamous cell or basal cell carcinoma of the skin in
the last2 years

Self-reported pregnancy

Self-reported chronic infectious (e.g., hepatitis B,
hepatiis C, HIV), autoimmune, or other
inflammatory condition(s) such as SLE,
scleroderma, MS, Crohn’s Disease, or ulcerative
colitis

Self-reported chronic kidney or liver disease,
chronic heart failure or diagnosed with myocardial
infarction in the last 3 months, self-reported
uncontrolled diabetes (HbAlc>8%if known)
Self-reported acute viral or bacterial infection or a
temperature >38°C within 24 hours of enrollment
Self-reported participation in any therapeutic study
in the 14 days prior to blood sampling

Taking more than 20 mg/day of prednisone or
related drug (self-reported)

Heritage (n=763)
Collected 1992

Sedentary at Baseline

Males or Females between 17 — 65
years of age

BMI < 40 ko/m?2

No regular activity for over 3 months at Baseline
No major medical conditions

No moderate systolic hypertension Systolic BP >
159 mmHG., Diastolic > 99 mmHG

Extended Data Fig. 2 |.

Details of the 5 parent cohort studies.
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Kidney Filtration: HUNT Primary: Derivation 80%, Refinement 20%, COVANCE: Validation 100%

Page 20

HUNT Primary Characteristics Total (included in analysis) i CERREETE T
# subjects with eGFR measurement 2515 327 2188
Mean (SD) 63.10.5) 71.0 (7.0) 61.909.3)
Age Median 63 72 62
Range 40 -80 41 -80 40 - 80
Se Male 1430 120 1310
Female 1085 207 378
Ethnicity Unknown 2515 327 2188
p— Mean (SD) 77.7(16.1) 50.4 (3.7) 30.9(11.9)
Range 83-190.5 8.0-59.0 60.0- 129.0
COVANCE Characteristics Total (included in analysis) T KR IR —
# subjects with eGFR measurement 1029 63 966
Mean (SD) 50.7(17.2) 725 (9.3) 193 (16.7)
Age Median 51 74 50
Range 19-89 40 -88 19-89
Sex Male 460 21 139
Female 569 42 527
Caucasian 688 51 637
Hispanic 122 4 118
Ethnicity Black 112 4 108
Asian 85 3 82
Others 21 1 20
R Mean (SD) 91.0(20.1) 494 (3.2 93.7(17.5)
Range 31-142 31-59 60 - 142

Liver Steatosis: Fenland: Derivation 70%, Refinement 15%, Validation 15%

Fenland Characteristics

Total (included in analysis)

# subjects with scorable ultrasound results 10,077
Mean (SD) 48.5 (1.5)
Age Median 49
Range 30 -64
s Male 4574
o Fanale 5503
Caucasian 9639
Hispanic 0
& Black 53
Bthalcly Asian 192
Other 44
Missing 144
No Excess Fat 7552 (74.9%)
LiverKat:Score Fxcess Fal 2525 (25.0%)

CardiopulmonaryFitness (VO2 Max): Heritage: Derivation 80%, Refinement 10%, Validation 10%

Heritage Characteristics Total (included in analysis)
# subjects with baseline & post-training samples 648
Mean (SD) 34.5(13.5)
Age Median 32
Range 15 -65
Sax Male 292
Female 356
Caucasian 420
- Black 228
Ethnicity Other 2
Missing 0
B . Mean (SD) 31.5(8.9)
Baseline VO2 Max (mL/kg/min) Range 37-570
Post-Training VO2 Max Mean (SD) 36.8(9.6)
(mL/kg/min) Range 16.5-62.3

Extended Data Fig. 3 |.

Participant characteristics for current health state models.
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Percent Body Fat: Fenland:

Derivation 70%, Refinement 15%, Validation 15%

Fenland Characteristics

Total (included in analysis)

# subjects with DEXA scan 11,471
Mean (SD) 48.2 (7.5

Age Median 48
Range 29-64

Sex Male 5294
Female 6177
Caucasian 10,666
Hispanic 0

- Black 58

Ethuldlty Asian 215
Other 50
Missing 482

Percent body fat (%) g/laena;e(SD) 3 375_ (57 882

Lean Body Mass: Fenland: Derivation 70%, R

efinement 15%, Validation 15

%

Fenland Characteristics

Total (included in analysis)

# subjects with DEX A scan 11,471
Mean (SD) 48.23 (1.53)

Age Median 48
Range 29-64

Sex Male 5,294
Female 6,177
Caucasian 10,666
Hispanic 0

i Black 58

Ethnicity Asian 215
Other 50
Missing 482
Mean (SD) 48,723 (10,000)

Lean.Body Mass (@) Range 25,835 84,814

Visceral Adipose Tissue: Fenland: Derivation

70%, Refinement 15%, Valida

tion 15%

Fenland Characteristics

Total (included in analysis)

# subjects with measurable VAT on DEXA scan 11,451
Mean (SD) 482 (7.5)
Age Median 48
Range 29-64
Sex Male 5,286
Female 6,165
Caucasian 10,646
Hispanic 0
<o Black 58
Ethnicity Asian 215
Other 50
Missing 482
Mean (SD) 955.0 (781.6)
(Jlkg/day) Range 0.0 - 5,679.0

Extended Data Fig. 4 |.

Participant characteristics for current state body composition models.
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Energy Expenditure from Physical Activity: Fenland: Derivation 70%, Refinement 15%, Validation 15%

Fenland Characteristics Total (included in analysis)
# subjects with physical activity data 11,695
Mean (SD) 48.2(7.5)
Age Median 48
Range 29 - 64
Sex Male 5,449
Female 6,246
Caucasian 10,833
Hispanic 0
o Black 60
Ethnicy Asian 207
Other 51
Missing 544
Physical Activity Energy Expenditure (kJ/kg/day) Il\{/[;;?c@m 3307_(12 92112
CurrentCigarette Smoking: COVANCE: Derivation 80%, Validation 20%
v isti L i el Smoking Status
COVANCE Characteristics DB LIS | e Former Smoker Never Smoker
# subjects with self-reported tobacco use 1025 154 344 527
Mean (SD) 50.8(17.2) 44.1(15.3) 55.3(16.2) 49.8(17.6)
Age Median 51 46 57 50
Range 19 -89 20-78 21 -88 19 -89
Sk Male 456 92 159 205
Female 569 62 185 322
Caucasian 684 97 239 348
Hispanic 122 15 35 72
Black 112 24 34 54
Ethnicity Asian 70 8 24 38
Native American 21 7 6 8
Pacific Islander 15 3 5 7
Unknown 1 0 1 0

AlcoholConsumption Above Guidelines: Fenland: Derivation 70%, Refinement 15%, Validation 15%

Fenland Characteristi: Total (included i lysi Alcohol Uise
S Mo plaldndy inanalyst) Excess Drinker Non-Excess Drinker
# MALE subjects with self-reported alcohol use 4803 1479 3324
Mean (SD) 18.2(7.6) 18.2(7.5) 18377
Age Median 48 48 48
Range 29 -64 29 -63 29 -64
Caucasian 4482 1404 3078
Black 23 ) 18
Ethnicity Asian 66 8 58
Other 12 1 11
Unknown 220 61 159
- . Mean (SD) 11.49 (11.25) 24.57(11.67) 5.68(3.53)
Alcohol Consumption (units/week) |—gzroc 0.25- 110.00 12.00— 110.00 0.25-13.00
# FEMALE subjects with self-reported alcohol use 4851 510 4341
Mean (SD) 18.3(7.5) 184 (7.4) A8.2(7.5)
Age Median 43 49 48
Range 29 - 64 30 -63 29 - 64
Caucasian 4526 467 4059
o Black 18 0 18
Edhiniclty Asian 55 2 53
Other 21 1. 20

Extended Data Fig. 5 |.
Participant characteristics for modifiable behavioral factors models.
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Cardiovascular Primary EventRisk: HUNT Primary: Derivation 80%, Refinement20%, Whitehallll:
Validation 100%

HUNT- Primary Total (induded in Composite CV Event Spedfic CV Event
Characteristics analysis) Event No-Event MI Stroke/TIA HF CV Death
# subjects 2464 1050 1414 480 473 89 8
Mean (SD) 63.3(9.5) 65.1 (9.4) 62.19.3) 63.3 (9.4) 66.0 9.4) 69.6 (7.6) 64.3(6.8)
Age Median 64 65.5 62 63 67 71 64.5
Range 70 - 80 71 -80 70 - 80 71 -80 71 -80 75 -80 54 -75
Male 1416 578 738 343 270 56 7
s Female 1048 372 676 132 203 33 7
Ethnicity Unknown 2464 1050 1414 480 473 89 3
Mean 17.5 213 14.6 20.7 21 26.1 15.4
ACC Risk (SD) 12.4 13.6 10.6 13.4 132 15.3 12
Range 0.3-70.9 0.3-70.9 0.3-69.2 1.0-70.9 0.3-70.3 3.8-68.2 3.7-40.7
Whitehall IT Characteristics Total (indu_ded in Composite CV Event Spedfic CV Event
analysis) Event No-Event MI Stroke/TIA HF CV Death
# subjects 265 101 164 43 30 14 14
Mean (SD) 482 (5.5) 49.6(5.3) 473 (5.5) 485 (5.8) 50.6 (5.4) 50.9 3.9) 49.7 (4.9)
Age Median 50 51 47 50 53 52 51
Range 35.56 35.56 36 -55 3556 38 -56 45 -55 40 - 55
P Male 225 34 141 36 25 12 11
Female 40 17 23 7 5 2 3
Ethnicity Caucasian 265 101 164 13 30 4 14
Mean 1.7 13.7 10.4 13.6 131 13.5 15.9
ACC Risk D) 6.9 7.0 7.7 79 56 6.0 31
Range 51-37.8 5.2-37.8 5.1-28.4 52-37.8 53-25.0 83-32.7 5.6-31.0
Diabetes Diagnosis within 10 years: Whitehallll: Derivation 80%, Validation 20%
Whitehall Ti Chaxacteristi Total (ndaded 1 . Incident Diabetes Diagnosis (T2D)
e ALECAsES olal (ncluded nanalysly) T2Din 10 yrs. o T2Din 10 yrs. T2D ever**
# subjects 413 95 318 141
Mean (SD) 56.4(6.0) 56.0 (6.2) 56.5 (5.9) 56.1(6.1)
Age Median 56 56 56 56
Range 45 -67 45 -67 45 - 67 45 -67
e, Male 287 63 224 100
Female 126 32 94 71
== Caucasian 382 78 304 120
Ehnidty Other 31 17 14 21
Median 857 921 343 9.07
2&‘;‘;{; Mean (SD) 854 (1L44) 898 (1.43) 840 (L4D) 885 (L40)
Range 3.63- 11.00 4.29-11.00 3.68-11.00 4.29-11.00
_— Median 5.25 5.71 5.16 5.58
@g/dL) Mean (SD) 5.35(0.69) 5.69(0.66) 5.25(0.67) 5.58(0.66)
= Range 3.71-6.90 4.22- 6.86 3.71- 6.90 4.22-6.86
ok T2D“ever” represents allsubjects that were diagnosed as T2D within the entire parent study follow-up period (~

Supplementary Material

16 years), these sameparticipants are also ca ptured within the T2D andno T2Din 10 yrs.

Extended Data Fig. 6 |.
Participant characteristics for future metabolic health risks models.

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Model outputs compared to the truth standards against which they were derived.
All panels show the data from the validation sets, except for the diabetes survival model

where, for clarity, the Kaplan-Meier curves are shown for the much larger discovery
datasets. Box plots are broken down into quantiles: minimum (25%), median (75%) and
maximum. Scatter plots include a linear line of fit (red solid line). Dashed lines represent
upper and lower 95% confidence intervals. VAT, visceral adipose tissue. CVD,

cardiovascular disease.

Nat Med. Author manuscript; available in PMC 2020 June 02.



Page 27

Williams et al.

%19 Aoeindoy 0sE  (%08) Il [lBUSHYM  8s09N|B y-g pue Bunsey | | HO :UoleALIdg x€ MOJa( 10 3AOQE ‘SIeak QT UIYNM Sa)agelp 03 saiaqelp-aid woly co_ﬂmzw_ww
SYSI Y}eay d1j0geIsw aining
280 onvy 502 (%0¢) @ouen0D [3pow u1ajold-GT uoHepIeA
160 NV 0z8 (9608) 82uen0D |apow u1sl0id-GiT :uoneAlsqg (1odau-41s) ouysaA uaund :Bursjows analebin
880 o ¥5.'T (%ST) puejua4 [3pouw utgioid-G9 :uolepIfen (310 1ieay
980 o 18T'8 (9602) puejus+ Japow u1a101d-G9 :uoIeALIaq paresqifed Ajfenpiaipur pue AydesBnoe) ;_p ;_6x 3 :Auanoe [eaisAyd Apraspn
280 onv 0z (%ST) puejua4 |9pouw UI3104d-E€ ‘Usl :UoepIfeA
€80 onvy 29g'e (%02) puejuad [3pOW U13}01d-EE ‘UdW :UoiEALISQ
98°0 ony 8zL (%ST) puejua 13pOW U18}0Jd-Qg ‘UBWOM :UOIepI[eA
680 onNv 96€'S AQQOD puejus4 |apowl :_muo\_g-om ‘uswiom ‘:uonealsg Atonm‘_.u—_wwv SHun T MO|ag/anoqe ”:o_uQEsmcoo [e]¥[ee] )4
$1019®} [eJ0IARYS(Q 8]gRLIPOIA
1.0 d 29 (%0T) aBeieH [3pow u1ajoJd-GTT :UoNEpIeA
080 d €25 (%608) abeisH |apow u18104d-GTT :UoneAllsg (xew COA) ¢-utw _6 Jw :ssauy Areuow|ndoipied
0.0 d 8TL'T (%ST) puejua [3pow u13101d-96 :uonepI[eA
L0 2 910'8 (%02) puejuad [3pow u13)01d-96 UOHEALIBQ (wX3Q) B 138y [essdsIn
280 d T2L'T (%ST) puejuad [3pow u1ajoJd-GTT :UoNEpPIeA
€80 d 0£0'8 (%01) puejuad 1pow u1e10Jd-GTT :UoKEBALIBd
1ZX0] d 0£0'8 (%01) puejuad sansLIgloeIey 303[gNS 353 UONEALIRQ (wX3Q) 6% :ssew Apoq uesT
260 d TeL'T (%GT) puejuag [3pow U1S104d-6TZ :UOKEPIIEA
260 d 0£0'8 (%02) puejuad [3pow usj0ld-6TZ UoneALQ
7.0 2 0£0'8 (%02) puejuad sonstajoeIey 103[gnNs 1saq :uoleAlad (wx3Q) % ‘14 Apog
760 onvy 620'T  (%00T) 82UBAOD [3pow u13}01d-GG uoKEpIfeA
60 ony £10'C (%608) ELNNH [9pow U1e104d-G5 :UoneALIsd (uotenba |d3-aX0) ;-UIW JW 09> HADA :UoOUN ASUpI|
€80 oanvy 2I5'T (%ST) puejuad [3pow urei0.id-p6 uoLeplfeA
680 onvy 7502 (%02) puejuad [3pow u13)01d-16 :UOHEALIIA
¥9°0 oNVY ¥50°L (%0.) puejua4 So1S1I810IRYD 103[QNS 153 :UoNEALIBQ (punosesyn) aouasqe/aouasald :1ey JaAIT
81el1s yijeay wsaand
1 nsay ouPBIN - (u) syuedionaed 804N0S uonoy (paepuels yinal) indino [apony

Author Manuscript

S1asejep UONEBPI[eA puR UOIBALIBP Ul S80U8Jajal/sioresedwiod pue [apouw ulaloid yors 10y SO1IaW ouBWI0)Iad

| T a1qeL

Author Manuscript

Author Manuscript

Author Manuscript

Nat Med. Author manuscript; available in PMC 2020 June 02.



Page 28

Williams et al.

“dnoub ansgelpuou sy} 4o BuLIosUsD 81| JO 8sNeIaq [apow (103oey
>S11) 90UBJaJ81 U 10} palelsUl A[RIO1ILe SeM JaNe| B} asnedaq DNV LBy} Jayrel pasn sem Adeinade ‘uonolpaid saleqelp 104 'sniels selagelp pue (J|Ag) Xapul ssew Apog ‘xas ‘abe se yoans solydelBowsp
J0 uoneuIquiod Buiwioyiad 1s3yBiy 8yl papN|oUI pue ‘aYels JUSLIND JO SaINSeaW Urelad 1oy AJ[enpIAipul padojanap alam s|apow sonsUg)oeIeyd 198lgns 1sag "2/ 40 SaN[A 10} P3SN s 1UBI1YJ300 UOIE|31100

s, Ueweads 1591 92urIa|0) 850916 |10 ‘1 1 HO ‘8led Uole|ly Jejniawolb parewnss ‘Y499 ‘uondiosqge Aei-X ABlaua-jenp ‘x3q ‘uonelogejjod ABojorwapidg—asessiq Asupiy d1uoiyd ‘1d3-aMod

T2 0+ 14N [e10L
100+ 14N JusAs-ON
€T’ 0+ 19N UaA3
99'0 nsnes-J [e1eV4 11 [lBYSHYM  suonoelaiul abe 79 suiajoid €T :UonepIfeA
690 onsiels-o 9 €INNH  suonoessiul abe % sutsloud €T :uoneAllag
590 Jnsels-0 S9¢ §1010€) %SL YHW/JJV -uolepifeA
990 onsness-o ¥9ve €INNH §10308) XSl YHW/JQJV UOleALIsg (x9-T) s1eak G uiynm Jusns AD 1811 e Jo Aljigeqoud annejey
1190
J9A0 Juswanoidwi
%9+ AIanisuss
%.9 Koeinaoy €8 (%02) Il IrY3HUM [3pow urajold-G/ € :uonepljeA
1190
190 Juswanosdwi
%0€+ Anamsuag 0ce  (9608) 11 IreUSHUM 1apow utajold-G/ € (UoHeALIaQ
1 nsay ouBIN - (u) syuedionaed 804N0S uonoy (paepuels yinal) indino [apo

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Nat Med. Author manuscript; available in PMC 2020 June 02.



Page 29

Williams et al.

WwasAs aunwiwi ayeuul ayj Jo ued

a]qe[eARUN XA Usym Te) Apoq abeiuaalad Jo selewnss
1ING J0 AJeInade 8y} dUBYUS 0} UMOYS Udaq OS|e sey ‘1ej Apoq abejuadiad pue [Ng
yb1y ynum s1algns ui syunowe Jaybiy ui Juasaid pue anssiy asodipe ul padnpold

ainypuadxa
ABaua pue uonisodwod Apog ui 8ol e Aejd 01 UMOUS Usag aAey sulqIyu]

sa)Aoodipe ur punoy ‘sAemyred Alojewwesul pue dijogelsw 03 payull Ajbuons

a]qe[eARUN XA Usym Te) Apoq abeiuaalad Jo selewnss
1ING J0 AJeInade 8y} dUBYUS 0} UMOYS Udaq OS|e sey ‘1ej Apoq abejuadiad pue [Ng
yb1y ynum s1algns ui syunowe Jaybiy ui Juasaid pue anssiy asodipe Ul padnpold

anss1y asodipe
SNOBUEBINIQNS Ul 90UEISISa] UINSUI pue A1ISago Ul pasesloul aurjodipe pajaioss

‘ABojoiq
10f.1e] 01 UOIIDBUUOT JB3]d OU ‘YIMmo.B d11inau pue sisauaboldeuAs ul panjoAu|

(sugey joyoaye pue Bursjows ‘A)Ande [eaisAyd ‘snieis ||ING) 2409s a|A1sa|
Ayijeayun ue yim pale1oosse pue SUOIPUOD J1|0qeIaWOoIpIRD J0) Jay ew d118UaD
AbojoisAydoyred anssi asodipe 8sago Ul PaAjoAUl pue AJISado Ul pajens|3

awoJpuAs arjogelsw pue Ayredoaydau
2118qGRIP ‘18A1] A1) UM PaTe[a1i0d pue WSI|ogelsw pIoe AJje) aAIIIR Ul PAAJOAU|

a|ge|leAeUn Sem X3 Uaym ey Apoq abejuadiad Jo sarewnsa
1\'g 40 AdeIndde ay) adueyua 03 umoys Ajsnoinaid ey Apoq abeiuaalad pue |ING
yb1y yum syoslgns ui syunowe 1aybiy ui Jussaid pue ‘anssiy asodipe ul paonpold

uoieI|1y ASUpIY 4O 3INSEAW [8IIUI]D UAMOU-| |9

8seasip AsUpIY UM UOIIRID0SSe UMOUS & 0s[e Ing uig)old Buipuig-pidi

jawdolanap A3upiy Ul PaAjoAU]

aoue)sISal
urnsul pue uoiejnBal wisijogelaw ul 8joJ e sAe|d pue JaAl] 8yl Ul paziISaYIuAS

aseasip Janl] A11e} 91joyooJeuOU YNM sjusized ul paniasgo
U9aq aney (y-dgv4) dgv4-V 10 s|ans| Bunenaio pue uoissaidxa onedsy pasealoul
‘sAemuyred Asojewwrepjul pue o1jogelsw 0} paxull Ajbuoas ‘se1koodipe ui passaidx3

(sugey joyoaye pue Bursjows ‘ANAnde [eaisAyd ‘snieis ||ING) 2409s 3|A1sa|
Ayijeayun ue yiim pale1oosse pue SUOIIPUOd J1|0qeIaWOoIp.eD J0) Jay ew d118UaD

(10yda0ai

OTD wauodwod yusws|dwod) THOTD

undsT

OgHNI
vdav4

undsT

¢-dSIM

v aj11-u1el0d MY LN Pue 117S YIS

19Z3S

(¢ uiyoud
pale|a.-pajzzil) Palaloss) ydy-4S

(ursyoud Burpuig-proe Aney) dgvd

undan
urngojBoidiw z-eleg
(AI-v utgloidodijode) Al-y ody

(0T ursro0ud Buiureluod-urewiop
yzdwsa suelquiawsuel)) VAINL

(T urgr0d Buipuiq
-10398} YImo.B axj1|-unsut) T-dg49l

(a1/o0dipe
‘ursioud Burpuig-proe Aney) vdav4

(urer04d 9j1-9 31nz198) 19Z3S

Ui

165 Jw :xew ¢ ssaully Areuowndoipred

B :1e} [@I90SIN

6 :ssew Apoq uea

% -1e} Apog

T-UIW W 09> YDA :uonouny Aaupry

(punoseain) aouasqe/aouasald :1ey JaAIT

a7e1s y1jeay 1uaLIND

ABojoiq 186.4e) Ul 3]04 [e1IUal0d

su1ajoad saayy dop

ISPON

anssi

umoys oalie

1ndino s, japow yoea 0] SI10INgLIIU0I [ealtewsayrew aa1y) dol ays ‘japow yoea 4oy ABojoisAyd 186181 ay) 01 uonejas ul suiajoid Aax Jo Aupigisneld [eaibojoig

Author Manuscript

Author Manuscript

| Z a1qeL

Author Manuscript

Author Manuscript

; available in PMC 2020 June 02.

Nat Med. Author manuscript



Page 30

Williams et al.

‘¢ 9|qeL Areyuswajddng ui pajsi| ale painseawl atam Jeys sulsjold |je pue ‘T ajgel Arejuswajddns ul umoys si sjppow |e ul suisiold T68 |1e Jo Bunsiy [N} v

uonounysAp ueblo parerdosse pue gAD 40 sadAl |je ur Ajuediiubis
asll S|aAd) ‘sasuodsal Alojewiwielsul pajelpaw-alkoouow pue -jiydosinau sayijdwy

SaWo.IpuAs Aleuolod ainoe Jo sisauaboyred ay) Ul pue s1S043|2s0IaYIe JO uolssalboid
ayy u1 ajod e Arjd Aew ‘waisAs uonenbeod sy} Jo SAWAZUS [BJIASS SaleAlIdRU|

AydoapiadAy
JRIPJED 9ONPUI 0] UMOYS Udaq Sey uolssaldxalano ‘sisoidode pue juswianow
‘uonenualaylp ‘ABojoydiow |99 ‘uoireziuefio Juswely unoe diweuAp sae|nbay

Sa1aqeIp pue ANSA]O Se Yans SIapJosIp d1joqeiaw
10 Juswieal} ay} 104 196.1e) d1nadelayl e Se pamalA ‘axelul pooy Hgiyul 0} sjgeun
w0} 8A139BUI U 0] duowloy Bulrenwins-s1fooueaw-o sapelfap eyl swAzua Aoy

uoI12193s ulnsul ui ajol e Aejd Aew
asejonpal auoulnb ‘sauouinb o uonoNpal d1jogelIsW sazAe1ed Jey uisioldone]q

ABojoisAyd 18681 ylMm uolIe[al Jeajd/umouy oN
UOIeSS3d BUIOWS [NJSSBIINS YIIM SIY) payul] ApnlS UOIEID0SSY apIM-aLLIoUsD)

J99ue2 Bunj 1192
-[Jews-uou ui sisouBoid pue asessip sAeMIIR SAIONISYO J1UCIYD YIIM PaleIoossy

ABojoisAyd 196Je1 Y1Im UOIIR[3) JBSJI/UMOU OU ‘UIMOJB 811IN3U Ul PAAJOAU|

$sa.1s WN[Naal olwse|dopus
Burinp asuodsal ure)oid papjosun sy} sereRIUl TRyl JOJeAROR uondiIosuel |

ABojoisAyd
196.) UM UOITR[3] JBS|I/UMOUS OU {3|N23JOW UoISaype ulngojfounwiu|

10} Apoq abejuadiad pue |ING
yb1y ynum s1algns ui syunowe Jaybiy ui Juasaid pue anssiy asodipe ul padnpold

13A1] UO 198443

Joyoaje 03 a1e|as Aew ‘aseasip JaAl| A1ie} Ul SISoiqly. BuloueApe YlIm pajeldosse ()
snireday yum syuaiied Ui SISOYLIID 10y Jaysewolq ‘wsijogeiaw pidi) ut ajos enodw |
ABojoisAyd 18681 yym uorrejal Jeajdumou ou ‘Burjeufis 1199 Jo Jore|npoin

s19[ae|d uo [oyoare 4o 1oedwi 0 81e|a) AeW ‘SIUBAS D1IOGIOI) BINJe
Ul uoieAnae 1aj91e|d Jo Jaslewolq e si pue uooeIauL 19|31e|d-19[a1e|d SI0WO0Id

sisalodoyeway
UO S}93443 |oyod|e 0} a1e|al Aew ‘synpe ul sisalodoleway ul paajoAul Ajureiy
AbBojoisAyd 18681 Yl uolIR[al Jeajd/umouy oN

s1o[ae|d uo [oyoae 4o 10edwi 01 81e|a) ABW ‘S3SEaSIP J1I0GIOIL) 3INJe
Ul uoieAnae 1a]91e|d Jo Jaslewolq e si pue uoioeIaul 19|31e|d-19]a1e|d SI0WO0Id

aye|o} alinbas AlAnoe earsAyd Aq anssi ajosnw
10 Jiedau pue Buipjingal pue uononpoid ABiaua ‘81ejo) Jejnj|adeiul saleinbay

T-N3YLs

111 ulquoyinuy

uljosjan

asepndadAxogJesjAjoid

Z 3seonpal auouind
(asej04pAy u1zuojyd-aseroe]) Hd1
(80T urer04d auriqIBWISURIL) 8OTINL

T Jaquisw v € Ajiwey uiqoholaioss
(¢ f-uroud YN pue M1TS) EMINS

(eyde 9-41V 10108} uondiiosuesy
1uspuadap-dINY 211942) Y941V

(g 1aquisw Ajiwey NO161) SOOI

unda

(4 uigjoudodijode) 4 ody

(e19 asejeydsoyd
u1sj01d-au1solA) adA1-101dadal) rdd.ld

7ands

puebi| 13 (J03oey 199 Wals) 408

(aseJajsuejoulwe
auniesoydsoyd) D¥3s

(T wisr04d Burureyuod-urewop axi-493
pue gn ‘apndad [eubis) TaNIS

(asejopAy |Areinb ewweb) HOHO

(x9-T) s1eak g uiyum
wans AD 18114 & Jo Anjiqeqoud annejey

SU x€ MOJ3q 10 3A0qe ‘sJeak 0T Ulyim

saloqelp 03 Sa1ageIP-a.d WOy UOISISAUOD

ouy/saA 1uaung :Bujows anasebiy

1P 1293 :AuAnoe [eaisAyd Apjaspn

(uaw)
sHUN $T MOJad/aA00e :uodwnsuod [0Yod|y

(uawom)
sHUN $T MOJad/aA00e :uodwnsuod [0Yod|y

SYSL Yieay
21j0geIBW B4NIn4

$10)0e)
[EJOIABU3T B|CRLIPOIN

ABojoiq 186.4e) Ul 3]04 [e1IUal0d

Author Manuscript

Author Manuscript

su1ajoad saayy dop

ISPON

Author Manuscript

anssi

Author Manuscript

; available in PMC 2020 June 02.

Nat Med. Author manuscript



Page 31

"SAX0( %00T dY} Ul Sasayiualed Ul uMoys SI [apow auo Aue ul pash sainyes) Ulaloid JO Jaquuinu [enloe ay} ‘TE8 SeM S|apow ayl
11e Aq pasn suisjoid anbiun jo Jaquinu [e103 8y ‘Al1ield 1o} pabeane are (4) safewsy pue (A1) Sajew Joj S|apow joyodfe aleledas ay oy sabeiuadlad ay *A114e[d 10) plog Ul UMOYS aJe 9GZ< SdelJanQ ‘s|apow
JBYI0 8U1 YM pateys [apow 1eys ui suisjold Jo abeiuadiad syl sureiuod jage| 1eys Jo B 8y 01 MOJ B UIYIM X0q YIea {[apow Jeyl ulyim suisloid Jo dnoif e Apiuspl uwinjod 1si1y 8yl Ul Sjage| [apow ay |

Williams et al.

(96) 00T €1 €1 8¢ L L 6¢ 4 € 6¢ T T8} [BIBISIN

81 (59) 00T 4 14 z€ 4 9 0 8 81 9 Ananoe eatshyd

0T vT  (GTT) 00T 01 0¢ € 9 [ 14 4 L Xew 2O

8¢ €1 €T (v6) 00T LT 9 (14 [ 14 6¢ T T8} SN

45 01 91 L (612) 00T LT LT 14 14 91 TT Y8} Apoq afeuslad

0z 8 6 61 ot (0g/ee) 00T 1 0 0 6T 8 (2/) 10401

Ic4 ST LT LT z€ v (STT) 00T [ 6 9T €T ssew Apog uea]

Gt 0 Gt ST og 0 ST (1) 00T 8 18 4 st AD Arewiid

g 6 6 4 Gt 0 81 z (8) oot S L uonen|iy Asupry

L € 4 L 6 4 S 1 T (sL¢€) 0otT L S939EIP JUapIdU]

8 € 9 L LT 4 01 14 € 6T (s¥1) 00T  Bunjows anaseb1
Ananoe Jey ssewl MSiA uolyea|y selaqelp Bupjows

e} [ed89SIA |ea1sAyd  Xew QA YejJanim  Apog abeusdlad |oyodly  Apoq uea] AD Aewiid Asupry Juspiou| anasehin [EJlI]

S|apow J3y10 Yyum dejiano 1eyl [apow auo Aue ul suialoud Jo (94) uoniodoid

| € a1qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Nat Med. Author manuscript; available in PMC 2020 June 02.



	Abstract
	Discussion
	Methods
	Study design.
	Proteomic platform.
	Derivation and validation of protein-phenotype models.
	Models of current health state.
	Liver fat (predicting liver ultrasound result of no fat or excess fat (excess defined as the combined mild/moderate/severe grades of fat)).
	Kidney filtration (predicting normal or impaired eGFR (≥ or <60 ml min−1)).
	Body composition (predicting dual-energy X-ray absorption (DEXA) components).
	Cardiopulmonary fitness (predicting maximal oxygen uptake on a treadmill (VO2 max), ml kg−1 min−1).

	Modifiable behavioral factors.
	Alcohol consumption (predicting self-reported consumption above or below UK guidelines (14 units/week for men and women)).
	Physical activity (predicting average daily physical activity energy expenditure estimated from combined heart rate and movement sensing for 1 week (kJ kg−1 d−1 or kcal d−1)).
	Current cigarette smoking (predicting self-reported questionnaire results).

	Future cardiometabolic health risks.
	Incident diabetes (predicting future diagnosis in people with pre-diabetes).
	Incident CV events (predicting any type of first event or CV death within 5 years).


	Quality control and data normalization.
	Statistical analysis and machine learning.

	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	References
	Fig. 1 |
	Table 1 |
	Table 2 |
	Table 3 |



