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Abstract
Statistics of Certain Automorphic Representations through the Stable Trace Formula
by
Rahul Dalal
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Sug Woo Shin, Chair

Since Automorphic representations for general groups are very difficult to study individually,
they are often studied in families instead. The Arthur-Selberg trace formula lends itself
naturally to answering questions about averages of various parameters of the local components
of automorphic representations in so-called harmonic families. In their 2016 work, Shin
and Templier realized that, in the special case of representations with discrete series at
infinity, the trace formula simplified dramatically enough to compute statistics with good
error bounds. These bounds were good enough for applications: first, an averaged Sato-Tate
law analogous to Sato-Tate for families of elliptic curves and second, computations of the
specific random-matrix statistics that low-lying zeros of L-functions in the family follow.
Following Shin-Templier’s idea, we solve two further problems about discrete-at-infinity
families.

First, Shin-Templier’s work used the invariant trace formula which disallowed families that
distinguish representations with infinite component in the same L-packet. However, which
member of this L-packet a representation might correspond to determines some important
characteristics—whether the representation is holomorphic or quaternionic for example.
Methods related to the stable trace formula can remove this restriction. The key idea is
applying a certain "hyperendoscopy” formulation of stabilization used first by Ferrari, though
many technical difficulties come up.

Second, while the equidistribution results achieved are interesting in their own right, they also
provide a proof-of-concept that the tools developed for proving them are sufficient for studying
very general questions about discrete-at-infinity families. As a further demonstration, we
also use these methods to solve a very different problem of computing explicit dimensions of
spaces of quaternionic forms on the exceptional group Gs.
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Chapter 1

Introduction

1.1 Overview

Automorphic representations are spaces of certain very symmetric complex valued functions
that mysteriously encode information about much else in mathematics, with applications in
fields as diverse as constructing higher-dimensional expanders for computer algorithms and
computing scattering amplitudes in string theory. As a particularly interesting example for
number theorists, if one believes something called the Langlands conjectures, information
about automorphic representations directly produces information about structures called
Galois representations that are the main tool used to solve problems in modern algebraic
number theory

While useful, general automorphic representations are unfortunately quite difficult to
work with. Key problems in the field, such as the Langlands functoriality and generalized
Ramanujan conjectures, have been open for decades. Much previous work has been in
developing complicated representation-theoretic techniques to solve the overarching abstract
problem of functorial transfer, the most important being more and more sophisticated versions
of Arthur’s trace formula and its comparisons.

Because of their complexity, these more recent trace formulas have so far not been applied
much towards more explicit statistical or analytic problems—for example, proving various
equidistribution laws or bounds towards the generalized Ramanujan conjecture. However, the
formulas simplify dramatically in a particular special case of representations with ”discrete
series at infinity”, becoming tractable to compute with. Restriction to discrete-at-infinity
is analogous to studying just holomorphic modular forms instead of also Maass forms—in
particular, it still includes much interesting and rich behavior.

This thesis attempts to demonstrate that the simplified trace formulas are powerful
enough to answer many desired statistical questions about discrete-at-infinity automorphic
representations. In chapter [2] we go over current trace formula techniques. Chapter [3]is the
technical heart where we then build the extensions of these formulas needed for our specific
problems. Chapter 4| applies the results of chapter 3| towards computing equidistribution laws
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on certain families of automorphic representations on very general groups. Finally, chapter
uses the developed techniques to solve a very different problem of getting explicit counts
of a particularly interesting class of automorphic representations about which very little is
currently known—quaternionic representations on Gs.

We hope that the example uses of the techniques in this write-up are a useful guide for
others attempting similar computations.

1.2 Mathematical Background

We start with a “pop-science”, general-math-audience introduction to the material covered
in this thesis. Any expert in the field should skip ahead to the two technical introductions.

1.2.1 Foundational Notions
Reductive Groups

Automorphic representations are built from certain mathematical objects called reductive
groups. These can be thought of as subgroups of N x N matrices under matrix multiplication.
The “reductive” condition is that they have particularly nice representation theory—roughly
that their representations all reduce into a direct sum of irreducibles.

The key point is that a reductive group needs to be defined by only polynomial conditions
on the coordinates of the matrix, making it completely agnostic as to which exact matrix
entries are allowed—C-valued, Q-valued, etc. If G is a reductive group, we denote G(R) to be
the group of matrices satisfying the polynomial conditions with entries in R. The language
of algebraic geometry lets us abstractly prove results about a given reductive group that stay
true for very general choices of R.

Some examples of reductive groups are all the classical matrix groups: linear groups
GL,, and SL,, unitary groups U, orthogonal groups SO,,, symplectic groups Sp,,,, etc. A
non-example is the group of upper triangular N x N matrices—even though it is a matrix
group picked out by polynomial conditions on the coordinates, it has representations that do
not decompose into a direct sum of irreducibles.

There is more-or-less a classification of all reductive groups defined by polynomial equations
with coefficients in some nice enough field. Over the complex numbers and up to center, the
only examples are the families of matrix groups SL,,, SO,,, and Sp,,,, together with 5 strange
“exceptional groups” denoted G, Fy, Eg, E7, and Eg of dimensions 14, 52, 78, 133, and 248
respectively. Over a non-algebraically closed field, each of these complex groups has various
“forms” that can basically be classified by certain Galois cohomology groups. For example, the
unitary groups U,, are specific forms of GL, and all the various orthogonal groups SO(m,n)
are forms of SO,,4,,.

The book [56] is a great reference for the full theory.
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Adeles

The specific types of matrix entries that we will specialize our reductive matrix groups to are
called the adeles.

Recalling first-semester real analysis, the real numbers are produced from the rational
numbers together with the the standard metric do.(x,y) = | — y|. This done by a process
called completion that fills in all the “holes” in the rational numbers and makes limits with
respect to d(x,y) work nicely.

There are many other possible choices of metric on the rational numbers however. For
every prime p we can define d,(z,y) to be the power p™ of p we need to multiply = —y by so
that if p™(z —y) = a/b in lowest common form, a and b are relatively prime to p. For example,
d2(0,1/2) = 2 and d;(1/2,343 + 1/2) = 1/343. The p-adic numbers Q, are analogous to the
real numbers: produced by completing with respect to d,. For example, there is a V2 in Q;
that is the limit of a sequence of certain integers a,, such that a2 = 2 (mod 7"), just like
there is a v/2 in R that is the limit of a sequence of rational a,, such that ai gets closer and
closer to 2 in d.

In number theory, all these notions of distance are important—we not only care directly
about how big a number is, we also care about congruences mod powers of primes the number
satisfies. Speaking extremely vaguely, the adeles A are a way to put R and all the Q, together
in a way so that we can do analysis with respect to all distances at the same time. Roughly,

A=Rx[]Q,
p

1))

where the “~” hides a technical fix to make sure A is locally compact so it has reasonable
analytic properties.

For the purposes of automorphic representations, we focus on some key properties of the
adeles. First, A is a locally compact abelian group under addition, so functions on it have
a good notion of Fourier transform. In addition, the diagonal embedding Q — A realizes
Q as a discrete subgroup such that Q\A is compact. The setup is analogous to the case of
Z inside R and lets us get number theoretic-information out of a lot of powerful techniques
from harmonic analysis, such as Poisson summation.

Even better, for non-abelian reductive matrix groups G, there is similarly a good theory of
non-abelian Fourier transforms for functions on G(A). In addition, G(Q) diagonally embeds
discretely into G(A) and, up to issues with centers, G(Q)\G(A) has finite volume. This
allows us to similarly get number-theoretic information out of many powerful techniques in
representation theory/non-abelian harmonic analysis, such as trace formulas.

Basic information about the adeles can be found in any graduate algebraic number theory
text, such as [61]. The book [64] is a good reference for facts about the adelic points of
reductive groups.
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1.2.2 Automorphic Representations
What are they?

If G is a reductive matrix group over a number field K, then an automorphic representation on
G is an appropriately-defined notion of irreducible subrepresentation of the square-integrable
functions L?(G(Q)\G(A)) as a representation under right translation by G(A):

(g f)(x) = f(zg).

The space G(Q)\G(A) turns out to approximately be a limit of quotients G(R) by all the
subgroups in G(Z) defined by congruence conditions on matrix entries. As a more familiar
example, in the case G = GLg, G(Q)\G(A) is related to quotients of the complex upper-
half plane (which is the same as GL2(R)/SO2(R)) by modular subgroups. Automorphic
representations for GLgy then correspond to classical new-eigen-modular and Maass forms.
This correspondence takes some work to show.

Automorphic representations roughly factor over the primes and infinity:

o @
p

where 7, is a representation of G(R) and the m, are representations of the individual
G(Q,). Not every combination of m, forms an automorphic representation. Exactly which
combinations work is what encodes most of the useful information in applications. In the
case of classical modular forms, the 7, have to do with the Fourier coefficients a,.

The component 7, describes the qualitative “type” of the automorphic representation.
In the GL, case, it determines whether it is a Maass form or modular form and what its
weight is. The nicest possible automorphic representations correspond to the nicest possible
Too: Tepresentations that live discretely inside L?*(G(R)), or discrete series. In the GLy case,
discrete-at-infinity is the case of modular forms of weight k > 2.

The book [24] discusses automorphic representations on GLy and how they connect to
classical modular forms and is therefore a great reference for building intuition about the
general theory. A good general reference is the book draft [26].

Why do we care?

However strange and unmotivated their definition might be, automorphic representations
are important for one big reason: they mysteriously come up in disparate areas across
mathematics, thereby providing a common bridge and creating web of unexpected and useful
interconnections. As a non-comprehensive list:

e in Number Theory: Galois representations (Langlands conjectures),

e in Computer Science: expander graphs/higher-dimensional expanders,
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e in Differential Geometry: spectra of Laplacians on locally symmetric spaces,
e in Combinatorics: identities for the partition function,

e in Finite Group Theory: representation theory of large sporadic simple groups (moon-
shine),

e in Mathematical Physics: representations of infinite-dimensional Lie algebras,
e in String Theory: black hole partition functions, 4-graviton scattering amplitudes.

The first construction of expander graphs by [52] demonstrates the utility of the intercon-
nections. Expander graphs are graphs without many edges, but where all vertices are still
connected by very short paths relative to the number of vertices—a pretty useful property for
designing algorithms. This “expansion property” can be restated as bounds on eigenvalues of
a certain “Laplacian” operator acting on functions on the set of vertices.

Surprisingly, for certain graphs, the eigenvectors can be interpreted as coming from
automorphic representations. The bound on eigenvalues then reduces to proving something
called the Ramanujan conjecture for these automorphic representations. This conjecture is
wide open in general, but luckily, the specific automorphic representations that come up can
be looked at through the number-theoretic perspective.

This is where the power of the bridge comes in—first, the Ramanujan conjecture mysteri-
ously reduces to a problem about counting solutions to certain polynomial equations mod p.
The desired result about point counts, called the Weil conjectures, is known. However, it
is only known through extremely sophisticated techniques in algebraic geometry. In total,
automorphic representations allowed us to apply a deep result in number theory towards
constructing combinatorial graphs with surprising and useful properties. For a long time,
this was in fact the only known way to construct expander graphs, though there are direct
combinatorial methods now.

So as to not oversell, the discrete-at-infinity automorphic representations studied in this
work are of course not relevant in all of these applications. In addition, there are few other
current examples of connections as striking as the expander graph one, though I am personally
hopeful that there might be many more in the future.

1.2.3 Trace Formulas
Idea

We are now left with the question of how to actually study these objects. Automorphic rep-
resentations are approximately subrepresentations of a larger representation L?(G(Q)\G(A)).
Recalling what happens in any introductory course in representation theory, this means that
a good way to study them should be to look at traces of operators on L? that relate somehow
to the action of G(A)
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How do we produce these operators? One standard way is to take nice enough functions
f: G(A) — C and consider the convolutions:

R :vw— f(g)(h-v)dh,
G(A)
where dg is some invariant measure on G(A). This should be though of as a sort of “averaged”
action where the average is weighted by the function f.
How do we compute their traces? The Arthur-Selberg trace formula is roughly a formula
for the trace of convolution operators of test functions on G(A) against the space of all
automorphic representations:

S tnfr Y vol(Gh(Q\G(A) / fe g dg. (L)

7 automorphic v€[G(Q)] Gy (A\G(A)

The right side is approximately sum over rational conjugacy classes of the volume of a
particular quotient of the centralizer of v times an integral over the conjugation orbit of v in
G(A).

The trace formula lets us probe which combinations of local m, produce an automorphic
representation. For example, choose a test place w and pick a function f,, that traces to a
desired parameter of m,,. Choose test functions f, at all other r that trace to 1 if =, satisfies
a desired condition and 0 otherwise. Then plug [], f, into the trace formula. Applied in this
way, the trace formula naturally lends itself to computing statistics of a fixed local component
over families of automorphic representations defined by other local conditions—the harmonic
families of [70].

Technical issues

If G(Q)\G(A) is compact, then the “~” in is actually a strict equality. Otherwise,
very few of the terms actually converge and we need to use various methods of truncation
developed by Arthur. Truncating produces a variety of different and unfortunately extremely
complicated formulas that all go under the name “the Arthur-Selberg trace formula”.

The different versions of Arthur’s trace formula lie on a spectrum. On one end, there are
more explicit versions where the individual terms, while still complicated, are not as horrific
to compute. However, on this end, the approximation is more brutal and destroys any nice
abstract properties the terms might have—conjugation invariance, etc. On the other end,
the terms are extremely technical and may even not have explicit formulas, only proofs of
existence. However, they keep a lot of nice abstract properties and may even gain better ones
then the basic, compact quotient formula.

In certain special cases, better abstract properties make the more advanced trace formulas
simplify dramatically, to the point where the terms are even easier than in the explicit trace
formulas. The case used in this work is Arthur’s invariant trace formula,

]spec(f) - Igeom(f)v
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when the infinite place is restricted to be discrete series as in [4].
The paper [3] is a good introduction to all these trace formulas.

1.3 Summary of Results

1.3.1 Shin-Templier’s Result

Shin and Templier’s paper [79] realized that the discrete-at-infinity formula of [4] is explicit
enough that averaged statistics of local components 7, are computable up to reasonable
error bounds. More specifically, let F be a “family” defined by giving to an automorphic
representation m a weight az(7) that vanishes except for finitely many 7 and depends only on
spectral data of the components m,. Then, if f, is an unramified test function at some place v
and F is of a certain form that in particular only includes discrete-at-infinity representations,
Shin-Templier’s result bounds averages over the family. The bound has shape:

Zaf ) ten, (fo) = #P(f) + O(g) PRI FI7), (1.2)

71'6.7-'

Here, upl(ﬁ,) is a canonical notion of the average of tr f, on the space of representations
of G(F,) and « is a measure of the size of the support of f,. The constants A, B > 0 and
C > 1 are inexplicit but basically only depend on G.

The error bound’s shape gives useful applications—first, an automorphic Sato-Tate
equidistribution law for local components analogous to averaged Sato-Tate for families of
elliptic curves, and second, a proof that distributions of low-lying zeros of the L-functions of
the families match some expected random matrix laws.

1.3.2 Splitting the L-packet

Discrete series representations of G(R) are partitioned into sets called L-packets. Because
[79] used the invariant version of Arthur’s trace formula, the coefficients ar defining F
needed to be constant on automorphic representations with 7, in the same L-packet. In
other words, it could not distinguish between m with 7., in the same packet. While this
is irrelevant for some applications, the different elements of an L-packet have differences
that are significant in others. For example, only part of the L-packet might correspond to
automorphic representations that are representable as holomorphic or quaternionic functions
or that have a Whittaker model.

Chapters 2-4 of this thesis apply techniques related to the stable trace formula to prove
Shin-Templier’s bound for families where ar could depend on the particular 7., within
an L-packet, thereby distinguishing between representations corresponding to the same packet
at infinity. As far as I know, it is currently the only application of the fully-general stable
trace formula towards computing statistics.
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Y

The work involves three main technical steps: first, a generalization of a “hyperendoscopy’
formula of [17] to cases where hyperendoscopic groups do not have simply connected derived
subgroup. Second, it used some bounds on endoscopic transfers produced by the full, character-
theoretic formulation of the fundamental lemma in [34]. This required some combinatorial
formulas from [12] and [32]. Finally, the result needed an extension of [4] to general groups
with discrete series at infinity instead of just those satisfying a technical condition on their
center. This removed the corresponding technical conditions in [79] as a side effect.

1.3.3 Quaternionic forms on G,

. There are a few types of automorphic representations on specific groups that have been
studied heavily historically—classical modular forms corresponding to discrete series repre-
sentations on GLy(R), Seigel modular forms corresponding to holomorphic discrete series on
Sps, (R), etc. Because the groups involved were simpler, a lot of progress was made using
ad-hoc methods that didn’t engaging fully with general representation-theoretic aspects.

More recently, Gross and Wallach in [31] found another special class of automorphic
representations—quaternionic forms corresponding to automorphic representations whose
infinite component is a so-called quaternionic discrete series. They were quickly found to
have many interesting properties. First, [23] showed that the Fourier transforms of those
on G5 encoded interesting arithmetic information, a result [67] extended to all exceptional
groups. More bizarrely, they seemed to appear in certain string theory computations about
black holes (see conjecture 15.13 in [21] for example).

Focusing just on G, the ad-hoc techniques developed for classical groups of course do
not apply. Therefore, not very much is currently known about quaternionic G-automorphic
representations. However, these representations are therefore also a great test application
for the general representation-theoretic techniques developed here. Even more interestingly,
quaternionic discrete series come in L-packets that also contain non-quaternionic members, so
studying quaternionic automorphic representations specifically requires splitting the L-packet
with our stable trace formula techniques.

As one technical pitfall, quaternionic discrete series do not satisfy a technical condition of
being “regular” necessary for invariant trace formula methods to apply. However, a miracle
occurs that being regular is not at all necessary for specifically quaternionic discrete series,
even though it is for other members of the L-packet.

Using this miracle, we are able to compute dimensions of spaces of level-1, discrete,
quaternionic automorphic representations on G5. We are also able to give a full listing of all
level-1 quaternionic representations in terms of automorphic representations on compact-at-
infinity form G§ together with pairs of classical modular forms.

1.3.4 Some Selected New Techniques

One main hope of this work is that it can serve as a blueprint and set of guiding examples
for other statistics computations using the stable trace formula. Here, we highlight some
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practical methods to get around common difficulties that may arise:

e Section gives a version of the hyperendoscopy formula from [17] that works when
groups without simply connected derived subgroup appear in hyperendoscopy. Formula
gives a telescoped version of this that only has stable terms.

e Section 3.3 gives a generalization of the simple trace formula in [4] to both non-cuspidal
groups with fixed central character datum and also to test functions with just a
pseudocoefficient at infinity instead of just an Euler-Poincaré function. We hope that
this is also useful for people studying the cohomology of Shimura varieties.

e Sections [3.2.4] and [3.2.5| present tractable formulas, computation examples, and bounds
for unramified transfers.

e Lemma.1.2.1| demonstrates how one might tackle studying certain non-regular discrete
series through the trace formula and how one might test when this is feasible for a
particular discrete series representation.

e Section demonstrates a fast and easy way to compute endoscopic character signs
in transfer formulas for pseudocoefficients from a given choice of Whittaker datum.

e Finally, the derivation of formula demonstrates a trick with stabilization by which
computations involving discrete-at-infinity representations can sometimes be reduced
to computations on groups that are compact at infinity.

We also attempt to comprehensively summarize the relevant endoscopy and trace formula
background in chapter [2], focusing mostly on computational practicalities.

1.4 Technical Introduction to the Equidistribution
Problem

1.4.1 Context

Chapters of this write-up generalize work in [77] and [79] on equidistribution of local
components of families of automorphic representations (see the summary next section). We
roughly extend their weight-aspect to the case where the infinite component can be restricted
to a single discrete series instead of an entire L-packet.

Slightly more specifically, we consider certain increasing-size sets of automorphic repre-
sentations F3 with more and more complicated component at infinity. For appropriate test
functions f on the space of possible local components at a finite set of primes .S, we estimate

Z J/C\(ﬂ'g) as k — oo.

TEFy
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These estimates are good enough to show an averaged, automorphic version of Sato-Tate
equidistribution of the the components 7, for a fixed v and all 7 € Fy as k,v — oo jointly in
an appropriate way. The additional families that this work addresses, beyond those in [79],
are analogous to those corresponding to specifically holomorphic Siegel modular forms or
specifically quaternionic modular forms on exceptional groups. The main result appears as
theorem 31,71

Generally, problems of statistics of families automorphic representations are interesting
for a few potential reasons. First, when interpreted classically, such statistics are information
on the spectra of lattices in locally symmetric spaces.

Second, they give so-called globalization results such as [6, lem 6.2.2] through probabilistic
method-style arguments. These allow the construction of automorphic forms satisfying
desired local conditions. This is important since a very standard technique in studying
local representations is to find a global representation with the local representation as a
component and then use global methods to study the global representation: see for example
the classification in [6] or the cohomology formula in [78]. Globalization results were the
motivation for [77].

Next, certain bounds on automorphic representations—in particular the generalized
Ramanujan conjecture and what it says about the sizes of Fourier coefficients—have various
bizarre, unexpected implications. These include some striking ones outside of number theory
such as the original construction of expander graphs. See [69] for a review of this subject.
As is common in analytic number theory, bounds on averages in families instead of bounds
on individual representations are often good enough for these applications. Conveniently
enough, average bounds over families are also directly provided by studying statistics. This
seems to be the original motivation for studying the problem in [79].

As far as we know, this is the first work to apply the general stable trace formula to
computing statistics of automorphic representations. A more common method seems to be
using the non-invariant trace formula. This has the advantage of working for very general
types of automorphic representations like Maass forms, but the disadvantage of requiring
difficult explicit computations that create problems when dealing with general groups (as
mentioned later, see [19] and [18] for current progress removing this difficulty). One of the
key insights of [79] is that, for certain families, the nicer abstract properties of terms in the
invariant trace formula simplify computations to the point where good error bounds can
be derived even for very general groups. As a next step, the more powerful stable trace
formula allows generalizing the class of more-easily-studied families. Here, we focus on a first
example of distinguishing between elements of an L-packet at infinity. Another potential
example could be families appearing in cohomologies of locally symmetric spaces—like the
type studied in [25] but maybe coming from groups that are not anisotropic. The main trace
formula term counting this family comes from endoscopic groups.

While automorphic representations with components in the same L-packet are almost
definitionally indistinguishable from the point of view of Galois representations and L-
functions, they do differ in other important aspects. For example, a discrete series L-packet
can contain both holomorphic and non-holomorphic discrete series as in the case of GSp, (see
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[72, §3.2]). Breaking up L-packets is therefore useful in studying, for example, holomorphic
Siegel modular forms. Breaking up L-packets can be similarly useful for accessing the forms
corresponding specifically to the quaternionic discrete series from [31].

We point out some relevant previous work: pseudocoefficients and their simplification of
the trace formula were developed by Clozel and Delorme [15] and Arthur [4]. They were
used to study statistics of families by Clozel [14]. The exact families studied and the setup
to study them are of course a small modification from [77] and |79]. The use of the stable
trace formula is through the hyperendoscopy formula in [17], although the results of |63]
give a different potential strategy. The paper |38 solves this problem for GSp, with far
more explicit bounds through different methods. For a fuller history of this field of “limit
multiplicity”-type problems, see the introduction to [19].

As for using the theory of endoscopy to count automorphic representations, there are a
few articles by Marshall and collaborators, such as [54], |55, and |25], that use endoscopic
character identities to bound cohomology dimensions of symmetric spaces for certain unitary
groups. In addition, [80] uses similar inductive methods with stabilization to compute literal
dimensions of spaces of discrete forms with specified component at infinity, though requiring
formulas from [6] that only work for classical groups.

Finally, this work should be compared to [19] and [18] by Finis, Lapid, and Mueller. These
use the non-invariant trace formula to develop similar though much more general results. In
particular, they show Shin and Templier’s level aspect with the Archimedean component
restricted to any set of positive measure in the unitary dual. The result is dependent on
some technical estimates on intertwining operators that are satisfied for GL,, and SL,,. A
future work promises the estimates for most other groups. In addition, their methods do not
currently deal with the weight aspect or give error bounds though they could presumably be
pushed to do both.

1.4.2 Summary
Shin-Templier’s work

Let G be a reductive group satisfying some technical conditions (described in section 4.1.1)). In
[79] building off [77], Shin and Templier studied certain families of automorphic representations
with level and weight restrictions:

Fue = {1 € ARgisc(G) : Too € Hgise(€), dim (7)Y > 1}

where AR gisc(G) is the set of the discrete automorphic representations of G, U is an open
compact subgroup of G(A*%) for some finite set of places Sy, € is a regular weight of G,
and Tlgs(§) is the discrete series L-packet corresponding to . Pick another finite set of
places S D Sy and consider the empirical distribution,

HFs = Z a7r67rs7

7T€]'—U1§
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of S-components of m € F weighted by
Uy = Maise () dim (7°°°) Y.

Shin and Templier used Arthur’s invariant trace formula to study limits of these distribu-
tions under either increasing level (U — 1) or 1ncreasmg weight (£ — 00). In both cases, the
limits converged to the Plancherel measure ,uS on GS They furthermore provided bounds on
how quickly the integrals pz ¢(f) converge in the case where both the test function f and
the elements of F are unramified on S\ Sy. The increasing weight aspect required that the
center of G was trivial. The shape of the result is:

Theorem 1.4.2.1. Let f = f*" ® f™™ be a test function on Gg factoring into components
with f* unramaified. Then for F in either of the two limits above,

1 “N 1, N Ag +Bgf~€fur

m/if,s(f) = 115 (f) + Opram (gl

where K is a measure of the size of the support of f*,|F| is a measure of the size of F
depending on US> and &, qpur is the product of residue field sizes over the places where f

F|=),

is unramified, and Ag, Bg,Cq are constants determined by G. (Recall that f denotes the
Fourier transform m v tr, f).

Their method was in a few broad steps:

1. Realize the empirical distribution pr s as the trace of a function with a special
Archimedean component e against the discrete automorphic spectrum. Here, 7
is the Euler-Poincaré function from [15].

2. Since the Archimedean component is an Euler-Poincaré function, Arthur’s invariant
trance formula reduces to the simple trace formula in [4] giving a reasonably tractable
expression for this trace.

3. Bound the appropriate terms and take a limit. This is most of the work.

The form of the error bound allowed the proving of Sato-Tate equidistribution limits of
[tr, for a single place v as v and ¢ jointly go to infinity. They also provided some results on
the statistics of low-level zeros of L-functions over the entire family.

The extension

Here, we extend Shin-Templier’s weight aspect (¢ — o0). First, instead of looking at a
sequence of entire L-packets [lgisc(x), we fix a single representation py, € Ilgisc(&x) for each k.
Second, we allow G to have trivial center.

Then we consider the limit as k — oo of the empirical distribution,

lj']'—k,S = E a7r67r5a

WG-FU,pk
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of representations with m,, = p, weighted by
r = Maise() dim (7)Y

and compute error bounds on its convergence to Plancherel measure as in theorem [1.4.2.1}
The precise definition of the family we study is in section and the final result is theorem
4311

Here are the broad steps of the argument:

1. Realize the empirical distribution pr s as the trace of a function with a special
Archimedean component ¢, against the discrete automorphic spectrum. The function
¢, is the pseudocoefficient from [15].

2. Notice that pseudocoefficients have the same stable orbital integrals as Fuler-Poincaré
functions.

3. Use the stable trace formula to write this trace as a linear combination of traces of
functions with Euler-Poincaré components at infinity on the smaller endoscopic groups.

4. Proceed as before to bound each term in the sum. Showing that enough technical
conditions are satisfied and that the bounds are uniform enough that you are allowed
to do so is most of the new work.

5. Redo the computations showing the versions of Plancherel and Sato-Tate equidistribution
that the new main term gives.

It is worth discussing these in more detail. For step (3), the key difficulty is that Arthur’s
simple trace formula only works when the Archimedean component is Euler-Poincaré instead
of a pseudocoefficient. However, the stable trace formula roughly gives the trace of a function
as a linear combination of stable traces of transfers of the function on smaller endoscopic
groups—we get an expansion of shape:

(n=">_ s,

He&n(G)

Since pseudocoefficients have the same stable orbital integrals as their corresponding Euler-
Poincaré functions, the f# can without loss of generality be chosen to have Euler-Poincaré
components at infinity. See section for details on these transfers.

The most direct way to proceed is to then repeat the work in [4] on the stable distributions
SH instead of the invariant distribution /9. We choose to instead use the hyperendoscopy
formula of [17] (see the remark at the beginning of section [3.1)).

It gives an expansion of shape

I =10+ Y. UG HIf - ).

HEHE (G)
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Here f* is a function with the same stable orbital integrals as f, HE(G) is roughly the set
of groups that can show up in a sequence of iteratively choosing an endoscopic group starting
from G, and «(G,H) is a non-troublesome constant. See section for the full details. The
distributions I can then be treated exactly as in [79] provided technical conditions still hold.

There are also some complications in step (4). First, the distribution I .(f) is not
obviously the trace of f against the discrete automorphic spectrum like we want it to be.
The paper [4] shows this for Euler-Poincaré at infinity and an unpublished lemma of Vogan
(appearing here as lemma is needed to extend to the pseudocoefficient case. Next,
the groups appearing in HE(G) do not satisfy the technical simplifying conditions of [4].
We therefore need to slightly generalize the result, in particular to non-cuspidal groups. This
is section [3.3] Finally, we need some bounds on endoscopic transfers of test functions so that
Shin-Templier’s orbital integral bounds apply. This takes some work in the non-Archimedean
case and is sections [3.2.4] and [3.2.5]

For step (5), as explained in section , allowing a non-trivial center changes the main
term in theorem to something more complicated than originally in [79]. We therefore
have to redo the computations for Sato-Tate and Plancherel equidistribution. This produces
slightly different limiting measures that can be roughly thought of as Sato-Tate or Plancherel
measure conditioned to be on a certain subset of Gg: representations with central character
contained in a particular discrete set. The computations appear in section .4, We do not do
the computation for low-lying zeros of L-functions due to complexity.

Finally, we save the level aspect computation for a future write-up. The main difficulty
here is that as level gets larger, the test function f becomes more and more ramified adding
more and more non-zero terms to the sum over HE(G). This necessitates proving much
stronger uniformity of the bounds in |79} §8] over endoscopic groups.

1.5 Technical Introduction to the Counting Problem

1.5.1 Context

Chapter 5| of this work tries to describe level-1, discrete, quaternionic automorphic represen-
tations on Gy. Let Q;(k) be the set of such representations of weight k. For each k > 2, we
give a formula, (5.10), for |Q; (k)| in terms of counts of automorphic representations on the
compact-at-infinity inner form G§ that were calculated by Chenevier and Renard in [13]. We
also give a Jacquet-Langlands-style result (corollary describing all elements of Q; (k)
in terms of certain automorphic representations on G5 and certain pairs of classical modular
forms.

Quaternionic automorphic representations were developed as a way to generalize to other
groups the special place holomorphic modular forms have among automorphic representations
of GLy. Just like holomorphic modular forms, they are characterized by their infinite
component being in a particular nice class of discrete series representations: the quaternionic
discrete series of [31]. Just like modular forms, they have a nice theory of Fourier expansions
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with interesting arithmetic content—this was described for G5 in [23] and generalized to all
exceptional groups in [67]. Quaternionic forms have been studied a lot by Pollack: see [65] for
an introductory article on them and [66] for good exposition specifically on Gy-quaternionic
forms.

We attempt to study discrete, quaternionic representations on G5 using the trace formula.
Since quaternionic discrete series appear in L-packets with non-quaternionic members, this
provides a great test case of the efficacy of the techniques in chapter [3| developed to split
L-packets with the trace formula. The computation also relies heavily on methods devel-
oped in [13] and [80] to get exact counts of level-1 automorphic representations with the
invariant /stable trace formulas.

Finally, there is a particular miracle about quaternionic discrete series on G5 that crucially
underpins this result. A priori, chapter 3] cannot be applied: such discrete series are not
regular, implying that there may not be a test function at infinity whose trace picks out
exactly a quaternionic discrete series without also picking up some unwanted contributions
from non-tempered representations. However, it turns out that specifically quaternionic
discrete series on GGy don’t get entangled in this way, even though other members of their
L-packet do. The proof of this depends on results about Adams-Johnson packets for G that
Mundy developed for studying Eisenstein cohomology in [59].

1.5.2 Summary

We summarize the method of computation. Proposition [5.1.2.1] shows that traces against a
pseudocoefficient of a quaternionic discrete series with weight £ > 2 are 0 against all other
unitary representations. This allows us to get a formula for traces of finite-place
test functions against the space of all quaternionic representations of weight k.

Next, section develops a general stabilized formula for Iyeom applied to test
functions like ours. We work out what this formula reduces to in section [5.3| using a
computation of the endoscopy of G5 in section Instead of using formula directly,
we compare it applied to G to it applied to the compact real form G§ to construct a formula

for Igfec involving just ISGPSQC— and Isgec—terms. Here, H is the endoscopic group SLg x SLo/ £ 1
of GQ. .

Section [5.4] then tells us which exact [, S%%C— and Islgec—terms appear by computing endoscopic
transfers at infinity. The difficult part of this computation is pinning down various signs
coming from transfer factors. As a last piece of the puzzle, section [5.5 uses results about
level-1 forms from [13] to reduce counts of forms on H to counts of classical modular forms.

Section uses all these formulas to characterize representations in Qx(1) with k£ > 2

in terms of automorphic representations on G¢§ and certain pairs of classical modular forms.

Finally, we substitute in values for the Ig2e-terms from [13] and present a final table of
dimensions, table [5.1], in section [5.7]
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1.6 Notational Conventions

Here are some notational conventions we will use throughout:
Basics

F' is a fixed number field.

G is a fixed reductive group over F'. In certain sections where we are working locally,
G will be the local component instead.

A is Ay for shorthand.

A, A are the at infinity and away from infinity parts of A respectively.
W is the Weil group of local or global field E.

Op is the ring of integers of local field E.

kg is the residue field of local field E.

1y is the indicator function for set X.

H is the reductive dual of reductive group H.

-~

S is the unitary dual of abstract group S.

Stemp ig the tempered part of S.

~

f is the Fourier transform of function f on an abstract group S that should be clear
from context.

f is the Fourier transform of f restricted to some subgroup of the center of S with
respect to that subgroup. The exact subgroup should be clear from context.

Reductive Groups

Zy is the center of abstract or reductive group H.
Zyu(G) is the centralizer of H inside G.
Ap is the maximum split component in the center of reductive group H.

Hg for group H over F' and finite set of places S of F'is H(Ag). Use the standard
conventions where an upper index means everything except S.

H., may be equivalently defined as (Res{, H)(R) since (Resy H)(R) = H(F ®g R) =
H(A). It is in particular a real reductive group.
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o Ay, for group H over F' is AReS(S #(R)? (the connected component is in the real
topology).

® Apoo = A(Resg H)r (R)°.

o H(A) := H(A)/An rat-

o H' = Hy/Al .

e 1, is the centralizer of 7y in H for H either an algebraic or abstract group.
° I,f is the connected component of the identity in the centralizer of v in H.

e f(7) is the set of connected components of H, with an F-point.

o [H], [H]*, [H]" are the sets of (semisimple, elliptic) conjugacy classes in H.
e D(~) is the Weyl discriminant for H.

e K where S is a finite set of places of F'is a chosen hyperspecial of G(Ag).
e M usually represents some Levi subgroup.

e P usually represents some parabolic subgroup.

e Ky for S some finite set of places usually represents some kind of maximal compact

of H(Ag).
Lie Theory
o O*(H),®"(H),®%(H),®}(H) are the sets of (positive, rational) roots of H.
e O, (H),® (H),d, r(H),d, p(H) are the sets of (positive, rational) coroots of H.
e A*(H),A%(H) are the sets of (rational) simple roots of H.
o A(H),A, r(H) are the sets of (rational) simple coroots of H.

e Oy is the Weyl group of H¢ for H a reductive group.

o Qpp = Qg for H over F' and E an extension of I is the subset of Q2 generated by
conjugating by elements of H(F). Note that this depends on the maximal torus chosen
to define Q.

Volumes

o ptam yean  EP are the Tamagawa, Gross’ canonical, or Euler-Poincaré measures on
various groups.
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e /i is the quotient of measure p* by something that should be clear from context.
e 7(H) is the Tamagawa number of H.
e 7/(H) is the modified Tamagawa number using the canonical measure p*F7.
Endoscopy

e (H,H,s,n) is an endoscopic quadruple for G.

e (H,7)is a z-pair for (H,H, s,n).

(Hy,my) will also sometimes be used to represent a z-pair to keep diacritics from stacking
too much.

Eai(H) is the set of elliptic endoscopic quadruples of reductive group H.

HE(H) is the set of elliptic hyperendoscopic paths of reductive group H.

(X, x) is a central character datum on some reductive group.

‘H is further overloaded: when context is clear, it can also refer to either a hyperendo-
scopic path or the last group in the path.

Automorphic Representations and the Trace Formula

o J(H,x)=7(H,(X,x)) is the space of compactly supported functions on H(A) that
transform according to character y~! on X C Zg(A).

e J¥(Hg,xs) for S a finite set of places of F' is compactly supported functions on H(Ag)
similarly transforming according to Xgl.

o /' (Hg, Kg,xs) if Kg is a product of hyperspecial subgroups and xg is unramified is
the Hecke algebra of Kg-bi-invariant elements of ¢ (Hg, x).

o ' (Hg,Ks,xs)=" is the truncated Hecke algebra from section [3.2.3]

o L*(G(Q)\G(A), ) for (X, x) a central character datum is the unitary G(A)-representation

of L?-up-to-X functions on G(Q)\G(A) transforming according to y .

o 2

2..(+) is the discrete part of unitary representation L*(-).

o ARgisc(H, x) is the set of discrete automorphic representations on H with character x
on Ag eo-

. Of (f) is the integral of f on the conjugacy orbit of «. This can either be local or
global; f can be a function on H(A) or some H(F,).
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Ig)gg, 1 géf i gGeme are the distributions on G defined by Arthur’s invariant trace formula

depending on central character datum (X, x).

SHXx, Sg;ff, Silx are the distributions on H defined by Arthur’s stable trace formula

depending on central character datum (X, y).

Z is the set of rational Levi’s of G’ containing a fixed minimal Levi.

Z°%P i the M € £ such that Apprat/AGrat = Arco/Ac.co. This is a generalization of
the definition of cuspidal Levi from [4] to the case where G isn’t itself cuspidal.

Representation theory

o (A, wp), m(wo(A+ p)) are two different parametrizations for discrete series representa-
tions for A\ a dominant weight.

Maisc(A) is a discrete series L-packet where A is a dominant weight.

O, is the Harish-Chandra character for representation .

wy is the central character of representation 7.
e (. is the pseudocoefficient for discrete series representation 7.
e 7)) is the Euler-Poincaré function for the L-packet [Lgisc(A).
Families
e ™ is a specific function defined in section 4.1.1}
e F is a specific family (as in [79]) of automorphic representations defined in section [4.1.1]
e ar(m) are the coefficients defining F.
e Sy, Si, UV, g, fs, are data used to define ¢> and F as explained in section .

® Shad,c is the unknown finite set of bad places depending on reductive group G' defined
in section [.3]

® Shad'.c is the version of Spaq,¢ needed for the results from [79].
e L is the lattice Zg(F)NU>® C Zg, _ [Ac at-

o EP(Plw) is the expectation defined in section [4.2.3]

o EP($s|we, L, xs) is defined in proposition .

Counting
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e Si(1) is the set of normalized, classical, cuspidal eigenforms on GLy of level 1 and
weight k.

e Oi(1) is the set of discrete, quaternionic automorphic representations on Gy of level 1
and weight k (see section [5.1.2)).

Dimensional Analysis

A lot of the formulas here depend on choices of Haar measure. Since we are explicitly
bounding terms, it is sometimes helpful to have notation for how they depend on these
choices. For example, if we say that a value has dimension [G][H] ™!, then it is proportional
to a choice of Haar measure on GG and inversely proportional to a choice on H.

In any formula, dimensions on both sides need to match. In addition, any quantity with
dimension needs to be normalized by a formula expressing it in terms of just dimensionless
quantities and Haar measures—for example, the formulas defining traces of Hecke algebra
elements, orbital integrals, or pseudocoefficients.
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Chapter 2

Background Materials

2.1 Trace Formula Background

2.1.1 Invariant Trace Formula

Let G be a connected reductive group over a number field F. Let A = Ar. Fix a central
character xy on Agat. Let (G, x) be the space of functions on G(A) that are smooth
and compactly supported when restricted to G(A)! and satisfy f(ax) = x~(a)f(x) for all
ac AG,rat'

Over a long series of papers that are summarized in [3] Arthur defines two equal distribu-

tions on S (G, x):
16X = 19X,

geom spec*

Intuitively, one should think of Igeom as a sum of modified orbital integrals of f and Igpec as a
sum of modified traces of f against components of L?(G(Q)\G(A), x). The exact definitions
of these distributions are impractically complicated to use directly. However, enough useful
special cases and abstract properties have been worked out—the most relevant being the
simple trace formula in [4]. The x will often be suppressed in notation.

Both sides have dimension [G(A)!]. The individual terms in the expansions for both sides
can have more complicated dimensions.

Spectral side

As a very rough description of the spectral side, Arthur defines components

_ 717G §
spec Icts + IdlSC t*

t>0

Liisc+ is 0 except for countably many ¢ and is much easier to evaluate. Expanding further,

= Y ‘Q ST ldet(w — Dl |7 tr(Mpalw)Tne( ).

Meéf weW(M)reg
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To describe the most relevant terms, .Z is the set of Levi’s of G' containing a chosen minimal
Levi, P is a chosen parabolic for M, W (M), is a particular set of elements of a relative
Weyl group (this and the Weyl group factor are a combinatorial term roughly parametrizing
parabolics containing the Levi), and Mp,(w, x) is an intertwining operator between parabolic
inductions through different parabolics containing M from the theory of Eisenstein series.

The last term is the most important for us. The x induces a character on A/ by
pullback. Then Zp(x) is the representation of G(A) produced from parabolically inducing
L3 (M(Q)\M(A),x). The term Zp, is the subrepresentation of this with archimedean
infinitesimal character having imaginary part of norm ¢. By lots of work, all these decompo-
sitions makes sense and the convolution operators Zp,(f) for f € J7(G, x) are trace class.
Finally, a much later result in [20] implies that the sum over ¢ converges absolutely.

There are well-known and simple sufficient conditions on f such that I..s(f) = 0:

Definition (|3 paragraph above cor. 23.6]). If v is a place of F, f € J(G(F),)) is cuspidal
if for all Levi’s M, of GG, and m, tempered representations of M,:

trea(f) = 0.
Here ¢ is (any) parabolic induction of .
Note that this is an alternate definition to the original one from [§].

Theorem 2.1.1.1 (8, thm 7.1)). If f factors as f, ® f* for some place v with f, cuspidal,
then I.s(f) = 0.

Geometric side

The geometric side can be succinctly written as

Tol(f) = 37 B2l S (g )16, ),

Q
sicw [er| YEIM( Q)]

Here S is a large enough set of places in particular including those at which f is not the
characteristic function of a hyperspecial and [M(Q)]as is the set of conjugacy classes mod
a complicated equivalence relation involving the away-from-S components of the unipotent
parts. For v semisimple,

a™(8,7) = [eM (97 vol(Zy (@I (A))

where | ()] is the number of connected components of M, that have an F-point. In general,
there is no explicit description of a™ (.S, ).

Next, I{ is a weighted orbital integral of the S-components of f. If M = G, it is simply
the orbital integral at . If ~ is semisimple, there is an explicit formula weighting the
integral by a complicated combinatorial factor. Otherwise, it is only defined though some
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analytic continuations. The term I satisfies splitting and descent formulas ([3, p. 23.8] and
[3, p. 23.9]) that factor it into local components in terms of traces of f against parabolic
inductions. When f is cuspidal at some place, these splitting formulas of course then greatly
simplify.

If v is semisimple, the o™ have dimension [I}¥(A)'] while the If; have dimensions of
[G(A)[1}(A)']7". Otherwise the dimensions are more complicated.

A technicality

Arthur actually defines two slightly different versions of his local distributions IJ\%U(% f)-
Looking at just the place at oo for notational ease, the key issue is that the weighting factor
vy in his orbital integrals depends on a choice of the space Ays,/Aq . where x € {oo, rat}.
The version appearing in his splitting formula [3] p. 23.8] is * = rat ,which we will denote
by If; (7, f). The version in his descent formula [3][23.9] is the purely local choice x = oo,

which we will denote by 1§, (7, f).
Lemma 2.1.1.2. [f cuspidal f € 7 (G, Xx) (so that I]\G/Ivoo(% f) is defined), then

iACj[,oo(,% f) AM,rat/AG’,rat - AM,OO/AG,OO
0 else :

I oo(7: f) = {
Proof. If the two spaces are equal, then the weighting factors vy, at the beginning of [3][§18]
and the sum over Levi’s in [3][thm. 23.2] are equal. Note that while % (v, ¢, (f)) in [3][thm.
23.2] ostensibly looks like it depends on the choice of «, this is just based on different
descriptions of certain spaces of functions to make conditions for containment in the two
versions of Z,. easier to describe. In particular, the distinction does not matter as long as f
is in both versions of /.. In total, stepping through the definitions of I, and f](\j shows
that they are the same since the above are the only parts that depend on the various A’s.

Otherwise, this follows from the generalized descent formula |7][thm. 8.1}, setting b to
be X, (A atAc.o) ® R inside ap = X, (A o) ® R. This is the example considered at the
bottom of page 361 in [7]. We fill in the details for why the descent formula applies:

To check if b is special, we can without loss of generality assume Ag o is trivial by
modding out by X,(Ag ) ® R everywhere and noting that it is perpendicular to all roots.
Then, b is the fixed points in ay; of a finite group (Galois) action that preserves the inner
product on ay;. The sums on page 355 of [7] testing specialness are invariant under the group
action so their evaluation on any v is the same as their evaluation on the average of v over
the action. However, averaging over the action is the same as orthogonally projecting onto b,
so the sums need to vanish on the orthogonal complement of b.

Next, My = M since ay, needs to contain all simple coroots for which the corresponding
simple-coroot-coordinate in some element of b is non-zero. Therefore, inducing a conjugacy
class from M to M, doesn’t do anything, so the left side I(y™e, f) = I]\Cj’oo(’yM,f) =

15 (0, f)-
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Finally evaluating the right side of the formula, f being cuspidal implies that the only
possibly non-zero f1, is L = G. However, then d§, (b, G) = 0 so all terms in the sum vanish. [J

2.1.2 The Simple Trace Formula

Whenever G, has discrete series, the trace formula can be simplified by setting the test
function to have a special real component.

Parametrizing discrete series

The classification of discrete series is work of Harish-Chandra that can be found summarized
in [48, §II1.5]. They only exist when G, has an elliptic maximal torus or equivalently if CQ¢g
on any torus contains —id where C' is complex conjugation.

Therefore, for this subsection and the next only, let G be reductive group over R with
fixed elliptic maximal torus 7. Let K be a maximal compact of G(R) containing T'(R), Bx
a Borel of K¢ containing 7', and B a Borel of G¢. Let Q¢ be the Weyl group of (Gc, Tt)
and Qg r be the subgroup given by only conjugating by elements of G(R).

The characters of T'(R) are contained in 7'(C) so the root space of K is contained in G.
Let p be half the sum of the positive roots of GG. Finally, let Q(Bg) be a particular set of
coset representatives of Q¢ r\Q¢: namely, w such that wA is Bi-dominant for any A that is
B-dominant.

The discrete series representations of GG are parametrized by B-dominant weights \ €
X*(T)¢ and elements w* € Q(Bg). Call the representation parameterized by A and wy either
(A, wp) or m(we(A+ p)). It is the unique representation with trace character

sgn(wwg)e o +r)

Or(ruwe) = (_1)1/2dim(G(R)/KAG,w>ZweﬂK
- szQG Sgn(w)ewp

on T. The infinitesimal character of 7(A, w) is A + p: the same as that of V), the finite
dimensional representation with highest weight A. Therefore the 7w(\, w) for a fixed X are all
in the same L-packet TTg.(N). We call (A, wg) = w(wo(X + p)) regular if X is. Finally, we
call A the weight of (A, wo) = w(wo(A + p)).

Pseudocoefficients and Euler-Poincaré functions

Given a discrete series representation 7 of a real reductive group G(R) with character y on
Ag ., Clozel and Delorme in [15] define a pseudocoefficient ¢, € C°(x™'). The function
©, is compactly supported and has the property that for irreducible representations p with
character Yy,
1 m=p
trp(pz) =40 7 # p,p basic.
7 else
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Here, a basic representation is a parabolic induction of a discrete series or limit of discrete series
(up to central character). The non-basic case is much more complicated. Pseudocoefficients
have dimension [G(R)']'.

If Mgisc(A) is the discrete series L-packet for m, it is also useful to consider Euler-Poincaré
functions:

1
M= P
|HdisC()‘>| Z

Traces against Euler-Poincaré functions can be interepreted as Euler characteristics of certain
cohomologies for basic representations and therefore all representations by the Langlands
classification. If A is regular, these Euler characteristics can be shown to be 0 on non-tempered
representations. Therefore, if A is regular we get

’Hdisc<)\)|_1 S Hdisc()\)
trp(1n) = {0 else

for all irreducible representations p (see sections 1 and 2 in [4]). Beware that this normalization
is different from the one in [79]. It makes endoscopic computations easier.

Note that both pseudocoefficients and Euler-Poincaré functions are cuspidal since they
have 0 trace against any non-discrete series basic representation and therefore against all
parabolic inductions of tempered representations.

Simple trace formula

The simple trace formula is the main result of [4]. A more textbook exposition is in [3, §24].
We state it here. First, assume

e (G is connected,
e (§ is cuspidal over Q: Resg G/AG rat has an R-anisotropic maximal torus.

The last condition in particular gives that G, has an elliptic maximal torus and therefore
has discrete series mod center. In the case where G, has discrete series mod center, cuspidal
is equivalent to Agrat = Ag oot in other words, taking infinite place points of the maximum
split torus in the center is the same as base changing to R, looking at the maximal split torus
in the center, and taking R-points.

Consider a test function of the form h = [Ty (€)|ne @ ™ for regular weight £ and
h* € 7 (G(A>)). Let x be the character on Ag o determined by . Then

Lpeo(h) = Taie(h) = Y Maise(T) trzee (h™) (2.1)

T Moo €l gisc (E)
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where mgjs.(7) is the multiplicity of 7 in ARgise(G, x). Let £ be the set of Levi’s containing
a chosen minimal Levi of G. For each M € £, choose Py, a parabolic for M. Then

i Q
Ieom(R) = 3 (—1)dlm<AM/Aa>||§;M_ﬂ
M e ¥cusp G, F |

<Y XM )T R (706, )0 (7). (2:2)

VEM (F)]*

Here ¢
and

M (~) is the set of connected components of the full centralizer M, that have an F-point

X(H) = (=1)" vol(H (F) Apr o\ H () vol (A, 00\ Hoo) ™| By, )
where Hy, is an inner form of Hu such that Hu/Ap has anisotropic center, Q(By,, ) is the

analog of Q(Bg) for Hy, and ¢(H) = 1/2dim(Hs/KncoAneo) is the Kottwitz sign. Also

hSS (™) = 0p,, (v>°)1/? / / h(k~1y*nk) dn dk,
oo NJM(AOO)
where Nj; is the unipotent group for Py; and K some chosen maximal compact. To make
dimensions work out, the Haar measures choices should satisfy:
e The choices on Iy , M, and in the orbital integral need to coincide,

e The measure on [ é” comes from that on [ f{\/[ through them both coming from the same
top form on I},

e The choices on Np, K, M, and G need to coincide according to the Iwasawa decompo-
sition.

Finally,

DE (300) |2
DM (vs0)

0 else.

rerié (o) Ox(7°) 7Yoo in an elliptic torus of M

disc

As written, this is only defined on regular elements, but Arthur proves it extends to a function
that is continuous on every elliptic torus.
As some notes for using this:

e Comparing character formulas computes that P (Vs0, &) = tr&(7Vs) Where £ is overloaded
to also denote the finite dimensional representation with highest weight &.

o If M # (G, ®); cannot be evaluated through the standard Harish-Chandra character
formula since it involves ©,’s evaluated on tori that are not elliptic in G. See [4} §4] for
an algorithm to actually do so.
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e The only M that contribute to the outer sum are those in L°"P; in this case, those that
are cuspidal over Q. Arthur’s original paper implicitly showed this for M cuspidal over
R. There is a small correction using lemma that the formula in [4][thm. 5.1]
is zero for M not cuspidal over Q (Arthur was surely aware of this but seems to have
forgotten to mention it). Alternatively, [27] shows vanishing using different methods.
See section [3.3.4 for more details.

e Because of the dimensions on 7, both sides of this formula have dimension [G*].
However, explicitly computing the x (1 y ) terms still requires choosing Haar measures
at oo.

2.1.3 Trace Formula with Central Character

Stabilization requires a slightly different version of the trace formula where the fixed character
X is on a larger closed subgroup of Z(A). There is a full theory in [2] that takes quite a bit
of work to describe. We summarize the relevant parts here.

Definition. A central character datum on G is (X, x) where
e X D Ag . is closed inside Z(A) such that Z(F)X is also a closed subgroup.
e \:XNZ(F)\X — C* is a continuous character.

Furthermore, 7(G, (X, x)) = (G, x) is the set of smooth functions f on G(A) such that
f(gz) = x7'(x)f(g) and f is compactly supported mod X.

Note. For our purposes here, it suffices to consider X that are the product of the adelic points
of some algebraic subtorus of Z multiplied by some abstract subgroup of Zg_ (R).

Fix central character data (X, x). In [6, §3], Arthur defines lqis.t, as a distribution on
H(G, x):

Tiisctn(f) = > £2ar,r ST Jdet(w — Dlgg [T tr(Mpo(w, X)Ipo(x. f)). - (23)

Me% |QG’F| wEW(M)reg

This is a generalization of I4is; and most of the terms are the same. The relevant part is
how Zp; changes. First, x induces a character on Aj,,4X by pullback and therefore lets us
define L2 _ (M (Q)\M(A), x) analogous to other L? spaces with character: as the discrete part
of x~!-invariant, L*up-to-X functions on M (Q)\M(A) as an M (A)-representation. Then,
Zpi(x, f) can be defined analogously to Zp, from the trace formula without central character.
Decompositions and traces making sense in this context requires some extra work summarized
on [6, pg 123]. The dimensions change to [G(A)][X]!.

For our work here, we only need to worry about the spectral side so we will not mention

the geometric version.
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2.2 Endoscopy and Stabilization Background

The standard reference for this material, [46], is written for the more general case of twisted
endoscopy. It is therefore easier to follow the summary in |36, §1.3]. The simpler summary
in [76] §2] for the simply connected derived subgroup case is also helpful. Finally, [48] is
a course-notes style writeup of this material and therefore more motivated albeit far less
general.

For this section, allow F' to be a local or global number field.

2.2.1 Endoscopic Groups
Endoscopic quadruples

Definition ([46, pg 18]). An endoscopic quadruple for G is a tuple (H,H, s,n) with
e H a quasisplit connected reductive group over F,

e 7 is a split extension of i by W such that action of Wr on H determined by the
splitting is the same as the one coming from H (in Out(H)),

e 5 € Zz and semisimple in @,
o 1:H — G an L-embedding
such that
1. n restricts to an isomorphism H = @2(5)-
2. There is then a Wg-equivariant sequence
1= Zsg—=Zy5—Zg/Zs—0

which induces a map (Z5/Zz)"* — H*(F, Zg). We require that s € (Z5/Zz)""" and
maps to something locally trivial under this.

It is furthermore elliptic if
3. (Z227)° C Zg.

For future reference, we let £(s,n) be the elements that map to something locally trivial
under (Zﬁ/Z@)WF — Hl(F, Z@).

Definition. Two endoscopic quadruples (H,H, s,n), (H',H',s',n’) are isomorphic if there is
an element g € G such that

1. n(H) and n'(H') are conjugate by g,
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2. s and gsg~!

are equal in Z5/Z35.
Call the set of isomorphism classes of elliptic endoscopic quadruples Eq(G).

Note that the definition implicitly uses a fact which we state directly here to cite more
easily later:

Lemma 2.2.1.1. Let G be a reductive group over global or local field K and (H,H,n,s) an
elliptic endoscopic quadruple. Then there is a map Zg — Zg.

Proof. See [46] pg. 53. O

Endoscopic pairs

Endoscopic quadruples actually contain a lot of redundant data. A more basic and easier to
think about notion is the endoscopic pair defined in [44, §7]:

Definition. An endoscopic pair for group G is (s, p) where
e s is a semisimple element of G /Zg,
e pisamap Wrp — Out(]TI) where H = CAJS

satisfying

1. p(o) for o € Wp is conjugation by an element in the normalizer of H in G that projects
to o.

2. Then, p induces a Wr-action on Zg, which fits into Wg-equivariant sequence
1—>Z@—>Zﬁ—>Zﬁ/Z§—>O

which induces a map (Z5/Zz)"* — H'(F, Zg). We require that s € (Z5/Z5)""" and
maps to something locally trivial under this.

It is furthermore elliptic if
3. (Z227)° C Zg.

For future reference, we let £(s, p) be the elements that map to something locally trivial
under (Zﬁ/Z@)WF — H1<F, Z@)

The p action can be further clarified: if a x v € G and (b,1) € G c a,

(@b 1)) = (@x7)bx D @) x )
= (ay(b) x ) (v H(a ") ¥y = (ay(b)a™! x 1)
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so if p is part of an endoscopic pair, any p(v) is of the form b — a,y5(b)a; ! for some a., € G

where the subscript G denotes that the v action is as it is on G. The choices of a~ are unique
up to L R L L L

since fy@f[ is the centralizer of vzs.

Definition. An isomorphism of endoscopic pairs (s, p) and (¢, p') is an element g € G such
that

. @2,@8, and p, p’ are g-conjugate,
e s, s have the same image in £(s, p).

As explained in [44] pg 630-631], p determines a quasisplit group H from H and therefore
the (H,s,n) part of an endoscopic quadruple. Given H and G, we can define H as follows:

H embeds into both “H and 'G. Let H be the set of x € Q@ such that there exists y € “H
such that conjugation by x,y are the same on H and x,y project to the same element of Wg.
In terms of the a, from above, we can realize

H = U Hay
YEWFR
where we can choose representatives for a, so that conjugation by a., x v fixes a pinning of
H. Isomorphisms are also the same on each side, so in summary:

Lemma 2.2.1.2 (|44} §7]). The set of elliptic endoscopic pairs of G up to isomorphism are
in bijection with En(G) where the bijection is as described above.

Motivation and the group &

There are two motivations for this definition, either spectral or geometric. We briefly and very
roughly describe the geometric explanation since it is somewhat relevant later. We ignore
many, many Galois cohomology details. In increasing generality and detail, more information
can be found in [48, §II1.3], [45, §9], and [46, §6-7].

Let semisimple v € G(F,) be contained in maximal torus 7T". If v is strongly regular, then
we can write its stable orbit as (T'\G)(F,) and its orbit as T'(F},)\G(F,). Therefore, the fibers
of the map from (T\G)(F,) onto

D(F,, T\G) = ker(H'(F,,T) — H'(F,,G))
are exactly the unstable conjugacy classes making up (T\G)(F},). Let

C(F,, T\G) = ker(H' (F,,T) — Hy,(F,, G))
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be the abelian group version of this and
A(F,, T\G) = &(F,, T\G)".

Elements k € K are called endoscopic characters.
If v is a place of F' and k € R(F,,T\G), this allows the definition of twisted orbital
integrals

05(f) = / w(9)F(g~vg) dg
(T\G)(Fv)

using the map (T\G)(F) — €(F,T\G).

We can also define adelic versions of these groups D (A, T\G), (A, T\G), and R(A, T\G)
using corresponding cohomology groups H'(A,-). If v € G(A) is strongly regular, (A, T\G)
parametrizes the 4’ that have every component stably conjugate to . It is a restricted direct
product of the ®(F,, T\G) by ©(0O,, T\G) which happens to be trivial. Define a measure on
it by taking the product of the counting measures on ©(F,, T\G). Then for k € R(A, T\G)
we can define global twisted orbital integral

O5(f) = > k(obs(7)0,,(f)

c€D(A,T\G)

where . is the conjugacy class corresponding to e with base point v and obs is the obstruction
defined in [45] and [46].

Stabilization of the trace formula first produces sums of O5(f)’s over triples of these
(T,~,k) over F. The result ([46, lem 7.2.A]) shows that such triples are in bijection with
quintuples (H,H, s,n, vy ): endoscopic quadruples with a choice of strongly regular element
vu € H up to appropriately defined equivalence. Through this equivalence, the group K for
T ends up being the same as the group R defined above for (s,7n) (see |46, pg 105-106]).

2.2.2 z-Extensions

Our next goal is to define transfers of functions. This naively needs an embedding “H — G,
but in general “H 2 H so we do not have one. There are two possible strategies for dealing
with this: the original in [50] is to take a nice enough central extension of G. This works
for the standard endoscopy described here but not for the more general twisted endoscopy,
so more modern sources prefer to take central extensions of H as described in [46]. As we
will remark after proposition [2.2.2.2] these methods are more or less interchangeable in the
standard endoscopy case.
We describe the second method in detail:

Definition. A z-pair (]:1,77) for endoscopic quadruple (H,H, s,n) is an extension H by a
central induced torus such that

1. Hye is simply connected (we call such an H a z-extension).
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2.1 H— LH is an L-embedding that restricts to the map H — H dual to the projection
H— H.

By Lemma 2.2.A in [46], as long as (1) is satisfied, a valid 7 satisfying (2) always exists.

Lemma 2.2.2.1. Let H be a reductive group that splits over K'. Then there exists a z-
extension of H splitting over K'. Furthermore, the dimension of the extending torus is
bounded by [K' : Q](rankg H).

Proof. We just go through the construction in [49] or [57, pg 299] explicitly seeing how big
things get at each step. Let 7% be the maximal torus in the simply connected cover of
Hr Let P = X.(T)/X.(T*) as a Galois module. A z-extension would correspond to an
extension of X,(7T") making this quotient have no torsion. The torsion part has less than
ranky G generators.

The argument starts with a lemma writing P as a quotient of Galois modules

0—-M-—->Q—P—0

with M free over Z|G] and @ free over P. The construction is |57, prop 3.1] and bounds
ranky M by dim K’ times the number of generators of the torsion of P/Z which we can
further bound by (dim K’)(rank H).

Some work with reductive groups shows that M can be chosen to be the cocharacter
space of the extending torus, thereby finishing the argument. O]

In the case where G has simply connected derived subgroup, the Z-extension can be
chosen to be trivial and H ~ “H. In this case, an endoscopic triple (H, s,7) contains all the
needed data.

z-extensions and central character datum

If (X,x) is a central character datum for G, any (H,H,s,n) and (ﬁ,ﬁ) quadruple and
extension determine a central character datum (X5, x) on H. The central subgroup X is
produced from X by first taking the image under the map Zs — Zy and then taking the
preimage under H — H.

To get x g, pick a section ¢ for H — Wp. Then if T' is the extending torus defining H,
the composition

WF i) H i) LI:I — DT
is an L-parameter for T'. This determines a character A7 Yon T(F) if F is local or T(F)\T(A)
if F'is global through the Langlands correspondence for Tori. The inverse is to match our
convention for defining Hecke algebras.

Through considerations of transfer factors (see section 2.2.3), A can be extended to
the preimage of Zg in Z;. Therefore, we can set x; to be xA; (where x is defined on Xy
by pullback). We will discuss this and more properties of \; when we discuss transfer. In
particular, we will show that in the relevant cases, \;, at a place v can be extended to a
character on f]v.
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z-extensions do not change much

There is a vague intuition that taking a z extension should not change a groups endoscopy:
Proposition 2.2.2.2. Let G be a group over F.

(a) If Gy is a central extension of G by induced torus T', then the (elliptic) endoscopic tuples
for G are in bijection with those of Gy. This bijection takes a group H to a central
extension Hy by T

(b) If H is an (elliptic) endoscopic group of G and Hy is a central extension of H by induced
torus T', then there is a central extension G1 of G by T such that Hy is an (elliptic)
endoscopic group of Gy. Furthermore, the endoscopic tuples determining H and H,
correspond under the bijection from (a).

Proof. Part (a):
The s: The map G— Gy gives a canonical Wr-equivariant isomorphism G /Zg — G, /Zg, so

choices for s are the same. Given such an s, set H; = (él)g Then we have the diagram

[

Ny — T — T
Pl
Ny 46— SV Q)

The p and H: This gives a canonical isomorphism H 1\@1 —~H \@ so assignments 7 — a, as
in the comment after the definition of endoscopic pair are the same for G and G;. There
are two conditions for this assignment to give a valid p: The first is that v — Inta, o 7 is
a homomorphism up to Int H=TIntH 1- This condition is clearly the same with respect to
either H or H 1.

The second condition is that Int a, o vy needs to fix the approprlate group: Hor H 1. By
construction, H GNnH 1. Therefore, since G is Wr and Int Gl invariant, if such a map fixes
H 1, it fixes H. For the other direction, since these are all complex groups and GD (G )der
all elements of G can be written as zg for z € Zal and g € G. This is an element of H; if

and only if g € H.In total, f[l = Z0 PAI so we are done since ZO1 is fixed by Wr and Intg.

Therefore, this second condition is true for G if and only if it is true for G1

__ Note that for any such p, the columns of the above diagram and the isomorphism between
T’s are ['-equivariant. Undoing this dual, this will give that H; is an extension of H by T
The cohomology condition: In total, the possible pairs (s, p) ignoring the cohomology condi-
tion are the same for G and GG;. It remains to show that the cohomology condition holds
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with respect to G if and only if it does for GG;. We have Wr-equivariant diagram where the
first two rows are exact sequences (note that the actions on Zg from p and G coincide so the
action here is according to p):

1 > Z@ > Zﬁ > Zﬁ/Z@ — 1

I [

1 —— Z@1 Zﬁ1 > th/ZCAh — 1

L

T —=>T

2\

This gives a corresponding diagram in cohomology:
(Zg/Zg)" —"— H'(T. Zg)
[ [
(Z,/Z6,)" —= H'(T, Zg,)

Here I' C W is some local Galois group. The cohomology conditions for H and H; matching
at I' is equivalent to ker ¢; = ker 5. To show this, consider the sequence

mo(T") — H'(T, Zg) % H'(T, Zg,) — H'(T,T).

Since 7" is an induced torus, Tisa power of G, with a I' action by permuting coordinates.
This gives first, that TT is connected and second, that T is induced, so H(T, T) = 0.
Therefore, 1) is an isomorphism and the cohomology conditions are equivalent at every place.
Ellipticity: The elliptic condition is that (ZgF)O C Zgip. As before, Z5 = ZzZg and
ZgNZg = Zg. Then we get the sequence

1—)Z@—)ZEXZ@1—>ZI§1—>1
where the first map is the antidiagonal. This gives a map in cohomology:
Z7" X ZgVIF — ZIV{F — H'(Wr, Zg) = H'(Wp, Zg,) @ H' (Wr, Zg).

From previous arguments, 7' being induced gives that the last map in injective into the
first coordinate. Therefore the middle is 0 and the first is surjective. Therefore ZEVF =

1

Wr Wr Wr Wr\O WrN\O WeN0 7 WEg . . . . .
Z5" X Zal /Zé and (Zﬁ1 )Y C (Zé1 )(Z5") Zz". This gives that the elliptic condition

on H implies that on H;. R R
For the other direction, Zy = Zz N G gives that ZI%VF = Z}IVF N GYF which gives
1

WE\0 Wr\O ~ AW : Wr\0 W, : N N7
(Z57)° < (ZﬁlFA) N G"r. Assuming (ZﬁlF) C Z;" and further using that Zg NG = Zg
implies Zg/F NGYVrF = ZgF finally giving that (ZIV?VF)O C ZgVF.

1
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Part (b):

We are given GG, endoscopic group H, and extension H; by T. There is a map Zg — Zy
(see |46] pg. 53) so we can pullback the extension Zy, to an extension Zg, of Zg by T.

Set G1 = Zg, X Gaer/Zgaer as an algebraic group where the Zgaer is embedded antidiag-
onally. Then, since G = Zg X Gger/Zgaer, Gy is an extension of G by T. If H comes from
data (s, p), then through the construction of the bijection in (a), (s, p) gives data for H; and
is elliptic if and only if (s, p) is. O

Consider H an endoscopic group of G and H; a z-extension (so it has simply connected
derived subgroup). Let (Hy, Hi,s,n) be the quadruple for G; produced by part (b). Then
the map “H; — H, is an isomorphism, so we actually do have an embedding “H, — IG;.
This is the z-extension construction described in [50].

2.2.3 Transfer

Consider quadruple (H,H,s,n) for G over local or global K and associated z-extension
(Hy,m1). There is a transfer map

T : {strongly G-regular semisimple conjugacy classes in H(K)}
— {strongly regular stable conjugacy classes G(K)} U {x}

where the * is a dummy variable to allow maps that are not necessarily defined everywhere.
We say that vg € H(K) is a norm of v¢ € G(K) if T takes the conjugacy class of vy to that
of v¢. Respectively, vy, € Hi(K) is a norm of something if its projection to H(F)) is.

Local Transfer

Now, consider local F;,. If strongly G-regular vy, is a norm of strongly regular v4, a transfer
factor A(ye,,ve) = A8 (vm,,Ve) can be defined (this is the content of sections 4.1 — 5.1 in
[46]). The factor is non-canonical up to a uniform constant. We recall some useful properties
from [46] §5.1]:

o A(vm,,7¢) is 0 unless 7y, is a norm of 7.
e A(vm,,7¢c) is constant over the stable conjugacy class of vy, .

o Let Zg, = Zy, Xz, Zc. There exists a character \,, on Zg, (F),) such that if (2;,2) €
ZG1 (F’U)7
AZ (2171, 276) = A (21, 2) AG (Y, ).
In fact, A, even extends to a character on G;(F,) (see the construction on pg. 53 in
[46] or pg. 55 in [50]).
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e Let the quadruple (H,H,s,n, vy, ) correspond to the triple (7),vg, k). Then vy, is a
norm of y¢. If ¢, is a stable conjugate of ¢,

K(V/CT')A(/YHNVG) - A(VHU ’Y/G)

Fix central character datum (X, y) for G. Let f € #(G(F,),x,). We say that ff1
JC(H(F,), X, ») matches f if

SO, (J™) =D Ay, 76) 06 (f)

TG

for all strongly G-regular vy, € H;(F,) where ¢ ranges over representatives of unstable
conjugacy classes such that vy, is a norm of 7. Note that the right-hand side is a twisted
orbital integral multiplied by an appropriate constant.

Since vy, and g are strongly regular, if 7" is a maximal torus for G and Z is the
extending torus defining H; from H, the orbital integrals have dimension [G(F,)|[T(F,)]™*
and [Hy(F)[T(F,)])YHZ(F,)] ™ = [H(F,)][T(F,)]". Therefore, f1 needs to have dimensions
GE]H(F)] .

A big theorem is that such an f always exists. The Archimedean case is from Shelstad
in |73] while the non-Archimedean case was reduced to the fundamental lemma (which will
be discussed later) by Waldspurger in [84]. Call such an f# a transfer of f.

Global Transfer

If F'is global, then the endoscopic datum determine local endoscopic datum at each place
v. This lets us define a global transfer factor Ay (vg,,d¢) as the product of all the local
transfer factors. [46, cor 7.3.B] gives that all the choices defining the local factors can be
made consistently giving a canonical choice of global factor.

If f e (G, x) factors into local factors at each place, then transferring each of the local
factors gives a transfer f satisfying a similar identity. By the fundamental lemma, this is
unramified almost everywhere and is therefore an element of 2 (Hy, xx, ).

After lots of cohomology work, f can be shown to satisfy a global identity

SO, (1) = 05, (f)

where (H,H,s,n,vy) corresponds to (T,7g, x). This is [46] lem 7.3.C].

Characters from Transfer

By the above, endoscopy always defines a character on Zy, (F,). However, for v non-
Archimedean, this actually extends to a character on H;(F,). We will need this to state some
bounds on non-Archimedean transfers later.

Fix such a v and assume without loss of generality that G has simply connected derived
subgroup (possibly by taking a z-extension and using proposition 2.2.2.2). Take the extension
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G, of G as in proposition [2.2.2.2(b). Then G is an isogenous cover of G4, so the two are
equal. The map 7 determines a character \,, on Zg, (F,) = Zu,(F,) X z,(r,) Za(F,). Since
this lifts to a character on G (F},), it is actually a character on Gy (F,)/G{(F,). If F is local
then H!(F,, G{) = 0 since G{° is semisimple and simply connected. Therefore this is a
character on (G1)ap(F,) so let it correspond to the L-parameter o : Wg, < 4{(G1).ap.

Next

Lemma 2.2.3.1. Let G be a reductive group over F,. Then Z% = é; as groups with
W, -action.

Proof. Let G have maximal torus 7. As Wr-modules, X*(@) = X*(Ga) = X*(T)® and
X.(Z22) = X.(T)" = X*(T)?. This equality of cocharacters induces an equality of torii. [J

Since H, is a connected centralizer in @1, we get a map Z% — Z% . Since H; is endoscopic,
1 1
the map is Galois-equivariant so it extends to a map G a) — X Hy ). Therefore o can be
pushed forward and determines a character \j; on H;.
Note that Az, and N}, are equal on Zg, (F},) since they correspond to the same parameter
of Zg, (Fy). This common value is the character \,, from before that determined which Hecke

algebra transfers landed in. The discussion here snnply shows that it extends to a character
on H,.

A trick for computing transfers with z-extensions

Most formulas for transfers in the literature only apply in the case when “H = H. To use
these in the general case, consider the same quadruple and z-extension as before with T" — H;
as the extending torus. Proposition [2.2.2.2|b) lets us find G; such that (Hy,Hy, s, 1) is an
endoscopic quadruple for Gy with “H; = H,. Let 7 : G; — G be the projection.

The key property we use is that

Agi (71751) = Agl (71, 5)

whenever 0; € G1(F) projects to 6 € G(F') and 7, is a norm of ¢; (see [50] pg. 55). Therefore,
given f € J(G(F),x), let
fi(g) = fom(g)

for g € Gy(F). If f; and £, match, then for all appropriate 1,6,

SO ZAGI ’71761 051 fl ZAH Y1, T 51 )Oﬂ'(‘sl (f>

01

which is the condition for f and f;* matching. Therefore we can compute f7* by transferring

fi.
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As a sanity check, note that +; being a norm of 4, is true if and only if zy; is a norm of
201 for all z € Zg,. In particular, if x = (21, 2) € Zg, then

AZ (zy, 201) = AZH =71, 261) = AZH (zm, 2m(6))
= Ay (2) TAZ (1, 7(61)) = Ay (2) AL (11, 61).

Therefore, the transfer factor transforms appropriately so that this transfer will be in the
Hecke algebra ¢ (H,(F), xg)-

Beware that there is a small technical issue here. Theorems in the literature only give
the existence of transfers of compactly supported functions. We get around this by finding a
compactly supported function f’ that averages to f o ¢ along the central character datum
(see lemma for example) and then transferring f’. We then average (f')* against the

central character datum.

2.2.4 Stabilization

]GK

Using all the above and with much work, /¢,

be expanded as

(f) can be stabilized. In other words, it can

)= 3 uG HSLE(F)

He&n(G)

for some choice of z-extensions. Here §£s§f is a stable distribution on ##(H,x z) depending

only on t, H. We will not use any properties of S except that it is stable. There is no explicit
construction of f¥ in general, so its known properties will be cited as needed.

The constant ¢ has an explicit formula. Recall the definition in section of auto-
morphisms of quadruples (H,H, s,n) by elements g € G. Let A(H,H, s,n) be the image of
Aut(H,H,s,n) — Out(H). Then

UG, H) = |AH,H,s,n)| '7(G)r(H) ™"

where 7 is the Tamagawa number.

2.2.5 Some Properties
Endoscopy and root data

The following is a summary of the relation between roots data of endoscopic groups and the
original group:

Lemma 2.2.5.1. Let G be a reductive group over global or local field K, (H,H,n,s) an
elliptic endoscopic quadruple and (ﬁ,ﬁ) a z-extension. Let Ty be a maximal torus for Hy.
Then there is a mazimal torus T of G and an isomorphism Ty — T'. The choice of T' and
the map are unique up to Gi-conjugacy. Let T be the pullback of Ty to H.

Then the following also hold:
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1. The positive (co)roots of (H,Tw) can be chosen to be a subset of those of (G,T) through

2. For any root of a of (H,Txg), Sa € Qp is the same as s, € Qg through the isomorphism

3. The positive roots of (H, Ty) can be chosen to be a subset of those of (G,T) through
Ty — Ty —T.

4. The Weyl action on the roots of (H, Ty) restricts to that on (H, Ty ) through X*(Ty) —
X*(Ty).

Proof. The construction of T and (1),(2) are done in [45, §3.1] and [50, §1.3]. )
To deal with H, let the extension be 1 - 7 — H — H — 1. Every maximal torus of H
is the preimage of one of H so X*(Ty) maps into the corresponding X*(7;). Since in the

sequence R
0 — LieZ — LieH — Lie H — 0,

Lie Z maps into the center, the roots of H have to be the images of those of H. Choose a
Borel B containing By to get containment of positive roots. The last statement on Weyl
groups comes from Qg ry,) = Ny(T)/Zu(T). O

Be careful that this lemma says nothing about the Galois actions on the roots. We will
not need that information and getting it requires G to be quasisplit. Also beware that this
does not give that the simple roots of H are a subset of the simple roots of G' or that the
coroots of H are a subset of the coroots of G.

Real endoscopic characters

As another computational tool, the character K = kg g for elliptic elements has a nice form
in the real case. If G is a real group and T is elliptic, there is an isomorphism

QQg/QRG — @(R, T\G)

An endoscopic character k can therefore be extended to Q¢(G). [48, §IV.1] gives that the
extension is left-{)¢ y invariant.
In addition, the composition

Q(Br) = Qce = Qce/re

is a bijection. This gives a bijection between any regular Iy (€) and D (R, T\G) that depends
on the choice of By.
This interpretation of k will be used when computing transfers of pseudocoefficients.
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Chapter 3

New Formulas

3.1 The Hyperendoscopy Formula

Here we will describe Ferrari’s hyperendoscopy formula with some modifications in the case
where groups without simply connected derived subgroup appear in the hyperendoscopic
paths. Using this formula may appear a little bizarre since it may seem more reasonable
to try to directly mimic the work of [4] on the stable distributions SO (f) like the main
result of [63].

The advantage of using hyperendoscopy is that we can directly apply the work already
done in [79] instead of proving slightly different bounds for the slightly different terms
appearing in the stable trace formula. There are two disadvantages: first, it gives worse
constants in bounds, but the constants were already not explicit due to the model theory
bounds that go into them. Second, hyperendoscopy requires extending Shin-Templier’s results
to groups with fixed central character datum, but this is interesting in its own right. In
addition, the hyperendsocopic formula itself may be a useful tool for studying future forms of
the invariant trace formula that, unlike [63], do not have a reasonable stabilization.

3.1.1 Raw Formula

Recalling the key trick from [17], rearrange the stabilized trace formula:

Sgsz,t(qub> - Lﬁsc,t(f) + Z (_L(G7 H))Sgsc,t(fH)
He&n(G)
HAGS

where G is the quasisplit form of G. We want to continue this expansion inductively to get
a formula in terms of Iy, for the various groups. The result in [17] uses endoscopic triples,
seemingly assuming that if a group has simply connected derived subgroup, then so do all
its endoscopic groups. This is not true as there can be SO, factors in endoscopic groups of
Sps,, (see [85, §1.8]). Nevertheless, with a little more work, a formula more-or-less equivalent
to Ferrari’s can be derived.
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(fH) since the H are all quasisplit

~

Inductively substituting in the expansions for SE{SC,t
gives something like

S (FO) = IS (D) + Y UG HILE ().

HEHEY(G)

Because of the non-canonical z-extensions, the notation defining the indexing set becomes
somewhat painful. We will later find a nicer set to index over.

Definition. A consistent choice of length-1 raw endoscopic paths for G is a set HEY (G);
consisting of pairs (H, z) where H ranges over the proper isomorphism classes in & (G) and
z is a choice of z-pair for H.

Given a consistent choice of length-(n — 1) raw hyperendoscopic paths HEY(G),_1, a
consistent choice of length-n hyperendoscopic paths is a set HEY,(G),, consisting of tuples
(H,H,z) where H € HEY(G),_1, H ranges over proper isomorphism classes in Hq(H)
(overloading notation so that H also refers to the group in the last z-pair of H), and z is a
choice of z-pair for H.

A consistent choice of raw hyperendoscopic paths HEY;(G) is the union of an (inductively-
chosen) consistent choice of HEY(G),, for all n > 0.

The sum is over a choice of HEY(G). If H € HEY(G), let ny be its length. As shorthand,
we will sometimes write
H:(Hl,HQ,"' H )

y ddny

where H,, is the group in the z-pair for the nth step in the path. As further shorthand, H will
sometimes be overloaded to refer to H,, . For indexing purposes, Hy = G. Similarly define:

UGH) = (1 [t ) £ = (o () o,

Note that f7 is not canonical and the choice of f* needs to be consistent with the choice of
fH" where H' is H truncated by removing the last step. Finally, a hyperendoscopic path #
determines central character datum (X, x,,) for each H,.

This expansion of course only works if the paths are all finite. This holds:

Lemma 3.1.1.1. Every element of HEY(G) has ny < |®F(G)| + 1.

Proof. Consider the quadruple (H;, H, s;,n;) of H;_y. If H; is quasisplit, the group H;is a
centralizer of s; € ?[i_l that is not }AIi_l since H;_{ ;éA H; and H;_; is necessarily quasisplit.
Therefore H;,, either has fewer positive roots than H;_; or changes from non-quasisplit to
quasisplit. The result follows. O

The key point then is that
Hn,y,

Iﬁsc,t(f) + Z L(G7 H)Idisc,t(fH>

HEHEY(G)
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is a stable distribution in f¢*. Finally, since G corresponds to the trivial endoscopic
character, if ¢ = & then f, f; have the same stable orbital integrals. Setting this equal
for two such functions:

Proposition 3.1.1.2 (|17, prop 3.4.3] corrected). Let f and fi be functions on G(A) that
have the same stable orbital integrals. Then

H”H

IGe () =I5 (f)+ D WG R — N

HEHEY(G)

3.1.2 Simplifying Hyperendoscopic Paths

To control which groups appear, it is nice to have an easier definition of hyperendoscopic
path.

Definition. An endoscopic path for G is a sequence (@1, ...,Q,) where Q1 € Eq(G) and
Q; € Ean(H;—1) for i > 1 where H;_; is the group in @;_;. Note that if two endoscopic
quadruples are isomorphic, then so are their groups.

We use the same notation for endoscopic paths as for raw endoscopic paths. The set of
endoscopic paths for G will be called HE(G).

Definition. A z-pair path for an endoscopic path (Qq,...,Q,) is a sequence of z-pairs

(Q1,...,Q,) where
o O = (ﬁl,ﬁl) is a choice of z-pair for Q;.

e For ¢ > 1 assume we have already chosen @y, ...,Q;—1. We get a quadruple @’ for H; 4
through repeated applications of the bijection from lemma ( ) down through the
Q; (it will be clear that H;_; can be produced from the group in @;—1 by a sequence of
central extensions by induced torii). Then Q; = (Hj;, ;) should be a z-pair for Q.

If H € HE(G) with z-pair path H, we will sometimes overload notation and use H to
denote that last group H, in the path. If (% X) is a central character datum for G, we will
also let (X4, x5) be the induced datum on H. We can also define +(G,H) and transfers i
similarly.

As in the definition of raw hyperendoscopic paths, we can similarly inductively define a
consistent choice of z-pair paths for all elements of HE(G).

Lemma 3.1.2.1. Choqse a consistent set of z-pair paths H for H € HEq(G). Then the set
of combined data {[H,H]: H € HEa(G)} concatenated properly form a consistent set of raw
hyperendoscopic paths for G.
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Proof. We show this inductively on length. For length 1, this works by definition. For longer
length, we use lemma (a): if we know this for length ¢ and H; is the ith group in H,
the corresponding H; in the corresponding raw endoscopic path has the same possible “next
steps”—the elliptic quadruples of the two are in bijection. O

Finally,

Lemma 3.1.2.2. Let H, H' be two different z-extensions for the hyperendoscopic path H .
Let f € (G, x) for some central character datum (X, x). Then the two terms S;{ﬂ(f%) and

S)Z;/(fﬂ') are equal. In addition, 1(G,H) = (G, H).

Proof. First, let G be a group, H an endoscopic group, and f € (G, x) for some y. Let
(H,7) and (H',7) be two z-pairs. Then part of the formalism of the stable trace formula
gives that S (f7) = S (f'). By definition, «(G, H) = (G, H) = «(G, H').

Second, if G is a z-extension of G and f; the pullback of f to some (G, x1) where x;
is the pullback of y, it induces extension Hy of H according lemma (a). We can find a
z-pair (Hy,m;) of H such that H; is a z-extension of Hy. By a similar argument to section
2.2.3) ff = " and g, = (x1)#,. Therefore S(I;I<11)Hl( Hy — Sy (f11). Since Tamagawa
measures are products of Tamagawa measures of factors, «(G, Hy) = «(G, H) = «(G1, Hy) by
the explicit formula.

The result follows from an induction alternating on these two steps. O]

Define +(G,H) to be the common value of all the «(G,H). In total, we can choose
whichever z-extensions we want and ignore the consistency condition:

Theorem 3.1.2.3 (The Hyperendoscopy Formula). Let f and fi be functions on G(A) that
have the same stable orbital integrals. Then

Lﬁse,t(f) - Iﬁse,t(fl) + Z [’(G7 H)Igsc,t((fl - f)ﬂ)

HEHE o1 (G)

where H is a choice of z-extension path for H and where we suppress the central character
datum.

3.1.3 Central Characters from Hyperendoscopy

Let H be a hyperendoscopic path for G with z-extension H corresponding to the sequence of
groups and embeddings (I:I,, n;). We can, without loss of generality, assume that Hy = G has
simply connected derived subgroup by taking further extensions. Then we can inductively
define character on each (H;),:

e i is the character A, on (Izll)v defined by 7; as in section .
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e Let x! be the character on (H;;1), coming from character y; on (H;), as in section
Let A;+1 be the character on (H;), determined by 7;41. Then set x;11 = XiAit1.

From all the previous discussion, we know x; are the characters such that given central
character datum (X, x) and f € (G, x), the successive transfers f7 lie in J(G, (X, xX3))-

3.1.4 Remarks on Usage

Some notes for using this:

e Beware that the transfers (f; — f)* must be chosen explicitly, since the stable orbital
integrals of (fH1)”2 depend on the standard orbital integrals of f#1. Care should be
taken in these choices since the ease of evaluating ;. depends much on properties of
fH1 that are not determined by stable orbital integrals.

e As a sum of distributions, the sum over & (H;) can be infinite. However, for any
particular f only finitely many terms are non-zero. Nevertheless, the number of such
terms depends on the choices of f* and can be arbitrarily large. Thankfully, if we
choose the f7 so that they stay unramified outside of a finite set of places S, then there
is a finite set of terms depending only on S that are non-zero. See lemma [3.2.6.1]

e If we can choose the f¥ to be cuspidal, we do not need to worry that this formula is
only in terms of Igis. instead of Igpec.

e If cach of the H; in path H are unramified, we can choose H to only have unramified
groups since z-extensions can be chosen to have the same splitting field as the original

group.

3.2 Lemmas on transfers

3.2.1 Formulas for Archimedean Transfer

This section will compute transfers of pseudocoeffcients. We take the Whittaker normalization
of transfer factors as in [74] and [48]. Because pseudocoefficients already have the correct
dimensions, we do not need to fix Haar measures.

Recall the parametrization of discrete series in section[2.1.2] We first make a basic remark:

Lemma 3.2.1.1. Let w € [y (§) be a discrete series representation. Then for any v € G,
SO, (pr) = 5O, (1¢).
Proof. Transfers from G to G are determined by the identities

SO%(p,) = SOS*(pS™),  SO%(ne) = SOS* (nE™).

™
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By [74], transfers of pseudocoefficients can be chosen to be linear combinations of Euler-
Poincaré functions. Such linear combinations are determined by evaluations on an elliptic
torus so both of the transfers will be equal if we can show the lemma statement for just
elliptic elements . The transfers being equal will suffice to prove the lemma.

We therefore just need the computation from [48, §IV.3] with « trivial. The key point is
that the Q(Bg) parametrizing 7 € Tg;s.(§) also parametrizes conjugacy classes in an elliptic
stable class by section [2.2.5] O

Now let (Hwo, H, 1, $) be an endoscopic quadruple of G,. Fix an elliptic maximal torus
T and let and x be the corresponding endoscopic character on (.

Trivial z-Extension case

We will first work out the formula for transfers in the case where H = “H where we do not
need a z-extension. To start,

Lemma 3.2.1.2. Unless all elliptic tori G are transfers of elliptic torii of Hy, transfers
of pseudocoefficients can be taken to be 0.

Proof. See lemma 3.2 in [74] or the computation of k-orbital integrals on page 186 of [43]. [

Therefore, we can choose isomorphic maximal torii Ty and T of Hc and G¢ respectively
that are both elliptic over R. The Weyl chambers of (H,Ty) are a coarser partition than
those of (G,T) by lemma [2.2.5.1] Therefore, we can choose a positive Weyl chambers for
H that contains a chosen one for G. Let By and Bg be the corresponding Borel subgorups.
Let p' = pg — pu be the half-sum of positive roots of G that are not roots of H.

The transfer of pseudocoefficients is worked out in [43] §7]. Special cases are worked out
in terms of roots in [48, §IV.3]. For full generality when p’ is not a character of T', we have
to use a corrected transfer factor from |73 pg 396] as worked out in [17]. This involves an
Qp-invariant p* = ug g such that p* — p' is a character of T. The p* is determined by the
exact chosen isomorphism “H — H. Finally, recall the endoscopic character r := kg g on
Q) defined in section [2.2.5

Proposition 3.2.1.3 (|17, prop. 4.3.1]). We can take
=D Al(w) sn(wwo) Py o)

W4 €N

(%G(A)

where wy "\ is B-dominant and Q. is the set of representatives w of Qi\Qq such that wA is
By -dominant.

As a sanity check, note that if Ag . € X, then ellipticity forces Ay € Xg.
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[17] explicitly computes the extension to hyperendoscopy: let Q(G, H) be a set of represen-
tatives w of Qg \ Q¢ such that wu is By dominant for any p that is Bg dominant. Reindexing
—1
Wy = W1y

(Gre)” = 30 Ay ) S P (o e

w1 EQ(G,H)

Next, note that the Euler-Poincaré function ¢, has the same stable orbital integrals as the
pseudocoefficient fr, (v py)- Let i = wy ' A — pg so that mg(\) becomes me(p, wo). Then

Corollary 3.2.1.4. We can take
= Z /f(wlwo_l)sgn(wl)nﬁ(wpc)_pH_m.
w1 €Q(G, H)

(QOWG(M,UJU)

Next, since k is Qr-right invariant,
Z k(wiwgt) = Z k(ww™) = Z R(wiw) = Z K(w),
wo€Q(Bk) [w]€Qr\Qc [wleQe /%R [wleQe /%R

where it does not matter which representatives w we choose. Therefore, averaging over
wo € Q(BK),

Corollary 3.2.1.5 (see |17, prop. 4.3.2]). We can take
)H =K Z Sgn(wl)nm(u—i-pc)—m{—u*
w1€Q(G,H)

(M

where k = kg g s the average value of k over Q¢ /Qg.

General case

For H % LH, we use the trick in section . Let ¢ : (G1)eo = Goo be the surjective map
coming from the z-extension G; — G: if f is a function on G, we choose f = (f o ¢)H1.

Given elliptic torii T, and T}y, as before, we can also get elliptic torus Tz by taking images
under the z-extensions. The function ¢ : (G1)x — Goo gives a map ¢* 1 X* (G, Tg) —
X*((G1)oos Tz, )- Then fr(X)od = fr(g+r) s0 we can still use the above formulas in the general
case as long as we treat A as an element of X*(Gy,Tg,).

Note that the character Ay, shows up through the weight p*—each may be used to
compute the other (not that we’ve explicitly described either here).

Hyperendoscopic Transfers

To simplify notation, for any weight p of a group G, endoscopic group H, and w € Q(G, H)
as before, let
Tou(p,w) =w(p+pa) — po — 1o
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As in the previous section, we interpret p as an character of Gy corresponding to the chosen
z-extension Hj.
For any hyperendoscopic path H = (H;)o<i<n, let

and let
Ty, w) = To_y i1, (- T, (pa, 1) -+ wp)

be the composition of all the Ty, , g,. Inductively applying propositions [3.2.1.3| and [3.2.1.5|
while keeping in mind section then gives:

Proposition 3.2.1.6 (see |17, prop. 4.4.2]). We can take

(Omes o)) = Fong Z K, (Wi ) sg0 (W) N1, (u.w)
wey

with the terms defined as in the above paragraph.

Note that all the coefficients in the sum have norm 1 and define =, 4 to be the set of
Ty (p,w) for w e Q(H).

3.2.2 Bounds on Archimedean Transfers

Here are few lemmas on the terms that appear in proposition [3.2.1.6] For p a weight of G
define:

o m(p) = ma(p) = mingeq+ () (a, 1t + pa),

o n(u) =ng(p) = mingep+ () {a, 1),

e dim p = dimg () is the dimension of the finite dimensional representation with highest
weight p.

Lemma 3.2.2.1. If v is a weight of G and H as before, then for all ' € Z,, 34, na(1') > nu(p).
In particular, (' is reqular if p is.

Proof. In the situation where H is just an endoscopic group, consider w € {2g such that
Wo=wlp+pe) —pg —p* € E,p. Consider o € ®F(H). Since p* is invariant under Qp,
(u*,a) =0 so

(W, a) = (wp, a) + (wpe — pu, a).
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Next, pg is the sum of the fundamental weights so it is a regular weight. This implies that

wpe is too. Therefore, for all § € ®(G), 5Y(wpg) € Z \ {0}. In particular, since wpg is

Bpy-dominant, for o € ®1(H), a¥(wpe) > 1. If « is in addition simple, we can compute
a‘(wpg — pu) > 1 —a’(pu) = 0,

S0 wpg — pu is By-dominant. This gives

(W, ) > (wp, ).
To finish this one-step case,

N — : / > : — : -1 )
np(p) aeglglm(u Q) > a;gy(lmw, @) aergg(lmw, W)
All the terms in the last two minimums have to be positive. However, u is Bg-dominant so
this means the w™'« are all in ®*(G) giving

! > . — .
np(p') = aergg(lg)w, a) = ng(p)

Finally, for an arbitrary endoscopic path, inductively continue this argument through
each step. O]

Lemma 3.2.2.2. If p is a weight of G and H as before, then for all i/ € =, %

dimy, (') — O(m -1
T = Olma (™)

with the implied constant only depending on G and H.

Proof. This follows from the Weyl character formula. If H is just an endoscopic group, let
W =w(p+ pe) — pg — p* for appropriate w € Qg. Using that p* pairs to zero with any root
of H,

dimp (') Ha€<1>+(G)<a7pH> Haeq>+(H) (o, wp) + (a, wpe))

dime () Hae®+(H)<a7pG> HaE<I>+(G) (e, ) + {a, pc))
The first fraction is a constant depending only on G and H. The second terms in the products
in the second fraction are also. A priori, the (o, wpu) = (w™ ', u) are a subset of the (£, )

for 8 € ®T(G). However, since they all have to be positive since wy is By-dominant, they
are actually a subset of the (3, u). Denote by A the subset of such 5. Then

dimg(p') [localla, ) +0(1)) o, py !
dime () a Cl_[ae@*(cv‘)((a’u> +0(1)) ¢ aecbl_([G)\A< o

using that the pairings are bounded below by a constant. Bounding the pairings again by
mea(p), this is O(me(p)!I® EI=I1®TGN) | Finally, since endoscopic groups have smaller rank,
they do not have the same root data as the original group so this difference has to be negative.

After a quick check that the my, (') = O(mg (1)), inducting on this argument for each
step of the hyperendoscopic path H finishes the proof . n



CHAPTER 3. NEW FORMULAS 49

3.2.3 Truncated Hecke algebras

We now move on to the unramified finite places. Fix a place v at which G, is quasisplit. Since
we are only working at v, for this subsection G will always mean G, to simplify notation.

Choose (B, T') to be a Borel and maximal torus defined over F,. By G being quasisplit, all
such choices are conjugate and T" automatically contains a maximal split torus A. Furthermore,
Qr can be identified with the fixed points Q"7 and therefore the Weyl group of the relative
root system of rational roots in X*(A). Let K be a hyperspecial subgroup from a hyperspecial
point in the apartment corresponding to A.

Eventually, we will evaluate Igeom(f) up to some error bounds which depend on how big
the support of the finite part of f is. To precisely measure this size, we slightly modify the
notion of truncated Hecke algebras as in [79, §2].

Recall then that the elements Tf = 1g\(w)k for a chosen uniformizer @ and A € X.(A)T
generate (G, K). Pick a basis B for the X,(A) and define norm

Az = mag(biggest |B-coordinate of w|)
we

for A € X,(A). Define truncated Hecke algebra
H(GK)=E = (15 || M5 < K).

It turns out (see |79} §2]) that for any two B, B', || Az = ©(||A\||s). All the bounds we use
will depend on x only up to an unspecified constant. Therefore we can suppress the B.

There is also a truncated Hecke algebra with central character data: choose an (X, x)
such that y is unramified. In the case we care about, X is a subtorus of Z5. Let Ay be its
split part. Define

H (G, K, x)="F = (1 [IA+ (s < & for some ¢ € X.(Ax)) N A(G, K, x).

Note that for z € KA(w)K and z € X, then there is k € K and ¢ € X,.(Ax) such that
z = ((w)k, implying zz € K(A + ()(w)K. Therefore, this is a reasonable, non-empty
intersection.

A useful projection

Working with the basis of 7, it is sometimes useful to consider the following maps. First,
there is a map @ : x = >, o wx on X.(T'). This sends every coroot of G to 0. Normalizing
Q by |Qg| ™! gives a projection P on X, (T') ® Q. Note that this projection is onto X,(Zg)®Q
since Weyl-invariant cocharacters are the same as central cocharacters (they pair to zero with
every root).

Recall X, (A) embeds into X, (7') as the Wg invariants.

Lemma 3.2.3.1. Let A € X, (A). Then, QX € X, (A).
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Proof. 1t suffices to show this for PA. The map P is an orthogonal projection onto Wp-
invariant X,(Zg) ® Q with respect to a We-invariant inner product. Therefore it commutes
with Wr and sends Wy invariants to Wy invariants. O

Therefore, we can consider ) and P as maps of X,(A) and X,(A) ® Q respectively. The
kernel of P is the span of the roots of G so the kernel in X,(A) ® Q is Ve where Vr is the
span of {a¥|a € @3} inside X, (A) ® Q.

3.2.4 Formulas for Unramified Non-Archimedean Transfers

Fix a place v at which G, is quasisplit. Since we are only working at v, for this subsection G
will always mean G, to simplify notation.

The Fundamental Lemma

The fundamental lemma allows for computation of unramified non-Archimedean transfers
(the lemma is actually enough to show the existence of all non-Archimedean transfers). We
will eventually use this to control which J#(H,, Kp», X#.,)=" transfers end up being in. Use
the notation T', A, and K analogous to the last section.

As explained in |79, §2.2], the Satake transform gives two isomorphisms

oo H(G,K) — H(A, AN K)YF — C[X,(A)]"F.
We mention that this implies:

Lemma 3.2.4.1. The space G can be identified with QF\A\ The tempered part is QF\A\C
where A. is the maximum compact torus in A.

Proof. A result in representation theory of p-adic groups says that unramified representations
of G are the same as characters of (G, K) and therefore characters on C[X,(A)]%F (see
[10, §10]). These are the same as elements of Qp\A. Tempered representations need to
correspond to tempered characters of (G, K) which forces the element to be in EC. O

There are more implications: let ‘G := “G™ be defined like /G except that the semidirect
product is only with W', Define Clch(*G")] to be the algebra of trace characters of

representations of “G™ restricted to (G x Frob)y. There is a third isomorphism
T : Clch(*G™)] — C[X.(A)]**

that takes a representation 7 to a function on T given by a +— tr;(a x Frob). This function
can be shown to factor through A (see |10} prop 6.7]).

If we have a map 7 : “H"™ — 'G™, we get a pullback map b, : C[ch(*G™)] — C[ch(*H")].
We pick the Whittaker normalization for transfer factors and choose the measures p" on H
and G that give K and Ky volume 1.
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Theorem 3.2.4.2 (Full Fundamental Lemma). Let G be an unramified reductive group over
the local field F,,. Let (H,H,n,s) be an elliptic endoscopic quadruple for G such that H = “H.
Then, for f € (G, K) we can take

FH = i obyowa(f) H unramified
0 H ramified

Here we recall that if H and G are unramified, then the embedding H — "G descends to one
HY — IGw . In addition, H being unramified allows us to pick an n : “"H = H that also
descends to unramfied L-groups. The pullback b, is defined through such an 7.

Proof. The statements defining n come from the construction of H and the proof of 7.2A in
[46].

The ramified H case is by [45, §7.5]. Otherwise, it is reduced in [34] to proving the result
for just 1. This was further reduced to a fundamental lemma for Lie algebras in [84] which
was finally proven in [62]. |34] removes a restriction on the size of the residue field of F,. O

Representations of ‘G™

To compute with the fundamental lemma, we need to describe representations of “G%. As a
start:

Lemma 3.2.4.3. Let 7 be a representation of “T™. Then there exists \ a character off up
to Wi-action and o € C* such that m = x . where

Xha = @ Vy)\

YEWE/ Stab A

and each V), 1s a 1-dimensional space with a chosen generator v, on which T acts through
. Let Stab A be generated by Frob™ . Then Frob™™ acts by vy — awvy. Finally, Frob(v,) =
BAVrrob(n) for some constants Bx. (Note that by scaling v,, without loss of generality all the
B are 1 except one that is ).

Proof. Decompose 7 into eigenspaces V,, for T. We can compute that, vV, C V,, for v € Wg".
Let o generate Stab A for some non-empty V). Then v, acts as an element of GL(V)). Let v,
be a chosen eigenvector of 7 with eigenvalue o. The vectors vy generates a x» o inside 7. [

Beware that this parametrization depends on the splitting W < T". Next

Proposition 3.2.4.4. Representations of “G™ are parametrized by x».o of T for o domi-
nant. Call the one corresponding to Xxa by T := Wi%

Proof. This is by [42, pg 375-376] . We have that T is the same as H* in the reference
because the action of Wy fixes the Borel B used to define “G. The construction is similar
to that for connected complex Lie groups: ), forms a highest weight space on which the

actions of the root subgroups of G are determined. Together G and T generate G, [
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In fact, if 7'('; is the representation corresponding to highest weight A of @ then each
of the V. C Vi, generates a copy of 7€ o under the action of G. The representatlon Thela

therefore decomposes as a direct sum of the 7T,Y \ and any v € Wp sends 7r to 7r . The exact
description of this map in complicated but can be computed by the followmg trlck. For any
~v € I', the p coefficient of tr, restricted to T' x « is the trace of 1 x v acting on the pu-weight
space vﬂ%a of my 4. This trace can be computed by Kostant’s character formula [42, thm 7.5].

As an easier way to think about this parametrization, let F,, be the splitting field for G.
The groups Gal(F,,/F,) and ¢ together generate a group C' in automorphisms of the set
of roots. Inside this, Gal(F,/F,) is the stabilizer of the positive Weyl chamber and (¢ acts
simply on the Weyl chambers so Gal(F},/F,) N Q¢ = 1. In addition, ()¢ is normal since 7" is
fixed by Galois. Therefore, C' = Q¢ x Gal(F,,/F,). The A parametrizing 7, ., can be thought

of as a C-orbit. This decomposes into {2¢ orbits representing the constituent 7r$/\

Some Bases

We also need to describe some bases of the various spaces.
If o is a chosen uniformizer for O and X, (A)* a chosen Weyl chamber, then the functions

T/\G = 1wk for all X € X, (A)"

form a basis for (G, K) (the corresponding double cosets partition G by the Cartan
decomposition).
C[X.(A)]®F contains functions

Y e, SE0p(0)a(A - p)
> ocap S80x(0)a(p)

Xx = € CIX.(A)%r

for A € X.(A)T. We write the addition in X,(A) multiplicatively for clarity. Here, p = pp
is the half-sum of the positive roots of G over F,, which is the same as the half-sum of all
positive roots since rational roots are sums over orbits of roots. We recall that {2r is the same
as the Weyl group for the relative root system of rational roots of G,, by quasiplitness (See
[10, §6.1]). The sgny here are —1 to the power of the number of positive rational roots sent
to negative roots. If the rational roots form a reduced root system, this is just the standard
sgn on Qp.

If the relative root system is reduced, these are the standard characters from Weyl’s
character formula and are studied in [37]. In the non-reduced case, these are the twisted
characters from [12, thm 1.4.1] or |32, thm 7.9]. Either way, x, for dominant weighs A\ form
a basis for C[X,(A)]%r.

Finally,

Lemma 3.2.4.5.
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Proof. This is just stated in the proof of [79] lemma 2.1. We give details here since there
seems to be a minor mistake (that is irrelevant to all the work there and here) when A is not
in X,(A). This is also proven as [12, thm 1.4.1] and as [32, thm 7.9] in a slightly different
form.

We use Kostant’s character formula [42, thm 7.5]. Using the notation there, a = ¢ x Frob
for some t € T and W, is the W2 invariants in ¢ which is Qp. Also, let @, = ®F N o(—dF)
for o € Q¢ where ®f is the set of positive roots. Since Frob preserves a pinning, it acts by a
permutation on some diagonal basis of @ sca, 9—¢- Therefore, the determinant of the action
of a is

X7 (a) = sgu(Frobls,) [] ¢7'(1).

ped,

In addition xj(a) for & the representation of “T" parametrized by (), @) is a(t) if ) is fixed
by Frob and 0 otherwise (the 0 otherwise case is what is missing in [79]). By a [50, pg 15],
we can find representations of o € W, fixed by Frob so we get that x(a) = ao\(t).

In total, the trace in the non-zero case is

&ZUEQF sgic (o) sgn(Froble, )oA(t) [T cq, ¢~ ()
Zaeﬂp sgne(o) sgn(Frobls, ) Hape% ©~1(1)
p(t) ™' 3 cq, senc (o) sgn(Frobls, JoA(t)ap(t)
p(t)1 > cq, senc(o) sgn(Froble, )op(t)

The sgn¢ here is the sign character for )c: the number of all positive roots sent to negative
roots. This differs from the sgny in the formula for y, by a factor of sgn(Frob|s,) through
an argument breaking up ®, into Frob-orbits and noting that each rational root is a sum
over an orbit. Therefore, we are done.

Note that the 0 case can be done more easily by thinking about the action in block matrix
form with respect to the subspaces 71',%\ and noticing that all diagonal blocks are 0. [

The key consequence of this is that the T (my 1) for A € X, (A) form a basis for C[ch(’G")].

3.2.5 Bounds on Unramified Transfers
Trivial z-extension case

As in the Archimedean case, we consider the trivial z-extension case first.
Recall the notation for various bases of spaces related to the Satake isomorphism. From
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[29] and [37] (again, see [32} §7] or [12, §1] for the non-split case), we can write

pa(rd) =xa+ > (xS,
peX*(Ayt
0<pu<A
or ) =g vl Y g emdll e
geX*(An)*
0<¢<y
for some constants b and d. Here u < X means that there is some non-negative integer linear
combination of roots a" for aw € ®* equal to A — p.

Lemma 3.2.5.1. The d§(p) and ¢~ *20$ (1) are bounded by a polynomial in the norm |||
that is independent of q¢ and ).

Proof. First, let’s show this for d§'(u). By the above, we can ignore the A = p case. Otherwise,
we apply [79 lem 2.2]. There is a small issue here: this lemma depends on the main result of
[37] which only works when the root system is reduced. Nevertheless, [32, thm 7.10] and [12,
thm 1.9.1] provide an appropriate substitute in the non-reduced case.

[79, lem 2.2] bounds d§(u) by |Qc.r,| times the size of the set of tuples (cov) for a a
positive root such that ) . cova¥ = g — A (since both p and A are in the positive Weyl
chamber, the max in the lemma is achieved for the trivial element of the Weyl group). Looking
at the coordinate of i in the direction used to define positivity, every a" is positive in this
coordinate, so some weighted sum of the c,v is bounded. This implies that the number of
tuples is only polynomial in this coordinate of p. The result follows.

For b§ (1), note that the ¢~ #ru)d%(3) for a, B < A form an upper-triangular matrix with
dimension polynomial in the size of A. Then, bg(a) are coordinates of the inverse of this
matrix. Making a change of variables, the ¢~ ‘%# >bg(a) are the coordinates of the inverse of
the matrix with coordinates d<(f3) so these are bounded by a polynomial in |u|| by solving
through back substitution. O]

It remains to understand the map b,. This is computed exactly in terms of certain
partition functions in [12, §2.3], but we only need bounds so we do something slightly different
and much simpler. For 1 € X, (A), define coefficients ¢, (v) by

a= P awrl.
VGX*(TH)_"
0<v<p

The ¢, (p) are in particular bounded by the dimension of 7T§ so they are polynomial in the
size of u by the Weyl character formula.

Proposition 3.2.5.2. As elements of C[ch(*H™)],
L, L
bn(ﬂfl) = EB OéM(V)CH(V)ﬂ'VﬁI,

ZIEX* (AH)+
0<v<u
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where Ay is the maximal split torus of H contained in some mazimal Ty contained in a
rational Borel By and we consider p € X.(Ty) = X.(T) as dominant element by taking its
Weyl-translate in the positive Weyl chamber.

For notational convenience, let I' = Wg'. There exists t, € (Z(FA;)O depending only on n
such that the constants a,(v) satisfy two properties:

e |a,(v)] < |v(ty)l.
o Let Yg be the mazimal split torus in Zg. If ¢ € X.(Yg), then ayuqe(v+C) = ((t,)au(v).

Before starting the proof, note that all such Ty are isomorphic and that the map
X.(Ty) — X.(T) is unique up to Weyl element. Therefore, this is well defined.

Proof. Decomposition: To avoid confusion, I'g is I' acting on G and visa versa for H when it
is not clear from context. First,

L Iy
bﬁ(ﬂuﬁﬂH_ u,lG @W"/MH @ @ C“(U)W%V

Y I/EAX*(TH)7L
0<v<p

where the yu index the I' 5-orbit of ;1 in X, (7"). Note that c,(v) is constant on I'5 orbits and
QC(@) orbits.

The I'z-action is the composition of the action of I's with conjugation by elements of
Ng(T), so since G is quasisplit, I'5 acts on Ty through a subgroup W’ with Gal(F, /F) C
W' C Cy C Cg (recall notation Cg = I' x Q). This implies that c,(v) is constant on
I'-orbits.

Therefore, the sum over such an orbit of the C#(l/)ﬂ'? decomposes into ¢, (v) different

Wlfgiyu for possibly different «; ;. In total

cu(v) cu(v)
La
bn(ﬁml) = @ @ v (v @ E : (Vv 7Tu,1
VEX*(TH)+ =1 I/EX*(AH)+ =1
0<v<p 0<v<p

as elements of C[ch(*H"™)] and for some «; ,(v) € C*. Let v, (v) be the average of the a; ,(v).
Properties of a,,(v): It remains to show the two properties of o, (). Since all (B, T)-pairs

in G are conjugate, without loss of generality take an inner automorphism of q so_that
(BH,TH) is the pullback of (B T) The map 1 determines a cocycle ¢, € C* (FG,G) by
n(1 x ) = ¢, x . We then have that a;(v) is the factor by which cpop % Frob acts on the
highest weight space V' of the ith ﬂl{?.

There exists n such that the conjugation action of (cgon X Frob)” on X *(f ) is trivial.
Since this action also fixes a pinning of H, we must have

(CFrob X Frob)™ = zy x Frob”
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for some zy € Z5. By the lemma below, we know 1 x Frob acts trivially on V. Therefore,
a; (V)" = v(2).

Next, note that the I'z-action is generated by conjugation by cpon % Frob. This fixes
2 SO Zp € ZEI. We can without loss of generality make n bigger so that zy is trivial in the
finite group (2% )—in other words, we may without loss of generality assume 2z € (Z7)".
Then by ellipticity of H, 2z € (Zg)o. Since this a complex torus, there then exists ¢, € Z%
such that t = 2o, so taking nth roots, |o; ,(v)| = [v(¢,)|. Summing over i then produces the
bound on the o, (v).

To get the central character transformation, ¢ € X, (Yy) if and only if it is a ['¢ and
Qg-invariant element of X, (T) = X*(T). Such characters lift to [-invariant characters of G
and therefore characters on “G. For such ¢, m,1c1 = (® 7,1 s0

bﬂ(ﬂ-#-‘rC,l) = bn(() ® bn(ﬂuJ) = C(CFrob)df-\]bn(ﬂ—u,l)-

Since ¢, (v) is 0 unless 1 and v have the same central character and since ¢,4¢(v+ () = ¢, (v),
this implies that o, (v + () = ((crob)a,u(v). Therefore, we are done if all the choices

defining ¢, above are such that ¢, has the same image in G,y as cprob. O
The lemma used in this proof follows:

Lemma 3.2.5.3. Let V,, for v € X.(A) be a weight space for 7'(':% for p € X.(A). Then
1 x Frob acts as multiplication by a on V.

Proof. For any v € W}, the trace of v acting on V,, is the coefficient of v in tr W;Ga restricted

to T 7. Let n be the splitting degree of G. The same computation as lemma |3.2.4.5| gives
that this is o™+ dim V}, for any v = Frob™"!. The only representation of W& = Z with
these traces sends 1 to scaling by «. O

The element t, defines a function x;,* on G by KX(@)K — A(t,) for A € X,(A). Since t,
is central, if @ is the map on X,(A) summing over {)g-orbits, this is constant on fibers of Q.
In particular, since products of basis elements 7{' € (G, K) are a linear combination of 74
for A in a single fiber, x is a character of G. This is the character that corresponds to ¢,
considered as a Weyl-orbit in A through the Satake isomorphism.

Furthermore, the relation o,4¢(v+¢) = ((t,)c,(v) forces x, to be the character associated
to n through transfer factors as in section [2.2.3] This all finally gives that the character on
H determined by KyA(w)Kpy — A(t,) for A € X, (Apy) is the same as the one from transfer
factors.

In summary, we get

(" =GN+ Y a©7,

ceX*(Ay)
0<E<A
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where

€)= D (e, (v)g Crmdli(e),

peEX*(A)
veX*(Ag)
ESHVSHPSGA
setting terms of the form *,(1) = 1 here for ease of indexing. We also know that the o, (v)
can be bounded in terms of the character on H determined by 7.
Going back to the global context, this finally allows us to compute:

Proposition 3.2.5.4. Let G be a reductive group over a global field and (H,H,n,s) an
endoscopic quadruple that has a trivial z-extension. Let S be a finite set of places v such that:

e (G,, H, are unramified.
e |k,| does not divide |Qg]|.

Let x, s be the product of the characters x, ., on H, for v € S determined by 7.

If f € H(G(Fs), Ks)=" with ||f|lee <1, we can take f% € ' (H(Fs), Kg)<" such that
X5 fE || = O(qgl’%C'S‘) for constants C, E independent of fs and qg. In addition, E can
be chosen uniformly over all G in endoscopic paths from a fized G'.

Proof. Use the notation from the previous discussion. For s € S, f, is then a linear
combination of some of 7. If 7 has a TgH component then A\ — ¢ is in particular a non-
negative sum of roots of G. The number of such A is polynomial in k. Therefore, if fZ
is written as a linear combination of TgH , the coefficient for TgH is bounded by a sum of
polynomially many ay(§). Furthermore, all these £ are smaller than A.

Moving to what we are actually bounding, if ¢, is as in the previous discussion, the
corresponding coefficient in x;- 'fH is bounded by a sum of polynomially many &(¢,)ax(€).

For all o, () appearing in the sum defining a,(¢),

()~ ()] < () w(ty)| = 1

since £ and v have the same g-orbit sum. In particular, if we define

(€)= > Wweuw)g Ermdll(©),
peX*(A)
I/EX*(A\H)
E<pv<ppulgA

then |§(tn)71aA(§)| < la\(&)].

It remains to bound the polynomially many summands in @} (§). Bounding each of these
terms, the c,(v) are polynomial in how big 4 is. By lemma (3.2.5.1} the term

O (g~ &Pl (€)
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is a polynomial in the size of \ times a factor of ¢~ (&rm)+Arc)  Therefore, we roughly bound
the entire product, ay(¢), by a polynomial in x times a factor of ¢~

Finally, note that (\, pg) < ranky(G)s. Taking the product of f2 over s € S and setting
E = ranky(G) gives the result. O

Note that this lemma can be inductively applied through a hyperendoscopic path by
letting x at each step be the character defined from the hyperendoscopic path as in section

B.13

General case

Starting as in the Archimedean case argument in section , consider z-pair (Hy,mn;) for H.
The extension H; induces an extension (; such that H; is an endoscopic group for GGy by
proposition . If ¢ : (G1), — G, is the projection, we have that ff1 = (f o )7 for
any H; on G (interpreted as before).

If H is ramified, then all k-orbital integrals are still 0 so this transfer is 0.

If H is unramified, T" can be pulled back to a maximal torus T} of G; and A can be pulled
back to A;. By lemma [2.2.2.1| the extending torus Z is without loss of generality unramified
so G is too. As explained in [45, §7], the reductive model of G corresponding to the chosen
hyperspecial K¢, gives a reductive model of G; so we can find a hyperspecial K¢, , that
surjects onto K¢ ,. The map ¢ induces ¢, : X, (A1) = X.(A) so

QO(KGIKU)\(W)KGLU) = KG,USO*)‘(U)KGW'

Therefore,
a €]
T)\ (¢] (p — Z 7_/\/1
Nept(N)
and the transfer can be computed by the fundamental lemma.
We describe the transfer of 7§ as an example computation:

Lemma 3.2.5.5. Use the notation above. Then we can take

()" =" xaA@)m"

AeX.(Az)

Here Ay s the split part of the extending torus Z and x,, is the character on Zg, determined
by n.

Finally, we get an extension of proposition [3.2.5.4f that transfers from (G, K,, x) land
in H(HY, K, XXn,) With the same bound.
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3.2.6 Controlling Endoscopic Groups Appearing

Lemma 3.2.6.1. Let G be a reductive group over global field F' that is cuspidal at infinity
together with central character datum (X,x) such that X contains Ageo. Let f =mne @ f be
a function on G(A) where ne is some EP-function with central character matching x. Let
R be a finite set of places containing those on which f* or G are ramified. Then there
are a finite number of elliptic endoscopic quadruples (H,H,n,s) up to equivalence for which

Laise (fH1) # 0 for (all) z-extensions Hy. For each such H,:
o M, is cuspidal at infinity and X, contains Ay, -
e fH1 is unramified outside of R and H, can be chosen to be.
e xm, 15 unramified outisde of R.

Proof. 1f Hy is not cuspidal at infinity, then Igs.(g) = 0 for any ¢ with infinite part that is a
EP function by the previous section. By corollary and lemma [3.2.1.2] £ is either a
linear combination of such functions or 0. As before, we remark that Xy, 2 Apy, - due to
ellipticity.

If H is ramified outside of R, then by the full fundamental lemma together with the trick
to compute transfers on z-extensions, ff* = 0. Otherwise, by lemma , H; can be
chosen to be unramified outside R so f! is unramified outside of R by the full fundamental
lemma again. The group H; being unramified outside of R further implies that x g, is too.

Finiteness of the sum is implicit in the stabilization of the trace formula. Repeating the
argument here, note that the roots of Hy are a subset of those of G%. Therefore, there are a
finite number of possibilities for H% and the splitting field of H has degree < Q. Since the
splitting field is also unramified outside of R, there are a finite number of choices for it. This
leaves only a finite number of choices for H.

To get finitely many quadruples it then suffices to show there are finitely many choices
for s € (Zz/Zz)"*. For this, Z[V{VF/ZX;VF is finite by ellipticity and ZIV{VF having finitely
many connected components. Therefore (Z5/ Z@)WF is finite by finiteness of a cohomology
group. O

Note that this lemma can be inductively applied through a hyperendoscopic path.

3.3 Simple Trace Formula with Central Character

3.3.1 Set-up

To apply the hyperendoscopy formula, we will need two generalizations of the simple trace
formula: first, allowing central characters and second, allowing pseudocoefficients at infinite
places on the spectral side. We use a slightly convoluted and indirect argument to avoid
having to go into too many technicalities of Arthur’s distributions I(f,~) and I(f,x):
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Fix central character datum (X, x) and let o be the restriction of x to Agrat. We first
define a variant of Iy, that can be more easily related to lgeomy,- Let Xp = X N Z(F).
There is a map

H(Gyxo) = H(CX) - f(g) o Felg) = / EICL

Lemma 3.3.1.1. f > f, is surjective.

Proof. Let h € (G, x). There exists compact U C G(A)/Ag rat such that UX contains the
support of h. Let ¢ be a cutoff function: compactly supported, continuous, non-negative real
valued, and positive on U. Then the function

m(g) = / c(gz)dz
x/AG,rat

is continuous and non-zero on the support of h. If we take f = m~!ch, then fx = h. O

We follow a strategy from [40]. For any x € {geom, disc, spec}, also define distributions

on (G, xo): )

= X(2) Lo (f2) dz
T A e, (o
where f, : g — f(gz). We of course have that

[a/(,x(f)

I =1

geom,x spec,x

In addition, if f is cuspidal, then so is f, for any central z so

‘Qpec,x(f) = I(;isc,x(f)’

For our case, we can only consider central character datum where Ag . C X. Fix (X, x)
for the rest of this section and let xo be the restriction of x to Ag rat. The generalized simple
trace formula can then be developed in three steps:

1. Find a generalized pseudocoefficient ¢ so that ¢, is the pseudocoefficient ¢, and traces
against ¢ can be computed easily

2. Compute I, (¢ ® ) and show this equals Igpec (0r ® (f>°), ). Both these are small
modifications of Arthur’s original spectral side argument together with an extra lemma

of Vogan.

3. Sum over ¢ to get a generalized Euler-Poincaré function 7. Evaluate Igeom o (7 © f°)
and average to get a formula for I’ (n® f).

geom,x

To see how everything depends on Haar measures, ¢ will have dimension [Go, /Aqrat]_l and
f°° will have dimension [X>]~! so that both sides of our final formula will have dimension

(G<J[E] =



CHAPTER 3. NEW FORMULAS 61

3.3.2 Generalized Pseudocoefficients

We first need to define a version of truncated/generalized pseudocoefficients from [35, §1.9] in
the real case. This actually can be done slightly more explicitly than the p-adic case. A lot
of this section is probably implicit somewhere in |15].

For this section only, let G = G(R) be a group over R with discrete series mod center.
All other variables (a, Ag, etc.) will refer to real versions. There is a map

Hg : G(R) — af : X(Hg(7)) = log |\(7)] for all X € af,.

It is well known that this maps A° = Ag(R)" isomorphically to a¥ so since A° is central, we
get a splitting G(R) = G(R)! x A°, where G(R!) is the kernel of Hg.

Any character A € (a%)c of a¢ corresponds to the character e*¢() on A® and therefore
G through this isomorphism. The unitary characters correspond to A € af,. Finally, if 7 is a
representation of G(R), let 7y = 7 ® e*Hc(),

Let f be any smooth, compactly supported function on a® and 7 a discrete series
representation. The main theorem [15] also allows us to construct a (again not-necessarily
unique) compactly supported ¢, ¢ such that for any unitary p

FN)  p =, for some A € (af)c
tr,(¢xr) =<0 p basic, p # ) for all A € (af)c -
? else

Call such a ¢, s a generalized pseudocoefficient. For any character w on A%, we can define

Prfw(9) = /AO w(a)ex (ag) da.

This is compactly supported mod center and transforms according to w=" on A°. Therefore,
if p has character w on A°, we can define

(0 p0) = / rm(9)0,(g) dg = / / o1 (a9)w(@)0,(g) dadg
G /A G/A0 J A0

_ /G/AO /AO ¢r(ag)O,(ag) dadg = /G(Pfﬂr(g)@p(g) dg = tr,(pry). (3.1)

where © is the Harish-Chandra trace character. In particular, ¢ r. appropriately scaled is a
pseudocoefficient.

Averaging ¢, r over an L-packet 4. (7) for fixed f produces a generalized Euler-Poincaré
function 7, ;. Since the 7, ;. are averages of pseudocoeffecients over L-packets, they are
actually standard Euler-Poincaré functions. Therefore, computation gives that whenever
T is regular:

~

FO) Mgise(T)|71 p = 7y for some 7 € Myise(7), A € (a)c
0 else '

trﬂ(nﬂf) = {
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Generalized pseudocoefficients and Euler-Poincaré functions are cuspidal for the same reason
as the normal versions.
Finally, as a useful lemma relating our notion to the one in 35|,

Lemma 3.3.2.1. Let w be a discrete series representation with character e e(@) on A for
A€ (a)c. Let f on al be smooth and compactly supported. Then we can make choices for
©r and @, 5 such that o,y = for.

~

Proof. Make a preliminary choice for ¢, ;. Then f(0) ¢ s\ is a valid choice of ¢, We
evaluate

) (fpmpn) = /G £(9)0r12(9)8,(9) dg
= / f(ag)@xra(ag)®,(ag) dg da
A0 Jaya,

:/ f(a)e(u—/\)(HG(a))/ %r’f?/\(g)@m_#(g) dg da
A0 G/Ao

where we choose i € (a)c so that e#(f6(9) is the central character of p on A°. By previous
properties, the inner integral therefore becomes tr,, (¢ r) and we get

~

trp(f@ﬂ,f)x) = f(p—2A) trp, (Spmf)'

~

Checking each of the three cases in its definition, ff(0) !¢, ;. is then a valid alternative
choice for ¢ f. O

A similar property also therefore holds for Euler-Poincaré functions.

A small modification

Generalized pseudocoefficients are in C2°(G ). We instead want functions in some C2°(Go, X0)
so we make a small modification.

Return to the previous notation where G is a group over F. Let yg be a character on
A rar and my a representation of G, consistent with xo. Let ¢, = for, be a generalized
pseudocoefficient for my and consider the partial average

o(g) = / xo(@) F(ag)n (ag) da

_ / 10(@) F(9)x5 (@)@ (9) da. = pro(9) / f(ag) da.

AG,rat

This is an element of C°(Gwo, x0) and every function f € CF(Ag oo/Acrat) arises as an
integral this way. Finally, by a similar computation to (3.1)), this has the same traces against
representations m consistent with xo as ¢, -
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Therefore, for any function f € C®(Ag.0o/AGrat), We can construct analogues of gen-
eralized pseudocoeflicients ¢, r = for, € CX(Go, Xo). For computations later, note that
such f have Fourier transforms defined on any character of Ag o trivial on Ag at. The same
discussion carries over to Euler-Poincaré functions. These are the functions we will actually
be using.

We fix f to be dimensionless so these generalized pseudocoefficients have dimension
(Goo/AGrat] M AG 00 /A rat) = [Goo) A 0]

3.3.3 Spectral Side with Central Character

To get a simple trace formula with central character, we need two spectral side computations:

one for I .. and one for Ige.. Start with a lemma:

Lemma 3.3.3.1. Let my be a reqular discrete series representation of G with weight & and
character xo on Ag . Then for any real irreducible representation p of G with character

Xo on AG,oo; trp(@ﬁo) = 57r0(p)'

Proof. We thank David Vogan for this argument and note that all mistakes in this writeup
are our own.

The case p = my follows immediately. Consider p # my. In the Grothendieck group, p is a
linear combination of basic representations with infinitesimal character matching 7g:

p=>_ myp)p.

p’ basic

Taking traces of both sides, tr,(¢r,) = m,(m). Now, taking the trace against an EP-function
Teo-

0=tr(n6) = e >0 mo)
e ' €llgisc (o)
where Il4isc(&o) is the L-packet for &. It therefore suffices to show that the m,(p’) for
P € aise(&o) all have the same sign. This would force them all to be 0.

The most direct way is to use the classification of all unitary representations with
infinitesimal character of a discrete series from [68]. These are of the form of certain A,(\)
described in terms of Zuckerman functors. These have an explicit decomposition in the
Grothendieck group through a version of Zuckerman’s character formula proposition 9.4.16
in [82]: A is a character on Levi L., so first get a character formula A\ by twisting both
sides of 9.4.16 for L., by A\. Then cohomologically induce to get a character formula on G.
Alternatively, by Kazhdan-Lusztig theory, the m,(p’) are Euler characteristics of stalks of
certain perverse sheaves. By theorem 1.12 in [53] their cohomologies are either concentrated
in even degree or odd degree. See the comments in the proof to corollary 4.6 in [81], for

example, for why this applies to C in addition to F,,. O
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Combining with computation (3.1)) (note that twisting by a character does not change
the regularity of the discrete series) then gives:

Corollary 3.3.3.2. Let my be a reqular discrete series representation of G with weight &g.
Let f € C*(Ag,0). Then for any real representation p of Goo, tr,(¢re.f) = f(p, o) where

~

f(A) 7 =my for some A € (a5;_)c

0 else

f<7T77T0> = {

A similar result holds for f € C°(Ag.co/AG rat)-
This allows us to prove:

Proposition 3.3.3.3. Let my be a regular discrete series representation of G, with weight
& and character xo on Agrar- Let f € C(Agoo/AGrat). Then for all ¢ € J(G™):

[ge(:((pﬂo,f ® ™) = Z Maise () f (Too, T0) Tl (0°°)
71'G-A,Rfdisc(C;v)(O)

where
fA) 7o = (mo)x for some X € (a&_)c
0 else '

f (oo, m0) = {

Proof. This is simply a due-diligence check that none of the steps in the derivation of formula
3.5 in [4] break. First, ¢, s being cuspidal gives

[sC:)ec«O) = Z Igsc,t(gp)

t>0

—y Y e

>0 Le.Z(G) 2. F|
X | det(s — Dlag/ae | tr(Mgio(s, 0)p.(0, (pr,9™)"))
ar/ag Qle\$,Y)pQt\YU; (Pr, ¥ )

SEWG(C‘L)reg

using that G is connected. This uses a lot of the notation from [4]. In particular, Z(G) is the
set of Levi subgroups of G, @ is a parabolic for L, Mg o(s,0) is some intertwining operator,
po.+ is a sum of parabolically-induced representations from ) with Archimedean infinitesimal
character having imaginary part of norm ¢, and (¢,¢>)! is the restriction of the function to
G(A)L

The full definition of the rest of the terms in the inner sum is unnecessary: the only detail
Arthur uses is that when @ # G it is a sum

Z Cr trﬂ((@m,f@w)l)

T€AR(G)
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where the ¢, vanish whenever the Archimedean infintesimal character of 7 is regular. However,
a property of the pseudocoefficient ¢, ¢ is that it is only supported on representations which
have the same infinitesimal character as 7 (similar to the the proof of [14] lemma 1). This
character minus p has to be regular. Therefore the sum is 0.

For the leftover term, @ = G so L = G and Mg(s,0) is trivial. This gives

G (@ror @ 0%) =Y trpa(0, (9re,r0™)").

t>0

By its definition, pg+(0) is the sum of all irreducible, discrete subrepresentations of the
space L*(G(Q)\G(A)') with Archimedean infinitesimal character having imaginary part with
norm t. Arthur’s original argument for the sum over discrete representations converging
absolutely does not work since there are now potentially infinitely many ¢ on which this trace
is supported. However, absolute convergence is now known in general by [20)].

Finally, (¢x r¢™)" acting on L?(G(Q)\G(A)') is the same operator as ¢, ;p™ acting
on L*(G(Q)\G(A), xo). Therefore, summing over the representations that are actually
subrepresentations of L?,

Lﬁsc(‘ﬂﬂo,f ® %) = Z Maisc(T) tr (Prmo, 1 9™)
TI'EARdisc(GJ(o)

= Z Maise () trr, (907r07f) trroe (0°°).
7rE-A7?'disc(G=X0)

Corollary [3.3.3.2| gives that tr; _(¢ry.f) = f(7, ) finishing the argument. O
Next, let ¢ = @, r ® . Then

1
Il .. = / 2) Lgpec L) dz.
P 7X(g0) VOl(%F\X/AGJat) XF\:{/AGJM X( ) pec,Xo (90 )

Computing

[SPeQXO (902) = Z Mdisc (’/T) trﬂ' (sz)

71'€~A7—\’1disc(G7>(0)

= Z Maise(m)wy ' (2) tra ()

71'E-A/Rfdisc(C;7>(0)

where w, is the central character of . Substituting this in and factoring out the sum and
constants from the integral gives

1 A ra = Wr
/ X(2)wy ' (2) dz = VOU(XP\X/ A rar) X = wrlx _
xF\x/AG,rat else
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Therefore, a lot of terms in the sum go to 0. Finally, since 7°° has central character x*°, it
can be traced against functions in .72 (G*, x*°). By definition

e (9%) = trame (7))
Putting it all together,

Corollary 3.3.3.4. Let my be a reqular discrete series representation of G, with weight &
and character xo on Agrat- Let f € C°(Ag.os X0). Then for all ¢ € 7(G™):

];pcc,x((pwo,f ® SOOO) - Z mdiSC(W)f(ﬂwu 7T0) tI‘7r°° ((QOOO)XOO)
TEARisc (G,X)

(where we only sum over automorphic representations with the correct central character on
all of X instead of just Ag rat)-

Finally, the same arguments as in | 3.3.3.3| again work for the terms in equation (2.3))
giving that for > € J2(G>, x*),

o0 1 0o
a disc (&)X

where we factor Xo, = X1, X Ag . Sanity checking dimensions here, we need
[GAN[X] T [Goc] ™ [Agoo] = [Xoo/Agioo] HG™][X™]

which holds.
Putting everything together:

Proposition 3.3.3.5. Let my be a regular discrete series representation of G, with weight
& and that matches character x on X. Let f € CX(Ag.oo/AGrat) and o™ € F(G™, x*°)
such that (™), = ¢>. Then:

VO].(:{})O)]speqx(SOWo ® SOOO) =
Z MAisc (77—)57r0,7roo tr7r°° ((’Ooo)

7rE-A7?rdis<:(G7X)
1
= A_I; ec (SOW ® SOOOI)
Foy e
The second equality uses that for any m\ € ARqisc(G,Xx), A = 0. We fix > to be
dimensionless and normalize > by it. Therefore, the dimensions are all [G*®][X>]!.
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3.3.4 Geometric Side with Central Character
Vanishing of Iﬁm(fy, V)

We explicitly describe all the implicit vanishing arguments in [4] for the ease of the reader.
Assume 1) is some cuspidal function. First, by lemma , I§; vanishes unless M € £°%P;
i.e., unless A at/AGrat = A co/Ac 0o. Furthermore, in this case, ]AC}'LOO(%@D) = ]NJ\C},OO(W,@D).

Furthermore, as explained in the summary |3, §24], unless v is elliptic in M over oo, it
is contained in a smaller Levi at oo, so the descent formula to the smaller Levi shows that
fﬁm(% 1) vanishes. The main result of [5] also gives this.

Computation of Iyeom

Next, we compute the geometric side. Let TTg.(A\) be a regular discrete series L-packet for
G consistent with y and f € CP(Ag oo/Acrat). We again try to mimic Arthur’s arguments.
Cuspidality of 0y s and the splitting formulas reduce the geometric side to

oo Q.| oo
]geom7x() (77/\,f ® @ ) = Z ’Q ‘ Z aM(S’ ’y)I]\C/:[(’VRv nA,f)O']y\/[(SOM)
mMez VTEF Sem@)ans

Define for 1) € C° (G, X):

Do (ym, ) = |DM(9) |72 IS (v, ),

By the previous subsubsection, we can without loss of generality set ®y,(~y,1) = 0 if M is
not cuspidal over R
For L-packet Tgis.(A) and elliptic regular v € M,

Car(y,2) = (=DUDIDGI Y 64(7).

7r€I_Idisc(>‘)

Arthur shows that ®,,(, A) can be extended by continuity to all elements in elliptic maximal
tori. Define it to be 0 for other elements to extend it to all of M,; in particular, to
non-semisimple elements.

Next, we need a defintion:

Definition. Let x be a character on Ag . A cuspidal function ¢ € C°(Gu, ) is stable
cuspidal if its trace is supported on discrete series and constant on L-packets.

Note that Euler-Poincaré functions are stable cuspidal. Part of the main result of [15]
gives that Euler-Poincaré functions are also K-finite.

As some notation for the next step, if H is a reductive group over R, let H be the compact
form of H. Any Haar measure on H comes from a differential form on H¢ and therefore
induces a Haar measure on H. Then:
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Theorem 3.3.4.1 ([4, thm 5.1] slightly rephrased). Let x be a character on Ag and
v € CP (G, X) be stable cuspidal and K -finite. Then for any v € My,

(7, ) = ()T (INTH N T @pr(y, M) trav () -

Ax ! €EXE(T)
A\ matches x

where v(M.,,) = (—1)4 Vol(]_yoo/Azy,oo)M(BKlM )17

Note that there is a correction here changing A IM rat 1O AI%OO and using fﬁ instead of

I§;. (see the end of [27, §7]).
Since lemma [3.1] gives that without loss of generality, n) r = f7,, we recall the following
rephrasing of a fact used in deriving the invariant trace formula:

Lemma 3.3.4.2. Let f = fi0 Hg,, be a function on Goo /A rar where f1 is a function on
CX(AGoo/AGrat). Let ¢ be any function on Go compactly supported mod center. Then for
any v € G and Levi M

I (v, fo) = F() IS ().

Proof. Remark 4 after theorems 23.2 and 23.3 in [3] gives that I (7, f¢) only depends on
the values of fy on g € G with the same image as v under Hg__ . On this set f is constant
so the result follows. O

In particular, keeping in mind our normalization for EP-functions, for any v € G:

MaiscM|@ar(v,m00) = F(1)@ar (1) = (1) B4 £ ()0 (M) " 0ar (7, ),

so following the computation in [4] section 6 gives:

Corollary 3.3.4.3. Let A\ be weight consistent with xo and f € C°(Ag.co/AGrat). Then

; Q
‘HdiSC(AO)ugeom,xo (77)\o,f & ‘;OOO) = Z (—1)d1m(AM/AG)—‘ M’F|

Yo [Qc.rl
X Z XM F () ®ar (7, M) O (939)
YE[M (F)]ss
where
(M) = V01<]'€/‘4(F)\]é\J(A)/AIM,rat)|Q(B )
Xy Vol(TM /A i ) Ko,

and M () is the set of connected components of M, that have an F-point.
As explained on the top of page 19 in [77], we can actually set
X(I}1) = g (L (PN (A) /At i)

by picking measures appropriately on Ié” . Note a key change from Arthur’s formula: the
Levi’s that appear are those for which Apsyat/Acrat = Anmoo/Ac. instead of just those
satisfying Arthur’s notion of cuspidal.
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Computation of I ..,

It remains to compute Iy, (s ® ¢>°) by averaging. To make the final formula more

elegant, without loss of generality assume )\ is consistent with y. We have

1
I *) = ]eom M > z dz.
bl © 9 = ey [ 6 (P © 97):) 6

Without loss of generality, taking 1y, = f1, by lemma [3.1}

(Mo @ P7)z = (Mrg,f) 200 @ P22 = Wi (200)Mrgufon, @ P

where w), is the central character associated to Ag. Here, ¢y, is still a generalized
Euler-Poincaré function so we substitute in corollary [3.3.4.3] The terms that change are

)@ (7, M) = Wi, (Zoo) oo (V)P (7, Xo)

and
O (%) = OM (92 )nr).

By our simplifying assumptions, the w;l(zoo) can be pulled out and partially cancelled against
the x(z). Finally, we use proposition 3.3.3.5;

VOI(%éo>ISPe'37X(77>\0 ® ) = mjépec,x() (77)\0,f ® @ ) = mléeom,xg (”Ao,f ® ¢ )7

thereby getting the full formula we will use later:

Proposition 3.3.4.4. Let Ilgisc.(Ao) be a reqular discrete series L-packet of G, with weight &y
and central character x on X, f a function pulled back through He_, from CP(Ag.co/AGrat),
and o> € H(G>, xo) such that (p>") . = ¢>. Then we have geometric expansion

VOl(X 1L, ) Maise (o) Hspee (1o ® ©°°) =

1 1 / oo dim(An/Ac) | F |
_ x(2z -1 Mm/Ac )
F(0) vOUXF\X/Agrat) Jxp\2/46 00 =) 2, (D Q% F|

Megeus

XY XM (o) Par (7, 20) O (932 ar) dz

VE[M(F)]*

where

B Vol(Iy(F)\]y(A)/Aly,rat)
- VOI(I},‘J /ALJ/\/IQO)

,O0

X(I,y |Q(BKL]>/IOO)|

and 1M () is the set of connected components of M., that have an F'-point.
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Further Simplification

Mimicking some simplifications from [40|, the integral can be evaluated to remove f and
pl-dependence. This version of the formula and the method of its derivation are useful for
some bounds later.

Xp acts on [M(F)]*® by multiplication. Let the set of orbits be [M(F)|¥. For any
7, let Stabx(7y) be the stabilizer of 7 under this action. This is finite by using a faithful
representation (which always induces a finite-to-one map on semisimple conjugacy classes)
to reduce to the case G = GL,,. Here conjugacy classes are just sets of eigenvalues and the
X-action just scales each eigenvalue. Note also that since X is central, ¢« and v are constant
on X-orbits.

We can therefore move the integral into the inner sum over v and break it up as

D XM ()] Stabx ()]

VEM(F)E

<> V(=) for (09) B3 (27, A)OM (250 ) ) .
P xF\x/AG,rat

zeX

Since x is defined to be trivial on rational points, the innermost sum simplifies to

Z /3€ x4 X(zwx)f(zooxﬂw;ol(x)ch(% )‘O)Oy((CPZZ&)M)dZ

= Oar(7, M) (/xoo/AGm f(z7) d2> (/Oo X(2)0) (92 ) dz) :

Recalling
(%) ar = 0p,, ()2 / / 0> (K7 Y 2nk) dn dk,
o J Ny (A™)

a bunch of Fubini’s steps gives that the non-Archimedean integral is O}/ (((p>r) Jar) =
O} ((¢™°) ) where we recall

Pxlg) = / . ©(g2)x(z)dz

for any .

For the Archimedean integral, let the G, = G., x Ag. components of any g be
g1 X ga- Then f(z7) = f(247,). This factorization gives a corresponding one X*/Ag 1at =
X! X A¢oo/AGrat- Then the integral becomes

/ / f(zava) dza dzy = vol(%io)]?(()).
XL JAG co/AG rat
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Putting it all together:

vol(xL) £ (0) . Q|
Hisc)\ I/eom 0 ® @*) = = -1 im(An/Ag) C200T
Mo 00 s 001 £%) = G ) 2, %,
X3 x(@ED]M ()| Stabx (9) 7 @ as (7, M) O ().
ye[M(F)Ig

Using proposition [3.3.3.5| as before finally gives:

Proposition 3.3.4.5. Let [lgisc.(No) be a regular discrete series L-packet of G, with weight
& and central character x on X. Then, for any o> € (G, x>), we have geometric
ETPansIon:

1 1 : |Qar.r|

[s ec 0 ® <) = —1 dimlar /) S

P ’X(n/\ 2%) ‘Hdisc(>\0>|VOI(:{F\%/AG,rat) Me;usp( ) |QG,F’
D x@HEM ) Stabx (37 a7, ) O (™) ).

VEM(F)E

The dimensions on both sides are [G*™][X>®| 7} XL ]! = [G*][X/Ac.) " We state again
that the Levi’s that appear are those for which Apsyat/AGrat = Arrco/Ac o instead of just
those satisfying Arthur’s notion of cuspidal.

3.3.5 Irregular Discrete Series

When )\ is not regular, tr, 1), does not simply test if 7, is in a given L-packet. However,
it can be interpreted as a cohomology as in [4, §2]. While we will not use this more general
result, we state it here in case it is useful in other applications.

Even with irregular \q, we still have

o0 1 oo
Maise(A0) [ Lspec,x (rg ® %) = m Z Maise () $Tr (M) T (07°).
ee TEARGisc (G:X)

The Euler-Poincaré function n,, always satisfies tr,__(7x,) = X (7o) Where ), is the Euler
characteristic
X o (77—00) = Z(_l)q dim H%g(R)) Koo, oo ® 7T>\0)'
q
Here, HY is the (g, K)-cohomology: K is a maximal compact of G, and m,, is the finite
dimensional complex representation with highest weight A\g. The equality holds in general
because it holds on basic representations which generate the Grothendieck group.
In particular, if we define the L2-Lefschetz number

L (™) = Z Madisc () X0 (Too) trree (07°),

NEARdisc (va)
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we get

0 1 )
|Hdisc()\0)|[spec,x(n)\o & 2 ) = M"g)m(go )

Combining with the calculations before proposition |3.3.4.5| gives the formula:

Corollary 3.3.5.1. Let my be a possibly irreqular discrete series representation of G with
weight & matching character x on X. Then, for any ¢ € (G, x>):

vol(XL)) di 01,
P ) = .8 -1 im(Ap/Ag) 12 2MLE L
Ao (90 ) V01<:{F\:{/AG,rat) Me;usp( ) |QG,F|
x> XM ) Stabx (7)) P (v, o) OY (%) ar).
YEM(F)]

The dimensions on both sides are [G*][X>]~!.
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Chapter 4

Application to Equidistribution

4.1 Trace Formula Computation Set-Up

Now we can finally set up our main computation.

4.1.1 Conditions on G and Defining Families

Let G be a reductive group over a number field F' with discrete series at co. By instead
looking at Resg G, we could without loss of generality take F' = Q since Res(g (Q) = G(F)

and Res{ G(A) = G(Ap) as topological groups. Fix central character datum (¥, ). Assume
G is connected.
Let:

e 7, be a regular real discrete series representation for G with weight &, and character x
on AG,oo-

e ., be its pseudocoefficient.
e Sy be a finite set of finite places and choose g, € H(Gs,, Xs,)-
e S5; be another finite set of finite places disjoint from Sj such that yg, is unramfied.

° S:SOL|51.

e US> C G(AS) an open compact subset on which x> is trivial.

e Siaq is a set of places that S needs to be disjoint from that will be defined in section
4.3l

Define a family of automorphic representations F in ARqis.(G, x) through discrete multi-
plicities
US-© 1K51 (7T51)

ar(ﬂ = mdisc(ﬂ)émmoo dim(ﬁsjoo) Vol(KS ) .
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Note that the second-to-last term is just checking if 7g, is unramified. The coefficient axz(m)
is dimensionless.
Define function
Lysoy = vol(U N X5%) " (1ysac), .

This is normalized so that 1ys, (1) = 1. For any test function ¢g, € H"(Gsg,, xs,) let
P = Profrpsy = Pro @Y™ = Py @ Lysie x @ P, @ Ps,

where as before, (. is the pseudocoefficient for . Test function ¢ will momentarily be shown
to pick out the family ar.
Intuitively, the test function is

e putting weight restrictions on the infinite place,

e putting level restrictions on finite places away from S,

e forcing S; parts to be unramified,

e counting possible components at S according to test function pg with pg, unramified.
To make all the traces well-defined, we fix Haar measures on factors of G(Ap):

e Use the normalization from [79, §6.6] of Gross’ canonical measure from [28] on Gg and

the xg.
e Use Euler-Poincaré measure on G, Ag oo, AG rat, and fféo

This determines all appropriate Plancherel measures. We call the product measure pc?
and the volume of the adelic quotient under it the modified Tamagawa number 7/(G).

4.1.2 Spectral Side

We can now directly compute the spectral expansion of Ig,ec (¢):

Corollary 4.1.2.1. Let my be a regular discrete series representation of G with weight &g.
Then:

LGeor (Pm © %) = F“MUZ™) Y ax(m)@s(m)
71—EvA,Rfdisc(CTvvx)

where Ug™ = US> /x5 0 US>,

Proof. By proposition [3.3.3.5 and using that vol(X. ) =1,

oo 1 (0.0]
Ig)ec,x<907ro ® ™) = m Z Mise () g o trroo (9.
o0 TEARisc(G,X)
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Factoring the finite trace into its Sy, .S; and other components gives that

1K51 (ﬂ-Sl) —~ S

0 ~ can /775,00\ 71: 00
trree (¢ )ZSDS()(WSO)WSOSl(W)M (Ux )dlm(ﬂs ) )

so we are done. O

4.1.3 Geomteric Side Outline

We get a geometric expansion Igyecy (¢©r, ® ¢>°) by using the hyperendoscopy formula (propo-
sition [3.1.2.3]). Since Euler-Poincaré functions and pseudocoefficients have the same stable
orbital integrals:

IG oo (g ® ©%°)

- Ig)eC,x(m\o ® ™) + Z UG, H)Is?;ec,m((ﬁéo - Qprroc)H ® (QDOO)H)'
HEHEn(G)

Simplifying and bounding this takes a few steps:

1. Notice that transfers (ng, — .. )" through hyperendoscopic paths can be chosen to be
linear combinations of regular Euler-Poincaré functions.

2. Substitute in proposition |3.3.4.4] for each hyperendoscopic group.

3. The result will have a main term consisting of central elements of G and an error term
consisting of non-central elements, Levi terms, and terms from the hyperendoscopic
groups.

4. Use a Poisson summation argument to compute the main term.

5. Bound the error term using bounds on non-Archimedean transfers and small general-
izations of the results of [79].

For sanity checks later, note that both sides of our computation have dimension [G*][X/Ag ] '

4.2 Geometric Side Details

We are eventually going to use the hyperendoscopic formula with f; of the form

J1 =1 ® ™.

All transfers appearing will have linear combinations of Euler-Poincaré functions as infinite
parts so we only need to analyze the geometric side with test functions of the form 7 ® ¢,
This is similar to what was done in [79].
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4.2.1 Original Bounds

Recall the notation and conditions from We state the main bounds from [79] for
reference. G' determines a finite set of places Sy.q/ ¢ in a complicated, uncontrolled manner.
We assume three conditions:

e S does not intersect Sp,qr -
e (G is cuspidal.
e X is trivial.
Then we get the following bounds (changing to our normalization of EP-functions):

Theorem 4.2.1.1 (Weight-aspect bound [79, thm 9.19]). Consider the case where Zg = 1.
Let fs, € A (G(Fs,))=" such that || fs,|leo < 1. Let & be a dominant weight. Then

|Hdisc()\0)|
7(G) dim ()71, (Ps,)

for some constants Ay, By, Cwt depending only on G.

Lipee(ne ® ©™) = 1%, (f5,) + O s, (a5 P m(€) =)

Theorem 4.2.1.2 (Level-aspect bound [79, thm 9.16]). Consider the case where U%> is a
level subgroup K°°(n) for some ideal n relatively prime to Syay . Let fs, € ™ (G(Fs,))="
such that || fs, ||l < 1. Let & be a dominant weight. Then, if N(n) is large enough,

‘Hdisc(/\l)) ’
7/(G) dim (&)1, (Ps,)

for some constants Ay, By, Cl, depending only on G.

o0 ~pl N Av v —Clv
Lipec(ne ® ™) = T, (fs,) + 06 s, (qs, h N(n)~)

For clarity later, we emphasize that the implied constants in the big O depend on G
and ¢g,. As noted in errata on the authors’ websites, there is a mistake in |79, §7] so the
alternate argument in [79, B] must be used for the orbital integral bounds that go into the
results. This alternate argument does not provide any control on the constants or Sy,q -

Clarifying a minor detail

As another note, there is a small detail assumed in the bound for a, s used in proving
the weight aspect bound: corollary 6.16 used to bound the L function in the formula for
aemEP (G(F)\G(A)/Ag rat) only applies to groups with anisotropic center. However 6.17 uses
it for centralizers of elements and these can have arbitrary center. We can use the following
lemma to get an alternate bound for i (G(F)\G(A)/Ag . at) in general in terms of the

bound for groups with anisotropic center:
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Lemma 4.2.1.3. Let G be a connected reductive group over F' and G' = G/Ag. Then

A EP (G(F)\G(A)/Ag rat)
= A E(G (PG (8) A (Aa(F)\Ac(A) /A ng.rat).

Note that the factor p=™FF(Aq(F)\Ag(A)/Aas rat) is a constant depending only on the field
F and the dimension of Ag.

Proof. 1f G is quasisplit at finite v, there is a special model G over F,,. Then G(O,)NAg(F,) is
a maximal (a bigger subgroup times G(QO,) is otherwise a bigger compact) connected compact
subgroup and therefore corresponds to a model A consistent with the inclusion. Consider
the quotient model G/A¢. By Lang’s theorem, G'(k,) = G(k,)/Ac(ky), so by Hensel’s lemma
and smoothness of quotient maps by smooth subgroups, G/A¢(O,) = G(0,)/Ac(O,). By
Hilbert 90, G'(F,) = G(F,)/Aq(F,) for any local F,. This gives that G'(A) = G(A)/Ag(A)
implying G'(A)! = G'(A) = G(A)' JAg(A).
Using G'(F') = G(F)/Ac(F), we then get an isomorphism of topological spaces

G(F)\G(A)' = G'(F)\G'(A) x Ac(F)\Ag(A)".

Next, pmEF on G’(A) and G(A) induces a measure p4 on Ag(A). By the above factorization,
it suffices to show that this equals ,uffn’EP place by place. At the infinite place, they are the
same by definition (see |79, §6.5]).

If G is quasisplit at finite v, then p®" is characterized by giving any special subgroup
volume 1. As before, G/Ag(O,) = G(O,)/As(O,). In particular, G/Ag(O,) also needs to be
maximal connected so it is special. Since these are all special subgroups, this forces s = pG§™
at v.

If G is not quasisplit at v, then " is determined by the transfer of a top-form wgas
from G (since the normalization factor A in [79] depends only on the motive for G which
depends only on the quasisplit form of G). The isomorphism G — GF carries (Ag)f to
(Agas )y since centers are identified between inner forms. This means that G'® = G%/Agas
through the isomorphism over k. By the previous paragraph, the defining top-forms for G
and Agaes wedge together to that of G%. Therefore, this same property holds for G and Ag,

which is what we want. O

can

The previous lemma is implicit in later sections of [79] but not explained in detail.

4.2.2 New Bounds Set-up

For our use, we will need a generalization of these bounds that works when Zs # 1 and
when G is not necessarily cuspidal. We will also need the big O, choices of Syaq p, and the
constants A, B, C' to be uniform over all groups H appearing in hyperendoscopic paths of G.
The final statement requires some notation and will be in Theorem [£.3.1.1]
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Let £ be a dominant weight and choose central character datum (X, x) where Ag o C X
and y is consistent with £. Let xo be its restriction to Ag a. We start similar to |77, thm
4.11] and |79, thm 9.19], instead trying to apply proposition [3.3.4.4] This requires making
some choices:

e a cutoff function f € C®(Ag /AGrat),

o a > € J(G™, xo) such that (p>1), = >,

canx EP

e lots of Haar measures: fix them to be whenever necessary.

We need to bound the term for all endoscopic groups. Considering all the previous lemmas
on transfers, we are interested in the case where:

e ¢ and y are unramified outside of Sy and oo.
e Y extends to a character on G,,.

e (¢%>®)! can be chosen to be vol(X%>° N U%*)~!1 5. For endoscopic groups we will
without loss of generality expand Sy so that U%> = K%, Then this follows from the
computation of transfers in section |3.2.5]

o v, € (G, Ky, xs)=F and || xsps|leo < 1 for all s € 5.
We choose a specific ¢! for s € S; according to the following lemma.

Lemma 4.2.2.1. Pick unramified character datum (X,, x,) such that x, extends to a char-
acter on G. Let ¢, € H(G,y, Ky, Xo)=" such that || Xe@olleo < 1. Fiz the canonical measure
on X, so that vol(K N X,) = 1. Then there exists p, € (G, K,)=" such that (p}),, = ¢

and || xvpylloo < 1.

Proof. Let

Let Ay, be the split part of X,. Then for any ¢ € X.(Ax,), axrc = x(¢(@)) *ay. For each
A such that ay # 0, there is a representative N of its class [A\] € X.(A)/X.(Ax,) such that
| V]| < k. Let A be the set of all these chosen representatives. Then

9011; = Pv = ZQAT)\

AEA

satisfies (¢}). = ¢, The L bound on ¢, gives that |x,(A(w))ay| = 1 implying the needed

Xv
bound on ;. O
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Note. There is a small technicality here. The original y, chosen on the subgroup of G, may
not necessarily extend to G,. However, section still gives that x4, on any H, is a
character A that extends to H, times y,. Since Zgae is finite, y, can be factored as a unitary
character times a character on GG,. Since the bounds here are only up to absolute value, this
does not matter.

Beginning the computation:

’Hdisc()\O)‘ 1 1 /
—.Is ec, ® *) = -~ ZOO
(G) dim(¢) ™ (e ® %) (0) VOUXRP\X/AG rat) Jxp\x/A6 0 x(=7)

Z Z an|L )|t (wv)%Oy((gozﬁ.’é)M)dz.

MeZeusP ye[M(F))s

Here sean,EP ( [M M
1|QMF|Mcan ( y ( )\] (AF)/AH,V[,Q)
Q6 F| PP (I A o)

Apmqy =T (G)~

(see the top of page 19 in [77]).
This double sum breaks into three pieces: M = G and v € Zg, M = G otherwise, and
M # G. For M = G, ®p(7,£) = tré(vs). For central v, the centralizer is everything so
|t%(7)| = 1. In addition, the measure on the quotient is just counting measure on a point so
M{(, 001\ _ , 00 o0 :
O'y (QDZ‘X%) = I(Z ’7) Flna11y7

PP (G(F)\G(AF)/Ag sat)
_EP< OO/AGOO)

since existence of a discrete series requires that the last group is compact and therefore has
EP-measure 1. This leaves us with

aGy =7(G) =77 (Goo/Acec) ™ =1

1 1 ol tré(z7)
f(O) VOI(%F\%/AG,rat) ‘/-xF\x/AG,rat Z 80 ) d1m§ dz.

v€Zc(F

Next, note that by a Fourier inversion formula

tré(y) —1

dime =¥ (1) = welzoo)og (2207) = w200 e (707 (1)

where we is the central character for {. Therefore, the term inside the sum is simply

we(2s0) f (27)¢" (27) Where ! = e
Combining the we(2o) factor with the y, we get a main term

1 1
F(0)ne(1) volXR\X /A sar) /xF\x/AGm > Flaeme!(z7)dz (4.1)

Y€Za(F)
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The leftovers form an error term

(0) vol(Xp\X/AG rat) Xp\X/AG rat &)

| aen o) e O o (e

‘ dim &
VEIG(F)]®
v¢Za
P, € oo
- Z Z aMN |1 (ZOOV)E(TQO%%QDM) dz (4.2)

MEZLP ye[M(F)]s
e (M(F)]

We compute these separately since they require pretty different ideas to understand.

4.2.3 The Main Term
Central Fourier transforms

This section uses material on Fourier analysis on non-abelian groups. See [22] chapter 7 for a
good reference. That p-adic reductive groups are type I is a classic result from [9].

The main term initially simplifies in terms of the Fourier transform fg of [s_with respect
to (Zg)s. To actually get a reasonable interpretation, we need to relate fg to fs. Therefore,
for this subsection only, redefine G = Gg, Z = (Zg)s and consider arbitrary f € H(Gg).
Note that the following results probably hold for general type I unimodular groups with an
appropriate modification of H(G) to a more complicated function space; the case of p-adic
groups just makes the analytic issues a lot nicer.

There is a map from P : G — Zg taking 7 to its central character w;.

Lemma 4.2.3.1. P is measurable with respect to the usual sigma algebras on G and Z.

Proof. Fix a Hilbert space H; of dimension ¢ for ¢ € N or countable infinity. Let II be the set
of irreducible unitary representations of G on some H;. Consider the functions on II defined
by 7 +— (m(g)v,w) for g € G and v,w in the appropriate Hilbert space. Since G is type
I, the o-algebra on G is the quotient of the smallest one on II that makes these functions
continuous. An analogous statement holds for Z.

__ Then, since central elements act by central characters, the functions defined by z € Z on
G are exactly the pullbacks by P of the analogous functions on Z. O]

Denote the Fourier transform of f|z, by f.

Lemma 4.2.3.2. For any functions ¢ € H(Z) and f € H(G)

/wadupl—/@(soop)fdupl-
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Proof. Using both Fourier inversion theorems, for any z € Z

~

[ e@iw) do = 1) = [ wnlo)f(m) dr

G
For a general ¢

so we are done. O

Intuitively, we can therefore think of f(w) as an average of fover representations with
central character w. To make this notion precise, push f duP! forward to a measure Fon Zg.

Lemma 4.2.3.3. p s absolutely continuous with respect to Haar measure on 2@.

Proof. Let X C Z have measure 0. By o-finiteness, outer regularity, and continuity of f, for

any € > 0, X is contained in a union X, of countably many compact open sets such that
Ix fduP' < e. Then

pi(X) < pp(Xe) = /(§1P_1(X€)fdupl = /lejdupl <e
Since this is true for every € > 0, u7(X) = 0, so we are done. O
Therefore we can define:
Definition. The conditional Plancherel expectation is the Radon-Nikodym derivative

WE ().

EP(flw) ==
d/@lc

This is defined up to a set of measure 0. However, note that the measures Epl(ﬂw) dpP!
and fduP' are the same on Z so:

Corollary 4.2.3.4. Epl(ﬂw) can be taken to be continuous. If so Epl(ﬂw) = f(w).

We borrow the notation of conditional expectation from probability theory to emphasize
first, the same definition in terms of Radon-Nikodym derivatives and second, the analogous
intuition as an average over the measure-zero set of representations with central character w.
Beware that under this analogy, EP! is an unnormalized expectation since EP!(f|w) = f and
the operation f + f multiplies in a factor of [Z] to the dimensions of f.
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Main term computation

Proposition 4.2.3.5. The main term (4.1)) simplifies to

1 1% 1/~
e E EP
X[ vol(Z5 /L) (Pslws).

WSEZS,Lg,x

where 2§ o = Zag . [Acrat, L = Za(F) N U, and Z\S,L,é,x is the set of ws € Zg such that
ws|r = we|r and wglxy = xs. The normalizing factors are:

o = ﬂZéo/M?{i where g is the measure chosen on Z., to compute the other terms.

e X is the finite group X5°° /X% N Zg(F)Zys~ where the closure is taken in Z5>.
For shorthand, we denote this sum E(ps|we, L, xs)-
Proof. Start with (4.1)):

1 1 1
F(0)ne(1) vol (X \X/Ag rat) /3€ e X(2) Y e () dz.

v€Za(F)

Za(F) is cocompact and discrete inside Z' = Z5(A)/Ag rat. Then by Poisson summation,
the inner sum becomes

1 pp—
vol(Z/Za(F)) wezﬁ w(2) fot(w)
w(Za(F)=1

since if . : z + p(zx), then @,(w) = w ! (2)p(w). Integrating over z, all terms with w # x

vanish so (4.1)) becomes

1 1 _
FowiZ Za) 2 TP
w(Zg(F))=1
wlx=x
Here we use that ¢ has Fourier transforms on any w® in the sum and > = p>1 on these

characters. We next break this up into local components to make it more interpretable. First,

P(w) = [e(woo) P (ws) @™ (W)

after choosing Haar measures on the components of Z'. Let w¢ be the central character
associated to . For any test function ¢ compactly supported on Z' = Zg oo/AGrat, DY

lemma {4.2.3.2] applied to G /AG rat,
(W) fre(w) dw = / W (wr) frg(m) dmP =
Z‘l’O (GOO/AG,rat)V

/A [ wwon) Fre(r © w) dr? duP' = vol - (Tae(€)) /A eoew) Flw) deo?
aJar o A
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where A = Agoo/Acra- We want to change the integral to be over ZZO The measure

chosen on on Z’_ induces Plancherel measure on Z’; which restricts to a measure on A lying
co-discretely inside. This corresponds to the quotient measure on A coming from setting
vol(ZL) = 1. Therefore, if we had EP-measure on Z/_, our fixed EP-measure on A would
have matched that on Z’; The choices of measures we made also fix EP-measure on G so

the volume factor becomes 1.

EP

In general, let o = pz_/p7 . Then the identity finally simplifies to

. Y(W)frew) do = p | d(wew)13(w) f(w) dw?

2o

for any test function ). Therefore we get
f%poo(w) = M(Sw‘zgo:wdzéo f(wwg_l)

In our case Ag o C X so for w|x,, = welx,,, this simplifies to

m(w) = /Mswoo=wgf(0)'

Next, let Zys. = U%* N Z!. Since it is an integral over a subgroup

@S,oo(ws,oo) - VOI(ZUS’OO) wS,OoleS,Oo =1 )
0 else

~

In total, cancelling the f(0) factors, the terms that do not vanish are

vol(Z1 Za(F)) 75 s)

for every character w satisfying
L w(Za(F)) =1,
2. wlx = x,
3. Woo = wg,
4. wI®(Zyse) = 1.

We try to characterize such w. Consider w = wowsw>>. Let L = Za(F)N US>, These
conditions require that wsws = 1 on L and that wsxgl =1 on Xg. Given wg satisfying this,
the conditions determine w> = wg'w ! on Zg(F). Since the determined w®> is trivial on
Zo(F) N U it extends to a continuous character on Zg(F) C Z%*. The character w®*>
is also determined on U and X% so in total, the possible choices of w*> are those that
restrict to a particular value on E9® = Zg(F)Zys. X5%.
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Since quotient maps of groups are open, Zys,~ is open mod Zg(F). Therefore, since
75 | Z(F) is compact, Z5%°/E%> is a finite group. Therefore the choices are in bijection
with Z5°°/F9.

By comparing U times a fundamental domain for Z'/Z(F) to a fundamental domain

for Z§ ./ L, we get

VOI(ZUS,OO) . 1
vol(Z1/Za(F)) — vol(Z [/ L)| 252 Za(F) Zisee|

Therefore, pulling out just the non-zero terms in the sum gives

1 u _
_— w
XvizogD) 2 s
ws€Zg
wswg H(L)=1

wsxg (Xs)=1

where
75 | Z(F) Zyrs.00 X5 — —
Xt = | / G_( )Zus | = |Za(F) Zys.o X5 | Z(F) Zyseo| .
|25 ) Za(F) Zys.|
An application of corollary [4.2.3.4/ to Gg/Xs then finishes the argument. m

The formula here is complicated and requires some discussion. First, we determines a
character on L consistent with xg. Therefore, we and xs together determine a character A
on LXg. The term E(pg|we, L, xs) can be thought of as some sort of normalized average of
pg along representations with central character extending A.

Note that if Z is compact and X = Ag o = 1, we can choose a measure so that p(Z,) =1
for all v. This gives u =1 so

1 7 1

=T = = |L| = |Za(F)nU>>
T olZonfD) ~ oDy~ 1A= 126E) N7

and Zg has the counting measure. Therefore, Epl(ﬂw) is the literal integral of f duP over
representations with character w. This is in line with the result in [39)].

This computation can be compared to the very short argument at the beginning of 18,
§2]. Reconciling notation, © in that paper is the same as L here and S there is S U co here.
Our argument is much longer since we are factoring out the infinite part of pg g requiring a
sum over a complicated set of wg instead of just a term for EP!(¢g.|1). In addition, issues
involving X appear.

Main term bound

It will also be useful to have a very rough bound on the magnitude of this main term.
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Proposition 4.2.3.6. Let o5, € H#(Gs,, Ks,, Xs,)=" such that |xs, (x)ps, (x)| < 1 for all z.
Then for some constant C' depending only on G, the main term (4.1) is O¢So(qgllog”) where
the implied constant is independent of pgs, and the L-packet weight &.

Proof. Start with the expression (4.1)):

1 1 1
F0me(1) VIR X At ) /\/ () YD )t (29) e

YE€EZq(F)

Here, it is actually convenient to evaluate the integral, giving the central terms in [3.3.4.5

1 —1
> w(e().
vol(RP\X/Acm)

The sum becomes
> xsi(Mes (Nxs(ese ()05
vE[Za (F)IE

S,00

By construction, ¢f and (¢')>> intersect every X-class in Zg(F') that ¢g, does. Pick a
gp}go with the same property. Finally let U,, C Z,, be such that every point with non-zero
summand can be translated into it. We will choose specific U, later.

We may then instead bound

D Lo (Mxs (Mes, (M)xs (1)@, (1)

where L = Zg(F) N US>, We will do this by first bounding the number of terms in this sum
by the size of L N Uy Supp ¢s.

If K, are the chosen maximal compacts, for each s € S}, p! € (G, Ks)=F so ¢! is
a linear combination of indicator functions 1k, i)k, for a number of possible w that is
polynomial in k. Therefore, for some constant C, g, is supported on a union of O(x¢%1l)
double cosets of Kg,. Since ap}go is compactly supported, this gives that ¢k is supported on a
union of O%O (k€1%11) double cosets of Kg. Note that xC151 < xClogas; — qgllog“.

Let Zx, = Zs N Kg be the maximal compact for abelian Zg. Consider the double coset
D = KsaKg. If DN Zg # 0, without loss of generality let a be in the intersection. Then
D = aKg and DN Zg is a union of cosets of Zk, in Zg. Consider two of these cosets xZk
and yZy,. Then there exists k € Kg such that x = ky = k =2y ' = k € Zs.
Therefore, © € Zk, and the two cosets are equal. In total, D N Zg is either empty or a coset

of Kg. This finally implies that Supp ¢ N Zg is contained in a union of O% (qgllog’i) cosets
0

of ZKS‘

To continue, we need to choose a particular Us,. First, Z factors as Ag oo/Ac rat times
a compact real torus Z.. Let U, be some subset of Ag /Agrat and choose f to be the
pullback of the characteristic function of U/ through Hq_ (we are not technically allowed to
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do this due to the smoothness restriction but we can take a close enough approximation in
L'). Then f has support on U, = Ul X Z..

Let ¢; = |L N Zk,Us| and assume for now that this is finite. If coset C = asZk Us
contains an element of L, without loss of generality let this element be ag. Multiplying
by ag' bijects LN C to LN Zg,Uy so |LNC| = ¢;. Counting all possible cosets, |L N
Supp(fes)| = Oys, (clqgllog“). By a similar argument, [L N Supp(fs).| = Oy, (czqglog”)
where ¢, = |L N Zr,2 Us .

It remains to bound

C. = | Z6(F) N Zgy Zysee 230 Uso| < | Za(F) N Zyy Zes.o0 2 Us|

where K is the maximal compact (since Z> is abelian). This is finite since Zg(F) is
discrete inside Z/Ag rat- Then, Zg(F) N ZxyZgs~ is a co-compact lattice inside Z,. It is
still so when projecting down to Ago/Acg. Choose UL to be a fundamental domain for

~

this lattice. Then ¢, =1 for all z and f(0) = vol(U/,) which depends only on G.
Finally, the terms in the sum all have norm 1 up to the factor xg, gogo that depends on

¢s,- Therefore the sum is OSDSO(qgllOg“) for all z. The factor in front depends only on (G, X)

so the entire term is Oq,s()yg(qgllog“) : O

4.2.4 The Error Term

We need to do a few things to bound the error term. First, the orbital integral bounds

used only apply to elements in J#(H,, Kp,)=" so we need to extend them to spaces like

%<Hv7 KH,m X)SH'

Second, a given group has infinitely many endoscopic groups. Unfortunately, the alternate
proof of orbital integral bounds in 79, §B] gives no control over constants and Sy,q . Therefore,
it is useful to have some result that allows the use of the same constants and a choice of
uniform Sy,q.

Finally, we need to do another due-diligence check that one, all the lemmas used in the
proofs of theorems [4.2.1.1] and [4.2.1.2] still hold over to the non-trivial center case, and two,
all the constants from those lemmas can also be uniformly bounded over all hyperendoscopic
groups that contribute a non-zero term. This in particular uses the correction to |79} cor

6.17].

Uniform bounds for orbital integrals
The model-theoretic method for bounding orbital integrals gives the following

Theorem 4.2.4.1 ([79, thm B.2]). Let = be the root datum for an unramified group over
some non-Archimedean local field (so the Galois action is determined by the Frobenius action).
Choose a norm of the form || - ||z on X.(A). Then there exist Tz, az,bz depending only
on (2, - |lg) such that for all non-Archimedean local fields F (including ones of positive
characteristic) with residue field degree ¢ > T= the following holds:
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Let GF' be the unramified group over F with root datum Z, K a hyperspecial of G¥', A a
mazximal split torus, and w a uniformizer for F. Then for all X € X.(A) with ||\|| < k and
semisimple v € GF(F):

0575 < g =D (7) /2

F
where as before, TV = 1Ak

Note. Elements of 57 (Gg,, Kg,)=F are linear combinations of a number of 1 K@)k that is
bounded by a polynomial in k. Therefore, this can be used to get a bound of shape

105(#s)] = Olllps lootss™ = DS, (1) 7%

d|S

for g, € #(Gs,, Ks,)=" and where we slightly increase az to absorb the k1l factor from

the polynomials.

Note. We actually need a bound on ¢ € J#(Gs,, Ks,, xs,)=". By shifting double cosets by
central elements, we can extend it at the cost of a factor of [xg/'(vs,)|. (Recall that this is
well defined by the note in section 4.2.2]).

By the following lemma, we can choose az, b=, and T" uniformly over all H appearing in
an endoscopic path of G and all places v where H is unramified:

Lemma 4.2.4.2. Let H be a group appearing in a hyperendoscopic path for G, My a Levi
of H, v a place where H is unramified, and = the unramified root data for (Mpy),. Then = is
an element of a finite set depending only on G.

Proof. The (co)root spaces of My are isomorphic to those of G and the (co)roots of My are
a subset of those of G so there are only finitely many possibilities for the root system of
My (without Galois action) since its rank is bounded by a finite number through iteratively
applying lemma [2.2.2.1] Then, there are only finitely many ways for Frobenius to map into
the automorphisms of this root system. O]

This bound is absurdly inefficient—in particular, it involves factorials nested to the degree
of |27 (G)|. In any application, one should use properties of the exact group being studied to
describe the set more explicitly.

Error term bound for weight aspect

We can now show

Proposition 4.2.4.3. Assume that ps, € H#(Gs,, Ks,, xs,)=" with ||xs, 03 |lc < 1. Con-
sider error term for any group H unramified on Sy and appearing in an endoscopic path
of G with induced central character datum (X, x) such that Ag C X and x is unramified on
Sy. It is O%H(q?:v"HJrBW”’Hﬂm(f)_CW“’H) for some constants Ay 1, Bwinr, and Cyyp as long

as Sy contains no fields with residue degree less than some Mg that is uniform over all H.
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Proof. Let Mg be the maximum of the Tz from over all root data = from lemma
4.2.4.2, This is then a due-diligence check that all the steps in |79, thm 9.19] still hold. We
start by evaluating the integral in (4.2)) getting term

vol(XL) Hyonj-1 1t €(Yeo) ur
= g a Stab ———0 Y
VOl(xF\x/AH,rat) el Hyy ’L (’}/)| | x(7)| d1m§ o (¢M)
Y¢Zu

Y Y a0 stbs ) P o))
MeLESP ~e[M(F))s
M#£H
Without loss of generality, expand Sy so that ¢ is the characteristic function of a hyperspecial
K> away from S U oo and that the places less than M are contained in Sy. If a conjugacy
class intersects the support of ¢g,, then we can scale it by an element of Xg so that it
intersects the support of go}gl. The same holds for > which has support K. Choose g,
and ¢g similarly and let their supports after taking constant terms to M be Ug, pr and Us as-
We can then replace terms in the sum through the rule

OO () = 10 AL O ().

Let Usg, pr = Supp #7™ (Mg, )=". Let Yy be the set of semisimple rational conjugacy classes
intersecting the set Ug, pUsy mUs, MK}\qfo. The number of terms in the sum is less than or
equal to |Yay|.

We check that each of factors can be bounded as in the proof of |79, thm 9.19]. The finite
set of places Sy, disjoint from S’ can be defined in the same way. Then:

e [79, cor 6.17] still applies to ay,, (see the missing step lemma [4.2.1.3| for why this
works for general center).

e The bound in |79, lem 6.11] still applies to the ®/(7, &) terms. There is an extra factor
of Xoo' (Vs0)-

e A version of |79, thm A.1] modified to work on functions with central character still
applies to bound O} (¢g,.ar). There is an extra factor of | X501(750)|~

e Proposition [4.2.4.1] still bounds O (s, ). There is an extra factor of |xg'(vs,)|-

e Proposition 4.2.4.1| still gives the same bound for Oé\/[(%,M) for v € Sy, since My <
M¢.There is again an extra factor of |x|.

e |79, lem 2.18] and [79, lem 2.21] still provide a bound on the D* terms since we can
still construct the embedding from [79, prop 8.1].
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e |Yyy| can still be bounded by [79, cor 8.10] (this also applies to groups with general
center).

e |Stabx(vy)|™! < 1.

Since y is trivial at rational elements, all the x, terms cancel. Therefore, the entire term can

similarly be bounded by ) B
wt,H+Bwt, HK —Cwt
O(gg,™ " m(g) ),

folding in the constant that only depends on H and X. O

This very weak uniformity in just Mg is all we will need for the weight aspect.

4.3 Final Computation

4.3.1 Weight Aspect

Assume the previous conditions on (G, X, x) from section . Let m. be a sequence
of discrete series representations of GG, such that their corresponding finite-dimensional
representations & have regular weights m(;) — oo. Let Sy be disjoint from Spa.q: the set
of places with residue degree less than the uniform Mg from proposition [£.2.4.3] Choose
constant Sy, pg, and U 9% to define a sequence of families Fj, for each &.

Theorem 4.3.1.1. There are constants Ag ., and Bg ., such that for any ¢s, and ps, €
H(Gs,, Ksy, X8,)=",

—can (775,00 .
AW Mol 5~ (1)ps(m)

—~ A’ 4 oK _
= E(ps|we, L, xs) +O(qsf“+BW m(&) 1)

(using notation from corollary|4.1.2.1 and theorem . The constants in the error depend
on (G,X,X), ©s,, and U,

P’I"OOf For HSOSHXSl“OO < 17 let

Ok = Om, @ 1yse , @ 05, @ Ps,

as in section Let ¢} = ne, @ p3°. Then ¢, and ¢} are unramified outside of S. Let A
be the set of hyperendoscopic tuples that contribute a non-zero value to the hyperendoscopy
formula as in lemma [3.2.6.1]
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Then using the hyperendoscopy formula:

| Hdisc (fk) |

mfdisc(wk)
_ Maise(&r)] . foy )
= 7(G) dim(gy) (fdcfscw +HZ€;L<G, H) Ll (k — wk)H)> .

We choose arbitrary transfers of ¢. Choose (1 ,.s.)" according to lemma|3.2.5.5since by

G
lemma [3.2.6.1, H stays unramified away from S, co. Let Igs.(€x) be the L-packet containing
7, and let its size be X;. Then

1 X, —1
(oh— o) =0  (Ph— o= D Or — Pr-
X X
AT € gisc (€k)

By proposition [3.2.1.6] we can choose the infinite part transfer to be a linear combination of

EP-functions
> cene

§€8¢, 1
for some constants . 5 )
<(Xp—1)—+2F " <o
el < (X = )5 + o <

Now, checking some conditions:

e All groups in the hyperndoscopic paths are unramified on S; and cuspidal at infinity.
In addition, each X3 O Ay o by lemma [3.2.6.1

e Let vy be the character determined by H as in section The transfer x5, 0%
can be chosen to be in S (Gg,, Ks,, X1.5,)=" and have L>®-norm bounded by some
qfvl””ﬂwl‘ by repeated application of proposition [3.2.5.4. We can apply this due to the
above.

e The ¢ are regular by lemma [3.2.2.1]

e Without loss of generality, enlarge Sy so that U%> = K. Then 171}5,00 is still the
indicator function of an open compact subgroup averaged over Xi’oo.

We can therefore apply the main term bound in proposition |4.2.3.6| and the error term
bound in propostion 4.2.4.3| to each term in the sum and get

I ((or = ou)™) = I (0, — 1)) =

TIH d1m§ At E €)k~+ Byt
3 461 g Ongm B

§€8¢, 1
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for some constant Ug 3, We use here that O(KC|51|)O(qg?+E)”+B) = O(qg‘?+E+6)”+B).
By the computation in 4.2.3.5| and the error term bound [4.2.4.3]

‘Hdisc(ékﬂ G wt .G+ Bwt,gk1 —Cyt.c

where we shorthand £ = E(pg|we, L, xs). Multiplying through,

|Hdisc(£k)| ) _
7(G) dim (&) Laise(ipr)

dim(& At 3+ Epy+€) kit By
B4 % % WeaaierOnglaf
HeALEE B¢y,

Awt. g+ Bw _
+O(q51 ,GR+ t,Gm(fk) th)

where

W= (6,1 S et <

for some constant W independent of &, k, and ¢g,. Finally, by lemma the ratio of
dimensions is O(m(&)™1).

In total, the inner sum has || elements so the entire double sum has finite size
independent of S; and £. Therefore, it can be bounded to

|Hdisc(€k)’ Al +B' Kk -1
SR el(ior) = B+ O(ger P m(6) ),
’T’(G) dlm(fk) d (ka) (QSl (gk) )
where A’

'+, By are anything bigger than the maxima over all groups appearing in A (Note
that Cy¢ can be chosen to be > 1). Finally, plug in corollary 4.1.2.1] m ]

4.4 Corollaries

Theorem can be substituted in for [79]’s 9.19 to most of the same corollaries. We leave
the result on zeros of L-functions for the future because the computations are complicated—
the term BP' gets replaced by something far more complicated in the case with central
character.

Recall the notation from last section and for brevity define

~ _ﬂcan(UxS’oo)|Hdisc(€k>|
1 (Ps) = (G) dim(&,) Z

az, (m)ps(m)
71'€~A7—\’Idisc(G7X)

for any pg on és- Theorem |4.3.1.1] computes this when ¢g € J(Gg,xs) and pg, is

unramified.
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4.4.1 Plancherel Equidistribution

First, we get a version of [79, cor 9.22] using a similar Sauvageot density argument. We thank
the reviewers for pointing out that [60, pg. 111] discusses a possible gap in |71, pg. 181].
Here, Bernstein components are conflated with “l-components” (defined in [60, §23.7]) when
arguing that a certain algebra separates points. Most of this section is dependent on that
gap being fixed.

We phrase things as in [18]. Restrict to the case where all the & have the same central
character we and Sy is trivial. Let © = LXg and let ¢ be the character on © induced by we
and yg. Let @571/, C @5 be all representations with central character extending ). We can
define a measure uil on @Sﬂp by uil(fA) =F (f*|w§, L, xs) where f* is a continuous extension

of fto CAJS.

Here is a summary of the unconditional results for reference:

Corollary 4.4.1.1 (Unconditional Plancherel equidistribution up to central character). In
the notation above:

1. For any f € A (Gs,Xxs), R
lim oz (f) = py, (f)-

k—o0

2. For any Riemann integrable f supported on @gfw,
. N 1/
lim iz, (7) = 1),
— 00

3. For any bounded A C @s,w \ ége,rz?p’

lim pz (14) = 0.

k—o0

Proof. The first statement is a quick consequence of restated in the terminology of
this section.

We then note which parts of the following arguments in gray hold unconditionally. For
the second statement, remark 9.5 in 79| replaces Sauvageot’s result for functions on the
unramified spectrum Agf so (2) of 4.4.1.2/ holds unconditionally for f on A§f¢. This implies
the corresponding piece of 4.4.1.3]

The third statement depends on using [71} cor. 6.2] to show (1) in[4.4.1.2] Corollary 6.2
only depends the interaction between Bernstein components and [-components through the
use of Sauvageot’s lemma 5.1 and corollary 3.3. The issue [60] raises is about distinguishing
representations in an [-component that might have the same infinitesimal character. However,
the application of 3.3 in 5.1 only cares about representations up to infinitesimal character. [J
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Note that there is no uniformity in this result—the rate of convergence depends heavily
on the exact f.

The following is all conditional on : When ) is trivial, /@1 = popl from up to
some constant. The lemma in the middle of the proof of , thm 2.1] extends to our case of
non-trivial ¢ and © a general subgroup of Z..

Lemma 4.4.1.2. Let € > 0:

1. For any bounded A C C/J\Sw \ @gef;p, there exists h € #(Gs,xs) such that h > 0 on
Gswp, h>10n A, and ,LLZI(B) <e.

2. For any Riemann integrable function ]? on @f;qu} there exist hy, hy € F(Gg, xs) such

that |]?_E1| < /EQ on ésﬂp and Mil(EQ) < €.

Proof. We try to mimic the argument in thm 2.1]. Let ©; = ONZg,. (Fs) and © = ©/0;.
Then Oy is finite. In addition, if we denote by X (-) taking complex-valued characters, the

map X (Gs) = X(Zas/Za,..(Fs)) — X(O) is surjective. Choose a set-theoretic section s of
this map.

We can ignore normalization constants by, without loss of generality, changing €. Then
this result for © trivial follows from the main result of . If © is trivial, then the various
@Sﬂp are positive-measure clopen subsets of @5 so we can use the h; for either A or the

extension of f by 0 on @S. R R
For the general case, given f on Gg,, define F' on Gsyw‘@f by

F(r) = f(r ® s(w; ' ¥))1e(wy ),
where €' C X(0©) is compact. Choose H; and H satisfying |F — H,| < Hs on @Swef and
,uzl‘@f (ﬁg) < ¢€/(2vol(C)). For any finite subset Ty C C, the averages

1
hz‘ Ep— s(A Hz
|To] gT: *)
0
satisfy |f — h;| < ha (each individual term in the sum does), so we simply need to find a Ty

that allows us to prove uil(ﬁg) <e.
Up to some constants:

i) = [ D(ha(e) s = o 3 ()

by variations of the arguments in section [4.2.3] Taking Riemann sums, we can find finite
Ty C C such that such that this sum is within €/2 of

vol(C) | Hy(x) dx = vol(C) / Hy(r) dpiby ().
WC P~ (yC) !
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where the equality is again by results in section |- Slnce Hg is positive, this is further
bounded by \ol(C),uU‘) (H) < ¢/2, finally showmg that [, (hz) <e.

The argument for subsets A is the same averaging tllgk—ln place of the function F', we
useset A’ ={r@\:mre A, e CCX(O)}

Finally, this only produces functions on J(Gg, ), so we simply average against xs to get
functions in .7 (Gg, xs) that have all the same trace properties on Ggy. O

The same “3¢”-argument as [[79] cor 9.22] then gives:

Corollary 4.4.1.3 (Plancherel equidistribution up to central character). Recall the conditions
and notation from the above discussion. Then

1. For any bounded A C qu \Gtg(lf,lp/-
lim pr (14) =0.

Ate Inp

2. For any Riemann integrable f on Gg

-~

lim px, (f)
k—o00

1 (f):

Beware that part (1) does not give a Ramanujan conjecture at S on average; it cannot
count that the total number of 7 in F with non-tempered 75 is O(m(&)) ™! since A needs to
be bounded. It is nevertheless somewhat close.

4.4.2 Sato-Tate Equidistribution

For this section we need to slightly modify our notation. Allow S; to be infinite and define
modified measure

c oy AU M ()|
W Be) = T dim(y) 2

ar, (7)Psy (s)Po(mo)
TEARqisc (G,X)

for any v € S;. Then ,u,;vv(@,) can still be picked out by a test function ¢ of the form we
have been considering by setting ¢, = 1g,, for all w € S; \ v.

Sato-Tate measures

We recall the definition of the Sato-Tate measure from [79, §3, §5]. Recall the Satake
isomorphism (G, K,) — C[X.(A)]*F in the notation of section and how it identifies
Gur M with Qp \A
We can find a maximal compact K of G invariant under Frob,. Then since G, is
unramiﬁed QF \121\ can be identiﬁed with the G classes in K x Frob, C G and also
= Qp\T./(Frob, — id)T, (see . lem 3.2]).
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In general, let G split over F; and let I'y = Gal(F;/F). Given © € T'y, define

T,0 = QO\T./(6 —id)T,.

Given 7 € I'y, ¢t — 7t canonically identifies T, ¢ with T} ;g,-1. All these identifications are
consistent with each other so 7. ¢ depends only on the I'i-conjugacy class of ©. Note then
that ﬁ,probu = Tc,v since GG, is quasisplit.

Choose the Haar measure on K with total volume 1. This induces a quotient measure on
the set of conjugacy classes in K x © and therefore on TC o. Call this 3T, Finally, let Vp(0)
be the set of places v such that F} is unramified at v and Frob, is in the conjugacy class of
©. For such a v, we get a measure P from the identification 7, g with G‘” temp - Normalize
this to also have total volume 1.

Proposition 4.4.2.1 (|79, prop 5.3]). For any © € [['1], let v — oo in Vp(O). Then there
is weak convergence pPH — pST.

Proof. by the explicit formulas [79, prop 3.3] and |79, lem 5.2] ]

Central character issues

Recall all the notation from proposition Our result is in terms of E(P|we, L, xs)
instead of uP so we need to define an alternate Sato-Tate measure in terms of this. First,
we need to understand EPM better.

There is a central character map T, ¢ — Z¢.. This lets us define EST©(3|w) for any 3

on T, similar to EPY™(p|w) from section @ Now Langlands for tori gives that Zg, is
the set of L-parameters ¢ : Wp' — (ZC;)ur If Frob, and Frob,, are conjugate in 'y, we can
identify the set of these parameters and therefore ZG and ZG For v € Vp(0), Call this
common set Z@ Note that these identifications commute with the identifications of ch and
the map taking central characters.

Lemma 4.4.2.2. Fix a common measure on 2@. Choose pg on fc,@. Then EPM™ (plw) —
ESTO(plw) pointwise for w € Zg.

Proof. The previous result gives weak convergence EP (Folw) — ESTO(Pg|w) in L*(Ze).
By the formula |79, prop 3.3], the EP'W(J|w) are equicontinuous so this implies pointwise
convergence. O

To understand the more complicated E(p|we, L, xs), we now have to parametrize Zgg
in terms of local components. Assume wg = wg,ws, € Zsg¢,,: .. wswe = 1 on L and
ws|xs = Xs. Assume also that wg, is unramified. Let Ly = L N Kg,. It is a cocompact lattice
in Zs,. Then we always have that ws,we =1 on Lo and that ws,|xs, = Xs,-

Given such wg,, it forces wg, = wgolwg Lon L. The determined wg, is trivial on L N Kg,
and therefore extends to a continuous character on L C Zg,. Therefore, the possible choices
for wg, are those that restrict to w;olwg L on L, restrict to xs, on Xg,, and are unramified.
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Let Es, be the group LKgs,Xs,. Since Zs, /Es, is finite, there are finitely many choices
for wg, and we can factor

o B @slws) = D EM@alws) D EM(@s|ws,).

wsEES "‘)506230 wseig;
wswe (L)=1 wsywe (Lo)=1 ws, wsywe (L)=1
wslzs=xs wsg x5, =Xs0 wsy |xg, =Xs,

To compute ,uiv, we consider g, =1 Kgp\nPv SO

R R 1(Zs, N Ks,) oy

EP! — EPY(3, |w, (Z, N K,) = 2225 VP (G, |w,).

(skas) = @uda) T w20 ) = ST B @)
weS1\v

Let the set of summands for the second sum be Z\v,wso,xv - Z, and let wg € Z\vvwso,xu- The
possible w,, components are those satisfying two conditions: w,wg,we extends continuously to
LCZ S\vs and Wylx, = Xv- The first condition is equivalent to w, being the F,-component of
a character w on Zg(A)/Zg(F) trivial on U%* that also has Fg, o-component wg,we.

Next, by global Langlands for tori, this is equivalent to its parameter ¢, : W, = (Za)p,
being a restriction of a global parameter v, : Wr — Zq satisfying certain conditions.

However, if Frob,, is conjugate to Frob,, then v, |w,, is the transport of 1w, through
the identification before. In particular, if we identify all the Z, for v € Vp(©) N Sy, Zo,wsyxo
depends on v only through ©. Call the common value ZQ,WSO’XU C 2@.

In total, if we set g, = Lk, P for some v € Vp(©) N 5y,

~ 1 m vol(Zs, N Kg,)
E(@slwe, L xs) = 57 AR
(Pslwe, L, xs) X[ vol(Z5 /L) vol(Z, N K,)
% E Epl(Q/D\SO‘WS()) E Epl(@v‘a]v).
wSOEZSO WUEEG,WSO,XU

W We (Lo)=1
wsglx g, =XSg

This allows us to define an Egr o(Py|we, L, x5, Ps,) analogously:
1 i vol(Zs, N Kg,)
X[ vol(Z4 /L) vol(Z, N K,)
X Z Epl((ﬁso‘wso) Z EST’@(@A(’UU)‘

wSO EZSO w'UGZ@#&’So sXv
WsoWe (Lo)=1
wsglx g, =XSo

EST,@(@S|<’U57 L7 XS, @SO)

Then we get:
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Proposition 4. 4.2.3. Choose a sequence v — 00 in Vr(0) NSy such that the characters x,
all correspond in %@ Choose Pg on TQ@ Then

E(lel\v@®$50|w§7 Lv XS, ) — EST,@(@@“"}E’ La XS, @So)-

Proof. Use the above formula for Egr and E together with the previous lemma. We can
compute both sides by fixing a common measure on Zg which makes vol(Z, N K,) constant
onv € Vp(0). O

This is a replacement for [79, prop 5.3] in our case.

Final Statment

Arguing as in 79, thm 9.26], we get the full corollary. Note that remark 9.5 in [79] removes
the dependence on Sauvageot’s result.

Corollary 4.4.2.4 (Sato-Tate equidistribution up to central Character) Choose a sequence
v; — 00 in Vp(0)N 51 such that the characters x,, all correspond in Xo. Choose a Riemann
integrable function fe on Tc@ Then

lim Ml}'—kﬂj(fe) = EST,@(f@le; La XS, @S{))

(4,k)—o00

where the limit is over any sequence of pairs (j, k) such that qf)\;m(fk)_l — 0 for all integers
N.

This can be thought of as sort of a “dlagonal” equidistribution as opposed to the “vertical”
Plancherel equidistribution involving limy_., p Forw; ( f@) or the conjectural “pure horizontal”

Sato-Tate equidistribution involving lim;_, I Few; ( f@)
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Chapter 5

Application to Quaternionic Forms on

Go

We use some extra notation in this chapter:

e (5, is as the split, simple, and simply-connected exceptional group. It can be defined
over Z.

e (5 is the sole inner form of G over Q. It is compact at infinity, equal to split G, at all
finite places, and can also be defined over Z.

e H will generally refer to the specific endoscopic group SLs x SLy/ 41 (split SO4) of Gs.
® a;, )i, €,0;, 5o, are various pieces of the root data for Gy defined in section [5.1.1]

Finally, as shorthand, any variable requiring a general reductive group subscript will be for
(G5 if the group isn’t specified.

5.1 (G5 and Quaternionic Discrete Series

5.1.1 Root System of G5
Roots

We use notation from [51] to specify the root system of Go. Let K be the maximal compact
SU(2) x SU(2)/ £ 1 of G3(R). Choose a dominant chamber for K and the choice of simple
roots of G5 consistent with this. Let 8 be the highest root with respect to this and note that
it is long .

We now give explicit coordinates. As a mnemonic convention, roots indexed 1 will be
short and roots indexed 2 will be long. Figure displays all the roots and shades our choices
of dominant Weyl chambers with respect to both G5 and K. Compact roots at infinity are in
red and non-compact in blue.
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Figure 5.1: Character lattice, roots, and choices of dominant chamber for G,
A

!
|
|
|
|
|
|
!
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If the roots of the short and long SU, are 2¢; and 2¢5 respectively, then the simple roots
of G4 are:
(short) ay = —e€1 + €, (long) as = 3€; — €.

The other positive roots are:

(short) 2¢; = ayg + o, €1 + €3 = 201 + g,
(long) 2es = 3ay + o, 3e; + €9 = 3y + 2a9.

The fundamental weights are:
)\1 = 2@1 + g, )\2 = 3062 + 20&2.

Of course 8 = As.
The Weyl group is generated by simple reflections:

s 261 _ €1 + €2 s 261 _ —€1] + €9
o 262 361 — €9 ’ a2 262 361 + €9 '

Pr = €1 + € = 201 + (g,
PG = 461 + 262 = 5@1 + 30(2.

Finally:
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Coroots

Coroots will follow the opposite mnemonic: coroots indexed 1 are long and coroots indexed 2
are short.
Let T be a split maximal torus. Since G5 has trivial center, X*(T) is the root lattice:

X*(T) ={ae, + bez : a,b € Z,a+ b € 2Z}.
Let (01, d2) be the dual basis to (2€1,2€5): i.e. (;,¢;) = 1/21,=;. Then:

Xi(T) ={ady + b2 :a,b € Z,a+b e 2Z}.
Since €; and ey are perpendicular:

(261)\/ = 2(51,
(262)\/ = 2(52

More generally, the Weyl action gives:

(Ck}/, 261) = _17 (ai/>262> = 37
(a%/’QEl) =1, (a¥a262) = -1,

so we get simple coroots:

O[Y = —51 + 352,

Oé;/ :(51—52.

This reproduces that the coroot lattice is X,(T'), implying that Go is simply connected. For
completeness:

A = 01 + 302,
)\;/ == (51 + 52.

5.1.2 Quaternionic Discrete Series
Description

Recall the notation from to discuss discrete series. In particular, recall the two
parametrizations of discrete series on Go(R):

G2 _ _G»
7T)\,w - Ww()\+pg2)

for A a dominant (but possibly irregular) weight of G5 and w a Weyl-element that takes the
(2, dominant chamber to something (2x-dominant—in other words, 1, s,,, or s,,. Note that
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Wfi} has infinitesimal character A + pg,. Recall that w(X + pg,) is called the Harish-Chandra
parameter of this discrete series.
The quaternionic discrete series of weight k for £ > 2 lies in the L-packet

Hdisc((k - 2)5)

The members of this L-packet have Harish-Chandra parameters:

(k=2)B+pa, s ((E=2)B4pa),  Sax((k—2)B+ pa).

As in [23], the quaternionic member is the one with minimal K-type Ag = 2ke;. We know
that the discrete series m(w, A) has minimal K-type

Ap = w(A+2pc) — 2pk

by [41, Thm. 9.20]. Therefore the weight-k quaternionic discrete series 7y is specifically
T(Say, (kK — 2)B)—computing, s, fixes px so

Sas (A4 2pa) — 20K = Say (A + 206 — 2pK) = Say(A + 28) = S4,(kB) = 2kes.

This is the discrete series with Harish-Chandra parameter
>\k,H = Sa2<<k' — 2)6 + p(;).

Their pseudocoefficients

Let ¢ be a pseudocoefficient for m,. A priori, 7 is not a regular discrete series, so the trace
against ¢, may be non-zero for certain non-tempered representations in addition to just my.
This could make it not work as a test function to pick out just automorphic representations
m with 7o, = 7. However, this is miraculously not a problem for specifically quaternionic
discrete series.

Proposition 5.1.2.1. Let k > 2. Then for any unitary representation p of Go(R):

L p=m

trp(gok) - {0 else

Proof. By the same argument of Vogan described in lemma [3.3.3.1] the trace is 0 unless
tr,(Nk—2)8) # 0 for n_2)s the Euler-Poincaré function. This is only possible if p appears in
an appropriate (g, k)-cohomology. By the main result of [83], the only representations that
do so are the packet IIy((k — 2)3) and something denoted A4((k — 2)3) for q corresponding
to the Levi subgroup with roots +«; and Weyl group Qp = {sq,,1}. This is because k > 2
implies that this is the only Levi such that (k — 2)/ is fixed by Q. See also [51][lem. 2.2].
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If p € II\((k — 2)B) and tr,(¢r) = 0, then p = m;, by definition. It therefore suffices to
exclude the case of Aq((k —2)3). We use that tru,(x—2))(®x) is the coefficient of 7 in the
sum expansion

A((k=2)8) = > m(p)f
p’ basic
in the Grothendieck group and will show that this coefficient is 0.

By [59][thm. 6.4.4], A, is a Langlands quotient of a discrete series on a GLy Levi. Let
the corresponding parabolic induction be I. Since GL, is a maximal proper Levi and the
infinitesimal character is regular, the other terms in the expansion need to be discrete series.
There have to be two of these since tra, (x—2)8)(Nx-2)8) = —2 (see [51][lem. 2.2] again). Call
these p; and py to make the expansion into basics

Aq<<k - 2)5) =1—p; — pa.

The computation of the A-packet in [59][thm. 6.4.4] shows that the character
Ag((k=2)B) —m=1—p1— po —

is stable. By [75][lem. 5.2], I is stable so p; + ps + 7 also has to be. Then, [75][lem.
5.1] further implies that p; + py + 7 is fully Weyl-invariant on an elliptic maximal torus.
Examining Harish-Chandra’s character formula for discrete series, this is only possible if the
three discrete series are exactly the three members Igis.((k — 2)/3). In particular, m # p1, po
so we are done. O

Corollary 5.1.2.2. Let f* be a compactly supported locally constant function on Go(A>)
and k > 2. Then

ISpeC(QOk X foo) = Z mdiSC(W)57roo:7rk AR (foo)
71—e-/LlIIQdisc(C;2)
= ) Meusp(T) O, oo (f).
TEAR cusp (G2)

Proof. The statement for discrete representations is the same argument as [3.3.3.3| after we
know proposition [5.1.2.1] Since 7, = 7 is necessarily discrete series for the non-zero terms,
the main result of [86] shows that mcus,(7) = Maisc (7). O

We therefore have
‘Qku)‘ = ISPec(SDk & 1K) (5.1)

if we choose Gross’ canonical measure from [28] at finite places. Note again that this heavily
depends on the miracle of proposition [5.1.2.1] and a similar result does not hold either for the
other members of Il ((k — 2)3) or for the Euler-Poincaré function.
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5.2 Geometric Side/Application of Endoscopy

5.2.1 Notation
We will need to recall some extra notation related to general reductive group H over F"
o 9, is the Weyl group generated by compact roots at infinity.

e d(H,) is the size of the discrete series L-packets of H,. Alternatively, d(H) =
[2u /19|

o k(H,) is the size of the group & = ker(H'(R, T.;) — H'(R,G,.)) that appears in the
theory of endoscopy for G.

o ¢(Hy) =dim(Hw/KyZp,, ) where K, is a maximal compact subgroup of Ho..
e H 1is the quasisplit inner form of H.
e H_ is the compact form. If H., has an elliptic maximal torus, this is inner.

e c(H,) is the Kottwitz sign (—1)7(H)=a(Heo)

e [H:M]=[H:M]p=dim(Ay/Ag), where A, is the maximal F-split torus in the
center of x. We call this the index of M in H.

e 7(H) is the Tamagawa number of H.
o Moty is the Gross motive for H.
e L(Moty) is the value of the corresponding L-function at 0 (or residue of the pole).

o H(y) =1l(y) for v € H(F) is the number of connected components of H., that have
an F-point.

5.2.2 The Hyperendoscopy Formula
Preliminaries

We will use the hyperendoscopy formula of [17] to compute Igeom(pr ® f*°). A priori, we
need to apply the general case of Theorem since G5 has endoscopy without simply
connected derived subgroup.

Let 1. be the Euler-Poincaré function for g ((k — 2)3). Let HEn(G2) be the set of
non-trivial hyperendoscopic paths for Go. Then, in the notation of section

IG,(oe® ) = 1S @ f2) + Y o(GH)IE L (e — o) ® f2)),
HeHE(G2)

where the H are choices of z-pair paths when they are needed.
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Telescoping

Next, an unpublished work of Kottwitz summarized in [58, §5.4] and proved by other methods
in [63] stabilizes Jgeom (¢ ® f*°) when ¢ is stable-cuspidal (as all terms on the right side above
can be taken to be).

Theorem 5.2.2.1. Let ¢ be stable cuspidal on Go2(R) and > a test function on G(A>).
Then _ _
Lznlp@ )= Y UG H)Sgon((p® f)1),
HeEen(G2)

where Eq(Gy) is the set of elliptic endoscopic groups for Gy and the H are z-extensions if

necessary. The transfers (o @ f>°)1 depend on choices of measures for G and H.
The Sgeom terms are defined by their values on Euler-Poincaré functions:

an 1€
Séim(%\@foo): Z (_1)[H.M]MT(M)
MeLewsp(H) Q2,7
L e(Myy) k(M)

X Z |LM(7)|_ = - @AH/[(% )\)SO:O((]COO)M)’
YE[M(Q)]st,eno0 VOI(M'WOO/AMV,OO) k(Hoo)

choosing Tamagawa globally measure on all centralizers. The volume on M%oo is transferred
from that on M, o in the standard way for inner forms so that the entire term doesn’t depend
on a choice of measure at infinity.

There’s an alternating sign in the hyperendoscopy formula: if H is a hyperendoscopic
path, then —(G,H)u(H, H) = (G, (H, H)) for H any endoscopic group of H. Here, (H, H)
represents the concatenation and H is overloaded to also refer to the last group in H.

In particular, substituting in the stabilization telescopes the hyperendoscopy formula.

Final Geometric Formulas and Method of Computation

The final telescoped formula is:

I$ (k@ ) =SS @ )+ Y WG H)SE (@ )T, (5.2)

Hegell(GQ)
H#Go
We recall: @
_ 17
[’(GvH)_ |A(H7H7877])| T(H)7

where A(H,H, s,n) is the image in Out(ﬁ ) of the automorphisms of the endoscopic quadruple.
There are two possible methods to proceed here. We will be using method 2 and mention
method 1 in case it is useful for anyone attempting a similar computation on another group.
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Method 1:

We can try calculate the Sgeom terms directly from their formula. We will need to choose
Euler-Poincaré measure at M., times canonical measure for the orbital integrals (canonical
measure is the same for all inner forms). This adds an extra factor of

L(MOt Mﬁ{)

e (M, o) 2rnk(Mr )

by [79, lem. 6.2]. Since d(Hy) =1 and volgp(Hw/An, ) = 1 for H compact, this expands
the terms in (5.2)) as:

Sgeom(h @ ) = Z(H) ((—1)[H:M1||%‘;—:§’|) (ﬂ]\@%)

MeLeup

d(M, o)

<y 2RIl (9, 4) (L(Motar, )| (9)] T SOF((f)ar))

YE[M(Q)]st,e1100

where the stable orbital integrals are now computed using canonical measure on centralizers.

The hardest terms here are the stable orbital integrals, the L-values, and the characters
®. Note that since we are using f> = 1xe, the constant terms (f*),, are also indicator
functions of hyperspecials.

The L-values may be computed as products of values of Artin L-functions by explicitly
describing the motives from [28]. The terms ® can be reduced to linear combinations traces
of v against finite dimensional representations of G5 by the algorithm on [4, pg. 273]. These
can of be computed by the Weyl character formula and it’s extension to irregular elements
stated in, for example, |13| prop. 2.3].

The stable orbital integrals unfortunately cause far more difficulty. They are computed
and listed in a table on |30, pg. 159]. First, they are interpreted as orbital integrals on
compact-at-infinity G§. The spectral side of the trace formula on G¢ is then possible to
compute, allowing the orbital integrals to be solved for once the coefficients in terms of
L-values are known.

Even using the previous work of [30], this method is horrendously complicated.

Method 2:

Fortunately, there is a much simpler way to compute our desired count. Recalling that
1% is known from [13], we can compare the expansions for Gy and G§. The term for
S&2 a appears in the expansion for ¢ and can therefore be solved for and substituted in
the expansion for 12, In total we get a formula

IG = 1% 4 corrections,

where the corrections are in terms of S¥ for smaller endoscopic H.

In the next section we will see that there aren’t actually that many H appearing. Finally,
section [5.5| will show that the terms for these H are easily computed through another trick.
Method 2 also gives in section a Jacquet-Langlands-style result comparing quaternionic
representations on GGy to representations on G§.
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5.3 Groups Contributing and Related Constants

5.3.1 Elliptic Endoscopy of G5

The elliptic endoscopic groups of Gy are Gy, PGL3, SOy, and potentially some tori. This is
stated in a thesis [1] but not fully explained, so we work out the computation here for reader
convenience. We again use our previous notational conventions for endoscopy as in section
m ~

By inspecting the root data, the conjugacy classes of centralizers H of a semisimple
element in Gy >~ G5(C) are:

G, itself,

SL3 from the long roots,

SLy x SLo/{%1} from a short and long root that are orthogonal,
e GL, from a short root,

e GL, from a long root,

e G2.

We compute the possible endoscopic pairs (s, p) for each possibility. Recall that, since Go is
split, p is a map from a Galois group to Out(ﬁ) N Qg,.

Since G has trivial center, the cohomology condition on s is always satisfied so we don’t
bother checking it. Trivial center further gives that the isomorphism class of the pair cannot
change with s. Therefore the only thing that depends on s is whether we can exhibit one
that is Galois invariant when p is non-trivial.

For each pair we will also compute the automorphism group A that comes up in the
formula for «(G, H).

Gy:

Then p is trivial. This gives the trivial endoscopic group Gs. Since only the trivial element
of Out(H) can be realized in Qg,, A = 1.

SLs:

There are two possibilities for p: trivial or sending a quadratic Galois element to the
outer automorphism of SLz: (61, d2) — (1, —d2) (fixing a long root). We are forced to choose
s so that without loss of generality (01 + d2)(s) = (61 — d2)(s) = (3 (two short roots of G, at
120°). This is preserved by only the trivial p.

This gives endoscopic group PGL3. Here, Out(?[ ) is realized in Qg, and commutes with
pso |A] = 2.

SLy x SLy/{%1}:

No outer automorphisms can be realized through conjugation in @2 so p is trivial. This

gives endoscopic group SLy x SLy/{#£1}. Since Out(H) N Qg, is trivial, A = 1.
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Short GLs:

Without loss of generality assume the short root is 2d;. To be elliptic p needs to send a
quadratic Galois element to the outer automorphism (01, d2) — (=61, d2) of GLy. To have the
right centralizer, 201 (s) = « for some o # 1 and 205(s) = 1. However, then (0;+02)(s) = £/«
which can’t be equal to it’s inverse. Therefore s can’t invariant under p. In total, there are
no such elliptic endoscopic groups.

Long GLs:
This is the same as the previous case and gives no elliptic endoscopy.
G2:
~ Here p send Galois elements to any element of Qg,. Elliptic means the action can have
no invariants except zero in X*(7'). To find which p have an invariant, regular s, we look
through the possible images of Galois: conjugacy classes of subgroups of Djs that don’t fix

any line.
e (5. generated by a — —a: Then an invariant s needs to evaluate on all roots to —1

which is impossible

e (5: Then three short roots in an orbit need to evaluate to the same value on s. The other
three short roots evaluate to the square, so we need a;(s)™ = a1(s)? = ay(s) = G,
which means that long roots evaluate to 1, which is impossible.

e D,: impossible since Cj is.

e Dgy: impossible since Cj is

e (4. impossible since Cy, C3 are.
e Diy: impossible since Cy, C5 are.

Therefore none are elliptic endoscopic groups.

If a group contributes to the stabilization applied to our test function, then by the
fundamental lemma, it needs to be unramified away from infinity. By formulas for transfers
of pseudocoefficients, it needs to be elliptic at infinity. The only groups contributing are

therefore the G5 and the SLy x SLy/{£1}.

5.3.2 Endoscopic Constants and Normalizations
The ¢

Let H = SLy x SLy/ £ 1 and let G§ be the unique non-split inner form of G5 over Q which is
compact at infinity. Then,
(@,

c _ _ -1 1
L( 27H>_[’<G27H)_|A(H7H78777)‘ T(H) 2’

L( ;, GQ) = 1,
by Kottwitz’s formula for Tamagawa numbers (note that ker’(Q, Zy) = ker'(Q, {£1}) = 1).
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The transfer factors

We also need to fix transfer factors at all places to compute transfers. The computations
in [80] demonstrate how to do so explicitly. First, they can be chosen consistently by fixing
a global Whittaker datum. The corresponding local Whittaker datum determine the local
transfer factors as in [46]. Since G is defined over Z, we can choose a global datum that is
unramified /admissible at all finite places with respect to the G2(Z,) as in [33, §7], so we can
use the fundamental lemma at all finite places.

All we will need to know about the Archimedean Whittaker datum for G5 is which element
of Haise((k — 2)B) it makes Whittaker-generic. This will have to be m(,_2)31 since our choice
of dominant Weyl chamber has all simple roots non-compact and is the only possible such
choice up to Qg (see the discussion before lemma 4.2.1 in [80]. In fact, there is only one
possible conjugacy class of Whittaker datum at infinity by considerations explained there).

The stabilizations

We fix canonical measure at finite places so that the fundamental lemma directly gives

1%80 = 1ke. Recall that EP-functions and pseudocoefficients are defined depending on
2

measure so we don’t need to fix measure at infinity.

Then, (5.2) gives
1% (Prcy (saq. (-208) ® 1xgs)
1
= S0 ® L) + 55" (P, (se -28) " © Licp)- (5:3)

A simple case of the discrete transfer formula in [48] §1V.3] computes that (n(Gkg_Q) 6)G2 = 77(61?—2) 5
(note that Qg(G$)\Qc(GS) is trivial so & is t0o), so

c G¢< 1 G¢
1 (o) ® 1Kg°5) = SGQ(U(GxgiQ)g ® kg )+ §SH((77(;€2,2)5)H ® Lgeee ).

Since type A; X A; has no non-trivial centralizer of full semisimple rank, all elliptic endoscopy
of SLy x SLy/ £ 1 is non-split. Therefore, it is ramified at some prime, so the transfers of
1gz vanish, implying that, SH = I on our test functions. Substituting one stabilization
into another finally gives:

c G¢
I (Prg sy (k-20) @ Li,) = 19 (052505 ® Liczs )

1 Ge 1
= 31 (152))" @ L) + 517 (P, 5y (6-209) " @ L) (5.4)

under canonical measure at finite places.
This is our realization of method 2. There are three steps remaining to get counts:

1. Compute the transfers of EP-functions to H.
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2. Write the resulting 17 (n) ® 1g,,) terms in terms of counts of level-1, classical modular
forms.

3. Look up values for the G§-term from [13].

5.4 Real Endoscopic Transfers

Let H again be the one endoscopic group we care about: SLs x SLy/{£1}. We want to
compute (‘PwGZ(SQQ,(ku)ﬁ))H and (77((1;32)5)11' By our choice of transfer factors, we may do so
by the formulas in [48] §IV.3].

As a choice for computation that doesn’t affect the final result, we realize the roots of
H as 2¢; and 2¢;. Orient X*(7T') by setting the 1st quadrant in €; and €3 to be dominant.
The Weyl elements (G, H) that send the G-dominant chamber to an H-dominant one are

{17 Sa17 SQQ}'

5.4.1 Root Combinatorics

Since pg — pu € X*(T), |48, §IV.3] gives the transfer of the pseudocoefficient of the quater-
nionic discrete series to H:

H
(Prrcy (s (b-2)8)) " =
R 7

-1\, H -1\, H H
Say )n(k72),8+pG7pH — K Sa;5q, )nsal((ka),BerG)pr - 778042((]{?72)ﬁ+pg)7p1{ (55)

for some signs k.
We compute that pg = €; + €5. Then

(k—=2)8+pc—pa = (k—2)(3e1 +€2) + (31 +€) =3(k— 1)eg + (K — 1)eo.
In addition,

SalpG - 561 + €2, Salﬁ - ﬁ?
Sas PG = €1 + 3€, S0, = 2€9,
SO
Sy (K =2)B+ pg) — pu = (k —2)(3e1 + €2) + (4€1) = (3k — 2)e; + (k — 2)eg

and
Sax (k= 2)B+ pa) — pu = (k — 2)(2e2) + (2€2) = 2(k — 1)eo.
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5.4.2 Endoscopic Characters

It remains to compute the s terms in 5.5, These signs depend in a very complicated way on
the realization of H and the exact transfer factors chosen. They can be pinned down most
easily by looking at endoscopic character identities.

Let 1y be a (discrete in our case) L-parameter for H(R) and ¢ the composition with
LH « IG,y. The we have an identity of traces over L-packets:

SOy, (fM) = Y (o, mOx(f),

7T€H¢G

where fH is a transfer of f, ©, is the Harish-Chandra character, S©,,, is the stable character
corresponding to the L-packet, II,, is the L-packet corresponding to the L-parameter, and
(pm,m) is a particular pairing depending on transfer factors. See [36] §1] for an exposition of
how this works in general.

If 7 on GG, is discrete series, Labesse’s formula tells us:

(9" => e\ mnd

for some signs € and weights . Let ¢, be the L-parameter corresponding to weight-\ discrete
series on H. Plugging this formula into the character identity for v, gives that 1, is required
to push forward to the parameter for 7 and that e(\, 7) = (¥, 7).

The only fact we need now is that e(\,7) = (¢, 7) = 1 whenever 7 is the Whittaker-
generic member of its L-packet. Therefore, in Labesse’s formula for the generic member

ﬂ-l’(k—2)ﬁ )

(P, (1,6-2)8) " = Ma—2)4p6—pm + " (Sa) 580 (S0 )M, (k-2)5-06)— o
+ k" (Sa,) Sgn(sag)Ui2((k—2)ﬁ+pc)—pH’

all the coefficients need to be 1. The allows to solve
’{H(Sm) = '%H(Saz) = -1

for our choice of transfer factors. Right-Q)g-invariance of s then also gives that

K (S0, 50,) = —1.

5.4.3 Final Formulas for Transfers

Therefore, our final transfer is
)H

(%Gz(sag,(k—?)ﬁ) = —ﬁzﬁkq)eﬁ(kq)@ + ngk72)61+(k72)62 - 775{#1)62- (5.6)

Transfers from G§ are easier. Here, Qg(G$5)\Qc(G$) is trivial so the average value of & is 1.
Averaging Labesse’s formula as in corollary [3.2.1.5| therefore gives:

(n(k;_Q)ﬁ = né{kfl)él‘i’(k*l)eg - ngk72)61+(k‘*2)62 - 775{]@‘71)62‘ (57)
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5.5 The H =Sy x SLy/ + 1 term

Here we compute the terms 7 (m\ ® 1k,,) for Euler-Poincaré functions 7. Any A = ae; + beg
is a weight of H if a 4+ b is even. Note first that

Mol ©1i,) = D e ) e (L) = Y tre (),
TEARgisc(H) TEARgisc (H)

T unram.

by Arthur’s simple trace formula and using our choice of canonical measure at finite places.
To move forward, we need to understand automorphic reps on H by relating them to
other groups. Consider the sequence

1— 41— SLy x SLy, - H — 1.
It induces on local or global F':
1 — 41— SLy x SLy(F) — H(F) — F*/(F*)* = 1,

using that H'(F,+1) = F*/(F*)* and H'(F,SLy) = 1 for the F' we care about (the R case
of the second equality comes from the determinant exact sequence on GLg). Let H} be the
image of SLy x SLy(F).

As noted in a similar analysis for SLy in [47], unitary irreducibles for H} induce to
semisimple representations of H(F).

5.5.1 Cohomological Representations of H(R)

Next, we recall that the infinite trace measures an Euler characteristic against (b, Ky o)-
cohomology:

trﬂ'oo(nf) = X(H*(b7 KH,OO77TOO & V/\))7

where b is the Lie algebra of H(R) and V) is the finite dimensional representation of weight
A. Using the definition from [11, §5.1],

H*<h’ KH,OO’ Too & V)\) = H*<b> K?Loo? Too & V)\)KH’OO/K%’O%

it suffices to consider the 7., whose restrictions to H._ contain a component that is cohomo-
logical when pulled back to [SLs x SLy|(R). By Frobenius reciprocity and semisimplicity of
inductions, these are exactly the irreducible constituents of Indgz 7’ for 7’ cohomological of
Next, H'_isindex 2. Pick h € Hyo, — H’_ and let 7'(") be the representation v + 7/(h~1vh).
Define character
X: Hoo— Hoo/H., = +1.

There are two cases for H._-cohomological 7’:
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1. 7 # 7'™: then Ind} 7' is irreducible, and Resjy Indi> 7/ =« @ 7/,

2. 7' = 7'M then Ind>» 7/ = V @ (V ® x) for some irreducible V. Only one of these
factors will have a subspace fixed by K~ so only one of them will have fixed chains
and therefore be cohomological. Also, Resfi® Indfie ' = 7/ @ 7',

Recalling a standard result, the cohomological representations of SLy(R) with respect to

A are:
e A discrete series L-packet my 1, my s (where Qgp, = {1, s}),
e The trivial representation 1gi,, if A = 0.

By the Kiinneth rule, cohomological representations of SLy X SLy(R) are exactly products of
those on SLy(R). Those of H. are exactly the SLy x SLy(R) ones that are trivial on +1—in
other words, with A = ae; + bey and a + b even.

Consider such A. There are three cases of inductions to consider to compute the cohomo-
logical representations of H. Note that conjugation by h € H,, — H._ switches both factors
to the other member of their SLy-L-packet if they are discrete series and otherwise fixes the
trivial representation.

e a,b# 0: We look at the inductions of products of discrete series. This is case (1) so
the 4 products pair up in sums that are 2 members of an L-packet. These are of course
Wfl and Wf{s where s is a length-1 element of Qy:

W§{1|Héo - (77-(161,1 X 7Tb62,1) S (7Td6178 X 7Tb62,5)7

T, = (Taei,t B Mheys) B (Taey,s B Tpey 1)

e Without loss of generality, a = 0,b # 0: We also need to consider inductions of 1 X7, ..
This is case (1) and both induce to a single irreducible ol

ol = (1R Ty 1) & (1 ey 5).

e ¢ = b = 0: In addition to both the above, we need to consider the induction of
1s, M 1gp,. This is case (2). This trivial representation induces to 1y @ x on H..
The cohomological piece is 1p__ .

Grothendieck group relations stay true restricted to H._ so we can compute traces against
N Recall that in SLy(R):
1=1—my1— 7os,

where [ is some non-cohomological parabolically induced representation.
First, by our normalization

b () = tren (i) = 1/2.
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Next, working in H/_:

1Ry, = —mo1 —mos) My, =T Ry, — o1 Ry, — mo s KTy,

SO
af\q =1Xm 1 +1Xmy, =1K (71 +7mrs) — W(i,u — Wéi/\ﬁ,
implying .
traf(”)\ ) =-1
Finally

181 = (I —moy — 7o) B (I — mo1 — mos)
= IR — I8 (o1 + 7o) — (Ton + mos) BT +who ) + 7y,

SO
try(ny) = 1.
In total, our H-term becomes a count

Z w(ﬂ'OO):

7"-e-’47zv;1isc,ulr (H)

where w is a weight
0 T~ ot cohomological

W () = 1/2 7 one of the m{l,

—1 7 one of the af,*
1 Moo trivial

Call the cohomological cases type I, I, and III in order.

5.5.2 Reduction to Modular Form Counts

We now recall a result from |13]. Consider central isogeny G — G’ of algebraic groups over Z.
If 7" =7/ ® 7' is an unramified, discrete automorphic representation of G', let R(7’) be
the set of unitary, admissible representations 7 = 7, ® 7> of G/(A) that satisfy:

e 7°° is unramified with Satake parameters induced from those of 7' through G — G.
e T is a constituent of the restriction of 7 through G(R) — G'(R).
Note that the size of R(n’) is the number of constituents of the restriction of 7.

Theorem 5.5.2.1 ([13, cor. 4.10]). Assume that all 7 € ARdgisc.ur(G) have multiplicity one.
Then the same holds for G' and the R(7") with 7" € AR giscur(G') partition AR giseur(G).
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Make similar definitions of type I, II, and III for representations of [SLy x SLo|(R) and
[GL2 x GLg](R). Since type I and II on H decompose into two constituents in SLy x SLy and
type III decomposes into 1, our count becomes m € AR giscur(SL2 X SLy) weighted by

1/4 7 typel
w2 (1 ) = —1/2 7 type II .
1 Ts type 111

Each m € AR gise,ur(SLa x SLy) lifts to a rep of SLy x SLy x GZ,. This group is further
isogenous to GLy x GLj so we apply the theorem again. Type I on GLy x GLy decomposes
into 4 constituents on SLy X SLy x G2,, type IT into 2, and type III into 1. Therefore, we get
a count of T € AR gisc.ur(GLa x GLg) weighted by

1 Too type I
wH2xCl2(p Y= 1 1 type IT .

1 T type 111

Let Sk(1) be the set of normalized, level-1, weight-k cuspidal eigenforms. If A = ae; + be,
then type I representations on GLy x GLg correspond to pairs in S,12(1) X Spi2(1). Type II
is a single form times the trivial representation and Type I is only the trivial representation.

5.5.3 Final Formula for S¥
Therefore, if

S = [Sk(1)];
we get:
]H(nc{il—i—beg ® 1k, ) = (Sar2 — La=o)(Spi2 — 1p—o), (5.8)
using canonical measure at finite places. By a classical formula ([16, Thm. 3.5.2] for example),
0 a+2=2ora+2odd
Serz =14 |%2] -1 a+2=2 (mod 12)
| b2 else

5.6 A Jacquet-Langlands-style result

5.6.1 First Form
Generalizing (5.4]) slightly and substituting in (5.6)) and (5.7) gives:

19(pr, @ ) = 1 (n(k 25 @ ) = I (0f3—sper -1y @ (F)T)
+[H(77(3k 2)e1+(k—2)es ® (). (5.9)
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for any unramified function f* (we use here that (G5)* = (G5)>°). This will let us describe
the set Qx(1) for k£ > 2 in terms of certain representations of G§ and H.

Choose m = 7, @ m° € Qy(1). Since 7 is unramified, it can be described by a sequence
of Satake parameters: for each prime p, a semisimple conjugacy class ¢,(7>°) € [Ga)ss (note
that G is split so we don’t need to worry about the full Langlands dual).

The endoscopic datum for H also gives an embedding H — C/J\Q (noting again that
everything is split) whose image contains a chosen maximal torus and therefore induces a
map R .

TSQ : [H]ss = [Galss-

The fibers of this map are (2,-orbits of conjugacy classes in H and have size 3 at Gy-regular
elements.

Proposition 5.6.1.1. Let k > 2 and ©° an unramified representation of (G2)>°. Then

[&

e © 1) = MG (Vie-ays © 1) = 218" (1, (3 = 3)ey + (k — 1)
+ %|SH(7r°°, (3k — 2)er + (k — 2)ea)].
Recall here that Vy s the finite dimensional representation of G5 with highest weight X. Also,
SH(7w>® \) is the set of oo @ T° € ARgisc(H) such that:
* Too € (M),
e For all p, c,(72°) € (T?) ey (7).

Proof. This is a standard Jacquet-Langlands-style argument. Through the Satake isomor-
phism, each f, can be thought of as a function [G5]ss — C through f,(cy(7)) = tra, (fp). It is

in fact a Weyl-invariant regular function on a maximal torus in GG5. The full version of the
fundamental lemma (see the introduction to [34] for example) shows that

ff(cp) = fp(T1§2<Cp))

for all ¢, € H.
There are only finitely many sequences c¢,(7°) and T (c,(75°)) for 75 the unramified
finite component of an automorphic representation either:

e of Gy with infinite part my,
e of (G5 with infinite part V(;_s)s,
e or of H with infinite part in i ((3k — 3)e1 + (K — 1)€ea) or Haisc((3k — 2)e1 + (K — 2)e€a).

Therefore we can choose an f* that is 0 on all of these sequences ¢, (77°) except 1 on exactly
the sequence c,(7>°) (this reduces to finding Weyl-invariant polynomials on (C*)? that take
specified values on certain Weyl orbits). The result follows from plugging this f*° into
and noting that mi_ (7) is always 0 or 1. O
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5.6.2 In terms of Modular Forms

We can use the argument from section to reduce the H-multiplicity terms to GLo-
multiplicty ones. Since we already got multiplicity 1 from comparing H to SLy x SLo there,
it will end up being more convenient here to compare H to PGLy x PGL,.

First, we have a map on conjugacy classes

TPI{GLQXPGLQ . [PGLQ >< PGL2]SS —» [ﬁ—]SS‘

Since the first group is SLy x SLy(C), the fibers of this map are of the form {¢, —c} for some
¢ € [SLy X SLy(C)]ss. Composing then gives map

T521 . wpar, © [PGLy x PGLoly — [Golss.

This allows us to define STEL2xPGL2(7o0 A} analogous to SH (7°°, \) for all A = ae; + bey with
both a and b even. For indexing purposes, set it to be empty when a and b aren’t even.

Formula gives us that S#(7°° ae; + bey) = 0 also when a and b aren’t both even.
In addition, the restriction of discrete series W/I\)GLQXPGLQ to H(R) has as components the
entire L-packet ITY ()). Therefore, theorem [5.5.2.1| shows that the Rfrp,.par, (') for
7' e SPGLexPGLz(qeo X) partition SH (7%, \). Since Rpqy, «par, 1S two-to-one, this gives

|SH(7TOO,)\)‘ — 2|SPGL2><PGL2(7T007)\>|'

Finally, PGL, is a quotient of GLy by a central torus with trivial Galois cohomology, so
automorphic representations on PGLy are just those on GLs; with all components having
trivial central character. Recalling injection

L [SLQ X SLQ((:)]bb — [GLQ X GLQ((C)]SS,
this gives:
Corollary 5.6.2.1. Let k > 2 and ©*° an unramified representation of (G)>. Then
Mgz (me ® 7°) = mg,(Vieays © 7°°) = ST, (3k = B)er + (k — L)e)|
4 [§Ck2xGLa (roe (3 — )y + (k — 2)€y)|.

Recall here that Vy s the finite dimensional representation of G§ with highest weight X. Also,
SGL2xCLa (700 '\ s the set of Too @ T € ARaqise(GLa x GLy) such that:

o T, 1S the discrete series WSLQXGLQ,

e For all p, c,(75°) = i(c,) for some ¢, € (TF%LMPGLQ)*I(CP(WOO)). Here v is the map
[SLQ X SLQ(C)]SS — [GLQ X GLQ(C)]SS
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Of course, since all infinite terms in sight are discrete series, we may again replace the
MAisc by Mecusp using I86]

Note of course that S9L2xGh2 (7% qe; + bey) = () unless both a and b are even. Therefore,
we can interpret this as, for k > 2:

o If k is even: Q4 (1) is the corresponding set of representations transferred from G§ in
addition to representations transferred from pairs of cuspidal eigenforms in Ssx_o(1) X

Si_o(1).

o If k is odd: Q(1) is the corresponding set of representations transferred from G§
except for representations that are also transferred from pairs of cuspidal eigenforms in

Sgk_g(l) X Sk_l(l)

Results for level > 1 would be a lot more complicated since formula (5.4)) would have
many further hyperendoscopic terms and the comparison to GLs x GLs would not work as
nicely.

5.7 Counts of forms

5.7.1 Formula in terms of [¢2

. To get counts instead of a list, combining formulas (5.1)),(5.9)), and (5.8]) gives that

Qk(1)] = I% (% @ Licg,) = (Ssr—1 — Lak—3=0)(Sk+1 — Le—1=0)
+ (S35 — 13k—2-0)(Sk — Lk—2=0).

This finally becomes, for k£ > 2:

|Qi(1)] = 1% (m ® 1xg,)

(15] (18] - 1) k=2 (mod 12)
151145 k=0,4,6,810 (mod 12)
1 (=) () =1) k=1 (mod 12) . (5.10)
— (|22 - 1) & k=59 (mod12)
L312 1145 k=3,7,11 (mod 12)

5.7.2 Computing /%

The group G5(R) is compact so the 1% term takes a very simple form: L2(G5(Q)\G5(A))
decomposes as a direct sum of automorphic representations and the EP-functions 7, are just
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scaled matrix coefficients of the finite-dimensional representations V) with highest weight A
on G$(R). Therefore

I%m©1kg) = Y Lo tree(liy,).
T€AR(GS)

which is just counting the number of unramifed automorphic reps of G5 that have infinite
component V).

By standard results on unramified representations, taking K & invariants sends each such
7 to a linearly independent copy of V) that together span the V)-isotypic component of

LA(G5(Q\G5(A)/KG;) = L*(G5(Z)\G5(R)) € L*(G5(R)).

By Peter-Weyl, L?(G5(R)) has Vi-isotypic component V2 4™ " In fact, this component for
both the left- and right-actions is the same subspace. Therefore the number of copies of

Vy C L*(GS(Z)\GS(R)) is dim (VAGE(Z)) by a dimension count.
Summarizing:
I%(iy @ 1 ) = dim (Vfg(z)) . (5.11)
2

A PARI/GP 2.5.0 program in the online appendix to [13] computes this for all A by pairing
the trace character of Vj|g,(z) with the trivial character.

5.7.3 Table of Counts

Table [5.1] gives values of |Qy(1)| for £ = 3 to 52 produced by formula (5.10)) and [13]’s table
for formula (5.11). The lowest-weight example is bolded, although this work does not rule
out the existence of an example with weight 2 or weight 1 (as defined by [67, §1.1]).

Table 5.1: Counts of discrete, quaternionic automorphic representations of level 1 on Gs.

Q@] & 1@ & 1M & 1] ]| & [

13 5 23 76 33 478 43 1792
14 13 24 126 34 610 44 2112
15 8 25 121 35 637 45 2250
16 23 26 175 36 807 46 2619
17 17 27 173 37 849 47 2790
18 37 28 248 38 1037 || 48 3233
19 30 29 250 39 1097 || 49 3447
20 o6 30 341 40 1332 o0 3938
21 20 31 349 41 1412 o1 4201
22 83 32 460 42 1686 52 4780

— = =
SCE S 0o ok w|
O R R P NOHOOO
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