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COUPLING EFFICIENCY OF WAVEGUIDE LASER RESONATORS FORMED 

BY FLAT MIRRORS: ANALYSIS AND EXPERIMENT 

ABSTRACT 

We present a new and more efficient method of calculating the 

losses of a waveguide laser resonator consisting of a hollow circular 

dielectric waveguide and flat mirrors, taking into account the effects 

of waveguide modes up to order HE l3 • Both symmetric and asymmetric cav­

ities are considered. We show that low cavity losses, only slightly 

exceeding the HE 11 waveguiding losses, are predicted to be possible for 

much larger mirror distances than had previously been suspected, pro­

vided that an optimum total cavity length is chosen. The low losses 

arise when the HEll and HEl2 modes emerge from the guide with relative 

amplitudes and phases such that the returning diffraction patterns 

interfere to produce a narrow beam with low aperture losses. The 

theoretical predictions were checked experimentally for CO
2 

lasers hav-

. ing various waveguide dimensions. Good qualitative agreement was found, 

but the optimum total cavity lengths were typically 3-5% longer than 

predicted. Possible explanations of this discrepancy are discussed. We 

also predicted and experimentally verified that variations of the cavity 

length over a few centimeters can exert a coarse wavelength selectivity 

sufficient to determine the band and branch on which a CO 2 laser oscil­

lates; conversely, that for a grating tuned laser, the cavity length 

must be varied by a similar amount as the wavelength is tuned in order 

to maintain low cavity losses over the entire wavelength range. 
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I. Introduction 

Waveguide lasers are generally operated in either of two types of cav­

ity configurations. In the first, two flat mirrors are placed as close as 

possible to the ends of the waveguide, while the second configuration uses 

short radius of curvature concave mirrors placed some distance from the ends 

of the waveguide to refocus the diverging diffracted beam into the ends of 

the waveguide [lJ. 

Typical radii of curvature for the concave mirrors used for waveguide 

CO 2 lasers are in the 10-40 cm range, which are not commonly available, and 

must be custom made. Flat mirrors have the advantage of ready availability 

and lower cost, but may result in large parasitic cavity losses if the laser 

structure prohibits placing the mirrors close to the ends of the waveguide, 

as is frequently the case with lasers having Brewster angle windows. Accor­

ding to theoretical models in which only the lowest-loss HEll mode is as­

sumed to propagate in the waveguide [2J, the losses should increase monoton­

ically as the 3/2 power of mirror distance as the flat mirrors are moved 

away from the ends of the waveguide [3J. 

A first hint that efficient resonator geometries might be achieved 

with flat mirrors placed at greater distances was provided by the experi­

ment of Jensen and Tobin [4J. They observed that as a flat mirror was 

moved away, power at first decreased; but rose to a secondary, unexplained 

peak when the mirror was a large distance from the waveguide. 

Further evidence of this possibility appeared when we made measurements 

of output power as a function of the mirror distances d l and dZ for a CO 2 

waveguide laser of a type we have described previously [5J, operated in the 

flat-mirror cavity configuration shown in Figure lao The measurements, pre-
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sented in Figure 2, indicate that as one of the mirror distances, d
2

, is 

varied at constant d l , a peak in power is observed for a distance many cen-

timeters from the waveguide. Furthermore, as .th e other dis tance, d
l

, is in­

creased, the value of d2 at which th.e peak occurs decreases. It was a de-

sire to understand this behavior that motivated this study. 

Such an understanding requires the assumption that two or more modes 

propagate simultaneously in the waveguide. The waveguide modes calculated 

by Marcatili and Schmeltzer [6J are not eigenfunctions of the cavity as a 

whole, since diffraction in the free space region produces a mixing of the 
\ 

modes. In the model in which only a single mode propagates in the waveguide 

[2J, the coupling losses at the two ends of the cavity are independent of 

one another, and increase monotonically with the mirror distances, and hence 

cannot explain the data of Figure 2. Detailed numerical analyses of wave-

guide resonators using multiple waveguide modes have been developed [3,7,SJ, 

but have not been applied to the case of resonators having flat mirrors at 

significant distances from the ends of the waveguide. A somewhat more 

qualitative approach which gives some intuitive insight has been d~veloped 

[9J and applied to CO
2 

waveguide lasers [10J, but still no application to 

flat-mirror resonators has been made. 

In this paper we demonstrate that efficient low-loss waveguide laser 

resonators having flat mirrors far from the ends of the waveguide are possi-

ble. We present a method for calculating resonator losses which differs 

from previous methods in that the number of numerical integrations that must 

be computed is greatly reduced. We present graphs and simple formulae for 

selecting an optimum mirror distance for a waveguide of given length and 

bore diameter, optimu~ guide length for a given minimum mirror distance and 
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waveguide bore, and optimum waveguide bore diameter for a laser having a 

specified free spectral range. We examine the effect of wavelength varia­

'tion, and show that the resonator configuration can exert a coarse wave­

length selectivity without the use of a grating, while in a grating-tuned 

laser, changes in the total cavity length must accompany tuning of the gra­

ting in order to keep the laser in a low-loss configuration. 

II. Theory 

The resonator geometry with. which we will be dealing is shown in Fig­

ure lao The waveguide, a hollow dielectric tube of radius a and length l, 

is interposed between two flat mirrors situated at distances d
l 

and d
2 

from 

the ends of the tube. We will restrict our consideration to linearly polar­

ized modes having radial symmetry, and neglect the effects of finite mirror 

aperture, of mirror misalignment, and of the active gain medium within the 

waveguide. In solving for the modes of this resonator, we will model it as 

an extended periodic system as shown in Figure lb, in which the beam emerg­

ing from the waveguide in plane A traverses free space regions of lengths 

2d
1 

and 2d
2 

and makes two trips through waveguide sections of length l be­

fore reaching a plane A' equivalent to the initial plane A. (In the more 

general resonator geometry in which. the mirrors are curved, there would be 

lenses midway between planes A and B and midway between C and D.) The 

fields in planes A and A' can be expressed in terms of column vectors x and 

~', respectively, whose components are the expansion coefficients of the 

field in terms of the HElm hyhrid modes of the waveguide [6J. We seek a 

matrix M which represents the effect of propagating one round trip through 

the cavity, i.e. from A to A', so that x'=Mx. We then find the eigenvalues 

and eigenvectors of M, 
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A. x. 
1 ~ 

The round trip loss £i for the i'th resonator mode is then given by 

(1) 

(2) 

Before describing our method, we will briefly review the previous ap­

proaches to this problem that have been employed. 

The simplest approach, due to Abrams [2J, was to assume that the mode 

propagating in the waveguide was pure HEll. He calculated the coupling 

losses by expanding the HEll mode in terms of a set of Laguerre-Gaussian 

modes, allowing those modes to propagate to the mirror and back using the 

laws· of Gaussian beam propagation [llJ,· and calculating the overlap inte­

gral of the returning beam with. the HEUmode. This model fails to predict 

the results of our experiment. 

Chester and Abrams [7J were the first to consider the effects of high-

er waveguide modes. They expanded the waveguide modes in terms of a set of 

free space modes having their beam waist in the exit plane and having a val-

ue of w /a chosen to make their wavefront radii of curvature match the cur­
o 

vature of the mirror. This method cannot be applied to resonators using 

flat mirrors because the assumptions that the free space modes have their 

beam waist in the waveguide aperture plane and that they match the radii 

of curvature of the mirrors are then contradictory. 

Degnan and Hall [3J treated the propagation in the free space region 

not in terms of an expansion in free space modes, but rather by numerical 

evaluation of diffraction integrals. They also considered the effect of 

finite mirror aperture. Abrams and Chester Is] used a similar method except 
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that they assumed an infinite mirror aperture and treated the propagation 

from the waveguide to the mirror and back again in terms of a single dif-

fraction integral, again calculated numerically. While the method is capa-

ble of handling the case of flat-mirror resonators, neither paper did so 

except in the context of the pure-HEll model, and it was assumed that that 

model was always valid for flat~mirror resonators [3]. 

The above methods are all characterized by the necessity of calculating 

large numbers of integrals numerically, and generally whenever any cavity 

parameter is varied (except the waveguide length) it is necessary to recal-

culate the integrals. 

A more qualitative but still useful model was developed by Roullard and 

Bass [9]. They assumed the field in the waveguide to be a combination of 

HEU and HE
IZ

• A linear comb.ination of th.ese modes with unequal phases has 

curved phasefronts. They therefore considered the coupling of the beam emer-

ging from the waveguide to a single free space mode·, a TEMOO mode having its 

spot size and radius of curvature optimized to match the emerging field. 

This method has been useful in predicting cavity configurations that would 

lead to nearly-Gaussian far field patterns, but has not been applied to 

flat-mirror cavities, nor has the method been used for quantitiative calcu-

lation of resonator eigenvalues or losses. 

Of the above, our method most closely resemb.les that of Chester and 

Abrams [7J insofar as we also expand the field in terms of a set of 

Laguerre-Gaussian modes having their beam waist in the waveguide exit plane. 

However, whereas they had to vary w fa, and hence recalculate the waveguide 
o 

to free space mode coupling integrals, whenever they varied their cavity 

geometry, we were able to greatly reduce the number of numerical integrations 
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that must be performed by always using the same value of w /a and instead 
o 

using an analytical transformation between two sets of Laguerre-Gaussian 

modes to represent the field returning to the waveguide in terms of modes 

having the original spot size wand infinite radius of curva~ure, facili­
o 

tating the transformation back to waveguide modes, as we shall describe 

below. As an initial investment one must calculate a relatively small num-

ber of integrals numerically, but then any number of different cavity con-

figurations (~ifferent values of d
l

, d
2

, i, a, or A) can be analyzed with­

out any further numerical integration. Whereas the meth~d presented by 

Chester and Abrams could not be applied to flat-mirror cavities, our method 

as presented here is applicable only to flat-mirror cavities, but can be 

generalized to curved-mirror cavities, as we plan to describe in a later 

paper. We will present an outline of our method below, and further details 

in the Appendix. 

We seek to express the matrix M representing a complete round trip 

through. the cavity as a product of matrices, each of which represents either 

the effect of propagating through. a particular region of the cavity or a 

transformation between one set of modes and another. The places where these 

various matrices are applied are shown in Figure lb. Initially, in plane A, 

the vector ~ represents the field in terms of waveguide modes. Since the 

beam is emerging into a region of free space, we wish to transform to a set 

of free-space modes b.y means of a transformation matrix MI. Any set of 

Laguerre-Gaussian, or TEMmQ' modes, having arbitrary spot size wand radius 

of curvature R, constitutes a complete set for representing any radially-

symmetric field in the waveguide exit plane. We have arbitrarily chosen a 

set of modes having their beam waist in plane A and having a value of wo/a 
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selected according to criteria to be discussed below. The elements of Ml 

are determined by numerical integration. 

Matrix M2 is a diagonal matrix representing the relative phase shifts 

of the various TEMmO modes in propagating a distance 2d
l 

from'plane A to 

plane B. 

At this point we deviate from the usual practice of transforming di~ , 

rectly back into waveguide modes and instead transform into a different set 

of TEM modes. The field arriving at plane B is initially represented in 

terms of a set of TEM modes having an enlarged spot size w>w and some 
, 0 

finite radius of curvature R. If it were instead represented in terms of 
• 

TEM modes having their beam waist in the waveguide entrance plane Band hav-

ing the original spot size wo ' then the transformation to HElm modes could 

be performed with the transpose of matrix M
1

, whose eleme~ts have already 

been determined. We therefore introduce a matrix M3 which transforms to the 

latter set of TEMmQ modes, followed hy a matrix M4 , the transpose of Ml' 

which transforms these to waveguide modes. If the matrix elements of M3 

had to be evaluated by numerical integration, then we would have gained 

nothing by this additional transformation; fortunately, Kogelnik [12J has 

shm('1n that they can be obtained analytically. 

Matrix MS' which is diagonal, represents the attenuations and relative 

phase shifts of the HElm modes in propagating a distance t through the wave­

guide with propagation constants [6J 

= k [ 1 - (3) 

where k=2TI/A, u
1m 

is the m'th zero of Jo(u), and 
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and", is the complex refractive index of the waveguide material. 

(4) 

In plane C we again apply matrix MI to transform to TEM modes. Then 

matrix M6 describes the phase shifts in propagating a distance 2d2 from C 

to D in free space,matrix M7 transforms to a set of TEM modes having spot 

size Wo and beam waist in plane D, and matrix M4 transforms these modes 

into HElm modes. A final application of MS ' describing propagation through 

the waveguide, brings us back to plane A', equivalent to plane A in our 

periodic scheme. The net round trip matrix is thus given by 

( S) 

Each time dl is changed, M2 and M3 must be. recalculated, while changing 

d2 requires recalculat ing l-16 and M7• Changing ~ or '" requires recalculat­n 

ing MS' while changing a or >. requires recalculating all the matrices except 

MI and M4 · Only MI and its transpose M4 need De evaluated by numerical in-

tegration, and these need never be recalcuated once evaluated initially. 

We note that for the specific case of a symmetric cavity, i.e. one for 

where matrix M' describes th.e half-cavity. The eigenvalues Ai of M are re­

lated to the eigenvalues A'i of M' by 

A = A' 2 
Hi H i 

so that the coupling losses can be found by diagonalizing a much more easily 
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computed matrix. 

The mathematical details of the computation of matrices Ml through M7 

appear in the Appendix. 

Once the matrix M (or M') is determined, we determine its eigenvalues 

by exact solution of the characteristic polynomial. This is possible be-

cause we limited our computations to at most three waveguide modes, so that 

the polynomial is at most cubic. 

Of those portions of th.e computation that have to be done for each new 

cavity configuration, most of the time is consumed by the computation of the 

transformation matrices M3 and M
7

• While the elements of these matrices are 

algebraic expressions rather than numerical integrals, they are quite compli-

cated, involving hypergeometric functions and factorials. However, if a 

method like those described by other authors I3,7,8J had been used, at least 

one set of integrals comparable to those in matrix Ml would have to be eval­

uated for each new cavity configuration, and we found that the entire compu-

tat ion excluding calculation of MI took typically about one quarter of the 

time required to calculate MJ. Thus our method results in a fourfold savings 

in computer time. 

The choice of the parameter w fa is important and deserves some discus­
o 

sion. In principle, if we were using an infinite number of TEM modes in 

which to expand the field, the choice of w la would be completely arbitrary, 
o 

and the solution of Equation (J) would he completely independent of w la. 
o 

However, since we wish to truncate the expansion with a relatively small 

number of modes, the value of w la must be chosen to make the expansion con­
o 

verge reasonahly rapidly. The following tradeoff is involved: To minimize 

the truncation error in expanding the field emerging from the waveguide, a 
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small value of w la is favored. However, a small w results in a large 
o 0 

divergence for the free space modes, and therefore the returning spot size 

w will differ greatly from w if the mirror distance is significant. This 
o 

will result in larger trunction errors in the transformation from the set 

of TEM modes with. spot size w back to the set with spot size 

ing these truncation errors favors large w la. 
o 

w. 
o 

Minimiz-

We made our choice of w la based on several considerations. First, we 
o 

observed that as the number of free space modes was increased, with the num-

ber of waveguide modes held fixed at two, the most rapid convergence of the 

solutions occurred for w la~.55, and for this choice six free space modes 
o 

were adequate for expanding the field. Second, we found that when we used 

two waveguide modes and six free space modes, the solutions were nearly in-

dependent ofwola over the range a.45<w6/a<0.70. A value near the middle of 

this interval is desirable. 

Based on a physical interpretation to be presented at the end of this 

section, it makes sense to use a value of w la such that each HEl waveguide o m 

mode couples most of its power into a single free space TEM mode. As is 

well known [2J, the maximum power coupling of 9.8% from HEll to TEMOO occurs 

at wo/a=O.6435. This maximum is very broad, however. The maximum HEl2 to 

TEMIO coupling, 87.6%, occurs at wo/a=0.534, where the HEll to TEMQO coup-

ling ii 93.8%. The choice w la=0.55 is a good tradeoff, since it gives 
o 

95.1% HEll to TEMOO and 87.0% HEl2 to TEM10 coupling. When the HEl3 mode is 

included, a smaller value of wola is favored, trading off some HEll to TEMOO 

and HE12 to TEMlO couping for higher HE13 to TEM20 coupling; the power coup­

ling coefficients are then 89%, 84%, and 73%~ respectively. 

Truncation errors for expanding the HElm modes in terms of six free 
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space modes with wo/a=0.55 are 0.1% for HEll' 0.8% for HE
12

, and 4% for 

For w /a=0.48, a more appropriate value for use with three waveguide 
o 

modes, the errors are 0.07%, 0.45%, and 1.6%, respectively. The higher 

truncation er~ors for the higher waveguide modes are tolerable if we are 

primarily concerned about the lowest loss resonator mode, because most of 

the power in that mode will be in the HEll waveguide mode. The truncation 

errors involved in the TEM-TEM mode transformation (matrices M3 and M
7) 

were not easily characterized because they depended on both w /a and on 
o 

the mirror distances. 

As the above discussion suggests, we usedw /a=0.55 when using two wave­
o 

guide modes, and a somewhat smaller value, 0.48 or 0.50, when using three 

modes. 

We will now proceed to descrihe the predictions based on the above 

model. It will be convenient to define an effective waveguide length 

t' = t (" 1 + 2 1m v /ka ) 
n 

( 6) 

This will in general not differ from the actual geometrical length £ by 

more than a few percent, and differences as large as that occur only near 

material resonances of the waveguide, so in most cases it is a good approx-

imation that t'=£. The waveguide laser resonator using flat mirrors is 

described entirely in terms of four dimensionless parameters: the mirror 

distance parameters d
l

/ka2 and d
2

/ka
2

; the effective waveguide length param-

2 eter £'/ka , which determines phase shifts in the waveguide; and a waveguide 

loss parameter eRe v /ka) /0 + 21m v /ka). The last-mentioned variable 
n n 

represents the wavegujde attenuation per unit increment in £'/ka
2

; in propa-
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gating a distance ~t'/ka2=1, the amplitude of the HElm mode is attenuated by 

a factor of exp[-u l 2(Re v /ka)/~l + 2 1m v /ka)]. The denominator of this m n n 

parameter arises because'the attenuation in the waveguide depends on the 

actual length t rather than the effective length t' which determines the 

phase shifts, so it is necessary to include this factor to obtain the atten­

uation per unit increment in t'/ka
2

• However, the denominator can be assumed 

to be unity for most purposes, since the effect of this is second order in 

'A/a. Neglecting the denominator results in an error of only a small percen-

tage of the waveguide losses, which are themselves typically less than 15% 
". 

per round trip. We therefore use simply Re v /ka as a label in our graphs, 
n 

although we retained the denominator in our computations, and the reader 

may interpret the labels as actually being values of (Re v /ka)/(1+2 1m v /ka). n n 

We present 'our theoretical predictions in terms of the ab.ove four dimension-

less parameters, since they will then be more universally useful than pre-

dictions in terms of specific dimensional variables found by assuming, for 

example, specific values of the wavelength, tUDe radius, and refractive in-

dex. 

The first phenomenon we tried to understand using our model is the de-

pendence of power on mirror distances exhibited in Figure 2. The fact that 

a maximum power is observed at some large value of d
2 

for a particular fixed 

va,lue of d
1 

indicates that the cavity losses must be a minimum there with 

respect to variation of d
2 

at constant d
l

• If d1 is increased, the value 

of d
2 

at which the minumum loss occurs decreases; the highest overall power 

is observed when the peak occurs at d
2

=d
l

• In Figure 3a we present a set of 

loss contours in the 
2 2 

d
2

/ka vs. d1/ka plane. These were calculated for 
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2 i'/ka =0.35 and Re v /ka=0.002, and two waveguide modes were used in the 
n 

calculation. While the overall minimum loss of 2.04% occurs at d
1
=d

2
=0, 

we see that there is a secondary minimum loss of 4.23% at d
1

/ka
2
=d

2
/ka2= 

0.0735 due to favorable mixing of the HEll and HEl2 modes. There is a 

saddle point with loss 10.03% at d1 /ka
2
=d/ka2=0.0495. 

If one were to vary d2 at constant d
1

, one would observe a maximum out­

put power at that value of d2 at which at /ad2=0, whereas if d
l 

were varied 

at constant d2, the power maximum would occur where at /adl =0. We have 

included a heavy solid line in Figure 3a to indicate where at /ad2=0, and a 
: .... 

heavy dashed line to indicate where at /ad1=a. Note that although the loss 

contours are symmetric about the line d2=d1 , nevertheless the curves along 

which the partial derivatives are zero are not symmetric (although 'they are 

mirror iinages of one another.) The slope of the curve along which a£ / ad2 

=0 is negative, consistent with the experimental observation that as dl in­

creases, the value of d2 at which. power peaks decreases. The degree of quan­

titative agreement will be examined in the experimental section. 

In Figure 3b we have presented a family of curves analogous to the heavy 

solid curve in Figure 3a, for a numb.er of different values of the waveguide 

length parameter i'/ka2 • These were all calculated using two waveguide 

modes, and with Re v /ka=O.. (For typical actual values of Re v /ka, the n n 
2 curves will be shifted inward very slightly toward smaller values of d1/ka 

2 2 2 2 
and d2/ka.) We see that as i'/ka increases toward the value 4n/(u12 -ul1 ) 

=0 .• 509, for which the single-pass phase shift between H~l and HE12 is 2n, 

the curves become more nearly straight lines and shift inward toward the 

origin. 2 If i'/ka were slightly greater than 0.509, no loss minima would 

have been observed, and the losses would have increased monotonically as a 
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function of d
1 

and d
2

. 2 
As t'/ka was further increased, loss minima would 

reappear at large distances and move inward as t'/ka2 approached 87T/(uI22-

2 
ull ). (If more waveguide modes were included in the calculation, other 

less pronounced minima would also be observed due to favorable mixing of the 

HEU with the HEl3 or other higher order waveguide modes, but the HElI-HE12 

minima are the dominant ones, especially if waveguide losses' are significant.) 

Next, we looked at the effect of varying waveguide length while holding 

the mirror distances constant. The simplest case we considered was that of 

a symmetric cavity with mirror distances d, with losses calculated using 

only two waveguide modes. 2 In Figure 4a we have plotted loss vs. t'/ka for 

four different values of d/ka2 . In all cases, Re v /ka=0.002.· The curve 
n 

for d/ka
2
=0 is essentially a graph. of the HEll waveguide loss (plus a small 

truncation loss) vs. guide length_. The curves for larger d/ka2 display, in 

addition to the steadily increasing waveguide losses, coupling losses which 

are periodic in t' /ka2 • Th.e period is given by 

2 2 2 
~t'/ka = 47T/(~l2 -ull ) 

and represents an increment of 21T in the HE11-HE12 phase shift in one pass 

through the waveguide. 

2 Wh.en d/ka is relatively small, as for eXample 0.02 in Figure 4a, the 

lowest loss mode is almost entirely HEll except over a small range of values 

of t'/ka
2 

in which mixing with HE12 takes place, 0.45 to 0.50, 0.95 to 1.00, 

2 etc. for d/ka =0.02. Outside these mixing regions, the coupling losses are 

well describ.ed by the pure-HEll theory of Abrams [2J. The mixing can either 

increase or decrease the coupling losses, and as £'/ka
2 

increases so as to 

enter a mixing region, the admixture of HE12 at first causes the losses to 
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decrease almost to the pure HEll waveguide losses; then as the HE12 content 

increases further, the losses increase sharply to a value above the pure-

HEll coupling loss. The maximum is not reached until the HE12 content has 

already begun to decrease again; then as HEl2 content decays to zero, the 

coupling loss again approaches that for pure HEll. 

As d/ka
2 

increases, the mixing regions broaden and shift toward smaller 

£'/ka
2

, and the amplitude of the loss variation due to mixing increases, but 

the loss minimum does not come as close to the pure HEll waveguide loss. 

2 This is illustrated by the curves for d/ka =0.04 and 0.06 in Figure 4a. 

For very small values of the waveguide loss parameter Re v /ka, the 
n 

minimum loss occurs when about 14% of the power is in the HEl2 mode. This 

appears to be true for a wide variety of values of d/ka2• In this case, the 

minimum loss is produced strictly hy minimizing the coupling losses. Note 

that there is also a high~loss cavity configuration at slightly larger £'/ka 2 

for which. the HEl2 content is also 14%. This illustrates. that the relative 

phases of the modes, and not just tneir amplitudes, are important. For lar-

ger values of Re v /ka, there is a tradeoff between coupling losses and wave­
n 

guide losses,and the loss minimum occurs for a smaller HEl2 mode content. 

While still restricting our calculation to the use of two waveguide 

modes, we explored the effects of cavity asymmetry on the length dependence. 

2 
In Figure 4b we present graphs of loss vs. t'/ka for three different cavi-

ties of varying asymmetry, starting from a completely symmetric cavity Cdl = 

d2) and progressing to a maximally asymmetric cavity (d1=0, d2 large). The 

2 2 
values of d1/ka and d

2
/ka were chosen to lie on a curve like the ones in 

Figure 3b, so that the loss minima would continue to occur at roughly the 

2 
same values of £'/ka . The value of Re v /ka was again 0.002. 

n 
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We see that introducing asymmetry produces new regions of mode mixing, 

resulting in new minima and maxima appearing midway between those obtained 

with the completely symmetric cavity. As the cavity becomes more asymmetric, 

these new minima and maxima become more pronounced, until for the maximally 

asymmetric cavity they become equally as strong as the original set of mini-

rna and maxima observed for the symmetric cavity. The coupling losses are 

then periodic in t'/ka2 with a period of half that for the aymmetric cavity. 

This can be understood easily by noting that as d
l 

goes to zero, the cavity 

becomes equivalent to the half-cavity of a symmetric resonator having wave-

guide length 2t and both mirror distances equal to d2 • The periodicity of 

the coupling losses for the latter resonator is then 

AC2n '/ka2) = 4 /C' 2 2} 
Ll "" 1Tu~2 -ull 

so that flt'/ka 2 is half what it was for the symmetric resonator. 

Next, returning to th.e symmetric cavity, we examined the effect of 

varying the· number of waveguide modes used in the calculation. In Figure 

2 
Sa we plot loss for the lowest loss-mode calculated for d/ka =0.04 and 

Re v /ka=0.002 using one, two, and three waveguide modes. The curve for two 
n 

2 modes was the same that appeared in Figure 4a for d/ka =0.04. The curve for 

just one waveguide mode is nearly a straight line (saturating at much larger 

2 2 
t'/ka 1 whose intercept at t'/ka =0 is just the pure-HEll coupling loss that 

would b.e calculated from the theory of Ahrams I2J, and whose slope is the 

2 same as that of the waveguide loss, curve (the curve for d/ka =0 in Figure 4a.) 

Going from two modes to three modes clearly produces a non-negligible 

effect. There are now a new series of loss minima due to mixing of the HEll 

and HE13 modes, having spacing 
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2 2 
= 4w/(u

13 
-u

ll 
) 

There are also new loss maxima and, in a few places, sharp cusps, the nature 

of which will become apparent when we examine Figure 5b. We could expect 

further such complications from using four or more waveguide modes. However, 

for larger values of Re \) /ka, the effect of adding a third mode becomes 
n 

less significant except at very small values 'of JI.'/ka2 • Also, there is very 

little change in the loss curve in the vicinity of the loss minimum due to 

2 Finally, as one goes to larger values of d/ka , the 

effect of the third 1ll0de oecomes less. pronounced on the whole, although the 

broadening of the region in which_ HE
ll

-HE
13 

1llixing occurs results in a slight­

ly greater perturbation in the vicinity of the HEll-HE
12 

minimum, and a 

small shift in the position of the minimum. 

When we use three waveguide modes, the matrix we are diagonalizing is 

3x3, and we ob.tain three loss solutions. Thus far we have been looking at 

only the lowest-loss solution, but in Figure 50 we plot the losses of all 

three resonator modes. A number of interesting features are revealed. 

First, the sharp cusp in the losses for the lowest-loss mode at JI.'/ka2=O.445 

is actually a crossover between two solutions, i.e., a point of mode degener-

acy. Such degeneracies can also occur when the calculation is done using 

only two waveguide modes, but only for very small values of Re v /ka. In 
n 

our three-mode calculation, conditions of mode mixing similar to those at 

JI.'/ka
2
=O.445 also occur at R.'/ka2=O.96, but due to the higher waveguide 

losses, the 1llode mixing is no longer strong-enough to produce degeneracy. 

2 At those values of JI.'/ka where the lowest-loss mode has loss minima, 

the losses are very high for the next-lowest-loss resonator mode. On the 
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other hand, there are values of t'/ka2 where the modes are degenerate or 

nearly degenerate, and at such. places we can expect poor stability of the 

mode pattern. We have already mentioned the degeneracy that occurs at 

2 
t'/ka =0.445 between two resonator modes, each of which is made up primar-

ily of HEll and HE12 waveguide modes. Another sort of degeneracy occurs at 

t'/ka2=0.20. The second-lowest-loss mode has a series of minima occurring 

at t'/ka
2

=O.20, 0.48,0.76,1.0.4, etc., due to favorable mixing between the 

HEl2 and HE13 modes. These minima have a spacing 

2 2 2 
~t'/ka = 4rr/(~13 -u12 ) 

The first of these minima is approximately degenerate with the lowest-loss, 

predominantly-HEll mode, since the lowering of coupling losses due to inter­

ference between the diffracted HE12 and REI 3 modes compensates for their 

higher waveguide losses. For smaller values of d/ka2 and/or Re v /ka, the 
n 

losses for this HE I2 -HE13 mixture can actually drop below those of the 

mostly-HEll resonator mode. 

An overview of the dependence of coupling losses on both waveguide 

length t'/ka2 and mirror distance d/ka2 for a symmetric cavity is provided 

by the loss contour plot in Figure 6, calculated for Re v /ka=O.OQ2. This 
n 

plot was calculated using only two waveguide modes, and is not intended to 

be quantitatively accurate in most regions, b.ut it exhibits qualitatively 

some important features. The loss contour for some particular low loss val-

ue {such as the 5% loss contour} stays close to the vertical axis for most 

2 . 2 
t'/ka. However, in the vicinity of a particular diagonal ll.ne {t'+2d)/ka 

2 
~const., the contours extend out to much larger values of d/ka. There is a 

valley in the contour plbt along this line. Slightly above this, the con-
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tours are drawn in toward smaller values of d/ka2 ; this corresponds to a 

ridge in the contour plot, and to the peaks in the graphs of loss vs. £'/ka2 

in Figure 4a. Since the coupling losses are periodic in £'/ka2 , there will 

be other such. valleys and ridges occuring at higher values of t'/ka
2

. 

We have drawn in two heavy curves on the contour plot. The solid heavy 

curve is the curve along which at /a£'=o, and represents the optimum choice 

of waveguide length for a given mirror dis.tance. The dashed heavy curve 

is the curve along which at /ad=O, and represents an optimum choice of mir-

ror distance for a given waveguide length. (J'hat is, if one cannot place 

the mirror close to d=Q, then a value of d/ka2 along this curve is the best 

choice to minimize cavity losses.} The dashed curve terminates at £'/ka
2 

=0.11 because below this value, the losses increase monotonically with d/ka2 , 

and there is no d for which. at / ad=O. A similar interval with no optimUm d 

occurs between £'/ka2=O.5l and 0.62, as was discussed earlier in the context 

of loss contours in th.e dzlka
2 

vs. d1 /ka
2 

plane, an interval of waveguide 

phase shifts slightly greater than 21T but much less than 41T. 

The valley and ridge in the contour plot in Figure 6 are due to mixing 

between the HEll and HE12 modes. If further modes are used in the calcula-

tion, additional valleys and ridges will appear. 
2 For small d/ka , the val-

leys due to mixing between the HElm and HE~l modes will fall roughly along 

the straight lines 

222 
(£' + 2d)/ka = 41T N/ (~11ll -ul1 ) (7) 

where N is a positive integer. These become increasingly closely spaced as 

m increases, but the larger m is the less significant the influence of the 

HElm mode on the loss contours at large d/ka
2

, and also at large £'/ka
2 

if 

Re v /ka is large. 
n 

•. 
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Since the optimal choice of i'/ka
2 

for a given d/ka2 or vice versa 

is such that (i'+2d)/ka
2 

is nearly a constant over a rather wide range of 

values of the independent variahle, more precise information can be conveyed 

2 by plotting an optimum effective total cavity length L'/ka , where 

L' - i' + 2d (8) 

as a function of d/ka
2 

or i'/ka
2

• In Figure 7a we present a family of 

2 2 curves of L' /ka vs. d/ka such. that a.£ /iJi '=0, corresponding to the solid 

curve in Figure 6, but for a variety of different values of Re v /ka, and 
n 

caclulated using three rather than two waveguide modes. If one were trying 

to design a waveguide laser resonator with a waveguide radius a and a mini-

mum practical mirror distance d, then one would use this graph to select an 

optimum value of the total effective cavity length L', from which one could 

find the optimum i' by subtracting 2d, and determine the actual waveguide 

length i if 1m v were known. (If not, it usually adequate to assume that 
n 

1m v =0 and i=i'.) Given that one chooses it in this way, the overall reso­
n 

nator loss that can be achieved for various values of Re v /ka is plotted vs. 
n 

d/ka2 . F' 7b ~n ~gure . For comparison, we have also plotted the coupling losses 

from the pure-HEll model [2J with no waveguide losses included. It is ap­

parent that the interference between the HEll and HEl2 modes allows vastly 

lower losses to be achieved out to much larger values of d/ka
2 

than one 

would have expected from the pure-HEll model. The losses do not begin in­

creasing rapidly above the waveguide losses until d/ka2=0.10. 

One feature of the curves inF~gllres ]a and 7b that requires explana-

tion is the following: Some of the curves terminate at small values of 

d/ka2 , and the larger the value of Re v /ka, the larger the value of d/ka
2 

n 
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at which they terminate. This is because at small d/ka2 , the waveguide 

losses dominate over the coupling losses. As one passes through a region 

of mode mixing along a line of constant d/ka2 , the resonator losses are at 

first ~educed below, and then increased above, the monotonically increasing 

curve representing waveguide plus pure-HEll coupling losses vs. i'/ka2 

(Figure 4a). If the increase in waveguide loss with i'/ka2 is rapid enough, 

the small change in losses due to mode mixing is not enough to ever make the 

slope of the loss curve change sign. Thus there is no value of i'/ka
2 

such 

2 that '0.£ /'di' =0 for small values of d/ka • 

Another situation encountered in designing a resonator is selection of 

the mirror distances, given a waveguide of length i and radius a. In Figure 

8a we plot curves of L'/ka2 vs. 9.'/ka
2 

along which 3.£/'M=0, again calculated 

for a symmetric cavity for various values of Re v /ka using three waveguide 
n 

modes. The information here is analogous to that in the dashed curve in 

Figure 6. Given the actual waveguide length 9., one would calculate £' from 

Equation (6) and use Figure 8a to determine the total cavity length L', 

then find the mirror distance from Equation ~8). 

The cavity losses obtained by selecting the mirror distances according 

to the above procedure are plotted in Figure 8b. Cavity losses remain small, 

2 dominated by the waveguide losses, over the range 0.30<i'/ka <0.509, and over 

that same range the optimum total cavity length L'/ka2 remains nearly con­

stant. The curves terminate at 9.'/ka2=Q.06, somewhat below the value at 

which the dashed curve in Figure 6 terminated; this extension is due to the 

effect of including the HE13 mode in the calculations. The curves for dif­

ferent Re v /ka all converge as l'/ka2. becomes small, since for short wave-n . 

guides the waveguide losses become small, and the task of minimizing the 
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total cavity losses becomes essentially identical to minimizing the coupling 

losses. 

Often one of the dominant considerations in the design of a waveguide 

laser is the free spectral range ~v=c/2L of the resonator, where L=t+2d is 

the total cavity length. Let us assume for simplicity that t'=.2, and hence 

L'=L; If we specify ~v, this determines L, and Figures 7 and 8, together 

with the known periodicity of the"HE1l-HE
l2 

mode mixing effects, tell us we 

2 
want L/ka ~O.5N, where N=l,2,3, •••• For a laser that is to operate at wave-

length A=2n/k, we therefore want the waveguide bore radius to be 

a ~ (-:CA/2nN~v) ~ " (9) 

For example, at A=10.6~m, if we want ~v=50.Q MHz, this gives L=30. cm and 

a~l mm, or about a 2 nun bore; for ~v=l GHz, we obtain L=15 cm and a~O.71 nun, 

or about a 1.4 mm bore, in both cases assuming N=l. These are both quite 

reasonable dimensions for CO2 waveguide lasers. The orily case in which one 

would consider Nfl is when the value of a obtained for N=l is too large, so 

that the gain and saturation parameter are too low and/or the pressure broad-

ening at obtainable operating pressures for that bore radius is insufficient 

to allow tuning over the entire free spectral range. 

Having thus estimated a desirable tube diameter, one is then faced with 

a number of tasks such as finding the closest bore diameter available com-

mercially; determining the changes in the design necessitated by the differ-

ence between that and the desired diameter; making certain that variation 

of the bore diameter within the manufacturer's tolerance will not result in 

high losses; obtaining the best compromise in the design to operate over the 

entire range of desired wavelengths; using 1m v , if known, to refine the 
n. 
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design by relaxing the assumption that i'=i; and determining whether an 

external-mirror construction is feasible. If the total cavity length is 

constrained to be constant, with L/ka2=O.5, then the losses increase mono-

tonically with d so that it is desirable to make d as small as possible. 

Both from the standpoint of keeping losses small and of satisfying the ap­

proximation that the optimum total cavity length is constant, independent of 

d/ka2 or i'/ka2 , it is necessary that d/ka2<O.lO, and conversely, i'/ka
2

>O.30. 

In the preceeding examples, for the 2 mm hore laser with 6v=500 MHz, this 

means d<6 em, which is easily achieved in an external-mirror laser. But for 

the 1.4 rom diameter laser with 6v=1 GHz, we require d<3 em, which might be 

more easily achieved in an internal-mirror design. 

Thus far we have seen that a certain narrow range of values of L'/ka 

is preferred in order to keep cavity losses low. Changing the wavelength 

A=2n/k will shift the range of preferred L' values. This has two conse­

quences for lasers exhibiting gain over a range of wavelengths. 

2 

First, in a cavity with. no wavelength~selective element, the cavity 

length itself can exert a sort of coarse wavelength selectivity. For a 

laser with a particular waveguide length and bore diameter, with one of the 

mirror distances, dI , held constant, the losses for several different laser 

wavelengths <for example, the various bands and branches of CO
2 

laser tran­

sitions in the 9-11 ~m range) will have minima at different values of the 

mirror distance d2 , and when the loss is minimized for one wavelength, the 

losses for the other wavelengths may be ~uch higher. The farther away the 

other wavelengths are, the better they are discriminated against; also, since 

shorter wavelengths have loss minima at larger values of d
2

, and since losses 

. increase more rapidly on the large-d
2 

side of the ·minimum than on the small-d2 
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side, discrimination is better against longer wavelengths than against shor-

ter wavelengths. The selectivity is enhanced by the existence of compe-

tition,between laser transitions. This sort of selectivity is too coarse 

to allow selection of one particular CO2 laser line, but can select which 

branch of which band the laser operates on, beyond which it may be possible 

to select a few individual laser lines within each branch by piezoelectri-

cally tuning the longitudinal mode frequencies [13J, provided that the pres-

sure broadening is not too large. For a laser of "'2.38 mm bore such as ours, 

about 6 cm of mirror translation is expected to be required to tune the 

laser from the 10 ]Jm P-branch. to the 9 llm R.,...branch; for smaller-bore lasers, 

smaller changes in length are needed. 

The second consequence pertains to grating-tuned las~rs. The optimum 

position of one mirror shifts as'we tune the wav~length while holding the 

other mirror position fixed. If the wavelength is tuned without simultane-

ous adjustment of the cavity length., the losses will be high over part of 

the tuning range, and the range may be restricted. This suggests that in 

grating-tuned waveguide lasers, the grating should be mounted on a trans-

lation stage that is slaved to the grating rotation control, so that as the 

grating is tuned toward longer wavelengths, it also translates toward the 

laser tube. While for large'O'bore lasers such as ours, many centimeters of 

translation are needed, the change in cavity length needed for a given 

change in wavelength is proportional to the square of the bore radius, so 

that, for example, only a 2.5 cm change in cavity length is needed to cover 

the 9.2-10.8 llm range with a 1.4 mm b.ore laser. 

To complete the theory section, we discuss our physical interpretation 

of the origin of the loss minima. As discussed earlier, for w /a~0.55, 
o 
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there is a strong coupling both. between the HEll and TEMOO and between the 

HE12 and TEMIO modes. To a rough approximation, the field in the wave­

guide can be considered a superposition of just the HEll and HEl2 modes, 

while the field in the free space region can be considered a superposition 

of just TEMOO and TEMlQ • Individually, each of these two free space modes 

diverges as it propagates from the waveguide aperture to the mirror and 

back. However. if their initial relative amplitudes and phases and the 

relative phase shifts they undergo in propagating to the mirror and back are 

right, the two returning TEM modes will interfere constructively near the 

center of the beam. but destructively. so as to produce nearly complete can­

cellation. in the outer edges. This superposition therefore has its power 

concentrated within a much smaller radius .than either the returning TEMOO 

or TEMlO modes individually, and a large fraction of the power can be coupled 

back into the waveguide. The returning beam then couples to a different 

superposition of HEll and HE
l2

• which must undergo the right relative phase 

shift and attenuation or gain in the waveguide to produce a similar low loss 

at the other end. In the limit as the mirror distances go to zero. the op­

timum waveguide length approaches that for which the single-pass relative 

phase shift between HEll and HEl2 is 2nN (~here N=1,2,3, ••• ); for small 

finite mirror distances, the minimum loss condition is roughly that the 

HEll -HE12 phase shift in the waveguide plus the TEMOO-TEMlO phase shifts in 

the free space regions add up to 2nN. 

III. Experiment 

The laser used for this experiment has been described previously else­

where IsJ. Briefly, it consists of an alumina tube resting in a groove in a 

water-cooled aluminum block. Stainless steel swage tees are attached to the 
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ends of the ceramic tube using teflon ferrules, and serve both as electrodes 

and as conduits for the flowing gas. The ends of the tees are milled off at 

Brewster's angle, and NaCI windows are attached directly. Th~s design is 

uniquely suited for our experiment, since the length of the waveguide can 

be varied easily without extensive rebuilding of the laser. 

Due to the structure of our laser, the minimum distances d
1 

and d2 for 

which we could make measurements were 4 em. The minimum ~. was 28 em, lim­

ited by the length of the heat sink. The tubes used as waveguides were from 

McDanel Refractory Porcelain Co., and were made of extruded type AP-35 alu­

mina, which is 99% pure A1203 . Nominal inner diameters for the tubes were 

(2.38±O.08}mm. Since variations in tub.e diameter within this tolerance were 

sufficient to affect predictions considerably, and since variations nearly 

as large as the manufacturer's tolerance were in fact observed, we found it 

necessary to measure our tube diameters using a microscope with a precision 

positioning platform and digital readout. This permitted determination of 

the bore diameter to within an accuracy of ±O.002 mm. 

A few measurements were made with another laser similar to that de­

scribed above .. but with a nominal hore diameter of (1. 59±O. 08)mm and an 11.5 

cm guide lengthA The waveguide material was again extruded alumina. 

We did not measure the cavity losses directly, but instead observed the 

variation of the laser output power, which. is a monotonically decreasing 

function of the cavity losses, with. changes in the cavity configuration. 

Configurations giving a lJ1aximUI!1 power corresponded to loss minima and vice 

versa. Thus, what we compared to theory was not the actual value of cavity 

loss, but the cavity configurations for which the derivative of loss with 

respect to some cavity dimension was zero. 
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The mirror distances were measured to an accuracy of ±O.l em, more 

than adequate for our purposes. To the measured distances were added a 

correction 

(10) 

where t is,the thickness and n the refractive index of the Brewster window. 

This represents the difference between the 1Deasured geometrical distance and 

the effective optical distance from the waveguide to the mirror. For a 

sodium chloride window of thickness t=4 mm and refractive index n=1.4948, 

this correction is 2.7 mm. Once power was measured as a function of mirror 

distance, the location of the peak could be estimated to within typically 

about ±0.25 cm. 

Our first observation, mentioned at the beginning of the paper, was of 

output power versus one mirror distance, d2 , for various fixed values of 

the other mirror distance, ~, for a waveguide of length 28 cm and bore 

diameter 2.435 mm. These data were presented in Figure 2. We also obtained 

some similar data with the smaller laser of length 11.5 cm and bore diameter 

1.666 mm. From the curves in Figure 2 and those for the smaller laser, we 

determined minimum-loss d
2 

values for each dl , and plotted them in Figure 9, 

along with theoretical curves for the two respective waveguides. The theo­

retical curves were calculated using three waveguide modes, and unlike the 

two-mode curves in Figure 3, they display discontinuities. The loss itself 

is a continuous function of d
1 

and d
2

, but the loss vs. d
2 

curve at fixed d1 

has a broad, flat-bottomed valley. and at a certain value of dJ , the position 

of the minimum shifts from one side of the valley to the other, resulting in 

a jump in the optimum d
2 

vs. d
1 

curve. The experimental points fall some-
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what above the theoretical curves, a fact on which we will comment later. 

We note that the highest power obtained with a flat-mirror resonator, 4.79 W, 

is not much smaller than the 5.88 W we obtained under the same conditions of 

pressure and current for a resonator consisting of 34 em radius of curvature 

placed at their optimum distance of 34 cm from the ends of the waveguide. 

This difference in power is entirely attributable to the difference in out­

put coupling for the two output mirrors: 5% for the flat mirror and 7% for 

the curved mirror. Thus the b.enefits of going to a curved-mirror resonator 

are not very great, and may be outweighed by the fact that the curved-mirror 

resonator requires a greater total cavity length in order to achieve maximum 

output. Further improvement in the flat-mirror laser could be achieved by 

lengthening the waveguide so that the optimum mir.ror distances were approxi­

mately equal to the minimum mechanically accessible distances of 4 cm. 

Next, we measured output power as a fun~tion of mirror distance d and 

waveguide length t for symmetric cavities with d1=d
2
=d. We did measurements 

for 36 different values of tranging from 28 cm to 45.7 cm. The same tube, 

having a measured bore diameter of 2.3]6 mm, was used throughout, and seg­

ments of approximately 0.5 em were cut off with a diamond saw for each new 

length. After cutting, the tube was cleaned with water and dried. The 

water-cooled heat sink block used was 22.6. cm long, not sufficient to cool 

the entire length of the waveguide except for the shortest lengths used. 

For longer waveguide lengths we cooled the remainder of the tube with Eimac 

type HR-8 finned aluminum heat sinks which we drilled out to accomodate the 

tube outer diameter, and which we air-cooled with fans. 

For all measurements we maintained the same average pressure of 42 Torr, 

and a pressure gradient of roughly 0.0] Torr/cm, in the waveguide. The 
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pressure was well below optimal, but was the maximum for which our power 

supply could maintain a discharge for the longest tube lengths used. The 

current was 10 rnA throughout. 

Considerable scatter in the data was caused by variations in the 

straightness of the tube. Large variations in output power, by as much as 

65%, could be produced by varying the rotational orientation of the wave­

guide within its groove or by applying pressure to one side of the tube to 

cause it to bend in a particular direction. Our later measurements were 

made with pressure applied to the tube in such a way as to maximize the 

power, but for our earlier measurements (~.e. for longer tube lengths) this 

was not done, and there is more scatter in the data. Also, contamination 

of the Brewster windows by the grease used on the heat sinks sometimes 

resulted in window damage and consequent anomalous power measurements. 

For each value of the waveguide length R.,we observed the variation of 

output power with the mirror distance d. Within each of these runs, factors 

such as hore straightness and condition of the windows tended to be constant, 

and relatively clean-looking data were ohtained. While, for example, rotat­

ing the tube in the groove could produce a considerable variation in the 

maximum power obtainable, it had much_ less effect on the value of d at which 

maximum power was observed. Examples of experimental data on power vs. d at 

constant R., and on power vs. t at constant d, appear as inserts in Figure 10. 

Due to the prob~ems noted in the preceding paragraph, there is much more scat­

ter in the power-vs.-R. data, expecially since each such graph contains data 

obtained over a period of ahout a month. 

In the plots of power vs. d at constant R. for the longer waveguide 

lengths CR.2,.36 em} the peak in power due to HE_11-HE12 mode mixing occurs at 
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d<4 cm, which is inaccessible to us. For i<35.5 cm the peak does occur at 

d>4 cm, and moves outward toward larger d as i decreases, as expected. The 

graphs for i=44 through 45.7 em exhibit a lesser peak which we attribute to 

the HEll-HE13 mode mixing loss minimum. These peaks occur at total cavity 

lengths of about 59 to 59.5 em, as compared to 60.9 cm predicted theoreti­

cally for the fourth HEll-H~3 minimum. Where these peaks were observed the 

laser output was observed to be a donut mode. This is easily understood 

since the HEll mode couples strongly to a TEMOO free space mode, while the 

HEl3 couples strongly to a TEM20 mode. In order for the TEM20 and TEMOO 

. modes to produce destructive interference in the outermost edges of the beam, 

and thus reduce coupling losses by reducing the effective spot size, they 

must also interfere destructively at the center of the beam while reinfor­

cing each_ other at intermediate radii-This results in a donut mode pattern. 

The laser mode pattern observed for the HEll-HE
12 

loss minimum was always 

clean and Gaussian-looking, although we did not do any quantitative measure­

ments of beam profile. 

The theoretical graphs of loss vs. t in Figures 4 and 5 lead us to ex­

pect a maximum in loss, and hence a minimum in power, at values of t slight­

ly longer than those for which a peak power is observed due to HEll-HEl2 

mixing. These power minima are very indistinct, if in fact present at all, 

in the power vs. t plots such as the insert in Figure 10. It is likely that 

the minima are being washed out by the tendency of the laser to switch to a 

shorter wavelength transition, for which the losses are smaller, rather than 

continue to operate at 10.6-~m. We will return to the wavelength shift ques­

tion shortly. We also expect additional loss minima/power maxima at still 

larger values of i, due to HE1l-HE
13 

mixing. The third such loss minimum 
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is generally very close to the HE
U

-HE12 minimum (see Figure 5), and that 

together with the ability of the laser to switch wavelengths to avoid high­

er losses at intermediate t values results in this loss minimum, and the 

consequent peak in power, being unresolved from the HE
U

-HE
12 

peak.· The 

fourth HE
11

-HE
12 

loss minimum is expected to occur at such long total cavi­

ty lengths that for the largest d value shown, it should occur near the 

largest t used, and for smaller d it should not be seen. However, for 

large d the loss minimum is not expected to be very strong. The data show 

no distinct peak in power distinguishab.le from the noise. 

From plots such as those in the inserts in Figure 10 (mainly the power­

vs.-d graphs) we ob.tained a number of points on an optimumd vs. i curve; 

these are compared to theory in ;Figure 10. The data lie approximately on a 

straight line of constant total cavity length, as expected from theory, but 

that length is somewhat longer than predicted. 

In a cavity with no wavelength~selective element we predicted that as 

the total cavity length was extended beyond the optimum value for 10.6 ~m, 

so that losses became very high at that wavelength, the laser would switch 

to shorter-wavelength transitions, for which the losses are lower. Figure 

lla shows an example of this phenomenon. Output power is plotted as a func­

tion of mirror distance d
2 

at constant d
1 

=10..3 cm for a laser with waveguide 

length i=30.5 cm and bore diameter 2a=2.428 1I1II1. Also indicated are the bands 

and branches for which lasing was obs~rved for various ranges of d2 values. 

For small values of d2 the laser operated in the 10 ~m P-branch; as d2 was 

increased, it switched to lOR, then gp, and finally 9R. There was some over­

lap in the intervals in which certain branches could be obtained, but for 

each branch there was some range of d2 in which only that branch would lase. 
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This illustrates the coarse wavelength selectivity that can be achieved by 

varying the total cavity length. The appearance of different branches and 

bands is also marked by shoulders on the power-vs.-d2 curve. 

We find that the range of d2 over which each branch lases is farther 

from the waveguide than we would have expected from our theory. Also, our 

theoretical loss curves (not shown) suggest that the hardest branch to se-

lect by this method should be J.OR, whereas in fact we found it generally 

most difficult to obtain 91>, and for most of the cavity configurations we 

examined other than this one, the laser skipped over this branch . . 
The other consequence of wavelength variation we predicted was that as 

a grating-tuned laser was- tuned toward shorter wavelengths, the cavity 

would have to be lengthened in order to maintain low losses. An example of 

this is provided in Figure lib. This time we have £=28 cm and 2a=2.435 mm, 

and the grating was held at constant distance d1=7.3 cm while the distance 

d2 to the other flat mirror was varied. Power is plotted vs. d2 for the 

strongest line in each branch~ The expected shift is observed, about a 5 cm 

lengthening in the opt~um cavity length in going from 10.588 to 9.268 ~m. 

IV. Discussion 

Our experimental results are generally in good qualitative agreement 

with our calculations, hut insofar as quantitative comparison is possible 

(lIlainly in the positions- of loss minima) there are slight discrepancies, 

particularly that the loss minima due to HE11-HE12 mixing occur at greater 

total cavity lengths than predicted. Among the explanations that -might be 

proposed are: 

1) Inaccuracy or nonuniformity of the waveguide bore radius; 

2) Use of an incorrect value of the material parameter v • n' 
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3) Effects due to waveguide modes of higher order than HE
l3

; 

4) Effects due to wavefront curvature of the individual HElm modes [14J; and 

5) Effects due to the active gain medium. 

A single measurement of the tube diameter was accurate to ±0.002 mm, or 

±0.1% for a 2.38 mm bore, far too small an uncertainty to account for the 

observed discrepancy. A more serious question concerns the uniformity of 

the bore diameter of the extruded tube. In only one case have we measured 

diameters of more than one segment of the same tube, that being the tube that 

was progressively shortened from 45.7 cm to 28 cm. We found the variation 

in bore diameters for those pieces to be less than 0.5%, still too small to 

be responsible. In fact, even the manufacturer's tolerance in the tube diam-

eter is not quite sufficient to explain the discrepancy. While we cannot 

rule out variations of the bore diameter in places we did not measure, we 

think it unlikely that this is the cause of the disagreement. 

The complex material parameter v defined in Equation (4) is a function 
n 

of the complex refractive index v of the waveguide material. To our know-

ledge, no refractive index measurements on alumina ceramic have been repor-

ted, although_ there have been measurements for ruby [15J and sapphire [16J, 

crystalline materials of nearly the same composition. While we are not com-

pletely convinced of the applicability of these data to alumina, Abrams and 

Bridges [17J have used the data for ruby to estimate Re v for alumina. 
n 

Using the same refractive index data [~5J, we were unable to reproduce their 

Re v values for alumina belQw about lQQQ em-
l 

n 
We therefore present in 

Table I the values of Re v and 1m v that we calculated for the most promi-n - n 

nent CO
2 

laser transition wavelengths. Since ruby is birefringent, one ob-

tains different values of v for electric fields parallel and perpendicular 
n 
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to the c-axis of the crystal. Alumina is a fine-grained polycrystalling 

material, so we assumed, as did Hall ~ al. 11SJ, that vn could be found by 

averaging over the random crystal orientations. This procedure was used 

in obtaining the values of v listed in Table 1. Values of v for lOP(20) 
n n 

in this table were used in finding the theoretical curves in Figures 9 and 

10. 

The relation between effective and actual waveguide lengths, ~' and ~, 

respectively, was given in Equation (61. For a CO
2 

waveguide laser with 

a=1.19 mm, ka"'700, so that 1m v would have to be more than an order of mag­
n 

nitude larger than the val~e we used in order to bring theory into agreement 

with experiment. While we are uncertain of the accuracy of the v values 
n 

in Tab.le I, we think it unlikely that they are an order of magnitude too low. 

Deviations of Re v may, however, explain the fact that the 9 ~m P-branch 
n 

was hard to obtain by varying the cavity length; perhaps Re v is larger 
n 

there than we have supposed, so that the waveguide is particularly lossy. 

2 Both of the above proposed explanations assumed that ~'/ka was not 

what it seemed, either because a was not accurately known, or because the 

wrong value of 1m v was used in converting from ~ to ~'. In either case, 
n 

all other loss minima due to waveguide mode mixing should be affected in a 

consistent manner. This is not the case, however. Whereas experimentally 

the HEll -HE12 loss minima occur at cavity lengths longer than predicted, the 

HEll-HE13 minima occur at lengths slightly smaller than predicted. 

We limited our calculations to use of a maximum of three waveguide 

modes, and it is possible that higher order modes may be important in deter-

mining the position of the loss minimum. Abrams and Chester [8J used at 

least 5 modes in all their calculations, but found that increasing the num-
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ber from five to ten made little difference. Degnan and Hall [3J found 

that three modes were adequate to account for most observed features of 

their experimental data. We have found that going from two to three modes 

can make large changes in the losses at small d/ka2 (~ee Figure 5), but 

has little influence on the positions of loss minima since the regions of 

mode mixing are relatively narrow and do not overlap. 2 At larger d/ka , 

however, the mixing regions are broader and overlap substantially, and 

while the change in losses in going from two to three modes is much smaller 

than at small d/ka2 , there can b.e a significant shift in the position of a 

minimum. For our laser with a 2.38 mm bore, the predicted optimum cavity . 
. length increases by >1 cm in going from two to three modes whenever d>8 cm. 

For a higher mode to have as large an effect, not only the strength of that 

mode's mixing with HEll is important, but also the overlap of the mixing re­

gion with that region in which strong HEU -HE12 mixing o.ccu·rs. Based on 

2 
what we have learned about the locus of HElm-HEll mixing on the t/ka vs. 

d/ka
2 

plot, we estimate that both HE14 and HE15 mixing are likely to be 

present in the neighborhood of the HE11-HE12 loss minimum, but we cannot 

predict whether it will b.e strong enough to shift the minimum very much. 

Tacke I14J has shown that any waveguide losses in excess of those due 

to the leaky nature of the waveguide I6J, such as due to scattering from 

surface imperfections, will induce a curvature of the wavefronts of the 

individual HElm modes, in excess of the curvature of order A/a calculated 

by Marcatili and Schmeltzer I6J for those modes, and distinct from the over-

all wavefront curvature that is present because the actual field is a super-

position of HEll' HE
I2

, and higher order waveguide modes. This curvature 

of the HElm wavefronts will alter the coupling to the free 'space TEM modes. 
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It is known from the experiments of Hall et al.[18J that real waveguides, 

and especially extruded ones, have guiding losses well in excess of those 

calculated for the idealized leaky waveguide [6J, so perhaps this effect 

contributes to the discrepancies. At this point we cannot quantitatively 

evaluate the effect because it would require a knowledge of the actual 

waveguide attenuation factors for all modes that are important (whereas 

only that for HEll can he measured conveniently) and because the theory has 

not been worked out completely for higher order modes. 

Finally, we have neglected the active gain medium in the laser. This 

medium will generally have a nonuniform radial gain dependence and will pro­

duce a mixing of the waveguide modes as well as different gains for the 

different modes. Thus matrix MS will be non-diagonal, and the relative mag­

nitudes of its diagonal elements will be different. Considering only the 

second effect, we have done rough calculations that indicate that if the HE12 

mode has a higher gain than the H~, this will shift the optimum 1 vs. d 

curve in the direction of the experimental data. While the active gain me­

dium may be of some importance, we doubt that it is the most important cor­

rection, because in experiments in which we varied the laser pressure and 

current, and hence the characteristics of the active gain medium, the opti­

mum cavity configurations did not change significantly, if at all. 

It appears possible that some combination of these last three effects 

(higher waveguide modes, wavefront curvature due to excess losses, active 

gain medium) may be responsible for the observed disagreement between theory 

and experiment, but we are not presently able to evaluate them quantitatively. 

v. Conclusions 

We have presented a new approach to the calculation of waveguide laser 
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resonator losses for the specific case of a circular dielectric waveguide 

and flat mirrors. This method has the advantage of minimizing the amount 

of numerical integration and therefore greatly reduces computation time. 

Our calculations using this method predict that low losses can be 

achieved for a flat-mirror resonator even for rather large waveguide-mirror 

distances, provided that a certain relationship between the waveguide length 

. 2 
and mirror distance is satisfied. For d/ka <0.10, that relation is simply 

that the total cavity length should equal a constant depending on the wave-

length. and the waveguide bore radius; when this is satisfied, overall reso-

nator losses only slightly exceed the waveguiding losses. Experimentally 

determined optimal cavity configurations are nearly in agreement with these 

predictions, but occur at somewhat greater total cavity lengths. The possi-

bility of achieving low losses with a flat-mirror resonator·has the impor-

tant consequence of allowing the laser to be operated without specially-made 

short-radius concave mirrors. 

In addition, it has been predicted and experimentally demonstrated 

that in a cavity without any wavelength-selective element, coarse wavelength 

tuning can be achieved simply by variation of the cavity length over several 

centimeters, and that conversely, in a grating-tuned laser, the cavity length 

must be changed as the wavelength is tuned in order to remain in a low-loss 

configuration. 

Possible extensions of our method include the calculation of far-field 

radiation patterns and the gene1;'alization of the method to curved-mirror 

cavities. Also, a variant of our method could be used to treat the problem 

of the transmission of a Gaussian beam through a waveguide [19J. 

A computer program in the BASIC language for computation of resonator 
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losses is available from the authors [20J, and a FORTRAN version is planned. 
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Appendix 

We present here the details of the calculations of matrices M 
1 

through M.
7

• 

In evaluating the matrix elements of M1 , we require normalized func­

tions for both the waveguide and free space modes. These are given by, 

respectively, 

{ 
1 

J ~ul ria) 
;; IJ1 (u1m) la 

o m 
HElm: <p (r) = m 

0 

(r<a) 

(AI) 

(r>a) 

~ (r) =~ 1 2 2 2 2 
TEMmO: L (2r Iw ) exp(-r Iw ) m 1T w m 0 . 0 

0 

(A2) 

where J
o 

and J l are Bessel functions, Lm is a Laguerre polynomial, and u1m 
is the m'th zero of J (u). The Laguerre polynomials are defined as in 

o 

Magnus et al. [21], differing by a factor of 11m! from the definition ap-
, 

pearing in some other references. The matrix elements of Ml are then given 

by 

r ~ (r) <p (r) dr m n 
(A3) 

We calculate these elements by numerical integration using Simpson's rule 

with 101 mesh points. We then obtain matrix M4 by taking the transpose of 

The elements of the diagonal matrix M2 are complex exponentials repre­

senting the phase shifts of the TEMmQ modes relative to the TEMOO mode in 

propagating a distance 2d
1 

from the beam waist. They are 

[ -1 2 ] (M
2

) = a exp -i 2m tan (4d
1

/kw ) 
mn mn o' 

(A4) 
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The elements of M6 are given by the same expression with d
l 

replaced by d
2

. 

We must note here that in order to be consistent with Marcatili and Schmelt-

zer's [6] convention of assuming that the field in the waveguide goes as 

exp(iyz), we have assumed that the free space field contains a factor 

exp(+i.kz) rather than the usually assumed exp(-ikz). This entails taking 

complex conjugates of all other expressions in the free' space mode functions, 

and the phase shifts of the T~fma modes are opposite to the usually stated 

values. With this assumption, the phase shift between TEMla and TEMaa in 

propagating in a given direction is of the same sign as that between HE12 

and HEll in propagating in the same direction, as it should be. 

The matrix elements of M) ~again noting that we have taken the complex 

conjugate of the usual TEM mode definition) are given by the integrals 

co 

(M3) mn = (2/ww 0) f dr2 Lm <.car2) Ln (_er2) exp (-qr2) 

a 

where 

a = 2/w 2 
o 

1 q = 2 
w 

0 

1 k + i 2 R 2 
w 

w = w I 1 + (4d
l 

/kw 0 212J~ 
0 

R = 2dl I 1 + (kwo 
2 

/ 4dl 12J 

(AS) 

(A6) 

(A7) 

(AB) 

(A9) 

(Ala) 

The integral in Equation (AS) is a special case of the type considered by 

Kogelnik [12], who found that it can be evaluated analytically, with the 

result 
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(m+n)! (1 _ CL) m .(1 _ !) n F(-m -n -m-n 'x) 
m! n! q' q' ", . 

where F is the hypergeometric function and 

x= q(g - CL - S) 
(q - CL) (q - B) 

If we make use of Equations (A6-AlO), we find that x simplifies to 

(All) 

(Al2) 

(Al3) 

After considerable algebra the expression for the matrix element simplifies 

to 

(m+n) ! ~ -(m+n+1) /2 [. J (M3)mn = m! n! Cx-l) x . F(:-m,-n,-m-n;x) exp ~(<P1 +I1l<P 2 + n<P 3) 

where 

<PI = tan-l[(x-l}~/(X+1)] 

<P2 = 1T + tan -1 [(x-ll ~J 

-1 3/2 <P3 = - tan [(x-I) / (3x+I)] 

(Al4) 

CAlS) 

(A16) 

(AI7) 

The elements of M7 are given by the same expression, but with dl replaced by 

d2 in Equation (AI3). We note that the hypergeometric function F is a poly­

nomial in x whose degree is the smaller of .the two integers m and n. As dl 

goes to zero, x, and hence F, become infinite, while the remainder of the 

expression for (M
3

) goes to zero, The net effect is cancellation, so that mn 

as dl goes to zero, M3 approaches the identity matrix. The computer, however, 

does not recognize this cancellation, and therefore must be told explicitly 

to set M3 or M
7

equal to the identity matrix whenever d1 or d2 , respectively, 

is zero, 

,. 
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Finally, the diagonal matrix MS is given by 

15 eXP[-u
I 

2 U./ka2) (Re v /ka)] 
mn m n 

i 2 2 2 
x expI- 2' (u

1m 
- u

l1 
) (.2./ka ) (1 + 2 1m v /ka)] . n (AlB) 

where, again, we have considered only the relative phase shift between the 

HElm and HEll modes. 
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TABLE 1. 

CO2 Laser 

Transition 

lOP(20) 

lOR(20) 

9P(20) 

9R( 20) 

a Values of the material parameter vn for alumina at CO 2 laser wavelengths. 

Wave- Re v 1m v 
length n n 

b ( llm) E 1 c E II c Avg. E 1 c E II c 

10.588 0.16 0.11 0.14 -1.14 -1.05 

10.244 2.09 0.28 1.49 -0 .. 29 . -1. 95 

9.549 1.58 2.18 1. 78 -0.03 -0.13 

9.268 1. 55 1.90 1.67 -0.02 -0.05 

a Based on the refractive index data of HMfele [15]. : 

b 
Weighted average over crystal orientation, (2/3)vnl + (l/3)vnll' 

Avg. b 

-1.11 

-0.84 

-0.06 

-0.03 I 
~ 
"'-J 
I 
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Figure Captions 

1. (a) Cavity configuration. Mirror apertures in experiment are 25 mrn, , 

but are considered infinite in theoretical analysis. 

(b) Equivalent extended periodic system analyzed theoretically. For 

explanation of M1, M2 , etc., see text. 

2. Experimentally observed dependence of output power on d2 for various 

values of d1 , for a CO2 laser with a=1.217 mm, i=28 cm. 

3. (a) Loss contour plot in d2/ka
2 

vs. d1 /ka
2 

plane, for one particular 

waveguide length, calculated using two waveguide modes. Heavy solid 

curve is the curve along which aL/ad2=0, while heavy dashed curve is that 

along which aL/ad1=0. 

(b) Curves analogous to the heavy solid curve in (a) for various values 

of the waveguide length parameter i'/ka2
, all calculated using two wave-

guide modes and with Re v Ika=O. 
n 

4. (a) Loss vs. waveguide length for symmetric cavity with various mirror 

distances d(=dl =d2}, calculated using two waveguide modes. The top scale, 

2 2 a li'A, is approximately equal to the waveguide Fresnel number, aliA. 

(b) Effect of cavity asymmetry on the length dependence of the loss 

calculated using two modes. 

5. (a) Loss vs. waveguide length. for lowest-loss mode of symmetric resonator, 

calculated using one, two, and three waveguide modes. 

(b) Losses vs. length for all three resonator mode solutions found by 

2 
using three waveguide modes, again for d/ka =0.04. 

6. Contour plot of losses vs. waveguide length and mirror distance for 

symmetric cavity, calculated llsing two waveguide modes. Heavy solid 

curve is that along which aL/at'=o, while along heavy dashed curve, 



-49-

().C/ad=O. 

7. (a) Graph for selecting optimum total cavity length of symmetric reso-

nator given mirror distance d, for various values of Re \I /ka, calculated 
n 

uSfngthree waveguide modes. Effective total cavity length L' is nearly 

identical to actual cavity length L; see Equations (6) and (8). 

(b) Minimum cavity loss achieved by using part Ca) to select cavity 

length. For comparison,dashed curve represents coupling losses ca1cu-

1ated from pure-HEll model. 

8. (a) Graph for selecting optimum total cavity length of symmetric resona-

tor given waveguide length 1, for various Re \I /ka, calculated using 
n 

three waveguide modes. 

Cb) Minimum loss achieved by using part C-:a) to select cavity length. 

9. Experimental values of dZ vs .. d1 for which a£/adZ=O, for two lasers of 

different waveguide dimensions. Upper solid curve is three-mode theoret-

ical curve for larger laser (~ircular experimental points) while lower 

curve is for smaller laser (~quare points). 

10. Experimental values of 1 vs. d for which a£/a9..=o (triangles) or a£/ad=O 

(circles) for symmetric resonator. Solid curve is 3-mode theoretical 

curve for ().C/a1=0, while dashed curve is theoretical curve for ().C/ad=O. 

Insets: Examples of experimental graphs of power vs. d at constant R., 

and power vs. R. at constant d, from which. the points in the main graph 

were obtained. 

11. (a) Output power and observed lasing band and branch as a function of 

d
Z 

for fixed d
1

, exhibiting the wavelength selection capabilities of 

the resonator. No determination of the lasing transitions was made 

in the interval 9.3 to 10.3 cm. 
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(b) Output power vs. mirror distance d2 at four different wavelengths 

for a grating-tuned laser with fixed grating distance dl , exhibiting 

shift in optimum total cavity length. with wavelength. 
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