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a b s t r a c t

Inefficient controlling strategies in heating and cooling systems have given rise to a large amount of
energy waste and to widespread complaints about the thermal environment in buildings. An intelligent
control method based on a support vector machine (SVM) classifier is proposed in this paper. Skin
temperatures are the only inputs to the model and have shown attractive prediction power in recog-
nizing steady state thermal demands. Data were accumulated from two studies to consider potential use
for either individuals or a group of occupants. Using a single skin temperature correctly predicts 80% of
thermal demands. Using combined skin temperatures from different body segments can improve the
model to over 90% accuracy. Results show that three skin locations contained enough information for
classification and more would cause the curse of dimensionality. Models using different skin tempera-
tures were compared. Optimal parameters for each model were provided using grid search technique.
Considering the overfitting possibility and the cases without learning processes, SVM classifiers with a
linear kernel are preferred over Gaussian kernel ones.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Widespread in both residential and commercial buildings,
heating, ventilation and air conditioning (HVAC) systems consume
almost 20% of the world's energy. The benefits from this con-
sumption are not as great as they should be. In a large study, only
11% of buildings met the basic criterion [1,2] that 80% or more of
their occupants be satisfied with their thermal environment [3].
Behind the unsatisfactory cases may be ineffective thermal envi-
ronment control strategies.

Most of the air conditioning systems have temperature/hu-
midity controllers. In some cases such as residential buildings and
private offices, occupants tune the set points according to their
perception, without a sense of what temperatures could be
comfortable or the energy costs associated with the temperatures
selected. As a result, the set points are frequently revised and en-
ergy is wasted [4]. In other circumstances like conference halls,
occupants have little access to the controllers. Temperature is
preset based on standard recommended temperatures or on the
operators' feelings about what causes the least thermal complaints,
sity, 800 Dongchuan Road, Minhan
which often results in overcooling of the space.
Over the past few decades, many thermal comfort controllers

have been proposed [5e7]. The essential idea is to replace the oc-
cupants' feedback with thermal sensation prediction based on
built-in comfort models or data-driven self-learning methods. The
inputs are commonly physical environment parameters such as air
temperature, humidity, air velocity and radiation temperature.
Measuring these in occupied spaces presents a number of chal-
lenges. In addition, clothing insulation and occupant activity level
are difficult-to-measure factors that greatly affect comfort model
accuracy. To alleviate these problems, one potential approach is to
control the thermal environment based on physiological
parameters.

The dramatic progress of wearable devices has created tech-
nology ready for monitoring body parameters in daily life. Surface
body temperature sensors could be attached to watches, clothes
and so on. Fiber Bragg grating (FBG) based sensors have made it
possible to monitor the skin temperature of different body parts
under intelligent clothing [8]. The development of infrared camera
technology also makes it possible to capture uncovered skin
g District, Shanghai, 200240, China.
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temperatures remotely [9]. However, previous models linking
sensation with physiological parameters such as by Fiala [10] and
Zhang [11e14] are too complicated to be used in designing practical
controllers.

To develop practical ways of using skin temperatures to control
heating and cooling systems, Taniguchi et al. [15] proposed an
equation to estimate car occupants' thermal sensation based on
face skin temperatures. Wang et al. [16] conducted a lab study to
explore the hypothesis proposed by Humphreys et al. [17] that
finger temperature or an air and finger temperature combination
was capable of predicting thermal sensations. They found that the
temperature gradient between arm and hand could be a good in-
dicator for cool sensation. To a certain extent, these studies have
laid the groundwork for designing intelligent controller based on
skin temperatures.

In this paper, we have combined a machine learning algorithm
with local steady-state skin temperatures. Different SVM classifiers,
model parameters and skin temperature combinations were tried
to explore to what extent skin temperatures could go in predicting
the thermal states. Exact ways of applying the prediction models to
control heating and cooling system were proposed. We collected
data from two studies to test the model performance for building
areas with either one or more occupants. As the SVM approach
needs a process of data learning, we discuss the learning sample
sizes needed for certain classifiers to work well automatically, and
also examine the performance of preset models for new occupants
without training.
2. SVM controlling prototype

As shown in Fig. 1, the SVM approach is a data-driven model.
During the learning procedure, data are collected in traditional
ways in which occupants adjust the heating and cooling system
according to their perception of the thermal environment. Thermal
demands and corresponding local skin temperatures are input to
the SVM classifiers to study decision boundaries. After that, SVM
models predict the thermal demands of occupants based on real-
time skin temperature measurements. The application scope of
the controller is flexible, including but not limited to HVAC systems
and more localized task-ambient conditioning (TAC) systems.

Imagine that one or more local skin temperatures T constitute
an m-dimensional space, in which the sample data vectors (T, y)i
(i ¼ 1,…n) are points with corresponding thermal demands y (y ¼ -
1, 0, 1). The basic idea behind the SVM classifier here is to construct
the optimal hyperplanes in the space that could differentiate the
data vectors from others with different thermal demands. As the
SVM classifier is basically a two-class method, a one-vs-one (OvO)
strategy is adopted in this paper to reduce multiclass classification
into a multiple binary problem [18]. Choosing a proper kernel
function has always been the largest challenge in using SVM clas-
sifiers. In this paper, we compare the performance of linear and
Gaussian kernels. Standardization of the dataset was implemented
first. As there are two parameters C and Y for the Gaussian kernel
Fig. 1. The controlling concept of SVM c
SVM classifier and one parameter C for the linear kernel SVM
classifier, we used a “grid search” method on C and Y to find the
proper parameters for the classifiers. Exponentially growing se-
quences of C (2�2, 2�1, 20,…, 210) and Y (2�10, 2�9, 2�8,…, 24) were
tried and the ones achieving the best cross-validation accuracy
were picked. To grasp a good understanding of the SVM classifier,
one can refer to the introductions of Hsu et al. [19] and Noble [20].

3. Experiment 1

This experiment considers the validation of SVM classifiers to
learn and predict steady-state thermal demands for a group of
occupants in a uniform environment. We place the focus on three
basic issues: a. the selection of input features; b. the comparison of
classifiers with different kernels; c. tuning parameters for the SVM
models.

3.1. Methods

The data were accumulated from a series of tests carried out in
the Controlled Environmental Chamber at UC Berkeley to correlate
skin temperatures with whole-body sensations for a variety of
warm to cool conditions. Sensation votes were obtained at the end
of the periods used to acclimatize the subjects to the environmental
conditions in the tests. 70 tests were conducted using 11 subjects,
with 969 votes collected.

Subjects were first preconditioned to the day's test in a Jacuzzi
bath for 15 min. After that, thermocouples were attached to collect
local skin temperatures every 5 s. There were totally 28 body lo-
cations measured during the tests. Only 13 of them were used in
this paper: the forehead, cheek, chest, back, abdomen and 8 ex-
tremity skin temperatures on left the side of the body: upper arm,
forearm, hand, finger, thigh, shin, calf and foot (Fig. 2). Subjects
wore a long-sleeve elastic leotard (0.32clo) and socks (0.02clo) with
the thermocouples covered except those at head and hand loca-
tions. Whole-body thermal sensation was investigated repetitively
by pop-up questionnaires on the computer at varying time steps of
1e3min. Experimental details are graphically described in previous
publications [21,22].

In this study, the first 10 votes in each test were abandoned in
order to make sure that the data represent steady-state conditions.
The total data set was here split into two subsets: a training set of
80% (774) and a holdout set of 20% (195). The distributions of total
data and testing data are shown in Fig. 3.

The sensation scale is similar to the ASHRAE 7-point scale,
adding “very hot” and “very cold” (9-point scale: 4- “very hot”, 3-
“hot”, 2-“warm”, 1-“slightly warm”, 0-“neutral”, -1-“slightly cool”,
-2-“cool”, -3- “cold”, -4-“very cold”). Statistical analysis was
implemented in SPSS (IBM SPSS Statistics for Macintosh, Version
22.0). Data were classified into 5 groups based on the thermal
sensation votes (TSV): heating demand (TSV < �1.5, cold); slight
heating demand (�1.5 � TSV < �0.5, cool); neutral
(�0.5 � TSV� 0.5); slight cooling demand (0.5 < TSV� 1.5, warm);
lassifier based on skin temperature.



Fig. 2. Thirteen locations of skin temperature measured in the tests (referred from
Ref. [21]).
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cooling demand (TSV > 1.5, hot). Levene's test was performed first
to assess the equality of variances. As the homogeneity of variances
was violated, we usedWelch's ANOVA to examine the differences of
skin temperatures between groups and used Games Howell post
hoc test to confirm where the differences occurred. Effect sizes of
local skin temperature between any two adjoining thermal de-
mands were computed with Cohen's d.

d ¼ T1 � T2
s

Fig. 3. Sample dat
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs21 þ ðn2 � 1Þs22

n1 þ n2 � 2

s

where T denotes the average local skin temperature, n denotes the
sample size and s denotes variance in each group.

The SVM classifiers were trained and tested in MATLAB 2016a
(TheMathWorks, Inc., MA, 2016). Becausewe only cared about how
to operate the heating and cooling systems, the data were sepa-
rated into 3 groups (-1-“heating demand”, 0-“neutral”, 1-“cooling
demand”) instead of 5 with the partition located at ±0.5 TSV. A
tenfold cross-validation approach was used to tune parameters C
and Y with the 774 training votes. After the optimal C and Y was
found, classifier performance was evaluated based on the testing
data set shown in Fig. 3(b).
3.2. Results and discussion

Generally, one should be acquainted with the data before
selecting input features for machine learning models. The thirteen
local skin temperatureweremeasured in four parts of human body:
two fromhead, three from trunk, four from upper limbs and the last
four from lower limbs. As shown in Fig. 4 sequentially, skin tem-
peratures fluctuate more in cool/cold conditions than those in
warm/hot conditions, which can be reflected not only by the
growth of standard deviations for each location respectively, but
also by the variations of mean temperatures between different skin
locations. These variations imply that, aside from the values of each
local skin temperature itself, the combined ones could have more
effective information to differentiate thermal demands of
occupants.

All thirteen local skin temperatures are significantly influenced
by the conditions (P < 0.001 for each one). Post-hoc test results are
shown in Table 1. Larger temperature differences are observed
between conditions in the limbs parts, which improves their suit-
ability as input features, but the limbs also have larger standard
deviations which attenuate this advantage. We consequently
computed the effect sizes to evaluate the sensitivity of the thirteen
potential indicators in reflecting thermal demands (Table 1).
Different from the P value telling whether differences exist be-
tween groups, effect sizes quantify the differences [23]. Cohen's,
a distribution.



Fig. 4. Local skin temperatures under different thermal demand conditions.

Table 1
Effect sizes between two adjoining conditions.

�1 vs �2 0 vs �1 1 vs 0 2 vs 1

Forehead 1.592* 1.761* 0.450* 0.771*
Cheek 1.684* 1.748* 0.969* 0.299
Chest 0.250 1.393* 0.578* 0.318
Back 0.743* 1.683* 0.587* �0.246
Abdomen 1.151* 1.391* 0.373* �0.109
Upper Arm 1.681* 1.650* 1.003* 0.580*
forearm 1.536* 2.117* 0.841* 0.565*
Hand 1.568* 2.145* 0.837* 0.036
Finger 1.666* 1.796* 0.716* 0.587*
Thigh 1.454* 1.651* 0.952* 0.207
Shin 1.562* 2.149* 1.025* 0.462*
Calf 1.124* 1.831* 0.733* 0.630*
Foot 1.725* 2.037* 0.851* 0.500*

Note: [Bold]* indicates that the post-hoc tests show significant difference at level
p < 0.01 when comparing the local skin temperatures between two conditions; �2
denotes ‘heating demand’; �1 denotes ‘slight heating demand’; 0 denotes ‘no
heating/cooling demand’; 1 denotes ‘slight cooling demand’; 2 denotes ‘cooling
demand’.
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d values of 0.2, 0.5 and 0.8 correspond to small, medium and large
effects respectively [24]. As shown in Table 1, the largest large effect
sizes exist between cool and neutral conditions. As a result, it seems
Table 2
The performance of SVM classifiers using a single skin temperature to predict thermal d

Input features C Y Testing accuracy

Forehead 4 j 0.25 0.125 j - 72.8% j 58.5%
Cheek 8 j 0.25 0.0625 j - 78.5% j 74.9%
Chest 32 j 0.25 0.25 j - 70.8% j 76.9%
Back 32 j 0.5 0.25 j - 76.9% j 70.3%
Abdomen 16 j 2 0.5 j - 56.4% j 54.4%
Upper Arm 256 j 1 0.0625 j - 79.5% j 79.4%
forearm 256 j 0.25 0.0625 j - 75.9% j 80.5%
Hand 1 j 0.25 0.25 j - 79.0% j 77.4%
Finger 2 j 0.5 2 j - 72.8% j 70.8%
Thigh 0.5 j 0.25 0.25 j - 75.4% j 74.4%
Shin 4 j 0.25 0.0625 j - 83.6% j 81.5%
Calf 1 j 0.5 4 j - 76.4% j 76.9%
Foot 32 j 0.5 0.125 j - 76.9% j 69.3%

Note: “Gaussian SVM result j linear SVM result” in each cell. Column “C” and “Y” provide o
over-all prediction rate. Last three columns represent for the probability of detection fo
condition; 1 denotes cooling-demand condition. Models showing the highest prediction
easier to differentiate heating-demand (�1, �2) conditions from
neutral (0) than cooling-demand (1, 2) conditions from neutral. The
seven locations showing large effect size (>0.8) in skin tempera-
tures between neutral and warm conditions were the shin, upper
arm, cheek, thigh, foot, forearm, hand in descending order.

Considering the practical measurement of skin temperature, it is
desirable to minimize the number of input features. Table 2 shows
how the SVM classifier works if just one location is used. The pre-
diction accuracies for three thermal demands and an overall rate
were computed. The shin skin temperature predicts the thermal
demands best in both the Gaussian and linear kernel models, with
the overall testing accuracy reaching 83.6% and 81.5% respectively.
Optimal parameters were (22, 2�4) for the Gaussian SVM classifier
and 2�2 for the linear SVM classifier. Two classifiers both work well
in predicting heating demands (around 90% accuracy), but do not
perform as well in predicting cooling demands and neutral. Among
the 13 locations, abdomen skin temperature had the worst pre-
diction performance with overall rates of 56.4% and 54.4%
respectively.

It has been claimed in a previous study that the upper limb skin
temperature gradient and forehead-to-extremity gradient could
indicate warm or hot sensations [16]. From the definition of hy-
perplane and the following transformation, we can see that the
classifier using forehead and finger temperatures is theoretically
equivalent to that trained with forehead temperature and
forehead-finger temperature gradient. Consequently, Table 3 shows
the performance of models with different input combinations
considering these gradients. Generally, there is a slight improve-
ment by adding an upper extremity skin temperature gradient or
head-to-extremity gradient. The optimal SVM classifier is the
Gaussian-kernel one with cheek and hand skin temperatures as its
input features. The overall accuracy reaches 85.1% when the
optimal parameters (22, 2�2) are adopted.

u$

�
T1
T2

�
þ u0 ¼ u

0
$

�
T1

T2 � T1

�
þ u0 ¼ 0

Considering the possibility of remote skin temperature mea-
surements using a thermal camera, it became interesting to realize
how well uncovered skin temperatures could predict thermal de-
mands (Table 4). The Gaussian kernel SVM performs best at the rate
of 88.7% with 4 input features: skin temperatures of forehead,
cheek, forearm and hand while the linear kernel SVM reaches its
highest accuracy of 80% when the forehead is excluded. Note that
more features would not guarantee better performance, which can
emands.

Accuracy for �1 Accuracy for 0 Accuracy for 1

85.3% j 82.4% 82.3% j 77.4% 50.8% j 15.4%
91.2% j 73.5% 71.0% j 85.5% 72.3% j 66.2%
79.4% j 88.2% 43.5% j 54.8% 87.7% j 86.2%
91.2% j 83.8% 77.4% j 37.1% 61.5% j 87.7%
66.2% j 64.7% 69.4% j 100.0% 33.8% j 0.0%
72.1% j 82.9% 80.6% j 70.82% 86.2% j 83.4%
86.8% j 89.7% 54.8% j 69.4% 84.6% j 81.5%
94.1% j 80.9% 58.1% j 67.7% 83.1% j 83.1%
89.7% j 89.7% 43.5% j 32.3% 83.1% j 87.7%
89.7% j 83.8% 54.8% j 50.0% 80.0% j 87.7%
91.2% j 89.7% 77.4% j 80.6% 81.5% j 73.8%
89.7% j 62.9% 62.9% j 76.9% 75.4% j 76.9%
95.6% j 80.7% 58.1% j 63.0% 75.4% j 66.2%

ptimal penalty factors and kernel scale factors, respectively. “Testing accuracy” is the
r each thermal demand. �1 denotes heating-demand condition; 0 denotes neutral
accuracy are highlighted in bold fonts.



Table 3
The improvement by adding skin temperature gradients in SVM classifiers.

Input features C Y Testing accuracy Accuracy for �1 Accuracy for 0 Accuracy for 1

Forehead; Forearm 4 j 0.5 0.25 j - 83.1% j 80.5% 89.7% j 89.7% 69.4% j 69.4% 89.2% j 81.5%
Forehead; Hand 0.25 j 8 0.25 j - 83.1% j 75.9% 92.6% j 82.4% 74.2% j 62.9% 81.5% j 81.5%
Forehead; Finger 2 j 8 0.25 j - 79.5% j 72.8% 95.6% j 89.7% 58.1% j 41.9% 83.1% j 84.6%
Cheek; Forearm 0.5 j 0.5 0.125 j - 83.6% j 80.0% 98.5% j 89.7% 82.3% j 74.2% 69.2% j 75.4%
Cheek; Hand 4 j 2 0.25 j - 85.1% j 80.0% 95.6% j 83.8% 77.4% j 88.7% 81.5% j 67.7%
Cheek; Finger 16 j 64 0.5 j - 81.0% j 75.9% 89.7% j 88.2% 61.3% j 46.8% 90.8% j 90.8%
Forearm; Hand 1 j 2 0.125 j - 80.0% j 76.9% 89.7% j 80.9% 61.3% j 69.4% 87.7% j 80.0%
Forearm; Finger 64 j 256 0.5 j - 81.5% j 74.9% 91.2% j 88.2% 56.5% j 51.6% 95.4% j 83.1%
Hand; Finger 8 j 1 0.25 j - 72.8% j 74.4% 92.6% j 80.9% 43.5% j 53.2% 80.0% j 87.7%

Note: Models showing the highest prediction accuracy are highlighted in bold fonts.

Table 4
The performance of SVM classifiers considering uncovered skin temperatures.

Input features #features C Y Testing accuracy Accuracy for �1 Accuracy for 0 Accuracy for 1

Forehead; Cheek 2 4 j 64 0.125 j - 85.1% j 77.9% 97.1% j 83.8% 82.3% j 83.9% 75.4% j 66.2%
Cheek; Forearm; Hand 3 4 j 8 0.25 j - 84.1% j 80.0% 95.6% j 91.2% 75.8% j 72.6% 80.0% j 75.4%
Forehead; Forearm; Hand 3 2 j 64 0.25 j - 85.1% j 76.4% 92.6% j 85.3% 79.0% j 62.9% 83.1% j 80.0%
Forehead; Cheek; Forearm; Hand 4 1 j 64 0.25 j - 88.7% j 79.0% 95.6% j 88.2% 80.6% j 72.6% 89.2% j 75.4%
Forehead; Cheek; Hand; Finger; Forearm 5 2 j 64 0.5 j - 81.5% j 73.8% 95.6% j 83.8% 59.7% j 53.2% 87.7% j 83.1%

Note: Models showing the highest prediction accuracy are highlighted in bold fonts.

Fig. 5. SVM classifier with linear kernels.
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be explained by the curse of dimensionality: the available data may
become sparse as the volume of the space increases.

Regardless of how to implement measurements in practice, we
tried many other input features to look for the optimal skin tem-
perature combinations in Table 5. Gaussian kernel SVM classifiers
generally outperform linear kernel ones in terms of overall accu-
racy. Two-input Gaussian SVM could differentiate thermal de-
mands with an accuracy of around 90%. The linear kernel SVM
performs best with 87.2% accuracy when upper arm and shin skin
temperatures are used. The performance of linear kernel SVM
classifier does not improve obviously when one more feature is
added in the two-input models. Three-input Gaussian SVM classi-
fiers, however, reach the best rate of 94.4% when chest, upper arm
and shin skin temperatures are considered.We tried two four-input
classifiers and the results seem to show that more skin temperature
inputs do not improve the model performance.

To graphically compare the linear kernel and Gaussian kernel
SVM, we trained both models with shin and upper arm skin tem-
peratures and presented their decision boundaries in Figs. 5 and 6.
Table 5
Optimal input features considering skin temperatures from four anatomical segments.

Input features #features C Y Testing accuracy Accuracy for �1 Accuracy for 0 Accuracy for 1

Cheek; Chest; Hand; Foot 4 2 j 16 0.25 j - 91.8% j 84.1% 95.6% j 86.8% 91.9% j 77.4% 87.7% j 87.7%
Cheek; Back; Upper arm; Shin 4 2 j 64 0.25 j - 93.8% j 87.7% 98.5% j 92.6% 93.5% j 83.9% 89.2% j 86.2%
Chest; Hand; Foot 3 2 j 0.25 0.25 j - 92.3% j 82.6% 98.5% j 88.2% 90.3% j 71.0% 87.7% j 87.7%
Back; Hand; Foot 3 16 j 4 0.5 j - 89.7% j 83.1% 94.1% j 91.2% 75.8% j 67.7% 98.5% j 89.2%
Chest; Upper arm; Shin 3 4 j 1 0.25 j - 94.4% j 87.2% 98.5% j 91.2% 91.9% j 83.9% 92.3% j 86.2%
Back; Upper arm; Shin 3 0.5 j 2 0.125 j - 93.8% j 85.1% 98.5% j 85.3% 93.5% j 83.9% 89.2% j 86.2%
Back; Shin; Hand 3 1 j 64 1 j - 90.3% j 83.1% 94.1% j 91.2% 79.0% j 83.9% 96.9% j 73.8%
Cheek; Chest; Upper arm 3 0.25 j 0.25 0.125 j - 87.7% j 77.4% 89.7% j 79.4% 88.7% j 82.3% 84.6% j 70.8%
Cheek; Chest; Foot 3 2 j 8 0.25 j - 90.8% j 85.1% 98.5% j 89.7% 83.9% j 77.4% 89.2% j 87.7%
Cheek; Upper arm; Shin 3 4 j 32 0.25 j - 90.8% j 88.2% 98.5% j 94.1% 82.3% j 83.9% 90.8% j 86.2%
Chest; Upper arm 2 32 j 64 0.25 j - 88.2% j 82.1% 97.1% j 89.7% 79.0% j 79.0% 87.7% j 76.9%
Upper arm; Shin 2 1 j 256 0.125 j - 90.3% j 87.2% 98.5% j 91.2% 79.0% j 83.9% 92.3% j 86.2%
Back; Shin 2 4 j 128 0.25 j - 89.1% j 82.6% 92.3% j 89.7% 87.0% j 83.9% 88.7% j 73.8%
Chest; Shin 2 1 j 0.25 0.125 j - 87.2% j 80.5% 95.6% j 89.7% 75.8% j 75.8% 89.2% j 75.4%
Cheek; Shin 2 2 j 0.5 0.125 j - 88.7% j 85.1% 95.6% j 89.7% 85.5% j 79.0% 84.6% j 86.2%
Cheek; Back 2 1 j 4 0.125 j - 90.8% j 82.1% 98.5% j 88.2% 82.3% j 83.9% 90.8% j 73.8%

Note: Models showing the highest prediction accuracy are highlighted in bold fonts.



Fig. 6. SVM classifier with Gaussian kernels.
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The areas with different background colors represent different
combinations of shin and upper arm skin temperatures, and the
associated thermal demands predicted by the models. Lines (Fig. 5)
and curves (Fig. 6) that separate areas with different colors are
learned through training data shown in scatter plots. In the
Gaussian kernel model, cooling and heating demands are realisti-
cally separated by the neutral space. However, the model has
higher complexity and is liable to overfitting especially in regions
where the space has not been trained with data (no data) as shown
in the red circle in Fig. 6. The SVM classifier with linear kernels is
simpler. The hyperplanes can be interpreted by linear combinations
of different local skin temperatures. The same skin temperature on
the x-axis may correspond to three different thermal demands
sometimes, and the skin temperature on the y-axis can help to
distinguish the real sensation at those points. In summary, classi-
fiers with the Gaussian kernel show slightly higher prediction ac-
curacy, but require better training data set. The overfitting problem
is more likely to happen for Gaussian kernel models than linear
ones.

4. Experiment 2

Instead of a group of occupants, this experiment intends to
validate the classification method for individual use. Varied
clothing insulation is considered. Two additional issues in practice
are discussed in this part: a. how many training data are needed
before the classifier can work well automatically; b. the perfor-
mance of a preset classifier for new occupants.

4.1. Methods

This experiment followed one male occupant in a private office
in China for seven days from March to April. As the purpose was to
accumulate physiological data in different thermal states, the
environment was preset to a given temperature (Table 6) and was
Table 6
Background information of the dataset.

Preset indoor T (
�
C) Clothing insulation (clo) Work

T (
�
C)

14, 16, 18 0.6 and 1.15 14.1e
20, 22, 24, 26

Note: T denotes air temperature, RH denotes relative humidity.
regulated later depending on the occupant's responses. Tempera-
ture regulation was implemented by a common split air condi-
tioner. Two kinds of clothing insulation were considered in the
experiment. One clothing ensemble was long sleeve shirt, long
pants, socks and sneakers (whole body insulation: 0.6 clo); the
other one was the same, plus a down packable jacket (1.15 clo). The
two clothing assembles were determined considering a person
putting on/taking off his/her coat, which is a general way of
adjusting clothing in daily life. The insulation levels were estimated
according to ISO standard [25]. As shown in Table 6, each clothing
insulation level was studied in several tests with different preset
indoor temperature. Apart from the 0.6 clo, 14 �C condition, a total
of 13 tests were conducted. Air temperature and relative humidity
(TR-72, Japan) were recorded at the working station and outdoors.

The subject entered the room after the thermal environment
had been preconditioned to a stable temperature. We accepted 1 �C
deviation from the target temperature during the presetting pro-
cess. PyroButton (OPULUS Ltd, America, 0.2 �C precision) was
attached at five locations to measure skin temperatures every 10 s:
neck, upper back, left wrist, left hand, right shin. The occupant
stayed in the room for 1 h without restricting his activity (primarily
sedentary, sometimes strolling) and then reported his current
thermal demands for the environment with “prefer a warmer
condition” (�1), “no change is needed” (0) or “prefer a cooler
condition” (1). Temperature was then adjusted by a two-degree
step towards the neutral condition. The time for the office tem-
perature to reach to the new setpoints varied but was less than
10 min. After each regulation, the occupant needed to stay in the
condition for 30 min before he reported his thermal demands
again. This process was repeated until the subject reached neutral.
A total of 59 votes from 13 tests were accumulated for the valida-
tions of classification models.

As the data used to tune themodel should not coincidewith that
used to evaluate the model's performance, we did not tune classi-
fier parameters in this study. Instead, all the models were trained
with the parameters reported from Experiment 1. The twentyfold
cross validation method was used to evaluate the performance of
the SVM classifiers. To figure out the required sample size needed to
train good classifiers, learning curves were plotted using Python
programming language and the scikit-learn package [26].
4.2. Results and discussion

Significant improvement of performance is observed in Table 7
when a combination of skin temperatures is considered in the
classifier instead of only one skin temperature. Overall prediction
accuracy could reach as high as 94% with a linear kernel classifier.
The support vectors (SVs) are the data points used in the classifier
to determine the final decision boundaries. The less number of
support vectors means a smaller Vapnik-Chervonenkis (VC)
dimension, which brings forth better model generalization.
Consequently, the linear kernel SVM classifier using back, shin and
hand skin temperatures performs best here.

The learning curves show the prediction accuracy as functions of
training sample size (Fig. 7). The performance of the model to
ing station Outdoors

RH (%) T (
�
C) RH (%)

25.8 34e58 5.3e19.3 31e54



Table 7
Twentyfold cross-validation results of two SVM classifiers.

Input features Kernel Accuracy Number of SVs for
each class

�1 0 1

Shin Gaussian 63.2% 14 15 11
Linear 62.7% 15 20 11

Back; Shin Gaussian 87.3% 7 17 10
Linear 87.2% 3 11 7

Back; Shin; Hand Gaussian 92.6% 13 16 10
Linear 94.1% 2 7 6

C. Dai et al. / Building and Environment 114 (2017) 1e10 7
predict data in training dataset is illustrated by the training scores
and the performance of predicting future data is illustrated by the
cross-validation scores in the figures. These two scores will finally
be equivalent when the training sample size is large enough, and
the model performance will not be improved even though more
data are trained. The dataset was randomly split 100 times to
compute an average performance. Standard deviations are dis-
played in the shaded zones. Results demonstrate that the learning
processes become shallow after 25 data points for the SVM classi-
fier with only one input. To reach a rate of 80% prediction accuracy,
14 training data are needed for linear kernel SVM with three fea-
tures, while 23 are required for the Gaussian kernel model. The
three-inputs linearmodel would predict the thermal demandswith
90% accuracy after 28 training samples. One should notice that
these results are general recommendations instead of precise
conclusions, as one would encounter different training data and
predictions in practice.
Fig. 7. Accuracy learning curves for one p
In some cases, there may be no chances for a classifier to learn
data. An example is in a conference room where occupants stay
only temporarily. It is reasonable to preset a well-trained model in
the controller. However, significant individual differences may exist
in the room population, considering different skin temperature
responses with the same thermal preference. As a result, one may
be willing to know how well a preset SVM classifier could work for
new occupants. We used the model trained in Experiment 2 to
predict the data in Experiment 1. Prediction results (Output Class)
were compared with true votes (Target Class) in Fig. 8. Each column
in a confusion matrix represents the instances in a true group. Take
the first column in Fig. 8(a) as an example: there are a total of 290
samples in which the occupants reported heating demands. 20 of
them are correctly detected as shown in the green box, and 270
instances are misclassified as neutral. Grey boxes along the bottom
show the probability of detection for each class and those in the
right-hand column show the reliability of each prediction. Conse-
quently, themodel with the Gaussian kernelmistakes almost all the
heating and cooling demand conditions as neutral. The overall
prediction accuracy is only 29.2%. The linear kernel SVM classifier
works much better in identifying heating (92.8%) and cooling de-
mand (78.5%) conditions. However, the model misclassifies around
88% of neutral votes as cooling demand ones and the remaining 12%
as heating demand ones. It predicts the thermal demands correctly
at an overall rate of 54.2%. In this case, the comfort of occupants
might be more continuously provided, but more energy would be
wasted as the heating and cooling systemswould continue running
in neutral conditions.

Compared with the results of models using as input shin skin
temperatures from Experiment 1, the performance using shin
erson thermal demands prediction.



Fig. 8. The performance of preset model for new occupants.
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temperatures from Experiment 2 was significantly lower. This is
because upper-body clothing varied in Experiment 2 which was not
reflected in the shin temperature. The whole-body clothing insu-
lating was increased by adding a jacket while the local clothing
insulation for the shin did not change. As a result, the occupant was
likely to report the same demands with larger whole-body clothing
insulation in a colder condition, while the shin skin temperature
may have actually decreased. If this explanation stands up, the
models using back skin temperature might perform better. We
therefore trained the classifiers using back skin temperature.
Twentyfold cross-validation results showed an accuracy of 83.1%
for the linear kernel model and 81.4% for the Gaussian kernel
model. Practically, varying clothing ensembles make it more diffi-
cult for single one skin temperature to predict thermal demands
precisely. A combination of skin temperatures from different body
segments helps to solve this situation.

As two different levels of clothing insulation were studied, and
Table 8
Recent studies (within 10 years) using skin temperature to predict whole-body thermal

Year Authors Model inputs Description

2007 Luo X et al.
[27]

Core temperature, skin temperature and
its change rate (10 body parts)

Use Fussy Neural Netwo
sensation, and then to p

2009 Nakayama
et al. [28]

Left index finger skin temperature Calculate the frequency
temperature to evaluate

2010 ZhangHet al.
[11e13]

Skin temperatures, the time derivatives
of skin and core temperatures, MST (19
body segments)

Use regression methods
and then predict whole-
local sensations.

2011 Liu W et al.
[29]

Compare 26 types of MST calculation
methods and recommend the 10-site one

Linear regression: MSV ¼

2013 Takada et al.
[30]

MST and its time differential (7-point
method)

A nonlinear multiple reg
normalized MST and its

2014 Liu H et al.
[31]

Skin temperature (8-point method) and
environmental parameters

Calculate the heat loss fr
linear models of therma

2016 Ghahramani
et al. [32]

Facial skin temperatures (4 points) Linearly combine the ski
points to define the ther

2016 Sim et al.
[33]

Wrist (3 points) and finger skin
temperatures

Stepwise regression mod
gradient, temperature ti
power of frequency band

Note: MST indicates mean skin temperature. MSV means the mean sensation vote. R2 is
standard deviation.
the SVM classifiers with combined skin temperatures could still
work well, it seems that using skin temperature instead of physical
parameters like room temperature in machine learning algorithms
is successful in minimizing the effect that varying clothing has on
model accuracy. However, the use of skin temperaturemay produce
contrary results when sweating happens. Consequently, like
Humphreys et al. [17] proposed, a combination of physical and
physiological parameters might be more powerful when the cases
become complicated.

Skin temperature has been used to predict the thermal state of
humans. We reviewed the relevant studies over the last ten years,
and incorporated their modeling methods, applicable environ-
ments, and validation results in Table 8. As we can see, the statis-
tical regression is the common modeling method used in these
studies. The challenge with this is that a regression equation has to
be preselected. The question is whether these equations are the
proper ones to describe real-world thermal perception [34]. By
states.

Applicable environment and model
performance

rk (FNN) to predict local thermal
redict overall thermal sensation.

Uniform and non-uniform, steady state and
transient. Not validated

and gradient of the skin
thermal sensation.

Large mean square errors for overall sensation
prediction; better for local thermal sensation
estimation.

to predict local sensation firstly,
body thermal sensation based on

Uniform and non-uniform, steady state and
transient. R2 is over 0.9, residual SD is less than
0.75 (9-point scale)

a$MST þ b Transient: R2 is over 0.9. Not validated

ression model based on
time differential

Homogeneous, steady and non-steady state:
R2 ¼ 0.873

om skin temperature and build
l sensation based on heat loss.

Transient: R2 is over 0.9. Not validated

n temperatures on different facial
mal uncomfortable zones

Steady and non-steady state: 95% confidence
level

els based on MST, temperature
me differential and average
.

Stable and transient. Mean RMSE: 1.06 ± 0.29
for personalized model.

the regression determination coefficient. RMSE is root mean square error. SD means
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following certain optimal rules, machine learning algorithms can
help solve this difficulty and make the best prediction for the
dataset. Their iterative aspect is a great advantage to be used in a
control system to adapt independently when exposed to new data.
Another point we can grasp from Table 8 is that more researchers
now pay attention to practical and simple measurements to predict
thermal states [26,30,31]. In this paper, we tried to systematically
evaluate the performance of models using different skin tempera-
ture points and their combinations. The results have shown that in
homogenous, steady-state conditions, as few as two proper loca-
tions of skin temperatures are sufficient to predict the thermal
demands with high accuracy.

5. Conclusions

In this paper, we applied SVM classifiers with linear and
Gaussian kernels to predict occupant's thermal demands in steady
states. Skin temperatures were used as the only inputs of the
models. A controlling prototype was proposed to intelligently
control heating and cooling systems based on these machine
learning models.

The attractive prediction power showed that skin temperatures
are effective inputs to identify the thermal demands of occupants in
steady state. A combination of skin temperatures outperforms
single one skin temperature in the model. Generally, three local
skin temperatures from different body segments have contained
enough information for the classification. More skin locations are
not necessary and may cause the curse of dimensionality.

A single skin temperature could guarantee an accuracy over 80%
at most when the clothing was controlled. The prediction accuracy
would decrease significantly if the thermal states were maintained
by regulating clothing insulation for other body segments in
different conditions. To deal with this problem, using skin tem-
peratures from different segments is an effective way.

With respect to the locations of skin temperature, we recom-
mend shin and upper arm for models with 2 inputs. The model can
be improved by adding one more skin temperature at chest.
Considering only uncovered locations, we recommend cheek and
hand. Some locations could be replaced with others in the same
segment like back for chest, forehead for cheek. The performance
would be influenced in a small way. Different combinations and the
corresponding model parameters could refer to Tables 2e5 How-
ever, we insist that a grid search technique be used for new clas-
sifiers to tune the model parameters.

We prefer the SVM classifier with a linear kernel to that with a
Gaussian kernel in general. The former is simpler and less likely to
cause overfitting problem. The preset model with a linear kernel
outperforms that with a Gaussian kernel for new occupants. The
SVM classifier can work well with a small amount of training data.
28 samples are needed for the three-inputs linear kernel model to
achieve 90% prediction accuracy. To achieve 80% accuracy level, 14
training data were required.

Skin temperatures have more power in predicting heating de-
mands than cooling demands because of two possible reasons. One
is that skin temperatures in different body segments vary much
more in cool than in warm environments, especially for the body's
extremities. The other reason is that for each location, the differ-
ence of skin temperatures between neutral and cool conditions is
much bigger than it is between neutral and warm conditions, a
phenomenon demonstrated by the effect sizes.

This paper is the first step of a continuing study to build inno-
vative controllers for heating and cooling systems. The next step is
to build the prediction models for human demands in transient
states. Both the wearable device and the intelligent house are
becoming common concepts. We hope that this study can help to
set up a foundation for developing thermal wearable devices and
new ways of controlling buildings.
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