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ABSTRACT

It is shown that if in a field theory the p oper vertex function

:-"f‘P(s) vanishes under a condition that the proper vertex function poles

are not the poles of scattering amplitudes, then the elementa;x particle .
o

- 1des smoothly on the Regge trajectory. (The condition P(s) = O does
’ ;_not alvays mean the vanishing of the coupling constant, when the vertex

;function poles exist.) The bootstrap eqpations are immediate consequencee

~of the above condition. We formulate our problem using‘multichannel
" theory. Other related results are: (a) It is foundithat'in'the milti-

channel case as well as in the single-channel case the proper vertex

poles are not the poles of scattering amplitu@es; if the poles come

- up from the second Riemann sheet. (b) The finite self-mass condition

. of the composite particle, due to Gerstein and Deshpande, 1s not

applicable when the proper Vertex pole appears beIOW'the eiementer&
particle mass,” i.e., the modified propagator'needs‘one subtraction.
(c) Vanishing renormalization comstants, 2, = Z3 = Oo?'are not suffi-
cient to Reggeize the elementary particle. (d) Ali:our'conclosions

remain true even when additional bound-state poles are’ included In

.';,f the latter case, however, we can also use a different condition, due to

’ Kaus and Zachariasen, that the form factor (improper vertex function)
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ﬂ;;lf;;ff; fh '. and ‘23 both vanish; then our main results agaiﬁ”follow; that the

i‘f*f;: f‘j-“, elementafy particle lieg on the Regge trajectory and that the bootstrap
-;‘ﬁ f .. . equations are obtained. (The vanishing form factor does ‘not always mean A 4
P -fﬁt' ‘the vanishing of the coupling constant, when the bound—state poles exist.) -
: But this last condition shows that the unsubtracted dispersion relation
. ‘A'for the n-p decay amplitude is not valid (to be discussed in a later
?f - publication).
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I.  INTRODUCTION AND SUMMARY

L In‘coﬁvéntional,field theories, or in S-matrix theories with

felementéry.particles, an elementary pion, for'example; appears in the

£=0 N-N scattering state as a fixed pole. ‘Itsfmass and coupling

constant are regarded as arbitrary parameters. However, this type of

:formalism has come under criticism; it has been argued that perhaps

* none of the hadrons is speclally distinguished as "elementary." Chew

. and Frautschil suggested that all hadrons were composite on an equal

footing, generating each other by the bootstrap mechanism: According ~

" to their ideas, each hadron should appear on a Regge trajectory, and

there should be no fixed poles in £ , i.e., no Kfoﬁééﬁefwdelté in the

S matrix:

Before we abandon the notion of "elementary particle," we should

like to explore the connection between the Regge pion and the elementary

pion, for example. We shall consider multichannel scatterings, in
which each amplitude includes the elementary pion pole in the S state.

We shall find that if the proper vertex function with the elementary

‘pion off the mass shell vanishes under a condition that the proper

vertex function poles are not the poles of the scattering amplitudes,

then the elementary pion disappears completely but the bootstrapped

‘plon takes its place, lying on the Regge trajectory. The bootstrap

equations of the pion are immediate consequences of the above condition.

Our analysis is restricted by the assumption of two-particle multichannel

unitarity, but if we regard the channel summations as the channel summa-

tions plus integrals over other continuous variables, due to manny
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particle states, all our conélusions are to ﬁe valid generally. (Sec. III.)

Here we have four remarks:

a n the one-channel case Jin a owe showe e proper -
( ) In th hannel Jin and MacD 112 howed that if th

‘_vertex pole comes up from the second Riemann sheet as the coupling strength

increases, then the pole is not the pole of the scattering amplitude.

This interpretation is shown to be still true in the,multichannel case,

- where by the second sheet we mean the sheet connectgd with the first

- :sheet. throush the intcrval between the first threshold and the second

Vaaa

\.

threshold. However, for the pole appearing below ue- (the elementary'
: I

pion mass) this interpretation is not valid, but we simply assume that this.j

pole also is not the pole of the scattering amplitudes. (Sec. IV.)

(b) We know that the proper vertex poles correspond to zeros of the
3 .
modified pion propagator A'F(s) . We also know that there can be at
most one 2zero in A'F(s) between the elementary pion pole‘ pa and the ;

first threshold, and that there is one zero for s < pa if A'F(s)'

2

needs one subtraction, but no zero for s < pu~ 4if no subtraction is

needed., Gerstein and Deshpandeu showed that if 23 = 0 but the self-

mass ‘8“2 is finite, then the elementary pion becomes the Regge pion.
However, their conditlons are not applicable when the proper vertex pole

appears below ua . {sec. III.)

5

(¢) From our condition it follows that Z, = Z5 =0, But this - -

inverse is not true, i.e., the vanishing renormalization constants

,‘ are not sufficient to Reggeize the elementary pion. (Sec. III.) )

(4) A1l our conclusions are still true even when the Pull amplitudes .

have additional bound state poles together with the elementary pion pole, - “«

PR

=
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 In this éase,,hovevef, we can dléo'have»another_Reggéized'cgndition, i.e.,

RS A ‘ & ‘ B
So .o if the form factor (improper vertex function) vanishes under a condition

€>;{@;g‘."'” '23 =_O,Lthen the elementary pion lies smoothly on xhé Reége trajectory.
LN . - .
'%;?fw~3‘ _ The bootstrap equations are also immediate consequences of this condition.

hf This was considered by Kaus and Zachariasen.éhBut‘ﬁbeipHCOndition contradicts
? }{?'?'_ " the unsubtracted dispersion relation of the =-p -decay.amplitude. This

_will be discussed in another publication. (sec. III.)
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' 'II. SEPARATION OF THE KRONECKER DELTA TERM .

]

let us consider a two-particle (spiﬁleés)-@ﬁ;ti¢hanne; scattering, e

pole representing a scalar pion of mass p coupled to the channel «
with a renormalized coupling constant &y * In this system we regard

1 and &2 as arbitrary pargmeters.

Following the usual N/D method we put the fth partial wave

’

F O }:N,ma, D, Mo gy .
4 , . : v

or in the sense of matrix product, - : .
) T (s) = N,(s) b -l(s).' ;- S (2'1) .

2 2 L ? ' ¢ -
where '

b(s) = 1.8 ‘dsi"p(s') N&‘s').v
2 ' n S'(B""' 3) '.” o

(2.27)

. t.
dsl V&(B )“)g)D&(s') .
8! -8 '

Al

- Ny(8) = 8,58 21 '[g Do('*a)] +
TR ~ :

2 A
(2.28)

L

Here  p(s) ‘is a phése-space volume with the asymptotié behavior -

p(s) ~ const. .The function v&(s; u,g) 1is a given input potential L.
ﬁith the parameters u and g , and has been aesumed.to_be an analytic |
function of ¢ except for certain singularities. We have also assumed
7

that v&(s; u,8) tends to zero in the appropriate order as s - -0o .

Note that the amplitude Tz(s) is symmetric under time-reversal invariance;



“5-

and also so is v&(s; Hy8) o
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Now let us separate the B, term from Egs. (2.2):

(2.38) |

Dz(s) = dz(s) + 8, G(s) ,
| N(s) = nys) + 8, H(s), SR (2.3B)
- where .l - .
' | p(s') n,(s')
a(s) = 1-2 | as t (2.44)
f x ~ 8'(8* - 8) ’
v,(s'; wg) 4,(s')
n&(s) - % as' % L (2.48)
- x L " 8' -8
and : .
| os) = -2 [as' Sy (2.54)
. R i N
| | vy(8'; 1,a)e(st)
H(s) = &5 [S'Do(ue)] + ;tl-[ds' o _;
=3 L
- ~ (2.5B)
Then T&(B) can be written as6
- -1 AT LT s -1
T, = n,a," + 8,4, [dOH-.nOG]Do ,

after a minimal amount of algebra. The bracket term, doTh - noTG s
8

has no singularities other than a pole at s = pa

from Eqs. (2.4) and (2.5), so that

J

as is easlily seen

3
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&8 - = [afPe] 52— [@D] . (2:6)
' B =8 ‘ , .
‘_Ther_efore' TL(S) reduces to " ' ' | ' ¢
e s "‘*““":‘va)aﬁ = “'L(s)aﬁ + 5%0 Pa(s) ;‘é"‘:"‘;‘ B(B) .
- ) + By K (8) —gE— Tife)
f(S)aﬂ ’ w0 * Wos P : | (2.7)
where . ) .
. - ) S
t,(s) = n,(s) a,"(s) , T (28)
. Ne) =g akd) a,7Ne) o (2
Ks) = & Dyu?) D, s . (20

t

9

These formulae coincide exactly with those derived by several authors
from a guite different method.: The first term t z( 8) obviously
satiéfies a. unitarity fela.tion by itself above the threshold, and mnay
,‘ be expected to be an analytic function of z , because t z( s8) 1is
generated by the potential vz(s; H,8) onl&. The function K(s)
defined by (2.10) is just the form factor with the pion off the mass

shell, and its unitarity relation is

InK(s) = K(s) a(s) 7, (s)
= To(s) o(s) KT(s) - {(above threshold), (2.11)

The similar function I'(s) defined by (2.9) has no left-hand cut, and .

satisfies the unitarity relation

Py tancs," |
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" mT(e) = Ts) els) 1)

- “ty(®) o) T(s) . (above threstora).  (2.12)

'f,ffﬁ . ,3}.'This equation implies that I'(s) is composed:of‘BrogenAVQ;tex éiéphs

’*”'«j”ﬂ]i ' ;4~on1y,'gnd-therefore can be regarded as a proper vertex fﬁnctionlwith
_the pion off the mass.shell. In fact, the above authors’ showed that

I(s) 1n Eq. (2.7) is Jjust the proper vertex function.

. - i
i
o
"N [N *
“r
L., -
(%)
‘Y
e
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III. DERIVATION OF THE BOOTSTRAP CONDI'I'IONS

~ We assume that tz( in Eq. (2.7) has at least one pole at

s)aﬁ

8= s&'.with the residue,’ -(g&)a(g&)B , glven by the equations
. . R : ) ‘ .'_
laygs)] = o, - Gy
: o g8 _
. . L . .
Here (s&. and 8, depend on u, g, and ¢ , since d&(s) ‘and n&(s) _ .
_are gehérated from v&(s; u,g) « Therefore, it may be convenient to
. N
. write them as *
s,(u,8) and g lu,g) , (32
if necessary. When ¢t = 0, the pole 8y is also'thé pole of- INs) , .
as 1s seen from Eq. (2.9). But we set thgtcondition,that'-so is not
_ the pole of - T (s) . This condition is ' R
‘1 I
(ololggly + 7y T Kglg) = 0, (3.34)
® - BO C -
‘or ,
| (8)y 12 7 /K(5) -
80 a a' 0 —_— : ) .
————'—K = ) = ‘_"'—""“'-2 - — C 2 - : B (B‘BB)
where -
T = lm (s -8 (s) - ; :
85, . .
. (3.
= m (s - sy [& ayuay” ()] . )
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The pole 8o is unobservable, while s, with ¢ { 0 is.obgervable when .

L

. ¢ 1s an integer. In Sec. IV the physical"meaninglbf the condition (3.3)

will be considered.

We know that the proper vertex function Pa(s). related to the

_form factor _K&(s) through the modified pion propagatorv_AfF(s) :

|  24(8) = AF(s)/A'F(é) = T(e)/K,(s) , R - (3.5)

where AF(B) 18 the free pion propagator: AF(s)'= l/(ue - 8) . Thereforef

the pole s, of qa(s) is just the zero of AfF(s)'; We also know that,

~

AfF(s) between pe and the threshold and that there is one zerglfor

5 < p° 1f A'F(s) needs one subtraction, but no zero for s < o if

no subtration is needed;

, 1 1 ,'K' NUCHI .
A F(s) = pe — t g \/;ds (SEB;):g§228.gi :). (no subtraction),

(3.6)

| 2 A ' PR,
' _ 1 8 - i , K(s")p(s*)K'(s")
A F(B) = u2 - + const. + | oy ~/;ds (' - “2)3(8' - o)

(one subtraction).

» G

When 8 < pa , the finite self-mass'condition of the composite pion,

due to Gerstein and Deshpande,h is not applicable, because their
discussions are based on the condition 8y > p2 . In either case, (3.6)

or (3.7), the renormalization function 23(8) defined by (3.5) 1is
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+

23(8) = l+ _B"s,: ‘2‘”]"18' I‘(s-')p.(s')l"f(s")( : .--.—-—?*—-8 - c,
' R

(s - w2)%(s - 5) - ® - % :
(3.8) -
where C 1s given by (3.3B) and has a positive sign, consistent with
the He?élotz property 6{ Zz(s) . Here we have used the following:
(a) The unitarity }elations-(e.ll) and (é.lé-), and"'l’
(b) The form factor K(s) has no zeros (assqmpt;§q~§fmn§ QDD‘zeros)g_'i
The wave function renormalization constant of t;he pion. :LF given by the .
1imit | - , |
Zs = ln 23(5) . : : (3.9) . -
Now, the 8,, termin T&(s) given by Eq. (2.7) reéfeseﬁts
the existence of the elementary pion. In the Reggéized wdrld, such a
.Sw term should disdppear for any ¢ and B , ;.e. ’
K(s)Ty(s) = 0. : ' . (3.10)
‘Therefore, we have two cases: I‘a( 8) = 0 for any «a , and Ka(s) E 0
for any -&@ .  No other cases occur, as is easily seen.
Case A. r (s) ==0 for any a ' ' A ' : o
From the conditionlo _ .
Ms) = gagu)a,Ms) = o, (3.11) -
1t follows that - T - -
g 4,u%) = o, . (3.12)
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and hence

| do(u2j | = 0. , o .. (3.13)

Therefore, the parameter u2 mist be
. 2 - » ) ‘ h
ke o= sglu, &) . (3.14)

On the other hand, the condition (3.3) ylelds

)

g = so(u,‘s) — : (3.15)

under Eq. (3.14), as 1s easily seen. .

Inversely, if the parameters u and g satisfy Egs. (3.1%)
and (3.15), then Eq. (3.11) immediately foliows,hbecauseg_so is not
the pole of no(s) s0 that '

um (s - 8y) ty(s) d;(8) = gylg, 4,(8)] = o0,

88

0]

and hence

g d5(8y) = & dc(ue) = 0.

The condition (3.3) 1s automatically satisfied.

'The coupled equations, (3.1%) and (3.15), thus obtained are
nothing but the bootstrap equations for the pion. The amplitude Te(s)
1)
is now equal to t&(s) . The elementary pion has disappeared but the

bootstrapped pion, on the trajectory given by the eqpétions

2

g o= Bt(ﬂ: 8) ) (5’16)
g = glu g), | (3.17)

has taken its place, )

| UCRL-16544
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.‘But this inverse is also not true, i.e., I(s) == 0 'does rot follow
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. 1

1 -
« - N

From the condition I(s)= O alome it follows that 2,(s)
| 12 ' R

.given.hy Eq.-(3.8) met digappear,” and hence - , -

123(‘5) ='o = 2 (3.18) ¢

3 *

, Note that, in order to obtain this, the condition (3.3), i.e., Eq. (3.15),

. 18 not necessary. But this inverse is not true, i.e., I'(s)= 0 does

= 0 , The condition .I'(s) = O means Zl =0, because

P

» 1im I(s) = Z, & . - o | (3.29)
8-+*Q0 '

Y

13

from 2, = O , because there may be a case, c.lo(-e)"-'-ﬁm':c'n'- B8 8 .00,

Therefore ) Zl = Z3 = 0 1is not sufficient to Reggeize the elementary
pion, t _ | .

In conclus'io.n we showed that the condition (3.3) And Ms)=0
yield the bootstrap Eqs. (3.14) and (3.15) -of the piém, then the elemenﬁm

pion lies smoothly on the Regge trajectory. When other bound-state poles

" exist in ‘1‘0( 8) , Eqs. (3.6) and (3.7) should have these poles, which

yiéld new zeros in A'F(s) . But our conclusioné never change.

Case B. K (s8) =0 for any «

From the condition
K(B) = 8 Do(u )Do (8) =0 ] (5'20)

it must follow that

— v ]
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;hencei"
l Do(l*e) | =0. o : :»_ ’ ; (3.22‘).

" This equation is valid only when To(s)' has boundestate’poles .sB(u,g)

0 , and only when

RRREE I o

W¥ = sp(me) o L (e)

N

Y

" If there exist no bound states in To(s) , the'Casé_B;doéé not’occur¢

Therefore, this case is nothing but the case considered by Kaus and.
Zachariasen.6 They concluded that ‘K(B)vEEE 0 and Z3 = 0 Reggelze

the elementary pion and give the bootstrap equation of the pion. But -

.their conditions contradicts the unsubtracted dispefsiqn relation of

~‘the n-u decay. This wiil be discussed in another publication.
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IV. PHYSICAL MEANING OF THE CONDITION (3.3)
" At firét we suppose that there is no pole.in: I(s) . Then

Eq. (3.8) 1s .

t3(s-)p,s(a')r Ter)

- , 2
2(6) = Talfige) =1 v 25 D

.o . B - (s - p2) (s' - 8)

. N S (4.2)

Here we have set

8 < 8 < .8 < -oo‘ " . oo (h’z)

The proper vertex function Qz(s) has severalfRiemann sheets, in which

by the second sheet we mean the sheet connected with the first sheet

" through the interval between s, and s

1 2 °

Now, if a pole s, comes up from the second Riemann sheet, ‘then

(¢]

the integral path C, 1in Eq. (4.1) will be deformed as shown in Fig. 1.

1

- The integral along the. deformed path yields

95 I (s')e,(s)r, (")  eoy® _;1 7Y
(s - n %)%(s" - ) " % .(,“2 O
(4.3)

-where PlII(s) is the vertex function céntinued into the second Riemann

sheet, glven by

rfﬂq = T(s)/11 + 21 p(s)ty,(8)] (4.4)

Other continued functions of -Pa(s) _are
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’

%nh)gluﬂifianh)%h)%ﬁﬂq' | (4.5)

Since s, is not the pole of I&II(S) , We have

N8y = VolBoq _}' C(4.6)

from Eq. (4.5). On the other hand, 8, 18 the pdie'de qa(s)/ka(s) y -

and hence we have

AT

. _ 1 o
"G fop * %;FT;;%“& =0

This relation is just the condition (3.3). Therefore, it is true also
in the multichannel case that if the proper vertex polé comes out from

the second Riemann sheet, then the pole.is npt the pole of the scattering

amplitudes,
Note that this pole thus coming out can exist only in the interval

pa S 8 £ s, , but not in the reglon s < pe « Therefore, for the pole

= =

1l
appearing below ua the above interpretation is not valid. We have

simply assumed that the pole below uz also is not the pole of the

scattering amplitudes'.15
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R T 2 .2 (s )p(s')F(s )
r = o, 8 =R 7 _ 8 «~ | d | —
) e R w f ' (8'-u)(8'-8)

Now. let us suppose I(s) = g do(pa)do'-l(a) E"O" ‘except at 8 = u2 .

. Then the’ integral term in the above equation vahishes , _ue must go

o because of Id (so)l = 0 , " and hence - 7/(8 -u ) - -g .

| N Therefore, the first term g 1s canceled by the second term, 80

I(s) =& d(ud)a,” 1(g) 1s indefinite at s = pa , 80 D(1®) showia. 1.

1.

. 12,

>_be defined by 1113 I(s) = F(P- )

4."H - n

‘that I'(s) 18 equal to zero even at s = u _(consistent with the

© property of an analytic function), but g #0 . We shall assume

g £0 . Note that when p,2 = 8, the. formula :

L

This does not mean D, = 4. and No = '0 Equation (2 6) is now

0 0
T ' TG = 0 , Therefore To can be written as

0 0 .
) - —1 | . Qi‘ :\»;1
Tp = NoDy =_(n.0 + H)(do +.G)- = nodD = HG ~ .

The form factor;, K(s) = I‘(s)/Z5(s) s generaily'depgnds on s , in

spite of the limits, I'(s) » O and za(s) -~ 0 . Consider an

example, I(s) = a f(s8) and Zj(s) =b q(s) . .'In the linfits;

'a=+0 and b- 0, in such a way that a/b - const, we have

K(8) ~ const £(s)/g(s) « The asymptotic behavior oft"j!((s) 1s

restricted by the equations, Z5 = 0 and

2,0 = 14 ~/~d'e K(s) p(s) KT(g)/Ké -_L?)2‘4f
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See footnote 7. In the pseudoscalar theory, 2 = O 1is an

identity, as was pointed out by M., Ida in Refs. 5 and 9.

' We have already shown in Eq. (4.3) that Qa(a)/ka(s) should have

the pole s, , and hence IDo(so)l f’q . Nevertheless To(s) may

have the pole s, due to the pole of Nb(s) . The condition (3.3)

0

assures that the residue of the pole of No(s) at s = 8o vanishes.
Let us suppose that I'(s) has two poles, 8, and ,s'o-. If we
‘put “2 = 8, and g= g , then the other poie sfb disappears

by virtue of the condition (3.3). - b
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ST % " FIGURE CAPTION .-
_‘ ._.!'v . Fig. 1. Deformation of integral path in Eq. (!l».l)." The_prqp}ar vertex

; pole s, moves on the real axis. The dotted line 1lies on the
RIS second Riemann sheet, while the solid lines lie on the first

’ Riemann sheet.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








