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ABSTRACT 

·<. 

.·. 

;It' is shown th8t if in a field theory the :Proper:ve~ex function 

r(s) _vanishes under a condition that the proper vertex function poles 

are not the poles of scattering amplitudes, then the elementary particle 
. . I ' 

lies smoothly on the Regge trajectory. (The condition r(s) ;: 0 does 

not always mean the vanishing of the coupling constant, when the vertex 

.function.poles exist.} The bootstrap equations are immediate consequences 

of the above condition. We formulate our problem using·multichannel 

theory. Other related results are: (a) It is found that in.the multi-

channel case as well as in the single-channel case the proper vertex 

poles are not the poles.of scattering amplitu~es 1 if the poles come 
' . 

up from the second Riemann sheet. (b) The finite.self-mass condition 

of the composite particle, due to Gerstein and Deshpande 1 is not 

applicable when the proper vertex pole appears below·the elementary 

particle mass,'" i.e., the modified propagator needs ·one subtraction. 

(c) Vanishing renormalization constants, z1 = z
3 

= 0 ·'.are not suffi­

cient to Reggeize the elementary particle. (d) All ·our .conclusions 

remain true even when additional bound-state poles are included. In 

the latter case, however, we can also use a different condition, due to 

Kaus and Zachariasen, that the form factor (improper vertex 'function) 
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and . z
3 

_ both VfUlish; then our main results again follow, that the 

eleme.ntary particle lies on the Regge trajectory' and that the bootstrap 

equations are obtained. (The vanishing form factor does not always mean 

the vanishing of the coupUng constant, when the bound-state poles exist.) 

But this last condition shows that the unsubtracted dispersion relation 

for the ~-~ decay amplitude is not valid (to be discussed in a later 

. publication). 
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I .. ·· INTRODUCTION AND SUMMARY 

In.conventional. field theories, or in s-inatrix _theories with 

.·elementary particles, an elementary pion, for example, appears in the 

J = 0 N-N scattering state as a fixed pole. Its mass and coupling 

constant are regarded as arbi.trary parameters. However 1 this type of 

.formalism has come under criticism; it has been argued that perhaps 

none of the hadrons is specially distinguished as "elementary." Chew 

1 . 
and Frautschi suggested that all hadrons were composite on an equal 

footing, generating each other by the bootstrap mechanism. According 

to their ideas, 'each hadron should appear on a Regge trajectory, and 

there should be no fixed poles in 
..... \ I !'; 

J 1 i.e., no Kronecker delta in the 
·,· 

S matrix. 

. Before we abandon the notion of "elementary partic~e," we should 

like to explo~e the connection between the Regge pion and the elementary 

pion, for example. We shall consider multichannel scatterings, in 

which each amplitude includes the elementary pion pole in the S state. 

We shall find that if the proper vertex function wit~ the elementary 

'pion off the mass shell vanishes under a condition that the proper 

vertex function poles are not the poles of the scattering amplitudes, . -
then the elementary pion disappears completely but the bootstrapped 

pion takes its place, lying on the Regge trajectory. The bootstrap 

equations of the pion are immediate consequences of the above condition. 

Our analysis is restricted by the assumption o~ two-particle multichannel 

unitarity, but if we regard the channel summations as the channel sunnna-

tiona plus integrals over other continuous variables, due to manny 

·' 

. \ . 
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. ·; particle states, all our conclusions are to be valid generally. (Sec. III.) 
,· ,.• 

'··' ~ 
!f ~~ ' • .. .• ·, .. • 

H,4 ~;" I. : . ._ 
. ;; :'-<::. ~ 

. ' 
'f ': ,I .. · ... • . 

•' 

. ' 

·' 

.' .. ~ 

~· ' 

· .. '. 

,. 

: • l., 

·.· 

f ~ I ' ' 

.. 

Here we have four remarks: 

(a) 
. 2 

In the one-channel case Jin and MacDowell showed that if the proper 

vertex pole comes up from the second Riemann sheet as the coupling strength 

increases, then the pole is not the pole of .the .scatt.e:dng\amplitude. - . 

This interpretation is shown to be still true in the. multichannel case, 

where by the second sheet we mean the sheet connect~d with the first 

:sheet·through the !ntc~~~l between the first threshold and the second 
' 

threshold. 2 However, for the pole appearing below ~ (the elementary 
.• 

I ' 
pion mass) this interpretation is not valid, but we simply assume that this . • 

pole also is not the pole of the scattering amplitudes~ (Sec. IV.) 

(b) We know that the proper vertex poles correspond to zeros of the 
3 

modified pion propagator A1F(s) • We also know that there can be at 
I . 2 

most one zero in A F(s) between the elementary pion pole ~ and the 

first threshold, and that there is one zero fqr s < ~2 if A
1
F(s) 

2 needs ~ne subtraction, but no zero for s < ~· if no subtraction is 
4' 

needed. Gerstein and Deshpande showed that· if z3 = 0 but the self-
- 2' 

mass ~ is finite, then the elementary pion becomes the Regge pion. 

However, their conditions are not applicable when the proper vertex pole 

2 appears below ~ (Sec. III.) 

(c) From our condition it follows that z1 = z
3 

= 0 
5 

But this 

inverse is not true, i.e., the vanishing renormalization constants 

are not sufficient to Reggeize the elementary pion. (Sec. III.) 

(d) All our con~lusions are still true even when the full amplitudes 

have additional bound state poles together with the elementarY pion pole. · 

.. 

.., 

,. 
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In this case, however, we can also have anothe:r Reggeiz~d c~ndition, i.e., 
' r:f' ' ' ,' ' ' ' 

if the form·factor (improper vertex function) vanishes·under a condition 

z
3 

= 0 1 .then the elementary pion lies smoothly on .the Regge trajectory. · 

The bootstrap equations are also immediate consequences of tbis condition. 
6 ' ' '' 

This was considered by Kaus and Zachariasen. "But their;. condition contradicts 

the unsubtracted dispersion relation of. the ~-~ ·decay.amplitude. This 

. will be discussed in another publication. (Sec. III.). 
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II. SEPARATION OF crm: KRONECKER DELTA TERM . 
,-.. 

I.e{ us consider a two-particle (spililesa) muitichannel scattering, 

_in which each ampl~tude includes in the S· state an elementary particle 

pole representing a scalar pion of mass ~ coupled to the channel a 

with a renormalized coupling constant ~ • In this system we regard 

~ and ~ as arbitrary parameters. 

Following the usual N/D method we put the Jth partial wave 
. ' 

amplitude as 

. I 

or in the sense.of matrix product, 

.. 

where 

= 

= 

s 1--
1( I . . p( s I ) N t ( s I ) . 

·dai . , 
R s'(a' ·.:. s) ', 

. 1 
6to g-2~­

~ - s 
+ ~ Ids' 

·L 

(2.1) 

(2.2A) 

s' - .s 

(2.2B) 

Here. p(s) is a phase-space vo·lume With the asymptotic behavior I· 

p(s) ,., c:onst •.. The function vt(s; u,g) is a given input potential 

with the parameters ~ and g·, and has been assumed. to be an analytic 

function of t except for certain singularities. We have also assumed 
7 

that vt(s; ~,g). tends to zero in the appropriate order as s ~ -oo • 

' 

• 

Note that tHe amplitude Tt(s) is symmetric under time-reversal invariancej 

'. 

.• 

'•· 

...•. 
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and also so is vt(s; ~,g) • 

Now let us separate the ~tO term from Eqs. (2.2): 

(2.3B) 

where 

1- ~Ids' p( S I ) n t ( S I ) 

' s 1(s' ·- e) 
(2.4A) 

1 J ds' 
vt(s'; ~,g) dt(s') -1( . 

s' L - s 
(2.4B) 

and 

Ids· G( s) s (2.5A) = ... -
1( 

R ... 

1 . [ g·no(!!2) J ~ J ds' 
v0(s•; ~,g)G(s•) 

H(s) = g 2 + s• - s 
j.1 - s L 

~·· 
(2.5B) 

Then Tt(s) can be written as6 

. Tt 
-1 6 d "':'lT ( dOTH - llo TG ] -1 

= nt dt + Do ' to 0 

after a minimal amount of algebra. The bracket term, d0 TH .. ~ TG , 
2 8 

has no singularities other than a pole at s = ~ 1 as is easily seen 

from Eqs. (2.4) and (2.5), so that 

• 
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(2.6) 

Therefore Tt(s) reduces to 

(2.7) 

where 

tj(s) = n1(s) d1- 1(s) j (2.8) 

r(s) ·= g do(l-12) do-l(s). '· (2.9) 
,. l 

•'. 

K(s) 
2 -1 

(2.10) - g· n0(1-1 ) n0 (s) 

These ~o~la~ coincide exactly with those deriv~d by se~eral authors9 

~rom ~ quite different me~hod •. The first term t,e( s) obviously 

satisfies a: unitarity relation by itself.above the threshold, and may 

be expected to be an analytic function of l 1 because t 1(s) is 

generated by the potential v1(sj j.l,g) only. The function K(s) 

defined by (2.10) is just the form factor with the pion off the mass 

shell, and its unitarity relation is 
:' 

t . 
Im K(s) = K(s) p(s) T0 (s) 

(above threshold). (2.11) 

The similar function r(s) defined by (2.9) has no left-hand cut, and 

satisfies the unitar1ty relation 

' 

' 

' " 

,. 



.. . .. 
;,. 

.' . 

' :, 

,;: ·' · ... ,· 
' 1\ .• ' ... • f ... '' 

t •. • ~·' .. . ·, 

, o I' ~ ', o/ ;·. "l 

·. 
7 'i 

( . ~ . \ 

- ~ : .;, .. 
'I 

,· 

·! 

·. ..... 

. \ ,, 

L 

' .. 

· ... 
.. ·' :···. 

,, ' 

. ' 

.. 

. •. ' 

·, 

'• 

i.l 

; : 

·,. 

. ·' 

•. <> ~··... ' 

. i. ' 
[ ··'· 

•' . 

' •' 
'It 

I 

. . 
' 

.-7-

Im r(s) ·= . r( s) p{ s) \/(s) 

.· .= .. :'t
0
(a) p(s) rt(s) 

·, 

(above· threshold) • (2.12) 

This equation implies that r( s) is composed of prope~ ~~~~t:x graphs 

~.:-only, ~d therefore can be regarded as a proper vertex function with 

,the pion off the mass.sheli. In fact, the above authors9 showed that 

r(s) in Eq. (2.7) is just the proper vertex function. 

.. 

' . 

• I 

,, 

• 
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III •. DERIVATION OF THE BOOTS~ CONDITIONS 

We assume that tt(s)~ in Eq. (2.7) has at least one pole at 

s = st with the residue,· -(g~_)0(gt)l3 , given by the equations 

· Jdt(s) J· = 0 , ( :;.JA) 

-(gt)a(gt)l3 (6 - st)tt(s)~ • (:;.l.B) = .lim 
a-+st 

•. 
' 

Here at and gt depend on ~~ g 1.and t, since dt(s) and nt(s) 

··' . are generated from vt(s; ~,g) • Therefore, it may be convenient'to 

. write them as 

'• 

.. 

( :;. 2) 

if'necessary. When t = 0, the pole s
0 

is also.the pole of· r(s),. 

as is seen from Eq. (2.9) •. But we set th7. condition. that. s 0 is not 

. the pole of· T
0
(s) • This condition is 

.• ·•- ·~. r . .':··· • 

'1 0 , 

or 

c , 

where 

(:;.4) 

= 

.. 

# 

' 
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The pole s0 is unobservable, while st with t I 0 is observable when. 

t is an integer. In Sec. IV the physical meaning of the condition (3.3) 

will be considered. 

· We know that the proper vertex function r (s) a . related to the 

. fc.>rin:_factor Ka(s) through the modified pion propagator A'F(s) 

. ( 3· 5) 

where ~( s) is the free pion propagator: ~( s) = 1/(~2: ... s) • Therefore·. 
' 

the pole s
0 

of r a( s) is just the zero of A
1 
F( s) ~ W.e also know that, 

I . . I . ' 
from the Herglotz property of A F(s) , there can be. at most one .zero in 

2 . 
A1F{s) between ~ and the threshold and that there is one zero for 

2 I 2 s < ~ if A F{s) needs one subtraction, but no zero for s < ~ if 

no subtration is needed: 

1 
2 

~ - s 

1 + const. = 2 
~ .. s 

.. 

2 
+ s ... ~ 

1( 

K(s 1 )p{s•)Kf(s') 
. 2 2' 

(s' - ~ ) {s' - s) 
{no subtraction), 

(3.6) 

l ds' ·K{s 1 )p(s')Kt(s•) 

R {s' ... I-L2)3(s' .. s) 

{one subtraction). 

(3. 7) 

2 . 
When s0 < ~ , the finite self-mass condition of the composite pion, 

due to Gerstein and Deshpande, 4 is not applicable, because their 

2 discussions are based on the condition s0 > ~ • In either case, (3.6) 

or ( 3. 7) 1 the renormali za tion function z
3 

( s) defined by ( 3. 5) is 



'· '• 

~ • I \ . ' 
'· 

.. .. 

.. ' 

.. 

·' 

• 
-10-

r(s•)P(s•)rt(s•). 

( 2)2( . )' s 1 
- ~ s' -· s 

2 
6 - 1.1 

• 6 - so C I 

(3~8) 

where C is given by (3.3B) and has a positive sign, consistent with 

the Herglotz property of z
3
(s) • Here we have used the following: 

(a) The unitarity relations ·(2.11) and (2.12), and 

(b) ·The form factor K(s) has no zeros (assU:JD~t19n. Qf .. ,no ~D~ zeros) •. 

The wave fUnction renormalization constant of the pion ip given by the 

limit 

lim 
~ 

(3.9) . 

· Now, the 8t0 term in Tt(s) given by Eq. (2.7) represents 

the existence of the elementary pion. In the Reggeized world, such a 

11 . 8to term should disappear for any a and ~ , i.e., 

(3.10) 

·Therefore 1 we have two cases: r a< s) .= 0 for any a , and Ka( s) = 0 

for any · a • · No other casf:·s occur 1 as is easily seen. 

Case A. r
0

(s) ==: o for any a 
10 

From the condition 

it follows that 

g do("'2') = o I 

( 3.11) 

( 3.12) 
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and hence 

= 0 •. 

2 Therefore, the parameter ~ must be 

On the other hand, the condition (3.3) yields 

g :::: So<~~ g) I 

under Eq. (3.14), as is easily seen. 

UCRL-16544 

Inversely, if the parameters ~ and g satisfy Eqs. (3.14) 

and (3.15), then Eq. (3.11) immediately foliows 1 . becaus~ s0 is not 

the pole of no(a) so that 

e.nd hence 

The condition (3.3) is automatically satisfied. 

The coupled equations, (3.14) and (3.15), thus obtained are 

nothing but the bootstrap equations for the pion •. The amplitude Tt(s) 
11 

is now equal to tt(s) • The elementary pion has disappeared but the 

bootstrapped pion, ·on the trajectory given by the equations 

2 
at(~, g) { 3.16) ~ = , 

g :::: gt(~, g) I (3.17) 

has taken 1 ts place. 
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Fram the condition r( s) = 0 alone it follows that z
3
( s) 

' 12 ' 
-giv~n--by .Eq,~-(,.8) !!l1Jet disappear, and hence 

(3.18) 

Note that, in order to obtain this, the condition (3.3), i.e., Eq. (3·.15), 
. ' is not necessary. But this inverse is not true, i.e., . r(s);: 0 does 

I ' ' n?t fOllOW fr~m z
3 

= 0 o The COndition .r( S) ·= 0 pleanS z1 . c 0 1 beCaUSe 

11m r(s) - z1 g 
~ 

( 3.19) 

· But this inverse is alSo not true 1 i.e., r( s} == 0 does riot . fo.llow 

from z
1 

= 0 1 because there may be a case, d (s) . .;··mr ··a.~ . s ... 00 •
13

. 
0 ' . 

Therefore, z1 = z
3 

= 0 is not sufficient to Reggeize theelementary 

pion. 

In conclusion we showed .that the con~ition (3.3} and r(s)::: 0 

yield the bootstrap Eqs. (3.14} and (3.15)-of the pion, then the elementary 

pion lies smoothly on the Regge traj~ctory. When other bound-state poles 

exist in T0(s) , Eqs. (3.6) and (3.7} should have.these poles, which 

' yield new zeros in 6 F(s} • But our conclusions never change. 

Case B. Ka(s) ~ 0 for any a 

From the condition 

it must follow that 

(;.20) 

, 

·,j 
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0 , ( ;.21) 

hence 
·, .. 

1 n6<~2> 1 = o .• ( 3.22) 
'. 

This. equation is valid only when T0(s) ·has bound-state poles .sB(~,g) 

given by ln0(s)l = 0, and only when 

If there exist no bound states in T0(s) , the' Case B does .not occur • 

Therefore, this case is nothing but the case considered by Kaus and 
. 6 . . . 

Zachariasen. They concluded that K(s) ::: 0 and z
3 

= 0 Reggei~e 

the elementary pion and give the bootstrap equation of the pion. But 

their conditions contradicts the unsubtracted dispersion relation of 

·the n-~ decay. This will be discussed in another publication. 

.. 
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IV. PHYSICAL MEANING OF THE CONDffiON (3.3) 

At first we suppose that there is no pole. in· r( s) • Then 

Eq. (3.8) is . I 

•, 

·;~2 L[ r (s 1)p (s•)r t(s') 
~3(s) = f'a(s)/Ka(s) = 1 + ds' f3 . f3 ~ 

- ~2)2 (s' -
• 

f3 . ( s• s) 
f3 

( 4.1) 

Here we have set 

' 
sl < s2 < ·S, < ... (4.2) • 

. .. 

The proper vertex fUnction ra(s) has several Riemann sheets, in which 

by the second sheet we mean the sheet connected With the first sheet 

· through the interval between s1 and s2 ~ 
.. l .... l. 

Now, if' a pole s0 comes up .from the second Riemann sheet, then 

t~e integral path c1 in Eq. (4.1) will be deformed as shown in Fig. 1. 

· The integral along the· deformed path yields 

2 f ds' 
rl(s•)pl{s•)rlii(s') 2 1 ~::J s - ~ = - s - ~ 

:1'( 
( S I 

2 2 , 
(1-12 - so)2 

I 

- ~ ) (s• - a) S - B 
0 

' ',' 

(4.3) 

. 
·where is the vertex function continued into the second Riemann 

sheet, gt ven by 
·..; 

( 4.4) 

Other continued functions of' ra(s) are 
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(4.5) 

Since s
0 

is not the pole of r
0
II(s) 1 we have 

(4.6) 

14 
from.Eq. (4.5). On the other hand, 

and hence we have 
·'· ,.· '' . ' . . ' 

~ ·~ ~~ •o 
~2 

• 1 •• : '": .. ··~ o· r~.~~ .. .'- .. ' ,, "'-. 

1 1 1a 
= = 2 I Ka( so) 

, ... 
- so gOl 

g. 
1.1. - s oa 0 

or 
1 

-Sea Sof:} + 1a )~ Kf:}(so) = 0 • 
I"" - so 

This relation is Just the condition (3.3). Therefore,. it is true also 

in the multichannel case that if the proper vertex pole comes out·from 

the second Riemann sheet, then the pole is not the pole of the scattering 

amplitudes. 

Note that this pole thu~ coming out can exist only in the interval 

1.1.
2 ~ s ~ s1 , but not in the reg!on s < 1.1.

2 • Therefore, for the pole 

2 appearing below 1.1. the above interpretation is not valid. We have 

simply assumed that the pole below 1.1.
2 ~lso is not the pole of the 

scattering amplitudes. 15 
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, . ·•: 

· ... , 
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. . 

2 
r(s) = s - l-L z 

g + s ... s ·2. + 
0. so - l-L 1 d

.,· t 0f(s•_)p(s•)r(s') 
s . . 2 

R · . : ( s 1 .. l-L ) ( s 1 ... s) .. 
. . ' . 2 -1 . 2 

Now let us suppose r(s) = g d0(~ )d0 (s) = <>. except at . s = l-L • 

. . 2 
· . Then the integral term in the above equation vanishes"· .~ must go 

,· '.. . . . . ' 2 . 
. to s0 , because of , ld0(s0) I = o , and hence ·,z/(s0 - ~ ) .. -g • 

· Therefore1 the first term g is canceled by the second term, so 

·that r(s) 
. 2 . ·. 

is equal to zero even at s = l-L (consistent with the 

· property of an analytic function), but g I 0 • We shall assume 
. . 2 

. g I 0 • Note that w4en l-L = s0 the. formula. 
~ ' 

' 2 -1 . 2 
r( S) ::; , g .d0(~ )d0 (s)' iS indefinite at S = ~ I SO should · · ;~ · · 

2' be defined by lim r(s) = r(l:L ) 
~2 

This does not mean n0 = d0 and N0 = n0 •. Equation. (2.6) is nov 

· d0 TH - ·n0 TG = 0 • Therefore T0 can· be written as 

12. The form factor, K(s) ·= r(s)jz
3
(s) ,· generaUy·depends on s , in 

spite .of the limits, r(s) ,.. o and z
3
(s) .. 0 • ·· Consider an 

example, r(s) = a f(s) and· z3(s) = b ~s) •· In the linfits, 

a .. 0 and b .. 0 1 in such a way that afb .. const1 we ~ve .. 

K(s)-+ const f(s)/g(s) ·• The asymptotic behavior of' K(s) is 

restricted by the equations, z
3 

= 0 and 

= 1+ J . t . 2 2 
ds K( s) p( s) K ( s) /( s • ~ ) • · 
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· 13. See footnote 7. In the pseudoscaiar theory, Zi .. 0 . is an 

identity, as was pointed out by M. Ida in Refs. 5 and 9. 

. ' ... ,..: 

14.' :We have already shown in·Eq. (4.3) that ra(s)/Ka(s) should have 

the pole e0 1 and hence ln0(s0)1 { ~ • Nevertheless T0(s) may 

have the pole s0 due to the pole· of N0(s) • The condition (3.3) 

assures that the residue of th~ pole of N0( s) at s = s0 vanishes_. 

Let us suppose that r(s) has two_poles1 s0 and s'0 • If ve ' ·' 15 • . ' 
2 put ~ = s0 and g = ~ 1 then the other pole s'0 disappears 

. · .. 

by Virtue of the condition ( 3. 3) • 
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.'. FIGURE CAPTION 

Fig. 1. Deformation ·of integral path in Eq. ( 4.1). The proper vertex 

pole so moves on the real axis. The dotted line lies on the 

second Riemann sheet, while the solid lines lie.on the first 

Riemann sheet •. 
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