UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Genetically Generated Neural Networks I: Representational Effects

Permalink
https://escholarship.org/uc/item/3gr3x4x9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Author
Marti, Leonardo

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3qr3x4x9
https://escholarship.org
http://www.cdlib.org/

Genetically Generated Neural Networks I:
Representational Effects

Leonardo Marti
Center for Adaptive Systems
Boston University
111 Cummington Street
Boston, MA 02215
Imarti@cns.bu.edu

Abstract

This paper studies several applications of genetic algo-
rithms (GAs) within the neural networks field. The system
was used to generate neural network circuit architectures.
This was accomplished by using the GA to determine the
weights in a fully interconnected network. The importance
of the internal genetic representation was shown by testing
different approaches. The effects in speed of optimization
of varying the constraints imposed upon the desired net-
work were also studied. It was observed that relatively
loose constraints provided results comparable to a fully
constrained system. The type of neural network circuits
generated were recurrent competitive fields as described
by Grossberg (1982).

Introduction

Genetic Algorithms (GAs) have a lot in common with neu-
ral networks. While used in engineering applications, neu-
ral networks are noted for their neurobiological founda-
tions. GAs are also based on biological foundations. How-
ever, not all known natural genetic functions have been in-
corporated into GAs. GAs have been used mainly as search
and optimization procedures. Natural genetics perform
some of these tasks, but more importantly, genetic material
contains the “program” for life-building. Although recent
discoveries (Ho & Fox, 1988) have changed our view on this
“program”, it is still undisputed that the genetic material
(DNA, RNA) contains enough information to generate an
organism.

The genetic system used here consists of a population of
organisms or individuals where each member is composed

986

of a gene. A chromosome is composed of a string of alleles.
In this particular case, alleles are represented as single bit
binary values. An initial population of an arbitrary number
of members is created by assigning random values to each
allele. Once the population is established, each individual’s
chromosome is tested against some metric. This can be
seen as their “life” performance, generating a probability of
reproduction. Once all individuals have been tested (have
“lived”) the individuals with higher performance will be
more likely to procreate and pass on their genes.

This paper uses GAs to search for the parameters that
describe a neural network. These parameters will be used
to generate such a network and to analyze its behavior
when required to perform a specific task. The aim here is
not only to use GAs as a parameter search tool, but as a
code building tool. Garis (1990), Miller, Todd, & Hegde
(1989), and Harp, Samad, & Guha, (1989) have done some
work in this direction. The Miller, Todd, & Hegde’s sys-
tem (1989) can’t be considered strictly a network building
model, but as a network design or configuration system.
It basically determines the weight values in a fully inter-
connected network where the number of nodes is predeter-
mined. Harp, Samad, & Guha (1989) on the other hand,
determine the number of nodes and their connectivity in
a fairly complete way. Here, the type of network searched
for will be of a more biologically based type.

The internal genetic representation is critical to the
speed and optimization level of a genetic algorithm. This
was shown by testing different approaches to the genetic
representation. In order to further accelerate the optimiza-
tion process, the effects of varying the constraints imposed
upon the desired network were also studied.

In this paper, the formation of subsequent generations
is based on two genetic operators: mutation and crossover.


mailto:lmarti@cns.bu.edu

I, I,

I, I,

Figure 1: Competitive recurrent circuit. For clarity, only node 2 is shown with all its efferent connections.

Mutation is performed by switching each allele to its com-
plementary value with certain probability. Crossovers are
performed by selecting two individuals from the population
for reproduction. A crossover point is randomly selected
somewhere along the extent of the gene, and two children
are generated by switching the genetic material of the two
parents after the point chosen. In the simulations carried
out here, the probability of mutation was 0.03 per allele.
The probability of crossover was 1.00 per chromosome.

In addition, the chromosome of the best individual of
each generation was copied unchanged for the next gen-
eration. For further reference on genetic operations and
implementation details see Goldberg (1989).

System Description

An approach similar to that of Miller, Todd, & Hegde
(1989) was used. A network of fixed node size was imple-
mented. The connections between nodes were represented
by a 4 by 4 matrix. The GA was used to find which connec-
tions should exist and whether these should be inhibitory
or excitatory. The activation equation was of the form:

& ozt (Bt Y fz) - 24+ D) Y (2)

where z; is node ¢ from 1 to 4, A, B and D are constants
set at 6.0, 5.0, 5.0 respectively, f(z) is the neuron’s feed-
back equation (f(z) = z; if £ > 0 otherwise f(z) = 0), ¢
is the set of excitatory nodes, and h the set of inhibitory
nodes. The sets of excitatory and inhibitory nodes are de-
termined by the contents of the genome. For the target
circuit, ¢ was the node itself (f(z;)), and h consisted of
every other node (-, f(zn)).

The representation of the matrix in the chromosome was
implemented by allocating two alleles to each connection.
So, locations 1 and 2 specify the type of connectivity be-
tween node 1 and itself. Locations 3 and 4 specify the type

987

Allele pair | Connection
00 Disconnected
01 Disconnected
10 Inhibitory
11 Excitatory

Table 1: Table for allele representation of connection.

of connectivity between node 1 and node 2, and so on. The
meaning of each pair of alleles is shown in Table 1.

In the current experiment, the exact resulting circuit and
its response curve were known a priori, so a measure of the
difference from this curve was used as the function to be
minimized.

The problem studied with this setup was a network of
feedback nodes. The target configuration was a recurrent
competitive feedback circuit (Grossberg, 1982), as shown
in Figure 1.

Representation Modifications

The setup just described did not converge to an optimal
result within a reasonable time (400 generations). An anal-
ysis of the schemata (similarity templates) involved in the
representation of connections, reveals that it is more likely
for the system to change genetic material from one state
to a state with lower fitness, rather than to a state with
higher fitness. This is due to the allele representation, in
conjunction with the metric used, and the manner in which
crossover and mutation affects genes.

For example, let’s assume that a given connection was
initially set as not connected (00) when the optimal set-
ting is excitatory (11). Since the probabilities of muta-
tion are quite low (0.03) compared with the probabilities
of crossover (1.0), it is quite unlikely that both alleles will



.

-

e

X
5 i
X2

Iy

Figure 2: Left: Input sequence. Right: Output of recurrent competitive circuit.

be mutated during the same generation in the same individ-
ual, therefore, making crossover the more likely candidate
for improving performance. This means that a population
member with values of 10 must be combined with another
member with values of 01. But a setting of 10 is of lower
fitness than the original setting of 00. So the member with
the lower fitness is quite unlikely to survive and reproduce,
in effect slowing the improvement of genetic material.

In order to avoid this problem, the representation must
allow for stepwise improvements in performance through
the combination of short length schemata. Crossover
should be equally likely to move the schemata to any pos-
sible state. This can be achieved in a number of ways. One
possible solution would be to use a tri-valued allele, where
mutation would be equally likely to switch to any state.
This option would avoid the problem of crossover effects
on schemata, by not allowing crossover to modify the type
of connection used.

The solution chosen still maintains bi-valued alleles, but
the meaning of the alleles has been altered. Table 2 shows
the table for a connection under the new configuration.
Here, it is quite likely that an excitatory connection will
eventually move to a disconnected state, and from a discon-
nected state it is possible to move to either an excitatory
or inhibitory state.

A characteristic response curve similar to the one shown
in Figure 2 was requested, given the shown inputs. Since
this curve does not contain all possible combinations of
inputs, the optimal circuit may respond unexpectedly to
inputs not tested.

988

Allele pair | Connection
00 Inhibitory
01 Disconnected
10 Disconnected
11 Excitatory

Table 2: Table for new allele representation of connection.

The resulting network matched exactly that of Figure 1.
As desired, the network contains both positive feedback
within all the nodes and inhibitory connections to all other
nodes. This shows that all possible inputs need not be
tested in order to provide sufficient constraints for a unique
system. The improvement in fitness across generations is
shown in Figure 3. The fitness function used was:

1
143 (Ke—w)

where K, is the optimal output value at time ¢, and y;
the actual output from the network at time .

O(z) =

Constraint Modification

At this point, the fitness function was simplified in order
to provide feedback only when the node’s activation had
settled after each input had changed. The output activa-
tions were then compared with two threshold levels, giving



Ll L) Ll TRl
max ——
avg ---=-
min -

0.8 | -
0.6 p -
0.49 p =
At f“
\ h
s I bt T, il
0-2r /'-/r- v"ﬁ"'\..-f‘ s f"\“.} \"/,’ Y ‘J\“‘”‘“ W Wil T N 7
7

--:_._ ».»,“.__h__‘ .y At -'“'.."-‘.;.""‘-‘,.-'\"..-.-"".‘;'.-"-._n-'._,__.-._-"."‘-".--‘.'-'k'-"". PRI

o S A ' ' i A ' A

(4] 20 40 60 BO 100 120 140

Figure 3: Best, worst, and average population members of the search for a recurrent competitive network over 150

generations and 50 individuals per generation.

three possible states: inactive, inhibited and excited. The
discrete result was then compared with a table of the de-
sired network. The disparity from the table was then used
as the metric to be optimized. This simpler method of net-
work specification was similarly robust in guiding the GA
towards the desired network specification. Since the calcu-
lation of the metric is now simpler, the system executed a
similar number of generations in less time (about half).

Conclusions

The design and use of neural sub-systems is a complex area
that merits further research. In the present study, only
small, fix-sized networks were treated. How these networks
can increase in size, how they are maintained, modified,
and coupled to form more complex systems is an important
area that must be investigated to better understand the
evolutionary processes.

The present study shows the important interaction be-
tween schemata and internal representation. It shows how
the variation of the internal representation can modify a
GA hard problem (Goldberg, 1989), enabling it to find an
optimal network. As a genetic system grows more complex,
a methodical testing of the effects of genetic operators is
necessary. If novel genetic operations are to prove their
usefulness, work of the type performed by De Jong (1975),
is required, where a systematic test of the different system

989

parameters is performed. Similarly, other network specifi-
cation representations should be studied, to observe effects
such as the one described here.

The present study also shows how partially constraining
a system may be enough to orient the search in the proper
direction. It can’t be generalized to all problem areas, but
it can be used to simplify a genetic algorithm when it be-
comes too complex.

References

De Jong, K. A. 1975. An Analysis of the Behavior of a
Class of Genetic Adaptive Systems. Ph.D. diss., University
of Michigan.

de Garis, H. 1990. Genetic Programming. In Proceed-
ings of the Seventh International Conference on Machine
Learning, 132-139. San Mateo, Calif.: Morgan Kaufmann.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, Mass.:
Addison-Wesley.

Grossberg, S. 1982. Studies of Mind and Brain: Neural
Principles of Learning, Perception, Development, Cogni-
tion, and Motor Control. Boston, Mass.: Reidel Press.

Harp, S. A, Samad, T., and Guha, A. 1989. Towards the
Genetic Synthesis of Neural Networks. In Proceedings of



the Third Conference on Genetic Algorithms. San Mateo,
Calif.: Morgan Kaufmann.

Ho, M., and Fox, S. W. 1988. Processes and Metaphors in
Evolution. In Ho, M., and Fox, S. W. eds. Evolutionary
Processes and Metaphors Chichester, England: John Wiley
and Sons Ltd.

Miller, G. F., Todd, P. M., and Hegde, S. U. 1989. Design-
ing Neural Networks using Genetic Algorithms. In Pro-
ceedings of the Third Conference on Genetic Algorithms.
San Mateo, Calif.: Morgan Kaufmann.



	cogsci_1992_986-990



