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Abstract: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial
joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent
pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary
interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption
or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory
effects mediated by diet-related metabolites. In addition, recent literature has shown a link between
diet-related metabolites and microbiome changes, since the gut microbiome is involved in the
metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors
linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking,
associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic
profile and play a role in RA pathogenesis. This article summarizes what is known about circulating
pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in
their circulating concentrations and diet-related metabolites with a beneficial effect in RA.

Keywords: metabolomics; microbiome; diet; lifestyle; circulating

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune inflammatory arthritis that affects approximately
1% of the world’s population. It is a potentially debilitating disease that affects women two to three
times more frequently than men [1]. It is characterized by pain and swelling in joints and produces
irreversible joint damage that negatively affects patients’ quality of life in the absence of treatment.
In our clinical practice, patients often mention changes in their symptoms after the consumption or
avoidance of certain foods and inquire about the adequate type of diet for this disease. However,
there is very little knowledge on how diet or specific ingredients affect pain and inflammation in RA.
Recently, a lot of research on diet, gut microbiome, and gut-microbe-derived metabolites has focused
on explaining how this diet–microbiome-metabolomic axis can explain different symptoms and overall
health status.

Several studies have employed different analytical methods (mass spectrometry, MS, nuclear
magnetic resonance, NMR) to characterize the metabolomic profile in the blood (serum or plasma),
urine, or synovial fluid in patients with rheumatoid arthritis. Due to the heterogeneity of the methods
that were used, the results of most of the studies are not comparable; however, there are metabolites
with similar changes across multiple studies (Figure 1 and Table 1). The objective of this work is to
review the existing evidence for the relationship between diet, metabolites, and inflammation in RA.
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Figure 1. Pro- and anti-inflammatory circulating metabolites described in rheumatoid arthritis (RA) 
patients. The red color indicates pro- and the green indicates anti-inflammatory metabolites. The 
arrows indicate increases/decreased concentrations of the metabolites compared to healthy controls. 

Table 1. Metabolic profile changes in plasma or serum of patients diagnosed with rheumatoid 
arthritis (RA). DMARD: disease-modifying antirheumatic drugs; GC: glucocorticoids; pSS primary 
Sjogren syndrome. 

Type of 
Study Number of Participants Metabolite Changes 

Plasma   

Prospective.  
RA patients 
vs controls 

47 RA patients on DMARDs 
(23 active and 24 in 

remission) and 51 controls.  
Sample collected at 0, 2, 4 
weeks and 6, 12 months. 

Elevated metabolites in RA patients compared to controls: 
choline, cholesterol, acetylated glycoprotein, lactate, and 

unsaturated lipid.  
Decreased HDL in RA patients compared to controls [2] 

Cross-
sectional 

24 RA patients on 
methotrexate and less than 
10mg prednisolone daily 

Positive correlation with fatigue in RA: Fructose, arachidonic 
acid (ARA), glycerol-3-phosphate, indole-3-acetic acid, and 

proline. Negative correlation with fatigue in RA: 2-
oxoisocaproate, cystine, hydroxyproline, decosahexaenoic 

acid, tryptophan, pipecolic acid, valine, ornithine, arginine, 
urea, tyrosine, and linoleic acid [3] 

Cross-
sectional.  

RA patients 
vs control 

132 established RA patients 
and 104 controls 

Metabolites increased in RA vs control: prolyglycine. 
Metabolites decreased in RA vs control: 4-methyl-2-

oxopentanoate, 3-methyl-2-oxovalerate, and sarcosine.  
* Steroids in those with past corticosteroids treatment vs those 

who never received them or are currently taking them [4] 
Serum   

Cross-
sectional.  

RA patients 
vs controls 

14 healthy controls  
16 established RA patients, 

and two groups of early 
RA patients (89 and 127 RA 

patients) 

High in RA patients compared to controls: 3-hydroxybutyrate, 
lactate, acetylglycine, taurine, glucose. Low in RA patients 

compared to healthy controls: LDL-CH3, LDL-CH2, alanine, 
methylguanidine, and lipid [5] 

Figure 1. Pro- and anti-inflammatory circulating metabolites described in rheumatoid arthritis (RA)
patients. The red color indicates pro- and the green indicates anti-inflammatory metabolites. The
arrows indicate increases/decreased concentrations of the metabolites compared to healthy controls.

Table 1. Metabolic profile changes in plasma or serum of patients diagnosed with rheumatoid
arthritis (RA). DMARD: disease-modifying antirheumatic drugs; GC: glucocorticoids; pSS primary
Sjogren syndrome.

Type of Study Number of Participants Metabolite Changes

Plasma

Prospective.
RA patients vs. controls

47 RA patients on DMARDs (23
active and 24 in remission) and 51

controls.
Sample collected at 0, 2, 4 weeks

and 6, 12 months.

Elevated metabolites in RA patients
compared to controls: choline, cholesterol,

acetylated glycoprotein, lactate, and
unsaturated lipid.

Decreased HDL in RA patients compared to
controls [2]

Cross-sectional
24 RA patients on methotrexate

and less than 10 mg prednisolone
daily

Positive correlation with fatigue in RA:
Fructose, arachidonic acid (ARA),

glycerol-3-phosphate, indole-3-acetic acid,
and proline. Negative correlation with

fatigue in RA: 2-oxoisocaproate, cystine,
hydroxyproline, decosahexaenoic acid,

tryptophan, pipecolic acid, valine, ornithine,
arginine, urea, tyrosine, and linoleic acid [3]

Cross-sectional.
RA patients vs. control

132 established RA patients and
104 controls

Metabolites increased in RA vs. control:
prolyglycine. Metabolites decreased in RA

vs. control: 4-methyl-2-oxopentanoate,
3-methyl-2-oxovalerate, and sarcosine.

* Steroids in those with past corticosteroids
treatment vs. those who never received

them or are currently taking them [4]
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Table 1. Cont.

Type of Study Number of Participants Metabolite Changes

Serum

Cross-sectional.
RA patients vs. controls

14 healthy controls
16 established RA patients, and
two groups of early RA patients

(89 and 127 RA patients)

High in RA patients compared to controls:
3-hydroxybutyrate, lactate, acetylglycine,

taurine, glucose. Low in RA patients
compared to healthy controls: LDL-CH3,
LDL-CH2, alanine, methylguanidine, and

lipid [5]

Cross-sectional.
RA patients vs. controls

33 established RA patients and 32
controls

Metabolites increased in RA compared to
controls: glycerol, citrate, pyruvate,
cholesterol, fatty acids. Metabolites

decreased in RA compared to controls:
glucose, urate, alanine, serine, methionine,

threonine, leucine, valine, isoleucine,
aspartate, phenylalanine, tyrosine, proline,

and urea [6]

Cross-sectional.
RA on GC vs. RA that

did not receive GC

281 RA patients
73 Males taking GC

42 Females taking GC

Higher in women on GC:
lysophosphatidylcholines and

lysophosphatidylethanolamines.
In men, lysophospholipids levels were

similar between GC users and nonusers [7]

Cross-sectional.
RA and pSS patients vs.

controls

30 active RA patients and
30 pSS as a disease control 32

controls

Metabolites increase in RA vs. pSS and
control: L-Leucine, L-phenylalanine,

glutamic acid, and L-proline,
4-methoxyphenylacetic acid. Metabolites

decrease in RA vs. pSS and control:
Tryptophan, argininosuccinic acid, and

capric acid [8]

2. Factors That Influence Circulating Metabolites and Their Potential Role in
Rheumatoid Arthritis

Metabolites reflect an organism’s state, which results from the interaction of internal and
external factors, such as genetic and environmental/lifestyle factors, respectively. In disease states, the
circulating metabolites are also affected by the pathological processes, and there are already well-studied
metabolites that are considered to be disease reporters, like the increase of blood glucose levels in
diabetes mellitus. In systemic diseases such as RA, the abnormal circulating metabolomic profile might
reflect genetic predisposition, local inflammation, comorbidities, and several environmental factors
including diet, smoking, or microbiome (Figure 2).
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Metabolic profile 
changes in RA

Comorbidities:

• Sarcopenia
• Obesity
• Dyslipidemia
• Hypertension
• Insulin resistance

Life-style:

• Food (Diet)
• Smoking
• Physical activity

Rheumatoid Arthritis:

• Immune response
• Treatment
• Inflammation 
• Disease activity

Individual factors:

• Sex
• Age
• Polymorphisms 

Gut Microbiome

Figure 2. Factors involved in circulating metabolic profile in patients with RA. Several factors influence
the circulating metabolites levels. Not only dietary factors or local synovial metabolites, but also
comorbidities, treatment and individual factors, such as sex, age and genetics, will modify their
metabolism, gut microbiome, and therefore, the circulating metabolic profile.

2.1. Diet

Amongst environmental factors, diet is one that directly affects circulating metabolites. For
example, essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine,
threonine, tryptophan, and valine) and essential fatty acids (alpha-linolenic acid and linoleic acid)
come from the diet. Of interest, some of these essential nutrients were found to be low in RA
patients, including linoleic acid, and several amino acids (Table 1), suggesting a link between diet and
inflammation in RA.

Epidemiological studies have shown a relationship between diet and RA; thus, some of the
metabolomic changes observed in several fluids (serum/plasma or urine) in early arthritis could be
related to differences in dietary patterns between RA patients and the healthy population. A study that
included a large number of patients (15770 adult males and females) found that patients with arthritis
(including RA and osteoarthritis) had lower quality diets compared to people without arthritis, based
on HEI-2015, a healthy eating index created by the USDA and based on the Dietary Guidelines for
Americans [9]. Patients with arthritis consumed less fruit, vegetables, greens and beans, whole grains,
seafood, and plant protein, but more added sugars, saturated fats, and empty calories compared to
those without arthritis [10]. The association of poor dietary quality with RA was also observed in
other studies, in which RA patients had an inadequate intake of fruit, vegetables, dairy, fatty acids,
and whole grains [11–13]. A study in a Chinese population found that RA patients were consuming
different amounts of chicken, fish, mushrooms, beans, citrus, dairy products, and organ meats than
healthy controls [14]. Another study that included a white population found that both women and
men on a nonvegetarian diet were at higher risk of developing RA [15]. Hu et al. analyzed the cohort
of women included in the Nurses’ Health Study and Nurses’s Health Study II that were followed from
1984 to the present-day, and found that good dietary quality, moderate alcohol consumption, and low
intake of red meat were associated with a lower rate of RA incidence [13].

In the past, due to advances in the field of metabolomics, efforts have been made to predict
food intake by measuring blood/urine/fecal metabolites. Two main techniques are being used: MS
coupled with liquid- or gas-phase chromatography and proton (1H) NMR [16]. There are numerous
metabolomics studies that have identified candidate biomarkers for different dietary patterns, as well
as for different types of foods, ranging from meat to fruits and vegetables. Table 2 shows a summary
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of foods and the metabolites that have been found to be markers of their intake using metabolomics.
Several studies have also found metabolites related to dietary patterns, like Mediterranean, high fat, or
Western diets [17–21].

Table 2. Food intake and candidate biomarkers identified by mass spectrometry (MS) and/or nuclear
magnetic resonance (NMR).

Type of Food Sample Type Candidate Biomarker Metabolite

Meat (red meat, low-fat meat,
chicken)

Urine
Plasma

1-Methylhistidine; 3-methylhistidine; acetyl
carnitine; creatinine; taurine; carnitine;

trimethylamine N-oxide; creatine; histidine;
urea; anserine; carnosine;
guanidoacetate [19,22–25]

Beef Plasma β-Alanine; 4-hydroxyproline;
2-aminoadipic acid; leucine [26]

Fish Urine
Plasma

Trimethylamine N-oxide; anserine;
1-methylhistidine;

3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid; docosahexaenoic acid

(DHA); eicosapentaenoic acid (EPA);
1-docosahexaenoylglycero- phosphocholine;

cetoleic acid [25–31]

Vegetables

Vegetarian and lactovegetarian
diet) Urine

p-Hydroxyphenylacetate Hippurate;
phenylacetylglutamine; lysine; hippurate;
N-acetyl glycoprotein; succinate [19,32,33]

Broccoli Urine
Ascorbate; tetronic acids;

l-xylonate/l-lyxonate; naringenin
glucuronide [28]

Onion Urine N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide
4-Ethyl-5-amino-pyrocatechol [34]

Lettuce, spinach, green peppers Serum 3-Carboxy-4-methyl-5
-propyl-2-furanpropanoic [30]

Cabbage, brussels sprouts, pointed
cabbage Urine

N-acetyl-S-(N-3-methylthiopropyl)cysteine;
N-acetyl-S-(N-allylthiocarbamoyl)cysteine;

iberin N-acetyl-cysteine; erucin
N-acetyl-cysteine; N-acetyl-(N′

-benzylthiocarbamoyl)-cysteine;
sulforaphane N-acetyl-cysteine;

sulforaphane
N-cysteine,3-Hydroxy-hippuric acid sulfate;

3-hydroxy-hippuric acid; iberin
N-acetyl-cysteine [29]

Fruit

Apples and pears Urine Phloretin [35,36]; rhamnitol [34]

Citrus Urine

Proline betaine; limonene 8,9-diol
glucuronide; nootkatone 13,14-diol

glucuronide; hesperetin 3′-O-glucuronide;
hydroxyproline betaine; N-methyltyramine

sulfate; naringenin 7-O-glucuronide;
stachydrine; scyllo- and

chiro-inositol [28,30,35–40]

Orange juice Urine
N-methyl proline; methyl glucopyranoside

(α+β); stachydrine; betonicine; N-acetyl
putrescine; dihydroferulic acid [41]
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Table 2. Cont.

Type of Food Sample Type Candidate Biomarker Metabolite

Raspberries Urine
Sulfonated caffeic acid; methyl-epicatechin
sulfate; 3-hydroxyhippuric acid; naringenin

glucuronide; ascorbate [28]

Strawberries Urine

4-Hydroxyhippuric acid;
4-hydroxy-2,5-dimethyl- 3(2H)-furanone

(furaneol) glucuronide; pelargonin
glucuronide; p-coumaric acid sulfate;

dihydrokaempferol glucuronide; furaneol
sulfate; 2,5-dimethyl-4-methoxy

-2,3-dihydro-3-furanone (mesifurane);
mesifurane sulfate; leucopelargonidin;

catechin sulfate [28]

Cereals

Whole-grain rye Urine

Alkylresorcinol metabolites; caffeic acid
sulfate; hydroxyhydroxyphenyl acetamide
sulfate; 3,5-dihydroxyphenylpropionic acid

sulfate; hydroxyphenyl acetamide
sulfate [31]

Whole-grain sourdough rye bread Urine
Plasma

Benzoxazinoid derivatives; hydroxylated
phenyl acetamide derivatives; sulfonated
hydroxyl-N-(2-hydroxyphenyl) acetamide;

N-(2-hydroxyphenyl)acetamide;
2,4-dihydroxy- 1,4-benzoxazin-3-one;

1,3-benzoxaxazol-2-one [42,43]

Whole-grain bread Urine

Glucuronidated alk(en)ylresorcinols;
2-hydroxy-N-(2-hydroxyphenyl) acetamide;
2-hydroxy-1,4-benzoxazin-3-one glycoside;

3-(3,5-dihydroxyphenyl) propanoic acid
glucuronide; 5-(3,5-dihydroxyphenyl)

pentanoic acid sulfate; dihydroferulic acid
sulfate; enterolactone glucuronide;
pyrraline; 3-indolecarboxylic acid

glucuronide; 2,8-dihydroxyquinoline
glucuronide [43]

Dairy products

Cheese Urine

Indoxyl sulfate; xanthurenic acid; tyramine
sulfate; 4-hydroxyphenylacetic acid;

isovalerylglutamic acid; acylglycines;
3-phenyllactic acid [44]

Butter Urine

3-Phenyllactic; alanine, proline;
pyroglutamic acid; methyl palmitate (15 or
2); pentadecanoate (15:0); 10-undecenoate

(11:1n–1) [30]

Milk
Urine
Serum
Plasma

Trimethyl-N-aminovalerate; uridine;
hydroxysphingomyelin C14:1;

diacylphosphatidylcholine C28:1; lactose;
galactose; galactonate; allantoin; hippurate;

galactitol; galactono-1,5-lactone [44–46]
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Table 2. Cont.

Type of Food Sample Type Candidate Biomarker Metabolite

Beverages

Coffee
Urine

Caffeic; chlorogenic acid; Dihydrocaffeic
acid-3-O-sulfate; feruloylglycine [35,47]

Atractyligenin glucuronide;
diketopiperazine cyclo(isoleucyl-prolyl);

trigonelline; paraxanthine;
1-methylxanthine, 1-methyluric acid,

1,7-dimethyluric acid, 1,3- or
3,7-dimethyluric acid; 1,3,7-trimethyluric

acid; 5-acetylamino-6
-formylamino-3-methyluracil [48]

Serum/Plasma

Trigonelline (N′-methylnicotinate); quinate;
1-methylxanthine; paraxanthine;

N-2-furoyl-glycine; catechol sulfate [30]
Pathways: xanthine metabolism; benzoate
metabolism; steroid; fatty acid metabolism

(acylcholine); endocannabinoid [49]

Black tea Urine
Hippuric acid;

1,3-dihydroxyphenyl-2-O-sulfate gallic;
4-O-methylgallic acids [35,50]

Black/Green tea Urine

Hippuric acid;
1,3-dihydroxyphenyl-2-O-sulfate;
hydroxybenzoic glycine conjugate;

vanilloylglycine;
pyrogallol-2-O-sulfate [51–53]

Wine
Urine

Tartaric acid, microbial-derived phenolic
metabolites

(5-(dihydroxyphenyl)-γ-valerolactones and
4-hydroxyl-5-(phenyl)-valeric acids) [54]

Plasma

Gallic acid and ethylgallate metabolites;
resveratrol and resveratrol microbial

metabolites; 2,4-dihydroxybenzoic acid;
(epi)catechin; valerolactone metabolites [55]

Other

Walnuts Urine

10-Hydroxy-decene-4,6-diynoic acid sulfate;
tridecadienoic/tridecynoic acid glucuronide;

sulfate conjugates of urolithin A;
3-indolecarboxylic acid glucuronide;

5-Hydroxyindole-3-acetic acid [29,56]

Peanuts Urine 4-Vinylphenol sulfate; tryptophan
betaine [30]

Cocoa Urine

Theobromine metabolism (AMMU;
3-methyluric acid; 7-methylxanthine;

3-methylxanthine; 3,7-dimethyluric acid;
theobromine). Polyphenol microbial

metabolites
[methoxyhydroxyphenylvalerolactone;
glucuronide and sulfate conjugates of

5-(3′,4′ -dihydroxyphenyl)-
valerolactone] [57,58]

Chocolate Urine
6-Amino-5-[N-methylformylamino]

-1-methyluracil; theobromine; 7-methyluric
acid [29]
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The identification of food biomarkers is an ongoing process; a consensus has not been reached as
to which metabolites would be the most adequate biomarkers for different types of foods. Moreover,
some metabolites are markers of categories of food, not being able to discriminate between the exact
types of foods being analyzed (1-methylhistidine and 3-methylhistidine are found in meat and are not
useful in discriminating between types of meat). It is possible that for some foods, a combination of
metabolites would be more suited as a marker than a single metabolite. Unfortunately, as of now, the
metabolomic studies in RA (Table 1) have not collected food intake data nor used the same metabolomic
platforms, making it difficult to associate specific food intake with metabolic changes in RA patients.
However, some metabolites from Tables 1 and 2 suggest an interaction between circulating metabolites
and diet. For instance, some of these studies [5,59] showed higher levels of carnitine and taurine in RA
patients, which are potential biomarkers of meat intake.

2.2. Drugs

Researchers have used a metabolomics approach to evaluate the changes in circulating metabolites
from drugs used in RA treatment (Table 3). The study of these changes might help to understand RA
pathogenesis, since the therapeutic effects of these drugs could potentially be driven by metabolic
changes either by normalizing their abnormal values or by increasing anti-inflammatory metabolites.
For instance, using a targeted metabolomic approach, Fu et al. compared the effect of oral glucocorticoids
(GC) on serum polar lipids and observed an increase in lysophosphatidylcholines (LPC) and
lysophosphatidylethanolamines (LPE) in females but not in male patients with RA [7]. GC inhibits
phospholipase A, a key enzyme that hydrolyzes membrane phospholipids which is increased in
inflammatory tissues. The effect of GC on phospholipase A will likely modify the phospholipid profile.
Of interest, polyunsaturated acyl LPC and LPE presented an anti-inflammatory effect on animal
models [60]. The effect of low dose GC (<10 mg/day) on arginine metabolism and cardiovascular risk in
RA patients was also studied [61]. This study from Australia that included 36 RA patients, 18 of which
were on GC (GC users) and 18 that were not receiving GC (non-GC-users), found that asymmetric
dimethyl arginine (ADMA) and symmetric dimethyl arginine (SDMA) levels were lower in patients on
chronic GC compared to non-GC users, suggesting that long-term treatment with GC had an improved
endothelial function and a cardiovascular protective effect. by modulating arginine metabolism [61].

Wang et al. [59] studied the change of the plasma metabolic profile in 29 RA patients after
the initiation of treatment with methotrexate (14 patients) or a combination of methotrexate with a
Chinese medicinal herb (15 patients). They found decreased levels of several amino acids (tryptophan,
threonine, histidine, methionine, and glycine) as well as other metabolites (carnitine, hypoxanthine,
cytosine, uracil, and uric acid), while taurine, aspartate, alanine, lactic acid, adenosine, and guanine
were significantly increased in RA patients compared to controls. Interestingly, the treatment with
methotrexate brought the levels of all these metabolites back to normal levels, suggesting a causative role
of these amino acids in RA pathogenesis. The combination of MTX with tripterygium glycosides tablets
was more effective in obtaining these results compared to monotherapy with MTX. Although more data
is needed to link amino acid changes to abnormal immune response in RA, data in immune cells suggest
a direct link between amino acid metabolism and T cell and macrophage responses by promoting
and modulating inflammation, which could potentially be involved in RA pathogenesis [62–65]. In
RA, tryptophan is the substrate of indoleamine-2,3-dioxygenase IDO2, which was demonstrated to
be required for the activation of CD4+ Th cells, the production of pathogenic autoantibodies, and
the subsequent development of arthritis in a KRN mouse model of arthritis [66–68]. This offers a
possible explanation for the decrease in tryptophan levels that is then reversed by the addition of
methotrexate. On the other hand, levels of S-adenosy-L-homocysteine, 5-formyltetrahydrofolate,
and 5-methyltetrahydrofolate were similar between controls and RA patients before treatment, and
decreased after 3 months of methotrexate, pointing to these methotrexate-associated metabolites as
adherence biomarkers [59].
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Table 3. Metabolic profile modifications by drugs used in the treatment of RA.

Samples Decreased Increased

Methotrexate [59]

Plasma

Taurine, aspartate, alanine, hypoxanthine, cytosine,
uric acid, uracil, lactic acid,

S-adenosyl-L-homocysteine,
5-formyltetrahydrofolate, 5-methyltetrahydrofolate.

Tryptophan, threonine, histidine, methionine,
glycine, carnitine, guanine, and adenosine.

Glucocorticoids

Serum [7] None reported Lysophosphatidylethanolamines and
lysophosphatidylcholines (Females).

Plasma [61] Asymmetric dimethyl arginine, symmetric dimethyl
arginine None reported.

Anti-tumor necrosis factor (TNF)

Serum [69]

3-hydroxyisobutyrate, lysine, acetoacetate,
acetylphosphocholine, creatine

sn-glycero-3-phosphocholine, histidine, and
phenylalanine.

Leucine, acetate, betaine, and formate.

Serum [70] 3-hydroxybutyrate. Isoleucine, leucine, valine, alanine, glutamine,
tyrosine, and glucose.

Urine [71] Eanolamine, p-hydroxyphenylpyruvic acid, and
phosphocreatine.

Hippuric acid, citrate, and lactic acid (Infliximab).
Choline, phenylacetic acid, urea, creatine, and

methylamine (Etanercept). Histamine, glutamine,
phenylacetic acid, xanthine, xanthurenic acid, and

creatinine.

TNF is a potent pro-inflammatory cytokine that plays key role in cell metabolism, including glucose
and lipid metabolism [72]; thus, changes in metabolic profile are expected after the administration
of a TNF inhibitor. The first study that evaluated the changes in the metabolic profile of 16 RA
and psoriatic arthritis (PsA) patients after TNFi treatment (etanercept and infliximab) used urine
samples. The study described increases in hippuric acid, citrate, and lactic acid after infliximab
treatment, while increases in choline, phenylacetic acid, urea, creatine, and methylamine were seen
after etanercept treatment [71]. Another group evaluated the serum metabolomic profile in 20 patients
with RA before and after treatment with TNFi (etanercept or adalimumab). Of the 20 patients,
55% of patients had a moderate EULAR response, while only 20% reached a good response. At 3
months posttreatment, 3-hydroxyisobutyrate, lysine, acetoacetate, acetylphosphocholine, creatine
sn-glycero-3-phosphocholine, histidine, and phenylalanine levels decreased, while leucine, acetate,
betaine, and formate levels increased, but they did not reach those of the healthy control [69]. The
changes of the serum metabolic profile in response to treatment with a TNFi, etanercept, in 27 patients
with active RA were also evaluated by Priori et al. These patients were receiving concomitant therapy
with GC and disease-modifying antirheumatic drugs. After 3 months of treatment, isoleucine, leucine,
valine, alanine, glutamine, tyrosine, and glucose levels were found to be increased in good responders
as defined by EULAR-ESR criteria, whereas 3-hydroxybutyrate levels were reduced [70]. The decrease
of 3-hydroxybutirate, acetoacetate, and acetylphosphocholine levels suggests a modulation of lipid
metabolism after TNF inhibition, especially in responders. In addition, the increase of glucose and
other amino acids suggests a decrease of glucose and amino acid metabolism by the inflamed tissues.

2.3. Comorbidities

RA patients present several comorbidities including obesity, metabolic syndrome, and sarcopenia,
probably triggered by a disbalance of proinflammatory cytokines including TNF and IL-6 among other
causes [73–77], that will modify the circulating metabolites [78]. Several studies have investigated
circulating metabolic changes related to the metabolic syndrome and obesity [79,80]. Of interest, a lot
of circulating metabolites that are different in RA patients compared to controls could be related to
associated metabolic syndrome, since choline metabolism (especially TMAO and carnitine), aminoacids
(alanine, glutamine, glutamate, arginine, aspartate, asparagine, histidine, methionine, cysteine, lysine,
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branched-chain amino acids (BCAA), phenylaniline, tyrosine, and tryptophan) and phospholipids
(phosphatydilcholines) also change in those with metabolic syndrome [80]. Several works on muscle
mass have also suggested that some circulating metabolites can be biomarkers of muscle mass and
sarcopenia [81]. Even though both fat tissue and muscle, as well as associated immune cells in
these inflamed tissues, can be sources of metabolites, it is unknown how much they can contribute
to the pool of circulating metabolites. For example, studies measuring the metabolomics profile
in visceral adipose tissue and serum from obese patients found low correlations between serum
and adipose tissue metabolites [82]. On the other hand, we can speculate that there might be a
competition between inflamed tissues (adipose tissue vs. synovial tissue) for the uptake of circulating
anti-inflammatory metabolites.

2.4. Sex and Age

Several epidemiological studies have shown differences in metabolite concentrations according
to sex and gender. A cross-sectional study in urine samples showed that some metabolites from the
tricarboxylic acid cycle (TCA) cycle such as citrate and fumarate were elevated in women, while
carnitine, acetylcarnitine, acetone, and creatinine were higher in men [83]. In addition, Fan et al. found
that 2-hydroxyglutaric acid, α-ketoglutarate, and 2-oxyglutaric acid were higher in women. However,
UDP-glucoronic acid was higher in men, suggesting that this could be linked to sex hormones [84].
Another study showed differences between sex and metabolic profile in serum, suggesting that glycine,
serine, and sphingomyelines are upregulated in women, and ornithine, arginine, acyl carnitines, and
amino acids derived from glutamine pathway are elevated in males [85]. Finally, a longitudinal
cohort of adults showed a positive correlation of levels of glutamine, tyrosine, long chain fatty acids,
acyl-carnitines, and sphingolipids, and a negative correlation of histidine, tryptophan, threonine,
serine, and leucine levels with age [86].

2.5. Smoking and Exercise

Smoking is a known risk factor for RA and is associated with an increased risk of more severe
arthritis, and less likelihood of achieving remission. Smoking also decreases the effectiveness of some
disease-modifying antirheumatic drugs (DMARDs) [87,88]. The exact reason of these associations is
not well understood, although the effect of smoking on immune cells, and cytokine production, and
the increase of oxidative stress that it causes, have been described [89–91], and these likely affect the
immune response in RA. Metabolomics has also identified blood biomarkers associated with chronic
tobacco smoking. One study performed on a large number of healthy participants (892) from around the
world found an association between smoking and three well-established nicotine metabolites (cotinine,
hydroxycotinine, and cotinine N-oxide), and an additional 12 xenobiotic metabolites involved in
benzoatic (e.g., 3-ethylphenylsulphate) or xanthine metabolism (e.g., 1-methylurate), three amino acids
(o-cresol sulphate, serotonin, indolepropionate), two lipids (scyllo-inositol, pregnenolone sulphate),
four vitamins or cofactors, and one carbohydrate (oxalate) [92]. Several of these metabolites, especially
nicotine-derived metabolites, have been described to modulate the immune response [90], and other
metabolic changes could be involved in smoking-induced methylation changes in immune cells [93].
Another study looked at the immediate effects of smoking on the metabolic profile. Thirty-one
metabolites were shown to be acutely affected by cigarette smoking, including menthol-glucuronide,
the reduction of glutamate, oleamide, and 13 glycerophospholipids. Moreover, detailed analysis
revealed changes in 12 cancer-related metabolites, notably related with cAMP inhibition [94]. Since a
known mechanism of methotrexate in treatment of RA is to induce an increase of cellular cAMP [95],
the inhibition of this metabolite by smoking could explain the decrease in the effectiveness of this drug
in RA.

Exercise is another factor that might change the metabolomic profile. However, these changes
depend of the quantity and type of exercise. For example, in people who exercise more than 2 h per
day, some metabolites, including medium and long fatty acids, ketones, sulfated bile acids, palmitate,
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linoleate, stearate, and palmitoleate, increased two-fold in their plasma concentration. Decreases of
pyruvate and lactate, among others intermediates of TCA, have been reported after a short running
period [96]. The reader can find an extensive review of these changes in a recently published review [96]
about metabolic changes after exercising.

2.6. Genetics: Polymorphisms and Metabolism

Genome-wide association studies (GWAS) uncovered multiple loci that are associated with the level
of metabolites, which involve a large number of metabolic pathways, indicating widespread genetic
influences on the human metabolome (Figure 3). The loci that have been described involve amino
acids, intermediates of lipid metabolism, including sterols, carnitines, and intermediates of inositol
and fatty acid metabolism, intermediates of purine and pyrimidine metabolism, glucose homeostasis,
and vitamin and cofactor levels [97–100]. Polymorphisms in these metabolite-associated genes were
also described in RA GWAS. In Figure 3, we put together a summary of metabolism-related genes
described in genome-wide association studies (GWAS; https://www.ebi.ac.uk/gwas/). Polymorphisms
in the genes underlined in red were found to be associated with RA. These genes are mostly related to
lipid metabolism. Interestingly, lipid metabolites are considered pro-inflammatory metabolites (see
Section 3), and higher levels of lipids were described in serum of RA patients compared to control
subjects (Table 1). DLG2 (Discs Large MAGUK Scaffold Protein 2), which was found to be associated
with glycerophospholipid metabolism [101], was also found to be related to response to TNF inhibitors
in RA patients [102]. FADS1 and 2 (Fatty Acid Desaturase) and BLK (BLK Proto-Oncogene, Src Family
Tyrosine Kinase), involved in fatty acid metabolism, and STAG1 (Stromal Antigen 1) and FCGR2B
(Fc Fragment Of IgG Receptor IIb), involved in lipoprotein metabolism, were found to be associated
with susceptibility to developing RA in several studies [103–107]. SLC22A4, a transporter related
to isovaleryl/carnitine, was found to be associated with RA in a Japanese population [108], but not
in a Canadian one [109]. Finally, Geiger et al. described 2 SNPs (single nucleotide polymorphism),
rs9309413 and rs4775041, found on PLEK (Pleckstrin) and LIPC (Hepatic Triacylglycerol Lipase)
genes, associated with sphingomyelin associated and phosphatidylethanolamine (PE) [110], that
were associated with RA in a previous study [111]. Little is known about the role of these genes in
inflammation and autoimmunity, so more studies are needed to determine whether some of these
pathways are critical for the pathogenesis of RA.
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Palmitoyltransferase Long Chain Base Subunit 3; LASS4—Ceramide Synthase 4,
SGPP1—Sphingosine-1-phosphate, ATP10D—ATPase Phospholipid Transporting 10D
(Putative), SCD—Stearoyl-CoA Desaturase; ACADL—Acyl-CoA Dehydrogenase Long
Chain; ACADM—Acyl-CoA Dehydrogenase Medium Chain; ACADS—Acyl-CoA
Dehydrogenase Short Chain; ETFDH—Electron Transfer Flavoprotein Dehydrogenase;
LPGAT1—Lysophosphatidylglycerol Acyltransferase 1; CPT1—Carnitine Palmitoyltransferase
1; PHGDH—Phosphoglycerate Dehydrogenase; CPS1—Carbamoyl-Phosphate Synthase 1;
GLS2—glutaminase; EPA—eicosapentaenoic acid; DHA—docosahexaenoic acid; GCKR—Glucokinase
Regulator; APOA—Apolipoprotein; MYRF—Myelin Regulatory Factor; TMEM258—transmembrane
protein 258; FEN1—flap structure-specific endonuclease 1; DNTTIP2—deoxynucleotidyl transferase
terminal interacting protein 2; ROCK1—Rho Associated Coiled-Coil Containing Protein Kinase
1; MAF—MAF BZIP Transcription Facto; SYT1—Synaptotagmin 1; SYNE2—Spectrin Repeat
Containing Nuclear Envelope Protein 2; CERS4—Ceramide Synthase 4; MBOAT7—Membrane
Bound O-Acyltransferase Domain Containing 7; ABCG5—ATP Binding Cassette Subfamily G
Member 5; GLTPD2—Glycolipid Transfer Protein Domain Containing 2; COL5A1—Collagen Type
V Alpha 1 Chain; GALNT16—Polypeptide N-Acetylgalactosaminyltransferase 16; BLK—BLK
Proto-Oncogene, Src Family Tyrosine Kinase; PCOLCE2—Procollagen C-Endopeptidase Enhancer 2;
LPCAT3—Lysophosphatidylcholine Acyltransferase 3; SYCP2L—Synaptonemal Complex Protein 2
Like; DAGLA—Diacylglycerol Lipase Alpha; PAQR9—Progestin And AdipoQ Receptor Family Member
9; AGPAT1—1-Acylglycerol-3-Phosphate O-Acyltransferase 1; PKD2L1—Polycystin 2 Like 1, Transient
Receptor Potential Cation Channel, PDXDC1—yridoxal Dependent Decarboxylase Domain Containing
1; KCNH7—Potassium Voltage-Gated Channel Subfamily H Member 7; PNLIPRP2—Pancreatic
Lipase Related Protein 2 (Gene/Pseudogene); SYT9—Synaptotagmin 9; DLG2—Discs Large
MAGUK Scaffold Protein 2; CDK17—Cyclin Dependent Kinase 17; PDXDC1—Pyridoxal Dependent
Decarboxylase Domain Containing 1; PLD2—Phospholipase D2; APOE—Apolipoprotein E;
ILKAP—ILK Associated Serine/Threonine Phosphatase; ITGA9—Integrin Subunit Alpha 9;
PCDH20—Protocadherin 20; GCKR—Glucokinase Regulator; G6PC2—Glucose-6-Phosphatase
Catalytic Subunit 2; MTNR1B—Melatonin Receptor 1B; PCCB—Propionyl-CoA Carboxylase
Subunit Beta; STAG1—Stromal Antigen 1; BTNL2—Butyrophilin Like 2, KLF14—Kruppel Like
Factor 14, CCDC9—Coiled-Coil Domain Containing 9; DNAH10—Dynein Axonemal Heavy
Chain 10; ZNF664—Zinc Finger Protein 664; WIPI1-WD Repeat Domain, Phosphoinositide
Interacting 1; PCSK9 -, Proprotein Convertase Subtilisin/Kexin Type 9; APOB—Apolipoprotein B;
HMGCR—3-Hydroxy-3-Methylglutaryl-CoA Reductase; LPL—Lipoprotein Lipase; ABCA1—ATP
Binding Cassette Subfamily A Member 1; CETP—Cholesteryl Ester Transfer Protein; LIPG—Lipase G,
Endothelial Type; LDLR—Low Density Lipoprotein Receptor; PLTP—Phospholipid Transfer Protein;
PPP1R11—Protein Phosphatase 1 Regulatory Inhibitor Subunit 11; ALB—Albumin; FCGR2B—Fc
Fragment Of IgG Receptor IIb; ANGPTL3—Angiopoietin Like 3; MLXIPL—MLX Interacting
Protein Like; GLS2—Glutaminase 2, TAT—Tyrosine Aminotransferase; F12—; Coagulation Factor
XII; PPM1K—Protein Phosphatase, Mg2+/Mn2+ Dependent 1K, TLR3—Toll Like Receptor 3;
HAL—Histidine Ammonia-Lyase; PAH—Phenylalanine Hydroxylase; UPB1—Beta-Ureidopropionase
1; SLC22A16—Solute Carrier Family 22 Member 16; ARG—Arginase; HLCS—Holocarboxylase
Synthetase; JAM3—Junctional Adhesion Molecule 3; PPP1R16A—Protein Phosphatase 1 Regulatory
Subunit 16A.

2.7. Gut Microbiome/Absorption

The gut microbiome represents the collection of microbes that inhabit the intestines. Its composition
is shaped by several factors, like genetics, age, delivery pattern, diet, antibiotic use, and other
treatments [112–115]. It can also be modulated by prebiotics [116,117], probiotics [118], and fecal
microbiota transplantation. Bacteria in the gut are important not only in the absorption of certain
vitamins and in the synthesis of bile acids, but they also have the potential to modify circulating
pro- or anti-inflammatory mediators, since they are involved in the metabolism of some dietary
components [119]. For example, trimethylamine-N-oxide, a pro-inflammatory metabolite that derives
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from choline and carnitine present in red meat, eggs, and dairy products, is produced by Prevotella copri
among other bacteria [120,121]. An increased abundance of Prevotella copri was found in new-onset
untreated RA patients, suggesting P. copri may be pathogenic in this disease [122]. In contrast, bacteria
that have an almost exclusive saccharolytic metabolism, such as lactobacilli and bifidobacterial, are
considered potentially beneficial [123], since they produce a variety of tryptophan catabolites (indole,
tryptamine, indoleethanol (IE), indolepropionic acid (IPA), indolelactic acid (ILA), indoleacetic acid
(IAA), skatole, indolealdehyde (IAld), and indoleacrylic acid (IA)) which are critical for intestinal
homeostasis by decreasing intestinal permeability [124]. In addition, some of these catabolites enter
the bloodstream and may have anti-inflammatory and anti-oxidative effects [124]. The microbial
degradation of whole-grain complex carbohydrates increases short-chain fatty acids (SCFA; butyrate,
acetate and propionate), which were also shown to be beneficial to the intestinal immune response [125].
Microbial bile acid metabolites have recently been linked to colonic homeostasis [126].

The modulation of the microbiome through diet interventions is a potential strategy in the
treatment of diseases, since microbiome alterations are related to disease, i.e., inflammatory bowel
disease, obesity, cardiovascular diseases, autoimmune diseases, and others. It seems that the microbiome
response to diet is variable and is highly influenced by the subject’s baseline microbiome. Several
studies found differences in the baseline microbiome of responders versus nonresponders to different
diet interventions. Additionally, individuals with differing bacterial gene richness appear to have
differing baseline gut microbiota communities that respond distinctively to a given dietary intervention
which will influence the diversity of the gut microbe-derived specialized metabolites and circulating
metabolites [127–136].

2.8. Metabolite Released from or Uptaken by Inflamed Tissues

Another potential factor that determines the concentrations of the circulating metabolites is
represented by the release of metabolites from the inflamed joint or their uptake by the synovium.
Little is known about metabolic or lipidomic profiling of synovial tissue [137,138]. In addition, no
study has, to date, evaluated the relation between circulating metabolites in serum or plasma and
synovial metabolites, although there might be a correlation. For instance, the synovial tissue of RA
patients presents an enhanced level of lactate compared to noninflamed synovial tissue [138], which
suggests an increase in the anaerobic cellular metabolism of resident cells [139,140]. Lactate has also
been one of the metabolites described to be upregulated in patients with RA [5]. Of note, inflammatory
pathways increase the expression of nutrient transporters [141–144]; therefore, this highly metabolic
tissue will consume high amounts of metabolites, either to feed the increased metabolism of activated
cells (pro-inflammatory metabolites) or to resolve inflammation (anti-inflammatory metabolites); this
could be reflected by a decrease of circulating metabolites described in RA (Table 1 and Figure 1):
such as glucose and amino acids (alanine, serine, methionine, threonine, leucine, valine, isoleucine,
aspartate, phenylalanine, tyrosine, and proline) [6,145].

Fibroblast-like synoviocites (FLS), key cells in the pathogenesis and progression of RA,
have an activated metabolism and can potentially release metabolites into the bloodstream [146].
Ahn et al. [147] characterized the intracellular metabolic profile of RA and osteoarthritis (OA) by
an untargeted metabolomic approach using GC/TOF-MS. The results revealed that a high number
of metabolites were increased in RA compared to OA FLS; these metabolites were amines (inosine,
urate, 5′-deoxy-5′-methylthioadenosine, guanine, benzamide), fatty acids (behenic acid, palmitoleic
acid, arachidic acid, oleic acid, myristic acid, stearic acid, palmitic acid, octadecanol, linoleic acid,
lauric acid), phosphates (glucose-6-phosphate, phosphogluconic acid, adenosine-5-monophosphate,
phosphate, fructose-6-phosphate), organic acids (aspartate, adipate, 2-ketoisocaproate 3-phenyllactate,
2-hydroxyvaleric acid, phenylacetate, glycolate, oxalate, benzoate), amino acids (asparagine, glutamine),
sugars and sugar alcohols (lactose fucose, mannose) and salicylaldehyde. Other metabolites, mostly
amino acids (isoleucine, leucine, histidine, valine, ornithine, lysine, methionine sulfoxide, tryptophan,
N-methylalanine, tyrosine, phenylalanine, citrulline, oxoproline, threonine, serine) were decreased in
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RA compared to OA FLS. At the same time, the glycolysis and pentose phosphate pathways were more
activated in RA than OA FLS. RA FLS are aggressive cells, similar to cancer cells, and require high
amounts of energy to fulfill their pathogenetic functions in RA, which include proliferation, migration,
and invasion [148,149].

Macrophages and T cells are the other dominant type of synovial cells in the inflamed joint, and
are important in the progression of the disease, with their abundance being correlated with disease
activity but also response to treatment [150]. Similar to the FLS, activated macrophages and T cells also
rely on glycolysis and have alterations of the TCA cycle [150], which is consistent with the high levels of
lactic acid, citrate, and succinate found in the synovial fluid of RA patients [151]. Although metabolic
profiling of RA synovial macrophages and T cells hasn’t yet been undertaken, they are probably a
source of circulating metabolites, while metabolites also exert their effect on synovial cells [152–155].

3. Evidence for a Pro-/Anti-Inflammatory Role of Metabolites in RA

RA is a chronic autoimmune disease, with a systemic immune response to autoantigens that may
exist years before the onset of clinical symptoms, and a local immune activation of the synovial tissue
which becomes inflamed, hyperplastic, and invasive of local cartilage and bone [156]. Whether or
not pro- or anti-inflammatory metabolites play a role in RA pathogenesis is still unknown. However,
the explosive growth of the field of tissue immunometabolism and its description of multiple critical
metabolic pathways in the activation and differentiation of immune cells such as T and B lymphocytes,
macrophages, dendritic cells, and fibroblasts, among others (see reviews in [157–161]), suggests that
most of the metabolites involved in the immune response can also be important in RA. Here, we
describe pro- and anti-inflammatory metabolites associated with RA pathogenesis (Figure 4).
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Figure 4. Imbalance between pro- and anti-inflammatory metabolites in RA. Several pro-inflammatory
metabolites (left side of the balance) might play a key role in RA pathogenesis modulating the function
of several cell types involved in synovial inflammation.

3.1. Pro-Inflammatory Metabolites

Choline and Trimethylamine-N-oxide (TMAO). Metabolites related to the choline pathway
were identified in several studies in synovial tissue, synovial fluid, and blood (serum/plasma)
samples in both animal models and human studies. Diet is the main source of choline [162],
whose metabolites (trimethylamine-N-oxide, TMAO) have already been related with cardiovascular
inflammation [121,163]. Choline and other dietary trimethylamine (TMA) containing species like
carnitine are metabolized to TMA by the gut microbiota. TMA is subsequently oxidized by at least one
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member of the flavin-containing monooxygenases, FMO3, forming trimethylamine-N oxide (TMAO),
which is then released into circulation [164]. TMAO is a candidate biomarker for meat and fish intake,
as can be seen in Table 2.

Despite being so well studied in relation to cardiovascular inflammation, we were not able to
find studies evaluating the role of TMAO in RA. Our group found that serum TMAO was associated
with measures of joint (tender joint count, swollen joint count, DAS28-CRP) and skin inflammation
(body surface area affected by psoriasis) in a small cohort of patients with psoriasis and PsA [165].
The increased TMAO in patients with psoriasis and PsA, two diseases associated with metabolic
syndrome [166], could be due either to an increased activity of FMO3, which has been described
to be upregulated in obesity [167], but also to changes in the microbiome composition, which is an
intermediate component of TMAO synthesis. TMAO, as well as choline, was found to be increased
in serum samples in the murine K/BxN model of arthritis compared to control mice [168]. Choline is
also a nutrient uptaken by the cells and metabolized via the Kennedy pathway, during which several
phospholipids that function as signaling molecules are produced, such as glycerol-phosphocholine
(GPC), phosphocholine, phosphatidylcholine (PC), lyso-PC, diacylglycerol, and lysophosphatidic
acid [169]. Importantly, choline metabolism has been related to the RA FLS phenotype [170] and IL-1β
secretion in macrophages [142].

BCAA (Branched-chain amino acids). Decreased levels of valine, leucine, and isoleucine were
found in RA patients. Decreased levels of BCAA could be explained by low dietary consumption or by
a higher intake of these amino acids by inflamed tissue. These are essential amino acids, so their source
is the diet, and lately, they have been related to inflammation by inducing oxidative stress (via NADPH
and Akt-mTOR signaling) and promoting the secretion of proinflammatory cytokines (IL-6, TNF) as
well as the migration of peripheral blood mononuclear cells [171]. Branched chain aminotransferases1
(BCAT1), an enzyme that initiates BCAA metabolism, is the predominant isoform in human primary
macrophages. Its action on leucine produces acetyl-CoA and glutamate, which enter the TCA cycle.
Treatment of LPS and TNF stimulated human macrophages with ERG240, a leucine analogue that
blocks BCAT1 activity, decreased oxygen consumption and glycolysis. Moreover, oral administration
of ERG240 reduced the severity of collagen-induced arthritis in mice [172].

Glutamine is an amino acid used as a source to fuel metabolism. Glutaminase 1, the enzyme
responsible of glutaminolysis, is upregulated in RA synovial fibroblasts [173], and inhibition of this
enzyme decreased the aggressive phenotype of the FLS and improved the severity of arthritis in the
SKG murine model of arthritis.

Glycolytic intermediates: The RA joint is characterized by a shift of the aerobic oxidative
phosphorylation to a glycolytic state, in which less ATP is produced but at a faster rate, to be
able to ensure the necessary energetic requirements for the highly active cells. Metabolites related to
the glycolytic pathway have been detected in several studies on animal models, as well as human
metabolomics studies.

Lactate is the end product of glycolysis, a metabolic pathway that is upregulated in activated
FLS and macrophages. High concentrations of lactic acid are found in both blood and synovial fluid
from inflamed joints in RA patients. Several studies have shown that lactate promotes the aggressive
phenotype of FLS [174], the pro-inflammatory properties of macrophages [152–154], stimulates IL-17
secretion by CD4+ T cells and, at the same time, decrease CD4+T migration, which is related to the
maintenance of a chronic inflammatory infiltrate [155,175]. Moreover, recently, a new lactate induced
histone modification was described, lactylation, which correlates with the levels of lactate and is
different from acetylation [176]. These findings require further study to evaluate their role in disease
states, since altered epigenetic marks have been recently described in RA FLS [177].

Succinate is elevated in the synovial fluid of patients with RA [151]. The TCA metabolite promotes
inflammation by stimulating IL-1β secretion in murine macrophages through HIF-1α [152]. Moreover,
succinate activates NLRP3 inflammasome inducing IL-1β secretion by synovial fibroblasts in a rat
model of RA [178]. It seems that succinate also plays a role in innate and adaptive immune responses.
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Researchers found that the genetic deficiency of Sucnr1, a succinate receptor expressed by immune
cells, decreases trafficking of dendritic cells and reduces expansion of Th17 cells in the lymph nodes,
reducing the symptoms of arthritis in the mouse antigen-induced arthritis model [179].

Itaconate, a macrophage activation marker, is thought to play an anti-inflammatory role,
since it inhibits the succinate dehydrogenase-mediated oxidation of succinate, and through this,
exerts anti-inflammatory effects in activated macrophages, as shown in an in vivo model of
ischemia-reperfusion injury [180]. However, in an animal model of RA, higher levels of itaconate were
found to be associated with high disease activity [181].

Cholesterol comes from the diet and its levels are increased in RA patients [2,6]; this was found to
be predictive of RA in women, but not men [182]. Lipid metabolism is altered in RA, but cholesterol
metabolism in RA has not been specifically studied. Interestingly, cholesterol was recently found to be
high in OA chondrocytes, due to an increased uptake, upregulation of cholesterol hydroxylases, and
increased production of oxysterol metabolites [183].

Free fatty acids (FFA) can be either taken from the diet (essential FA, alpha-linolenic acid -an
omega-3 FA- and linoleic acid -an omega-6 FA-) or synthesized in the organism. it was suggested
that they were proinflammatory, since they contribute to low-level inflammation in obese patients.
FFA levels were higher in the serum of RA patients than in control subjects, and correlated with
disease activity [184]. Frommer et al. showed that FFA contribute to the pathogenesis and damage
in RA, OA, and PsA, since stimulation of FLS with oleic, palmitic, and linoleic acid induced the
secretion of proinflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, as well as the matrix
metalloproteinases pro-MMP1 and MMP3 [185]. Arachidonic acid (ARA) is the precursor of classically
described prostaglandins (PGE2), which are known to be involved in inflammation in general, but also
in arthritis [186,187].

3.2. Anti-Inflammatory Metabolites

Polyunsaturated Fatty Acids (PUFA) Related Metabolites. Docosahexaenoic acid, DHA, and
eicosapentaenoic acid, EPA have anti-inflammatory properties, mainly because they compete with
ARA for the action of the enzymes (cyclooxygenase-COX, lypooxigenase-LOX, cytochrome P450)
which results in a decreased production of ARA derived proinflammatory oxylipins and an increased
production of DHA and EPA derived anti-inflammatory oxylipins (Figure 5) [188,189]. Several studies
have described improved outcomes in RA patients after dietary intervention [188,190,191]. Decreased
levels of EPA and DHA were described in Spanish RA patients, and were associated with higher
disease duration, positivity for rheumatoid factor, erosive disease and with a worse response to TNF
inhibitors [192]. Gene variants of the enzymes involved in the PUFA metabolism can determine the
metabolic and clinical response to dietary intake of PUFA. For example, 5-lipoxygenase (ALOX5) gene
variants were found to influence response to fish oil supplementation, changing the oxylipin profile
and, consequently, having a different effect on cardiovascular risk [193]. Another study checked the
association between genetic variants of ALOX5, ALOX12, ALOX12B, and ALOX15, and type-2 diabetes
mellitus (T2D), and found that ALOX12 and ALOX12B genetic variants increased susceptibility to T2D
development, possibly though alterations in PUFA/ARA metabolism.
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Figure 5. Oxylipin derived from PUFA. Pro-inflammatory oxylipins are marked in red,
while anti-inflammatory ones are marked in blue. The precursor n3-PUFAs are marked in
a red square, while the n6-PUFAs are marked in a blue square. COX—cyclooxygenase;
LOX—lypooxigenase; CYP—cytochrome P450; NE—nonenzymatic; PGFS—prostaglandin F synthase;
PGES—prostaglandin E synthase; PGDS—prostaglandin D synthase; PGIS—prostaglandin I synthase;
TXAS—thromboxane A2 synthase; LTAH—leukotriene A4 hydrolase; MDB—membrane dipeptidase;
HEDH—hydroxyeicosanoid dehydrogenase; PGDH—hydroxyprostaglandin dehydrogenase;
13-PGR—15-ketoprostaglandin∆13 reductase; sEH—soluble epoxide hydrolase. A list with all the
oxylipins can be found in Supplementary Table S1.

Oxylipin Related Pathways. Prostaglandins, thromboxanes and leukotrienes are the classically
described oxylipins involved in the pathogenesis of RA. The newer methods of LC/MS and NMR make
it possible to identify several other oxylipins, e.g., 8-HETE, 12-HETE, and 12-HEPE are products of the
12-lypoxygenase pathway. Liagre et al. demonstrated the presence of 12-LOX in type B synoviocytes
and found that IL-1β and TNF stimulation increased 12-HETE production, while IL-6 and IL-4 did
not have the same effect [194]. This pathway was also studied by Kronke et al., who showed that the
deletion of 12/15-LOX in two models of arthritis (the K/BxN serum-transfer and a TNF transgenic
mouse model) led to uncontrolled inflammation and tissue damage [195]. LTB4 and 5-HETE are
products of ARA via 5-LOX pathway; 5- and 15-LOX are expressed in both OA and RA synovium
in the lining and sublining macrophages, neutrophils, and mast cells, and have been shown to be
involved in RA pathogenesis, promoting inflammation [196].

Short Chain Fatty Acids (SCFA) are byproducts of the metabolism of dietary fiber by the gut
microbiome. They modulate immune and inflammatory responses via the activation of free fatty
acid (FFA) receptors type 2 and 3 (FFA2 and FFA3 receptors) and G protein-coupled receptor 109A
(GPR109A), and via inhibition of histone deacetylases (HDACs). A metabolomic study performed on a
CIA rat model found decreased levels of acetate, propionate, butyrate, and valerate in fecal samples of
arthritic rats compared to controls [197]. The administration of butyrate inhibited collagen-induced
arthritis via Treg/IL10/Th17 axis [198].

Bile acids (BA) seem to have anti-inflammatory properties. Primary BAs are synthesized in the
liver and are liberated in the gastrointestinal tract to help with lipid digestion. Gut bacteria metabolize
primary bile acids and can deconjugate them, synthesizing secondary BAs. BAs have been detected in
the systemic circulation, where their concentrations vary with diet, and have been related to insulin
resistance [199]. High concentrations of BA can actually kill intestinal bacteria to prevent colonization,
but they also regulate the mucosal immune functions through several receptors. A recent study showed
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the role of BA in the maintenance of the homeostasis of the mucosal immune function in the gut,
through the vitamin D receptor [126]. An in vitro study found that taurolithocholic acid suppressed the
expression of genes involved in mediating pro-inflammatory effects, phagocytosis, interactions with
pathogens and autophagy, as well as the recruitment of immune cells, such as NK cells, neutrophils and
T cells [200]. BA exert their actions through both specific and nonspecific receptors. The activation of
TGR5 receptor by endogenous BA suppressed the production of LPS induced inflammatory cytokines
in macrophages, while no effect was seen in macrophages that lacked this receptor [201,202]. Of
interest, a study described an anti-inflammatory role of taurochenodeoxycholic acid in RA FLS [203].
Most studies focused on the effects of the BA on the gut mucosal immunity, and hence, future studies
are needed to elucidate the roles of circulating BAs in disease states.

Tryptophan metabolism. Tryptophan is an essential amino acid that must be provided in the
diet. It has been described that microbes-derived tryptophan metabolites can exert systemic and
anti-inflammatory effects [124]. Moreover, tryptophan and its catabolic metabolites generated through
the kynurenine pathway are involved in inflammation. Kynurenine has known anti-inflammatory
effects that are toxic to T cells and induce cell death by apoptosis. Kynurenine is formed from tryptophan
by the activity of indoleamine 2, 3-dioxygenase (IDO). The activation of IDO is actively involved in the
resolution of arthritis in mice associated with an increase in kynurenine metabolites [204]. Kynurenine
itself has been identified as a ligand for the aryl hydrocarbon receptor, which is important in the
maturation of immune cells, and its addition promotes the differentiation of regulatory T cells and
suppresses the differentiation of pathogenic Th17 cells [205].

4. Studies of Beneficial Effect of Diet in RA

In spite of the growing evidence of the relationship between diet and RA symptoms, research in
the field is still limited to mostly observational studies; however, there are quite a few interventional
studies in which diet has been evaluated as a strategy to improve RA symptoms. A detailed review
of the studies can be found here [206–208]. Most interventions combine a diet with high intake of
vegetables, fruit, and antioxidants with periods of fasting. The outcomes used in the majority of the
studies include tender and swollen joint, disability index score, general health assessment scores,
and a few inflammatory markers that can be quantified in blood, i.e., C reactive protein, erythrocyte
sedimentation rate and proinflammatory cytokine (IL-6, TNF alpha).

These dietary intervention studies don’t shed any light on the specific metabolites that are
responsible for the effect, or their mechanism of action. One study evaluated the anti-inflammatory
effects of a low ARA diet and fish oil in patients with RA. Besides the usual outcomes, this study also
quantified fatty acids and eicosanoids, using radioimmunoassay and gas chromatography coupled
with MS [209]. They found that the diet improved RA clinical signs. In terms of fatty acid changes, they
observed an enrichment of eicosapentaenoic acid in erythrocyte lipids and lower formation of urinary
leukotriene B(4), 11-dehydro-thromboxane B(2) and prostaglandin metabolites in patients receiving
the fish oil diet, especially when fish oil was given for a longer period of time (up to 8 months).

The concentrations of plasma phospholipid related fatty acids were evaluated after a vegan
and lacto-vegetarian diet intervention in RA patients. It was found that 20:3n-6 and 20:4n-6 were
significantly reduced after 3.5 months of vegan diet, but the concentration increased to baseline values
with a lactovegetarian diet. Also, 20:5n-3 was significantly reduced after both vegan and lactovegetarian
diet periods. However, no significant difference in fatty acid concentrations was detected between diet
responders and diet nonresponders after both diet periods, which suggests that the changes in the
fatty acid concentrations were not in response to diet [210].

Another study in an RA Swedish population found that EPA and DHA were both increased in
erythrocytes after a blue mussel diet compared to a control diet, resulting in a decrease of n-6 PUFA
ARA (20:4 n-6) and dihomo-gamma-linolenic acid (DGLA; 20:3 n−6), as well as a small decrease in
saturated fatty acids and the monounsaturated fatty acid palmitoleic acid (16:1 n-7). Baseline EPA
and DHA levels in this population were higher than in healthy men and women, but this group had
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already reported that the RA population from the studied area had a higher fish and shellfish intake
compared to the general population of Sweden [211]. In contrast to these findings, erythrocyte levels
of α-linolenic acid (ALA; 18:3n3), EPA 20:5n3, and the omega-3 index (EPA plus DHA) were found to
be significantly lower in RA patients compared to healthy controls in a Korean population, although
diet was not accounted for in this study. In addition, EPA and ALA were negatively associated with
the risk of RA in Korean women [212].

Additionally, the study of other autoimmune diseases does not help in establishing a link between
diet and metabolites with their pro or anti-inflammatory effect. In Crohn’s disease, for instance, animal
studies suggest the potential beneficial effect of short chain fatty acids, tryptophan, arginine, and
glutamine due to their roles in the modulation of the immune system, but no clinical studies have been
performed to date [213]. A cross-sectional metabolomics study also found decreased levels of essential
PUFA in patients with lupus, but diet was not taken into account in this study [214]. Further studies
are needed before we can make conclusions about the role of diet in the levels of circulating and local
metabolites and their relationship with clinical outcomes in RA and other autoimmune diseases.

5. Conclusions

Metabolomics studies have clearly shown that there is an alteration of the metabolic profile
in patients with RA which may be related to the pathogenesis of the disease, but also to exposure
to external factors, since the levels of the metabolites are influenced by several factors, including
genetic ones, diet, sex, drugs, comorbidities, and microbiome (Figure 1). The possibility of altering
some of these factors represents an attractive approach for future therapeutically interventions. Diet
is a modifiable factor, and studies have shown that it can be effective in improving RA symptoms.
Understanding the complex relation between diet, metabolites, microbiome, and disease status is still
an ongoing process, but existing studies are promising. The field of RA needs more studies, including
mendelian randomization studies and randomized clinical trials, combining the use of metabolomics,
transcriptomics, and the microbiome to help understand how these elements interact with each other,
identify patients who would benefit from a dietary intervention, and design the correct intervention.
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