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Recent studies have shown the ability to record high-γ signals (80–160 Hz) in

electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have

had hemicraniectomies. However, extraction of the movement-related high-γ remains

challenging due to a confounding bandwidth overlap with surface electromyogram (EMG)

artifacts related to facial and head movements. In our previous work, we described

an augmented independent component analysis (ICA) approach for removal of EMG

artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG

(ERASE). Here, we tested this algorithm on EEG recorded from six TBI patients with

hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean

of 52± 12% (mean± S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional

ICA removed a mean of 27 ± 19% (mean ± S.E.M) of EMG artifacts from EEG. In

particular, high-γ synchronization was significantly improved in the contralateral hand

motor cortex area within the hemicraniectomy site after ERASE was applied. A more

sophisticated measure of high-γ complexity is the fractal dimension (FD). Here, we

computed the FD of EEG high-γ on each channel. Relative FD of high-γ was defined

as that the FD in move state was subtracted by FD in idle state. We found relative FD

of high-γ over hemicraniectomy after applying ERASE were strongly correlated to the

amplitude of finger flexion force. Results showed that significant correlation coefficients

across the electrodes related to thumb flexion averaged ∼0.76, while the coefficients

across the homologous electrodes in non-hemicraniectomy areas were nearly 0. After

conventional ICA, a correlation between relative FD of high-γ and force remained high in

both hemicraniectomy areas (up to 0.86) and non-hemicraniectomy areas (up to 0.81).

Across all subjects, an average of 83% of electrodes significantly correlated with force

was located in the hemicraniectomy areas after applying ERASE. After conventional ICA,

only 19% of electrodes with significant correlations were located in the hemicraniectomy.
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These results indicated that the new approach isolated electrophysiological features

during finger motor activation while selectively removing confounding EMG artifacts. This

approach removed EMG artifacts that can contaminate high-gamma activity recorded

over the hemicraniectomy.

Keywords: EEG, EMG artifacts removal, ICA, high-γ , TBI

1. INTRODUCTION

Conventional EEG has a poor signal-to-noise ratio in the high-
γ band due to the low-pass filter characteristics of the skull
and scalp (Nunez and Srinivasan, 2006; Luck, 2014). Meanwhile,
movement and force are strongly encoded in the high-γ band
activity from brain signals (Crone et al., 1998; Mehring et al.,
2003; Pfurtscheller et al., 2003; Miller et al., 2007a; Schalk
et al., 2007; Flint et al., 2012a,b, 2014, 2016). Traumatic brain
injury (TBI) patients with hemicraniectomy may be a useful
model for human electrophysiology with high bandwidth and
spatiotemporal resolution (Voytek et al., 2010; Vaidya et al.,
2019). In particular, substantial high-γ band power can be
detected in these patients’ electroencephalogram (EEG) due to
the absence of the skull in the hemicraniectomy area (referred
to as hEEG) (Dannhauer et al., 2011; Lanfer et al., 2012).
However, the extraction of the high-γ band features from hEEG
in TBI patients remains challenging due to the large confounding
spectral overlap between the high-γ band of EEG and EMG,
which is primarily caused by facial and head movement and has
broad bandwidth (Duchene and Hogrel, 2000; Goncharova et al.,
2003; Fatourechi et al., 2007; Dalal et al., 2011).

To surmount this challenge, we tested the ability of our
novel approach, referred to as EMG Reduction by Adding Sources
of EMG (ERASE) (detailed in our previous work: Li et al.,
2018, 2020), to minimize the EMG artifacts in hEEG. ERASE
is a modified ICA model that can automatically remove EMG
artifacts by combining reference EMG artifacts with EEG. In
this new approach, real or simulated EMG from neck and head
muscles were defined as reference EMG artifacts, and combined
with EEG as extra channels. ERASE was validated using both
simulated and experimentally-recorded EEG and EMG from
healthy subjects, and shown to remove EMG artifacts while
preserving relevant electrophysiological features underlying
motor behaviors (Li et al., 2018, 2020). Simulation results showed
ERASE removed EMG artifacts from EEG significantly more
effectively than conventional ICA and had a low false positive
rate and high sensitivity (Li et al., 2020). By comparison, there
have been several EMG artifact removal approaches previously
reported, but a critical difference with ERASE was that these
approaches did not experimentally test their ability to remove
EMG while preserving relevant electrophysiological features
underlying human behavior. Such methods include ones based
on independent component analysis (ICA) (James and Hesse,
2004; Nolan et al., 2010), constrained ICA (cICA) (Lu and
Rajapakse, 2005; Romero et al., 2008), canonical correlation
analysis (CCA) (Safieddine et al., 2012; Mowla et al., 2015),
empirical mode decomposition (EMD) (Mourad and Niazy,
2013; Zeng et al., 2013), ensemble empirical mode decomposition

(EEMD) (Wu and Huang, 2009; Chen et al., 2014), EEMD-CCA
(Chen et al., 2017; Mucarquer et al., 2019), as well as EEMD-
ICA (Mijovic et al., 2010). In this study, we applied the ERASE
technique to EEG from 6 TBI patients while they performed
isometric finger flexion, and found the residual high-γ signal in
hEEG was correlated to force level.

2. METHODS

2.1. Experiments
This study was approved by the Institutional Review Boards
of the University of California, Irvine, Northwestern University
and the Rancho Los Amigos National Rehabilitation Center
(RLANRC). TBI patients with hemicraniectomy and mild to
moderate weakness on the contralesional hand were recruited
for our study. Subjects were fitted with a 128-electrode EEG
cap (ActiCap, Brain Products, Gilching, Germany) and asked to
perform a thumb flexion task on the contralesional side while
the EEG signals were acquired at 2,000 Hz (Neuroport, Blackrock
Microsystems, Salt Lake City, UT). The thumb flexion force was
simultaneously measured by a load cell sensor. The subjects were
instructed to flex their thumbs on the affected side to apply
varying levels of force on the load cell sensor to move a computer
cursor to acquire targets in a 1D, random-force target task. Each
flexion event was set to be 2 s long (target displayed for 2 s) with a
3–5 s interval between each event. Subjects nominally performed
20 thumb flexions in each 120-s run at RLANRC and 53 thumb
flexions in each 300 s-long run at Northwestern University. All of
the trails were used in the analysis described below.

2.2. Experimental Data Processing
The EEG from TBI patients with hemicraniectomy were
subjected to following processing approach. Due to TBI
patients’limited ability to tolerate testing, real EMG was not
collected for use in the ERASE algorithm. Instead, only simulated
EMG was used as reference EMG artifacts in this study. The
approach to generate simulated EMG was detailed in our prior
work (Li et al., 2018, 2020), and we summarized the 5-step
approach as below:

1. TheHodgkin-Huxleymodel was used to simulate extracellular
current. For skeletal muscles, the Hodgkin-Huxley model is
a widely accepted model for simulating extracellular current
(Hodgkin and Huxley, 1952).

2. Single fiber action potentials (SFAP) were generated with a
volume conduction model described in Stegeman and Linssen
(1992), Duchene and Hogrel (2000), and Li et al. (2018).
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3. A total of 100 SFAPs were first generated and their average
served as one activation of the motor unit action potential
(MUAP).

4. A Poisson process was employed tomodel the firing rate of the
MUAPs (as defined in Stegeman and Linssen, 1992). The EMG
firing rate and amplitude were assumed to increase during
the hand/finger movements. Hence, firing rates which were
proportional to thumb flexion force in different states (idle vs.
movement) were applied to different states. For each muscle,
the new Poisson process with the same initial firing rate (20
spikes/s) was launched to generate the time points of the firing
of MUAP. Firing rate will change with thumb flexion force but
be limited to a maximum of 5 times of initial firing rate (i.e.,
100 spikes/s).

5. Eight different facial muscles, including bilateral frontalis,
temporalis, masseter, and trapezius were simulated for each
session (one session denoted one record, which included
several trials). Eachmuscle’s simulated EMGwas filtered based
on its frequency characteristics (spectra) as described in the
literature (Muthukumaraswamy, 2013).

This approach ensured that the simulated reference EMG was
dependent on the contaminant EMG artifacts to some degree.

EEG from TBI patients with hemicraniectomy and simulated
EMG data generated by the approach above were combined
(simulated EMG acted as separate electrodes and were not
mixed with any EEG signal), and the combined EEG/EMG data
were subjected to a 3–200 Hz 3rd-order bandpass filter. All
trials were identified and extracted from the EEG/EMG data.
Each trial was defined as 1-s idle time (remaining 2–4 s of
idle time discarded) followed by 2-s movement. The extracted
trials were concatenated (which were referred to as baseline
condition). Since EEG always includes other unexplained noise,
leading to long-term EEG non-stationary, ICA decomposition
was applied to concatenated EEG trials [FastICA algorithm,
EEGLAB toolbox (Delorme and Makeig, 2004)] which contained
the entire broad bandwidth. After running ICA on this combined
EEG/EMG data, an automated artifact independent components
(ICs) rejection process was applied (Li et al., 2018, 2020) as
follows. The ICs containing EMG artifacts (the “artifact ICs”)
were identified and rejected using an automated procedure which
optimized two rejection criteria based on mixing matrix. These
two rejection criteria were described as below: first, ICs whose
maximal absolute value of coefficients corresponds to a hat band
electrode were identified as artifact ICs and rejected. Second,
ICs whose absolute value of coefficients in the corresponding
EMG rows were above a defined threshold, were rejected. Here,
threshold was calculated from the rootmean square (RMS) values
of coefficients in the mixing matrix rows corresponding to the
EMG channels. The rationale for why adding reference EMG
artifacts was effective at removing EMG artifacts was detailed in
Li et al. (2020). Note that for comparison purposes, conventional
ICA was also applied to concatenated EEG trials without extra
simulated EMG channels, and artifact ICs were rejectedmanually
by the experimenter. Short-time Fourier transform was applied
to EEG trials under three conditions (baseline, ERASE with
simulated EMG, conventional ICA) and data were z-scored to

the power in idle time in each trial after the time-frequency
decomposition. Average z-scored signal power across all the
trials in different frequency bands (µ band: 8–12 Hz, high-γ
band: 80–160 Hz) were compared across all conditions (baseline,
ERASE with simulated EMG, conventional ICA). To assess
the effectiveness of EMG artifact removal, we first assumed
that signals within the high-γ band from non-hemicraniectomy
were EMG artifacts due to the skull essentially filtering out all
neurogenic high-γ signals. Therefore, we calculated the percent
reduction (PR) for high-γ band across all the electrodes in
non-hemicraniectomy areas by using the equation below:

PR =
|
∑C
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∑N
i=1 P

b
z (X

c
i )−

∑C
c=1
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i=1 P
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z (X

c
i )|
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b
z (X

c
i )

× 100% (1)

where Pbz is the z-scored power of high-γ band in baseline, Paz
is the z-scored power of high-γ band after removal of EMG
artifacts, X are the EEG trials data, i is the ith trial, N is the
total number of available trials for each subject, c is the cth
channel in non-hemicraniectomy areas, C is the total number of
EEG channels in non-hemicraniectomy areas. For each subject,
percent reduction was calculated after running ERASE and
conventional ICA, respectively.

2.3. Signal-to-Noise Ratio (SNR)
Calculation
In previous studies, high-γ band of brain activities was
demonstrated to synchronize to movement (Flint et al., 2014,
2016; Wang et al., 2017; McCrimmon et al., 2018; Branco et al.,
2019) while µ band was desynchronized (Miller et al., 2007a;
Schalk et al., 2007; Jiang et al., 2020). To evaluate if these
electrophysiological features and information content underlying
movement were retained after ERASE, the signal-to-noise ratio
(SNR) between movement and idle was calculated for electrodes
expected to be related to thumb movements, including C3,
C5, C1, FCC5h, FCC3h, CCP5h, and CCP3h for subjects with
left-sided hemicraniectomy, or C4, C2, C6, FCC6h, FCC4h,
CCP4h, and CCP6h for those with right-sided hemicraniectomy.
These electrodes will be subsequently referred to as hand
motor electrodes (see Supplementary Figure 11). Note that the
homologous electrodes on the non-hemicraniectomy side will
be referred to as the contralesional electrodes. Generally, most
of hand motor electrodes were located in the hemicraniectomy
areas. Here, we treated the high-γ power during movement as
signal and the baseline high-γ power during idle as noise. The
SNR for each trial before and after applying ICA was calculated
as in (McCrimmon et al., 2018). The segmented trials were
concatenated and the resulting time series was referred to as X(t).
For each electrode, the EEG was subjected to bandpass filtered
from 80 to 160 Hz (4th order Butterworth filters) to extract
the high-γ band, referred to as Xγ (t). The resulting signal was
then squared to obtain the instantaneous high-γ band power,
X2

γ (t). X
2
γ (t) was low-pass filtered (4 Hz, 4th order Butterworth

filter) to create the envelope signal, Pγ . The average power of
high-γ band during movement and idling time were calculated,
denoted as Pm,γ and Pi,γ , respectively. The SNR was defined as
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10 × log10 (Pm,γ /Pi,γ ). This processing was also applied to µ

band. We calculated the SNR at both of µ and high-γ bands for
all the available trials of each subject. A Wilcoxon rank-sum test
with Holm Bonferroni correction was used to compare the SNR
between all pair combinations of conditions (baseline, ERASE
with simulated EMG, conventional ICA) for both bands.

2.4. EEG High-γ Verification
Tomeasure the success of ERASE, we assessed the extent to which
high-γ movement-related information content was retained
after it has been applied. Previous studies have demonstrated
that high-γ band power increased during muscle activation or
movement (Crone et al., 1998; Miller et al., 2007b; Zhuang
et al., 2010; Flint et al., 2014; Wang et al., 2017; McCrimmon
et al., 2018) and that fractal dimension (FD) can be used as a
measure of brain activity by quantifying the complexity of EEG
(Acharya et al., 2005; Subha et al., 2010). Also, the FD of EEG
signal has been shown to change with the level of force (Liu
et al., 2005). Since relative FD (change in FD between idle and
move states) can be an indicator of cortical activity modulation
during movement (Liu et al., 2005), the correlation between
thumb flexion force and the high-γ relative FD will be used to
assess if the recovered high-γ in hEEG still retains encoding of
movement. The correlation between the high-γ relative FD and
the thumb flexion force was calculated as follows. First, the FD of
the EEG high-γ was calculated as follows for the move and idle
epochs in each trial, respectively (Katz, 1988; Esteller et al., 2001;
Liu et al., 2005):

FD =
ln(N − 1)

ln(N − 1)+ ln(d/L)
(2)

where N is the total number of time points to be analyzed for
each epoch (2,000 for idle epoch, 4,000 for movement epoch),
L is the sum of the Euclidean distances between successive data
vectors, and d is the Euclidean distance between the first data
vector and the vector that provides the farthest distance. Data
vector was composed of successive time points, which were < N

2 .
Any adjacent data vectors included no overlapped time points.
Since the FD value was dependent on quantization units in this
algorithm (Katz, 1988), 1 ms was chosen as the quantization
unit of time (i.e., one data vector was composed of two time
points, hence, multiple data vectors were included in each epoch),
and 1µV as that of the EEG potential. Here, we calculated
the Euclidean distances for all the data vectors in the linear
space.Next, the relative FD, defined as that FD value during idle
epoch subtracted from that during move epoch, was calculated
for each trial.

For each subject, the mean force during the move epoch for
each trial was calculated. Then the maximum and minimum of
these mean force were found. Since the resolution of high-γ in
hEEG was not sufficient to precisely decode continuous force,
the mean force was evenly discretized into 10 force levels from
minimum to maximum. Subsequently, the relative FD values
were averaged over the trials at each force level for each subject.
The correlation coefficient (R, |R| denoted the absolute value
of correlation coefficient) between force level and relative FD

TABLE 1 | Subject demographics.

Subject Age Sex HA side Contralesional hand

S1 23 Female Left Right hand

S2 34 Male Left Right hand

S3 30 Male Right Left hand

S4 40 Male Right Left hand

S5 29 Male Right Left hand

S6 56 Female Left Right hand

HA, hemicraniectomy areas.

values for all electrodes was calculated with Pearson Correlation.
The significance of correlation was calculated by considering the
correlation coefficients as a t distribution. The t-value can be
calculated as below (Soper et al., 1917):

t =
|R|.

√
N − 1

√
1− R2

(3)

where R is correlation coefficient, N is the sample number. In
our work, the correlation coefficients with no significance (P >

0.05) were set as zero, and the ones with significance denoted as
significant R-value (or significant |R|-value for absolute value).

3. RESULTS

A total of 58 sessions (including 1,771 trials) were collected from
6 TBI patients with hemicraniectomy (subject demographics
summarized in Table 1).

3.1. Brain Features Evaluation
After processing of EEG as described in section 2.2,
representative examples showed that the z-scored EEG high-γ
power in the non-hemicraniectomy areas (NHAs) was reduced
while µ desynchronization (negative SNR value) and high-γ
synchronization (increased SNR) in the motor-related areas [in
the hemicraniectomy areas (HAs)] were apparent after ERASE
(Figure 1 and Supplementary Figures 1–5). In baseline, the
average Z-scored high-γ power was not different between HA
and non-HA across all subjects. Only after ERASE did the
average Z-scored high-γ power during movement across all the
electrodes in the HAs became significantly larger than that across
all the electrodes in the NHAs (P-value < 0.05, Wilcoxon rank-
sum test, Table 2). The z-scored high-γ power during movement
in the NHA was reduced by an average of 52.03± 12.08% (mean
± S.E.M) across all subjects (Table 2), indicating that artifacts
were removed. On the other hand, the corresponding reduction
in non-HA for conventional ICA condition averaged 26.50 ±
18.91% (mean± S.E.M) across all subjects (Table 2).

The high-γ synchronization described above was seen in
the C3 (for subjects with left hemicraniectomy, right thumb
flexion)/C4 (subjects with right hemicraniectomy, left thumb
flexion) electrode in 4 out of 6 subjects in baseline. When
considering all hand motor electrodes, high-γ synchronization
was observed in 5 out of 6 subjects in baseline (Figures 2A,B).
The high-γ synchronization at the C3/C4 electrode was
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FIGURE 1 | Brain topography maps of z-scored µ and high-γ power before and after artifacts rejection with ERASE and conventional ICA on the Subject 6. Only

electrodes whose z-scored power of µ and high-γ during idle time and movement were significantly different were shown (Wilcoxon rank-sum test). P-value for

significant difference was 0.05. The dots outlined the position of the electrodes, and details of electrode position can refer to Supplementary Figure 11. Colors

denoted the z-scored power of µ or high-γ in corresponding electrodes. The purple outline in each subfigure denoted the HA. A-C: µ band desynchronization under

different conditions (baseline, ERASE with simulated EMG, conventional ICA). D-F: high-γ band synchronization under different conditions.

significantly larger after ERASE in 5 out of 6 subjects compared to
baseline condition. However, the C3/C4 high-γ synchronization
after conventional ICA was never significantly larger than
those in baseline (Figure 2A). The high-γ synchronization from
hand motor electrodes was significantly larger after ERASE
compared to those both in baseline and after conventional ICA
for all the subjects. However, except in Subject 1, the high-γ
synchronization from hand motor electrodes in the conventional
ICA condition was smaller than those in baseline (Figure 2B).
These findings suggested that high-γ remaining in the HAs
after ERASE was movement-related EEG, and ERASE was more
effective at preserving the EEG features.

In order to further verify these high-γ activities were
neurogenic and related to movement, the µ desynchronization
was calculated as described in section 2.3. The µ

desynchronization was present in 5 out of 6 subjects in baseline
at C3/C4. After applying ERASE, it was present in all subjects
at C3/C4, and the magnitude of desynchronization increased
significantly in 4 subjects and was not significantly different in

the remaining 2 (Figure 2C). In contrast, after conventional
ICA, the µ desynchronization was no longer present in 1 out of
6 subjects. Furthermore, the magnitude of desynchronization
was significantly reduced in 4 subjects (Figure 2C). Across all of
the hand motor electrodes, µ desynchronization was present in
all subjects in baseline. After applying ERASE, the magnitude of
desynchronization was significantly larger in 5 out of 6 subjects
compared to baseline condition (Figure 2D). After conventional
ICA, the magnitude of desynchronization was significantly
reduced in all subjects. The magnitude of desynchronization was
always significantly larger after applying ERASE compared to
that of the conventional ICA (Figure 2D).

3.2. EEG High-γ Verification
A strong correlation between thumb flexion force and the
relative FD of high-γ was primarily found in the HAs for
all the subjects after ERASE (Figure 3). After conventional
ICA, either there were no strong correlations in the HAs
(Figure 3 and Supplementary Figures 1, 4), or a strong
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correlation was seen in both HAs and non-HAs (Figure 3 and
Supplementary Figures 2, 3, 5, 6).

TABLE 2 | z-scored high-γ power in different conditions for each subject.

Subject S1 S2 S3 S4 S5 S6

Number of trials 261 97 864 230 209 110

Baseline

Mean z-scored in NHA 0.26 0.13 0.21 0.24 0.26 0.15

Mean z-scored in HA 0.25 0.12 0.21 0.23 0.35 0.13

P-value 0.35 0.23 0.47 0.42 0.67 0.62

ERASE with simulated EMG

Mean z-scored in NHA 0.16 0.06 0.12 0.11 0.12 0.04

Mean z-scored in HA 0.24 0.10 0.19 0.19 0.34 0.12

P-value 0.02 0.03 0.04 0.04 0.03 0.03

Conventional ICA

Mean z-scored in NHA 0.10 0.11 0.16 0.18 0.24 0.11

Mean z-scored in HA 0.14 0.12 0.16 0.15 0.2 0.12

P-value 0.12 0.63 0.57 0.17 0.96 0.61

Mean z-score denoted the average z-scored high-γ power during movement over all the

available trials. The mean z-scored high-γ power in the HAs got averaged across all the

electrodes in the HAs. Meantime, The mean z-scored high-γ power in the NHAs got

averaged across all the electrodes in the NHAs.

HA, Hemicraniectomy area; NHA, Non-HA.

P-value: comparison of z-scored high-γ power between HAs and NHAs for each subject

(Wilcoxon rank-sum test).

The correlations between relative FD and thumb flexion
force for each condition are summarized in Table 3. In baseline,
27.34% of electrodes with significant correlation were located
within HAs across all subjects. Subsequently, 83.33 and 18.99% of
electrodes with significant correlation were located within HAs
after applying ERASE and the conventional ICA, respectively
(Table 3, Figure 4, and Supplementary Figures 6–10).

In baseline, the average significant |R|-value in hand motor
electrodes was 0.436 across all subjects (subjects with no
significant correlation were treated as though the significant |R|-
value was 0). This was lower than the significant |R|-values on the
contralesional electrodes area (0.654 from Table 3). The average
significant |R|-values within the hand motor electrodes were
0.762 and 0.528 across all subjects for ERASE and conventional
ICA conditions, respectively (Table 3). By comparison, ERASE
removed the presence of any correlation in the contralesional
electrodes areas except in 1 subject (only one electrode was
still correlated, average significant |R| across all the subjects was
0.11). After conventional ICA, the average significant |R|-value
within contralesional electrodes across all the subjects was 0.26
(Table 3).

4. DISCUSSION

Our novel approach, ERASE, was demonstrated to be an effective
tool at removing EMG artifacts from EEG during thumb
flexion by TBI patients with HAs while preserving the expected
underlying EEG features. Specifically, both µ desynchronization

FIGURE 2 | Mean SNR [± standard deviation (S.D.)] across all available trials for each subject in different conditions (baseline, after ERASE and after conventional

ICA). S1 was the abbreviation for Subject 1, and so on. The asterisks indicated the significant differences between the two datasets, and the significance level =

***p <0.001, level = **p <0.01, and level = *p <0.05 (Wilcoxon rank-sum test). (A) SNR of high-γ band. Data were from the C3/C4 electrode. (B) SNR of high-γ

band. Data were from hand motor electrodes. (C) SNR of µ band. Data were from the C3/C4 electrode. (D) SNR of µ band. Data were from hand motor electrodes.
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FIGURE 3 | Correlation between the relative FD of high-γ and the amplitude

of thumb flexion force in different conditions (baseline, after ERASE and after

conventional ICA). Only the significant correlation coefficients were showed.

P-value for significant difference was 0.05. The dots outlined the position of

the electrodes, and details of electrode position can refer to

Supplementary Figure 11. Colors denoted the z-scored power of µ or

high-γ in corresponding electrodes. The purple outline in each subfigure

denoted the HA. (S1–S6) denoted Subject 1–6, respectively.

and high-γ synchronization during movement in TBI
patients were found in anatomically expected areas, while
µ desynchronization was not seen on the contralesional side.
This indicated that the high-γ synchronization in hEEG can
be more confidently interpreted as cortical activity and not

TABLE 3 | Average of significant |R|-values in hand motor electrodes and

contralesional electrodes in different conditions.

Subject S1 S2 S3 S4 S5 S6

Baseline

|R|-value in hand motor 0.61 0.76 0 0.72 0.53 0

SCE number in hand motor 4 1 0 1 3 0

|R|-value in contralesional 0.73 0.81 0.77 0 0.68 0.93

SCE number in contralesional 1 1 1 0 1 1

Total number of SCE 31 8 14 4 8 21

Proportion of SCE in HA (%) 35.48 37.50 14.29 25 37.5 14.29

ERASE with simulated EMG

|R|-value in hand motor 0.62 0.83 0.80 0.74 0.69 0.90

SCE number in hand motor 3 2 2 1 1 1

|R|-value in contralesional 0.68 0 0 0 0 0

SCE number in contralesional 1 0 0 0 0 0

Total number of SCE 12 5 3 2 4 2

Proportion of SCE in HA (%) 83.33 100 66.67 100 50 100

Conventional ICA

|R|-value in hand motor 0 0.76 0.75 0 0.80 0.86

SCE number in hand motor 0 1 2 0 1 1

|R|-value in contralesional 0.73 0 0 0.81 0 0

SCE number in contralesional 1 0 0 1 0 0

Total number of SCE 10 10 8 14 11 13

Proportion of SCE in HA (%) 0 30 50 0 18.19 15.38

SCE was significant correlation electrodes.

Hand motor denoted hand motor electrodes, which included C3, C5, C1, FCC5h,

FCC3h, CCP5h, and CCP3h for right hand, or C4, C2, C6, FCC6h, FCC4h, CCP4h, and

CCP6h for left hand. Contralesional denoted the contralesional electrodes, which were

the homologous motor electrodes in the non-hemicraniectomy area side.

EMG (Figure 1, Supplementary Figures 1–5). Also, the SNR
of high-γ and µ were both significantly improved compared
to conventional ICA and baseline conditions (Figure 2). The
relative FD of high-γ was strongly correlated to the thumb
flexion force primarily within the HAs after applying our new
approach (Figures 3, 4 and Supplementary Figures 6–10).
These results indicated that ERASE can help to isolate cortical
sources of high-γ by significantly reducing the presence of EMG
artifacts.

Information about the primary kinetics appeared to be
preserved in the high-γ signal after ERASE. At baseline, high
correlation between high-γ relative FD and thumb flexion
force was similarly present in both HA and NHAs. After
applying ERASE, hand motor electrodes located in the HAs
typically had the strongest positive correlation across all the
subjects, indicating that the new algorithm selectively removed
EMG artifacts from the NHAs. This implied that there were
fewer artifacts in the HA after ERASE. Given that ERASE
helps to isolate electrophysiological features during hand motor
movements while removing confounding EMG artifacts, the
justification for using TBI patients with hemicraniectomy as a
model for studying high-bandwidth EEG signals is bolstered.

Our recent study on EEG from TBI patients with
hemicraniectomy demonstrated that the high-γ over HAs
was capable of effectively decoding the thumb flexion force
(Vaidya et al., 2019). In this study, we demonstrated that high-γ
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FIGURE 4 | Bar graphs for showing the electrodes with significant correlation in three conditions (baseline, after ERASE with simulated EMG and after running

conventional ICA). Here, the correlation coefficients were absolute values from 0 to 1. Data were from Subject 1. Blue bars denoted the electrodes with significant

correlation in the NHAs, and red bars were the ones in HAs. (A) The electrodes with significant correlation in baseline. (B) The electrodes with significant correlation

after ERASE with simulated EMG. (C) The electrodes with significant correlation after conventional ICA.

over HAs may contain information about thumb flexion force,
as demonstrated by a strong correlation between relative FD
of high-γ and flexion force. Anecdotally, neither this study
nor our prior work showed a strong direct correlation between
hEEG high-γ power and thumb flexion force as seen in ECoG
signals (Li et al., 2018). Most likely, the presence of scalp still
interferes with the high-γ signal enough that such robust
features are not preserved when compared to subdurally (Pistohl
et al., 2012; Wang et al., 2017) and epidurally (Flint et al.,
2016) recorded ECoG signals. Alternatively, the removal of
EMG may also be overly aggressive. More specifically, while
EMG is effectively removed, a portion of neurogenic high-γ
component was also simultaneously removed as well. This
highlights a potential tradeoff between EMG removal and
neural information preservation in ERASE. In the future,
this tradeoff may potentially be minimized by selecting the
rejection threshold in a manner that jointly optimizes high-γ
encoding as well as EMG reduction. In another study on TBI
patients with hemicraniectomy (Voytek et al., 2010), both µ

desynchronization and high-γ synchronization underlying
movement can be found in hEEG. In our work, we not only
found that this modulation was associated with movements
(Figures 1, 2, Supplementary Figures 1–5), but also showed
that there was a strong correlation between the relative FD of
high- and the amplitude of thumb flexion force after employing
ERASE (Figures 3, 4, Supplementary Figures 6–10).

In the approach to generate simulated EMG, we assumed
that simulated EMG activity is increased during movements
and reduced during idling. This simulates a typical situation
where a subject will likely generate increased EMG activity
during movements. Although the approach to generate the EMG

signals cannot emulate the time-varied EMG signals rigorously
for each time point, it simulated the firing rate, amplitude and
spectrum of each muscle to ensure the statistical parameters of
EMG signals in different states to some extent. Those statistics
are exactly required for running ERASE/ICA. Therefore, the
effectiveness at removing EMG artifacts by using the simulated
EMG should be similar with that obtained by using the real
EMG. We demonstrated that using simulated EMG as reference
artifacts can achieve similar effectiveness at removing EMG
artifacts (while preserving the brain features) as real EMG did in
Li et al. (2020).

Even after ERASE with simulated EMG, the overall reduction
of high-γ power was 52% (Table 2), and there was still one
subject with EEG electrode in the NHA with a strong correlation
between the high-γ relative FD and thumb flexion force
(Table 3). These findings indicated that not all of the EMG
artifacts were easily removed. This is likely due to the fact
that simulated EMG artifacts cannot precisely mimic real EMG
artifacts since many components of EMG are still difficult to
simulate (e.g., the neural sources of real EMG artifacts). We
hypothesize that using real EMG as the reference artifacts may
lead to better EMG artifact rejection. However, since real EMG
is not always available or possible to collect, future work will
involve developing an algorithm that further improves upon
the EMG removal. This may involve improving the learning
algorithms, such as adaptive system recognition and system
recognition with artificial neural network, to characterize the
EMG artifacts. In addition, future work will involve making the
techniquemore computationally efficient, such that it can be used
in real time for neurorehabilitation applications, such as in BCI
systems.
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5. CONCLUSION

Our new approach, ERASE, as described in our prior work (refer
to Li et al., 2020) can also be applied to effectively remove EMG
artifacts from hEEG. In particular, we have demonstrated the first
approach that ERASE can potentially remove the confounding
overlap between EMG and high-γ signals, and preserve the
expected brain signal features underlying motor behavior. The
retained high-γ activities demonstrated the expected increase
during thumb flexion in contralateral hand motor cortex area
(within the hemicraniectomy site). Moreover, the relative FD of
the EEG high-γ from the HAs after applying the new approach
was demonstrated to be strongly correlated to the amplitude
of thumb flexion force. Therefore, this approach may allow
researchers to confidently use the resulting high-γ signals for
subsequent analysis or practical applications.
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