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Towards a neural-level cognitive architecture: modeling behavior in working
memory tasks with neurons

Zoran Tiganj (zorant@bu.edu)
Nathanael Cruzado (nac0005@bu.edu)
Marc W. Howard (marc777@bu.edu)

Center for Memory and Brain
Boston University

Abstract
Constrained by results from classic behavioral experiments we
provide a neural-level cognitive architecture for modeling be-
havior in working memory tasks. We propose a canonical
microcircuit that can be used as a building block for work-
ing memory, decision making and cognitive control. The con-
troller controls gates to route the flow of information between
the working memory and the evidence accumulator and sets
parameters of the circuits. We show that this type of cognitive
architecture can account for results in behavioral experiments
such as judgment of recency, probe recognition and delayed-
match-to-sample. In addition, the neural dynamics generated
by the cognitive architecture provides a good match with neu-
rophysiological data from rodents and monkeys. For instance,
it generates cells tuned to a particular amount of elapsed time
(time cells), to a particular position in space (place cells) and
to a particular amount of accumulated evidence.
Keywords: Cognitive architecture; Neural-level modeling;
Working memory; Cognitive control; Decision making; Judg-
ment of recency; Probe recognition; Delayed-match-to-sample

Introduction
Behavioral experiments provide important insights into hu-
man memory and decision making. Building neural systems
that can describe these processes is essential for our under-
standing of cognition.

Here we propose a neural-level architecture that can model
behavior in different working memory based cognitive tasks.
The proposed architecture is composed of biologically plau-
sible artificial neurons characterized with instantaneous firing
rate and with the ability to: 1) gate information from one set
of neurons to the other (Hasselmo & Stern, 2018; Bhandari
& Badre, 2018; Sherfey, Ardid, Miller, Hasselmo, & Kopell,
2019) and 2) modulate the firing rate of other neurons via gain
modulation (Salinias & Sejnowski, 2001). The architecture
is based on a canonical microcircuit that represents continu-
ous variables via supported dimensions (Shankar & Howard,
2012; Howard et al., 2014). The microcircuit is implemented
as a two-layer neural network. The same microcircuit proto-
type is used for maintaining a compressed memory timeline,
evidence accumulation and for controlling the flow of actions
in a behavioral task. Here we demonstrate that this archi-
tecture can be used for modeling behavioral responses and
neural activity in a variety of working memory tasks.

A neural architecture for cognitive modeling
We sketch a neural cognitive architecture and apply it to three
distinct working memory tasks. The architecture is com-

posed of multiple instances of a canonical microcircuit (Fig-
ure 1). This microcircuit represents vector-valued functions
over variables. These functions can be examined through at-
tentional gain field and then used to produce a vector-valued
output. We first discuss the properties of the microcircuit.

Function representation in the Laplace domain
The microcircuit consists of two layers. The first layer ap-
proximates the Laplace transform of f(t) (a vector across the
input space) via set of neurons which can be described as
leaky integrators F(t,s), with a spectrum of rate constants s.
Each neuron in F(t,s) receives the input and has a unique rate
constant:

dF(t,s)
dt

= α(t) [−sF(t,s)+ f(t)] , (1)

where α(t) is an external signal that modulates the dynamics
of the leaky integrators. If α(t) is constant, F(t,s) codes the
Laplace transform of f(t) leading up to the present. It can be
shown that if α(t) = dx/dt, F(t,s) is the Laplace transform
with respect to x (Howard et al., 2014). We assume that the
probability of observing a neuron with rate constant s goes
down like 1/s. This implements a logarithmic compression
of the function representation.

The second layer f̃(t, ∗x) computes the inverse of the
Laplace transform using the Post approximation. It is imple-
mented as a linear combination of nodes in F(t,s): f̃(t, ∗x) =
L-1

k F(t,s). The operator L-1
k approximates kth derivative with

respect to s. Because L-1
k approximates the inverse Laplace

transform, f̃(t, ∗x) provides an approximation of the trans-
formed function. It turns out (Shankar & Howard, 2012) that
the width of the activity of each unit in f̃(t, ∗x) depends linearly
on its value of

∗
x with a Weber fraction that is determined by

the value of k.

Accessing the function
The representation described above stores working memory
as a vector-valued approximation of a function over an inter-
nal variable. We assume that this entire function cannot be
accessed all at once, but that one can compute vector-valued
integrals weighted by attentional gain over the function. The
microcircuit includes an attentional gain function G(

∗
x) that is
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Figure 1: A schematic of a neural-level circuit that can be used to model different behavioral tasks. This circuit was used to implement
all the tasks described here. The diagram on the left-hand side displays a configuration of the circuit composed of three blocks: working
memory, evidence accumulator and cognitive control. The cognitive control block executes a sequence of actions. While a particular action
is executed (e.g. waiting for a probe) the sequence is paused by setting its own α to 0. To move to the next action α is set to −1. Some
actions will access working memory and feed the memory output to the evidence accumulator (e.g. to compare the probe with the content
of memory). Output of the evidence accumulator is sent to the cognitive control block where it is used to trigger an appropriate action (e.g.
press the left button). Each of the three blocks on the left-hand side is implemented with the microcircuit shown on the right-hand side.
The microcircuit takes a vector input (fed into F(t, ∗x)) and outputs a vector of the same size (through f̃(t, ∗x)) selected by the attentional gain
field G(

∗
x) (multiple arrows from G(

∗
x) represent that it can select different

∗
x from f̃(t, ∗x)). Depending on the initialization and inputs, this

multipurpose microcircuit can run a predefined sequence in a self-modulating manner (by modulating its own α), store a compressed memory
representation through sequential activation in f̃(t, ∗x) or encode functions of variables (e.g. accumulated evidence) for which a temporal
derivative is available.

externally controllable. The output of the microcircuit at any
moment is:

O(t) =
N

∑
i=1

G(
∗
xi)f̃(t,

∗
xi), (2)

where N is the number of values of
∗
x used to implement the

function approximation f̃. In models used here we restrict
G(

∗
x) to be unimodal across

∗
x. Attentional gain field can be

made narrow and then activated sequentially, allowing a scan
of the function representation or it can be made broad to sum
across the

∗
x. This enables one to construct cognitive models

based on scanning (e.g., Hacker, 1980) or to construct global
matching models (e.g., Donkin & Nosofsky, 2012).

Working memory: Functions of time
When α(t) is constant, f̃ maintains an estimate of f(t) as a
function of time leading up to the present and we write f̃(t,

∗
τ).

If the input stimulus was a delta function at one point in the
past, the units in f̃(t,

∗
τ) activate sequentially with temporal

tuning curves that are broader and less dense as the stimu-
lus becomes more temporally remote (Figure 2A). Neurons
with such properties, called time cells, have been observed
in mammalian hippocampus (MacDonald, Lepage, Eden, &
Eichenbaum, 2011) and prefrontal cortex (Tiganj, Kim, Jung,
& Howard, 2017). Furthermore, different stimuli trigger dif-
ferent sequences of cells (Tiganj et al., 2018), Figure 2B.
Taken together at any time t, f̃(t,

∗
τ) can be understood as a

compressed memory timeline of the past. The application
of the Laplace transform in maintaining working memory in
neural and cognitive modeling has been extensively studied
(e.g., Shankar & Howard, 2012; Howard, Shankar, Aue, &
Criss, 2015).

Evidence accumulation: Functions of net evidence
In simple evidence accumulation models, the decision vari-
able is the sum of instantaneous evidence available during
the decision-making process. In these models, a decision is
executed when the decision variable reaches a threshold. By
setting α(t) to the amount of instantaneous evidence for one
alternative, we can construct the Laplace transform of the net
amount of decision variable since an initialization signal was
sent via the input f (t). If no new evidence has been observed
at a particular moment then dF(t,s)

dt = 0, thus all the units re-
main active with sustained firing rate. Large amount of evi-
dence will, on the other hand, mean a fast rate of decay. In-
verting the transform results in a set of cells with receptive
fields along a “decision axis” (Howard, Luzardo, & Tiganj,
2018) consistent with recent findings from mouse recordings
(Morcos & Harvey, 2016).

Cognitive control: Functions of planned actions
The program flow control activates a sequence of actions nec-
essary for completion of a behavioral task. For instance, a
typical behavioral task may consist of actions such as attend-
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Figure 1: Constructing a scale-invariant compressed memory representation through an integral transform and its inverse. A.
Microcircuit for representing variables via supported dimensions by implementing equations (1) and (2). B. A response of the network to a

delta-function input. Only three nodes in F(s) and three nodes in f̃ (
⇤
t) are shown. Nodes in f̃ (

⇤
t) activate sequentially following the stimulus

presentation. The width of the activation of each node scales with the peak time determined by the corresponding
⇤
t, making the memory

scale-invariant. Logarithmic spacing of the
⇤
t makes the memory representation is compressed.

Figure 2: A schematic of a neural-level circuit that can be used
to model different behavioral experiments. The three blocks:
working memory, program and evidence accumulator are each im-
plemented with the microcircuit shown in Figure 1A. Program block
sequentially executes actions which include waiting for the probe,
gating information from working memory to the evidence accumu-
lator and reading the output of the evidence accumulator.

evidence accumulation process a(t) will be again set to zero,
then back to -1 when the sufficient amount of evidence has
been accumulated and it is time to take the next action.

Integrating the microcircuits into a framework for
modeling behavior

The three blocks described above: working memory, evidence
accumulation and program control are all constructed from a
same microcircuit (Figure 1A). Each circuit has an input (which
is unused for the evidence accumulation and the program con-
trol blocks), a (which is kept at 1 for the working memory

block) and output.
We connected the three blocks such that that program con-

trol block gates information from the working memory to the
evidence accumulation block and monitors its output (Fig-
ure 2). In general, depending on a behavioral task that is
being modeled, one could use a different number of blocks
connected in different configurations.

Results
First, we evaluate the ability of the proposed architecture
in modeling behavior using human data from the JOR task
(Singh & Howard, 2017). To model the JOR task, the first step
of the model was to wait for the probe item to appear. After
that, the gates were set to scan the memory representation
sequentially from more recent to more distant past. At each
step, the value found in the memory was used to drive two
evidence accumulators, one accumulator for each probe item.
Once one of the two evidence accumulators reached a preset
threshold, the program would continue executing and take an
appropriate action (left or right choice). Variability in the re-
action times was obtained by adding additive Gaussian noise
to the evidence accumulation process. Results in Figure 3C
indicate that the model captures well the aspect of the real
data (Figure 3A) that suggests sequential scanning: reaction
time depends on the lag of the more recent probe item and
does not depend on the lag of the more distant probe item.
In addition, the model is consistent with the data regarding
compression of the memory representation (Figure 3B - data,
Figure 3D - model): the reaction time depends sublinearly on

Figure 2: A scale-invariant compressed memory representation through an integral transform and its inverse: model and neural data
A. A response of the network to a delta-function input. Activity of only three nodes in each of the two layers is shown. Nodes in f̃ (

∗
τ) activate

sequentially following the presentation of input stimulus f . The width of the activation of each node scales with the peak time determined
by the corresponding

∗
τ, making the memory scale-invariant. Logarithmic spacing of the

∗
τ makes the memory representation compressed.

B. Top: During DMS task sequentially activated cells in monkey lPFC encode time conjunctively with stimulus identity (firing rate encodes
visual similarity of the stimuli - stimuli in “Best category” were visually more similar to stimuli in the “Same category set” than to stimuli
in the “Different category set”). The three heatmaps show neural activity during the stimulus presentation (first 0.6 s) and the delay period
(following 1 s) averaged across trials. (Taken from Tiganj et al. (2018)). Bottom: Activity of the units in the working memory block of the
architecture resembles the neural data.

ing to stimuli, detecting the probe, accumulating evidence
and taking an appropriate action depending on which of the
available choices accumulated more evidence. These opera-
tions require the ability to route information to and from the
working memory and evidence accumulation modules. For
instance, in order to compare a probe to the content of mem-
ory, one might route the output of the working memory unit,
filtered by a probe stimulus, to the α(t) of an evidence accu-
mulation unit. Because various operations take place in se-
ries, we can understand them as a function of future planned
actions. Rather than past stimuli, the vectors in F(t,s) and
f̃(t,

∗
τ) can be understood as operations that affect other units

(each action has a corresponding two-layer network turning
F(t,s) and f̃(t,

∗
τ) into vectors across the action space).

Different cognitive models correspond to different initial
states in F(t,s) and f̃(t,

∗
τ). The actions will be executed se-

quentially by setting α(t) < 0, winding the planned future
closer and closer to the present. For instance, if the first step
of a behavioral task is to wait for a probe, then that action will
set the controller’s α(t) to 0 until the probe is detected. Once
the probe is detected, α(t) will be set to a default value of -1
so the neurons in the first layer will grow exponentially and
the sequence loaded in f̃(t,

∗
τ) will continue evolving.

Integrating microcircuits into cognitive models
The three blocks described above: working memory, evi-
dence accumulation and cognitive control are all constructed
from the same microcircuit (Figure 1 right-hand side). Each

circuit has an input, α and output. To demonstrate the util-
ity of this approach, we connected the three blocks such that
the program control block gates information from the work-
ing memory block to the evidence accumulation block and
monitors its output (Figure 1 left-hand side).

Results
We demonstrate performance of the proposed architecture on
three classical behavioral tasks: Judgment of Recency (JOR),
probe recognition and Delayed-Match-to-Sample (DMS). We
compare the results of the model with behavioral data (for
JOR and probe recognition) and neural data (for DMS). Crit-
ically, even though these three tasks have very different de-
mands, the neural hardware for the models is identical. The
only difference is in the initial state of the program block. Af-
ter initialization, each model runs autonomously and is self-
contained.

Judgment of Recency: Sequential scanning of the
memory timeline
In JOR subjects are presented with a random list of stimuli
(e.g. letters or words) one at a time, and then probed with
two stimuli from the list and asked which of the two stimuli
was presented more recently. The classical finding is that the
time it takes subjects to respond depends on the recency of the
more recent probe, but not the recency of the less recent probe
(Figure 4A) (Hacker, 1980; Singh & Howard, 2017). This re-
sult is consistent with a self-terminating backward scan along
a temporally organized memory representation, suggesting
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Figure 3: Example of a JOR task implemented with the pro-
posed architecture. The implementation is done with microcircuits
that correspond to those in Figure 1. Each square corresponds to a
single neuron. Squares in the middle layer of each panel correspond
to single neurons from f̃(t, ∗x) (neurons from F(t,s) are not shown).
Shading reflects the activity of the neuron at a given time step; darker
shading means less activity. A. At this time step all the seven items
from the test list have been presented and they are stored in the se-
quentially activated memory. The two probe items T and Q are at the
input. B. The program (cognitive control) block sequentially gates
the information from the working memory into the α neuron of the
evidence accumulator (DIFF action in the program block), causing
sequential activation in the accumulator. C. After the evidence accu-
mulator reaches the threshold, program control continues execution
by activating an appropriate action (in this case RIGHT).
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Figure 2. Accuracy, correct RT and incorrect RT are plotted as a function of the lag to the less
recent probe. Di↵erent lines represent di↵erent values of the lag to the more recent probe. (darker
lines correspond to more recent lags). a. Accuracy depends on the lag to the more recent item and
also shows a weak distance e↵ect (note that the lines are not flat). b. Correct RT depends strongly
on the lag to the more recent probe. The flat lines suggest that there was not an e↵ect of the lag to
the less recent probe (see text for details). c. Incorrect RT for incorrect responses depends on the
lag to the less recent probe, but at most weakly on the lag to the more recent probe (see text for
details).

with independent intercepts for each participant. The accuracy decreased with an increase
in the lag to the more recent probe by .078 ± .002, t(1918) = �31.9, p < 0.01 per unit
change in lag. Accuracy also increased with the lag to the less recent probe by .023 ± .002,
t(1918) = 9.73, p < 0.01 per unit change in the lag. These findings are consistent with the
findings from prior studies.

Correct response time depended strongly on the lag to the more recent probe but not on the
lag to the less recent probe

The response times for the correct responses depended strongly on the more recent lag
as seen in Figure 2b. The median response time varied from .72±.02 s for the most recent lag
to 1.36 ± .06 s for a lag of six. In contrast to the distance e↵ect seen in accuracy Figure 2a,
the lines in Figure 2b appear to be flat. In order to assess this distance e↵ect more directly,
we calculated the slopes of lines in Figure 2b separately for each participant and performed
a Bayesian t-test (Rouder et al., 2009) on the slopes. This analysis showed “substantial
evidence” (Wetzels & Wagenmakers, 2012; Kass & Raftery, 1995; Je↵reys, 1998) favoring
the hypothesis that the slopes are not di↵erent from 0 (JZS Bayes Factor = 3.3). A linear
mixed e↵ects analysis allowing for independent intercepts for each participant showed a
significant e↵ect of the lag to the more recent probe, .124± .006 s, t(478) = 21.6, p < 0.001.
These results replicate prior studies, but extend them by establishing positive evidence for
the null using the Bayesian t-test.

Response time varies sub-linearly by lag to the more recent item

Figure 2b suggests that correct RTs depended prominently on the lag to the more
recent item. Further it appears that the spacing between these lines goes down as the lag
increases. This suggests that the RT depends sub-linearly on the lag to the more recent
probe, as predicted by a backward self-terminating scanning model that scans along a
temporally-compressed representation.

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/144733doi: bioRxiv preprint first posted online Jun. 1, 2017; 
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Figure 4: The model captures behavioral results in the JOR
task. A. In JOR, median response time for correct responses de-
pends strongly on the recency of the more recent probe but not the
recency of the less recent probe. Shade of the line denotes lag of the
more recent item, with the most recent item shown in black and the
most distant item shown in the lightest shade of gray. (From Singh
and Howard (2017).) B. In JOR, median response time varies sub-
linearly with recency (x-axis is log-spaced). C.,D. Results of the
model corresponding to A and B respectively.

that subjects maintain working memory as a temporally or-
ganized, scannable representation. Moreover, the response
time is a sublinear function of the lag (Figure 4B) (Singh &
Howard, 2017), suggesting that the working memory repre-
sentation is log-compressed, as proposed by earlier modeling
work (Howard et al., 2015; Brown, Neath, & Chater, 2007).

In the model of JOR, the first action was to wait for the
probe item to appear (Figure 3A). After that, the gain field
over

∗
τ was set to scan the memory representation sequentially

from more recent towards more distant past. At each step, the
value found in the memory was used to drive two evidence
accumulators, one independent accumulator for each probe
item (Figure 3B). Once one of the two evidence accumula-
tors reached a threshold, the program executed an appropri-
ate action (left or right choice, Figure 3C). Variability in the
response times was obtained by adding Gaussian noise to the
evidence accumulation process.

Results in Figure 4C indicate that the model captures well
the aspect of the data that suggests sequential scanning (Fig-
ure 4A): response time depends on the lag of the more recent
probe item and does not depend on the lag of the more distant
probe item. In addition, the model is consistent with the data
regarding compression of the memory representation (Figure
4B - data, Figure 4D - model): the response time grows with
the lag of the more recent item.

Old-new probe recognition: Global matching model
using the memory timeline
Similarly to JOR, in old-new probe recognition task subjects
are presented with a random list of stimuli one at a time.
After the list is presented subjects are probed with a single
probe that was or was not an item from the list. Subjects
choose either Old or New to indicate their memory. The well-
established behavioral results indicate that the response time
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increases and accuracy decreases with increasing lag of the
probe item (Figure 5A). In other words, if the probe item was
further in the past (had larger lag) subjects will take longer to
respond and their accuracy will be lower than if the probe was
presented less far in the past. Models based on global match-
ing, such as EBRW have managed to capture subjects accu-
racy and response times (Donkin & Nosofsky, 2012; Nosof-
sky, Little, Donkin, & Fific, 2011).

Our implementation of probe recognition was similar to
JOR, but with several important differences. The main differ-
ence between the two tasks was in the way the memory was
accessed. Unlike in the implementation of JOR where G(

∗
x)

was a delta function resulting in serial scanning, in probe
recognition task G(

∗
x) was uniform. This means that the entire

memory representation was accessed simultaneously, rather
than sequentially scanned. This type of memory access falls
under the umbrella of global matching models which includes
e.g. EBRW, SAM, Minerva and TODAM (Raaijmakers &
Shiffrin, 1980; Murdock, 1982; Hintzman, 1988; Nosofsky
et al., 2011).

Figure 5B shows model performance in probe recognition.
The two qualitative features observed in the data were cap-
tured with the model: response time increased and accuracy
decreased as the lag of the probe item increased. Overall, the
result of the model resembles the data reported by Donkin
and Nosofsky (2012).

Delayed-Match-to-Sample: Comparing model
neurons to empirical evidence for conjunctive
coding of what and when
In DMS subjects are presented with a sample stimulus fol-
lowed by a delay interval, followed by a test stimulus. The
action that subjects need to take (e.g. pressing a left or right
button) depends on whether the two stimuli were the same or
different. We modeled the task with the same components as
the JOR task. The only differences were in 1) how the probe
item was set (in DMS the second stimulus is by construction
the probe, while in JOR the probe is marked by presenting
two stimuli at the same time) and 2) what parts of the working
memory were gated to the evidence accumulator (in DMS one
accumulator accumulated evidence for presence of the probe
item in the memory and the other accumulator accumulated
evidence that any other item was found in the memory, while
in JOR each of the two probe items had its own evidence ac-
cumulator). While simple in terms of behavior, DMS task
is often done on animals while recording activity of individ-
ual neurons. Neural recordings during the delay period of
this task show evidence for existence of stimulus-selective se-
quentially activated cells (Tiganj et al., 2018) that correspond
well to the neural activity produced by the sequential memory
used here (Figure 2B).

Conclusions
Here we provided an architecture that is based on realis-
tic neural data and that can account for non-trivial behavior.

A
Power-Law Model of Memory Strength 3

for items at the greatest lags (first and second serial positions 
of the study list) saw a slight boost. Öztekin et al. (2010,  
Fig. 2) observed a similar pattern of results, although their data 
were averaged across participants and pairs of adjacent serial 
positions.

Figure 2 shows detailed RT distributions for each of the 
study-probe lags for Participant 3. (The RT distributions for 
the other participants were essentially identical to those of  
Participant 3; see Figs. S1–S3 in the Supplemental Material 
available online.) The cumulative-distribution-function plots 
shown in the figure provide an efficient means of simultane-
ously illustrating accuracy and the form of the correct (hit) and 
incorrect (miss) RT distributions in each lag condition. Each 
plot is made up of quantile estimates from correct and incor-
rect RT distributions. The quantile estimates (diamond sym-
bols) show the RT below which .10, .30, .50, .70, and .90 of 
the responses in that distribution fall. The positions of the 

quantiles on the x-axis reflect the speed at which responses  
are made, so that slower distributions stretch further to the 
right. The heights of the quantiles indicate, separately for  
correct and incorrect trials, the absolute cumulative proportion 
of responses with RTs below the quantile cutoff. Therefore, 
note that the relative heights of the correct and incorrect  
distributions reflect the proportion of correct versus incorrect 
responses at each cumulative RT. The curves reach asymptotes 
at the overall correct and incorrect response proportions at 
each lag.

Figure 2 shows that there was a systematic effect of lag on 
the RT distributions. As lag increases, the median of each dis-
tribution (third diamond within each plot) shifts to the right 
and the distribution becomes more positively skewed (the 
points spread out to the right). This tendency is pronounced at 
the early lags and slows down for the larger ones. Figure 3 
shows the RT distributions (for all participants) for trials on 
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of target-probe lag. For RTs, the graphs also show the results for lures. Results are shown separately for each of the 4 
participants. Circles represent observed data. Predictions from the exemplar-recognition power-law model are shown 
using black lines for targets and Xs for lures. (In computing observed and predicted values of d′, maximum hit rates 
were set at .99.)
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Figure 5: The model captures behavioral results in the probe
recognition task. A. In probe recognition response times increase
and accuracy decreases as the lag of a probe item increases. Circles
correspond to data points and solid line is a fit obtained with EBRW
model. Taken from (Donkin & Nosofsky, 2012). B. Results of the
model capture qualitative properties of the data. Response times are
shown with standard deviation.

In particular, the behavioral results of JOR task are consis-
tent with the hypothesis that the subjects are scanning along
a compressed timeline. The same architecture was used to
model DMS task, resulting in neural representation of work-
ing memory that closely corresponds to the neural data. Fi-
nally, we have also captured qualitative properties observed in
probe recognition task by applying an approach analogous to
global matching models, but implemented on a neural-level.

Critically, implementation of all three tasks uses the same
neural hardware, differing only in the initial condition of the
controller. This work is complementary with ongoing efforts
of building cognitive architectures such as ACT-R (Anderson,
Matessa, & Lebiere, 1997) and SOAR (Laird, 2012). The dis-
tinction of the present work is in its attempt to build such ar-
chitecture with neuron-like units, similar to Spaun (Eliasmith
et al., 2012), but with a different type of neural representation.
The present work commits to a specific type of representa-
tion: variables are represented as supported dimensions via
neural tuning curves, tuned to a particular amount of elapsed
time, accumulated evidence or a position in a sequence.
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