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Mortality caused by tropical cyclones in the 
United States

Rachel Young1,2,3,6 & Solomon Hsiang3,4,5,6 ✉

Natural disasters trigger complex chains of events within human societies1. Immediate 
deaths and damage are directly observed after a disaster and are widely studied, but 
delayed downstream outcomes, indirectly caused by the disaster, are difficult to trace 
back to the initial event1,2. Tropical cyclones (TCs)—that is, hurricanes and tropical 
storms—are widespread globally and have lasting economic impacts3–5, but their  
full health impact remains unknown. Here we conduct a large-scale evaluation of 
long-term effects of TCs on human mortality in the contiguous United States (CONUS) 
for all TCs between 1930 and 2015. We observe a robust increase in excess mortality 
that persists for 15 years after each geophysical event. We estimate that the average  
TC generates 7,000–11,000 excess deaths, exceeding the average of 24 immediate 
deaths reported in government statistics6,7. Tracking the effects of 501 historical 
storms, we compute that the TC climate of CONUS imposes an undocumented 
mortality burden that explains a substantial fraction of the higher mortality rates 
along the Atlantic coast and is equal to roughly 3.2–5.1% of all deaths. These findings 
suggest that the TC climate, previously thought to be unimportant for broader public 
health outcomes, is a meaningful underlying driver for the distribution of mortality 
risk in CONUS, especially among infants (less than 1 year of age), people 1–44 years of 
age, and the Black population. Understanding why TCs induce this excess mortality is 
likely to yield substantial health benefits.

Despite attracting widespread cultural, scientific and policy attention, 
the full impacts of natural disasters on society are not well understood. 
In particular, effects on human health are challenging to disentangle 
from numerous other factors that also influence health outcomes, 
such as behaviour, healthcare systems and pollution. Because of this 
complexity, many approaches to measuring the mortality impact of 
disasters focus narrowly on enumerating cases where a disaster is the 
most immediate and obvious direct cause of death, such as drownings in 
flood waters. Yet it has been widely hypothesized1–5,8,9 that tracking only 
these ‘direct deaths’ might misrepresent the total mortality that results 
from disasters, since disasters trigger complex cascades of events that 
ultimately may cause additional future mortality. To our knowledge, 
this full excess mortality effect has never been characterized for any 
class of disaster at population scale, accounting for deaths that may be 
delayed relative to the physical disaster but are nonetheless traceable 
to those events. By extension, the full health burden of environments 
that are chronically disaster-prone also remains poorly understood.

Here we develop a long-run estimate for the overall effect of indi-
vidual TCs (which include hurricanes and tropical storms) and the TC 
climate on all causes of mortality across all populations within CONUS. 
TCs are a frequent hazard for CONUS, causing damage to infrastruc-
ture, homes and businesses10,11; population relocation12; social and eco-
nomic disruptions2,3,5,13; ecological changes14,15; reduced access to basic 
services16; increased pollution7; crop damage7; insurance payouts17; 

and political actions18. These and other impacts of TCs might affect 
human health through complex chains of events that separate the cause 
(cyclone) from the delayed effect (mortality) so much that affected 
individuals are themselves unaware that a TC influenced their own 
health outcome. For example, individuals may use retirement savings 
to repair damage, reducing future healthcare spending to compen-
sate; family members might move away, removing critical support 
when something unexpected occurs years later; or public budgets may 
change to meet the immediate post-TC needs of a community, reduc-
ing investments that would otherwise support long-run health. Prior 
studies of sub-populations19 for specific events20,21 or shorter windows 
of time2,8,9 suggest that these and other pathways could substantially 
influence post-TC mortality, but the full long-term impacts of all indirect 
pathways for all storms across an entire population remains unknown.

In an impossible hypothetical (and unethical) experiment measur-
ing the impact of TCs on mortality, two initially identical populations 
would be compared after one was ‘treated’ with a TC and the other was 
not (‘control’). If mortality later increased in the treated population 
relative to the control, then we would infer that the TC caused this 
delayed mortality. Here we study an alternative natural experiment, 
which approximates experimental conditions, in which states in CONUS 
are randomly hit by TCs over time. Specifically, we study how mortality 
rates within a state change after the state is hit by a TC. Thus, conceptu-
ally, each state before a TC serves as the control for the same state after 
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it receives TC treatment22. The exact timing, location and intensity of 
TC treatments—directed by stochastic and chaotic oceanic and atmos-
pheric processes—are randomly assigned to populations23. If mortality 
systematically rises after TCs, conditional on other factors, we may infer 
that it was plausibly caused by the TCs24. This ‘reduced-form’ approach 
captures all potential pathways through which TCs influence mortality, 
without requiring that every channel is modelled explicitly (Methods).

We study the impact on all-mortality of all 501 TCs that affected the 
CONUS coastline during 1930–2015 (Fig. 1a, Extended Data Fig. 1 and 
Supplementary Fig. 1). We estimate changes in monthly state mortal-
ity rates (1950–2015) during the 240 months (20 years) after each TC, 
partially motivated by analyses indicating that some economic effects 
of TCs persist for more than 15 years3,20. We hypothesize that delayed 
effects exist and design an econometric approach that should reveal 
them, if they are present.

The potentially long duration of TC impacts poses methodological 
challenges to measuring the impact of individual TCs, because mor-
tality rates may still be responding to earlier TCs when later TC strikes 

occur. In this case, mortality time series would exhibit the superposi-
tion of multiple overlapping signals, each a response to individual TC 
strikes that occurred over a sequence of years. Our solution to separat-
ing these overlapping signals is to deconvolve mortality time series, 
empirically recovering the characteristic mortality impulse-response 
function that results from a single TC ‘impulse’. Deconvolution is an 
established signal-processing technique25 used to analyse time-series 
data in many contexts, including astronomy26 and economics27. Here, 
short-lived TC events are represented as impulses (Dirac delta func-
tions) scaled by their physical intensity (Fig. 1b, Extended Data Fig. 1 
and Supplementary Fig. 1). We examine, via deconvolution (Extended 
Data Fig. 2), how mortality rates (Fig. 1c and Extended Data Fig. 3) sys-
tematically change following a TC while accounting for the effects of 
previous TCs (Methods).

We rebuild the sequence of physical TC events that each state expe-
riences in each month for 1930–2015 using the Limited Information 
Cyclone Reconstruction and Integration for Climate and Economics 
(LICRICE) model28 (Methods). This results in estimates of maximum 
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Fig. 1 | Example data and model validation. a, Example decadal totals of 
cumulative monthly TC maximum wind speed computed using LICRICE 
(Supplementary Fig. 1 shows all decades). b,c, Example monthly TC ‘impulses’ 
from Florida and New Jersey (b) and corresponding monthly all-cause mortality 
(lines) (c). Model predictions for monthly mortality are overlaid as red dots 
(Extended Data Figs. 1–3 show all states). d, log(TC damage/GDP) per storm from 
ref. 51 versus national average (avg.) maximum wind speed computed using 
LICRICE (1950–2005, n = 89, slope = 4.87, R2 = 0.36; shaded region represents 
95% confidence interval). GDP, gross domestic product. e, Correlation between 
state-by-storm average rainfall from NOAA station data (a limited sample) and 

maximum wind speed computed using LICRICE (263 storms, n = 12,889, 
slope = 0.116, R2 = 0.307). f, Comparison of model predictions against observed 
mortality for all state-by-month observations (n = 27,216, R2 = 0.93). g, Verifying 
that the model produces unbiased estimate of TC impacts in four randomization- 
based placebo experiments (negative exposure controls; see Supplementary 
Fig. 7) described in text. Distributions are estimated cumulative effects (0 is true) 
for 5, 10, 15 and 20 years after incidence of a shuffled cyclone event across 
1,000 iterations of randomization and model re-estimation. Boxes delineate 
25th and 75th percentiles, whiskers span minimum and maximum values. 
Extended Data Fig. 5 shows all lags.
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wind speed experienced at each 0.125° × 0.125° ground pixel during 
each storm (Fig. 1a and Supplementary Fig. 1), a measure of TC inci-
dence that has been shown to strongly predict physical damage and 
other economic and social impacts globally2,3,28,29. We show that this 
measure predicts direct normalized storm-level damages in CONUS 
(Fig. 1d and Supplementary Fig. 2) and is correlated with TC rainfall 
(Fig. 1e and Supplementary Fig. 3). Ground-level wind speed is not 
the only dimension of TC incidence that affects human outcomes 
(for example, flooding also causes direct deaths30), but, to our knowl-
edge, it is the only metric that can be consistently reconstructed for 
all storms throughout our entire sample. We therefore consider wind 
speed a meaningful, albeit imperfect, proxy measure for the physi-
cal aspects of storm intensity that impact all-cause mortality. Wind 
speed is averaged over state land area for each month over 86 years 
(n = 37,152 state-by-month observations, mean = 0.39 ms−1, 95th per-
centile = 2.33 ms−1, maximum = 47.6 ms−1; Supplementary Fig. 4) and 
linked to monthly state mortality records from the US Center for Disease 
Control and Prevention (CDC) Mortality Statistics of the United States 
Annual Volumes, Multiple Cause of Death (MCOD) files, and Underlying 
Cause of Death database31 (Fig. 1c and Extended Data Fig. 3). Finer reso-
lution mortality data were unavailable for the extended period that we  
studied.

To measure the effect of TCs on mortality, we deconvolve mortality 
rates as a series of responses to other factors and continuous TC events 
that have effects that may unfold over a period of up to 240 months. 
To identify the effect of TCs on mortality separately from other known 
and unknown factors that affect mortality across locations and over 
time, our econometric analysis non-parametrically accounts for: (1) all 
average differences across states—including culture, state healthcare 
policy and geographic factors; (2) all average state-specific seasonal 
patterns—including environmental changes (for example, sunlight) 
and annual events (for example, holidays); (3) nonlinear state-specific 
trends—which include changes in demographics, healthcare access, 
environmental pollution and economic conditions; (4) national 
month-of-sample effects—which capture all nationally coherent 
social, economic, political and epidemiological changes (for example, 
influenza outbreaks32); and (5) state-by-month-specific linear trends— 
capturing policies, technology or climate changes that affect mortal-
ity in particular months within a state more than other months (for 
example, anti-lock brakes reducing winter motor vehicle mortality 
only in cold states) (Extended Data Fig. 4 and Supplementary Fig. 5). 
Our analysis also accounts for the documented state-specific nonlin-
ear effect of temperature on mortality33–35 (Supplementary Fig. 6), 
since temperature and TC activity are correlated in the North Atlantic36 
(Methods).

We find that our econometric model is the most parsimonious model 
that adequately captures the rich historical variation in mortality that 
we observe in data (Fig. 1c, Extended Data Figs. 3 and 4 and Methods). 
Our model exhibits skill (R2 = 0.932) in predicting month-by-state 
mortality (red markers in Fig. 1c,f and Extended Data Fig. 3) and, criti-
cally, produces unbiased estimates for randomized TC data. In four 
placebo experiments, we search for (null) associations between true 
mortality data and randomly reshuffled placebo versions of our TC data 
that cannot be associated with real world outcomes (Supplementary 
Fig. 7 and Methods). Our model does not generate spurious associa-
tions between mortality and (1) the unconditional distribution of TC 
events (we shuffle all TC observations; denoted ‘total randomization’);  
(2) average cross-sectional patterns across states (we shuffle the 
sequence of TCs each state experiences; denoted ‘within state’ randomi-
zation); (3) secular national trends (we shuffle the TC experience across 
states within each month of sample; denoted ‘within month’ randomiza-
tion); or (4) temporal-trends within states (we block-shuffle complete 
TC time series across states, keeping the sequence of storms as blocks; 
denoted ‘across state’ randomization). Our model correctly indicates 
no associations between mortality and TCs in these experiments (Fig. 1g 

and Extended Data Fig. 5), but alternative models missing any of the 
elements 1–5 above fail one or more of these tests (Methods).

The impact of individual TCs
We find that state-level all-cause mortality is systematically increased 
for the 172 months (14.3 years) following a TC (Fig. 2a). In the month of 
TC landfall, we estimate that monthly mortality rates increase by 0.033 
(±0.012) deaths per 100,000 population per ms−1 of state-level wind 
speed incidence (t(23,730) = 2.78, P < 0.05). The rise and fall in mortality 
is well approximated by a quadratic function of time (red line in Fig. 2a) 
that peaks at 0.042 deaths per 100,000 after 68.6 months after landfall. 
We compute the cumulative excess mortality following a single TC 
(summing over months; Fig. 2b), a more intuitive and policy-relevant 
description of these impacts. For each 1 ms−1 of state-level wind speed 
incidence we estimate an average cumulative 5.37 (±1.8) excess deaths 
per 100,000 after 172 months (t(23,730) = 2.94, P = 0.0038). The aver-
age state-level TC event results in state-level winds of 6.9 ms−1, implying 
an average cumulative mortality of 37.05 (±12.4) per 100,000 after 172 
months. This estimate diverges from corresponding results in all four 
randomization-based placebo tests (orange dashed lines in Fig. 2b) 
and is highly statistically significant (P < 0.012) when using these ran-
domizations in permutation tests (Extended Data Fig. 5 and Methods). 
This result is robust to using population-based regression weights, 
count-based models, or accounting for region-by- month-of-sample 
shocks (Extended Data Fig. 6a). We also test whether this response 
has changed over time—perhaps owing to changes in technology or 
policy—but find no evidence that earlier storms had an impact differ-
ent from later storms (Extended Data Fig. 6b). This indicates that no 
adaptations29,31,33–35 over this period have reduced the mortality impact 
of TCs in CONUS.

Direct versus indirect deaths
These results indicate that a large number of previously uncounted 
deaths in CONUS can be traced to TC events. These indirect deaths are 
deaths that occur earlier than would be expected in the absence of the 
TC. They are likely to be caused by complex sequences of events that 
follow in the wake of TCs (such as economic loss37 or lack of healthcare 
access21) and thus differ from official counts of direct deaths that occur 
during the short-lived geophysical event and outnumber official direct 
deaths by orders of magnitude. The US National Oceanic and Atmos-
pheric Administration (NOAA) report6,7 that the TCs that we study (501 
events) directly killed 24 individuals on average (22 without Hurricane 
Katrina). By contrast, we estimate that the average TC indirectly accel-
erated the death of roughly 7,170–11,430 individuals, depending on 
model specification (Extended Data Table 1).

Mortality by age
We evaluate the effects of TCs on four age categories that are available 
for the entire sample (Fig. 2c). For the same TC event, cumulative excess 
mortality risk for 172 months is greatest for infants less than 1 year of 
age (called ‘infants’ herein), at 49.8 deaths per 100,000 per ms−1 (±11.3, 
t(20,319) = 4.41, P < 0.0001), and second largest for people 65 years of 
age and older, at 22.8 (±10.0, t(20,862) = 2.28, P < 0.05). For people 1–44 
and 45–66 years of age, it is smaller, at 2.49 (±0.53, t(20,821) = 4.70, 
P < 0.0001) and 3.50 (±2.4, t(20,862) = 1.46, P > 0.05) per 100,000 per 
ms−1. However, because of the age distribution, the group 65 years of 
age and older has the largest number of total excess deaths (46%), with 
ages 45–64 (8%), 1–44 (32%) and infants (14%) years together making 
up the remaining deaths (Extended Data Fig. 7a). We estimate that 
infants are the most vulnerable group by risk (16 times the risk at age 
1–44), but the small population of infants mean they constitute only 
one-seventh of deaths. Of these infant deaths, 99% occur more than 
21 months after the TC, indicating that the infants were not conceived 
prior to landfall (consistent with ref. 2). This suggests that cascades of 
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indirect effects following TCs, rather than personal direct exposure to 
the physical event, generate this mortality.

Mortality by race
There is growing concern that minority populations may suffer greater 
harm from environmental conditions38. A central hypothesis argues 
that these populations suffer more than other groups when both expe-
rience the same physical event, although quantified evidence for such 
unequal vulnerability is mixed and inconclusive39. We find that when 
Black and white populations are exposed to the same TC event, Black 
individuals experience cumulative excess mortality risk of 13.53 (±5.51) 
per 100,000 per ms−1 (t(19,992) = 2.46, P < 0.05) over the following 
172 months, whereas white individuals experience excess risk of 4.19 
(±1.56) per 100,000 per ms−1 (t(2,083) = 2.68, P < 0.05) (Fig. 2d). How-
ever, because the white population that is exposed to TCs is larger, we 
estimate that 66% of cumulative excess deaths occur among white 
individuals, compared to 34% among Black individuals (Extended Data 
Fig. 7b). We cannot distinguish other race groups owing to limitations 
in our data (Methods).

Mortality by cause
The official cause of TC-related excess deaths is almost never recorded 
as a TC. Examining official causes of death from the CDC Underlying 
Cause of Death database (Fig. 2e), we find that most TC-related excess 
deaths (58.9%, 2.27 ± 0.59 per 100,000 per ms−1) result from ‘other’ 
causes, a nonspecific category that includes diabetes, suicide, sud-
den infant death syndrome and other causes that are not individu-
ally recorded. Cardiovascular disease is the second largest cause of 
TC-related excess deaths (36.0%, 1.30 ± 0.86 per 100,000 per ms−1) and 
neoplasms (cancer) is third (11.6%, 0.46 ± 0.48 per 100,000 per ms−1),  
consistent with some evidence of stress from extreme weather affecting 

long-run health40. Infectious diseases, respiratory diseases and motor 
vehicle accidents are not linked to TCs. Future work should investigate 
the role of specific causes within the ‘other’ causes category.

Mortality by climatological risk
Defensive adaptations may cause TC incidence to have less impact 
on populations that are frequently affected by TCs compared with 
those that are infrequently affected29,33–35. We study this by stratify-
ing states on the basis of their TC climates, measured by average TC 
incidence2,3,29. States that experience TCs least infrequently (quartile 
1) exhibit higher vulnerability to TCs—10.4 deaths per 100,000 per 
ms−1 (±4.11, t(24,821) = 2.53, P < 0.05) 172 months after a TC, compared 
to all other states (quartiles 2–4), 3.49 deaths per 100,000 per ms−1 
(±0.0.74, t(24,821) = 4.71, P < 0.0001) (Fig. 2f; vulnerability among 
upper quartiles are statistically indistinguishable; Extended Data 
Fig. 6c and Methods). Thus, in states where TCs are uncommon, the 
mortality impact of physically similar TC events is around 2.8 times 
greater than in states where TCs are a regular occurrence. This find-
ing is consistent with the hypothesis that populations adapt to their 
climate, somewhat reducing its effects. However, the levelling-off of 
vulnerability and adaptation among upper quartiles indicates a limit 
to how effective these adaptations are in practice (similar levelling-off 
was observed in refs. 2,3). We additionally evaluate whether the spa-
tial distribution of populations within states alters the mortality 
response to TCs and find no evidence of such within-state adaptation  
(Methods).

Mortality burden of the TC climate
We estimate the impact of the TC climate by computing the expected 
mortality that resulted from all TC events in our sample, accounting 
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for TC intensity and evolving demographics of affected populations. 
Individual storms increase state mortality modestly per month 
(13 deaths on average). However, owing to the long duration (172 
months) of elevated mortality after each event and the large number 
of TC-by-state events (2,748 events between 1930 and 2015), CONUS 
mortality is always simultaneously affected by the overlapping impacts 
of numerous prior TCs across many locations (149 in an average month 
during 1950–2015). Figure 3b illustrates the superposition of expected 
monthly mortality flows resulting from all TCs affecting CONUS 
(Fig. 3a). Individual storms contribute only 0.05% of all nation-wide 
TC-related mortality in a given month on average and the growth and 
subsidence of post-TC mortality is gradual and without spikes. The 
flow of total CONUS TC-related mortality appears relatively stable 
until 2001, when TC-driven mortality grew rapidly—a change that we  
study below.

We estimate that all TCs combined produced between 4,600 and 
7,300 excess deaths per month in CONUS during 1950–2015 (Fig. 3b 
and Extended Data Table 1). The 501 TCs affecting CONUS between 
1930 and 2015 generated a total of 3.6–5.7 million excess deaths (range 
based on alternative model specifications). A TC of average intensity is 
linked to roughly 7,170–11,430 deaths. This burden is 300–480 times 
greater than government (NOAA) estimates of 24 deaths per storm 
on average (22 without Hurricane Katrina) and 11,937 total TC deaths 
during 1950–2015 (Fig. 3c). We estimate that the TC climate contributes 
to 1.9–3.1 excess deaths per 100,000 annually, equal to 3.2–5.1% of 
all deaths across CONUS. This burden is distributed unevenly across 
geography, age and race, and explains some patterns of mortality risk 
across and within these strata.

Burden across states
Accounting for all TCs in our data, underlying age distributions, demo-
graphic changes over time, historical experience with TCs (including 
associated adaptations) and nonlinear models of TC impact (Meth-
ods), we find that southeastern states have the highest proportion of 
total deaths attributable to TCs (Fig. 4a). For example, 13% of deaths in 
Florida, 11% of deaths in North Carolina, 9% of deaths in South Carolina 
and 8% of deaths in Louisiana during this period can be traced to their 
TC climate.

Burden by age
We estimate that the TC climate contributes to a large overall fraction of 
mortality for individuals less than 45 years of age in CONUS. TC-related 
mortality risk is highest for infants and lowest for people 1–44 years of 
age (Fig. 2c and Extended Data Table 2). Because both groups have low 
overall baseline mortality risk, post-TC excess mortality translates into 
a substantial fraction of overall mortality, which explains 25% and 15% 
of mortality for infants and for people 1–44 years of age, respectively 
(Fig. 4b). Total TC-related deaths is largest for people 65 years of age 
and up, but only accounts for around 3.5% of all 65+ deaths.

Burden by race
Black populations bear a relatively larger TC mortality burden than 
white populations, owing to their greater vulnerability (Fig. 2d) and 
their spatial distribution, which is denser in the southeast where TCs 
are common41. We estimate that, on average, 47,444 and 37,402 excess 
deaths per year among white and Black populations, respectively, are 
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traceable to prior TCs. These excess deaths constitute 3.1% and 15.6% 
of all white and Black mortality in CONUS, respectively (Fig. 4b and 
Extended Data Table 2).

Geography of age-specific burden
Overall geographic patterns of mortality for the populations of infants 
and people 1–44 years of age (Fig. 4c,e) are consistent with the uneven 
geographic incidence of TCs and their substantial impact on mortality 
for these ages (Fig. 4d,f). States exposed to TCs (‘TC states’) have higher 
mortality on average for all ages compared to states that are never 
exposed (‘non-TC states’) (Fig. 4g, blue versus maroon distributions) 
owing to many factors (such as lifestyle and diet), but TCs are likely to 
explain some of this gap.

Removing TC-related deaths (red distributions) aligns the distribu-
tions of mortality rates between TC and non-TC states for infants and 

people 1–44 years of age, suggesting that TCs may have an important 
role in explaining the difference in these outcomes for these regions. 
For infants, the average mortality rate for TC states declines from 112 to 
83 deaths per 100,000 in TC states when excess TC deaths are removed, 
more closely matching the 88 deaths per 100,000 in non-TC states, 
whereas for ages 1–44, the average mortality rate for TC states declines 
from 9 to 8 deaths per 100,000 in TC states when excess TC deaths are 
removed, more closely matching the 8 deaths per 100,000 in non-TC 
states (Fig. 4g). The spatial pattern of the TC climate across states 
appears to explain much of the difference in mortality for those 0–44 
years of age across these regions. We note this result is not a mechani-
cal outcome of our econometric analysis, since our estimates net out 
average mortality rates in each state and depend only on the timing of 
TCs within each state. Removing deaths attributable to TCs reduces, but 
does not close, the gap between TC and non-TC states for ages 45–64 
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and 65 and over, because TC-related deaths are a smaller fraction of 
total deaths for these age groups.

Accelerating trend after 2001
Our reconstruction of TC-related mortality indicates a positive average 
trend of +9.2 TC-related deaths per month, with a notable increase to 
+43.3 deaths per month after 2001 (Fig. 3b). This acceleration results 
from more frequent TCs after 2001 (17 yr−1) than before 2001 (14 yr−1; 
Fig. 4h), but these storms were not more intense on average. The maxi-
mum intensity of state-level incidence within landfalling storms actu-
ally declined from 23.6 ms−1 before 2001 to 21.4 ms−1 after 2001 (Fig. 4i). 
The net effect of more frequent storms with slightly weaker average 
intensity was to increase the intensity of average TC incidence experi-
enced by CONUS populations from 0.125 ms−1 to 0.143 ms−1 after 2001 
(Fig. 4j).

Long-term trends
In addition to climatological drivers, changes in population distribu-
tions have altered exposure to TCs. For example, it is widely argued 
that increasing TC damages are driven by migration towards risky loca-
tions42. We therefore decompose the long-term trend in TC-related 
excess mortality into contributions from climatological factors, shift-
ing spatial distribution of population towards coasts, and demographic 
trends.

To decompose the long-term trend in the excess mortality, we simu-
late outcomes while assuming counterfactual population patterns. 
First, we simulate excess mortality as in Fig. 3, but holding populations 
fixed so that all changes are driven by changes in the distribution of 
TC events (Fig. 4k). Fixing populations at 1950 or 2015 distributions, 
climatological factors contribute +0.848 or +1.34 TC-related deaths 
per month, respectively, explaining 12% of the estimated trend (red and 
maroon lines). This is consistent with the generally small climatological 
shifts we observe before 2001.

Second, we examine whether the evolving spatial arrangement of 
populations drives the long-term trend, since land development43 and 
public insurance5,44 may have incentivized populations to shift towards 
risky coastal locations. To test this, we simulate mortality using the 
relative spatial distribution from 2015, but rescaled to equal the 1950 
total population (yellow line). This increases average monthly excess 
mortality by 653 (14.3%) relative to a fixed 1950 population distribution, 
indicating that population shifts towards coastal states contributes 
+0.69 TC-related deaths per month (7.5% of the trend). The small size 
of this effect is consistent with the limited effect of population distri-
butions within states on the overall mortality impact TCs (Extended 
Data Fig. 6d).

The remaining 80.5% of the trend in TC-related mortality results 
from the growth and aging of the CONUS population. In 1950, 131 mil-
lion individuals lived in TC states, increasing by 85.4% to 243 million 
by 2015 (the population of non-TC states increased by 255.7%). Thus, 
we estimate that +7.4 additional TC-related deaths per month results 
from demographic trends.

Discussion
In our evaluation of long-run population-wide excess mortality result-
ing from TCs, we find that indirect deaths triggered by TCs in the 15 years 
after landfall are substantially higher than official counts of mortality 
occurring during the geophysical event. Our estimates indicate that 
the current TC climate of CONUS imposes an annual burden of around 
55,280–88,080 excess deaths. During the period of study, we estimate 
that TCs contributed to more deaths in CONUS (3.6–5.2 million) than 
all motor vehicle accidents (2.0 million), infectious diseases (1.9 mil-
lion) or US battle deaths in wars (1.3 million). These findings point to 
TCs as an important and understudied contributor to health in the 
United States, particularly for young or Black populations.

We acknowledge that the large difference between the indirect 
excess mortality burden that we compute and official counts of direct 
TC deaths is surprising. Indeed, we initially believed that these find-
ings resulted from calculation errors, as the absence of any previous 
comparable analysis made it difficult to construct an informed prior 
for these estimates. However, these findings are consistent with the 
growing literature indicating that climatic conditions generally45, 
and TCs specifically3,40, have larger and more enduring effects than 
previously recognized. For example, high temperatures cause31,33–35 
roughly 150,910 deaths annually in CONUS (7.0% of total mortality); 
TCs trigger substantial long-term economic losses at the individual 
household2,20 and macroeconomic level3,5; and one study21 of Hur-
ricane Maria estimated that there were 3,000 excess deaths (within 3 
months) beyond official counts. Furthermore, our finding of uneven 
TC impacts across Black and white populations is consistent with prior 
descriptive results that Black populations tend to be more vulnerable 
to disasters46.

We find no evidence of autonomous adaptation over time to TCs 
(Extended Data Fig. 6b), contrasting with the finding that populations 
in CONUS adapted to reduce heat-related mortality during this period31, 
probably via adoption of air conditioning. We hypothesize that an 
inability to observe the indirect excess deaths from TCs prevented 
analogous adaptations to TCs.

Our analysis identifies that TCs cause excess mortality, but it does 
not identify the underlying mechanisms. This situation is similar to 
other early statistical studies that linked hazards (such as tobacco 
and asbestos) to health outcomes before the underlying mechanisms 
were understood47. Future work may disentangle the channels that 
generate these effects.

We propose five hypotheses that might explain why TCs trigger 
excess mortality. (1) Economic disruption2–5 from TCs might change 
household economic decisions, eventually translating into adverse 
health outcomes2. For example, job loss5,16 might affect health insur-
ance, or retirement savings could be drawn down to repair property 
damage, both of which could reduce future spending on healthcare. 
(2) Social network changes after TCs could affect future health. For 
example, out-migration of working-age individuals12,20 could alter 
social support for older dependents that remain behind. (3) Fiscal 
adjustments by state or local governments in response to TCs5,16 may 
impact future health outcomes. For example, restructuring budgets 
to support recovery might reduce spending on healthcare infrastruc-
ture16. (4) Changes in the natural environment after TCs could impact 
health. For example, ecological changes could redistribute disease 
vectors or flooding may expose populations to harmful chemicals48,49. 
(5) Heightened physical and mental stress from experiencing TCs may 
alter long-run health40. Future work that determines whether these or 
other channels generate post-TC mortality will enable the development 
of effective policy interventions.

Our analysis has several limitations. First, we measure TC incidence 
by reconstructing wind speeds and do not model storm surges, rainfall 
or flooding. The effects of these variables are partially represented in 
our estimates by proxy based on their correlation with maximum winds 
(Fig. 1e and Supplementary Fig. 3). However, fully accounting for these 
effects explicitly might alter overall estimates of TC impact. Second, 
we analyse state-level mortality data containing limited demographic 
detail because they are available consistently since 1950. More recent 
granular data are available, but these time series are too short to study 
20-year effects. Third, we do not explicitly quantify the interacting 
effect of multiple TC events that occur in rapid succession or TCs that 
occur immediately after non-TC events. Such cases are uncommon but 
are likely to be impactful. Nonetheless, our results are average effects 
that include the impacts of these compound events. Fourth, this analy-
sis does not capture the effect of TCs on non-fatal outcomes19, thus our 
estimates may understate the public health burden of TCs. Finally, our 
estimates do not account for individuals who migrate outside of their 
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state after a TC, although they adjust for population changes within the 
origin state, and TC-induced migration is too small to explain these 
findings50. One case study20 of Hurricane Katrina suggested that migra-
tion was important for determining health outcomes for that event, 
although Katrina was unusual in many respects and we cannot test or 
validate those results using these data.

Overall, our findings identify the TC climate as a driver of broad 
public health outcomes. This suggests that critical healthcare needs 
of TC-affected populations are not being fully addressed and many 
affected individuals probably do not realize the extent to which their 
own health was affected by a TC. Identifying the underlying origin of 
these health outcomes should prompt research and policy to mitigate 
this human toll. Additionally, we hypothesize that other environmental 
conditions might also generate unmeasured mortality burdens that 
can be identified using this approach.
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Methods

Data
Wind speed data. We measure TC incidence using the LICRICE model  
(version 4)28. LICRICE is a parametric wind-field model that esti-
mates the maximum sustained winds experienced by every location 
throughout the lifetime of each TC recorded in the International Best 
Track Archive for Climate Stewardship (IBTrACS) database2,29,31,37,53–56. 
LICRICE uses observed maximum wind speeds to reconstruct wind 
fields throughout the storm based on internal storm structure, location, 
and each storm’s observed translational velocity. Many summaries of 
storm wind incidence are possible to construct using LICRICE, such as 
integrated power dissipation28,29; however, prior analyses have shown 
that the maximum wind experienced within storms is the most predic-
tive of social and economic outcomes among numerous parsimonious 
metrics previously analysed. This result is consistent with most compo-
nents of built structures failing catastrophically based on whether or 
not a threshold of stress is applied. LICRICE does not explicitly model 
storm surge, rainfall or flooding, however these dimensions of impact 
are captured in the analysis to the extent that they are correlated with 
integrated maximum wind speeds. For example, we find that LICRICE 
wind speed and NCEP rainfall from TCs are correlated within storms at 
the pixel level (Supplementary Fig. 3) and at the state-by-storm level 
(R2 = 0.31, P < 0.001; Fig. 1e) for a limited sample of storms for which 
granular rainfall data are available. Iterations of the LICRICE model 
has been used to measure various social and economic impacts of TCs,  
including direct deaths and damages29, changes to household income 
and expenditure2, infant mortality2, GDP growth28,37 and deprecia-
tion3. We also compare our measure of wind speed against total direct 
national economic damages (normalized by GDP) from a limited sam-
ple of TCs estimated by Nordhaus51. We find that national wind speed 
exposure is a meaningful predictor of total national damages (Fig. 1d 
and Supplementary Fig. 2), although we note that this outcome is highly 
uncertain and widely understood to be biased.

Here we use a new reconstruction of incidence at the sub-national-level 
within CONUS. We reconstruct incidence for 0.125° × 0.125° pixel of 
CONUS in each of 1,230 Atlantic storms between 1930 and 2015. Sup-
plementary Fig. 1 shows all decadal averages of these output (four 
example maps are also shown in Fig. 1a), illustrating the TC climatology 
for CONUS–however these aggregates over time are not themselves 
used in subsequent analysis.

To match state-level mortality data, TC incidence is collapsed 
from pixels to states for every month. If multiple storms impact a cell 
within a month, the maximum incidence at the cell level is recorded, 
and monthly averages are computed across pixels in each state. This 
spatial averaging causes our measures of incidence to be substantially 
lower than the maximum sustained wind speed commonly reported for 
storms, since only a small number of pixels experience those extreme 
conditions within each storm. We note that TC events generate the 
highest average state wind speeds compared to wind speeds from 
other intense storm phenomena, such as tornadoes. For reference, 
the minimum monthly state average wind speed we compute from TCs 
in our sample is 3.34 × 10−4 ms−1 and the 1st percentile is 8.4 × 10−3 ms−1. 
By contrast, the maximum monthly state average wind speeds from 
tornadoes in CONUS between 1950 and 2022 is 9.6 × 10−4 ms−1 and the 
99th percentile is 3.8 × 10−5 ms−1, and for non-TC and non-tornado wind/
hail events the maximum is 1.1 × 10−3 ms−1 and the 99th percentile is 
1.3 × 10−4 ms−1. Therefore, the maximum non-TC wind events are com-
parable to the minimum (non-zero) TC events; and absent a TC, states 
do not experience average wind speeds of a similar magnitude as those 
from TCs.

Prior analysis by Hsiang & Jina3 demonstrated that spatial aggregates 
of TC exposure can be used as independent variables in a regression 
framework to obtain unbiased average effects that are expressed at 
finer spatial resolutions (footnote 13 on pages 16–17 of ref. 3). As long 

as there is no systematic correlation between the average intensity of 
a storm and the likelihood that the most intense regions within that 
storm strike the most populated (or economically active or vulner-
able) pixels within a state, regression coefficients will not be biased 
by spatial aggregations. This condition would be violated if, for exam-
ple, there were systematic patterns such that the eyes of a Category 3 
hurricanes tended to pass directly over dense cities, but the eyes of 
Category 2 hurricanes tended to miss cities. However, given that the 
paths of storms are primarily controlled by random steering winds at 
high altitude, interacting with the beta-effect induced by the Earth’s 
meridional vorticity gradient, we have strong reason to believe that 
the spatial distribution of TC incidence within each state is orthogonal 
to the spatial distribution of underlying populations; and further that 
this covariance is independent of average TC intensity. Thus far, we 
know of no evidence that the trajectory of stronger (or weaker) storms 
systematically strike more vulnerable locations on land.

Of the 1,230 TCs that we reconstruct, 501 come within 250 km of 
a CONUS coastline. Intersecting these storms with state boundaries 
generates a total of 3,317 state-by-TC events. These longitudinal data 
reveals rich variation in the timing and intensity of TC incidence for 
individual states52 (Extended Data Fig. 1). Within-state variation in inci-
dence season-to-season and month-to-month provides substantial 
variation in TC impulses that enable us to identify the impulse-response 
of mortality empirically.

All-cause mortality data. We analyse all-cause mortality at the 
state-year-month level between 1930 and 2015 using data from multi-
ple sources. Data from 1900 to 2004 were digitized and assembled by 
Barreca et al.31 in their report identifying the impact of temperature 
on mortality. According to Barreca, this is the most comprehensive 
data on mortality assembled in this context. The remaining data was 
assembled by the authors using the CDC Underlying Cause of Death 
database. Data prior to 1959 was digitized from the Mortality Statistics 
of the United States annual volumes and is not otherwise available in 
a machine-readable format. Therefore, data in years prior to 1959 do 
not include cause of death (for example, cardiovascular disease) or 
demographic information (for example, age 1–44, Black)31. From 1959 
to 2004, the data are from the machine-readable MCOD files, which 
include cause of death and demographic data.

For the years 2005–2015, we analyse mortality data from the public 
CDC Underlying Cause of Death database (2017). The data are based 
on death certificates for U.S. residents, which gives a single underlying 
cause of death and demographic data. Cause of death prior to 2000 was 
indexed using the four-digit ICD-9 code and 2000 onwards the index 
changed to the four-digit ICD-10 code. Cause of death was indexed 
using a four-digit ICD-10 code. We harmonized the cause of death into 
five categories that matched the cause of death variables from Barreca 
et al. We also construct a 6th category which is the difference between 
all-cause mortality and the sum of the 5 cause-specific categories, called 
‘other’. Notably, the change in CDC ICD code methodology resulted in 
a shift in the counts of deaths from specific causes, particularly infec-
tious diseases and cardiovascular disease.

To account for differences in underlying age-specific mortality we 
decomposed the effect of TCs on all-cause mortality by four age groups 
in the data: <1, 1–44, 45–64, and 65+ years of age. We were limited to 
these age groups because these are the designations in our historical 
data. We computed mortality with respect to the underlying popula-
tion by these same four age groups. We compute mortality by race 
with respect to the population by race in each state and year. Black 
and white are the only race categories available for the entire sample. 
Extended Data Fig. 3 shows the monthly all-cause mortality rate, and 
our predicted monthly mortality rate, for all the states in our sample.

Direct deaths from TCs. Direct deaths from TCs are deaths that are 
officially attributed to a storm by the US government. We combine 
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official death counts from two NOAA data sources. For storms between 
1950 and 1996 we use the NOAA National Hurricane Center and Central 
Pacific Hurricane Center’s Hurricane in History6. Storms from 1997 to 
2015 are from the NOAA Storm Events Database7.

Population data. We normalize state mortality by the population (per 
100,000 people) in the state each month. Similar to the all-cause mor-
tality data, these data must be combined from multiple sources. Pre-
1968 population estimates are from Haines57; estimates for 1969–2000 
are from the National Cancer Institute (2008); estimates for 2000–2010 
are from the US Census Bureau, Intercensal Population and Housing 
Unit Estimates: 2000 to 2010 (ref. 58); estimates for 2010–2017 are 
from the US Census Bureau, US Population Estimates59.

Temperature data. Average monthly temperature data are from 
Berkeley Earth Surface Temperatures (BEST) land surface air tem-
perature. BEST provides a monthly mean of average, minimum and 
maximum surface air temperature over land covering 1753 to the 
present56,60. The temperature data are based on a large inventory of 
observations from over 30,000 weather stations. Using these obser-
vations gridded temperature fields are reconstructed statistically, 
incorporating the reliability of individual weather stations and spa-
tial variability of temperature56,60. Gridded BEST temperature data 
are then spatially aggregated, weighted by population, to the state- 
month-level.

Analysis
The econometric approach that we apply here is a top-down strategy, 
commonly called a ‘reduced-form’ analysis, that describes the overall 
net change of an aggregate outcome y (mortality) in response to exog-
enous treatments z (TC incidence). Under suitable conditions, this 
approach can identify causal effects on the outcome y induced by 
exogenous changes in independent variable z without explicitly 
describing all underlying mechanisms that link z to y, without observ-
ing intermediary variables x (for example, retirement savings accounts 
or healthcare infrastructure) that might link z to y, or without explicitly 
tracking other determinants of y unrelated to z (such as demographic 
trends or health policy), denoted w (refs. 23,61,62). Let f(•) describe a 
complex and unobserved process that generates state-level mortality 
rates yt 2

, occurring at time t2 based on x, w and z that occur both at 
times t1 and t2 (t1 < t2):
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ity rates y, at time t1 is itself affected by TCs at time t1. At time t2, xk may 
be influenced both by TCs at t2 and those that occur in the past at t1. 
Here, we let there be K pathways through which y is impacted by inter-
mediary variables (x) and J ways through which determinants unrelated 
to TCs (w) impact y.

In this framework, the direct mortality impact of TC incidence usually 
reported by government agencies are the partial derivative:

direct deaths
y

z
_ =

∂

∂
(2)t

t

t
2

2

2

which are the deaths that occur contemporaneously and directly as a 
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which includes both direct deaths and deaths that result from any of 
the K possible pathways that depend on the intermediate variables xk 
at time t2. Empirically, we find that direct deaths are much smaller than 
indirect deaths in CONUS.

In addition, we also account for the possibility that deaths are delayed 
relative to TC incidence. Because direct deaths are usually tabulated 
immediately following storms, there are negligible direct deaths that 
are delayed. However, once we begin considering indirect deaths, it 
becomes possible for substantial delays to emerge due to the dynam-
ics of different pathways xk. In our analysis, we also estimate the total 
deaths that occur at time t2 as a result of TC incidence that occurs at 
an earlier time t1, which is the total derivative
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This expression does not contain a term for direct deaths, but it con-
tains two summations which capture the effects of past TC incidence 
z( )t 1

 on current mortality y( )t 2
 via past intermediate variables x( )t 1

 and 
current intermediate variables x( )t 2

. In practice, we explore the pos-
sibility of indirect effects that emerge over the course of 240 months 
following TC incidence, one could generalize this framing to a corre-
sponding number of summations.

The possibility of delayed indirect deaths has two major implications 
regarding how indirect mortality is estimated and how those results are 
interpreted. First, because TC incidence at multiple points in the past, 
as well as the present, might affect current mortality, we must account 
for both the present and past influence of TC incidence simultaneously 
for each instance of the outcome. This is accomplished via deconvolu-
tion25–27,56,63,64, implemented here using a distributed lag-model solved 
via ordinary least squares, detailed below.

Second, each TC event affects mortality outcomes at multiple points 
in time, thus computing the full impact of a TC event requires summing 
these impacts that might emerge gradually. In the simplified two-period 
framework above, the total impact from TC incidence at t1 is then
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which can be expanded further by substituting from the equations 
above. These terms, if plotted separately, characterize the impulse 
response of y in reaction to the TC impulse zt 1

. In our actual analysis, 
we compute the average cumulative impact of a single TC that occurs 
at t0 over 240 subsequent months (t1 − t240). Following substitution and 
simplification, this can be expressed as
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which describes the overall total impact of a storm through all path
ways across all possible delays ℓ = [0, 240]. Note that neither K nor xk 
need ever be specified explicitly in our estimation below. This expan-
sion reveals that, accounting for numerous possible pathways operat-
ing over different delays, a single TC event can potentially generate a 
total mortality impact much larger than the direct deaths traditionally 
reported.



To compute the overall mortality burden imposed by the TC cli-
mate of CONUS, we compute the full mortality response across all age 
groups in each state, accounting for the incidence of each storm on the  
state:
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where zsit is the TC incidence of storm s on state i in month t, populationi,t+ℓ 
is the population in state i in month t + ℓ, and mortality rate( _ )z i t ℓ

d
d , +  is 

our estimate for the total impact of TC incidence on the mortality rate 
in state i in month t + ℓ. In practice, this effect is nonlinear, but it is 
expressed linearly here for simplicity. Information on state i affects 
the impulse responses used in these calculations because TC risk is 
computed by state and affects the structure of the impulse-response 
function.

Econometric implementation
Identification. Our econometric analysis exploits the quasi-random 
variation in the location and intensity of TC incidence to estimate 
the impact of TCs on mortality separately from other known and  
unknown factors that affect mortality across locations and over time. 
As described above, this reduced-form approach captures the effect 
of all possible channels of influence that may increase mortality after 
a TC33,65. Because the location, timing and intensity of TC incidence is 
determined by oceanic and atmospheric conditions that are beyond 
the control of individual states, we assume mortality TC incidence is 
as good as randomly assigned23,61. For reference, Extended Data Fig. 1 
shows the sequence of monthly TC incidence by state for all the states 
in our sample.

We note that some early analyses of natural disaster impacts utilized 
social outcomes (for example, direct economic damage66 or direct 
mortality) as a proxy measure of physical hazard severity. However, it is 
now understood that use of these metrics as independent variables may 
confound estimated treatment effects, since they are endogenously 
determined by many of the same underlying covariates (for example, 
healthcare, infrastructure, inequality and institutions) that mediate 
other outcomes from disasters22,29,33–35,67. Thus, use of these proxy meas-
ures for hazard severity exposes analyses to selection biases, since 
population characteristics may cause observational units to ‘select’ 
into more or less severe treatment23. We therefore focus this analysis 
strictly on independent variables that are physical measures of TC 
incidence (wind speed), because they are exogenous and cannot be 
influenced by the populations that are impacted22.

Deconvolution. In considering the long-run impact of TCs on mortal-
ity, we hypothesize that there may be a delay between the geophysical 
event and components of the mortality response. Because TCs are 
regular events that occur frequently in CONUS, the possibility of this 
delay means that the time series of mortality outcomes we observe in 
data may be the result of overlapping responses from multiple storms. 
Extended Data Fig. 2 displays a cartoon of this data-generating process. 
In such a context, the empirical challenge is isolating the impact from 
individual storms which might be partially confounded by the overlap-
ping TC signals from earlier or later storms. We use the well-established 
signal-processing approach of deconvolution25–27,33,63,64 to recover the 
characteristic impulse-response function for a TC impulse. Conceptu-
ally, this approach searches for an impulse-response function that, if 
applied to all TCs in the data simultaneously, best fits the observed 
outcome data. Stated another way, this approach estimates the effect 
of each TC accounting for the potential overlapping impact of all other 
TCs, subject to the constraint that TCs share a characteristic impulse- 
response function.

This method assumes that the overlapping responses influencing 
mortality at a moment in time are additively separable, an assump-
tion that we think is reasonable given the overall small impact that 
any individual storm event has mortality rates at a moment in time in 
a particular region (0.019% on average, 0.04% for storms at the 95th 
percentile). We solve for the structure of the impulse response, char-
acterized by a set of coefficients β, using ordinary least squares (OLS). 
This is a standard procedure that is commonly applied in a wide range 
of disciplines26. In some fields, such as econometrics, deconvolution is 
frequently described as estimation of distributed lags27.

Baseline specification. Our main results are based on a linear model 
of TC incidence on mortality rate. Indexing states by i and month of 
sample by t, we solve the model
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via OLS. Here wind_speedi,t−ℓ is TC maximum wind speed ℓ months prior 
to month t, si is a vector of state-specific dummies, mit are state-by- 
month-of-the-year dummies (for example, an indicator variable for 
whether state = Florida and month = January), ht are month-of-sample 
dummies (for example, an indicator variable for whether the month = 
January, 1974), temp s⋅it i  is month-of-sample temperature interacted 
with state dummies, and temp s⋅it i

2  is squared month-of-sample tem-
perature (also interacted with state). Each coefficient βℓ measures the 
marginal effect of an additional ms−1 of wind speed incidence on mortal-
ity ℓ months after a TC conditional on the effect of any prior TC. We  
include 72 lead terms in equation (8) as a falsification test, also known 
as negative exposure controls, since idiosyncratic future TC incidence 
should not alter current health outcomes.

This model accounts for state-specific quadratic effects of tempera-
ture on mortality based on prior literature, which has shown that very 
hot and very cold temperatures cause higher levels of mortality relative 
to more moderate temperatures31,33–35. Each state is allowed to express 
a different mortality response to temperature extremes, implemented 
via interaction with the state dummy variable si. Supplementary Fig. 6 
shows the state-specific shape of the quadratic functions we estimate 
for the temperature-mortality response. Consistent with prior findings 
studying patterns of adaptation31,33–35, we observe that some states have 
a flatter response at temperatures that are more common for that state 
(for example, cold in Minnesota) while other states have steeper curves 
at those same temperatures if they are less common (for example, 
cold in Florida). In an effort to balance parsimony with model rich-
ness, we omit extended lags of temperature based on prior literature 
demonstrating that impacts on mortality dissipate within a month33,68.

This model also non-parametrically accounts for:
•	 State-by-month-specific constants (fixed effects) that capture aver-

age differences between states, as well as unique seasonable patterns 
within states (μ m⋅ it1 ). These terms will account for differences in 
mortality driven by unobserved factors at the state level, such as 
health policies, as well as factors that cause seasons within a state to 
exhibit higher mortality, such as holidays.

•	 State-specific nonlinear trends in mortality, captured by eighth-order 
polynomials in month-of-sample interacted with state fixed effects 
( η s t∑ ( ⋅ ⋅ )n n i

n
=1

8 ). These trends account for unobserved factors that 
have caused mortality within states to change over time, such as 
changing health policies or demographic trends.

•	 Trends in state-specific seasonal patterns of mortality, captured by 
a linear trend in month-of-sample interacted with state and month 
fixed effects (μ m t⋅ ⋅t2 ). These trends are additive to the state-specific 
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polynomial and allow for the model to express gradual convergence 
or divergence in the seasonality of mortality within a year, and allows 
for these changes to differ by state. These trends account for unob-
served factors that drive gradual changes over time that may cause 
mortality in certain times of year (for example, January) to change 
relative to other times of year (for example, June). For example, if 
adoption of safety standards has reduced wintertime mortality from 
motor vehicle accidents or improvements in medical care have 
reduces summertime deaths from infectious diseases. Extended Data 
Fig. 4a illustrates the combined effect of these state-specific seasonal 
trends, state-specific polynomials, and state-by-month- specific con-
stants on model predictions for Florida and New Jersey. For example, 
the seasonality of mortality in Florida has lessened over time, in con-
junction with other nonlinear trends.

•	 National month-of-sample fixed effects that capture nonlinear and/
or discontinuous changes in mortality rates nation-wide (μ h⋅ t3 ). 
These terms are particularly important for capturing idiosyncratic 
spikes in mortality that result from nation-wide conditions, such as 
influenza outbreaks, as well as any systematic changes in the account-
ing methodology of mortality by the CDC. Comparisons of Extended 
Data Fig. 4b,c illustrates how the inclusion of these terms in the model 
alters the ability of the model to capture unusual spikes in mortality 
that are not captured by other model elements, including the trends 
listed above, TCs, and temperature.

Overall, the fit for this model is high (in-sample adjusted R2 = 0.93 
with 25,062 degrees of freedom). Extended Data Fig. 3 overlays pre-
dictions with observations for all states (same as in Fig. 1c). We find 
that all of the non-parametric controls listed above are important for 
passing standard specification checks. For example, failure to account 
for trends flexibly enough causes estimated leads to deviate from zero 
or randomization-based placebo tests (described below) to recover 
non-zero central estimates. These results are unchanged if we use a 
Poisson regression specification (Extended Data Fig. 6a).

In a robustness test, we interact the month-of-sample fixed effects 
with 3 region indicator variations. We continue to obtain our main 
findings after introducing these additional 2,062 parameters to the 
model, although the estimates become much noisier and attenuate 
slightly. Both of these effects are well understood results of including 
a large number of highly flexible variables that absorb a meaningful 
fraction of the true variation in the independent variable69.

We evaluate the distribution of the unmodelled variation represented 
by the error term ϵit and find that it essentially follows a Normal distri-
bution except with slightly positive kurtosis (Supplementary Fig. 5a). 
The distribution of these residuals appears stationary throughout the 
sample period and independent over time (Supplementary Fig. 5b). 
The consistency of the distribution of these errors is attributed 
to the high degree of flexibility in the non-parametric terms of our 
econometric specification, which are able to capture those compo-
nents of the data-generating process that would otherwise appear as 
auto-correlated errors. On the basis of this evaluation, we construct 
OLS standard-error estimates as the underlying assumptions for these 
estimates appear to be reasonably satisfied. In addition, we find strong 
support for this modelling choice when we conduct a variety of per-
mutation tests for statistical significance (Extended Data Fig. 5), all of 
which indicate that our asymptotic estimates for confidence intervals 
are correctly (and possibly conservatively) sized and our tests for sta-
tistical significance correctly powered. Notably, these permutation 
tests do not rely on the assumptions used to estimate these confidence 
intervals, thus they can be considered independent corroboration for 
the validity of this approach.

Cumulative effects. To compute the total effect after the TC makes 
landfall, we estimate the cumulative sum of βℓ for each ℓ ∈ [−72, 240]. 
We compute βΩ = ∑ℓ k o

ℓ
k= , which denotes the cumulative impact of an 

additional 1 ms−1 wind speed incidence on mortality ℓ months after a 
TC event. We account for the estimated covariance of β when estimat-
ing uncertainty in Ω. We normalize the sums relative to the impact one 
month prior to the TC, ℓ = −1 such that Ω−1 = 0.

Randomization-based placebo tests. Given the complexity of our 
model, the long delays we study, and the absence of prior analyses 
of long-run total mortality from TCs, it is not possible to subjectively 
evaluate our econometric analysis against any prior benchmark. In 
such a context, there is risk of unknowingly recovering a spurious esti-
mate generated as an artefact of our model specification. A strong test  
designed to avoid such artefacts is to ensure that model estimates of 
TC impacts on mortality are unbiased in a variety of situations where 
the structure of the association has been manipulated. In four tests, we 
shuffle the true TC data in different ways. In each case, this shuffling 
should break any correlation between TC incidence and mortality such 
that an unbiased estimate of the effect of shuffled TCs on mortality is 
zero. However, in each case, some of the structure in the original TC 
data are allowed to remain in the shuffled TC data. For example, rand-
omization within a state over time retains the average cross-sectional 
patterns of TC incidence, but destroys any time- series structure. Thus, 
these tests allow us to examine whether, in each case, the remaining 
structure generates artefacts in the model that would produce a spuri-
ous result, also known as a negative exposure control70. Any non-zero 
correlation, on average, would indicate a biased model where the bias 
is driven by the non-randomized components of the original TC data.

Within each type of randomization we scramble TC assignment 1,000 
times and run the linear version of the model (equation (8)) on each 
re-sampled version of the data. Our four randomizations are illustrated 
graphically in Supplementary Fig. 7 and described below:
•	 Total randomization shuffles TC events across all state-by-month 

observations. This tests whether the unconditional marginal distri-
bution of TC events, which has a long right tail, could generate bias. 
Results are shown by light blue boxes in Fig. 1g.

•	 Within-state randomization shuffles the sequencing of TCs that a 
state experiences over time. TCs are always assigned to the correct 
state, but the month and year assigned to each storm is random. The 
cross-sectional average pattern of storm incidence is preserved in the 
data. Thus, this tests whether time-invariant cross-sectional patterns 
across states generate spurious correlations. Results are shown by 
dark blue boxes in Fig. 1g.

•	 Within-month randomization shuffles the TC incidence across states 
within each month-of-sample. TCs are always assigned to the correct 
month and year, but the state assigned to each storm is random. The 
average time-series structure of TC incidence nation-wide is pre-
served. Thus, this tests whether national or seasonal trends, which 
are nonlinear, could bias estimates produced by this model. Results 
are shown by maroon boxes in Fig. 1g.

•	 Across-state shuffles complete TC times-series across states, keep-
ing the timing and sequence of storms correct as blocks. TCs are 
always assigned to the correct month and year, and the sequence 
of storms experienced by a state is always a continuous sequence 
that is observed in the data. However, the state that is assigned that 
sequence is randomly chosen. This tests whether trends within a state 
and within the sequence of storms that a state experiences could 
generate bias. This test differs from the within month randomization 
because state-level trends often differ across states (see Extended 
Data Fig. 1 and Extended Data Fig. 3) and there are complex seasonal 
patterns that could potentially affect estimates. Results are shown 
by red boxes in Fig. 1g.

The estimated impact of TCs in each of these placebo tests is zero on 
average, to within a high degree of precision. Extended Data Fig. 5 illus-
trates distributions of estimates for all lags. These results demonstrate 
that non-exchangeability across states within a month, across months 



within a state, or across states (conditional on month of sample) does 
not confound our analysis; indicating that the rich set of fixed effects 
and trends successfully adjust for many patterns of TC incidence and/
or mortality such that the remaining conditional variation is as good 
as random.

Permutation tests for statistical significance. In addition to establish-
ing the unbiasedness of our main point estimates, the four randomiza-
tions above can be utilized to serve a second function: estimating 
statistical significance of our estimates. These randomizations enable 
approximate permutation tests71, allowing for different types of auto-
correlation to remain in the TC data. We use these randomizations to 
examine the likelihood of randomly obtaining an entire impulse- 
response function similar our actual estimate, if in reality no such  
relationship exists in the data. To do this, we jointly test the significance 
of all true cumulative estimates Ωℓ against the null hypothesis that a 
similarly extreme sequence of estimates is generated randomly.  
Extended Data Fig. 5 overlays the true estimates for Ωℓ on distributions  
of similar estimates from each randomization. P values for indivi
dual lag terms ∣ ∣ ∣ ∣p( = Pr( Ω > Ω ))ℓ ℓ ℓ

randomized  are plotted in the right sub
panels and are all individually statistically significant (P < 0.05) for  
ℓ < 150 months in each randomization. However, the significance  
of the complete sequence of coefficients that together compose the 
entire impulse-response function is far greater. We compute a joint  
P value for the full impulse response between 0 and 172 months 

∣ ∣ ∣ ∣∩p( = Pr( ( Ω > Ω ))ℓ ℓ ℓ ℓ=0
172 randomized  that ranges from P = 0.012 to P =  

0.0012 across the randomization approaches (Extended Data Fig. 5). 
We conclude that it would be extremely unlikely to obtain an impulse- 
response function as extreme as our main result due to chance.

Subsamples by age, race and cause of death. In addition to the 
all-cause mortality rate for the entire population, we also present the re-
sults stratified by age, race, and cause of death. For the six cause-specific 
mortality rates we compute mortality per 100,000 of the total popu-
lation in that state in the time period (for example, total number of 
deaths from cardiovascular disease divided by total population times 
100,000). ‘Other’ mortality is the difference between the total deaths 
and the sum of all the other causes. For age groups and race we report 
mortality risk as the outcome of interest. For example, for the Black 
population, we construct the mortality rate for Black people as the 
number of deaths of Black people in the state divided by the Black 
population. We do the same procedure by age group. We also report the 
mortality by these strata as a proportion of the total deaths traceable 
to TC incidence, see Extended Data Fig. 7.

Subsamples by average TC risk. To evaluate whether there is hetero-
geneity in the mortality response of states that are frequently exposed 
to TCs compared to those infrequently exposed, we stratify the sample 
by the average TC incidence they experience. We allow the mortality 
impulse response to differ based on quartiles of states, sorted by their 
average TC incidence. We implement this by including and interaction 
with an indicator variable for the quartile of their average wind speed 
incidence, following the general approach for modelling adaptation 
developed in refs. 29,33. Average wind incidence is a measure of the 
expected TC risk a population bears, which informs preventive risk 
reduction investments, behaviours, or other adaptive actions they take 
to reduce the expected harm from TCs. We approximate this measure 
by computing as the mean wind speed in each state i across the period 
t in our sample

wind speed
wind speed

_ =
∑ _

1,032i
t it=1
1,032

and assigning the quartiles of these means to each state. We estimate a 
model that allows each quartile to express a different impulse response 

to TCs and observe little difference in the impact of TCs on mortality 
between the second through fourth quartile (Extended Data Fig. 6c). 
The effect for the second through fourth quartile are not statistically 
significantly different than the effect for the second through fourth 
quartile, combined (P = 0.38). Thus, to improve the efficiency of our 
model and limit unnecessary noise in our estimates, we pool quartiles 
2–4 to create the ‘high average incidence’ group in the main results 
(shown in Fig. 2f) (‘high incidence’ in equation (9)). The ‘low average 
incidence’ group is the first quartile of average wind speed alone (‘low 
incidence’ in equation (9)). We additionally evaluate whether the spatial 
distribution of populations relative to the coast, within states, alters 
the mortality response to TCs. Stratifying states on the basis of the 
average fraction of the population that lives in coastal counties, we 
fail to find evidence that states with high concentrations of coastal 
populations are systematically different from states with little or no 
coastal population (Extended Data Fig. 6d). Lastly, we evaluate whether 
the overall spatial correlation between populations and average wind 
speed incidence, within each state, alters the mortality response to TCs. 
Stratifying states on the basis of within-state spatial correlation across 
0.125° × 0.125° pixels, we fail to find evidence that states with higher 
spatial correlations are systematically different from states with little 
or negative correlations (Extended Data Fig. 6e).

Nonlinear effects of TCs. We evaluate whether the mortality impact of 
a TC is nonlinear in the physical intensity of the event. This could occur, 
for example, if more extreme TC events generate exponentially more 
physical damage51,72 or if they elicit different government responses18,73. 
Empirically, we find that excess mortality 180 months after a TC is well 
approximated by a linear function of max wind incidence, particularly 
for TCs with area-average max wind speeds between 0 and 20 ms−1, 
which is the majority of events (93%) in our sample (Extended Data 
Fig. 8). However, for the most extreme events (>30 ms−1, 1.4% of events) 
we find that excess mortality is generally lower than a linear function 
would predict, although these nonlinear effects are not themselves 
statistically significant. We lack the data to fully evaluate the underly-
ing causes of this nonlinearity, but believe it is an important topic for 
future study. For example, it is possible that societal responses to the 
most extreme events (for example, disaster relief) are more effective 
at alleviating mortality impacts of TCs because these events attract 
a disproportionate quantity of attention, compared to less extreme 
events that are also harmful but less salient74. Regardless of their cause, 
we account for these non-linearities in calculations below as they contain 
information on how populations in CONUS have adapted to their TC  
climates5,73.

To estimate nonlinear effects of TCs, we estimate a model that is 
identical to the benchmark linear model in equation (1), but it allows the 
magnitude of the TC mortality impulse-response function to be cubic 
in TC incidence. The motivation for this approach is the possibility that 
the relationships between wind speed and long-run mortality does 
not increase linearly. For example, very high wind speeds may cause 
extreme damages and/or elicit greater governmental and humanitarian 
responses, which would mean that a unit of increase from 40 to 41 ms−1 
wind speed may have a larger or small mortality impact compared to 
an increase from 5 to 6 ms−1. Since the nonlinear impact of TCs may 
be influenced by the historical TC experience and baseline TC risk of 
populations, this model also allows for the nonlinear response to differ 
based on the risk categorization for each state:

∑ ∑

mortality rate

θ wind speed Q

θ wind speed Q

controls ϵ

_ =

( ⋅ _ ⋅

+ ⋅ _ ⋅ )

+ +

(9)

it

ℓ r
r ℓ
low incidence

i t ℓ
r

i
low incidence

r ℓ
high incidence

i t ℓ
r

i
high incidence

it

=−72

240

=1

3

,
_

, −
_

,
_

, −
_



Article
where r indicates an exponent and the controls are identical to those 
in equation (8). Qi

low incidence_  (Qi
high incidence_ ) is an indicator variable that 

is set to one if state i is in the low incidence (high incidence) group. The 
coefficients θ1ℓ, θ2ℓ and θ3ℓ separately capture the cubic relationship 
between wind speed incidence and mortality for low and high-risk 
states in each lag period. Extended Data Fig. 8 displays the cumulative 
impact estimated using both the linear and nonlinear models after 180 
months. These results are unchanged if we alternatively use a cubic 
spline regression specification (Extended Data Fig. 8). The low-risk 
response is slightly convex relative to the linear estimate, while the 
high-risk response is slightly concave. In both cases, impacts are rela-
tively well approximated by the linear version of the model and only 
diverge (insignificantly) at very high levels of incidence that are rare 
in sample. Distributions for in sample frequency are shown in lower 
panels of Extended Data Fig. 8.

Computing mortality burdens. The total impacts of all TCs on mortal-
ity are estimated using each version of the model, presented in Sup-
plementary Table 1. We compute the excess mortality from TCs by 
state, month, and TC. These estimates are presented in Figs. 3 and 4 
and Supplementary Tables 1 and 2.

Figure 4 displays the estimated excess mortality from TCs by state, 
age and race, computed using equation (8) applied to equation (7). 
Figure 4a presents our estimated full TC mortality burden, similar to 
equation (7) but by state (mortality_burdenit) as an average proportion 
of total deaths (mortalityit) in each state between 1950 and 2015:

proportion
mortality burden

mortality
=

∑ _
∑i

t it

t it

∈month

∈month

Similarly, we estimate the proportion by state and age group 
(proportioni,a), shown in Fig. 4d,f. Proportion and total excess mor
tality for the Black population is based on mortality burden estima
ted with the mortality risk for the Black population, therefore 
proportion =Black

mortality burden

mortality

∑ ∑ _

∑ ∑
t i it

t i it

∈month ∈state ,Black

∈month ∈state ,Black
.

Figure 4g illustrates the impact of the TC climate on the geographic 
differences in average annual all-cause mortality rate between states 
that do not experience TCs (‘non-TC states’) and states that do  
(‘TC states (actual)’), in this context. We also subtract the average  
annual TC mortality burden from the actual average annual mortality 
for each TC-impacted state (‘TC states without TCs’).

Decomposing trends in mortality burden. We examine the differ-
ences in TC events and population distribution before 2001 and after 
2001 in order to understand why the mortality burden after 2001 is 
increasing more rapidly than it did before 2001 (Fig. 4h–j). Figure 4h 
shows the distribution of the number of TCs that made landfall each 
year before 2001 and after 2001. Similarly, Fig. 4i shows the maximum 
annual wind speed per year and Fig. 4j plots the average wind speed 
per year as experienced by a proportion of the CONUS population. 
The changes in the distribution of TC events affecting CONUS after 
2001 were themselves probably caused by a combination of factors, 
including warmer sea surface temperatures11,75 and reductions of an-
thropogenic aerosol emissions76,77 (which create an environment more 
amenable to TC intensification); and shifts in steering winds78 (which 
direct a larger fraction of TCs to landfall in CONUS after formation). 
We note that identifying factors driving the TC climate remains an 
active area of research56,79.

To understand the 1950 to 2015 trend in the national aggregate mor-
tality burden, we re-estimate mortality_burdent for each month of the 
sample with different populations to decompose the long-term trend 
based on various population patterns. We first replace populationi,t+ℓ 
from equation (7) with fixed 1950 or 2015 populations (Fig. 4k, red 
and maroon lines). To generate the yellow line in Fig. 4k, we replace 
populationi,t+ℓ with an estimate of the 2015 population ‘deflated’ to  

1950 levels. Specifically, we first compute a national population defla-
tion fraction,

population population

population
∆ =

∑ − ∑

∑
i i i i

i i

∈state ,2015 ∈state ,1950

∈state ,1950

where populationi,2015 is the state-specific population in 2015 and  
populationi,1950 is the state population in 1950. We then calculate

deflated population
population

_ =
∑

1 + ∆i

i i
,2015

∈state ,2015

and apply deflated_populationi,2015 to equation (7). This value is an 
adjusted state-level population that allows the total national popula-
tion to match 1950 level but have a relative spatial distribution that 
reflects 2015.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data are available for download at Zenodo (https://zenodo.org/ 
uploads/10459719 (ref. 80)). The full data processing code is not 
included but the collected full dataset needed for the main analysis 
(Figs. 1–4) is provided in the file DATA_hurricane_mortality_temp_ 
month_state_19302015.dta. This includes the matched LICRICE- 
generated TC wind speed and the all-cause mortality data from the CDC 
Mortality Statistics of the United States annual volumes, the MCOD files 
and Underlying Cause of Death database; the population data from the 
Inter-university Consortium for Political and Social Research and the 
US Census Bureau, Intercensal Population and Housing Unit Estimates; 
and the temperature data from BEST. We also provide additional data-
sets required for the supplementary information and for plotting the 
maps, which are described in the ReadMe file.

Code availability
Code used in our analyses is available in an open-source repository and 
includes a ReadMe file describing the code and data: https://github.
com/Global-Policy-Lab/young_hsiang_tc_mortality.git.
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Extended Data Fig. 1 | State monthly maximum wind speed from tropical cyclones. LICRICE modeled monthly maximum wind speed from tropical cyclones 
between 1930 and 2015. State tropical cyclone wind speeds are averages across pixels.



Extended Data Fig. 2 | Breaking down the effect of tropical cyclones on 
mortality into analytical components. (a) mapping a sequence of tropical 
cyclone wind speed incidences (an “impulse” modeled as Dirac delta functions). 
(b) Each impulse has an underlying, unobserved, response function (“impulse 

response”). (c) Superposition of overlapping impulse responses over time.  
(d) Observed envelope of the overlapping impulse responses, used to estimate 
the average impulse response function (see Methods).
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Extended Data Fig. 3 | State monthly all-cause mortality rate. Monthly state all-cause mortality rate (per 100,000) between 1950–2015 (orange line) and 
predicted mortality rate from Eq. 7 (red dots).



Extended Data Fig. 4 | Examining model fit with fixed-effects, time trends, 
tropical cyclones, and temperature. All cause monthly mortality observations,  
per 100,000, (grey line) and predicted excess all cause monthly mortality 
(black dots), in Florida and New Jersey. (a) predictions estimated from a model 
with eighth-order polynomial state- specific trend, linear month-by-state 

trend, and state-specific seasonality. (b) Predictions including elements in  
(a) plus quadratic temperature and linear wind speed effects. (c) predictions 
including elements in (b) and month of sample fixed-effects, equivalent to Eq. 7 
(see Methods).
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Extended Data Fig. 5 | Randomization-based placebo tests and permutation 
tests. In left panels are true estimates for Ωℓ (black line), plus quartiles and  
1st, 2nd, 5th, 10th, 90th, 95th, 98th, 99th percentile of randomized estimates, 
Ωrandomized, (grey shaded plumes) for each of the four randomizations described 

in the main text and illustrated in Fig. SI7. P-values (pℓ) for individual lag terms in 
right panels are for a two-sided joint permutation tests of the cumulative effect 
accounting for estimated parameter covariances (see Methods).



0

2

4

6

0 24 48 72 96 120144168192216240
Months Since Tropical Cyclone

Poisson model

Linear model

Population weighted

Regional controls

95% CI

0

2

4

6

8

0 24 48 72 96 120144168192216240
Months Since Tropical Cyclone

95% CI

Linear model

1952-1973
1974-1994
1995-2015

0

5

10

15

0 24 48 72 96 120144168192216240
Months Since Tropical Cyclone

Pooled CI Pooled 2-4

1 quartile 2 quartile

3 quartile 4 quartile

0

1

2

3

4

5

0 24 48 72 96 120144168192216240
Months Since Tropical Cyclone

Linear model

1 & 2 quartile coastal

3 quartile coastal

4 quartile coastal

0

1

2

3

4

5

0 24 48 72 96 120144168192216240
Months Since Tropical Cyclone

Linear model

Below median

Above median

C
um

ul
at

iv
e

Al
l C

au
se

 M
or

ta
lit

y
 (p

er
 1

00
,0

00
 p

er
 m

/s
)

C
um

ul
at

iv
e

Al
l C

au
se

 M
or

ta
lit

y
 (p

er
 1

00
,0

00
 p

er
 m

/s
)

C
um

ul
at

iv
e

Al
l C

au
se

 M
or

ta
lit

y
 (p

er
 1

00
,0

00
 p

er
 m

/s
)

C
um

ul
at

iv
e

Al
l C

au
se

 M
or

ta
lit

y
 (p

er
 1

00
,0

00
 p

er
 m

/s
)

a b

c d

C
um

ul
at

iv
e

Al
l C

au
se

 M
or

ta
lit

y
 (p

er
 1

00
,0

00
 p

er
 m

/s
)

e

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Excess mortality following a tropical cyclone, 
adjusting for population, model specification, changes over time, average 
wind speed, and coastal population density. (a-c) Estimated cumulative 
excess all-cause mortality and 95% C.I. (a) Red = cumulative effect; blue line = 
cumulative effect using state population as regression weights; green line = 
cumulative effect including regional month of sample fixed effects; gray dashed 
line = cumulative effect using Poisson model specification. (b) Solid black line = 
cumulative effect, equal to Fig. 2b; dashed lines splits the effect by 3 time period 
trends (1952–1973, 1974–1994, and 199–2015). (c) average TC incidence: Red  

line = low average incidence, first quartile of states with non-zero average TC 
incidence (equivalent to Fig. 2f). Blue shade lines = 2nd through 4th quartile 
state average TC incidence. Black line = high average incidence combined effect 
of the three upper quartiles with 95% C.I. shaded (same as in to Fig. 2f). (d) average 
fraction of state population in coastal county: purple shade lines 1st through 
4th quartiles, 1st and 2nd quartile combined. Solid black line = cumulative 
effect, and 95% C.I. shaded. (e) within-state correlation between population 
density and wind speed incidence: light orange below median and dark orange 
above median. Solid black line = cumulative effect and 95% C.I. shaded.



Extended Data Fig. 7 | Stacked cumulative mortality by demographic groups. (a) Stacks the cumulative effect of a tropical cyclone on all-cause mortality 
where each wedge corresponds to the effect for a specific age group. (b) The stacked summed effect for black and white individuals (all ages).
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Extended Data Fig. 8 | Excess mortality as a cubic function of wind speed. 
TC mortality impulse response function is cubic in TC incidence in high and low 
average TC incidence states. Top row, light grey lines are effects as a function of 
wind speed (ms−1) at ℓ = 180, with 95% C.I. shaded. Dark grey lines are the same 

but with TC-mortality impulse response function is linear in TC incidence. 
Dashed lines are response functions from a cubic spline version of the model. 
The bottom row are kernel density plots of the TC incidence wind speeds in  
the low and high average incidence states.



Extended Data Table 1 | Mortality burden estimated with nine models

Total mortality burden (mortality_burden, see equation (6)), from all TCs across all states from 1950–2015, estimated with TC-mortality impulse response function linear, quadratic, and cubic, 
and with low and high average TC incidence states. The excess mortality calculations for each version of the model is presented in each column. “Linear” = excess mortality estimated with 
TC-mortality impulse response function linear in TC incidence, Eq. 7. “Cubic Adaptation with 2 groups” = excess mortality estimated with TC-mortality impulse response function cubic in TC 
incidence with high and low average incidence states, Eq. 8. “Official Direct Deaths” = Direct deaths from TCs are deaths that are officially attributed to a storm by the US government (see Data). 

= ∑ ∈ ∑ ∈
“Percent of Total Deaths” mortality burden

i states t monthsall cause mortalityit

_
_ _

. = ∑ ∈
“Average Deaths/Month” mortality burden

t monthst
_ . = ∑ ∈

“Average Deaths per Storm” mortality_burden
s stormss

.
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Extended Data Table 2 | Mortality burden by demographic groups

Total mortality burden from all TCs across all states from 1960–2015, estimated with TC-mortality impulse response function linear in TC incidence, by age group and race (mortality_burdena 
and mortality_burdenrace, where race ∈ [Black, white]). = ∑ ∈ ∑ ∈

“Percent of Total Deaths” mortality burdena
i states t monthsall cause mortalityit a

_
_ _ ,

. = ∑ ∈
“Average Deaths/month” mortality burdena

monthst
_

t
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Code was not used to collect data for the study.

Data analysis Stata 14, Matlab 2019a, R 4.2.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data is available for download here: https://zenodo.org/uploads/10459719.  
 
The full data processing code is not included but the collected full data set needed for the main analysis (figures 1-4) is provided in 
DATA_hurricane_mortality_temp_month_state_19302015.dta }. This includes the matched LICRICE generated TC wind speed and pddi; the all-cause mortality data 
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from the Center for Disease Control and Prevention (CDC) Mortality Statistics of the United States annual volumes, the Multiple Cause of Death (MCOD) files, and 
Underlying Cause of Death database; the population data from the Inter-university Consortium for Political and Social Research and the US Census Bureau, 
Intercensal Population and Housing Unit Estimates; and the temperature data from the Berkeley Earth Surface Temperatures (BEST). 
 
We also provide the follow datasets required for the analysis: 
 
- Shapefiles of the U.S. states : cb_2016_us_state_20m 
- LICRICE generated TC wind speed and pddi by state and month : panel_by_storm__NA_USA_density_8_yr_1930_2018.csv  
- NOAA TC direct deaths : directdeaths.csv 
- Nordhaus TC damages and LICRICE, national : nordhaus_LICRICE_USA_merged.dta 
- TC rainfall data : rainfall_idw_state_storm.csv 
- CDC mortality data for all states : mortality_19002015.dta (needed for SI figures) 
- Counties on the coastline : coastline-counties-list.xlsx (needed for SI figures) 
- County population by age : us.1969_2020.19ages.adjusted.txt (needed for SI figures) 
- List of TC names : storm_list.txt 
- Wind speed and population by pixel : wind_state_pop_export.csv (needed for Figure SI13e) 
- LICRICE all storms pixel-level : NA_USA_density_8_yr_1930_2018_storm_specific.mat (needed for Figure SI6) 
- Shapefile of US states : plotting_maps/s_11au16/s_11au16.shp (needed for Figure SI1) 
- Hurricane direct death data : directdeaths.csv (needed for Figure 3) 
- TC unique serial number and storm name : storm_id_name_raw.mat (needed for Figure 3) 
- TC unique serial number : stormnamelist.mat (needed for Figure 3) 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Information on sex and gender were unavailable for analysis.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

In one of our analyses, we stratify the sample based on whether individuals are identified as "Black" or "White", excluding 
other races, because these two categories are the only consistent categories available in our sample. These are recorded in 
administrative data maintained by the US Centers for Disease Control.

Population characteristics See above

Recruitment No recruitment was done for the study

Ethics oversight We received a waiver from the UC Berkeley IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative analysis of longitudinal administrative data combined with reconstructions of physical geophysical events.

Research sample Sample is representative of the contiguous United States because it includes all individuals living in the contiguous United States 
during 1930-2015. We chose this study sample because of data availability. Detailed all-cause mortality data is not available for this 
sample period outside of the United States. All cause mortality data was collected from the Center for Disease Control and 
Prevention (CDC) Mortality Statistics of the United States annual volumes, the Multiple Cause of Death (MCOD) files, and Underlying 
Cause of Death database (2017). State population data was combined from Inter-university Consortium for Political and Social 
Research and the US Census Bureau, Intercensal Population and Housing Unit Estimates.

Sampling strategy Our sample is comprehensive administrative data, representing the universe of recorded deaths in the contiguous United States 
during the period of study. We included data from 1930-2015 because it was all of the publicly available digitized data. This long time 
period allows us to estimate the lagged effects for 20 years after a TC.

Data collection Administrative data on all-cause mortality and population is collected by local, state, and federal government agencies. The data 
collection did not involved experimental conditions or a study hypothesis.
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Timing Monthly data during 1930-2015.

Data exclusions No data is excluded.

Non-participation No participants were involved in the study.

Randomization The research design assumes that the timing and intensity of tropical cyclone incidence within a given location is as good as randomly 
assigned to populations. All quasi-experimental comparisons are within a population over time and outcomes are not compared 
across locations.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Animals and other organisms
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Dual use research of concern

Plants

Methods
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MRI-based neuroimaging

Novel plant genotypes n/a

Seed stocks n/a

Authentication n/a
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