UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning Strategic Concepts from Experience: A Seven-Stage Process

Permalink
@s://escholarship.org[uc/item/3gg;9885|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Author
Freed, Michael

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3qq19885
https://escholarship.org
http://www.cdlib.org/

Learning Strategic Concepts from Experience:
A Seven-Stage Process

Michael Freed
Northwestern University
The Institute for the Learning Sciences
Evanston, Illinois 60201

Abstract

One way novices improve their skill is by learning
not to repeat mistakes. Often this requires learn-
ing entirely new concepts which must be opera-
tionalized for use in plans. We model this learn-
ing process in seven stages, starting with the
generation of expectations which, when proven
faulty, invoke mechanisms to modify decision-
making mechanisms in order to prevent the fail-
ure from occurring again. This process is demon-
strated in the context of our testbed system which
learns new rules for detecting threats, formulat-
ing counterplans and other cognitive tasks. It is
shown how this process may be used to learn the
concept of tmmobility as it occurs in the domain
of chess.

Novice Acquisition of Strategic
Concepts

Some of the concepts needed to successfully practice
a skill will be unknown to a novice when beginning to
learn the skill. A novice basketball player, for instance,
will be made aware of the concept of scoring a basket
in the course of learning the rules of the game. How-
ever, the concept of a fake, in which a player pretends
to go one way but actually goes another, may not be
evident unless the player is told about it or experiences
it first hand!. Novices advance their level of skill by
discovering such concepts and using them in plans.
One way human novices improve their abilities is by
learning not to repeat mistakes. A novice basketball
player with the job of preventing an opponent with the
ball from moving past him might believe that his oppo-
nent’s leftward glance indicates imminent travel in that
direction. In anticipation, the novice player may go left
to block his opponent’s motion. However, the oppo-
nent may look left and then go right, employing a fake

!Concepts may also be imported from other domains
(see e.g. Collins and Birnbaum, 1988). The fake, for
instance, may be learned from experience with almost any
sport.

132

to get past. The novice’s mistake stems from an other-
wise plausible assumption: namely that the direction
of an opponent’s gaze is predictive of the opponent’s
direction of motion. This assumption makes the novice
vulnerable to a fake.

An approach to learning from failures

We have been exploring an approach to these prob-
lems in a system that learns to improve its chess play-
ing abilities (see, e.g., Collins, Birnbaum and Krul-
wich, 1989; Birnbaum, Collins, Freed and Krulwich,
1990). The system learns when expectations about
events in a chess game prove faulty. For example,
the system expects to be able to block all capture-
threats to pieces. If the opponent captures a piece, the
expectation fails. Expectations are justified by a set of
assumptions about what can and cannot happen in the
domain and about what the system will do to insure
that expectations succeed. Often, an expectation will
fail because an opponent employs some tactic which
the system was unaware of and which was therefore
not accounted for by the assumptions underlying the
expectation.

An expectation’s justification makes assumptions
not only about the ‘physics’ of the domain but also
about the decision-making process employed by the
planner (Birnbaum, Collins, Freed, Krulwich, 1990).
For instance, the expectation that all threats against
pieces will be blocked is justified in part by the assump-
tion that all threats will be detected. Decision-making
in our system is performed by a set of components,
each designed to perform some domain-independent
task such as detecting threats or formulating counter-
plans. Components are implemented as sets of rules
which provide different methods for achieving the com-
ponent’s purpose. Learning to improve performance
involves adding to or altering the set of rules in one or
more of these components.

Case Study: The Pin

In the course of learning chess, novice players are
almost invariably victimized by the pin which is a con-
figuration of pieces achieved by positioning one piece

Figure 1: The pin: computer (black) to move at time £,

on a line of attack that includes two opposing pieces
so that the closer of the two pieces cannot be moved
without exposing the other piece to the threat of immi-
nent capture. In figure 1 at tp, white’s bishop is pin-
ning black’s knight; moving the knight would allow
black’s queen to be captured. In effect, the knight
1s immobilized — not because the rules of the game
prevent movement, but because the consequent loss of
the queen 1s undesirable. The opponent can exploit
this situation in several ways; the simplest is to attack
the immobilized knight. The player is then left in the
position of choosing between leaving the pinned knight
in place and allowing it to be captured, or moving it
away, thereby permitting capture of the queen.

Not knowing about the pin tactic or how a pin
might be exploited by the opponent, the computer
might decide to advance its pawn at t; reasoning that
there are no particularly dangerous threats or appeal-
ing opportunites and that advancing the pawn might
pay off in the future. In coming to this conclusion
the system looks at several moves including using the
knight to capture the rightmost pawn. This move is
rejected because it would expose the queen to attack
from the opponent’s bishop. In rejecting the pawn cap-
ture, the computer has noted the role of its knight
in protecting the queen and has effectively commit-
ted itself to keeping the knight immobile. However,
it does not yet construe this situation as a threat or
have even implicit knowledge of the tactical concept of
a pin. The opponent is in a position to exploit this
situation by advancing its pawn to attack the knight.
It does so after t;, leaving the system in a double bind
— i.e. asituation in which all plans to prevent one loss
are mutually exclusive with plans to prevent the other
loss. Since the queen is more valuable the computer
decides to sacrifice the knight.

Learning a New Strategic Concept

In our model of the learning process, a strategic con-
cept is discovered and operationalized following the
failure of an expectation (see, e.g. Birnbaum, Collins,

133

Krulwich 1989; Birnbaum, Collins, Freed, Krulwich,
1990). This process can be decomposed into a series
of steps as summarized in figure 2, each of which will
be described following an abbreviated account of how
this process is used to learn about pins.

Before encountering the scenario of figure 1, the sys-
tem prepares to learn by deciding what to expect and
how often to check whether its expectations are true.
In particular, it decides to have the expecation that
all capture threats against its pieces will be blocked
and to monitor this expectation by checking it after
every opponent move. When the opponent takes the
computer’s knight after t3, the computer’s expecta-
tion monitor signals a failure immediately afterward
at t4. The signalled failure invokes diagnostic machin-
ery which examines the computer’s last few moves in
search of an alternative move which would have avoid-
ed the loss of the knight (or anything worse). It dis-
covers that advancing its pawn at {; was a mistake; if
it had moved its queen out of the bishops’s path at g,
no pieces would have been captured.

Having identified a better action, the system uses its
explicit model of the decision-making process to deter-
mine which component must be modified to allow the

Generate expectation
Note an expectation-failure

Determine what action or inaction caused the failure

s 0 o s

Determine what bad underlying decision(s) led to the
faulty action

5. Generate one or more candidate modifications for pre-
venting recurrence of the failure

6. Select the best modification

7. Inductively merge with similar modifications

Figure 2: Seven-stage failure-driven learning process

planner to make the better move in similar circum-
stances in the future. Put another way, the diagnostic
machinery determines which component of the planner
is to blame for making the wrong move. The under-
lying cause is found to be the threat-detection com-
ponent’s failure to construe a certain configuration of
pieces (the pin) as a threat. To prevent this failure
in the future, a rule which identifies such a configu-
ration as a threat is generated and then added to the
threat-detection component?.

Generating expectations

Expectations are explicitly represented beliefs about
what will or will not occur. When an expectation fails,
i.e. when the belief is demonstrably in error, the sys-
tem invokes learning machinery to prevent recurrence
of the failure®. For novices, it is worth asking how
the initial set of expectations is arrived at. One way
to learn which expectations to monitor is to be told.
Since all initial expectations are entered by hand, our
system learns what to monitor in essentially this way.
Another way is to generate them automatically (Doyle,
Atkinson and Doshi, 1986). Automatic generation of
expectations should accompany the generation of new
goals? For example, in learning to detect and avoid
pins, the system should also learn to expect to avoid
being pinned. The new expectation provides a basis
for future learning.

Notice an expectation failure

Having generated a set of expectations, the system
must devote resources to monitoring these expecta-
tions and detecting when they fail. If the system has
a lot of expectations and checks them frequently, look-
ing for failures can be very costly., Therefore decisions
must be made about which expectations to monitor
and when.

Many factors constrain the set of expectations which
can profitably be monitored at any particular time.
Clearly irrelevant expectations such as those used
exclusively in one domain — say checkers — can not be
profitably monitored while engaged in another domain
such as chess. Even within a domain, the best time
to monitor an expecation will vary. For instance,

2A<;lua.lly, many components besides the threat-
detection component should be modified as a result of
learning about pins. For examﬁle the counterplanning
component will be modified so that detected pin-threats
can be avoided. Other modifications cause pin-avoidance

lans to be ranked against other plans, pinning plans to

e emﬁloyed tactically against opponents and expectations
that the computer will not get pinned to be generated. The
need to separate planning knowledge among components
in this way is discussed in (Collins, Birnbaum, Krulwich,
Freed, 1991)

3 Alternately, the system may learn that an expectation
is unrealistic in some respect and modify it (Krulwich, Birn-
baum, Collins, 1988).

_ '"Expectations are generated by inferentially determin-
ing which observable events indicate the success or failure
of achievable goals.

134

the expectation in our chess-playing planner that all
capture-threats will be blocked is monitored by check-
ing it after each opponent move; an expectation that
a plan will prove workable should be monitored during
the plan evaluation process.

Determining what action or inaction
caused the failure

When an expectation-failure is detected, the learn-
ing machinery is invoked to diagnose the problem and
repair the system. The first step in diagnosis is deter-
mining which executed action led to the failure. Locat-
ing this action is a matter of searching backward from
the time of the failure for a time when the system had
an alternative which, if taken, would have prevented
the failure and would not have led to an equally bad
or worse failure (ef. Minton, 1985).

Let us consider the pin example once again. At t4 the
expectation failure is noticed and the search for a faulty
action begins. The search proceeds by examining the
system’s opportunites to act in reverse temporal order,
starting with the time of the failure. The most recent
opportunity to act before t4 occurred at {5, when the
planner advanced its pawn. At this point, the system
could have saved the knight and prevented the failure
by movingit away from the attacking bishop and pawn,
but this move would have been a poor choice since
it would have exposed the queen and led to the even
worse failure. At t5, the computer was in a double bind
— nothing could have prevented the loss of a piece.

The search continues until an opportunity to pre-
vent the failure is found in which no double bind would
negate the value of preventive action. At tg, the sys-
tem could have prevented the failure by moving its
queen 2 spaces to the left, thereby defusing the pin
and maintaining the guard on its knight. This would
have prevented any expectation failure from occurring;
therefore the action taken at this time is blamed for the
failure.

This method of locating failure-producing actions
is adequate for the simple turn-taking games we are
studying. Similar methods have been proposed by
Minton (1985) for learning about the fork and by
Utgoff (1983) for constraint back-propogation.

Determining which component caused the
failure

Every action in our system is the product of deci-
sions made by components of the system’s planner.
One component is responsible for detecting threats and
opportunities to achieve the system’s goals. Another is
responsible for formulating plans, another for compar-
ing candidate plans to determine which is best. Qur
current formulation of the planning process includes
22 classes of decision and therefore 22 distinct plan-
ning components (Freed, 1991). When a faulty action
is made, one or more of these components is responsi-
ble for the failure and should be modified to prevent

has-legal-path(p; loc(py) loc(p2) path,)
A has-legal-path(p; loc(p1) loc(ps) pathg)
A has-legal-path(pq loc(ps) sq pathc)
A has-legal-path(pg sq loc(p,) pathp)
A blocks-path(p2 pathg)
A = blocked(path)
A = blocked(pathc)
A = blocked(pathp)
A I-own(ps)
A I-own(ps)
A — I-own(p,)
A = l-own(p4)

— isa-threat(<...>)

Figure 3: Rule for detecting pin-threats against p»

recurrence of the the faulty behavior. See (Birnbaum,
Collins, Freed, Krulwich, 1990) for a description of the
diagnostic process used by our system to determine
which component is responsible for a faulty action.

In some cases, no single component can be held sole-
ly accountable for the failure. Diagnosing the failure
in these cases means locating a (preferably minimal)
set of components which may be modified to prevent
recurrence of the failure. As the system was unaware
of the pin tactic, many components require modifica-
tion in order to defend against it and employ it against
other agents. The component responsible for threat
detection should be modified to detect the pin; the
component for counerplanning must be able to gener-
ate a response to a pin-threat if one is has been detect-
ed. Learning and operationalizing knowledge of the pin
entails modifying each component. For simplicity we
will only consider modifications to the threat-detection
component.

Generating candidate modifications

Once the cause of the failure has been traced to a faulty
component, an explanation-based learning algorithm
(cf. Mitchell, Keller and Kedar-Cabelli, 1986; DeJong
and Mooney, 1986) is used to construct a modification
to the component which will prevent recurrence of the
failure. Modifying the threat-detection component to
detect pins entails constructing a rule to signal a threat
when the opponent is in a position to pin one of the
computer’s pieces.

Figure 3 shows a threat-detection rule which, if
added to the rule set employed by the threat-detection
component, will prevent recurrence of the piece-loss
seen in the example. It should be noted that the rule
detects a more specific class of threats than would be
expected given a full understanding of the danger of
being pinned; only pins which the opponent can exploit
by attacking the pinned piece are detected. The pro-

135

cess used by our system to produce component modi-
fications is described by Krulwich (1991).

As it stands, the system learns to detect an over-
ly specific class of threats because its single experi-
ence being pinned could not illustrate other ways being
pinned could be costly. We will discuss how the system
might learn the more general rule below.

Choosing the best modification

The learning element will frequently be able to gener-
ate several modifications that vary in effectiveness and
cost. To see why this would be the case, consider the
following informal example: a person breaks a traffic
law — say by making a U-turn in an intersection — and
consequently collides with another car. Attempting to
prevent future collisions, the driver could decide: to
be more careful when breaking that law in the future,
not to break that law at all, not to break traffic laws
in general or simply not to drive because it is too dan-
gerous. In deciding which lesson to learn, the driver
must reason about the tradeoff between effectiveness
(at reducing the likelihood of future accidents) and cost
(lnconvenience).

In deciding which rule to learn, the system should
consider such factors as generality and computational
expense. The more general rules will typically be more
expensive to use. For example, the threat-detection
rule of figure 3 is more general and more expensive
than a similar rule which only considers pins arising
from bishops. Such a rule would prevent a recurrence
of the exact failure seen in the example (in which the
pinning piece was a bishop), but fail to detect pins
made by rooks and queens. The more specific rule is
cheaper to use because it only has to be checked on
bishops.

Extensive knowledge of the domain may be used to
predict what level of generality optimizes the tradeoff
between effectiveness and computational expense. For
the novice, such knowledge will normally be unavail-
able; however, conservative guesses about this level can
be adjusted in light of new experience by inductively
generalizing similar modifications (cf. Pazzani 1989).

Merging similar modifications

The rule for detecting pins illustrated in figure 3
detects too narrow a range of threats. In effect, it
assumes that the only pins worth responding to are
those which the opponent can exploit by attacking the
pinned piece. However, the mobility-limit produced by
the pin can have other costly consequences. For exam-
ple, the computer will be unable to move a pinned
piece to capture an opponent’s piece without exposing
itself to attack. Essentially any chess goal which can
be served by moving a piece is compromised if the piece
is pinned.

Although the necessary mechanisms are not yet
implemented in our system, [will discuss how the more
general rule may be produced after a second experience

of being pinned. Briefly, this second experience might
take the following form:

One of the system’s general expectations is that it
will always be able to capture unguarded pieces. If
the attack piece is pinned, the attack would have to
be aborted, causing the expectation to fail. A learn-
ing episode, similar to the initial pin example, would
then occur. The new threat-detection rule would be
very similar to the initial pin rule, and could then be
combined with it to yield a new rule, detecting all pins.

The crucial elements of this step are methods for
identifying similar rules and for merging them (cf.
Minton, 1988). For each of these steps we assume a
concept called reasons-to-move for which avoid-capture
and capture-opponeni-piece are specializations. Associ-
ated with the latter concepts are abstract descriptions
of the chessboard positions which enable them, repre-
sented in the same language as the rules employed by
the detection component.

To notice the similarity of the two detection rules,
the system must first label a subset of the propositions
in the first rule (figure 3) as equivalent to the enabling
conditions of avoid-capture and similarly label a por-
tion of the second rule as equivalent to the enabling
conditions for capture-opponent-piece. Treating these
labels and the unlabelled propostions in each rule as
features, a simple inductive generalization algorithm
(e.g. Winston 1970) can be used to produce a new
rule which includes only the common features of the
first two. The new rule detects all pins.

Conclusion

We have presented a seven-stage process for discov-
ering strategic concepts from expectation failures and
constructing methods for utilizing this knowledge. We
have demonstrated this within the context of our
testbed system which learns new rules for detecting
threats, counterplanning and other cognitive tasks.
Future work will expand the more speculative stages
of this process and elaborate the functional decompo-
sition of planning tasks employed by the system.

Acknolwedgements

The ideas presented here were developed in collabora-
tion with Gregg Collins, Larry Birnbaum and Bruce
Krulwich. Additional thanks go to Matt Brand, Robin
Burke, Eric Domeshek, Bill Ferguson and Louise Pry-
or for comments on this paper and discussions on the
research presented. This work was supported in part
by the Office of Naval Research under contract N00014-
8G-J-3217, and by the Defense Advanced Research
Projects Agency, monitored by the Air Force of Scien-
tific Research under contract F49620-88-C-0058. The
Institute for the Learning Sciences was established in
1989 with the support of Andersen Consulting, part of
the Arthur Andersen Worldwide Organization.

References

Birnbaum, L., and Collins, G. 1988. The transfer of expe-
rience across planning domains throught the acquisition of
abstract strategies. Proceedings of the 1988 Case-Based Rea-
soning Workshop

Birnbaum, L., Collins, G., and Krulwich, B. 1989, Issues in
the justification-based diagnosis of planning failures. Proceed-
ings of the Sizth International Workshop on Machine Learn-
ing, Ithaca, NY, pp. 194-196.

Birnbaum, L., Collins, G., Freed, M., and Krulwich, B.
1990. Model-based diagnosis of planning failures. Proceedings
of the Eighth National Conference on Artificial Intelligence,
Boston, MA, pp. 318-323.

Collins, G., Birnbaum, L., and Krulwich, B. 1989. An adap-
tive model of decision-making in planning. Proceedings of the
Eleventh IJCAI, Detroit, MI, pp. 511-516.

Collins, G., Birnbaum, L., Krulwich, B., and Freed, M.
1991. Plan debugging in an intentional system. Accepted
for publication in the Proceedings of Thirteenth IJCAI

Delong, G., and Mooney, R. 1986. Explanation-based learn-
ing: An alternative view. Machine Learning, vol. 1, pp. 145-
176.

Doyle, R., Atkinson, D., and Doshi, R. 1986. Generating
perception requests and expectations to verify the execution
of plans. Proceedings of the Fifth National Conference on
Artificial Intelligence, pp. 81-88.

Freed, M. 1991. A Taxonomy of Planning and Learning Deci-
sions. Unpublished manuscript.

Krulwich, B. 1991. Determining appropriate EBL target
concepts in a multi-component planning system. Accepted
for publication in the Proceedings of the Thirteenth Annual
Conference of the Cognitive Science Society.

Minton, S. 1985. A Game-Playing Program that Learns
by Analyzing Eramples Technical report CMU-CS-85-130,
Carnegie Mellon University School of Computer Science,
Pittsburgh, PA.

Minton, S. 1988. Learning effective search control knowledge:
an ezplanation-based approach. Technical Report CMU-CS-
88-133, Carnegie Mellon University School of Computer Sci-
ence, Pittsburgh, PA.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. 1986.
Explanation-based generalization: A unifying view. Machine
Learning, vol. 1, pp. 47-80.

Utgoff, P. 1983. Adjusting bias in concept learning. Proceed-
ings International Machine Learning Workshop.

Winston, P.H. 1970. Learning structural descriptions form
examples. Reps No. TR-231, Al Laboratory, Massachusetts
Institute of Technology. (Reprinted in P.II. Winston (Ed.).
1975. The psychology of computer wvision. New York:
McGraw-Hill, 157-209)

136

	cogsci_1991_132-136

