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Abstract

Background: Water avoidance stress (WAS) induces a naloxone-independent visceral analgesia 

in male rats under non-invasive conditions of monitoring. The objective of the study was to 

examine the role of brain CRF signaling in acute stress-induced visceral analgesia (SIVA).

Methods: Adult male Sprague Dawley rats were chronically implanted with an 

intracerebroventricular (ICV) cannula. The visceromotor response (VMR) to graded phasic 

colorectal distension (CRD: 10, 20, 40, 60 mmHg, 20 sec, 4 min intervals) was monitored using 

manometry. The VMR to a 1st CRD (baseline) was recorded 5 min after an ICV saline injection, 

followed 1h later by ICV injection of either CRF (30, 100, 300 ng and 1, 3 or 5 μg/rat) or saline 

and a 2nd CRD, 5 min later. Receptor antagonists against CRF1/CRF2 (astressin-B, 30 μg/rat), 

CRF2 (astressin2-B, 10 μg/rat), oxytocin (tocinoic acid, 20 μg/rat) or vehicle were injected ICV 5 

min before CRF (300 ng/rat, ICV) or 15 min before WAS (1h).
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Key Results: ICV CRF (100 and 300 ng) reduced the VMR to CRD at 60 mmHg by 

−36.6±6.8% and −48.7±11.7% respectively vs baseline (p<0.001) while other doses had no effect 

and IP CRF (10 µg/kg) induced visceral hyperalgesia. Astressin-B and tocinoic acid injected ICV 

induced hyperalgesia and prevented the analgesic effect of ICV CRF (300 ng/rat) and WAS, while 

astressin2-B only blocked WAS-induced SIVA.

Conclusions & Inferences: These data support a role for brain CRF signaling via CRF2 in 

SIVA in a model of WAS and CRD likely mediated by the activation of brain oxytocin pathway.

Abbreviated abstract:

Recent reports indicate that WAS induces a naloxone-independent visceral analgesia in male rats 

under non-invasive conditions of monitoring, but the underlying brain neurochemical mechanisms 

are still unknown. When injected intracerebroventricularly (ICV) at low nanogram range doses, 

CRF induced a CRF1 receptor mediated visceral analgesic response to colorectal distension that 

was prevented by ICV oxytocin antagonist. Similarly, acute WAS recruits endogenous CRF and 

oxytocin to induce SIVA.

Increasing the understanding of the neurochemical coding by which stress promotes visceral 

analgesia and how their dysfunction leads to visceral hyperalgesia may help developing new 

therapeutic modalities for patients with functional gastrointestinal disorders who exhibit abnormal 

endogenous pain modulation.

Keywords

corticotropin-releasing factor; stress-induced visceral analgesia; water avoidance stress; 
manometry; oxytocin

1 INTRODUCTION

Brain corticotropin-releasing factor (CRF) acts as a central mediator of stress by 

orchestrating several responses such as endocrine (hypothalamic-pituitary-adrenal axis), 

behavioral (anxiety and depression-like)1, autonomic2 and visceral.3 CRF actions are 

initiated by binding to two subtypes of G-protein coupled receptors: CRF subtype 1 (CRF1) 

and to a lesser extent subtype 2 (CRF2).4 The CRF receptors are expressed in several stress-
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related brain regions.5, 6 Stress is also known to modulate pain, inducing hyperalgesia or 

analgesia depending upon the nature, duration and magnitude of the stressor.7, 8 Concerning 

stress-induced analgesia, in the somatic pain field, a number of studies demonstrated that 

exogenous CRF can induce analgesia and endogenous CRF signaling in the brain plays a 

role in acute physical and psychological stress-induced analgesia. 8–13 This response occurs 

through the recruitment of endogenous descending inhibitory pain pathways.8–13 So far the 

role of CRF receptor subtype(s) involved has not yet been characterized except in one study 

indicative of a mediation through CRF2 receptors.14 By contrast, to this date, stress-induced 

visceral analgesia (SIVA) has been understudied. Existing literature in rodents indicates that 

exposure to a mild psychological stressor such as water avoidance stress (WAS)15 or 

intracerebroventricular (ICV) injection of CRF promotes visceral hyperalgesia16–17 in 

rodents. Of note, all those studies were performed using an invasive surgical technique to 

monitor the visceromotor response (VMR) to colorectal distension (CRD) by chronically 

implanting electromyographic (EMG) electrodes on the abdominal wall of rodents. 

Conversely, our recent studies, using a non-invasive method of VMR recording based on 

manometry,18,19 highlighted the development of visceral analgesia in response to acute 

and/or repeated WAS in both mice and rats.19, 20 Since then, other groups using WAS paired 

with CRD as a visceral painful stimulus have reproduced this visceral analgesic response in 

rats, using similar non-invasive VMR recording21 or acute fixation of EMG electrodes on 

the external oblique muscles (30 min before CRD).22 We and others also established that the 

visceral analgesia induced by acute and repeated WAS is opioid-independent in male rats.
20, 22 Outside of the reported role for brain-neurotensin signaling in rodents,23–25 the 

underlying neurochemical substrata underpinning SIVA are still not well characterized. Of 

interest, the involvement of brain CRF signaling that contributes to a number of biological 

responses induced by stress,1 remains largely unexplored in the SIVA response.

Therefore, in the present study, we first assessed the dose-response effect of CRF injected 

ICV on visceral pain by monitoring the VMR to CRD non-invasively in male rats. We tested 

several doses based on previous studies in the somatic pain field pointing to a narrow 

effective dose range.12 Since previous studies established a brain to blood transport of CRF,
26 we injected CRF intraperitoneally to confirm that the ICV injection of CRF-induced SIVA 

was brain-mediated. Then, we characterized the receptor subtypes involved in the effect of 

centrally-injected CRF using the long acting CRF1 and CRF2 antagonist, astressin-B27 and 

the selective peptide CRF2 receptor antagonist, astressin2-B.28 The ICV injection of CRF 

causes oxytocin release,29 and brain oxytocin (OT) is well established to be analgesic in 

different modalities of acute pain (neuropathic, somatic or inflammatory) in rodents and 

humans.30–32 The role of OT in ICV CRF-induced visceral analgesia was examined using 

ICV injection of the OT receptor antagonist, tocinoic acid.33, 34 Lastly, we performed ICV 

injections of non-selective CRF and selective CRF2 and OT receptor antagonists to 

investigate the role endogenous brain CRF and OT signaling in the non-opiate form of SIVA. 
20, 22 We used an acute exposure to an environmental aversive condition by applying WAS 

and the CRD test to assess visceral pain.
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2 MATERIAL AND METHODS

2.1 Animals

Adult male Sprague-Dawley rats (Harlan Laboratory, San Diego, CA, USA) weighing 

250-300 g were used for these experiments. Animals were maintained group-housed (2/

cage), unless otherwise indicated, under controlled conditions of illumination (12:12h light-

dark cycle starting at 6 a.m.), temperature (21-23°C) and humidity (3-35%) and had ad 
libitum access to a standard rodent diet (Prolab RMH 2500 LabDiet, PMI Nutritional, 

Brentwood, MO) and tap water. Animals were acclimated to the animal facility for 1 week 

after their arrival. Experiments followed NIH guidelines according to the protocol # 

9906-020 approved by the Institutional Animal Care and Use Committee (IACUC) of the 

VA Greater Los Angeles Healthcare System under the auspice of the Office of Laboratory 

Animal Welfare - Assurance of Compliance (A3002-01).

2.2 Treatments

Intracerebroventricular injection.—Rats were equipped with a chronic ICV cannula as 

previously described.18 The guide cannula (22 gauge, Plastic One Products, Roanoke, VA) 

was implanted into the right lateral brain ventricle in animals anesthetized with an 

intraperitoneal (IP) injection of a mixture of ketamine hydrochloride (75 mg/kg; Ketaset, 

Fort Dodge Laboratories Inc., Fort Dodge, IA) and xylazine (5 mg/kg; Rompun, Mobay 

Corporation, Shawnee, KS) using the following coordinates (mm from bregma: antero-

posterior, –0.8; lateral, –1.5; dorsoventral, –4.0). The guide cannula was maintained in place 

by dental cement anchored by four stainless steel jewelry screws fixed to the skull. Post-

surgery, animals were housed individually on direct bedding and received subcutaneous 

injections of buprenorphine (0.03 mg/kg; Bedford Labs, Bedford, OH, USA) twice daily for 

3 days. Thereafter, rats were handled for 5 min daily to habituate them to the manipulation 

of the cannula and the injection procedure. The ICV injection was performed in lightly 

hands restrained rat as in our previous studies.18 A 28-gauge injection cannula, 1 mm longer 

than the guide cannula, was then connected to a 50-µl Hamilton syringe by a PE-50 catheter 

(Intramedic Polyethylene Tubing, Clay Adams, Sparks, MD) filled with distilled water. An 

air bubble (5 µl) was drawn at the distal end of the PE-50 catheter to separate the injected 

solution from the water and for visual inspection of the injections which were all performed 

over 30 s in 5 μl for each except otherwise stated. At the end of the experiments, the correct 

location of the cannula into the lateral ventricle was examined by injecting 10 µl of dye 

(0.1% toluidine blue). Visualization of dye on the wall of the lateral ventricle indicates 

correctness of the ICV injections. No rats were excluded due to the misplacement of the 

cannula.

Acute water avoidance stress.—The acute WAS was performed between 9 a.m. and 12 

p.m. and lasted 1 h with all groups conducted in parallel to avoid experimental variations. 

The procedure for acute WAS was essentially as described previously in rats.20 It consisted 

of placing rats individually on a rectangular platform (5.8-cm length × 5.8-cm width × 6.0-

cm height, AMAC box M series #510C, AMAC Plastic, Petaluma, CA) affixed in the center 

to the bottom of a container (26.7-cm length × 48.3-cm width × 20.3-cm height, R20 rat 
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cage, Ancare, Bellmore, NY) filled with room temperature tap water (25°C) up to 1 cm 

below the top of the platform.

2.3 Measurement of visceral pain

Assessment of visceral pain response to CRD.—Visceral sensitivity to CRD was 

assessed using the non-invasive manometric method that we have previously developed and 

validated for use in mice and rats, which does not require chronic implantation of EMG 

electrodes.18,19 Briefly, a PE50 catheter was taped below (3.5 cm) the pressure sensor of a 

miniaturized pressure transducer catheter (SPR-524 Mikro-Tip catheter; Millar Instruments, 

Houston, TX). A custom-made balloon (2 cm wide x 5 cm long),18, 35 prepared from an 

infinitely compliant polyethylene plastic bag was tied over the catheter at 1 cm below the 

pressure sensor with silk 4.0 (Henry Schein Inc., Melville, NY). At the beginning of each 

experiment, the “balloon-pressure sensor” was calibrated at known pressures of 0, 20, 40 

and 60 mmHg using a barostat (Distender Series II, G&J Electronics Inc, Toronto, Canada), 

and voltage output was converted to pressure using CED digital analog convertor 

(Micro1401, Cambridge Electronic Design, Cambridge, UK) and Spike 2 software (CED, 

Ltd., Cambridge). On the day of the experiment, rats were briefly anesthetized with 

isoflurane (3% in O2) and the lubricated “balloon-pressure sensor” catheter was introduced 

into the colorectum such that the distal end of the balloon was at 1 cm from the anus, and the 

catheter was secured to the tail with tape. Rats were placed in an individual Bollman cage to 

which they had been habituated for the past 3 consecutive days (1h/day). Animals were 

covered with a light tissue blanket and left to rest for 30 min before the CRD procedure. 

Each balloon was connected to the barostat and the miniaturized pressure transducer to a 

preamplifier (model 600; Millar Instruments, Houston, TX). The intracolonic pressure (ICP) 

signal was acquired using CED Micro1401/SPIKE2 program. The CRD protocol for rat 

consisted of two CRDs at 60 mmHg to unfold the balloon immediately followed by two 

series of graded phasic distensions to constant pressures of 10, 20, 40 and 60 mmHg (20 s 

duration, 4 min inter-stimulus interval). Similar CRD paradigms have been used previously 

to assess visceral pain-related responses in rats.18, 20

Data analysis.—The phasic component of the intracolonic pressure (pICP) was extracted 

from the ICP signal recorded by applying the “DC Remove” Process in Spike 2 with a time 

constant of 1 s, to exclude the slower, tonic changes in ICP resulting from colonic smooth 

muscle activity, and by applying the “RMS amplitude” Process with a time constant of 1 s to 

the resulting trace. The VMR was defined as the increase in area under the curve (AUC) of 

pICP during CRD over the mean value of pre- and post-distension 20 s periods and was 

quantified using the “modulus” process in Spike 2. As each CRD pressure was repeated 2 

times, the pre-post CRD and during CRD values were averaged for each pressure. To 

examine the pressure-response relationship and adjust for inter-individual variations of the 

signal,36 ICP amplitudes were normalized for each animal to the highest pressure (60 

mmHg) in the 1st set of CRD. This value served as 100% response (control) in the baseline 

period of data collection and represented the baseline VMR.18, 20
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2.4 Compounds

The human/rat CRF, astressin-B and astressin2-B (J. Rivier, Peptide Biology Laboratories, 

Salk Institute, La Jolla, CA) were stored in powder form at −80°C, and diluted in sterile 

saline (CRF) or water (astressin-B, astressin2-B) immediately before use. Tocinoic acid 

(Sigma-Aldrich, St Louis, MO, USA) was dissolved in saline.

2.5 Experimental Protocols

All experiments were performed in the morning, between 8 a.m. and 12 p.m. each day to 

avoid variations due to the circadian rhythm.

Influence of intracerebroventricular vs intraperitoneal injection of CRF on 
visceral sensitivity to CRD.—Groups of rats were equipped with ICV cannula at least 

one week before the experiments. Rats were injected ICV with saline (5 μl/rat) and the VMR 

to a 1st CRD was monitored 5 min later (baseline response). After 1h rest period, saline (5 

μl/rat) or CRF (10, 30, 100, 300 ng/rat, 1, 3 and 5 μg/rat in 5 μl) was injected ICV and a 2nd 

CRD was performed 5 min later. In a separate study, naïve rats were used to assess the 

influence of peripheral administration of CRF. Rats were subjected to 1st CRD and 1h later 

were injected IP (0.2 ml/rat) with saline or CRF (10 µg/kg, i.e. ∼3 µg/rat) and 15 min later, 

the 2nd CRD was performed in both groups. The doses of CRF were based on our previous 

studies showing dose-related (ICV) or maximal effect effects (IP) on gut function.37, 38 CRF 

at 300 ng/rat inducing the maximal visceral analgesic effect was selected for all further ICV 

studies.

Effect of CRF receptor antagonists on ICV CRF-induced visceral analgesia.—
In separate groups, ICV cannula-equipped rats had a baseline VMR to 1st CRD and after the 

1h rest period, astressin-B (30 μg/rat), astressin2-B (10 μg/rat) or sterile water (5 μl) was 

injected ICV 5 min before ICV CRF (300 ng/rat, 5 μl) and a 2nd CRD was performed 5 min 

later. The ICV doses of astressin-B and astressin2-B were selected based on our previous 

studies showing complete reversal of ICV CRF on gut motor function and blockade of 

endogenous CRF receptors in rats.39–41

Influence of oxytocin antagonist on ICV CRF-induced visceral analgesia.—Rats 

equipped with ICV cannula were tested for baseline CRD. After the 1h rest period, tocinoic 

acid (20 μg/rat, 5 μl) or saline (5 μl) was injected ICV 5 min before the ICV injection of 

CRF (300 ng/rat, 5 μl) and a 2nd CRD was performed 5 min later. The dose of tocinoic acid 

was based on previous reports showing that such regimen of administration prevented WAS-

induced colonic motility response in rats.42

Influence of astressin-B, astressin2-B and tocinoic acid on WAS-induced 
visceral analgesia.—In other groups, after a baseline on day 0, 24 h later, astressin-B (30 

μg/rat), astressin2-B (10 μg/rat), tocinoic acid (20 μg/rat) or their respective vehicles (sterile 

water and saline), were injected ICV in 10 µl, 15 min before exposure to WAS for 1 hour. A 

2nd CRD was performed within ∼ 45 min of the stress ending as previously published.20 The 

doses of receptor antagonists used were based on above experiment showing blockade of 

ICV CRF-induced visceral analgesia.
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2.6 Statistical Analyses

Statistical analyses were performed using GraphPad Prism version 5.00 for Windows 

(GraphPad Software, San Diego, CA, USA, www.graphpad.com). Data were analyzed using 

one-way ANOVA or 2-way ANOVA followed by Sidak post hoc test to assess the dose-

dependent influence of ICV CRF on VMR and the interaction of different treatments 

(baseline vs ICV CRF, astressin-B, astressin-B+CRF, astressin2-B+CRF, WAS, astressin-B

+WAS or astressin2-B+WAS) and CRD pressure on VMR, respectively. A p value < 0.05 

was considered significant.

3 RESULTS

3.1 CRF injected ICV induces visceral analgesia to CRD, while IP CRF induces visceral 
hyperalgesia.

In male rats equipped with a chronic ICV cannula, the ICV injection of saline and 5 min 

later, a 1st CRD at 10, 20, 40 and 60 mmHg, induced a stimulus-intensity related increase in 

the VMR recorded by intraluminal colonic pressure. This baseline was not modified when 

the same protocol (ICV saline followed by 2nd CRD) was repeated 1 h later (Fig. 1A). By 

contrast, ICV CRF at 100 and 300 ng/rat resulted in a significant decrease of the VMR at 60 

mmHg CRD compared to baseline (VMR in % control: 63.4±6.8% and 51.3±11.7% vs 

100.0±0.0% for 100 and 300 ng/rat, p<0.001 each, respectively, Figs. 1C,D,H and 2). At 20 

or 40 mmHg, VMR values were superimposed to those of baseline at the 100 ng/rat (Fig. 

1C) or showed a trend to be lower at 40 mmHg after 300 ng of ICV CRF compared to 

baseline (VMR in % control: 100 ng/rat: 48.5±7.7% vs 47.4±7.0% for baseline, and 300 ng/

rat: 27.6±4.2% vs 46.5±8.3% for baseline, respectively, Fig. 1 C,D and 2). However, ICV 

CRF at lower (30 ng/rat) and higher (1, 3, or 5 µg/rat) doses had no significant effect (Figs. 

1B, E-G, H). The dose of CRF at 300 ng/rat ICV, being the most efficient to induce visceral 

analgesia, was selected for all subsequent ICV injection studies.

When tested peripherally, CRF (10 μg/kg, IP) increased the VMR to CRD at 20, 40 and 60 

mmHg compared to baseline values by 59.9±30.7% (p>0.05), 111.7±22.0% (p<0.01) and 

167.7±37.4% (p<0.001), respectively (Fig. 3A and2), while the vehicle (saline) injected IP 

had no effect (Fig. 3B).

3.2 Astressin-B induces visceral hyperalgesia and blocks ICV CRF-induced visceral 
analgesia while astressin2-B has no effect

The ICV injection of CRF (300 ng) decreased significantly the VMR to CRD at 60 mmHg in 

ICV saline pretreated rats (−5 min) compared to baseline values (VMR in % control: 

35.0±15.8% vs 100.0±0.0%; Fig. 4A) as we observed in previous experiment in non-ICV 

pretreated rats. By contrast, in rats pretreated ICV with the CRF antagonist, astressin-B, ICV 

CRF increased significantly the VMR to CRD at both 40 and 60 mmHg compared to 

baseline (VMR in % control: 116.2±26.0% and 148.1±32.0% vs 64.6±11.5% and 

100.0±0.0%, respectively, p<0.05 each; Fig. 4B). Astressin-B injected ICV plus ICV saline 

increased the VMR to CRD only at 60 mmHg compared to baseline (VMR in % control: 

155.1±11.0% vs 100.0±0.0%, p<0.05; Fig. 4C). The selective CRF2 antagonist, astressin2-B 

injected ICV as pretreatment (−5 min) did not influence the analgesic response to ICV CRF 
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as shown by the significant decrease of the VMR to CRD at 60 mmHg compared to baseline 

(VMR in % control: 37.1±16.5% vs 100.0±0.0%; Fig. 3D) and the peptide + ICV saline did 

not influence the VMR to CRD (Fig. 4E).

3.3 The ICV oxytocin receptor antagonist, tocinoic acid induces visceral hyperalgesia 
and blocks ICV CRF-induced visceral analgesia

The ICV injection of tocinoic acid (20 µg/rat) plus ICV saline increased the VMR to CRD at 

40 mmHg (VMR in % control: 113.4±28.5% vs 45.1±16.6%, p<0.01) while at 60 mmHg the 

response did not reach statistical significance (VMR in % control: 138.7±25.7% vs 

100.0±0.0%, p>0.05) (Fig. 5A). The ICV pretreatment with tocinoic acid, abolished the 

development of visceral analgesia induced by ICV CRF (Fig.5B) at 60 mmHg.

3.4 ICV CRF and oxytocin receptor antagonists block SIVA induced by WAS

We then assessed whether SIVA induced by WAS is modified by blockade of CRF and 

oxytocin receptors. In rats pretreated with saline, WAS for 1 h decreased the VMR to CRD 

at 60 mmHg by −47.4±14.3% compared with baseline when monitored at the end the stress 

exposure (VMR in % control: 44.1±13.5% vs 100.0±0.0%, p<0.0001; Fig. 6A). The ICV 

injection of astressin-B (Fig. 6B), astressin2-B (Fig. 6C) and tocinoic acid (Fig. 5C) 

prevented WAS-induced SIVA and values of VMR were identical to those of baseline after 

injection of astressin-B and tocinoic acid, but showed a non-significant tendency for 

hyperalgesia after astressin2-B.

4 DISCUSSION

The present study showed that ICV injection of CRF induces visceral analgesia in male 

Sprague Dawley rats. The ICV injection of CRF at 100 or 300 ng/rat significantly reduced 

the VMR at 60 mmHg by −36.6±6.8% and −48.7±11.7% respectively from ICV saline 

control while the 30 ng/rat dose had no effect. The analgesic response occurred at ICV doses 

of CRF known to have no effects on locomotor behavior.43 These data indicate that at a 

nanogram dose range, there is a dose-related visceral anti-nociception effect of ICV CRF. 

However, CRF given at higher doses (1 to 5 µg/rat) no longer influenced visceral pain 

induced by CRD. These observations are consistent with several somatic pain studies 

reporting an anti-nociceptive effect of ICV CRF only at doses within the nanogram range in 

male rats.10, 12, 44 However, our data contrasts with earlier studies in which ICV injections 

of CRF at 25, 62.5 and 125 ng/rat in male Wistar rats equipped chronically with EMG 

electrodes induced visceral hypersensitivity to CRD when monitored during the 30-50 min 

post injection.16 Strain differences between these studies may have played a role as distinct 

visceral sensitivity to CRD has been reported previously between Fischer-344 and Wistar 

rats.17 In addition, the distinct preconditions of the animals linked to the method used to 

monitor visceral pain (no abdominal surgery for intracolonic pressure recording of VMR in 

the present study vs surgical chronic implantation of EMG electrodes may have contributed 

to these differences as recently reviewed.45 We previously reported that the surgical 

intervention and EMG electrodes implanted into the external oblique abdominal muscle then 

exteriorized in the back of neck modifies the visceral pain responses of rodents to WAS 

when assessed 5 days post-surgery.19 Indeed, studies in the somatic pain field demonstrated 
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that the assessment of pain is not only the result of nociceptive input level but is also 

dependent upon the prior stress/nociceptive events that induce a latent pain sensitization 

switching stress-induced analgesia to hyperalgesia.45–47 Under our conditions of testing, we 

were not able to detect a significant influence of the brain surgery for the chronic 

implantation of ICV cannula on the visceral pain response of rats. We hypothesize that the 

lack of sensitization of the visceral pain responses following brain surgery when compared 

with abdominal and paw surgeries19, 48, 49 may be due to different projections and 

convergence of sensory pathways in the spinal cord.50

We then assessed whether ICV injection of CRF-induced reduction of VMR to CRD was 

mediated in the brain since previous studies established a brain-to-blood transport of CRF.26 

Two sets of evidence support that the peptide acts in the brain. First, CRF injected IP at ∼3 

µg/rat, results in a significant visceral hyperalgesia to CRD when monitored under similar 

conditions. These data expand our previous reports showing that that IP injection of the 

CRF1 agonist, cortagine51 induced a peripherally-mediated increase in the VMR to CRD in 

rats when monitored similarly, as in the present study.18 Second, the decreased VMR to 

CRD is observed only at the lowest doses (100-300 ng/rats), and no longer at the highest (1, 

3 or 5 µg/rat) which should result in a more prominent leakage of the peptide from the 

cerebrospinal fluid to the peripheral circulation.26, 52 The latter resulting in hyperalgesia as 

demonstrated with the IP injection of CRF, and not analgesia. The lack of analgesic effect of 

ICV at high doses may be due to an increased leakage of the CRF peptide from the brain to 

the periphery 26 and the potential initiation of peripheral hyperalgesic mechanisms which 

counteract the central analgesic effect. Because some of the peptide may be bound by CRF 

binding protein present in the blood,53 the hyperalgesic response may not be as strong as 

when CRF is injected directly intraperitoneally, but may be enough to mask the analgesic 

effect of central CRF. Numerous evidence support a role for increased intestinal 

permeability, activation of mast cells, increase of serotonin release by direct action on cells 

that express CRF1 receptors in the hyperalgesic visceral response to peripheral injection of 

CRF or CRF1 agonists (for review see 54). The differential modulation of visceral pain by 

CRF injected into the brain or peripherally also implies that ICV CRF acts in the brain 

independently of pituitary hormones including β-endorphin that are released into the 

peripheral circulation by both routes of CRF administration.55, 56

Varying intensities of colon distension pressure (non-noxious to noxious) induce different 

brain activation patterns with selective recruitment of specific nuclei as monitored by Fos 

expression.57 The fact that the analgesic response to ICV CRF is limited to the CRD 

pressure of 60 mmHg (with a trend at 40 mmHg), suggests that the analgesic effect of CRF 

is likely linked with higher intensity recruitment of noxious pathways. The neuroanatomical 

site(s) that subserve the visceral analgesic action of ICV CRF need to be identified. In the 

somatic pain field, two specific brain sites, the central amygdala and periaqueductal gray 

(PAG), well-established critical structures in stress-related analgesia through modulation of 

descending inhibitory pathways,8–12, 58–62 are responsive sites to CRF.11, 63, 64 CRF 

microinjected in the PAG induces an analgesic response to nociceptive thermal, mechanical 

or chemical stimuli applied to the rodent hindpaw.64, 65 Likewise, CRF microinjected into 

the central amygdala was reported to evoke a CRF receptor-mediated analgesia as shown by 

the increased withdrawal latency to noxious thermal and mechanical stimulation in rats.11, 58 
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In CRF-Cre mice, selective activation of endogenous CRF in the central amygdala by 

adenovirus-associated approach also further increases the thermal pain threshold elevated by 

acute swim stress.58

Next, we examined the role of CRF receptors. The specific, long acting, non-selective 

peptide CRF1 and CRF2 receptor antagonist, astressin-B injected ICV abolished the ICV 

CRF-induced visceral analgesic response to CRD, leading to the hyperalgesia at the pressure 

of 60 mmHg. In addition, astressin-B injected ICV alone enhanced the visceral VMR to 

CRD at the highest pressures of CRD (40 and 60 mmHg). There is evidence that CRD at 

nociceptive range activates neurons in the limbic system (paraventricular nucleus of the 

hypothalamus or PVN and amygdala including CRF neurons).66, 67 Other studies showed 

that CRD activates dorsal/pons/periaqueductal grey, a region involved in nociception.68 

Endogenous brain CRF signaling is recruited under exposure to visceral nociceptive stimuli 

such as CRD, thereby inducing SIVA either by activating descending inhibitory pathways 

and/or counteracting the pain pathways. Therefore, blocking the CRF receptors with 

astressin-B before CRD enhanced the visceral motor response by preventing the CRF-

related analgesic response induced by this visceral stress. Our results support the existence 

of an endogenous inhibitory tone of central CRF via CRF signaling in visceral pain as 

shown in the somatic pain field.10 By contrast, the selective peptide CRF2 antagonist, 

astressin2-B injected ICV had no effect against CRF-induced SIVA or under basal 

conditions. It is unlikely that the lack of antagonist effect of astressin2-B is due to a 

submaximal regimen of administration (10 µg/rat). We previously reported that the injection 

of astressin2-B into the rat cerebrospinal fluid at 3 or 10 µg/rat completely prevented 

intracisternally-injected CRF (300 ng)- or urocortin 2 (100 ng)-induced delayed gastric 

empting in rats.39 Moreover, CRF is a preferential CRF1 agonist with a 10- to 40-fold lower 

affinity to CRF2 compared to CRF1 receptors.69 The visceral analgesia occurring mainly at 

low doses would be consistent with CRF interacting preferentially with CRF1 receptors. 

Collectively, these findings demonstrate that the visceral analgesic response to ICV CRF is 

CRF receptor-mediated and support a primary involvement of CRF through an interaction 

with the CRF1 receptor subtype. The role of CRF1 receptors was also reported in the somatic 

analgesia induced by CRF microinjected into the PAG.64

The demonstrated analgesic action of exogenous CRF administered into the brain may have 

physiological relevance to SIVA. We show that the acute exposure to WAS mimicked the 

magnitude of VMR reduction to CRD at 60 mmHg observed at low doses of ICV CRF. This 

result is consistent with previous reports showing that a single or repeated daily 1-h session 

of WAS decreased the VMR to CRD monitored at the end of the stress period by 

manometry.19–22 Importantly, the CRF antagonist, astressin-B pretreatment given ICV at a 

dose that blocked ICV CRF-induced visceral analgesia also abolished the visceral analgesic 

response induced by the acute WAS. However, contrary to rats injected with ICV CRF, 

blockade of central CRF receptors with astressin-B did not lead to hyperalgesia in WAS rats. 

Furthermore, astressin2-B administered before exposure of the animals to acute WAS 

blocked the visceral analgesia. This supports the involvement of central CRF2 receptors in 

WAS-induced SIVA, while we showed that CRF2 had no effect in ICV CRF-induced SIVA. 

These findings indicate that the astressin-B sensitive SIVA induced by ICV CRF at low 

doses or WAS involved distinct CRF1 and CRF2 receptor pathways respectively. This may 

Larauche et al. Page 10

Neurogastroenterol Motil. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be related to the preferential CRF1 receptor action of exogenous CRF at low dose70 while 

WAS combined with CRD recruit additional neuronal circuitries67, 71, 72, and/or higher level 

of CRF release able to activate CRF2 receptors also located in PVN neurons.5 Along with 

CRF, stress can indeed lead to the release of urocortins, which bind CRF2 with higher 

affinity than CRF,73 and may in turn lead to the recruitment of brain circuitries to induce 

SIVA which differ from the ones recruited by the stimulation of a proximal single pathway 

using ICV CRF as previously reported for other stressors.74, 75

We next assessed the underlying central mechanisms of SIVA. Stress and ICV injection of 

CRF induce the release of neuropeptides such as oxytocin (OT)29, 76, 77 established to 

induce analgesic effect in different modalities of acute pain (neuropathic, somatic or 

inflammatory) in rodents and humans.30, 31 Moreover, in rat brain, synaptic connections 

between OT and CRF containing neurons were identified in the PVN 78 and CRD stimulates 

the activity of both CRF and OT neurons as shown by the induction of Fos expression and 

double labeling.66 Pharmacological and neuroanatomical evidence support the implication 

of hypothalamic OT in somatic analgesia79–82 and a reciprocal regulation of OT and CRF 

hypothalamic systems in stress response.83 No study has assessed their implication in SIVA, 

yet. Interestingly, using an OT receptor antagonist, tocinoic acid, we found that the 

antagonism of the oxytocinergic system could prevent ICV CRF and WAS-induced SIVA, 

suggesting that downstream oxytocinergic pathways play a role in the visceral analgesia 

induced by central injections of CRF or exposure to an environmental aversive stressor. The 

observation that tocinoic acid when injected alone induced a robust hyperalgesic response in 

rats suggests that a tonic endogenous oxytocinergic tone is modulating pain in animals 

exposed to nociceptive CRD. These results are further supported by our previous report 

showing a prominent activation of OT neurons in the hypothalamus of rats subjected to 

CRD.66

In conclusion, the present data show that ICV injection of CRF in nanogram doses range 

acts into the brain primarily through CRF1 receptors to decrease visceral pain elicited by 

CRD at 60 mmHg when monitored by manometry in male rats. We found that the ICV CRF-

induced visceral analgesic action is dependent of brain OT signaling. Moreover, the 

pharmacological blockade of CRF and OT receptors in the brain using antagonists, astressin-

B, astressin2-B and tocinoic acid, respectively, blocked SIVA induced by the 1-h acute 

exposure to WAS before CRD. These data support a role of endogenous brain CRF ligands 

and oxytocin signaling in SIVA, which may recruit central CRF1 or CRF2 receptors in a 

stress-differential manner. Increasing the knowledge of neurochemical mechanisms 

underpinning SIVA may have translational application in the context of irritable bowel 

syndrome (IBS) since clinical studies performed in IBS patients indicate a dysfunction of the 

analgesic response to both somatic and visceral noxious stimuli.84–87
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Key Points

• Recent reports indicate that WAS induces a naloxone-independent visceral 

analgesia in male rats under non-invasive conditions of monitoring, but the 

underlying brain mechanisms are still unknown.

• When injected intracerebroventricularly (ICV) at low nanogram range doses, 

CRF induces a CRF1 receptor-mediated visceral analgesic response to 

colorectal distension that is prevented by ICV injection of the oxytocin 

antagonist. In contrast, acute WAS recruits endogenous CRF2 and oxytocin 

receptor signaling to induce SIVA.

• Increasing the understanding of mechanisms by which stress promotes 

visceral analgesia and how dysfunction of this pathway lead to visceral 

hyperalgesia may help developing new therapeutic venues for patients with 

functional gastrointestinal disorders who exhibit abnormal endogenous pain 

modulation.
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FIGURE 1. 
Intracerebroventricular (ICV) CRF induced visceral analgesia at a narrow nanogram range in 

male rats chronically implanted with an ICV cannula. (A) One group received ICV saline 

and 5 min later, the visceromotor response (VMR) to a 1st colorectal distension (CRD) was 

monitored by manometry (white squares), then 1h later, a similar protocol was repeated with 

ICV saline and VMR to 2nd CRD (black squares). Other groups had the same experimental 

protocols, except after ICV saline (white squares, baseline), the second ICV injection was 

CRF (black squares) at 100 ng/rat (C), 300 ng/rat (D), 1 µg/rat, 3 µg/rat (F) and 5 µg/rat (G). 
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Data are means ± SEM, numbers of rats are indicated in parenthesis as n. ***p<0.001 vs 

respective baseline, 2-way repeated measures ANOVA and Sidak post hoc test. (H) 

Comparison of the visceral analgesic response (in % baseline) at 60 mmHg for the different 

doses of ICV CRF. Data are means ± SEM. **p<0.01, ***p<0.001 vs 30 ng/rat dose, one-

way ANOVA and Dunnett post hoc test.
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FIGURE 2. 
Representative raw traces of intracolonic luminal pressure in response to colorectal 

distension (10, 20, 40 and 60 mmHg) in male Sprague-Dawley rats injected with vehicle (10 

µl, ICV) or CRF centrally (300 ng/rat, ICV) and peripherally (10 µg/kg, IP).
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FIGURE 3. 
Peripheral injection of CRF induced visceral hyperalgesia in male rats. A 1st CRD was 

performed (baseline, white square) followed 1h later with an intraperitoneal (IP) injection of 

CRF (10 μg/kg, IP) (A) or saline (B) and 15 min later a 2nd CRD (black square). Data are 

means ± SEM, numbers of rats are indicated in parenthesis as n. **p<0.01, ****p<0.0001 vs 

baseline, two-way repeated measures ANOVA and Sidak post hoc test.
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FIGURE 4. 
Involvement of CRF receptors in ICV CRF-induced visceral analgesia. In male rats 

chronically implanted with an ICV cannula, a baseline CRD was performed. One hour later, 

rats received an ICV injection of saline (A), astressin-B (B) or astressin2-B (D) followed 5 

min after by ICV CRF (300 ng/rat) before the 2nd CRD. In other groups, the same protocol 

was applied except that astressin-B (C) or astressin2-B (E) was given 5 min before ICV 

saline. Baseline: white squares, post-injection: black squares. Data are means ± SEM, of 
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number of rats as indicated in parenthesis. *p<0.05, ***p<0.001 vs respective baseline, 2-

way repeated measures ANOVA and Sidak post hoc test.
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FIGURE 5. 
ICV CRF recruits oxytocin to mediate ICV and WAS-induced visceral analgesia. In male 

rats chronically implanted with an ICV cannula, a 1st CRD was performed (baseline, white 

squares), and 1h later, groups of rats were injected ICV with tocinoic acid and 15 min later 

with ICV CRF (A) or saline (B) (black squares). In a separate group of animals, on day 0, a 

baseline CRD was performed. Twenty-four hours later, rats were injected ICV with tocinoic 

acid (C) and 15 min later, exposed to 1h of WAS followed by a 2nd CRD. Data are means ± 

SEM, n as indicated in parenthesis. *p<0.05 vs baseline, 2-way repeated measures ANOVA 

and Sidak post hoc test.

Larauche et al. Page 25

Neurogastroenterol Motil. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Involvement of CRF receptors in acute WAS-induced visceral analgesia. On day 0, a 

baseline CRD was performed and 24 h later, rats were injected ICV with saline (A), 

astressin-B (B) or astressin2-B (C) and 15 min later, exposed to 1h of WAS followed by a 

2nd CRD. Baseline: white squares, post-injection: black squares. Data are means ± SEM, 

number of rats as indicated in parenthesis. ****p<0.0001 vs respective baseline, 2-way 

repeated measures ANOVA and Sidak post hoc test.
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