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Abstract

The Magical Geometry of 1D Quantum Liquids

by

Eugeniu Plamadeala

We investigate the edge properties of Abelian topological phases in two spatial di-

mensions. We discover that many of them support multiple fully chiral edge phases, with

surprising and measurable experimental consequences. Using the machinery of confor-

mal field theory and integral quadratic forms we establish that distinct chiral edge phases

correspond to genera of positive-definite integral lattices. This completes the notion of

bulk-boundary correspondence for topological phases. We establish that by tuning inter-

channel interactions the system can be made to transition between the different edge

phases without closing the bulk gap.

Separately we construct a family of one-dimensional models, called Perfect Metals,

with no relevant mass-generating operators. These theories describe stable quantum crit-

ical phases of interacting fermions, bosons or spins in a quantum nanowire. These models

rigorously answer a long-standing question about the existence of stable metallic phases

in one and two spatial dimensions in the presence of generic disorder. Separately, they

are the first example of a stable phase of an infinite parallel array of coupled Luttinger

liquids.

We perform a detailed study of the transport properties of Perfect Metals and show

that in addition to violating the Wiedemann-Franz law, they naturally exhibit low power-

law dependence of electric and thermal conductivities on temperature (σ ∝ 1/T ) all the

way to zero temperature. We dub this phenomenological set of properties a hyperconduc-

tor because in some sense, hyperconductors are better conductors that superconductors,
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which may have thermal conductivities that are exponentially small in temperature.
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Chapter 1

Introduction

1.1 The study of condensed matter physics

The various branches of physics admit a classification in terms of the typical length

scale on which the phenomena studied occur. Astrophysics is the study of the very large,

with typical length scales on the order of light-years (1016 m). Geophysics or planetary

physics studies smaller objects, comparable to the size of the Earth (107 m). Particle

physics studies the internal structure of atoms (10−10 m). Condensed matter physics

studies phenomena of intermediate length scales, from the size of nanotubes (10−9 m) to

that solar cells (0.01 m).

While this is a very wide range of length scales, all the problems we condensed

matter physicists concern ourselves with involve many atoms (anywhere from 10, 000

to 1021). This last fact is responsible for the difficulty of the problem - with so many

variables around we cannot solve the governing equation of the system - the Schroedinger

equation. Put differently, we all know that F = m a, but how do you apply this to a

million particles? You cannot write down the problem, let alone solve it. It is for this

reason we often call it ”Many-Body Physics”.

1



Introduction Chapter 1

On the other hand, it is precisely the multitude of degrees of freedom of a system

that give rise to the richness and beauty of physical phenomena it exhibits. You can

know everything there is to know about a single molecule of water, but it is very difficult

(and some people think impossible) to predict from that the existence of water waves,

or the diversity of snowflakes. The set of characteristics necessary to describe a water

wave (its amplitude, wavelength, velocity) are very different from the characteristics of its

constituents (the water molecules), and in fact do not even make sense at the molecular

scale. We say that water waves are an emergent property of large collections of water

molecules. That is why, in my opinion, the motto of condensed matter physics is that

”more is different” [1].

All the physical systems discussed in this document are of intermediate lengths (10−6

m or larger) and have sufficiently many degrees of freedom to qualify for this motto.

Indeed, that in the fractional quantum Hall effect (discussed in Chapter 4) a collection

of electrons, all of unit charge, can behave as a quantum liquid with waves of fractional

charge is an example of emergence at play: many ones sometimes look like fractions.

1.2 Organization

In this section I will outline the organization of this document, as well as the results

presented in each chapter.

Lattices In Chapter 2 I give a mathematical introduction to lattices, with an emphasis

on integral unimodular lattices in high dimensions. I spell out the connection between

integral lattices and K-matrices, and I discuss a series of results from the theory of

quadratic forms that are central to the work in the entire rest of this document. In

particular, it is established that positive-definite integral unimodular lattices exist with

2
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arbitrarily large minimal norms exist, and that all integral indefinite lattices are related

by generalized Lorentz transformations.

Edge phases of bosonic IQH states In Chapter 3 we present a study of the edge

phases of 2D Abelian bosonic integer quantum Hall phases. It was known that the bulk

topological phases are classified by their chiral central charge, c = 8k, which must be a

multiple of 8. We show that multiple edge phases can terminate the same bulk, and that

the bulk-boundary correspondence is many-to-one. Furthermore, we show that different

edge phases are not only allowed but also energetically favorable in certain parameter

regimes.

We achieve this by writing down the exact edge theories for the c = 16 case in the

language of multi-channel Luttinger liquids and studying their stability to channel-mixing

and backscattering in RG. The fixed point theories are parametrized by the short-range

density-density interactions between the channels. We exhibit a one-parameter family

of interactions that can drive the edge of a sample from one phase to the other, while

encountering (generically) a KT-transition.

The distinct edge phases are shown to be in one-to-one correspondence with positive-

definite even integral unimodular lattices, which also exist only in dimensions that are a

multiple of 8.

While any given edge phase is chiral and therefore immune to perturbations (they

cannot open a gap), in the presence of counter-propagating edge modes that are gapped

out the mixing between the channels becomes important. This is the physical mecha-

nism that makes the transition between the edge phases possible. Mathematically, it is

conveniently captured by the notion of stable equivalence of lattices.

To make connection with possible experiments, we exhibit constructions of the two

possible c = 16 edge theories starting with fermionic degrees of freedom. The difference

3



Introduction Chapter 1

between the two theories turns out to be subtle and closely related to whether one can

”hear the shape of a drum?”[2]. If the wave equation is a Dirichlet problem for the

Laplacian, the question then is whether the spectrum of eigenvalues of the Laplacian

(the so-called fundamental tones) uniquely identifies the shape of the space which is

resonating. In 1964 Milnor constructed two flat 16-manifolds by modding out R16 by

the integral unimodular lattices known as Γ16 and Γ8 ⊕ Γ8 (see appendix). He did this

with the help of modular forms, which are functions defined on a given lattice and which

count the number of vectors of a given length in it. He established that the two lattices

have the same modular forms, and therefore that the two 16-manifolds constructed with

their help are isospectral. You can’t always hear the shape of a drum it turns out (for

more pedestrian examples, featuring 2-manifolds see Ref [3]).

The lattices used by Milnor in his isospectrality proof are the very lattices associated

with the two distinct edge phases we exhibit for c = 16 integer quantum Hall phases

of bosons. The addition of vectors in a lattice are the fusion rules of operators in the

edge conformal field theory. Furthermore, the lengths of vectors in each corresponding

lattice are the scaling dimensions of associated operators. As a result the equality of the

two modular forms implies that the edge phases cannot be distinguished through any

experiment that is sensitive only to the two-point functions in the theory (e.g. tunneling

across a quantum point contact, tunneling to an STM tip). However, as we show in 3.4

the two edge theories differ in their 3- and higher-point functions.

Finally, to show that neither of the two edge phases is a priori preferable to the

other we construct phase diagrams of the c = 16 edge as a function of various tuning

parameters. These suggest that both phases occupy comparable volumes of the parameter

space.

4
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Edge phases of 2+1D Abelian topological phases In this chapter we generalize

the results of the Chapter 3 to all 2+1-dimensional Abelian topological phases, fermionic

and bosonic, long-range entangled and short-range entangled.

Edge phases of bosonic/fermionic IQH states are in one-to-one correspondence with

even/odd integral unimodular lattices, and these are all stably equivalent upon enlarge-

ment with appropriate (bosonic or fermionic) trivial gapped degrees of freedom.

Here we discover a surprise, which is that integer quantum Hall states of fermions

admit edge phases with only bosonic low-lying excitations, and in particular that the

ν = 8 state can be terminated by the E8 conformal field theory. Make makes this finding

particularly exciting is that ν = 8 has been seen in experiments, but its edge properties

have not yet been carefully investigated.

The case of FQH edge phases is richer. Through the help of some powerful pre-existing

theorems we establish that the data that defines a 2+1-dimensional Abelian TQFT (the

anyon types, their braiding and exchange statistics, chiral central charge) determine a

unique integral lattice. The first implication of this is that all 2+1-dimensional Abelian

TQFTs can be written down as Abelian Chern-Simons theories with an appropriate

choice of the K-matrix.

A given bulk phase is also shown to generically have multiple physically distinct chiral

edge phases. These correspond to distinct positive-definite integral but not unimodular

lattices. In contrast to unimodular lattices, the non-unimodular ones of a given dimension

are not always stably-equivalent. Those that are said to form a genus. Therefore edge

phases of FQH states are in one-to-one correspondence with the notion of genera of

integral lattices. We make contact with the theory of quadratic forms in which every

lattice in a genus is shown to have the same p-adic symbols. We show an algorithm for

computing these symbols and checking whether two lattices are in the same genus and

therefore whether they are both admissible edge phases of the same bulk.

5
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Much like in the case of integer quantum Hall states, we establish that in the fractional

case certain fermionic bulk topological phases admit edge phases that are either fermionic

or bosonic. Moreover, we find that any fermionic bulk phase admits a edge phase with

only low-lying bosonic excitations provided we enlarge it with a certain number of Landau

levels.

Finally, we construct a set of new examples of edge phases of conventional quantum

Hall states, with ν = 8, 12, 8
15
, 16

5
.

Perfect Metals and Hyperconductors Using the technology of Abelian Conformal

Field Theories associated with integral lattices developed in Chapters 3,4 we construct a

family of multi-channel Luttinger liquids with no relevant perturbations. These theories

describe stable quantum critical phases of interacting fermions, bosons or spins in one-

spatial dimension. Precisely, we show that for certain kinds of frustrated interactions all

potentially gap-opening operators flow to weak-coupling in the IR, and the system re-

mains gapless. Quantum critical points that extend into entire phases without protection

from any symmetry are exceedingly rare.

In 2D and 3D such an example is the familiar Fermi liquid with a sufficiently distorted

Fermi surface to preclude the BCS and Kohn-Luttinger instabilities. However, we were

not aware of 1D examples prior to our work. Recently another example has been found

in the family of Schulz-Shastry models, but it is unclear whether the interactions in the

model are physical[4].

One of the consequences of the Perfect Metal construction is that coupling to all weak

disorder or single-site impurities is RG irrelevant. As a result Anderson localization (or

its extension to weak interactions) is thwarted. This establishes the Perfect Metals as a

first example of one-dimensional metallic states in the presence of generic disorder.

In Chapter 6 we perform a detailed study of the transport properties of a particular

6
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Perfect Metal phase. For the reasons mentioned above all current relaxation mechanisms

becomes less efficient at low energies, and conclude that the T = 0 state has dissipa-

tionless charge and heat current flow. In contrast to s-wave superconductors, where the

electronic degrees of freedom are gapped and therefore heat flow is exponentially weak

in temperature, hyperconductors become increasingly good heat conductors.

We show that in addition to violating the Wiedemann-Franz law, they naturally

exhibit low power-law dependence of electric and thermal conductivities on temperature

( ∝ 1/T ). This last feature is notable because it signals a breakdown of the conventional

quasiparticle picture of transport and is also present in the poorly understood strange

metal phase of the cuprate superconductors. Much effort is currently devoted to going

beyond the quasiparticle paradigm. Our model is a concrete and well-controlled example

of transport in a non-Fermi liquid and these results may shine light on general principles

regarding non-Fermi liquids and transport in strongly-correlated electron systems.

1.3 Permissions and Attributions

1. The content of Chapters 3,5,6 and its associated appendices is the result of collab-

orations with Michael Mulligan and Chetan Nayak, and has previously appeared

in Physical Review B[5, 6, 7]. The content of Chapter 4 and its associated ap-

pendices is the result of collaborations with Jennifer Cano, Meng Cheng, Michael

Mulligan, Jon Yard and Chetan Nayak. It has previously appeared in Physical

Review B[8]. All content is reproduced here with the permission of the American

Physical Society: http://www.aps.org.

7
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Chapter 2

Lattices

In this chapter I collect a number of facts about lattices and their properties.

Definition 1 (Lattice) A lattice Λ is a finite-dimensional vector space over the inte-

gers.

Example 2.0.1 (An n-dimensional lattice embedded in Rn)

Λ =

{
n∑
I=1

mIf
I |mI ∈ Z

}
=
〈
f1, f2, ...fn

〉
(2.1)

f I ≡
n∑
a=1

f Iaxa ∈ Rn (2.2)

where xa is a unit vector in the a-th dimension.

In the usual classification of crystal lattices encountered in the study of solids these

are called Bravais lattices, or lattices with no basis. In what follows I will use basis to

mean the generating set of a vector space (the set f1, ...fn).

By its embedding in Rn a lattice can naturally be endowed with a Euclidean inner

product, or any number of choices for a Lorentzian inner product. I will often refer to the

signature (n,m), n,m ∈ Z of a lattice, or a matrix, or the inner product. This will refer

8
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to the number of space-like and time-like dimensions in the vector space, or the number

of positive or negative eigenvalues of a matrix.

The Euclidean inner product is positive-definite, and therefore its signature can be

written as (n, 0) is (0, n) depending on the convention. I will use δab to refer to the

Euclidean inner product and ηab to refer to a general inner product.

For clarity

δab = δab =



1 0 · · · 0

0 1 0 · · ·
... 0 1 0

0 · · · 0 1


(2.3)

ηab = ηab =



±1 0 · · · 0

0 ±1 0 · · ·
... 0 ±1 0

0 · · · 0 ±1


(2.4)

N.B. All inner products considered will be assumed to be non-degenerate. This

means if u · v = 0, ∀v ∈ Λ, then u = 0.

Definition 2 (Dual Lattice) Given a lattice Λ embedded in Rn and an inner product

on Rn, we can define the dual lattice Λ∗ as the set of all vectors in Rn that have integer

inner products with all elements in Λ.

Λ∗ = {v|v ∈ Rn and v · u ∈ Z,∀u ∈ Λ} (2.5)

Definition 3 (Gram matrix) The Gram matrix of a lattice Λ in a certain basis {eI}
9
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is the matrix of inner products of the basis vectors.

Since the inner product as a binary operation is symmetric in the two arguments,

the Gram matrix is a symmetric matrix. The determinant of the Gram matrix is the

volume of the unit cell of the lattice (the volume form and the determinant both involve

the ε-tensor).

Example 2.0.2 (Hypercubic lattice) The n-dimensional hypercubic lattice embedded

in Rn, with an inner product of signature (r, n− r), is denoted by Ir,n−r. A simple basis

is given by the columns of the n× n identity matrix.

The Gram matrix is

G =

1r 0

0 −1n−r

 (2.6)

where 1r is the r × r identity matrix.

Example 2.0.3 (A2 root lattice) A2 is Lie algebra of SU(3) and its roots form a two-

dimensional lattice with basis vectors

e1 =
(√

2, 0
)

(2.7)

e2 =

(
− 1√

2
,

√
3

2

)
(2.8)

The Gram matrix is

G =

 2 −1

−1 2

 (2.9)

N.B. The Cartan matrices of simple Lie algebras are always positive definite, the inner

product on the lattice is always Euclidean.

10
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I will introduce the notation eI ≡ eaIxa for the basis of the dual lattice, such that

eI · fJ = δJI (2.10)

Let (K−1)
IJ

be the Gram matrix Λ with basis {f I}. The requirement that our inner

product is non-degenerate implies that the Gram matrix is non-singular and therefore

invertible.

Then, a concrete construction of a basis for the dual lattice is

eaI = KIJη
abfJb (2.11)

The Gram matrix of the dual lattice is

GIJ = eI · eJ = eaIηabe
b
J (2.12)

= eaIKIJηabη
bcfJc = eaIKIJf

J
a (2.13)

= KIJ (2.14)

N.B. The Gram matrix of a lattice is the inverse of the Gram of its dual. We will

typically use K to denote the Gram matrix of a lattice, calling it the K-matrix.

Three equivalent notions The following three notions are equivalent

1. Integral quadratic form

2. Lattice

3. K-matrix

Given a K-matrix of signature (r, n − r) we can always constructed a lattice whose

Gram matrix is the given K-matrix. First, let λa be the eigenvalues of KIJ with eaI

11
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the corresponding eigenvector. We normalize eaI such that KIJ = eaIηabe
b
J where ηab =

sgn(λa)δab. Now regard eaI as the components of the vector eI ∈ Rn with the inner

product ηab. The lattice is then the integral span of the eigenvectors of K. If the K-

matrix happens to be positive-definite, a basis can be obtained by performing a Cholesky

Decomposition. More generally a Singular Value decomposition and a rescaling of the

outer matrices by the square roots of the absolute values of the eigenvalues will yield a

valid basis.

Vice-versa, given a lattice and an inner product we can simply compute its Gram

matrix.

Finally, an integral quadratic form q : Z → R can always be constructed out of a

symmetric matrix K: q(x) = xixjKij

Since all these notions are equivalent, to make things intentionally confusing we will

typically operate with K-matrices but refer to them as lattices.

There are two senses in which one might define a change of basis of the lattice. One

is rotating the entire set of points in Rn, with no effect on the Gram matrix.

The other is constructing a set of integer linear combinations of the old basis vectors.

Example 2.0.4 (Basis change) A basis change of Λ is given by SL(n,Z).

f I = W I
J f̃J , where W ∈ SL(n,Z) (2.15)

In the new basis the Gram matrix becomes

G̃ = W TGW (2.16)

The reason why SL(n,Z) is the right group and not GL(n,Z) is because the inverse

of a basis change is also a basis change, but since det(W ) = 1/ det(W−1), W and W−1

12
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can both have integral entries only if det(W ) = ±1.

N.B. Note that this implies we allow det(W ) = −1 which is a basis change that also

changes the orientation.

We will say that two lattices with K-matrices K1 and K2 are equivalent iff there is a

basis change W ∈ SL(n,Z) such that K1 = W TK2W .

Definition 4 (Integral lattice) A lattice is integral iff every entry in its Gram matrix

is integral.

Note that since basis changes are elements of SL(n,Z) the Gram matrix is either

integral in all bases, or in none.

Definition 5 (Even/Odd lattice) An integral lattice is even iff every diagonal entry

in its Gram matrix is even, otherwise it is odd.

Definition 6 (Unimodular lattice) A lattice is unimodular iff its Gram matrix has

determinant ±1.

An integral lattice is unimodular if and only if its dual lattice is integral. The name

”modular” probably comes from the fact that

Earlier we saw the hypercubic lattice Ir,n−r, which is both integral and unimodular.

We saw the root lattice of A2 which is integral but not unimodular (det(K) = 3).

Note that out of any integral (but not unimodular) lattice one can construct a lattice

with unit cell of volume 1 by rescaling all basis vectors.

2.0.1 Unimodular lattices of definite signature

Every unimodular lattice is either odd or even, in the sense of Definition 5. The other

properties we can ascribe to one are its dimension/rank and its signature (which is the

signature of the inner product on Rn.
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The classification of positive-definite unimodular lattices is complete for dimensions

1− 25, and many partial results exist for higher dimensions.

Theorem 2.0.1 (Even unimodular lattices) Even unimodular lattices of positive-definite

signature exist only in dimensions divisible by 8 [9].

A summary of known results about the number of distinct unimodular lattices in

different dimension is in Table 2.1. Two lattices are different if they cannot be related

by a SL(n,Z) or, equivalently, SO(n,Z) transformation.

Classification of even unimodular lattices Given a lattice Λ, one can define the

(Jacobi) theta function[11, 9] as follows

θΛ(z) =
∑
v∈Λ

eπiz|v|
2

(2.17)

where the sum runs over all vectors in the lattice, and |v|2 = v · v is the norm. (For

further confusion we shall sometimes also refer to this as the norm-squared).

Roughly speaking this function counts the number of vectors of each norm in the

lattice. It is clear that for integral Λ the theta function is a holomorphic function.

It turns out that the theta function of an even unimodular lattice in n dimensions is

a modular form of weight n/2[9]. These objects are well understood. This is one of tools

used in classifying even unimodular lattices.

Let Γ8 be the root lattice of the E8 exceptional algebra. Γ16 is the only other even

integral unimodular lattice, as is closely related to the root lattice of SO(32) modded by

a Z2 [11].

Remark 2.0.1 (Isospectrality) Since there is unique modular form of weight 8, the

theta functions of the lattices Γ8 ⊕ Γ8 and Γ16 are the same.
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θΓ16 = 1 + 480e2πz + 129× 480e4πiz + . . . (2.18)

For instance, we can see that there are 480 vectors of norm 2 in each lattice. The

theta function equality of the two lattices implies they have exactly the same number

of vectors of each norm, a fact that was used by Milnor [12] to prove that R16/Γ16 and

R16/Γ8 ⊕ Γ8 are isospectral manifolds.

2.0.2 Unimodular lattices of indefinite signature

Contrary to the positive-definite case, there are even unimodular lattices of signature

(8k + n, n). The simplest example occurs in 2 dimensions, is known as II1,1 and has

K-matrix

U =

0 1

1 0

 (2.19)

The simplest indefinite odd unimodular lattice is just the I1,1 hypercubic, from Ex-

ample 2.0.2.

The main result about indefinite unimodular lattices is that

Theorem 2.0.2 There is unique odd unimodular lattice of signature (r, n − r) up to

SO(r, n− r). It is Ir,n−r.

There is a unique even unimodular lattice of signature (8k + n, n) up to SO(8k + n, n) .

It is II8k+n,n [9].

This means that all indefinite lattices are classified by: their signature and their parity

(odd/even). In the positive-definite case further data was necessary (such as classification

of its theta function).
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Example 2.0.5 (Equivalence of indefinite lattices) Let K1 be (the Gram matrix of)

an odd positive-definite unimodular lattice of dimension n and K2 an even/odd positive-

definite unimodular lattice of dimension m. Then the lattice K1⊕−K2 is odd unimodular

and indefinite with signature (n,m), aka In,m.

There is both a basis change W ∈ SL(n+m,Z) such that K1⊕−K2 = W T In,mW , and

a “Lorentz transformation” O ∈ SO(n,m) that maps the basis vectors of the K1 ⊕−K2

into some basis for In,m. This fact becomes important in the construction of Perfect

Metals in Chapter 5.

2.0.3 Integral lattices of definite signature

Theorem 2.0.3 (Eisenstein,Hermite [13]) There exist only finitely many distinct def-

inite integral lattices of dimension n and Gram matrix determinant d ∈ N+.

2-dimensions

Two dimensional lattices are classified by their Gauss reduced form, which can be

computed in a finite number of steps outlined here [14].

Higher dimensions

In higher dimensions the classification is done with other methods, and is not com-

plete.

2.0.4 Integral lattices of indefinite signature

One of the questions that comes up in the study of quantum Hall edges is whether a

particular K-matrix has null-vectors. Those vectors can subsequently be used to define

operators that may lead to a gap opening in the energy spectrum.

16



Lattices Chapter 2

We illustrate a few examples of indefinite integral lattices with no null vectors.

N.B. Given an indefinite but invertible K-matrix it is always possible to find real

vectors whose inner product is null. This follows easily from the fact that the eigen-

vectors of a real symmetric matrix are orthogonal, so we can take an appropriate linear

combination to make the weighted sum of their eigenvalues (of opposite signs) zero.

2-dimensions

K =

1 0

0 −p

 (2.20)

has no null vectors for any integer p that is not a square.

3-dimensions

K =


1 0 0

0 1 0

0 0 −p

 (2.21)

has no null vectors for p ≡ 3 mod 4.
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4-dimensions

K =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −p


(2.22)

has no null vectors for p ≡ 7 mod 8.

From Lagrange’s four-square theorem it follows that the 4-dimensional hypercubic

lattice has vectors of whose norm is any positive integer. In particular that means that

the lattice I4,1 has null-vectors.

A more general result is the following.

Theorem 2.0.4 (5.22 in Ref [15]) An integral quadratic form represents zero ratio-

nally iff it is a p-adic zero form for every prime p.

If a form represents zero rationally, it represents zero integrally because we can mul-

tiply each rational by the least common multiple of all their denominators. In practice

one does not need to check that the form represents zero p-adically for all primes, but

only those that divide the determinant.

A corollary of this theorem is Meyer’s Theorem which states that all indefinite

quadratic forms over the rationals in five or more variables represent zero, which im-

plies all indefinite integral lattices in five or more dimensions have null vectors.
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2.0.5 Minimal norms

Often one needs to know what is the minimal norm µ(Λ) among all non-zero vectors

of a positive-definite lattice Λ.

µ(Λ) =
minv∈Λ,v 6=0 v · v

n
√

det(Λ)
(2.23)

This is known as the Short Vector Problem and is believed to be NP-hard 1.

A simple to prove and very general result is due to Minkowski:

Theorem 2.0.5 (Minkowski Convex Body Theorem [13]) Any lattice Λ ∈ Rn, re-

gardless of the inner product, contains at least one vector whose Euclidean norm (v · v)

is less than or equal to (Hermite’s constant) r2
m, where rnm =

(
2n

ωn

)
vol(Rn/Λ).

Here ωn is the volume of the unit radius sphere in n-dimensions. The volume of the

fundamental domain of a unimodular lattice is 1 by definition, vol(Rn/Λ) = 1. In that

case the formula simplifies and says that any n-dimensional unimodular lattice has a

non-zero vector with norm at most

|v|2 ≤ 4

ω
2/n
n

We summarize this in Table 2.2.

A lower bound is due to Hlawka, and a much tighter upper bound comes from studies

of the sphere packing problem and is due to Rogers.

Theorem 2.0.6 (Hlawka, Rogers, p35 of Ref [13]) For any n-dimensional lattice

(
2ζ(n)

ωn

)2/n

≤ µ(Λ) ≤ 4

(
σn
ωn

)2/n

(2.24)

1https://en.wikipedia.org/wiki/Lattice_problem
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where asymptotically σn ∼ n
e
√

2n
.

Note that there is no guarantee that such a lattice exists among the integral and

unimodular ones. In fact, that is not true, as can be seen from Table 2.1. A usefum

heuristic to remember is that asymptotically the minimal norm in n-dimensions goes like

n
12

+ 1.

Finally, a constructive result:

Theorem 2.0.7 (Lemma 7.1 of Ref [13]) For each dimension n there exists a lattice

Λn which maximizes the minimal norm µ(Λn) from Eqn 2.23, and furthermore, the Gram

matrix of this lattice can be made rational after rescaling by a real number.

It says that there is indeed a lattice that saturates the maximal possible value of the

minimal norm in n-dimensions. The lattice will generically be non-integral. However,

computing the maximal value of the minimal norm is a hard problem and values are only

known up to dimension 8.

All this is summarized in Figure 2.1

The figure shows that in low dimensions the lattices known are very close to saturating

the Rogers bound, and in particular that no lattice with minimal norm larger than 2 exists

exists below 10 dimensions. The first such lattice is the laminated Λ10.

A useful result about existence of integral unimodular lattices with certain minimal

norms is due to Conway and Thompson.

Theorem 2.0.8 (9.5 of Ref [13]) For any dimension n there exists an odd positive-

definite integral unimodular lattice Λ with (minimal norm)

min
v∈Λ,v 6=0

v · v ≥ k(n)

where k(n) is the closest integer to
(

5
3
ω−1
n

)2/n
.
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Figure 2.1: Plot of minimal norms by dimension. Lower branch is lower bound due
to Minkowski-Hlawka. Upper branch is upper bound by Rogers. The middle branch
are the maximal attainable minimal norms up to dimensions 8, and maximal known
so far above.

Since k(n) is an increasing function, this implies that given your favorite positive

integer k, there is an odd integral unimodular lattice in sufficiently many dimensions

with minimal norm k. The statement can be extended to even unimodular lattices as

well. For example, the lattice Γ8⊗ ...Γ8, made of the n-fold tensor product of the E8 root

lattice, is even unimodular and has minimal norm 2n (follows for example from Theorem

9.6 (Steinberg) of Ref [13].

The result above will be important in Chapter 5, where integral lattices with larger

norms will be used to build increasingly stable phases.
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Dimension Odd lattices Odd latt., no roots Even lattices Even latt., no roots
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0
7 1 0 0 0
8 1 0 1 (E8) 0
9 2 0 0 0
10 2 0 0 0
11 2 0 0 0
12 3 0 0 0
13 3 0 0 0
14 4 0 0 0
15 5 0 0 0
16 6 0 2 (E2

8 , D
+
16) 0

17 9 0 0 0
18 13 0 0 0
19 16 0 0 0
20 28 0 0 0
21 40 0 0 0
22 68 0 0 0
23 117 1 (shorter Leech) 0 0
24 273 1 (odd Leech) 24 (Niemeier lattices) 1 (Leech lattice)
25 665 0 0 0
26 ≥ 2307 1 0 0
27 ≥ 14179 3 0 0
28 ≥ 327972 38 0 0
29 ≥ 37938009 ≥ 8900 0 0
30 ≥ 2× 1010 ≥ 82000000 0 0
31 ≥ 5× 1012 8× 1011 0 0
32 ≥ 8× 1016 ≥ 1016 ≥ 109 ≥ 107

Table 2.1: Bounds on the number of unimodular lattices up to dimension 32. Data
from [10]. Lattices with no roots contain no non-zero vectors of norm 2 or below.

n 2 3 4 5 6 7 8 9 10 11 12 13 14
4

ω
2/n
n

1.28 1.54 1.81 2.06 2.32 2.57 2.82 3.07 3.32 3.57 3.82 4.06 4.31

Table 2.2: Upper bounds on the minimal norms of unimodular lattices up to dimension 14.
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Chapter 3

Edge phase transitions in the E8×E8

state

3.1 Introduction

The last decade has seen enormous progress in the understanding of topological phases

(see Ref. [16] and references therein) and of symmetry-protected topological (SPT)

phases [17, 18, 19, 20]. SPT phases are gapped phases of matter that do not have non-

trivial excitations in the bulk; have vanishing topological entanglement entropy [21, 22] or,

equivalently, have short-ranged entanglement (SRE); but have gapless excitations at the

edge in the presence of a symmetry. In the case of the most famous and best-understood

example, ‘topological insulators’ (see Refs. [23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and ref-

erences therein), the symmetry is time-reversal. Topological phases (without a modifier)

are gapped phases of matter that are stable to arbitrary perturbations; support anyons

in the bulk; and have non-zero topological entanglement entropy or, equivalently, have

long-ranged entanglement (LRE). They may or may not (depending on the topological
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phase) have gapless edge excitations.1

However, there is a third possibility: phases of matter that do not support anyons but

nevertheless have gapless excitations even in the absence of any symmetry. Thus, they lie

somewhere between topological phases and symmetry-protected topological phases, but

are neither. Integer quantum Hall states of fermions are a well-known example. Their

gapless edge excitations are stable to arbitrary weak perturbations even though they do

not support anyons and only have SRE [34, 35]. Although the existence and stability of

SRE integer quantum Hall states might seem to be a special feature of fermions, such

states also exist in purely bosonic systems, albeit with some peculiar features.

For any integer N , there is an integer quantum Hall state of fermions with SRE,

electrical Hall conductance σxy = N e2

h
, and thermal Hall conductance κxy = N

π2k2
BT

3h
.

[36] In fact, there is only one such state for each N : any two SRE states of fermions at

the same filling fraction N can be transformed into each other without encountering a

phase transition. 2 (This is true in the bulk; see Section 3.7.2 for the situation at the

edge.) Therefore, the state with N filled Landau levels of non-interacting fermions is rep-

resentative of an entire universality class of SRE states. As a result of its N chiral Dirac

fermion edge modes, this is a distinct universality class from ordinary band insulators.

These edge modes, which have Virasoro central charge c = N if all of the velocities are

equal, are stable to all perturbations. If we do not require charge conservation symmetry,

then some Hamiltonians in this universality class may not have σxy = N e2

h
, but they will

1We note that SPT phases can all be adiabatically connected to a trivial ground state if we do not
require that the associated symmetry be preserved. Topological phases cannot be. However, if we restrict
to Hamiltonians that respect a symmetry then, just as the trivial phase splits into many SPT phases, a
non-trivial topological phase could split into multiple phases that could be distinguished, for instance,
by their edge excitations. For a discussion of such “symmetry-enhanced topological phases”, see Ref
[33].

2Of course, it may be possible to take a route from one to the other that does cross a phase transition
but such a transition can always be avoided. For instance, if we restrict to Sz-conserving Hamiltonians,
then a phase transition must be encountered in going from a spin-singlet N = 2 state to a spin-polarized
one. If we do not make this restriction, however, then this phase transition can be avoided and the two
states can be adiabatically-connected.
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all have κxy = c
π2k2

BT

3h
= N

π2k2
BT

3h
.

Turning now to bosons, there are SRE states of bosons with similarly stable chiral

edge modes, but only for central charges c = 8k. As we discuss, they correspond to even,

positive-definite, unimodular lattices. Moreover, while there is a unique such state with

c = 8, there appear to be two with c = 16, twenty-four with c = 24, and more than ten

million with c = 32. [9] Thus, we are faced with the possibility that there are many SRE

bosonic states with the same thermal Hall conductance κxy, presumably distinguished

by a more subtle invariant. In this chapter, we show that this is not the case for c = 16.

The two SRE bosonic states with c = 16 edge excitations are equivalent in the bulk:

their partition functions on arbitrary closed manifolds are equal. However, there are two

distinct chiral edge phases of this unique bulk state. They are connected by an edge

reconstruction: a phase transition must be encountered at the edge in going from one

state to the other, but this transition can occur solely at the edge and the gap need not

close in the bulk. Although we focus on the c = 16 case, the logic of our analysis readily

generalizes. Therefore, we claim that there is essentially a unique bulk bosonic phase for

each c = 8k given by k copies of the so-called E8-state [19, 20]. However, there are two

distinct fully-chiral edge phases with c = 16, twenty-four with c = 24, more than ten

million with c = 32, and even more for larger c.

One important subtlety arises in our analysis. The two c = 16 phases do not, initially,

appear to be identical. However, when combined with a trivial insulating phase, the two

bulk partition functions can be mapped directly into each other by a change of variables.

This is a physical realization of the mathematical notion of stable equivalence. In general,

an effective description of a phase of matter will neglect many gapped degrees of freedom

(e.g., the electrons in inner shells). However, the sequence of gapped Hamiltonians that

interpolates between two gapped Hamiltonians may involve mixing with these usually-

forgotten gapped degrees of freedom. Therefore, it is natural, in considering a phase
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of matter, to allow an arbitrary enlargement of the Hilbert space by trivial gapped

degrees of freedom (i.e., by SRE phases without gapless edge excitations). This is useful

when, for instance, comparing a trivial insulating phase with p bands with another trivial

insulating phase with q > p bands. They can be adiabatically connected if we are allowed

to append q− p trivial insulating bands to the latter system. This notion is also natural

when connecting different phases of gapless edge excitations. The edge of a gapped bulk

state will generically have gapped excitations that we ordinarily ignore. However, they

can become gapless – which is a form of edge reconstruction – and interact with the other

gapless degrees of freedom, driving the edge into a different phase. However, this does

not require any change in the bulk. As we will see, such a purely edge phase transition

connects the two seemingly different chiral gapped edges with c = 16. By combining a

c = 16 state with a trivial insulator, we are able to take advantage of the uniqueness of

signature (8k + n, n) even unimodular lattices [37], from which it follows that the two

phases are the same. This is closely-related to the fact that T -duality exchanges toroidal

compactifications of the E8 × E8 and Spin(32)/Z2 versions of the heterotic string, as

explained by Ginsparg [38].

In the remainder of this chapter, we describe the equivalence of the two candidate

phases at k = 2 from two complementary perspectives. To set the stage, we begin in

Section 3.2 with a short introduction to the K-matrix formalism that we use to describe

the phases of matter studied in this chapter. In Section 3.3, we provide a bulk description

of the equivalence of the two candidate phases at k = 2. We then turn to the edge,

where we show that there are two distinct chiral phases of the edge. We first discuss

the fermionic description of the edge modes in Section 3.4 and then turn to the bosonic

description in Section 3.5. There is an (purely) edge transition between these two phases.

We discuss the phase diagram of the edge, which is rather intricate, and its relation to

the bulk. In Section 3.6, we summarize how the phase diagram can change when some
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of the degrees of freedom are electromagnetically charged so that a U(1) symmetry is

preserved. We then conclude in Section 3.7 and discuss possible generalizations of this

picture.

In Appendix A, we collect basic definitions and explain the notation used throughout

the text. In Appendix B, we provide some technical details for an argument used in the

main text.

3.2 K-matrix Formalism

3.2.1 Chern-Simons Theory

We will consider 2 + 1-dimensional phases of matter governed by bulk effective field

theories of the form:

L =
1

4π
εµνρKIJa

I
µ∂νa

J
ρ + jµI a

I
µ, (3.1)

where aIµ, for I = 1, ..., N and µ = 0, 1, 2. See Refs. [39] and [40] for a pedagogical

introduction to such phases. KIJ is a symmetric, non-degenerate N ×N integer matrix.

(Repeated indices should be summed over unless otherwise specified.) We normalize the

gauge fields aIµ and sources jµI so that fluxes that are multiples of 2π are unobservable by

the Aharonov-Bohm effect. Consequently, if we take the sources to be given by prescribed

non-dynamical classical trajectories xµm(τ) that serve as sources of aIµ flux, they must take

the form:

jµI =
∑
m

n
(m)
I δ(xµ − xµm(τ))∂τx

µ
m, (3.2)

for integers n
(m)
I . The sum over m is a sum over the possible sources xm.

Therefore, each excitation m of the system is associated with an integer vector n
(m)
I .
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These integer vectors can be associated with the points of a lattice as follows. Let λa

for a = 1, . . . , N be the eigenvalues of (K−1)IJ with f Ia the corresponding eigenvectors.

We normalize the f Ia so that (K−1)IJ = ηabf Iaf
J
b where ηab = sgn(λa)δ

ab. Now suppose

that we view the f Ia as the components of a vector f I ∈ RN+,N− (i.e., of RN with a

metric ηab = sgn(λa) δab of signature (N+, N−)), where K−1 has N+ positive eigenvalues

and N− negative ones. In other words, the unit vector x̂a = (0, ..., 0, 1, 0, ..., 0)tr with

a 1 in the a-th entry and zeros otherwise is an orthonormal basis of RN+,N− so that

x̂a · x̂b ≡ (x̂a)cηcd(x̂b)d = ηab. Then we can define f I ≡ f Ia x̂a. Thus, the eigenvectors f I

define a lattice Γ in RN+,N− according to Γ = {mIf
I |mI ∈ Z}; this lattice determines the

allowed excitations of the system [41, 42].

The lattice Γ enters directly into the computation of various physical observables.

For example, consider two distinct excitations corresponding to the lattice vectors u =

mIf
I and v = nJ f

J in Γ. If one excitation is taken fully around the other, then the

resulting wavefunction differs from its original value by the exponential of the Berry’s

phase 2π(K−1)IJmInJ = 2πu ·v. When the excitations are identical, u = v, a half-braid

is sufficient and a phase equal to πu · u is obtained.

Of course, any basis of the lattice Γ is equally good; there is nothing special about

the basis f I . We can change to a different basis f I = W I
J f̃

J , where W ∈ SL(N,Z). (W

must have integer entries since it relates one set of lattice vectors to another. Its inverse

must also be an integer matrix since either set must be able to serve as a basis. But since

det(W ) = 1/det(W−1), W and W−1 can both be integer matrices only if det(W ) = ±1.)

This lattice change of basis can be interpreted as the field redefinitions, ãIµ = W I
Ja

J
µ and

j̃µIW
I
J = jµJ , in terms of which the Lagrangian (3.1) becomes

L =
1

4π
εµνρK̃IJ ã

I
µ∂ν ã

J
ρ + j̃µI ã

I
µ, (3.3)
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where K = W T K̃W . Therefore, two theories are physically identical if their K-matrices

are related by such a similarity transformation.

We note that the low energy phases described here may be further sub-divided ac-

cording to their coupling to the electromagnetic field, which is determined by the N -

component vector tI :

L =
1

4π
εµνρKIJa

I
µ∂νa

J
ρ + jµI a

I
µ −

1

2π
εµνρtIAµ∂νa

I
ρ. (3.4)

It is possible for two theories with the same K-matrix to correspond to different phases

if they have different tI vectors since they may have different Hall conductances σxy =

e2

h
(K−1)IJtItJ . (It is also possible for discrete global symmetries, such as time-reversal,

to act differently on theories with the same K-matrix in which case they can lead to

different SPT phases if that symmetry is present.)

In this chapter, we will be interested in states of matter in which all excitations

have bosonic braiding properties, i.e., in which any exchange of identical particles or

full braid of distinguishable particles leads to a phase that is a multiple of 2π. Hence,

we are interested in lattices for which f I · fJ is an integer for all I, J and is an even

integer if I = J . Hence, K−1 is a symmetric integer matrix with even entries on the

diagonal. By definition K must also an integer matrix. Since both K and K−1 are

integer matrices, their determinant must be ±1. Because f I · f I ∈ 2Z (no summation on

I) and det(f I · fJ) = ±1, the lattice Γ is said to be an even unimodular lattice.

It is convenient to introduce the (dual) vectors eaI = KIJη
abfJb . If, as above, we

view the eaI as the components of a vector eI ∈ RN+,N− according to eI ≡ eaI x̂a, then

KIJ = eI · eJ . Moreover, eI is the basis of the dual lattice Γ∗ defined by f I · eJ = δIJ .

Since the lattice Γ is unimodular, it is equal to Γ∗, up to an SO(N+, N−) rotation, from

which we see that K must be equivalent to K−1, up to an SL(N,Z) change of basis. (In
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fact, the required change of basis is provided by the defining relation eaI = KIJη
abfJb .)

Now consider the Lagrangian (3.5) on the spatial torus. For convenience, we assume

there are no sources so jµ = 0. We can rewrite the Lagrangian as

L =
1

4π
εµνρeI · eJaIµ∂νaJρ + jµI f I · eJaJµ (3.5)

=
1

4π
εµνρaµ · ∂νaρ + jµ · aµ, (3.6)

where we have defined aµ ≡ eIa
I
µ and jµ ≡ f IjµI . Choosing the gauge a0 = 0, ∂iai = 0,

the Lagrangian takes the form:

L = − 1

2π
a1 · ∂ta2. (3.7)

Therefore, a1 and a2 are canonically conjugate. Although we have gauge-fixed the theory

for small gauge transformations, under a large gauge transformation, aIk → aIk+nI(k) where

nI(k) are integers (so that physical observables such as the Wilson loop e
i
∮
Ck

aIk about the

1-cycle Ck remains invariant). Therefore, we must identify aj and aj + nI(k)eI since they

are related by a gauge transformation.

Suppose that we write a ground state wavefunction in the form Ψ[a1]. Then a1 will

act by multiplication and its canonical conjugate a2 will act by differentiation. To display

the full gauge invariance of the wavefunction, Ψ[a1] = Ψ[a1 + nIeI ], it is instructive to

expand it in the form:

Ψ[a1] = N
∑
mI

ΨmIe
2πimI f

I ·a1 (3.8)

where mI ∈ Z. This is an expansion in eigenstates of a2, with the mI term having the

eigenvalue 2πimIf
I . However, by gauge invariance, a1 takes values in RN/Γ∗. Therefore,

we should restrict mI such that mIf
I lies inside the unit cell of Γ∗. In other words,

the number of ground states on the torus is equal to the number of sites of Γ that lie
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inside the unit cell of Γ∗. This is simply the ratio of the volumes of the unit cells,

|det(K)|1/2/|det(K)|−1/2 = |det(K)|. It may be shown that this result generalizes to a

ground state degeneracy |detK|g on a genus g surface [43]. Therefore, the theories on

which we focus in this chapter have non-degenerate ground states on an arbitrary surface,

which is another manifestation of the trivial braiding properties of its excitations.

One further manifestation of the trivial braiding properties of such a phase’s excita-

tions is the bipartite entanglement entropy of the ground state [21, 22]. If a system with

action (3.1) with jµI = 0 is divided into two subsystems A and B and the reduced density

matrix ρA for subsystem A is formed by tracing out the degrees of freedom of subsystem

B, then the von Neumann entropy SA = −tr
(
ρA log(ρA)

)
takes the form:

SA = αL− ln
√
|det(K)|+ . . . (3.9)

Here, α is a non-universal constant that vanishes for the action (3.1), but is non-zero if

we include irrelevant sub-leading terms in the action (e.g., Maxwell terms for the gauge

fields). L is the length of the boundary between regions A and B. The . . . denote terms

with sub-leading L dependence. For the theories that we will consider in this chapter,

the second term, which is universal, vanishes. For this reason, such phases are called

“short-range entangled.”

The discussion around Eq. (3.8), though essentially correct as far as the ground

state degeneracy is concerned, swept some subtleties under the rug. A more careful

treatment [44] uses holomorphic coordinates a = a1 + iK · a2, in terms of which the

wavefunctions are ϑ-functions. Moreover, the normalization N must account for the

fact that the wavefunction Ψ is a function only on the space of ai with vanishing field

strength (which the a0 = 0 gauge constraint requires), not on arbitrary ai. Consequently,

it depends on the modular parameter of the torus as N = (η(τ))−N+(η(τ))−N− where
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N± are the number of positive and negative eigenvalues of KIJ ; the torus is defined by

the parallelogram in the complex plane with corners at 0, 1, τ , τ + 1 and opposite sides

identified; and is η(τ) = q
1
24

∏∞
n=1(1 − qn) is the Dedekind η function, where q = e2πiτ .

Consequently, the ground state wavefunction transforms non-trivially under the mapping

class group of the torus (i.e., under diffeomorphisms of the torus that are disconnected

from the identity, modulo those that can be deformed to the identity) which is equal to

the modular group SL(2,Z) generated by S : τ → −1/τ and T : τ → τ + 1. Under T ,

which cuts open the torus along its longitude, twists one end of the resulting cylinder by

2π, and then rejoins the two ends of the cylinder to reform the torus, thereby enacting

τ → τ + 1, the ground state transforms according to Ψ→ e−2πi(N+−N−)/24 Ψ. Therefore,

so long as N+ −N− 6≡ 0 (mod 24), the bulk is not really trivial.

3.2.2 Edge Excitations

The non-trivial nature of these states is reflected in more dramatic fashion on surfaces

with a boundary, where there may be gapless edge excitations. For simplicity, consider

the disk D with no sources in its interior [45, 46]. The action (3.1) is invariant under

gauge transformations aIµ → aIµ + −i(gI)−1∂µg
I , where gI ∈ [U(1)]N , so long as gI = 1

at the boundary ∂D. In order to fully specify the theory on a disk, we must fix the

boundary conditions. Under a variation of the gauge fields δaJµ, the variation of the

action S =
∫
R×D L (here, R is the time direction) is

δS =
1

2π

∫
R×D

δaIµKIJε
µνρ∂νa

J
ρ +

1

4π

∫
R×∂D

εµνrKIJa
I
µδa

J
ν (3.10)

Here r is the radial coordinate on the disk. The action will be extremized byKIJε
µνρ∂νa

J
ρ =

0 (i.e. there won’t be extra boundary terms in the equations of motion) so long as we

take boundary conditions such that εµνrKIJa
I
µδa

J
ν = 0. We can take boundary condition
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KIJa
I
0 +VIJa

I
x = 0, where x is the azimuthal coordinate. Here VIJ is a symmetric matrix

that is determined by non-universal properties of the edge such as how sharp it is. The La-

grangian (3.1) is invariant under all transformations aJµ(x)→ aJµ(x)− i(gJ)−1(x)∂µg
J(x)

that are consistent with this boundary condition. Only those with gJ = 1 at the bound-

ary are gauge symmetries. The rest are ordinary symmetries of the theory. Therefore,

although all bulk degrees of freedom on the disk are fixed by gauge invariance and the

Chern-Simons constraint, there are local degrees of freedom at the boundary.

The Chern-Simons constraintKIJεij∂ia
J
j = 0 can be solved by taking aIi = (U I)−1∂iU

I

or, writing U I = eiφ, aIi = ∂iφ, where φ ≡ φ + 2π. This gauge field is pure gauge

everywhere in the interior of the disk (i.e. we can locally set it to zero in the interior with

a gauge transformation), but it is non-trivial on the boundary because we can only make

gauge transformations that are consistent with the boundary condition. Substituting this

expression into the action (3.1), we see that the action is a total derivative which can be

integrated to give a purely boundary action:

S =
1

4π

∫
dt dx

[
KIJ ∂tφ

I ∂xφ
J − VIJ ∂xφI ∂xφJ

]
. (3.11)

The Hamiltonian associated with this action will be positive semi-definite if and only if

VIJ has non-negative eigenvalues. If we define X ≡ eJφ
J or, in components, Xa ≡ eaJφ

J ,

then we can rewrite this in the form

S =
1

4π

∫
dt dx

[
ηab∂tX

a ∂xX
b − vab ∂xXa ∂xX

b
]
, (3.12)

where vab ≡ VIJf
I
af

J
b . We see that the velocity matrix vab parameterizes density-density

interactions between the edge modes. Note that the fields Xa satisfy the periodicity

conditions Xa ≡ Xa + 2πeaIn
I for nI ∈ Z.
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This theory has N different dimension-1 fields ∂xφ
I . The theory also has ‘vertex

operators’, or exponentials of these fields that must be consistent with their periodicity

conditions: eimIφ
I

or, equivalently, eimI f
I ·X or, simply, eiu·X = eiηabu

aXb
for u ∈ Γ. They

have correlation functions:

〈
eiu·Xe−iu·X

〉
=

N+∏
b=1

1

(x− vbt)yb

N∏
b=N++1

1

(x+ vbt)yb
(3.13)

In this equation, yb ≡
∑

a,c,d,e uaSabηbc(S
T )cdηdeue, where Sab is an SO(N) matrix that

diagonalizes ηabvbc. Its first N+ columns are the normalized eigenvectors corresponding

to positive eigenvalues of ηabvbc and the next N− columns are the normalized eigenvectors

corresponding to negative eigenvalues of ηabvbc. The velocities vb are the absolute values

of the eigenvalues of ηabvbc. Therefore, this operator has scaling dimension

∆u =
1

2

N∑
b=1

yb. (3.14)

The scaling dimensions of an operator in a non-chiral theory generally depend upon the

velocity matrix vab. For a fully chiral edge, however, ηab = δab and Sab ∈ SO(N), so

∆u = 1
2
|u|2.

If the velocities all have the same absolute value, |va| = v for all a, then the theory

is a conformal field theory with right and left Virasoro central charges c = N+ and

c = N−. Consequently, we can separately rescale the right- and left-moving coordinates:

(x − vt) → λ(x − vt) and (x + vt) → λ′(x + vt). The field ∂xX
a has right and left

scaling dimension (1, 0) for a = 1, 2, . . . , N+ and dimension (0, 1) for a = N+ + 1, . . . , N .

Meanwhile, eiu·X has scaling dimension:

(∆R
u ,∆

L
u) = (

1

2

N+∑
b=1

yb,
1

2

N∑
b=N++1

yb). (3.15)
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which simplifies, for the case of a fully chiral edge, to (∆R
u ,∆

L
u) = (1

2
u · u, 0).

In a slight abuse of terminology, we will call the state of matter described by Eq. (3.1)

in the bulk and Eq. (3.11) on the edge a c = N+, c = N− bosonic SRE phase. In the

case of fully chiral theories that have c = 0, we will sometimes simply call them c = N

bosonic SRE phases. Strictly speaking, the gapless edge excitations are only described

by a conformal field theory when the velocities are all equal. However, we will continue

to use this terminology even when the velocities are not equal, and we will use it to refer

to both the bulk and edge theories.

In the case of a c > 0, c = 0 bosonic SRE phase, all possible perturbations of the edge

effective field theory Eq. (3.11) – or, equivalently, Eq. (3.12) – are chiral. Since such

perturbations cannot open a gap, completely chiral edges are stable. A non-chiral edge

may have a vertex operator eiu·X with equal right- and left-scaling dimensions. If its total

scaling dimension is less than 2, it will be relevant and can open a gap at weak coupling.

More generally, we expect that a bosonic SRE will have stable gapless edge excitations

if c− c > 0. Some of the degrees of freedom of the theory (3.11) will be gapped out, but

some will remain gapless in the infrared (IR) limit and the remaining degrees of freedom

will be fully chiral with cIR = c− c and cIR = 0. Therefore, even if such a phase is not,

initially, fully-chiral, the degrees of freedom that remain stable to arbitrary perturbations

is fully chiral. Therefore, positive-definite even unimodular lattices correspond to c > 0,

c = 0 bosonic SRE phases with stable chiral edge excitations, in spite of the absence of

anyons in the bulk.

3.2.3 The Cases c− c = 0, 8, 16

Positive-definite even unimodular lattices only exist in dimension 8k for integer k, [37]

so bosonic SRE phases with stable chiral edge excitations must have c = 8k. There is a
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unique positive-definite even unimodular lattice in dimension 8, up to an overall rotation

of the lattice. There are two positive-definite even unimodular lattices in dimension 16;

there are 24 in dimension 24; there are more than 107 in dimension 32; and even more

in higher dimensions. If we relax the condition of positive definiteness, then there are

even unimodular lattices in all even dimensions; there is a unique one with signature

(8k + n, n) for n ≥ 1.

In dimension-2, the unique even unimodular lattice in R1,1, which we will call U , has

basis vectors e1 = 1
r
(x̂1 + x̂2), e2 = r

2
(x̂1 − x̂2), and the corresponding K-matrix is:

KU = e1 · e2 =

0 1

1 0

 . (3.16)

This matrix has signature (1, 1). (Within this discussion, r is an arbitrary parameter. It

will later develop a physical meaning and play an important role in the phase transition

we describe.) The even unimodular lattice of signature (n, n) has a block diagonal K-

matrix with n copies of KU along the diagonal:

KU⊕U⊕...⊕U =



KU 0 0 . . .

0 KU 0

0 0 KU

...
. . .


. (3.17)

The unique positive definite even unimodular lattice in dimension-8 is the lattice

generated by the roots of the Lie algebra of E8. We call this lattice ΓE8 . The basis

vectors for ΓE8 are given in Appendix A, and the corresponding K-matrix takes the
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form:

KE8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 −1 0 0 0 0 2 −1

0 0 0 0 0 0 −1 2



. (3.18)

The two positive-definite even unimodular lattices in dimension 16 are the lattices

generated by the roots of E8 × E8 and Spin(32)/Z2. (The latter means that a basis for

the lattice is given by the roots of SO(32), but with the root corresponding to the vector

representation replaced by the weight of one of the spinor representations.) We will call

these lattices ΓE8 ⊕ ΓE8 and ΓSpin(32)/Z2 . They are discussed further in Appendix A. The

corresponding K-matrices take the form:

KE8×E8 =

KE8 0

0 KE8

 , (3.19)

(for later convenience, we permute the rows and columns of the second copy of E8 in Eq.

(A.5) so that it looks superficially different from the first ) and KSpin(32)/Z2 is
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

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4



.

(3.20)

The even unimodular lattice with signature (8 + n, n) has K-matrix:

KE8⊕U⊕...⊕U =



KE8 0 0 . . .

0 U 0

0 0 U

...
. . .


. (3.21)
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The even unimodular lattice with signature (16 + n, n) has K-matrix:

KE8×E8⊕U⊕...⊕U =



KE8 0 0 . . .

0 KE8 0

0 0 U

...
. . .


. (3.22)

These lattices are unique, so the matrix,

KSpin(32)/Z2⊕U⊕...⊕U =


KSpin(32)/Z2 0 . . .

0 U

...
. . .

 , (3.23)

is equivalent to (3.22) under an SL(16 + 2n,Z) basis change. This fact will play an

important role in the sections that follow.

3.3 Equivalence of the Two c = 16 Bosonic SRE Phases

In the previous section, we saw that two theories of the form (3.1) with different

N × N K-matrices are equivalent if the two K-matrices are related by an SL(N,Z)

transformation or, equivalently, if they correspond to the same lattice. But if two K-

matrices are not related by an SL(N,Z) transformation, is there a more general notion

that may relate the theories? A more general notion might be expected if the difference in

the number of positive and negative eigenvalues of the twoK-matrices coincide. Consider,

for instance, the case of an N1 ×N1 K-matrix and an N2 ×N2 K-matrix with N1 < N2.

Could there be a relation between them, even though they clearly cannot be related be

related by an SL(N1,Z) or SL(N2,Z) similarity transformation?
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The answer is yes, for the following reason. Consider the theory associated with KU ,

defined in Eq. (3.16). Its partition function is equal to 1 on an arbitrary 3-manifold, M3,

as was shown in Ref. [47]:

Z(M3) ≡
∫
DaIei

∫
1

4π
εµνρ(KU )IJa

I
µ∂νa

J
ρ = 1. (3.24)

One manifestation of the triviality of this theory in the bulk is that it transforms trivially

under modular transformations, as we saw earlier. Furthermore, a state with this K-

matrix can be smoothly connected to a trivial insulator by local unitary transformations

if no symmetries are maintained [17]. We shall not do so here, but it is important to

note that, if we impose a symmetry on the theory, then we can guarantee the existence

of gapless (non-chiral) excitations that live at the edge of the system [17, 20]. (We

emphasize that we focus, in this section, on the bulk and, in this chapter, on properties

that do not require symmetry.)

Therefore, we can simply replace it with a theory with no degrees of freedom. We will

denote such a theory by K = ∅ to emphasize that it is a 0× 0 K-matrix in a theory with

0 fields and not a theory with a 1 × 1 K-matrix that vanishes. Similarly, the partition

function for a theory with arbitrary K-matrix KA on any 3-manifold M3 is equal to the

partition function of KA⊕U

∫
DaIe

i
4π

∫
εµνρ(KA)IJa

I
µ∂νa

J
ρ =∫
DaI Da′I

[
e
i

4π

∫
εµνρ(KA)IJa

I
µ∂νa

J
ρ×

e
i

4π

∫
εµνρ(KU )IJa

′I
µ∂νa

′J
ρ

]
=

∫
DaIe

i
4π

∫
εµνρ(KA⊕U )IJa

I
µ∂νa

J
ρ (3.25)
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Therefore, all of the theories corresponding to even, unimodular lattices of signature

(n, n) are, in fact, equivalent when there is no symmetry preserved. There is just a

single completely trivial gapped phase. We may choose to describe it by a very large

K-matrix (which is seemingly perverse), but it is still the same phase. Moreover, any

phase associated with a K-matrix can equally well be described by a larger K-matrix to

which we have added copies of KU along the block diagonal. This is an expression of the

physical idea that no phase transition will be encountered in going from a given state to

one in which additional trivial, gapped degrees of freedom have been added. Of course,

in this particular case, we have added zero local degrees of freedom to the bulk and we

have not enlarged the Hilbert space at all. So it is an even more innocuous operation.

However, when we turn to the structure of edge excitations, there will be more heft to

this idea.

At a more mathematical level, the equivalence of these theories is related to the notion

of “stable equivalence”, according to which two objects are the same if they become

isomorphic after augmentation by a “trivial” object. In physics, stable equivalence has

been used in the K-theoretic classification of (non-interacting) topological insulators [48].

In the present context, we will be comparing gapped phases and the trivial object that

may be added to either phase is a topologically-trivial band insulator. Heuristically,

stable equivalence says that we may add some number of topologically-trivial bands to

our system in order to effectively enlarge the parameter space and, thereby, allow a

continuous interpolation between two otherwise different states.

We now turn to the two c = 16 bosonic SRE phases. Their bulk effective field theories

are of the form of Eq. (3.1) with K-matrices given by KE8×E8 and KSpin(32)/Z2 . Their

bulk properties are seemingly trivial. But not entirely so since, as we noted in Section

3.2, they transform non-trivially under modular transformations.

These two non-trivial theories are, at first glance, distinct. They are associated
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with different lattices. For instance, ΓE8 ⊕ ΓE8 is the direct sum of two 8-dimensional

lattices while ΓSpin(32)/Z2 is not. The two K-matrices are not related by an SL(16,Z)

transformation.

Suppose, however, that we consider the K-matrices KE8×E8 ⊕U and KSpin(32)/Z2 ⊕U

which describe ”enlarged” systems. (We use quotation marks because, although we now

have theories with 18 rather than 16 gauge fields, the physical Hilbert space has not been

enlarged.) These K-matrices are, in fact, related by an SL(18,Z) transformation:

W T
G KSpin(32)/Z2⊕U WG = KE8×E8⊕U , (3.26)

where WG is given by:
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WG =



−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−4 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0

−5 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0

−6 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0

−7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

−8 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 −1

−9 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 1 −1

−10 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 2 −2

−11 0 0 0 0 0 9 0 0 1 0 0 0 0 0 0 3 −3

−12 0 0 0 0 0 10 0 0 0 1 0 0 0 0 0 4 −4

−13 0 0 0 0 0 11 0 0 0 0 1 0 0 0 0 5 −5

−14 0 0 0 0 0 12 0 0 0 0 0 1 0 0 0 6 −6

−7 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 3 −3

−8 0 0 0 0 0 7 0 0 0 0 0 0 0 1 0 4 −4

−2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 −2

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 2 −2

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 −2 2



. (3.27)

We will explain how WG is derived in Section 3.5. Here, we focus on its implication:

these two theories are equivalent on an arbitrary closed manifold. There is a unique bulk

c = 16 bosonic SRE phase of matter. However, there appear to be two possible distinct

effective field theories for the edge of this unique bulk phase, namely the theories (3.11)

with KE8×E8 and KSpin(32)/Z2 . In the next section, we explain the relation between these

edge theories.
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3.4 Fermionic Representations of the Two c = 16

SRE Bosonic Phases

In Section 3.3, we saw that there is a unique bulk c = 16 bosonic SRE phase of matter.

We now turn our attention to the two corresponding edge effective field theories, namely

Eq. (3.11) with KIJ given by either KE8×E8 or KSpin(32)/Z2 . These two edge theories are

distinct, although the difference is subtle. To understand this difference, it is useful to

consider fermionic representations [49, 11] of these edge theories.

Consider 32 free chiral Majorana fermions:

S =

∫
dxdτ ψj (−∂τ + vai∂x)ψj, (3.28)

where j = 1, . . . , 32. If the velocities va are all the same, then this theory naively

has SO(32) symmetry, up to a choice of boundary conditions. We could imagine such

a 1 + 1-dimensional theory as the edge of a 32-layer system of electrons, with each

layer in a spin-polarized p + ip superconducting state. We will assume that the order

parameters in the different layers are coupled by inter-layer Josephson tunneling so that

the superconducting order parameters are locked together. Consequently, if a flux hc/2e

vortex passes through one of the layers, it must pass through all 32 layers. Then all 32

Majorana fermion edge modes have the same boundary conditions. When two vortices

in a single-layer spin-polarized p+ ip superconducting state are exchanged, the resulting

phase is e−iπ/8 or e3iπ/8, depending on the fusion channel of the vortices (i.e., the fermion

parity of the combined state of their zero modes). Therefore, a vortex passing through all

32 layers (which may be viewed as a composite of 32 vortices, one in each layer) is a boson.

These bosons carry 32 zero modes, so there are actually 216 states of such vortices – 215 if

we require such a vortex to have even fermion parity. (Of course, the above construction
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only required 16 layers if our goal was to construct the minimal dimension SRE chiral

phase of bosons. [19])

Now suppose that such vortices condense. (Without loss of generality, we suppose

that the vortices are in some particular internal state with even fermion parity.) Super-

conductivity is destroyed and the system enters an insulating phase. Although individual

fermions are confined since they acquire a minus sign in going around a vortex, a pair

of fermions, one in layer i and one in layer j, is an allowed excitation. The dimension-1

operators in the edge theory are of the form iψiψj where 1 ≤ i < j ≤ 32. There are

1
2
· 32 · 31 = 496 such operators. We may choose iψ2a−1ψ2a, with a = 1, 2, . . . , 16 as

a maximal commuting subset, i.e. as the Cartan subalgebra of SO(32). The remain-

ing 480 correspond to the vectors of (length)2 = 2 in the lattice Γ16. To see this, it is

useful to bosonize the theory (3.28). We define the Dirac fermions ΨI ≡ ψ2a−1 + iψ2a,

with a = 1, 2, . . . , 16 and represent them with bosons: ΨI = eiXa . Then the Car-

tan subalgebra consists of the 16 dimension-1 operators ∂Xa. The operators eiv·X with

v ∈ ΓSO(32) ⊂ ΓSpin(32)/Z2 and |v|2 = 2 correspond to the vectors of (length)2 = 2 in the

SO(32) root lattice: ±x̂a ± x̂b with 1 ≤ a < b ≤ 16. In the fermionic language, we see

that the relevant perturbations of iψiψk can be gauged away with a spatially-dependent

SO(32) rotation and, therefore, do not affect the basic physics of the state.

To complete the description of the Spin(32)/Z2 theory, recall that a vortex in a single

layer braids non-trivially with the composite vortex that condenses. Such single vor-

tices are confined after condensation of the composite. Therefore, it is impossible to

change the boundary conditions of just one of the fermions ψi by inserting a single vor-

tex into the bulk; all of the fermions must have the same boundary conditions. The

fermion boundary conditions can be changed from anti-periodic to periodic by the oper-

ator eiµs·X = exp(i(X1 +X2 + . . .+X16)/2), where µs is the weight of one of the spinor

representations of SO(32). This is a dimension-2 operator.
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Note that the group Spin(32) is a double-cover of SO(32) that has spinor represen-

tations. By disallowing one of the spinor representations and the vector representation

(i.e., the odd fermion parity sector), the theory is associated with Spin(32)/Z2 but the

Z2 that is modded out is not the the Z2 that leads back to SO(32). Thus, it is the inclu-

sion of µs along with the vectors v of SO(32) mentioned above that is essential to the

description of the fermionic representation of the Spin(32)/Z2 theory. If we had chosen

not to include µs, i.e., if we had not condensed the composite vortex, the resulting theory

would have had topological order with a torus ground state degeneracy equal to four.

(The SO(32) root lattice has unit cell volume equal to four while the unit cell volume of

the Spin(32)/Z2 lattice is unity.)

Now suppose that the first 16 layers are coupled by interlayer Josephson tunneling so

that their order parameters are locked and the remaining 16 layers are coupled similarly,

but the first 16 layers are not coupled to the remaining 16. Then there are independent

vortices in the first 16 layers and in the remaining 16 layers. Suppose that both types of

vortices condense. Each of these 16-vortex composites is a boson, and superconductivity

is again destroyed. Individual fermions are again confined and, moreover, the fermion

parity in each half of the system must be even. Therefore, the allowed dimension-1

operators in the theory are iψiψj with 1 ≤ i < j ≤ 16 or 17 ≤ i < j ≤ 32. There are 2 · 1
2
·

16 ·15 = 240 such dimension-1 operators. As above, 16 of them correspond to the Cartan

subalgebra. The other 224 correspond to lattice vectors eiv·X with v = ±x̂a± x̂b and 1 ≤

a < b ≤ 8 or 9 ≤ a < b ≤ 16. Unlike in the case of Spin(32)/Z2, the boundary-condition

changing operators exp(i(±X1±X2 . . .±X8)/2) and exp(i(±X9±X10 . . .±X16)/2) are

dimension-1 operators. There are 2 · 27 = 256 such operators with even fermion parity

in each half of the system (i.e., an even number of + signs in the exponential). The

corresponding vectors v = (±x̂1 ± x̂2 . . .± x̂8)/2 and v = (±x̂9 ± x̂10 . . .± x̂16)/2 with

an even number of + signs together with v = ±x̂a±x̂b are the 480 different (length)2 = 2
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vectors in the E8 ×E8 root lattice. Consequently, this is the fermionic representation of

the E8 × E8 theory.

It is unclear, from this fermionic description, how to adiabatically connect the two

bulk theories. The most obvious route between them, starting from the E8×E8 theory, is

to restore superconductivity, couple the order parameters of the two sets of 16 layers, and

then condense 32-layer vortices to destroy superconductivity again. This route takes the

system across three phase transitions while the analysis in the previous section showed

that they are, in fact, the same phase and, therefore, it should be possible to go from

one to the other without crossing any bulk phase boundaries.

As we saw above, there are 480 vectors u with |u|2 = 2 in both ΓE8×E8 and ΓSpin(32)/Z2 .

In fact, a result of Milnor[12] (related to hearing the shape of a drum) states that the

two lattices have the same number of vectors of all lengths: for every u ∈ ΓE8×E8 , there is

a unique partner v ∈ ΓSpin(32)/Z2 such that |v|2 = |u|2. (See Ref. [11] for an elegant pre-

sentation of this fact following Ref. [37].) Therefore, the E8 × E8 and Spin(32)/Z2 edge

theories have identical spectra of operator scaling dimensions ∆u = 1
2
|u|2. Thus, it is

impossible to distinguish these two edge theories by measuring the possible exponents as-

sociated with two-point functions. However, in the fermionic realization described above,

consider one of the 496 dimension-1 operators, which we will call Ji, i = 1, 2, . . . , 496.

They are given by ∂Xa and eiu·X with |u|2 = 2 for u ∈ ΓE8×E8 or ΓSpin(32)/Z2 . In the

limit that all of the velocities are equal, these are conserved currents corresponding to

the 496 generators of either E8×E8 or Spin(32)/Z2, but we will use the notation Ji even

when the velocities are not equal. It is clear that, in the Spin(32)/Z2 phase, there are Jis

that involve both halves of the system, but not in the E8 ×E8 phase. In other words, in

the Spin(32)/Z2 phase, there are two-point functions involving both halves of the system

that decay as 〈Ji(x, 0)Ji(0, 0)〉 ∝ 1/x2. In the E8×E8 phase, such operators Ji only exist

acting entirely within the top half or the bottom half of the system.
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Moreover, the n-point functions for n ≥ 3 of the two theories can be different. Con-

sider the following 4-point function in our 32-layer model,

〈Ji1(x1, t1)Ji2(x2, t2)Ji3(x3, t3)Ji4(x4, t4)〉c, (3.29)

where the subscript c denotes a connected correlation function, and Ji1 acts within the

first 16 layers and Ji2 within the second 16 layers. In the E8×E8 theory, this correlation

function vanishes for all choices of i3, i4 because there are no dimension-1 operators that

act on both halves of the system, i.e. within both the first 16 layers and the second 16

layers. On the other hand, in the Spin(32)/Z2 theory, there will always be choices of i3, i4

such that the connected correlation function is non-zero: if Ji1 = iψkψl and Ji2 = iψmψn

with 1 ≤ k < l ≤ 16 and 17 ≤ m < n ≤ 32 then the connected correlation function is

non-zero for Ji3 = iψkψm and Ji4 = iψlψn. Such a correlation function (3.29) corresponds

to a measurement of a current Ji1 in the top half of the system in response to a probe that

couples to Ji2 in the bottom half of the system. While such a measurement will give a

vanishing result in the absence of other perturbations, it will give a non-vanishing result

in the Spin(32)/Z2 theory in the presence of perturbations that couple to Ji3 and Ji4 . In

other words, it is a measurement of Ji1 to linear order in external fields that couple to

Ji2 , Ji3 , and Ji4 .

Of course, in some other physical realization it may be more difficult to divide these

currents into a ‘top half’ and a ‘bottom half’, but there will always be correlation func-

tions that distinguish the two edge theories.
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3.5 Phase Diagram of the c− c = 16 Edge.

Since there is a unique bulk c = 16 bosonic SRE phase of matter, the two different

edge theories corresponding to KE8×E8 or KSpin(32)/Z2 must be different edge phases that

can occur at the boundary of the same bulk phase. For this scenario to hold, it must be

the case that the transition between these two edge theories is purely an edge transition

– or, in other words, an “edge reconstruction” – that can occur without affecting the

bulk. Such a transition can occur as follows. The gapless modes in the effective theory

(3.11) are the lowest energy excitations in the system. However, there will generically

be gapped excitations at the edge of the system that we usually ignore. So long as they

remain gapped, this is safe. However, these excitations could move downward in energy

and begin to mix with the gapless excitations, eventually driving a phase transition. Such

gapped excitations must be non-chiral and can only support bosonic excitations.

A perturbed non-chiral Luttinger liquid is the simplest example of such a gapped

mode:

SLL =
1

4π

∫
dt dx

[
2∂tϕ∂xθ −

v

g
(∂xθ)

2 − vg(∂xϕ)2

+ u
(m)
1 cos(mθ) + u

(n)
2 cos(nϕ)

]
, (3.30)

with Luttinger parameter g and integersm,n. The ϕ and θ fields have period 2π. The first

line is the action for a gapless Luttinger liquid. The second line contains perturbations

that can open a gap in the Luttinger liquid spectrum. The couplings u
(m)
1 and u

(n)
2 have

scaling dimensions 2− m2

2
g and 2−2n2g−1, respectively. Let us concentrate on the lowest

harmonics which are the most relevant operators with couplings u
(1)
1 ≡ u1 and u

(1)
2 ≡ u2.

The first operator is relevant if g < 4 and the second one is relevant if g > 1. At least one

of these is always relevant. Given our parameterization of the Luttinger Lagrangian, a
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system of hard-core bosons on the lattice with no other interactions or in the continuum

with infinite δ-function repulsion has g = 1 (see Ref. [50]).

When considering one-dimensional bosonic systems, the above cosine perturbations

can be forbidden by, respectively, particle-number conservation and translational invari-

ance. Here, however, we do not assume that there is any symmetry present, so these

terms are allowed. The Luttinger action can be rewritten in the same way as the edge

theory (3.11):

SLL =
1

4π

∫
dt dx

[
(KU)IJ∂tφ

I ∂xφ
J − VIJ∂tφI ∂xφJ

+ u1 cos(φ17) + u2 cos(φ18)
]
, (3.31)

where I, J = 17, 18 in this equation and φ17 = θ and φ18 = ϕ. Therefore, we see that the

action for a perturbed Luttinger liquid is the edge theory associated with the trivial bulk

theory with K-matrix given by KU that we discussed in Section 3.3. It is gapped unless

u1 and u2 are fine-tuned to zero or forbidden by a symmetry. However, augmenting our

system with this trivial one does increase the number of degrees of freedom at the edge

and expands the Hilbert space, unlike in the case of the bulk.

Hence, we consider the edge theory

S =
1

4π

∫
dtdx

[
(KE8×E8⊕U)IJ ∂tφ

I ∂xφ
J

− VIJ ∂xφI ∂xφJ

+ u1 cos(φ17) + u2 cos(φ18) + . . .
]

(3.32)

We can integrate out the trivial gapped degrees of freedom φ17 or φ18, leaving the gapless

chiral edge theory associated with KE8×E8 . The . . . represents other non-chiral terms

50



Edge phase transitions in the E8 × E8 state Chapter 3

that could appear in the Lagrangian (i.e., cosines of linear combinations of the fields φI);

they are all irrelevant for VI,17 = VI,18 = 0 for I = 1, . . . , 16; or more accurately, they are

less relevant than u1 or u2 and so we ignore them to first approximation. However, if we

vary the couplings VIJ , then u1, u2 could both become irrelevant and some other term

could become relevant, driving the edge into another phase.

To further analyze the possible transition, it is useful to rewrite the action in terms

of the fields X = eJφ
J :

S =
1

4π

∫
dt dx

[
ηab∂tX

a ∂xX
b − vab ∂xXa ∂xX

b

+ u1 cos( r
2
(X17 +X18)) + u2 cos(1

r
(X17 −X18)) + . . .

]
. (3.33)

where vab ≡ VIJf
I
af

J
b , f Iae

a
J = f I · eJ = δIJ , and ηab = (116, 1,−1). Here, eJ for J =

1, . . . , 16 is a basis of ΓE8 ⊕ ΓE8 given explicitly in Appendix A and cn refers to the

n-component vector where each component equals c. We take e17 = (016, 1
r
, 1
r
) and

e18 = (016, r
2
,− r

2
) so that e17 · e17 = e18 · e18 = 0 and e17 · e18 = 1. When va,17 =

va,18 = 0 for a = 1, . . . , 16 (or, equivalently, when VI,17 = VI,18 = 0 for I = 1, . . . , 16), the

parameter r is related to the Luttinger parameter according to g = r2/2 and u1, u2 have

renormalization group (RG) equations:

du1

d`
=

(
2− r2

4

)
u1,

du2

d`
=

(
2− r−2

)
u2. (3.34)

Hence, one of these two perturbations is always relevant when va,17 = va,18 = 0 for

a = 1, . . . , 16 and, consequently, X17,18 become gapped. The arguments of the cosine

follow from the field redefinition φI = f I ·X = (K−1)IJeJ ·X. The field X satisfies the

periodicity conditions X ≡ X+ 2πu for u ∈ ΓE8⊕ΓE8⊕U . Again, the . . . refers to other
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possible perturbations, i.e., cosines of other linear combinations of the Xas.

In a nearly identical manner, we can construct a theory for Spin(32)/Z2⊕U in which a

non-chiral gapped mode is added to the Spin(32)/Z2 edge theory and allowed to interact

with it. The only difference is in the parameterization of the U lattice. We choose

ẽ17 = (016,−r, r) and ẽ18 = (016,− 1
2r
,− 1

2r
). The action,

S =
1

4π

∫
dt dx

[
ηab∂tX̃

a ∂xX̃
b − ṽab ∂xX̃a ∂xX̃

b

+ ũ1 cos( 1
2r

(X̃17 − X̃18)) + ũ2 cos(r(X̃17 + X̃18)) + . . .
]
. (3.35)

Again, the . . . refers to cosines of other linear combinations of the X̃as. When ṽ17,18 =

ṽa,17 = ṽa,18 = 0 for a = 1, . . . , 16, the parameter r is related to the Luttinger parameter

according to g = r−2/2 and ũ1, ũ2 have RG equations:

dũ1

d`
=

(
2− 1

4r2

)
ũ1,

dũ2

d`
=

(
2− r2

)
ũ2. (3.36)

Hence, one of these two perturbations is always most relevant when ṽa,17 = ṽa,18 = 0

for a = 1, . . . , 16 and, consequently, X17,18 become gapped. The fields X̃ satisfy the

periodicity conditions X̃ ≡ X̃ + 2πv for v ∈ ΓSpin(32)/Z2 ⊕ U .

We now make use of the fact there is a unique signature (17, 1) even unimodular

lattice. It implies that there is an SO(17, 1) rotation OG that transforms ΓE8 ⊕ ΓE8 ⊕ U

into ΓSpin(32)/Z2 ⊕ U . Therefore, the fields OGX satisfy the periodicity condition OGX ≡

OGX + 2πv for v ∈ ΓSpin(32)/Z2 ⊕ U or, in components, (OG)abX
b ≡ (OG)abX

b + 2πnI ẽaI

for nI ∈ Z. Thus, we identify X̃a = (OG)abX
b. The explicit expression for OG is provided

in Appendix A.

(As an aside, having identified Xa and X̃b through the SO(17, 1) transformation OG,
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we can now explain how the SL(18,Z) transformation WG is obtained. The desired

transformation is read off from the relation,

φ̃J = f̃Ja (OG)abe
b
Iφ

I =: (WG)IJφ
I , (3.37)

which follows from equation relating the ΓE8 ⊕ ΓE8 and ΓSpin(32)/Z2 bases,

(OG)abe
b
I =

∑
K

mK
I ẽ

a
K , (3.38)

where the mK
I are a collection of integers. Multiplying both sides of Eq. (3.38) by f̃Jc

allows us to read off the elements of WG.)

Therefore, by substituting X̃a = (OG)abX
b, the action (3.35) could equally well be

written in the form:

S = 1
4π

∫
dt dx

[
ηab∂tX

a∂xX
b − ṽab(OG)ac(OG)bd ∂xX

c ∂xX
d

+ũ1 cos( 1
2r

((OG)17
aX

a − (OG)18
aX

a)) (3.39)

+ũ2 cos(r((OG)17
aX

a + (OG)18
aX

a)) + . . .
]
,

where X ≡ X + 2πu for u ∈ ΓE8 ⊕ ΓE8 ⊕ U . (We have used the defining property,

(OG)abηac(OG)cd = ηbd, in rewriting the first term in the action (3.35).)

Having rewritten the augmented Spin(32)/Z2 action Eq. (3.35) in terms of the ΓE8⊕

ΓE8 fields, let us add in two of the available mass perturbations u1, u2 written explicitly

in Eq. (3.33):
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S =
1

4π

∫
dt dx

[
ηab∂tX

a ∂xX
b − ṽab(OG)ac(OG)bd ∂xX

c ∂xX
d (3.40)

+ũ1 cos( 1
2r

((OG)17
aX

a − (OG)18
aX

a)) + ũ2 cos(r((OG)17
aX

a + (OG)18
aX

a))

+u1 cos( r
2
(X17 +X18)) + u2 cos(1

r
(X17 −X18)) + . . .

]
.

So far we have only rewritten Eq. (3.35) and included additional mass perturbations

implicitly denoted by “. . .”. If ṽ17,18 = ṽa,17 = ṽa,18 = 0 for a = 1, . . . , 16, then either

ũ1 or ũ2 is the most relevant operator and the X̃17 and X̃18 fields are gapped out. The

remaining gapless degrees of freedom are those of the Spin(32)/Z2 edge theory. On the

other hand, if vcd = ṽab(OG)ac(OG)bd with v17,18 = va,17 = va,18 = 0, either u1 or u2 is the

most relevant operator. At low energies, X17 and X18 are gapped with the remaining

degrees of freedom being those of the E8×E8 theory. We see that the transition between

the chiral E8 × E8 and Spin(32)/Z2 is mediated by OG given a starting velocity matrix

– this is an interaction driven transition.

Given OG, we can define a one-parameter family of SO(17, 1) transformations as

follows. As discussed in Appendix A,OG can be written in the formOG = ηW (A)ηW (A′),

where W (A),W (A′) are SO(17, 1) transformations labelled by the vectors A,A′ which are

defined in Appendix A as well and η is a reflection. We define OG(s) = ηW (sA)ηW (sA′).

This family of SO(17, 1) transformations, parametrized by s ∈ [0, 1] interpolates between

OG(0) = I, the identity, and OG(1) = OG or, in components, (OG(0))ab = δab, the

identity, and (OG(1))ab = (OG)ab. This one-parameter family of transformations defines

a one-parameter family of theories:
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S4(s) =
1

4π

∫
dt dx

[
ηab∂tX

a ∂xX
b − vab(OG(s))ac(OG(s))bd ∂xX

c ∂xX
d

+ ũ1 cos( 1
2r

((OG)17
aX

a − (OG)18
aX

a)) + ũ2 cos(r((OG)17
aX

a + (OG)18
aX

a))

+ u1 cos( r
2
(X17 +X18)) + u2 cos(1

r
(X17 −X18)) + . . .

]
.

These theories are parametrized by s, which determines a one-parameter family of

velocity matrices vab(OG(s))ac(OG(s))bd (this is the only place where s enters the action).

We call this action S4(s) because there are 4 potentially mass-generating cosine pertur-

bations. Note that the ũ1,2 terms have OG = OG(1) in the arguments of the cosines, not

OG(s). As our starting point, we take v17,18 = va,17 = va,18 = 0 for a = 1, . . . , 16. (For

instance, we can take diagonal vab.) Then, for s = 0, this theory is of the form of Eq.

(3.33) with two extra mass perturbations parameterized by ũ1 and ũ2; however, either

u1 or u2 is most relevant; and the remaining gapless degrees of freedom are those of the

chiral E8 × E8 edge theory. For s = 1, this theory is of the form of Eq. (3.41) which we

know is equivalent to Eq. (3.35) with two extra mass perturbations parameterized by u1

and u2; now, either ũ1, ũ2 is most relevant; and the remaining gapless degrees of freedom

are those of the Spin(32)/Z2 edge theory. For intermediate values of s, the RG equations

for u1, u2, ũ1, ũ2 are:

du1

d`
=

[
2− (2s2+r2(1−s2+4s4))2

4r2

]
u1,

du2

d`
=
[
2− (1+2r2s2)2

r2

]
u2,

dũ1

d`
=

[
2− (4−7s+4s2+2r2(s−1)2(1+s+4s2))2

4r2

]
ũ1,

dũ2

d`
=
[
2− (2(s−1)2+r2(1+s+3s2−8s3+4s4))2

r2

]
ũ2. (3.41)

The expressions in square brackets on the right-hand-sides of these equations, which
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Figure 3.1: The scaling dimensions of u1,2 (densely dashed and dotted) and ũ1,2 (thick
and dashed), plotted as a function of s at r = 1. The E8 × E8 phase lives roughly
within 0 ≤ s < .625 and the Spin(32)/Z2 phase between .625 < s ≤ 1.

are equal to 1
u1,2

du1,2

d`
and 1

ũ1,2

dũ1,2

d`
, are the scaling dimensions of u1,2 and ũ1,2 near the

u1,2 = ũ1,2 = 0 fixed line.

We plot the weak-coupling RG flows of these operators in Figs. 3.1-3.3 for three

different choices of r. First, we notice that, depending upon r, either u1 or u2 is most

relevant at s = 0. At s = 1, either ũ1 or ũ2 is most relevant. At intermediate values of

s, there are several possibilities. Assuming that the most relevant operator determines

the flow to low energy (which must have the same value c− c = 16 as the action (??)),

we conclude that when either of these two sets of operators is most relevant we expect a

mass to be generated for, respectively, the X17,18 or X̃17,18 modes, thereby leaving behind

either the E8 ×E8 or Spin(32)/Z2 edge theories at low energies. If there are no relevant

operators, then the edge is not fully chiral; it has c = 17, c = 1.

Thus, we see that the two different positive-definite even unimodular lattices in 16

dimensions correspond to two different fully chiral phases at the edge of the same bulk

phase. In the model in Eq. (??), the transition between them can occur in two possible

ways: either a direct transition (naively, first-order, as we argue below) or or via two

56



Edge phase transitions in the E8 × E8 state Chapter 3

0.0 0.2 0.4 0.6 0.8 1.0
- 2

- 1

0

1

2

s

D
im

en
si

o
n

Figure 3.2: The scaling dimensions of u1 (densely dashed) and ũ2 (dashed), plotted
as a function of s at at r = .2. The scaling dimensions of u2 and ũ1 lie outside the
range of the plot and are not displayed. The system is not fully chiral phase between
approximately s = .5 and s = .625.

Kosterlitz-Thouless-like phase transitions, with an intermediate c = 17, c = 1 phase

between the two fully chiral phases. The former possibility occurs (again, assuming that

the most relevant operator determines the flow to low energy) when there is always at

least one relevant operator. The system is in the minimum of the corresponding cosine,

but when another operator becomes more relevant, the system jumps to this minimum

as s is tuned through the crossing point. If the most relevant operator is in the set

u1, u2, ũ1, ũ2, then this means that the crossing point between the larger of 1
u1,2

du1,2

d`
and

the larger of 1
ũ1,2

dũ1,2

d`
occurs when both are positive so that the system goes directly

from E8 × E8 to Spin(32)/Z2 theory. However, if there is a regime in which there are

no relevant operators, then there will be a stable c = 17, c = 1 phase. (Note that we

adhere to a slightly weaker definition of stability than used in the paper [51]; we say

that an edge is unstable to gapping out some subset of its modes if a null vector [52]

of the K-matrix exists and that the associated operator is relevant in the RG sense. A

null vector is simply an integer vector nI satisfying nI(K
−1)IJnJ = 0 or, equivalently,
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Figure 3.3: The scaling dimensions of u1,2 (densely dashed and dotted) and ũ1 (thick),
plotted as a function of s at at r = 3. The scaling dimension of ũ2 lies outside the
range of the plot and is not displayed. The system is not fully chiral phase between
approximately s = .425 and s = .625.

a lattice vector ka satisfying kaη
abkb = 0.) If the crossing point between the larger of

1
u1,2

du1,2

d`
and the larger of 1

ũ1,2

dũ1,2

d`
occurs when both are negative, then there may be a

stable c = 17, c = 1 phase.

However, the model of Eq. (??) is not the most general possible model; it is a partic-

ular slice of the parameter space in which the only perturbations of the quadratic theory

are u1,2 and ũ1,2. A more general model will have many potentially mass-generating

perturbations:

Sgen(s) = S4(s) +

∫
dt dx

∑
v∈ΓE8

⊕ΓE8
⊕U

δ|v|2,0 uv,s cos(v ·X) (3.42)

where the sum is over vectors v ∈ ΓE8 ⊕ ΓE8 ⊕ U that have zero norm. This guarantees

that these are spin-0 operators that are mass-generating if relevant. In Eq. (??), we have

chosen 4 particular operators of this form and set the coefficients of the others to zero.
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Figure 3.4: Phase diagram of our edge theory as a function of s and r for the theory
S4(s) in which the only non-zero perturbations are u1,2 and ũ1,2. The light region is in
the E8×E8 phase. The darkest region is in the Spin(32)/Z2 phase. The system is not
fully chiral in the intermediately-shaded region. Solid phase boundary lines denote a
first-order transition while the dashed phase boundary line indicates a KT transition.

3 However, to determine if there is a stable non-chiral phase, it behooves us to consider

a more general model in order to determine whether the non-chiral phase requires us to

set more than one of the potentially mass-generating operators in Eq. (3.42) to zero by

hand and so any such critical point is multi-critical.

Of course, there are many possible v ∈ ΓE8⊕ΓE8⊕U with |v|2 = 0. But most of them

give rise to operators that are highly irrelevant over most of the range of the parameters

r and s. However, there are two sets of operators that cannot be ignored. In one set,

each operator is highly relevant in the vicinity of a particular value of s (which depends

on the operator) in the r → 0 limit and, in the other set, each operator is highly relevant

3To lowest-order in u1,2 and ũ1,2, this is consistent, but at higher order, these 4 operators will
generate some others, and we must consider a more general theory. However, it does not appear that
these operators generate any spin-0 operators other than multiples of themselves, which are less relevant
than they are.
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in the vicinity of a particular value of s in the r →∞ limit. Consider the operators:

cos(αf̃ 17
aR

a
bX

b) , cos(βf̃ 18
aR

a
bX

b) (3.43)

where R is an arbitrary SO(17, 1) transformation. These operators have spin-0 since f̃17,18

have vanishing norm, which R preserves. Although they have spin-0 and can, therefore,

generate a mass gap, there is no particular reason to think that either one is relevant.

Moreover, it is not even likely that either one is an allowed operator. For an arbitrary

SO(17, 1) transformation, f̃ 17
aR

a
b will not lie in the ΓE8 ⊕ ΓE8 ⊕ U lattice spanned by

the f Is, so this operator will not be allowed. However, there is a special class of R for

which these operators are allowed and are relevant in the vicinity of special points. Let

us suppose that R = OG(p/q) and let us consider α = q4, β = q2. 4 Consider the action

S4(s = p
q
) + u18, pq

∫
dt dx cos

[
q2f̃ 18

a (OG(p/q))abX
b
]

(3.44)

This is a spin-0 perturbation. Moreover, it is an allowed operator for the following reason.

We can write

q2f̃ 18
a (OG(p/q))ab = q2(W (p/q))18,Jf

J
a (3.45)

where (W (s))IJ is defined in analogy with WG: (W (s))IJ = f̃Ja (OG(s))abe
b
I . The vector

q2(W (p/q))18,J has integer entries, so q2f̃ 18
a (OG(p/q))ab is in the lattice ΓE8⊕ΓE8⊕U . At

the point s = p/q, its scaling dimension is the same as the scaling dimension of q2f̃ 18
aX

a

at s = 0:

d

d`
u18, pq

=
[
2− q4r2

]
u18, pq

(3.46)

4This choice of α and β is a sufficient one for generic s = p/q; however, certain q accommodate
smaller α and β so that the resulting operators are well defined. For example, when q is even, we may
take α = q2/2 and β = q4/4.

60



Edge phase transitions in the E8 × E8 state Chapter 3

Therefore, for r <
√

2/q2, the coupling u18, pq
is a relevant mass-generating interaction

at s = p/q and, over some range of small r, it is relevant for s sufficiently near p/q.

By a similar analysis, u17, pq
is a relevant mass-generating interaction at s = p/q for

r > q4/(2
√

2) and, over some range of large r, it is relevant for s sufficiently near p/q.

Therefore, when these couplings are non-zero, the non-chiral phase survives in a much

smaller region of the phase diagram. (Making contact with our previous notation, we see

that u17,1 = ũ1 and u18,1 = ũ2.)

When one of these interactions gaps out a pair of counter-propagating modes, we are

left with a fully chiral c = 16 edge theory corresponding to either E8×E8 to Spin(32)/Z2.

To see which phase we get, consider, for the sake of concreteness, the coupling u18, pq
.

When it generates a gap, it locks the combination of fields q2f̃ 18
a (OG(p/q))abX

b =

q2(W (p/q))18,Jf
J
aX

a. In the low-energy limit, we may set this combination to zero.

Only fields that commute with this combination remain gapless. (Moreover, since we

have set this combination to zero, any fields that differ by a multiple of it are equal to

each other at low-energy.) Therefore, the vertex operators that remain in the theory

are of the form exp(nIf
J
aX

a) where nI satisfies nI(K
−1)IJ(W (p/q))18,J = 0. We note

that (W (p/q))18,J is non-zero only for J = 8, 16, 17, 18. Therefore, (W (p/q))18,Jf
J
a is

orthogonal to e1, . . . , e7 and e9, . . . , e15.

Much as in our discussion in Section 3.4 of the difference between the E8 × E8 and

Spin(32)/Z2 edge theories, we again make use of the basic observation that E8 × E8 is

a product while Spin(32)/Z2 has a single component in order to identify the low energy

theory. If the vectors nIf
I
a with nI(K

−1)IJ(W (p/q))18,J = 0 (and two vectors differing

by a multiple of q2(W (p/q))18,Jf
J
a identified) form the Spin(32)/Z2 lattice, then there

must be a vector c = cIf
I in the lattice with |c|2 = 2 such that c ·e1 = −c ·e7 = c ·e9 = 1

and c · e2 = c · e3 = . . . = c · e6 = 0 and c · e10 = c · e11 = . . . = c · e15 = 0. This

is because there exists a set of Cartesian coordinates ŷa such that all the vectors in
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Spin(32)/Z2 with (length)2 = 2 are of the form ±ŷa ± ŷb with a, b = 1, . . . , 16, while

for E8 × E8, vectors of the form ±ŷa ± ŷb must have a, b = 1, . . . , 8 or a, b = 9, . . . , 16.

In E8 × E8, vectors of (length)2 = 2 cannot “connect” the two halves of the system. If

the equations cI(K
−1)IJ(W (p/q))18,J = 0 and cI(K

−1)IJcJ = 2 with c1 = −c7 = c9 = 1

and c2 = c3 = . . . = c6 = c10 = c11 = . . . = c15 = 0 have integer solutions, then the

remaining gapless degrees of freedom are in the Spin(32)/Z2 phase. Otherwise, they are

in the E8 ×E8 phase. We could choose e1, −e7, and e9 as the vectors with unit product

with c because such a c must exist in Spin(32)/Z2. (Note, that we could have taken c7 to

be arbitrary, and we would have found that solutions to these equations must necessarily

have c7 = −1.) The phase is E8×E8 if and only if such a vector c is not in the lattice. Of

course, it is essential that we can restrict our attention to the two possibilities, E8 × E8

and Spin(32)/Z2, since these are the only two unimodular self-dual lattices in dimension

16.

With the aid of Mathematica, we have found that solutions to the above equations

must be of the form cI = (1, 05,−1, c8, 1, 0
6, c8− 1, q/p(2c8− 1),−p/q(2c8− 1)). Since cI

must be an integer vector, both p and q must be odd since 2c8−1 is odd. Here, as above,

we have assumed that p and q are relatively prime. Further, we see that this solution

requires 2c8 = pqm+ 1 for odd m.

This means that the chiral Spin(32)/Z2 theory is left behind at low energies when

both p and q are odd and u18, pq
is the most relevant operator that generates a mass gap for

two counter-propagating edge modes. When either p or q is even, the remaining gapless

modes of the edge are in the E8 × E8 phase. We find the identical behavior for the low

energy theory when u17, pq
is the most relevant operator.

When these operators have non-zero coefficients in the Lagrangian, they eliminate a

great deal of the non-chiral phase shown in the u1,2, ũ1,2-only phase diagram in Fig. 4.

The effect is most noticeable as r → 0 and r →∞ as shown in Fig. 5.
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However, there still remain pockets of the non-chiral phase at intermediate values of

r and s, where these operators are irrelevant. However, we find that these regions of non-

chiral phase are not stable when we include a larger set of operators in the Lagrangian.

Consistent with our expectations, it is possible to find a relevant operator in the region

around any given point (r, s) in the phase diagram such that the low energy theory

remaining after a pair of counter-propagating modes gaps out is E8×E8 or Spin(32)/Z2.

To see how this works, consider, for instance, the point (r, s) = (3, 3/5) that exists in

the putative region of non-chiral phase according to Fig. 4. The couplings u17, pq
, u18, pq

are all irrelevant there so the system remains non-chiral even when these couplings are

turned on. However, we can find a relevant spin-0 operator at this point as follows. It

must take the form cos(paX
a), with pa ∈ Γ8 ⊕ Γ8 ⊕ U , where ηabpapb = 0 (this is the

spin-0 condition). To compute its scaling dimension, we observe that it can be written in

the form cos(qaX
a(s)), where Xa(s) ≡ (OG(s))abX

b and pb = qa(OG(s))ab . In terms of this

field, the quadratic part of the action is diagonal in the Xa(s) fields, so their correlation

functions (and, therefore, their scaling dimensions can be computed straightforwardly).

Since the operator in question has spin-0, its total scaling dimension δabqaqb is twice

their left-moving dimension or, simply, |q18|2. Therefore, such an operator is relevant if

|q18|2 < 2.

O−1
G (s) is simply a boost along some particular direction in the 17-dimensional space

combined with a spatial rotation. The eigenvalues of such a transformation are either

complex numbers of modulus 1 (rotation) or contraction/dilation by e±α (Lorentz boost).

Consequently, even if δabpapb is large – which means that cos(paX
a) is highly irrelevant

at s = 0 – δabqaqb can be smaller by as much as e−2α, thereby making cos(paX
a) a

relevant operator at this value of s (and of r). The maximum possible contraction, e−α,

occurs when pa is anti-parallel to the boost. (The maximum dilation, e−α, occurs when

pa is parallel to the boost, and there is no change in the scaling dimension when pa is
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perpendicular to the boost.) For a given r, s, we can choose a lattice vector pa that is

arbitrarily close to the direction of the boost, but at the cost of making δabpapb very

large. Then δabqaqb ≈ e−2αδabpapb may not be sufficiently small to be relevant. (The ≈

will be an = sign if pa is precisely parallel to the direction of the boost, however, we

are not guaranteed to be able to find an element of the lattice that is precisely parallel.)

Alternatively, we can choose a smaller δabpapb, but the angle between pa and the boost

may not larger. As explained through an example in Appendix B, we can balance these

two competing imperatives and find a pa so that neither δabpapb nor the angle between pa

and the boost is too large. Then 1
2
δabqaqb ≈ 1

2
e−2αδabpapb < 2, so that the corresponding

operator is relevant.

The following simple ansatz leads to a relevant operator

pa = nf 7
a + (m− 2n)f 8

a +mf 16
a + n17f

17
a + n18f

18
a (3.47)

at all candidate non-chiral points in the (r, s) phase diagram that we have checked. We

do not have a proof that there is not some region in parameter space where a non-chiral

phase is stable, but we have explicitly excluded nearly all of it, as may be seen from the

phase diagram in Fig. 3.6 where we have included a selection of the possible operators

described here that become relevant at the set of points (r, s) = (6, p/q) for q = 5, and

we anticipate that this ansatz will enable us to do so for any other point not already

excluded. Thus, we expect the non-chiral phase to be entirely removed by this collection

of operators combined with those discussed earlier.

Therefore, the phase diagram has a quite rich and intricate structure. From our

experience with the above operators, our general expectation is that in the neighborhood

of any point (r, p/q), there exists a relevant operator that gaps out a pair of modes leading

to the fully chiral E8 × E8 theory if p or q is even, while Spin(32)/Z2 remains if p and q
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Figure 3.5: The small-r region of the phase diagram of our edge theory as a function
of s and r for the theory with non-zero u1,2, ũ1,2; u17, pq

, u17, pq
for all p, q ≤ 57. The

light region is in the E8 × E8 phase. The darker region is in the Spin(32)/Z2 phase.
All phase boundary lines denote first-order transitions. The left panel shows the
r < 0.6 region of the phase diagram, where we see that regions of the two phases are
interspersed with each other along the s-axis. In the right panel, we zoom in on the
r < 0.01 region of the phase diagram and see an even richer intermingling of these
two phases as we sweep over s.

are odd.

3.6 Charged Systems

We return to our c−c = 16 theories and consider the case in which some of the degrees

of freedom are charged as a result of coupling to an external electromagnetic field as in

Eq. (3.4). Now, there are many phases for a given K, distinguished by different t. They

may, as a consequence, have different Hall conductances σxy = e2

h
tI(K

−1)IJtJ , which

must be even integer multiples of e2

h
since K−1 is an integer matrix with even entries on

the diagonal.

Let us focus on the minimal possible non-zero Hall conductance, σxy = 2 e
2

h
. We will

not attempt to systematically catalog all of these states here, but will examine a few

examples with c = 16 that are enlightening. By inspection, we see that we have three

distinct σxy = 2 e
2

h
states with K-matrix K = KE8×E8 : (1) tI = δI6, (2) tI = δI9, and

(3) tI = −2δI1 + δI2. These states have stable edge modes even if the U(1) symmetry

of charge conservation is violated (e.g., by coupling the system to a superconductor), in
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Figure 3.6: Phase diagram of our edge theory as a function of s and r for the theory
S4(s) in which the only non-zero perturbations are u1,2 and ũ1,2; u17, pq

, u17, pq
for all

p, q ≤ 57; and several cos(paX
a) operators with pa nearly aligned with the direction of

the boost OG(s), as described in the text. The latter operators were specifically chosen
to remove the remaining points of non-chiral phase at r = 6, s = p/q for q = 5. This
set of operators was sufficient to remove all the non-chiral phase displayed previously
in Fig. 4. The light region is in the E8 × E8 phase. The darker region is in the
Spin(32)/Z2 phase. Solid phase boundary lines denote a first-order transition.

contrast to the σxy = 2 e
2

h
bosonic quantum Hall states discussed in Ref. [53].

As before, we adjoin a trivial system to our system so that the K-matrices are K =

KE8×E8⊕U . Under the similarity transformation WG, these states are equivalent to the

states withKSpin(32)/Z2⊕U and, respectively, t = (0, 0, 0, 0, 1,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,−2, 2),

t = 0, 0, 0, 0, 0, 0, 0,−2, 1, 0, 0, 0, 0, 0, 0, 4,−2, 2, and tI = δI1. Consider the first of

these, KSpin(32)/Z2⊕U , t = (0, 0, 0, 0, 1,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,−2, 2). It is not equal

to KSpin(32)/Z2 with an additional trivial system adjoined to it because φ̃17 and φ̃18 are

both charged. In other words, there is a right-moving neutral edge mode φ̃17 + φ̃18 and

a left-moving charged edge mode φ̃17 − φ̃18. This is non-trivial, and there is no charge-

conserving perturbation which will give a gap to these modes. The same is true of the

second state. In the case of the third state, both φ17, φ18 and φ̃17, φ̃18 are neutral.

Therefore, there are perturbations that could gap out either of them. Consequently,
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we conclude that K = KE8×E8 , tI = −2δI1 + δI2 and KSpin(32)/Z2 , tI = δI1 are stably

equivalent bulk states with a edge theory phase diagram similar to that in Figure 3.4.

3.7 Discussion

3.7.1 Summary

Bosonic SRE states with chiral edge modes are bosonic analogues of fermionic integer

quantum Hall states: they do not support anyons in the bulk, but they have completely

stable chiral edge modes. Together, they populate an ‘intermediate’ class of phases that

are completely stable and do not require symmetry-protection, however, they lack non-

trivial bulk excitations. Unlike in the fermionic case, such states can only occur when

the number of edge modes is a multiple of 8. As we have seen in this chapter, the scary

possibility that the number of edge modes does not uniquely determine such a state is

not realized, at least for the first case in which it can happen, namely, when there are

16 edge modes. The two phases that are naively different are, in fact, the same phase.

This is consistent with the result that all 3-manifold invariants associated with the two

phases are the same [44], and we have gone further and shown that it is possible to

go directly from one state to the other without crossing a phase boundary in the bulk.

However, there are actually two distinct sets of edge excitations corresponding to these

adiabatically connected bulk states. We have shown that the phase transition between

them can occur purely at the edge, without closing the bulk gap.

Our construction is motivated by the observation that there is a unique even, uni-

modular lattices with signature (8k + n, n). Consequently, enlarging the Hilbert spaces

of seemingly different phases associated with distinct even, unimodular lattices with

signature (8k, 0) by adding trivial insulating degrees of freedom associated with even,
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unimodular lattices with signature (n, n) leads to the same bulk phase. Since the edge

is characterized by additional data, the corresponding edge theories are distinct but are

separated by a phase transition that can occur purely on the edge without closing the

bulk gap. The details of our construction draw on a similar one by Ginsparg [38] who

showed explicitly how to interpolate between toroidal compactifications of E8 × E8 and

Spin(32)/Z2 heterotic string theories.

3.7.2 Future Directions

Let us describe a few possible directions for future study.

• We have considered one possible interpolation between the E8×E8 and Spin(32)/Z2

theories and, therefore, have only considered a small region of possible parameter

space determined by r and s. It would be interesting to carve out in more detail

the full 153-dimensional phase space.

• The last phase diagram displayed in Fig. 3.6 includes only a subset of the possible

operators that may be added to the edge theory. The operators that have been

added are sufficient to lift the non-chiral phase that is naively present and displayed

in Fig. 3.4 when only four operators are included. It is possible that consideration

of all allowed operators could result in an even more complex phase diagram with

a rich topography of interspersed E8 × E8 and Spin(32)/Z2 phases.

• The uniqueness of even, unimodular lattices with signature (8k + n, n) implies

that a similar route can be taken to adiabatically connect states associated to

different positive-definite even unimodular lattices of dimension 8k = 24, 32, . . ..

However, in these cases, it is possible for states corresponding to different lattices

to have different spectra of operator scaling dimensions at the edge, unlike in the
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c = 16 case, so the situation may be more subtle. The 24-dimensional case may be

particularly interesting as the ground state transforms trivially (as reviewed at the

end of Section 3.2.1) under modular transformation of the torus.

• It is possible to have an edge in which the interaction varies along the edge so that

u1 is the only relevant operator for x < 0 and ũ1 is the only relevant operator for

x > 0. The edge will then be in the E8×E8 phase to the left of the origin and the

Spin(32)/Z2 phase to the right of the origin. It would be interesting to study the

defect that will be located at the origin.

• Unimodular lattices occur in the study of four-manifold topology as the intersec-

tion form of H2(M,Z), where M is a four-manifold and H2(M,Z) is the second

cohomology group over the integers. (We assume that M is closed.) In the circum-

stances when de Rham cohomology can be defined, we can think of the intersection

form as follows. Consider all pairs of 2-forms, ωI , ωJ and construct the matrix,

KIJ =
∫
M
ωI ∧ ωJ ∈ Z. Even when de Rham cohomology does not make sense,

the above matrix can be defined. KIJ is unimodular and symmetric. Interest-

ingly, the cases for which KIJ is even (and, therefore, provide intersection forms

of the type studied in this chapter) correspond to non-smooth four-manifolds. The

first instance is the so-called E8 manifold whose intersection form is the E8 Cartan

matrix. Likewise, there exist two distinct four-manifolds, E8 × E8 and the Chern

manifold, with E8 × E8 and Spin(32)/Z2 intersection form, respectively.[54] While

these two four-manifolds are not equivalent or homeomorphic, they are cobordic:

there exists a five-manifold whose two boundary components correspond to these

two four-manifolds. The cobordism can be understood as taking the direct sum

of each four-manifold with S2 × S2 which has intersection matrix equal to U . A

series of surgeries then relates these two connected augmented four-manifolds. In
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other words, our work has been a physical implementation of the above cobordism.

Is there a deeper connection between four-manifold topology and integer quantum

Hall states? We might go further and imagine that any such relation could be

generalized to fractional and, possibly, non-abelian states. Further, the introduc-

tion of symmetry-protected topological phases in 2+1d could inform the study of

four-manifolds, i.e., the stabilizing symmetry of any phase could further refine the

possible invariants characterizing any manifold.

• We have concentrated on bosonic systems in this chapter, but very similar consid-

erations apply to fermionic SRE systems with chiral edge modes, which correspond

to positive-definite odd unimodular lattices. The conventional integer quantum

Hall states correspond to the hypercubic lattices ZN . However, there is a sec-

ond positive-definite odd unimodular lattice in dimensions greater than 8 namely

KE8 ⊕ IN−8. In dimensions greater than 11, there is also a third one, and there are

still more in higher dimensions. However, there is a unique unimodular lattice with

indefinite signature. Therefore, by a very similar construction to the one that we

have used here, these different lattices correspond to different edge phases of the

ν ≥ 9 integer quantum Hall states.

• Finally, stable equivalence is not restricted to topologically ordered states in 2+1d;

it would be interesting to see explicitly how it manifests itself in the study of

topological phases in other dimensions.
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Chapter 4

Bulk-Edge Correspondence in

2 + 1-Dimensional Abelian

Topological Phases

4.1 Introduction

In the limit of vanishing electron-electron interactions, the edge excitations of an

integer quantum Hall state form a multi-channel chiral Fermi liquid. These excitations

are stable with respect to weak interactions by their chirality [55]. However, the Coulomb

energy in observed integer quantum Hall states is larger than the energy of the lowest

gapped edge excitation. Therefore, interactions are not weak in these experiments, and

we must consider whether interactions with gapped unprotected non-chiral excitations

can alter the nature of the gapless protected chiral edge excitations of an integer quantum

Hall state even when the bulk is unaffected.1

1In fact, the Coulomb energy is often larger than the bulk cyclotron energy, too, so it is not a given
that the bulk state is in the same universality class as the non-interacting integer quantum Hall state,
but we will assume that this is true in this chapter.
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In this chapter, we show that sufficiently strong interactions can drive the edge of an

integer quantum Hall state with ν ≥ 8 into a different phase in which the edge excita-

tions form a multi-channel chiral Luttinger liquid while the bulk remains adiabatically

connected to an integer quantum Hall state of non-interacting electrons. This chiral

Luttinger liquid is also stable against all weak perturbations, but it is not adiabatically

connected to the edge of an integer quantum Hall state of non-interacting electrons even

though the bulk of the system is. For ν ≥ 12, there are several possible such stable

chiral edge phases corresponding to the same bulk phase. The edge excitations of many

fractional quantum Hall states, such as the principal Jain series with ν = n
2pn+1

form a

multi-channel chiral Luttinger liquid, which is stable against weak perturbations due to

its chirality. We show that such edges can also be subject to reconstruction into a dif-

ferent chiral Luttinger liquid as a result of strong interactions with gapped unprotected

excitations at the edge. The new chiral Luttinger liquid is also stable against all weak

perturbations.

In Chapter 3 we analyzed edge phases of bosonic integer quantum Hall states[5]. We

saw that without symmetry, integer quantum Hall states of bosons that only support

bosonic excitations in the bulk, not anyons, occur only when the chiral central charge,

c− = cR− cL, the difference between the number of right- and left-moving edge modes, is

a multiple of eight (or, equivalently, when the thermal Hall conductance is κxy = c−
π2k2

BT

3h

with c− = 8k for integers k).[19] There is a unique [37, 13] bulk state for each possible

value of c− = 8k, but there are many possible chiral edge phases when the chiral central

charge is greater than 8: there are two chiral edge phases for c− = 16, twenty-four chiral

edge phases for c− = 24, more than one billion for c− = 32, and larger numbers of such

edge phases for c− > 32. The transition between the two possible chiral edge phases was

studied in detail in the c− = 16 case. [38, 5]

These fermionic and bosonic quantum Hall states illustrate the fact that the boundary-
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bulk correspondence in topological states is not one-to-one. There can be multiple possi-

ble edge phases corresponding to the same bulk phase. This can happen in a trivial way:

two edge phases may differ by unstable gapless degrees of freedom, so that one of the

edge theories is more stable than the other.[56, 57, 51, 33, 58] (One interesting refinement

of this scenario is that the additional gapless degrees of freedom can be protected by a

symmetry so that, in the presence of this symmetry, both edge phases are stable[20].)

However, our focus here is the situation in which there are multiple edge phases, each of

which is stable to weak perturbations without any symmetry considerations and none of

which is more “minimal” than the others. In other words, in the integer and fractional

quantum Hall states that we discuss here – which have the additional property that they

are all chiral – all of the edge phases are on the same footing. Although they can bound

the same bulk, such edge phases generically have different exponents and scaling func-

tions for transport through point contacts and tunneling in from external leads. In some

cases, the differences only show up in three-point and higher edge correlation functions.

In Sections 4.7.1, 4.7.2 of this chapter, we discuss fermionic integer quantum Hall

states at ν = 8 and ν = 12, their possible stable chiral edge phases, and the experimental

signatures that could distinguish these phases. In Section 4.7.3, we discuss the simplest

fractional quantum Hall states with multiple chiral edge phases, which occur at ν =

8/7, 8/15, 16/5 (fermions) and ν = 12/23 (bosons). Some of the edge phases that we

construct do not support gapless excitations with the quantum numbers of an electron.

When the Hall conductance is non-zero, the edge must have gapless excitations; in a

system of electrons, there must be a finite-energy excitation everywhere in the system

with an electron’s quantum numbers. However, it is not necessary that the electron

be among the gapless edge excitations of an electronic quantum Hall state; it may be

a gapped excitation at the edge, above the gapless excitations that are responsible for

carrying the Hall current.
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Given the above statement that the same bulk phase can have multiple distinct chiral

edge phases, we should ask what breaks down in the usual relation between bulk topo-

logical phases and their associated edge spectra. By the usual relationship, we mean

the “integration by parts” of a bulk Abelian Chern-Simons action that gives an edge

theory of chiral bosons with the same K-matrix [45, 59]. The answer is simply that the

usual relation focuses only upon the lowest energy excitations of a system and ignores

higher-energy excitations. These higher-energy excitations are necessarily adiabatically

connected to a topologically-trivial band insulator in the bulk and, generically, gapped

excitations at the edge. Surprisingly, interactions between these “trivial” modes and the

degrees of freedom responsible for the topologically non-trivial state can drive an edge

phase transition that leads to a distinct edge phase without closing the bulk gap. We

refer to the relationship between these two distinct edge theories associated with the

same bulk as stable equivalence. At the level of the gapless edge modes, this manifests

itself in the form of an edge reconstruction. While the interpolation at the edge necessar-

ily involves strong interactions, these can be understood using standard Luttinger liquid

techniques.

The relationship between the edge and the bulk can also be viewed in the following

manner. Each quasiparticle in the bulk has a topological twist factor θa = e2πiha , with

0 < ha < 1. If the edge is fully chiral, each such quasiparticle corresponds to a tower of

excitations. The minimum scaling dimension for creating an excitation in this tower is

min ∆a = ha+na for some integer na. The other excitations in the tower are obtained by

creating additional bosonic excitations on top of this minimal one; their scaling dimen-

sions are larger than the minimal one by integers. But if the edge has a different phase,

the minimal scaling dimension operator in this tower may be min ∆a = ha + ña. There-

fore, the spectrum of edge operators can be different, even though the fractional parts of

their scaling dimensions must be the same. (In the case of a fermionic topological phase,
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we must compare scaling dimensions modulo 1/2, rather than modulo 1. By fermionic

topological phase, we mean one which can only occur in a system in which some of the

microscopic consitutents are fermions. At a more formal level, this translates into the

existence of a fermionic particle which braids trivially with all other particles.)

The purpose of this chapter is to describe the precise conditions under which two

different edge phases can terminate the same bulk state, i.e. are stably equivalent. These

conditions are intuitive: the braiding statistics of the quasiparticle excitations of the bulk

states must be identical and the chiral central charges of the respective states must be

equal.

Let us summarize the general relation between bulk Abelian topological states and

their associated edge phases in slightly more mathematical terms. Edge phases are

described by lattices Λ equipped with an integer-valued bilinear symmetric form B.

[41, 60, 39, 61, 62, 63] We collectively write this data as E = (Λ, B). The signature

of B is simply the chiral central charge c− of the edge theory. Given a basis eI for Λ, the

bilinear form determines a K-matrix KIJ = B(eI , eJ). In a bosonic system, the lattice Λ

must be even while in a fermionic system, the lattice Λ is odd. (An odd lattice is one in

which at least one basis vector has (length)2 equal to an odd integer. The corresponding

physical system will have a fermionic particle that braids trivially with all other particles.

This particle can be identified with an electron. An even lattice has no such vectors and,

therefore, no fermionic particles that braid trivially with all other particles. Hence, it

can occur in a system in which none of the microscopic constituents are fermions. Of

course, a system, such as the toric code, may have fermionic quasiparticles that braid

non-trivially with at least some other particles.) Given the lattice Λ, vertex operators

of the edge theory are associated with elements in the dual lattice Λ∗. For integer quan-

tum Hall states, Λ∗ = Λ, however, for fractional states Λ ⊂ Λ∗. The operator product

expansion of vertex operators is simply given by addition in Λ∗.

75



Bulk-Edge Correspondence in 2 + 1-Dimensional Abelian Topological Phases Chapter 4

Each bulk phase is characterized by the following data concisely written as B =

(A, q, c− mod 24):[60, 61, 62, 63, 44, 64] a finite Abelian group A encoding the fusion

rules for the distinct quasiparticle types, a finite quadratic form q on A that gives the

topological spin to each particle type, and the chiral central charge modulo 24. As we

will discuss at length, since the map E → B associating edge data E to a given bulk B

is not one-to-one, several different edge phases may correspond to the same bulk phase.

We will provide an in-depth mathematical description of the above formalism in order to

precisely determine when two distinct edge phases correspond to the same bulk phase.

To determine all of the edge phases that can bound the same bulk, one can perform a

brute force search through all lattices of a given dimension and determinant. (For low-

dimensional cases, the results of such enumeration is in tables in Ref. [65] and in, for

instance, G. Nebe’s online Catalogue of Lattices.) Moreover, one can use a mass formula

described in Section 4.5 to check if a list of edge phases is complete.

We will exemplify the many-to-one nature of the map E → B through various exam-

ples. The most primitive example occurs for integer quantum Hall states. For such states,

the lattice is self-dual, Λ∗ = Λ so there are no non-trivial quasiparticles. For c− < 8,

there is a unique edge theory for the fermionic integer quantum Hall state, however, at

c− = 8, there are two distinct lattices: the hypercubic latttice I8 and the E8 root lattice.

Therefore, the associated gapless edge theories corresponding to each lattice may bound

the same bulk state; there exists an edge reconstruction connecting the two edge phases.

Fractional states for which A is non-trivial enrich this general structure.

A rather remarkable corollary of our analysis is the following: all rational Abelian

topological phases in 2+1 dimensions can be described by Abelian Chern-Simons theory.

By rational, we mean that there is a finite number of bulk quasiparticle types, i.e., the

group A has finite order. As may be seen by giving a physical interpretion to a theorem

of Nikulin [66] the particle types, fusion rules, and topological twist factors determine a
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genus of lattices, from which we can define an Abelian Chern-Simons theory. A second

result that follows from a theorem of Nikulin [66] is that any fermionic Abelian topological

phase can be mapped to a bosonic topological phase, together with some number of filled

Landau levels.

The remainder of this chapter is organized as follows. We begin in Section 4.2 by

reviewing the formalism used to describe the bulk and boundary excitations of Abelian

Hall states. As a means to both motivate the general mathematical structure and because

of their intrinsic interest, we provide two examples of stable equivalence in the fractional

quantum Hall setting in Section 4.3 and summarize their physically distinct signatures.

In Section 4.4, we abstract from these two examples the general method for understanding

how distinct edge phases of a single bulk are related via an edge phase transition. In

Section 4.5, we explain the bulk-edge correspondence through the concepts of stable

equivalence and genera of lattices. In Section 4.6, we explain how fermionic topological

phases can be represented by bosonic topological phases together with some number of

filled Landau levels. In Section 4.7, we analyze observed integer and fractional quantum

Hall states that admit multiple stable, fully chiral edge phases. In Section 4.8, we explain

how a number of theorems due to Nikulin, that we use throughout the text, apply to the

description of all Abelian topological field theories in (2+1)-D. We conclude in Section

4.9. We have three appendices that collect ideas used within the text.

4.2 Preliminaries

4.2.1 Edge Theories

In this section, we review the formalism that describes the edges of conventional inte-

ger and Abelian fractional quantum Hall states. We begin with the edges of fermionic in-
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teger quantum Hall states. We assume that the bulks of these states are the conventional

states that are adiabatically connected to the corresponding states of non-interacting

fermions. As we will see in later sections, the edge structure is not uniquely determined,

even if we focus solely on chiral edge phases that are stable against all weak perturbations.

All integer quantum Hall states have one edge phase that is adiabatically connected

to the edge of the corresponding non-interacting fermionic integer quantum Hall state.

This edge phase has effective action S0 + S1, where

S0 =

∫
dxdt ψ†J (i∂t + At + vJ(i∂x + Ax))ψJ (4.1)

and J = 1, 2, . . . , N . We shall later study two interesting examples that occur when

N = 8 or N = 12. The operator ψ†J creates an electron at the edge in the J th Landau

level; vJ is the edge velocity of an electron in the J th Landau level. Inter-edge interactions

take the form

S1 =

∫
dx dt

(
tJK(x) ei(k

J
F−k

K
F )x ψ†JψK + h.c.

+ vJKψ
†
JψJψ

†
KψK + . . .

)
. (4.2)

The . . . in Eq. (4.2) represent higher-order tunneling and interaction terms that are

irrelevant by power counting. We neglect these terms and focus on the first two terms.

Electrons in different Landau levels will generically have different Fermi momenta. When

this is the case, the tunneling term (the first term in Eq. (4.2)) will average to zero in

a translationally-invariant system. In the presence of disorder, however, tIJ(x) will be

random and relevant (e.g. in a replicated action which is averaged over tIJ(x)). Moreover,

it is possible for the Fermi momenta to be equal; for instance, in an N -layer system in

which each layer has a single filled Landau level, the Fermi momenta will be the same if
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the electron density is the same in each layer. Fortunately, we can make the change of

variables:

ψJ(x)→
(
P exp

(
i

∫ x

−∞
dx′M(x′)

))
JK

ψK(x),

where M(x) is the matrix with entries MJK = tJK(x′) ei(k
J
F−k

K
F )x′/v, v =

∑
J vJ/N ,

and P denotes anti-path-ordering. When this is substituted into Eq. (4.1), the first

term in Eq. (4.2) is eliminated from the action S0 + S1. This is essentially a U(N)

gauge transformation that gauges away inter-mode scattering. An extra random kinetic

term proportional to (vJ − v)δIJ is generated, but this is irrelevant in the infrared when

disorder-averaged.

The second term in Eq. (4.2) is an inter-edge density-density interaction; vJK is the

interaction between edge electrons in the J th and Kth Landau levels. This interaction

term can be solved by bosonization. The action S0 + S1 from Eqs. (4.1) and (4.2) can

be equivalently represented by the bosonic action

S =

∫
dx dt

(
1

4π
δIJ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J

+
1

2π

∑
I

εµν∂µφ
IAν

)
, (4.3)

where VII ≡ vI + vII (no summation) and VIJ ≡ vIJ for I 6= J . The electron annihilation

operator is bosonized according to ψJ ∼ ηJe
iφJ . Here ηJ is a “Klein factor” satisfying

ηJηK = −ηKηJ for J 6= K, which ensures that ψJψK = −ψKψJ . Products of even

numbers of Klein factors can be diagonalized and set to one of their eigenvalues, ±1,

if all terms in the Hamiltonian commute with them. They can then be safely ignored.

This is the case in all of the models studied in this chapter. This action can be brought

into the following diagonal form (setting the external electromagnetic field to zero for
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simplicity):

S =

∫
dx dt

(
1

4π
δIJ∂tφ̃

I∂xφ̃
J − 1

4π
vIδIJ∂xφ̃

I∂xφ̃
J

)
(4.4)

with an orthogonal transformation φI = OI
J φ̃

J that diagonalizes VIJ according toOI
LVIJO

J
K =

ṽLδLK . Two-point correlation functions take the form

〈
eimIφ

I

e−imKφ
K
〉

=
N∏
J=1

1

(x− ṽJt)mImKO
I
JO

K
J

. (4.5)

There is no sum over J in the exponent on the right-hand-side of Eq. (4.5). The electron

Green function in the Ith Landau level is a special case of this with mK = δIK .

It is now straightforward to generalize the preceding discussion to the case of an

arbitrary Abelian integer or fractional quantum Hall state [59]. For simplicity, we will

focus on the case of fully chiral phases in which all edge modes move in the same direction.

Such phases do not, in general, have a free fermion representation and can only be

described by a chiral Luttinger liquid. They are characterized by equivalence classes of

positive-definite symmetric integer K-matrices K, and integer charge vectors t that enter

the chiral Luttinger liquid action according to

SLL =

∫
dx dt

(
1

4π
KIJ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J +

1

2π
tIεµν∂µφ

IAν

)
. (4.6)

The fields in this action satisfy the periodicity condition φI ≡ φI +2πnI for nI ∈ Z. Two

phases, characterized by the pairs (K1, t1) and (K2, t2), are equivalent if K1 = W TK2W

and t1 = t2W , where W ∈ GL(N,Z) since the first and third terms in the two theories

can be transformed into each other by the change of variables φI = W I
J φ̃

J . So long

as W ∈ GL(N,Z), the periodicity condition satisfied by φ̃J is precisely the same as the

periodicity condition satisfied by φI . The matrix VIJ consists of marginal deformations

that do not change the phase of the edge but affect the propagation velocities. (If we
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wish, we can think of each phase as a fixed surface under RG flow, and the VIJs are

marginal deformations that parametrize the fixed surface.) All such chiral edge theories

are stable to all weak perturbations by the same reasoning by which we analyzed integer

quantum Hall edges. The simplest fermionic fractional quantum Hall edge theory is that

of the Laughlin ν = 1/3 state, for which K = (3) and t = (1) (a 1 × 1 matrix and

a 1-component vector, respectively). Integer quantum Hall edges are the special case,

KIJ = δIJ or, allowing for basis changes, K = W TW with W ∈ GL(N,Z).

It is useful to characterize these phases by lattices Λ rather than equivalence classes of

K-matrices. Let eaI be the eigenvector ofK corresponding to eigenvalue λa: KIJe
a
J = λaeaI .

We normalize eaJ so that eaJe
b
J = δab and define a metric gab = λaδab. Then, KIJ = gabe

a
Ie
b
J

or, using vector notation, KIJ = eI · eJ . We will be focusing mostly on positive-definite

lattices, so that gab has signature (N, 0) but we will occasionally deal with Lorentzian

lattices, for which we take gab has signature (p,N − p). The metric gab defines a bilinear

form B on the lattice Λ (and its dual Λ∗) – this just means we can multiply two lattice

vectors eI , eJ together using the metric, eI · eJ = eaIgabe
b
J = B(eI , eJ). The N vectors

eI define a lattice Λ = {mIeI |mI ∈ Z}. The GL(N,Z) transformations K → W TKW

are simply basis changes of this lattice, so we can equally well describe edge phases

by equivalence classes of K-matrices or by lattices Λ. The conventional edge phases

of integer quantum Hall states described above correspond to hypercubic lattices ZN ,

which we will often denote by the corresponding K matrix in its canonical basis, IN . The

ν = 1/3 Laughlin state corresponds to the lattice Λ = Z with dual Λ∗ = 1
3
Z. 2 The

connection of quantum Hall edge phases to lattices can be exploited more easily if we

make the following change of variables, Xa = eaIφ
I , in terms of which the action takes

2This statement assumes the periodicity convention, φ ≡ φ+ 2πn, for n ∈ Z.

81



Bulk-Edge Correspondence in 2 + 1-Dimensional Abelian Topological Phases Chapter 4

the form

S =
1

4π

∫
dx dt

(
gab∂tX

a∂xX
b − vab∂xXa∂xX

b.

)
(4.7)

The variables Xa satisfy the periodicity condition X ≡ X + 2πy for y ∈ Λ and vab ≡

VIJf
I
af

J
b , where f Ia are basis vectors for the dual lattice Λ∗, satisfying f Iae

a
J = eLa(K

−1)LIeaJ =

δIJ .

Different edge phases (which may correspond to different bulks or the same bulk; the

latter is the focus of this chapter) are distinguished by their correlation functions. The

periodicity conditions on the fields Xa dictate that the allowed exponential operators are

of the form eiv·X, where v ∈ Λ∗. These operators have scaling dimensions

dim
[
eiv·X

]
=

1

2
|v|2. (4.8)

They obey the operator algebra

: eiv1·X :: eiv2·X :∼: ei(v1+v2)·X : (4.9)

where : · : denotes normal ordering. Thus, the operator spectrum and algebra is entirely

determined by the underlying dual lattice Λ∗.

In a quantum Hall state, there are two complementary ways of measuring some of

the scaling exponents. The first is a quantum point contact (QPC) at which two edges

of a quantum Hall fluid are brought together at a point so that quasiparticles can tunnel

across the bulk from one edge to the other. Even though a single edge is completely

stable against all weak perturbations, a pair of oppositely-directed edges will, in general,
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be coupled by relevant perturbations

S = ST + SB +

∫
dt
∑
v∈Λ∗

vv e
iv·[XT−XB ]. (4.10)

Here, T,B are the two edges, e.g., the top and bottom edges of a Hall bar; we will use

this notation throughout whenever it is necessary to distinguish the two edges. The

renormalization group (RG) equation for vv is

dvv
d`

=
(
1− |v|2

)
vv. (4.11)

If v · f ItI 6= 0, the above coupling transfers v · f ItI units of charge across the junction

and this perturbation will contribute to the backscattered current according to

Ib ∝ |vv|2 V 2|v|2−1. (4.12)

A second probe is the tunneling current from a metallic lead:

S = Sedge + Slead

+

∫
dt
∑
v∈Λ

tv

[
ψ†lead∂ψ

†
lead∂

2ψ†lead . . .
]
eiv·X.

The term in square brackets [...] contains n factors of ψ†lead and n(n − 1)/2 derivatives,

where n = v · f ItI must be an integer. The RG equation for tv

dtv
d`

=

(
1− n2

2
− 1

2
|v|2
)
tv. (4.13)
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The contribution to the tunneling current from tv (assuming n 6= 0) is

Itun ∝ |tv|2 V |v|
2+n2−1. (4.14)

Here, we have assumed that the spins at the edge of the quantum Hall state are fully

spin-polarized and that tunneling from the lead conserves Sz. If, however, either of these

conditions is violated, then other terms are possible in the action. For instance, charge-2e

tunneling can take the form

tpair

∫
dt ψ†lead,↑ψ

†
lead,↓ e

iv·X, (4.15)

where v · f ItI = 2. Then, we have tunneling current

Itun ∝ |tv|2 V |v|
2+1. (4.16)

Generically, two lattices Λ1 and Λ2 can be distinguished by the possible squared

lengths |v|2 for v ∈ Λ∗1. In many cases of interest, the shortest length, which will

dominate the backscattered current discussed above, is enough to distinguish two edge

phases of the same bulk. However, sometimes, as in the case of the two bosonic integer

quantum Hall states with c = 16 discussed in Ref. [5] the spectrum of operator scaling

dimensions (not just the shortest length, but all lengths along with degeneracies at each

length level) is precisely the same in the two theories, so they could only be distinguished

by comparing three-point correlation functions. In either case, different edge phases can

be distinguished by their correlation functions.
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4.2.2 Bulk Theories

In a later section, we will explain how bulk phases correspond to the mathematical

notion of a genus of lattices, while their associated edge theories are given by lattices

within a genus (or in the case of fermionic theories, a pair of genera, one odd and one

even). In order to explain the relation between the genus of a lattice and a bulk Abelian

phase, we recall some facts about Abelian topological phases.

Suppose that we have a 2 + 1d Abelian topological phase associated to a lattice Λ.

Choosing a basis eI for the lattice Λ, we define KIJ = eI · eJ and write a bulk effective

action

S =

∫
d3x
( 1

4π
εµνρKIJa

I
µ∂νa

J
ρ +

1

2π
jµI a

I
µ

)
. (4.17)

A particle in this theory carrying charge mI under the gauge field aI can be associated

with a vector v ≡ mIf
I , where fI is the basis vector of Λ∗ dual to eI and satisfying

(K−1)IJeJ = f I . Recall that because Λ ⊂ Λ∗, any element in Λ can be expressed in

terms of the basis for Λ∗, however, the converse is only true for integer Hall states for

which Λ = Λ∗. Particles v, v′ ∈ Λ∗ satisfy the fusion rule v × v′ = v + v′ and their

braiding results in the multiplication of the wave function describing the state by an

overall phase e2πiv·v′ . Since this phase is invariant under shifts v→ v +λ for λ ∈ Λ, the

topologically-distinct particles are associated with elements of the so-called discriminant

group A = Λ∗/Λ. The many-to-one nature of the edge-bulk correspondence is a reflection

of the many-to-one correspondence between lattices Λ and their discriminant groups A.

Equivalent bulk phases necessarily have identical discriminant groups so our initial choice

of lattice is merely a representative in an equivalence class of bulk theories.

We now define a few terms. A bilinear symmetric form on a finite Abelian group A
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is a function b : A× A→ Q/Z such that for every a, a′, a′′ ∈ A,

b(a+ a′, a′′) = b(a, a′′) + b(a′, a′′)

and b(a, a′) = b(a′, a). As all bilinear forms considered in this chapter will be symmetric,

we will simply call them bilinear forms with symmetric being understood. A quadratic

form q on a finite Abelian group A is a function q : A→ Q/Z such that q(na) = n2q(a)

for every n ∈ Z, and such that

q(a+ a′)− q(a)− q(a′) = b(a, a′)

for some bilinear form b : A × A → Q/Z. In this case, we say that q refines b, or is a

quadratic refinement of b. A bilinear b or quadratic form q is degenerate if there exists

a non-trivial subgroup S ⊂ A such that b(s, s′) = 0 or q(s) = 0 for every s, s′ ∈ S.

Throughout this chapter, all bilinear and quadratic forms will be assumed nondegnerate.

Each K-matrix K determines a symmetric bilinear form B on Rn via B(x,y) = xTKy

that takes integer values on the lattice Zn ⊂ Rn. Every other lattice Λ ⊂ Rn on which

B is integral can be obtained by acting on Zn by the orthogonal group {g ∈ GL(N,R) :

gKgT = K} of K. On the other hand, an integral symmetric bilinear form is equivalent

to a lattice according to the construction before Eq. (4.7) in Section 4.2.1. We are

therefore justified in using the terminology “lattice” and “K-matrix” in place of “integral

symmetric bilinear form” throughout this chapter. Every diagonal entry of a K-matrix

K is even iff the (length)2 of every element in the lattice ZN is even. We call K even if

this is the case, and otherwise it is odd. Even K-matrices determine integral quadratic

forms on ZN via Q(x) = 1
2
xTKx, while for odd K-matrices they are half-integral. When

we simply write bilinear or quadratic form or, sometimes, finite bilinear form or finite
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quadratic form, we will mean a nondegenerate symmetric bilinear form, or nondegenerate

quadratic form, whose domain is a finite Abelian group. Throughout, we abbreviate the

ring Z/NZ of integers modulo N as Z/N .

The S-matrix of the theory can be given in terms of the elements of the discriminant

group:

S[v],[v′] =
1√
|A|

e−2πiv·v′ =
1√
|A|

e−2πimI(K−1)IJm′J (4.18)

where v = mIf
I ,v′ = m′J f

J ∈ Λ∗ and |A| is the dimension of the discriminant group.

The bracketed notation [v] indicates an equivalence class of elements [v] ∈ Λ∗/Λ = A.

Our normalization convention is to represent elements in the dual lattice Λ∗ with integer

vectors mI . The bilinear form B on Λ∗ reduces modulo Λ to define a finite bilinear form

on the discriminant group Λ∗/Λ via

b([mIf
I ], [m′J f

J ]) = B(mIf
I ,m′J f

J) = mI(K
−1)IJm′J .

The topological twists θ[v], which are the eigenvalues of the T matrix, are defined by

T[v],[v′] = e−
2πi
24
c− θ[v] δ[v],[v′] (4.19)

where

θ[v] = eπiv·v. (4.20)

Note that Eq. (4.19) implies that the theory is invariant under shifts of c− by 24 so long

as the topological twists θ[v] are invariant, but its modular transformation properties,

which determine the partition function on 3-manifolds via surgery [67], is sensitive to

shifts by c− 6= 0 (mod 24).

If the topological twists are well-defined on the set of quasiparticles A, then they must
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be invariant under v 7→ v + λ, where λ ∈ Λ, under which

θ[v] 7→ θ[v+λ] = θ[v] e
πiλ·λ. (4.21)

If the K-matrix is even, so that we are dealing with a bosonic theory, λ · λ is even for

all λ ∈ Λ. If the K-matrix is odd, however – i.e. if the system is fermionic – then there

are some λ ∈ Λ for which λ · λ is odd. In this case, the topological twists are not quite

well-defined, and more care must be taken, as we describe in Section 4.6. Given the

above definition, only T 2 is well-defined.

In a bosonic Abelian topological phase, we can define a finite quadratic form q on the

discriminant group, usually called the discriminant form, according to

q([v]) =
1

2
v2 =

1

2
mI(K

−1)IJmJ mod Z, (4.22)

where v = mIf
I . In a topological phase of fermions, we will have to define q with more

care, as we discuss in Section 4.6. Thus, we postpone its definition until then and will

only discuss Abelian bosonic topological phases in the remainder of this section. In terms

of the discriminant form q, the T -matrix takes the form

θa = e2πiq(a) (4.23)

and the S-matrix takes the form

Sa,a′ =
1√
|A|

e2πi(q(a−a′)−q(a)−q(−a′)) (4.24)

=
1√
|A|

e−2πi(q(a+a′)−q(a)−q(a′)) (4.25)

The equation for the S-matrix makes use of the fact that the finite bilinear form b can be
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recovered from the finite quadratic form according to b(a, a′) = q(a+a′)−q(a)−q(a′). (It

is satisfying to observe that the relation between the bilinear form b and the discriminant

form q coincides exactly with the phase obtained by a wave function when two particles

are twisted about one another.) While the introduction of the discriminant form may

appear perverse in the bosonic context, we will find it to be an essential ingredient when

discussing fermionic topological phases.

In any bosonic topological phase, the chiral central charge is related to the bulk

topological twists by the following relation [68]:

1

D
∑
a

d2
aθa = e2πic−/8. (4.26)

Here D =
√∑

a d
2
a is the total quantum dimension, da is the quantum dimension of the

quasiparticle type a, and θa is the corresponding topological twist/spin. c− = c− c is the

chiral central charge. In an Abelian bosonic phase described by an even matrix K, the

formula simplifies to

1√
|A|

∑
a∈A

e2πiq(a) = e2πic−/8 (4.27)

since da = 1 for all quasiparticle types. Here |A| =
√
| detK| and c− = r+ − r− is

the signature of the matrix, the difference between the number of positive and negative

eigenvalues. (We will sometimes, as we have done here, use the term signature to refer

to the difference r+ − r−, rather than the pair (r+, r−); the meaning will be clear from

context.) Notice that e2πiq(a) is just the topological twist of the quasiparticle represented

by a ∈ Λ∗/Λ. This is known as the Gauss-Milgram sum in the theory of integral lattices.

Let us pause momentarily to illustrate these definitions in a simple example: namely,

the semion theory described by the K-matrix, K = (2). This theory has discriminant

group A = Z/2Z = Z2 and, therefore, two particle types, the vacuum denoted by the
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lattice vector [0] and the semion s = [1]. Recall that our normalization convention is to

take the bilinear form on A to be b([x], [y]) = x · 1
2
· y; the associated quadratic form is

then q([x]) = 1
2
b([x], [x]). The discriminant form, evaluated on the semion particle, is

given by q([1]) = 1
2
· 12

2
. The T matrix equals exp(−2πi/24)diag(1, i), and the S-matrix,

S = 1√
2

(
1 1
1 −1

)
. Evaluating the Gauss-Milgram sum confirms that c− = 1.

In order to determine the discriminant group from a given K-matrix, we can use the

following procedure. First, we compute the Gauss-Smith normal form of the K-matrix,

which can be found using a standard algorithm[69]. Given K, this algorithm produces

integer matrices P , Q, D such that

K = PDQ. (4.28)

Here both P and Q are unimodular |detP | = |detQ| = 1, and D is diagonal. The

diagonal entries of D give the orders of a minimal cyclic decomposition of the discriminant

group

A '
∏
J

Z/DJJ ,

with the fewest possible cyclic factors, giving yet another set of generators for the quasi-

particles. Although more compact, this form does not directly lend itself towards checking

the equivalence of discriminant forms.

Now recall that the bases of Λ and Λ∗ are related by K:

eI = KIJ f
J (4.29)

Substituting the Gauss-Smith normal form, this can be rewritten

(P−1)ILeL = DIKQKJ f
J . (4.30)
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The left-hand side is just a basis change of the original lattice. On the right-hand side,

the row vectors of Q that correspond to entries of D greater than 1 give the generators

of the cyclic subgroups of the discriminant group. A non-trivial example is given in

Appendix C.

4.3 Two Illustrative Examples of Bulk Topological

Phases with Two Distinct Edge Phases

The chiral Luttinger liquid action is stable against all small perturbations involving

only the gapless fields in the action in Eq. (4.6) (or, equivalently in the integer case,

the action in Eq. (4.1)). This essentially follows from the chirality of the theory, but it

is instructive to see how this plays out explicitly.[55] However, this does not mean that

a given bulk will have only a single edge phase.[70] A quantum Hall system will have

additional gapped excitations which we can ignore only if the interactions between them

and the gapless excitations in Eq. (4.6) are weak. If they are not weak, however, we

cannot ignore them and interactions with these degrees of freedom can lead to an edge

phase transition [5].

We will generally describe the gapped excitations with a K-matrix equal to σz =(
1 0
0 −1

)
. We may imagine this K-matrix arising from a thin strip of ν = 1 fluid living

around the perimeter of our starting Hall state.[70] For edge phase transitions between

bosonic edges theories, we should instead take the gapped modes to be described by a K-

matrix equal to σx =
(

0 1
1 0

)
. It is important to realize that the existence of the localized

(gapped) edge modes described by either of these K-matrices implies the appropriate

modification to the Chern-Simons theory describing the bulk topological order. This

addition does not affect the bulk topological order[71]; without symmetry, such a gapped
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state is adiabatically connected to a trivial band insulator.

We will illustrate this with two concrete examples. We begin with the general edge

action

S =

∫
dx dt

(
1

4π
KIJ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J +

1

2π
tIεµν∂µφ

IAν

)
. (4.31)

The first example is described by the K-matrix

K1 =

1 0

0 11

 (4.32)

with t = (1,−1)T . This is not an example that is particularly relevant to quantum Hall

states observed in experiments – we will discuss several examples of those in Section 4.7

– but it is simple and serves as a paradigm for the more general structure that we discuss

in Sections 4.5 and 4.6.

Let us suppose that we have an additional left-moving and additional right-moving

fermion which, together, form a gapped unprotected excitation. The action now takes

the form

S =

∫
dx dt

(
1

4π
(K1 ⊕ σz)IJ ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J +

1

2π
tIεµν∂µφ

IAν

)
, (4.33)

where we have now extended t = (1,−1, 1, 1)T . The K-matrix for the two additional

modes is taken to be σz. We will comment on the relation to the σx case in Sections 4.4

and 4.5.

If the matrix VIJ is such that the perturbation

S ′ =

∫
dx dt u′ cos(φ3 + φ4) (4.34)
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is relevant, and if this is the only perturbation added to Eq. (4.33), then the two additional

modes become gapped and the system is in the phase (4.32). Suppose, instead, that the

only perturbation is

S ′′ =

∫
dx dt u′′ cos(φ1 − 11φ2 + 2φ3 + 4φ4). (4.35)

This perturbation is charge-conserving and spin-zero (i.e., its left and right scaling di-

mensions are equal). If it is relevant, then the edge is in a different phase. To find this

phase, it is helpful to make the basis change:

W T (K1 ⊕ σz)W = K2 ⊕ σz, (4.36)

where

K2 =

 3 1

1 4

 , (4.37)

and

W =



0 0 1 0

0 −2 0 1

−2 3 0 −2

1 −7 0 4


. (4.38)

Making the basis change φ = Wφ′, we see that

φ1 − 11φ2 + 2φ3 + 4φ4 = φ′3 + φ′4. (4.39)

Therefore, the resulting phase is described by (4.37).

To see that these are, indeed, different phases, we can compute basis-independent

quantities, such as the lowest scaling dimension of any operator in the two theories.
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In the K1 theory, it is 1/22 while in the K2 theory, it is 3/22. Measurements that

probe the edge structure in detail can, thereby, distinguish these two phases of the edge.

Consider, first, transport through a QPC that allows tunneling between the two edges of

the Hall bar, as described in Sec 4.2.1. In the state governed by K1, the most relevant

backscattering term is cos(φT2 − φB2 ). Applying Eq (4.12), the backscattered current will

depend on the voltage according to

Ib1 ∝ V −9/11. (4.40)

An alternative probe is given by tunneling into the edge from a metallic lead. The most

relevant term in the K1 edge phase that tunnels one electron into the lead is ψ†leade
iφT1 .

Applying Eq (4.14) yields the familiar current-voltage relation,

Itun
1 ∝ V. (4.41)

In contrast, in the phase governed by K2, the most relevant backscattering term

across a QPC is given by cos(φ′T2 − φ′B2 ), which from Eq (4.12) yields the current-voltage

relation

Ib2 ∝ V −5/11, (4.42)

while the most relevant single-electron tunneling term is given by ψ†leade
−3iφ′T1 −iφ′T2 , which

yields the scaling from Eq (4.14)

Itun
2 ∝ V 3. (4.43)

Since the two edge theories given by K1 and K2 are connected by a phase transition

just on the edge, we may expect they bound the same bulk Chern-Simons theory. Indeed,

the bulk quasiparticles can be identified up to ambiguous signs due to their fermionic
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nature. First, the discriminant group of the K1 theory is Z/11. We define a quasiparticle

basis for this theory as ψj ≡ (−j,−6j)T , j = 0, 1, . . . , 10. (While the cyclic nature of

the group Z/11 implies the identification (a, b) ≡ (a′, b′) mod (1, 11) for a, b, a′, b′ ∈ Z,

we choose the above basis in order to ensure charge conservation.) The S matrix is

given by Sjj′ = 1√
11
e−

72πi
11

jj′ . For the other theory given by K2, the discriminant group

obviously has the same structure with the generator being (0, 1)T and the quasiparticles

are denoted by ψ′j. The S matrix is given by S ′jj′ = 1√
11
e−

6πi
11
jj′ . Now we make the

following identification:

ψ′j ←→ ψj. (4.44)

This identification preserves the U(1) charge carried by each quasiparticle. The S ma-

trices are also identified:

Sj,j′ =
1√
11
e−

72πi
11

jj′ =
1√
11
e−

6πi
11
jj′ = S ′jj′ . (4.45)

Since the diagonal elements of S are basically T 2, it follows that the topological spins

are also identified up to ±1.

Our second example is

K ′1 =

1 0

0 7

 , (4.46)

with t = (1, 1)T . As before, we suppose that a non-chiral pair of modes comes down in

energy and interacts strongly with the two right-moving modes described by (4.46). The

action now takes the form

S =

∫
dx dt

(
1

4π
(K ′1 ⊕ σz)IJ ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J +

1

2π
tIεµν∂µφ

IAν

)
. (4.47)
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If the matrix VIJ is such that the perturbation

S ′ =

∫
dx dt u′ cos(φ3 + φ4) (4.48)

is relevant and this is the only perturbation added to Eq. (4.47), then the two additional

modes become gapped and the system is in the phase in Eq. (4.46). Suppose, instead,

the only perturbation is the following:

S ′′ =

∫
dx dt u′′ cos(φ1 + 7φ2 + φ3 + 3φ4). (4.49)

This perturbation is charge-conserving and spin-zero. If it is relevant, then the edge is

in a different phase. To find this phase, it is helpful to make the basis change

W ′T (K ′1 ⊕ σz)W ′ = K ′2 ⊕ σz, (4.50)

where

K ′2 =

2 1

1 4

 (4.51)

and

W ′ =



2 1 0 −1

1 −1 0 −1

0 0 −1 0

−3 2 0 3


. (4.52)

Making the basis change φ = W ′φ′, we see that

φ1 + 7φ2 + φ3 + 3φ4 = φ′4 − φ′3. (4.53)
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Therefore, the resulting phase is described by (4.51). This is a different phase, as may

be seen by noting that the lattice corresponding to Eq. (4.51) is an even lattice while the

lattice corresponding to Eq. (4.46) is odd.

The difference between the two edge phases is even more dramatic than in the previous

example. One edge phase has gapless fermionic excitations while the other one does

not! This example shows that an edge reconstruction can relate a theory with fermionic

topological order to one with bosonic topological order. Again, these two edge phases of

the ν = 8/7 can be distinguished by the voltage dependence of the current backscattered

at a quantum point contact and the tunneling current from a metallic lead. In the K ′1

edge phase (4.46), the backscattered current at a QPC is dominated by the tunneling

term cos(φT2 − φB2 ); using Eq (4.12) this yields the current-voltage relation

Ib1 ∝ V −5/7, (4.54)

while the single-electron tunneling into a metallic lead is dominated by the tunneling

term ψ†leade
iφT1 , which, using Eq (4.14), yields the familiar linear current-voltage scaling

Itun
1 ∝ V. (4.55)

In the K ′2 edge phase (4.51), the backscattered current at a QPC is dominated by the

backscattering term cos(φ′T2 − φ′B2 ), yielding:

Ib2 ∝ V −3/7. (4.56)

The tunneling current from a metallic lead is due to the tunneling of charge-2e objects

created by the edge operator eiφ
′
1+4iφ′2 . If we assume that the electrons are fully spin-

polarized and Sz is conserved, then the most relevant term that tunnels 2e into the
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metallic lead is ψ†lead∂ψ
†
leade

iφ′T1 +4iφ′T2 . Using Eq (4.14) the tunneling current is propor-

tional to a very high power of the voltage:

Itun
2 ∝ V 7. (4.57)

Again, although the theories look drastically different, we can show that the bulk S

matrices are isomorphic. First, the discriminant group of the K ′1 theory is Z/7 whose

generator we can take to be the (0, 4) quasiparticle. We label all quasiparticles in this

theory as ψj ≡ (0, 4j), j = 0, 1, . . . , 6. The S matrix is given by Sjj′ = 1√
7
e−

32πi
7
jj′ . For

the other theory given by K ′2, the discriminant group is generated by (0, 1)T and we

denote the quasiparticles by ψ′j. The S matrix is given by S ′jj′ = 1√
7
e−

4πi
7
jj′ . Now we

make the following identification:

ψ′j ←→ ψj. (4.58)

The S matrices are then seen to be identical:

Sj,j′ =
1√
7
e−

32πi
7
jj′ =

1√
7
e−

4πi
7
jj′ = S ′jj′ . (4.59)

4.4 Edge Phase Transitions

In the previous section, we gave two simple examples of edge phase transitions that

can occur between two distinct chiral theories. In this section, we discuss how edge

transitions can occur in full generality.

The chiral Luttinger liquid action is stable against all perturbations involving only

the gapless fields in the action in Eq. (4.6) (or, equivalently in the integer case, the action

in Eq. (4.1)). However, as we have seen in the previous section, strong interactions with
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gapped excitations can drive a phase transition that occurs purely at the edge. While

the bulk is completely unaffected, the edge undergoes a transition into another phase.

On the way to understanding this in more generality, we first consider an integer

quantum Hall state. At the edge of such a state, we expect additional gapped excitations

that we ordinarily ignore. However, they can interact with gapless excitations. (Under

some circumstances, they can even become gapless.[70]) Let us suppose that we have an

additional left-moving and and additional right-moving fermion which, together, form a

gapped unprotected excitation. Then additional terms must be considered in the action.

Let us first consider the case of an integer quantum Hall edge. The action in Eqs. (4.1)

and (4.2) becomes S0 + S1 + Su with

Su =

∫
dx dt

(
ψ†N+1 (i∂t + vN+1i∂x)ψN+1 + ψ†N+2 (i∂t − vN+2i∂x)ψN+2

+ uψ†N+1ψN+2 + h.c. + vI,N+1ψ
†
IψIψ

†
N+1ψN+1 + vI,N+2ψ

†
IψIψ

†
N+2ψN+2 + LN,L

)
, (4.60)

where ψN+1, ψN+2 annihilate right- and left-moving excitations which have an energy

gap u for vI,N+1 = vI,N+2 = 0. So long as vI,N+1 and vI,N+2 are small, this energy gap

survives, and we can integrate out ψN+1, ψN+2, thereby recovering the action S0 + S1 in

Eqs. (4.1) and (4.2), but with the couplings renormalized. However, if vI,N+1 and vI,N+2

are sufficiently large, then some of the other terms in the action, which we have denoted

by LN,L in Eq. (4.60) may become more relevant than u. These include terms such as

LN,L = uIψ
†
IψN+2 + h.c. + . . . . (4.61)

In order to understand these terms better, it is helpful to switch to the bosonic

representation, where there is no additional overhead involved in considering the general
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case of a chiral Abelian state, integer or fractional:

S =

∫
dx dt

(
1

4π
(K ⊕ σz)IJ ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J

+
∑
mI

umI cos
(
mIφ

I
)

+
1

2π

∑
I

εµν∂µφ
IAν

)
. (4.62)

Here, I = 1, 2, . . . , N+2; and (K ⊕ σz)IJ is the direct sum ofK and σz: (K ⊕ σz)IJ = KIJ

for I = J = 1, 2, . . . , N , (K ⊕ σz)IJ = 1 for I = J = N + 1, (K ⊕ σz)IJ = −1 for

I = J = N + 2, and (K ⊕ σz)IJ = 0 if I ∈ {1, 2, . . . , N}, J ∈ {N + 1, N + 2} or vice-

versa. The interaction matrix has VI,N+1 ≡ vI,N+1, VI,N+2 ≡ vI,N+2. The mIs must be

integers because the φIs are periodic. For instance, mI = (0, 0, . . . , 0, 1,−1) corresponds

to the mass term u(ψ†N+1ψN+2 + h.c.) in Eq. (4.60), so umI = u. In the last term, we are

coupling all modes equally to the electromagnetic field, i.e. this term can be written in

the form tIεµν∂µφ
IAν with tI = 1 for all I. This is the natural choice, since we expect

additional fermionic excitations to carry electrical charge e.

In general, most of the couplings umI will be irrelevant at the Gaussian fixed point.

An irrelevant coupling cannot open a gap if it is small enough to remain in the basin of

attraction of the Gaussian fixed point. However, if we make the coupling large enough, it

may be in the basin of attraction of another fixed point and it may open a gap. We will

not comment more on this possibility here. However, we can imagine tuning the VIJs so

that any given umI is relevant. To analyze this possibility, it is helpful to change to the

variables Xa = eaIφ
I , in terms of which the action takes the form

S =

∫
dx dt

(
1

4π
ηab∂tX

a∂xX
b − 1

4π
vab∂xX

a∂xX
b

+
∑
mI

umI cos
(
mIf

I
aX

a
)

+
1

2π

∑
I

fJa εµν∂µX
aAν .

)
(4.63)
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eaI and f Ia are bases for the lattice ΛN+2 and its dual Λ∗N+2, where the lattice ΛN+2

corresponds to K ⊕ σz. The variables Xa satisfy the periodicity condition X ≡ X + 2πy

for y ∈ ΛN+2. Note that, since one of the modes is left-moving, the Lorentzian metric

ηab = diag(1N−1,−1) appears in Eq. (4.63).

Since f Ia is a basis of the dual lattice Λ∗N+2, the cosine term can also be written in

the form ∑
v∈Λ∗N+2

uv cos (v ·X) .

The velocity/interaction matrix is given by vab = VIJf
I
af

J
b . Now suppose that the veloc-

ity/interaction matrix takes the form

vab = v Oc
aδcdO

d
b, (4.64)

where O ∈ SO(N + 1, 1). Then we can make a change of variables to X̃a ≡ Oa
bX

b. We

specialize to the case of a single cosine perturbation associated with a particular vector

in the dual lattice v0 ≡ pIf
I which we will make relevant (we have also set Aν = 0 since

it is inessential to the present discussion). Now Eq. (4.63) takes the form

S =
1

4π

∫
dx dt

(
ηab∂tX̃

a∂xX̃
b − vδab∂xX̃

a∂xX̃
b + uv0 cos

(
pIf

I
a (O−1)abX̃

b
))

. (4.65)

If this perturbation has equal right and left scaling dimensions (i.e., is spin-zero), then

its scaling dimension is simply twice its left scaling dimension with corresponding beta

function

duv0

d`
=
(
2− q2

N+2

)
uv0 , (4.66)

where qb ≡ pIf
I
a (O−1)ab. The transformation O−1 can be chosen to be a particular

boost in the (N + 2)-dimensional space RN+1,1. Because qa is a null vector (i.e., a light-
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like vector) in this space, by taking the boost in the opposite direction of the “spatial”

components of qa, we can “Lorentz contract” them, thereby making qN+2 as small as

desired. Thus, by taking vab of the form (4.64) and choosing O ∈ SO(N + 1, 1) so that

q2
N+2 < 2, we can make this coupling relevant.

When this occurs, two modes, one right-moving and one left-moving, will acquire

a gap. We will then be left over with a theory with N gapless right-moving modes.

The gapless excitations exp(iv ·X) of the system must commute with v0 ·X and, since

the cosine fixes v0 · X, any two excitations that differ by v0 · X should be identified.

Thus, the resulting low-energy theory will be associated with the lattice Γ defined by

Γ ≡ Λ⊥/Λ‖, where Λ⊥,Λ‖ ⊂ ΛN+2 are defined by Λ⊥ ≡ {v ∈ ΛN+2 |v · v0 = 0} and

Λ‖ ≡ {nv0 |n ∈ Z}. If gI is a basis for Γ, then we can define a K-matrix in this basis,

K̃IJ = gI · gJ . The low-energy effective theory for the gapless modes is

S =

∫
dx dt

(
1

4π
K̃IJ∂tφ

I∂xφ
J − 1

4π
ṼIJ∂xφ

I∂xφ
J +

1

2π
t̃Iεµν∂µφ

IAν

)
. (4.67)

When v0 = (0, 0, . . . , 0, 1,−1) is the only relevant operator, φN+1 and φN+2 are gapped

out. Therefore, Γ = Λ and K̃IJ = KIJ . However, when other operators are present,

Γ could be a different lattice Γ � Λ, from which it follows that K̃IJ 6= KIJ (and,

K̃ 6= W TKW for any W ).

We motivated the enlargement of the theory from K to K ⊕ σz by assuming that an

additional pair of gapped counter-propagating fermionic modes comes down in energy

and interacts strongly with the gapless edge excitations. This counter-propagating pair

of modes can be viewed as a thin strip of ν = 1 integer quantum Hall fluid or, simply,

as a fermionic Luttinger liquid. Of course, more than one such pair of modes may

interact strongly with the gapless edge excitations, so we should also consider enlarging

the K-matrix to K ⊕ σz ⊕ σz . . .⊕ σz. We can generalize this by imagining that we can
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add any one-dimensional system to the edge of a quantum Hall state. (This may not

be experimentally-relevant to presently observed quantum Hall states, but as a matter

of principle, this is something that could be done without affecting the bulk, so we

should allow ourselves this freedom.) Any clean, gapless 1D system of fermions is in

a Luttinger liquid phase (possibly with some degrees of freedom gapped). Therefore,

K ⊕ σz ⊕ σz . . .⊕ σz is actually the most general possible form for the edge theory.

One might wonder about the possibility of attaching a thin strip of a fractional quan-

tum Hall state to the edge of the system. Naively, this would seem to be a generalization

of our putative most general form K ⊕ σz ⊕ σz . . . ⊕ σz. To illustrate the issue, let us

consider a bulk ν = 1 IQH state and place a thin strip of ν = 1/9 FQH state at its edge.

The two edges that are in close proximity can be described by the following K-matrix:

K =

1 0

0 −9

 . (4.68)

As discussed in Ref. [51], this edge theory can become fully gapped with charge-non-

conserving backscattering. Then we are left with the outer chiral edge of the thin strip,

which is described by K = (9), which can only bound a topologically ordered ν = 1/9

Laughlin state. The subtlety here is that a thin strip of the fractional quantum Hall

state has no two-dimensional bulk and should be considered as a purely one-dimensional

system. Fractionalized excitations, characterized by fractional conformal spins only make

sense when a true 2D bulk exists. If the width of the strip is small, so that there is no

well-defined bulk between them, then we can only allow operators that add an integer

number of electrons to the two edges. We cannot add fractional charge since there is no

bulk which can absorb compensating charge. Thus the minimal conformal spin of any

operator is 1/2. In other words, starting from an one-dimensional interacting electronic
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system, one cannot change the conformal spin of the electron operators. So attaching a

thin strip of FQH state is no different from attaching a trivial pair of modes.

In a bosonic system, we cannot even enlarge our theory by a pair of counter-propagating

fermionic modes. We can only enlarge our theory by a Luttinger liquid of bosons or,

equivalently, a thin strip of σxy = 2e2

h
bosonic integer quantum hall fluid [20, 51, 53].

Such a system has K-matrix equal to σx, which only has bosonic excitations. Equiva-

lently, bosonic systems must have even K-matrices – matrices with only even numbers

along the diagonal – because all particles that braid trivially with every other particle

must be a boson. Since the enlarged matrix must have the same determinant as the

original one because the determinant is the ground state degeneracy of the bulk phase

on the torus [39], we can only enlarge the theory by σx, the minimal even unimodular

matrix. Therefore, in the bosonic case, we must enlarge our theory by K → K ⊕ σx.

In the fermionic case, we must allow such an enlargement by σx as well. We can

imagine the fermions forming pairs and these pairs forming a bosonic Luttinger liquid

which enlarges K by σx. In fact, it is redundant to consider both σz and σx: for an odd

matrix K, W (K ⊕ σz)W T = K ⊕ σx, where

W =



1 0 · · · 0 y1 −y1

0 1 · · · 0 y2 −y2

...
...

...
...

...
...

0 0 · · · 1 yN −yN

0 0 · · · 0 1 −1

x1 x2 · · · xN s 1− s


(4.69)

Here the vector x has an odd length squared, i.e. xTKx is odd; by definition of K

odd, such an x must exist. The vector y is defined as y = −Kx and the integer s by
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s = 1
2
(1− xTKx). Thus K ⊕ σx is GL(N + 2,Z)-equivalent to K ⊕ σz and our previous

discussion for fermionic systems could be redone entirely with extra modes described by

σx. However, if K is even, then K ⊕ σx is not GL(N + 2,Z)-equivalent to K ⊕ σz.

We remark that although σz enlargement and σx enlargement are equivalent for

fermionic states when topological properties are concerned, they do make a difference

in charge vectors: the appropriate charge vector for the σz block should be odd and

typically taken to be (1, 1)T . However the charge vector for the σx block must be even

and needs to be determined from the similarity transformation.

To summarize, a quantum Hall edge phase described by matrix K1 can undergo a

purely edge phase transition to another edge phase with GL(N,Z)-inequivalent K2 (with

identical bulk) if there exists W̃ ∈ GL(N + 2k,Z) such that

K2 ⊕ σx ⊕ . . .⊕ σx = W̃ T (K1 ⊕ σx ⊕ . . .⊕ σx) W̃ . (4.70)

for some number k of σxs on each side of the equation. In a fermionic system with K1

odd, an edge phase transition can also occur to an even matrix K2 if

Keven
2 ⊕ σz ⊕ . . .⊕ σx = W̃ T

(
Kodd

1 ⊕ σx ⊕ . . .⊕ σx
)
W̃ . (4.71)
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4.5 Stable Equivalence, Genera of Lattices, and the

Bulk-Edge Correspondence for Abelian Topolog-

ical Phases

4.5.1 Stable Equivalence and Genera of Lattices

In the previous section, we saw that a bulk Abelian quantum Hall state associated

with K1 has more than one different stable chiral edge phase if there exists GL(N,Z)-

inequivalent K2 and W̃ ∈ GL(N + 2k,Z) such that

K2 ⊕ σx ⊕ . . .⊕ σx = W̃ T (K1 ⊕ σx ⊕ . . .⊕ σx) W̃ . (4.72)

This is an example of a stable equivalence; we say that K1 and K2 are stably equivalent

if, for some n, there exist signature (n, n) unimodular matrices Li such that K1⊕L1 and

K2 ⊕ L2 are integrally equivalent, i.e. are GL(N + 2n,Z)-equivalent. If there is a choice

of Lis such that both are even, we will say that K1 and K2 are “σx-stably equivalent”

since the Lis can be written as direct sums of σxs. We also saw in Eq. 4.71 that when

K1 is odd and K2 is even, we will need L2 to be an odd matrix. We will call this

“σz-stable equivalence” since L2 must contain a σz block. We will use U to denote the

signature (1, 1) even Lorentzian lattice associated with σx. Then σx-stable equivalence

can be restated in the language of lattices as follows. Two lattices Λ1, Λ2 are σx-stably

equivalent if Λ1⊕U · · ·⊕U , and Λ2⊕U · · ·⊕U are isomorphic lattices. Similarly, Uz will

denote the Lorentzian lattice associated with σz. Occasionally, we will abuse notation

and use σx and σz to refer to the corresponding lattices U , Uz.

Stable equivalence means that the two K-matrices are equivalent after adding “triv-

ial” degrees of freedom – i.e. purely 1D degrees of freedom that do not require any
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change to the bulk. This is analogous to the notion of stable equivalence of vector bun-

dles, according to which two vector bundles are stably equivalent if and only if isomorphic

bundles are obtained upon joining them with trivial bundles.

We now introduce the concept of the genus of a lattice or integral quadratic form.

Two integral quadratic forms are in the same genus [72, 65] when they have the same

signature and are equivalent over the p-adic integers Zp for every prime p. Loosely

speaking, equivalence over Zp can be thought of as equivalence modulo arbitrarily high

powers of p, i.e. in Z/pn for every n. The importance of genus in the present context

stems from the following statement of Conway and Sloane [65]:

Two integral quadratic forms K1 and K2 are in the same genus if and only if K1 ⊕ σx

and K2 ⊕ σx are integrally equivalent.

Proofs of this statement are, however, difficult to pin down in the literature. It

follows, for instance, from results in Ref. [72] about a refinement of the genus called

the spinor genus. Below, we show how it follows in the even case from results stated by

Nikulin[66]. This characterization of the genus is nearly the same as the definition of

σx-stable equivalence given in (4.72), except that Eq. (4.72) allows multiple copies which

is natural since a physical system may have access to multiple copies of trivial degrees

of freedom. Its relevance to our situation follows from the following theorem that we

demonstrate below:

Two K-matrices K1 and K2 of the same dimension, signature and type are stably equiv-

alent if and only if K1 ⊕ σx and K2 ⊕ σx are integrally equivalent, i.e. only a single copy

of σx is needed in Eq. (4.72).

Thus any edge phase that can be reached via a phase transition involving multiple

sets of trivial 1D bosonic degrees of freedom (described by K-matrix σx) can also be

reached through a phase transition involving only a single such set. We demonstrate

107



Bulk-Edge Correspondence in 2 + 1-Dimensional Abelian Topological Phases Chapter 4

this by appealing to the following result stated by Nikulin[66] (which we paraphrase but

identify by his numbering):

Corollary 1.16.3: The genus of a lattice is determined by its discriminant group A, parity,

signature (r+, r−), and bilinear form b on the discriminant group.

Since taking the direct sum with multiple copies of σx does not change the parity, or

bilinear form on the discriminant group, any K1 and K2 that are σx-stably equivalent

are in the same genus. The theorem then follows from the statement[65] above that only

a single copy of σx is needed.

In the even case, the theorem follows directly from two other results found in Nikulin[66]:

Corollary 1.13.4: For any even lattice Λ with signature (r+, r−) and discriminant quadratic

form q, the lattice Λ⊕ U is the only lattice with signature (r+ + 1, r− + 1) and quadratic

form q.

Theorem 1.11.3: Two quadratic forms on the discriminant group are isomorphic if and

only if their bilinear forms are isomorphic and they have the same signature (mod 8).

If lattices Λ1 and Λ2 are in the same genus, they must have the same (r+, r−) and

bilinear form b. According to Theorem 1.11.3, they must have the same quadratic form,

namely q([x]) = 1
2
b([x], [x]), which is well-defined in the case of an even lattice. Then,

Corollary 1.13.4 tells us that Λ1 ⊕U is the unique lattice with signature (r+ + 1, r− + 1)

and quadratic form q. Since Λ2⊕U has the same signature (r+ +1, r−+1) and quadratic

form q, Λ1⊕U ∼= Λ2⊕U . Thus, we see that any two even K-matrices in the same genus

are integrally-equivalent after taking the direct sum with a single copy of σx. Of course,

our previous arguments that used Nikulin’s Corollary 1.16.3 and the characterization of

genus from Conway and Sloane[65] are stronger since they apply to odd matrices.
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4.5.2 Bulk-Edge Correspondence

Since the quadratic form q([u]) gives the T and S matrices according to Eqs. (4.23)

and (4.25), we can equally-well say that the genus of a lattice is completely determined by

the particle types, T -matrix, S-matrix, and right- and left-central charges. For a bosonic

system, the genus completely determines a bulk phase. Conversely, a bulk topological

phase almost completely determines a genus: the bulk phase determines (c+ − c−) mod

24 while a genus is specified by (c+, c−). However, if the topological phase is fully chiral,

so that it can have c− = 0, then it fully specifies a family of genera that differ only by

adding central charges that are a multiple of 24, i.e. 3k copies of the E8 state for some

integer k (see Section 4.7.1 for a discussion of this state). Thus, up to innocuous shifts

of the central charge by 24, we can say that

A bulk bosonic topological phase corresponds to a genus of even lattices while its edge

phases correspond to the different lattices in this genus.

The problem of detemining the different stable edge phases that can occur for the same

bosonic bulk is then the problem of determining how many distinct lattices there are in

a genus.

In the fermionic case, the situation is more complicated. A fermionic topological

phase is determined by its particle types, its S-matrix, and its central charge (mod 24).

It does not have a well-defined T -matrix because we can always change the topological

twist factor of a particle by −1 simply by adding an electron to it. According to the

following result of Nikulin, these quantities determine an odd lattice:

Corollary 1.16.6: Given a finite Abelian group A, a bilinear form b : A × A → Q/Z,

and two positive numbers (r+, r−), then, for sufficiently large r+, r−, there exists an odd

lattice for which A is its discriminant group. b is the bilinear form on the discriminant

group, and (r+, r−) is its signature.
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Since the S-matrix defines a bilinear form on the Abelian group of particle types, this

theorem means that the quantities that specify a fermionic Abelian topological phase

are compatible with an odd lattice. Clearly, they are also compatible with an entire

genus of odd lattices since σx stable equivalence preserves these quantities. Moreover,

by Corollary 1.16.3, there is only a single genus of odd lattices that are compatible with

this bulk fermionic Abelian topological phase. However, Corollary 1.16.3 leaves open the

possibility that there is also a genus of even lattices that is compatible with this fermionic

bulk phase, a possibility that was realized in one of the examples in Section 4.3. This

possibility is discussed in detail in Section 4.6. However, the general result that we can

already state, up to shifts of the central charge by 24 is

A bulk fermionic topological phase corresponds to a genus of odd lattices while its edge

phases correspond to the different lattices in this genus and, in some cases (specificed in

Section 4.6), to the different lattices in an associated genus of even lattices.

In principle, one can determine how many lattices there are in a given genus by using

the Smith-Siegel-Minkowski mass formula [65] to evaluate the weighted sum

∑
Λ∈g

1

|Aut(Λ)|
= m(K) (4.73)

over the equivalence classes of lattices in a given genus g. Each equivalence class of forms

corresponds to a lattice Λ. The denominator is the order of the automorphism group

Aut(Λ) of the lattice Λ. The right-hand-side is the mass of the genus of K, which is

given by a complicated but explicit formula (see Ref. [65]).

Given a K-matrix for a bosonic state, one can compute the size of its automorphism

group3, which gives one term in the sum in (4.73). If this equals the mass formula on

3For generic K-matrices without any symmetries, the automorphism group often only consists of two
elements: W = ±IN×N .
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the right-hand-side of Eq. (4.73), then it means the genus has only one equivalence class.

If not, we know there is more than one equivalence class in the genus. Such a program

shows [15] that, in fact, all genera contain more than one equivalence class for N > 10,

i.e. all chiral Abelian quantum Hall states with central charge c > 10 have multiple

distinct stable chiral edge phases. For 3 ≤ N ≤ 10, there is a finite set of genera with

only a single equivalence class [73]; all others have multiple equivalence classes. The

examples of ν = 16 analyzed in Ref. [5] and ν = 12/23 that we gave in Section 4.7 are, in

fact, the rule. Bosonic chiral Abelian quantum Hall states with a single stable chiral edge

phase are the exception, they can only exist for c ≤ 10 and they have been completely

enumerated[73].

This does not tell us how, given one equivalence class, to find other equivalence classes

of K-matrices in the same genus. However, one can use the Gauss reduced form [65] to

find all quadratic forms of given rank and determinant by brute force. Then we can use

the results at the end of previous Section to determine if the resulting forms are in the

same genus.

4.5.3 Primary Decomposition of Abelian Topological Phases

According to the preceding discussion, two distinct edge phases can terminate the

same bulk phase if they are both in the same genus (but not necessarily only if they are

in the same genus in the fermionic case). It may be intuitively clear what this means,

but it is useful to be more precise about what we mean by “the same bulk phase”. In

more physical terms, we would like to be more precise about what it means for two

theories to have the same particle types and S- and T -matrices. In more formal terms,

we would like to be more precise about what is meant in Nikulin’s Theorem 1.11.3 by

isomorphic quadratic forms and bilinear forms. In order to do this, it helps to view an
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Abelian topological phase in a somewhat more abstract light. When viewed from the

perspective of an edge phase or, equivalently, a K-matrix, the bulk phase is determined

by the signature (r+, r−), together with the bilinear form on the discriminant group Λ∗/Λ

induced by the bilinear form on the dual lattice Λ∗ determined by K. As we have seen,

this data uniquely specifies a nondegenerate quadratic form q : Λ∗/Λ → Q/Z on the

discriminant group. Therefore, we may view the genus more abstractly in terms of an

arbitrary finite Abelian group A and a quadratic form q : A → Q/Z, making no direct

reference to an underlying lattice. We will sometimes call such a quadratic form a finite

quadratic form to emphasize that its domain is a finite Abelian group. The elements of

the group A are the particle types in the bulk Abelian topological phase.

Now suppose we have two bulk theories associated with Abelian groupsA, A′, quadratic

forms q : A → Q/Z, q′ : A′ → Q/Z and chiral central charges c−, c′−. These theories are

the same precisely when the chiral central charges satisfy c− ≡ c′− mod 24, and when the

associated quadratic forms are isomorphic. This latter condition means that there exists

a group isomorphism f : A′ → A such that q′ = q ◦ f . Note that if the quadratic forms

are isomorphic then the chiral central charges must be equal (mod 8) according to the

Gauss-Milgram sum. However, the bulk theories are the same only if they satisfy the

stricter condition that their central charges are equal modulo 24.

The implications of this become more apparent after observing that any Abelian group

factors as a direct sum A ' ⊕pAp over primes dividing |A|, where Ap ⊂ A is the p-primary

subgroup of elements with order a power of p. Any isomorphism f : A′ → A must respect

this factorization by decomposing as f = ⊕pfp, with each fp : A′p → Ap. Furthermore,

every finite quadratic form decomposes into a direct sum q = ⊕pqp of p-primary forms; we

call qp the p-part of q. This ultimately leads to a physical interpretation for p-adic integral

equivalence: if p is odd, two K-matrices are p-adically integrally equivalent precisely when

the p-parts of their associated quadratic forms are isomorphic. Additional subtleties arise
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when p = 2 but, as we will see, these are the reason for the distinction between σx- and

σz-equivalence.

The image of a given finite quadratic form q is a finite cyclic subgroup N−1
q Z/Z ⊂ Q/Z

isomorphic to Z/Nq, where Nq is the level of the finite quadratic form q. The level is the

smallest integer N such that q factors through Z/N , implying that the topological spins

of particles in Aq are Nqth roots of unity. Because the level of the direct sum of finite

quadratic forms is the least common multiple of the levels of the summands, the level of

q = ⊕pqp is equal to the product Nq =
∏

pNqp of the levels of the qp. If p is odd, the

level of qp is the order of the largest cyclic subgroup of Ap, while it is typically twice as

big for q2. Physically, this means that the entire theory uniquely factors into a tensor

product of anyon theories such that the topological spins of the anyons in the pth theory

are pth-power roots of unity. This decomposition lets us express a local-to-global principle

for finite quadratic forms: q and q′ are isomorphic iff qp and q′p are for every p. Indeed,

if one views prime numbers as “points” in an abstract topological space4, this principle

says that q and q′ are globally equivalent (at all primes) iff they are locally equivalent at

each prime dividing |A|.

Further information about the prime theories is obtained by decomposing each Ap

into a product

Ap '
mp∏
m=0

(Z/pm)dpm (4.74)

of cyclic groups, where dp0 , . . . , dpmp−1 ≥ 0 and dpmp > 0. When p is odd, there is a 1-1

correspondence between bilinear and quadratic forms on Ap because multiplication by

2 is invertible in every Z/pm. Furthermore, given a quadratic form qp on Ap for odd p,

we claim there always exists an automorphism g ∈ Aut(Ap) that fully diagonalizes qp

4This space is known as Spec(Z). Rational numbers are identified with functions on this space
according to their prime factorizations.
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relative to a fixed decomposition (4.74) such that

qp ◦ g =
⊕
m

(
q+
pm ⊕ . . .⊕ q+

pm ⊕ q±pm︸ ︷︷ ︸
dpm terms

)
, (4.75)

where

q+
pm(x) =

1

pm
2−1x2 mod Z,

q−pm(x) =
1

pm
up2

−1x2 mod Z

and up is some fixed non-square modulo pn. A dual perspective is that, given qp, it is

always possible to choose a decomposition (4.74) of Ap relative to which qp has the form

of the right-hand-side of (4.75). However, not every decomposition will work for a given

qp because Aut(Ap) can mix the different cyclic factors. For example, Aut((Z/p)d) '

GL(d,Z/p) mixes the cyclic factors of order p. There will also be automorphisms mixing

lower-order generators with ones of higher order, such as the automorphism of Z/3 ⊕

Z/9 = 〈α3, α9〉 defined on generators by α3 7→ α3 and α9 7→ α3 + α9. Physically, this

means that the anyon theory associated to Ap further decomposes into a tensor product

of “cyclic” theories, although now such decompositions are not unique because one can

always redefine the particle types via automorphisms of Ap.

4.5.4 p-adic Symbols

Two K-matrices are p-adically integrally equivalent iff the diagonalizations of the p-

parts of their associated finite quadratic forms coincide. The numbers dpm and the sign

of the last form in the mth block thus form a complete set of invariants for p-adic integral

equivalence of K-matrices. This data is encoded into the p-adic symbol, which is written

as 1±dp0p±dp1 (p2)±dp2 · · · (terms with dpm = 0 are omitted) and can be computed using
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Sage[74]. Two K-matrices are p-adically integrally equivalent iff their p-adic symbols

coincide.

The p-adic symbol can be computed more directly by noting that K-matrices are

equivalent over the p-adic integers when they are equivalent by a rational transformation

whose determinant and matrix entries do not involve dividing by p. Such transformations

can be reduced modulo arbitrary powers of p and give rise to automorphisms of the p-

part Ap of the discriminant group. Given a K-matrix K, there always exists a p-adically

integral transformation g putting K into p-adically block diagonalized [65] form

gKgT = Kp0 ⊕ pKp1 ⊕ p2Kp2 ⊕ · · · , (4.76)

where det(Kpm) is prime to p for every m.

A more direct characterization of the genus can now be given: Two K-matrices are

in the same genus iff they are related by a rational transformation whose determinant

and matrix entries are relatively prime to twice the determinant, or rather, to the level

N of the associated discriminant forms. Such a transformation suffices to simultaneously

p-adically block-diagonalize K over the p-adic integers for every p dividing twice the

determinant, and a similar reduction yields the entire quadratic form on the discriminant

group, with some extra complications when p = 2. Such a non-integral transformation

mapping two edge theories as g(Λ1) = Λ2 does not, however induce fractionalization in the

bulk since it reduces to an isomorphism between the discriminant groups Λ∗1/Λ1 → Λ∗2/Λ2.

For example, the ν = 12/11 K-matrices (4.32) and (4.37) are related by the following

rational transformation that divides by 3:

 1 0

−1/3 1


3 1

1 4


1 −1/3

0 1

 =

1 0

0 11

.
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One might be tempted to look at this transformation and conclude that one of the particle

types on the left-hand-side has undergone fractionalization and divided into 3 partons

(due to the −1/3 entries in the matrix), thereby leading to the phase on the right-hand-

side. But in mod 11 arithmetic, the number 3 is invertible, so no fractionalization has

actually occurred.

When p 6= 2, the p-adic symbol can be directly computed from any such p-adic block

diagonalization, as the term (pm)±dpm records the dimension dpm = dim(Kpm) and sign

± of det(Kpm), the latter being given by the Legendre symbol

(
det(Kpm)

p

)
=


+1 if p is a square mod p

−1 if p is not a square mod p.

In this case, it is further possible to p-adically diagonalize all of the blocks Kpm , in

which case there exists a p-adically integral transformation g that diagonalizes the form

Q(x) = 1
2
xTK−1x on the dual lattice Λ∗ such that its reduction modulo Λ takes the form

(4.75).

When p = 2, it is possible that only some of the blocks K2m in the decomposition

(4.76) can be 2-adically diagonalized[65] (we call these blocks odd). The remaining even

blocks can only be block diagonalized into 2 × 2 blocks of the form
(

2a b
b 2c

)
with b odd,

or rather, some number of copies of σx and
(

2 1
1 2

)
. As with odd p, the 2-adic symbol

associated to such a block diagonalization records the dimensions d2m of the blocks,

together with the signs of the determinants det(K2m), which are given by the Jacobi

symbols (
2

det(K2m)

)
=


+1 if det(K2m) ≡ ±1 mod 8

−1 if det(K2m) ≡ ±3 mod 8

and record whether or not det(Kpm) is a square mod 8. In addition to this data, the 2-
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K-matrix p-adic symbols quadratic form(
1 0
0 7

)
1+2

0 1+17+1

q+
7

(
2 1
1 4

)
1+2

even 1+17+1(
1 0
0 11

)
1−2

4 1+111+1 q+
11

(
3 1
1 4

)(
3 0
0 5

)
1+2

0 1−13+1 1−15+1

q+
3 ⊕ q+

5
(

2 1
1 8

)
1+2

even 1−13+1 1−15+1(
2 3
3 16

)
1+2

even 1+123+1 q+
23

(
4 1
1 6

)
KA4 1−4

even 1+35+1

q+
55⊕ I3 1−4

0 1+35+1

KE8 1+8
even 0I8 1+8
0

KE8 ⊕ I4
1+12

4 0I12

KD+
12(

2
2

)
2+2

even q+
2,2

KD4 1−2
even2−2

even q−2,2(
4 2
2 4

)
2−2

even 1+13+1 q−2,2 ⊕ q+
3

Table 4.1: Here we list the p-adic symbols and discriminant quadratic forms for various
K-matrices appearing in this chapter, beginning with the canonical 2-adic symbol in
every case, followed by the symbols for each prime dividing the determinant. Each
block contains inequivalent-but-stably-equivalent matrices. The last few rows contain
K-matrices giving rise to some of the exceptional 2-adic quadratic forms mentioned
in the text.
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adic symbol also records the parities as well as the traces TrK2m mod 8 of the odd blocks.

An additional complication is that a given K-matrix can be 2-adically diagonalized in

more than one way, and while the dimensions and parities of the blocks will be the same,

the signs and traces of the odd blocks – and thus the 2-adic symbols – can be different.

While this makes checking 2-adic equivalence more difficult, it is nonetheless possible to

define a canonical 2-adic symbol[65] that is a complete invariant for 2-adic equivalence.

We record these canonical 2-adic symbols for many of the K-matrices considered in this

chapter in Table 4.1.

The reason for the additional complexity when p = 2 is because multiplication by 2

is not invertible on the 2-primary part (Q/Z)2 of Q/Z. This implies that if q refines a

bilinear form on a 2-group then so does q + 1
2

mod Z, and sometimes these refinements

are not isomorphic. For example, there is only one nondegenerate bilinear form b2(x, y) =

xy
2

mod Z on Z/2, with two non-isomorphic quadratic refinements q±2 (x) = ±x
4

mod Z.

Each of these refinements has level 4 and corresponds respectively to the semion K = (2)

and its conjugate K = (−2). These give the S and T matrices

S2 =
1√
2

1 1

1 −1

, T±2 = e∓
2πi
24

1

±i

.
On Z/2 × Z/2, there are two isomorphism classes of nondegenerate bilinear forms.

The first class is represented by

(b2 ⊕ b2)(x, y) = 1
2
(x1y1 + x2y2) mod Z
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and has the S-matrix

S2 ⊗ S2 =
1

2



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


.

All the refinements in this case have level 4 and are given by tensor products of semions.

Up to isomorphism, this gives three refinements q+
2 ⊕q+

2 , q+
2 ⊕q−2 and q−2 ⊕q−2 , determined

by the K-matrices
(

2
2

)
,
(

2
−2

)
and

( −2
−2

)
with c− = 2, 0,−2 respectively.

The second class of bilinear forms on Z/2× Z/2 contains the single form

b2,2(x, y) = 1
2
(x1y2 + x2y1) mod Z

and gives the S-matrix

S2,2 =
1

2



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


.

It is refined by two isomorphism classes q±2,2 of quadratic forms with T-matrices T±2,2 =

diag(1,±1,±1,−1) (these have level 2, the exception to the rule), up to the usual phase

of −2πic−/24. The form q+
2,2 is given by the K-matrix

(
2

2

)
and corresponds to the toric

code. The form q−2,2 is given by the K-matrix

KD4 =



2 0 1 0

0 2 −1 0

1 −1 2 −1

0 0 −1 2


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of SO(8)1, or equivalently, by the restriction of the quadratic form associated to the K-

matrix
(

4 2
2 4

)
to the 2-part of its discriminant group Z/2× Z/2× Z/3. Again, these are

distinguished by their signatures, which are 0 and 4 mod 8. The 2-adic diagonalizations

of these K-matrices contain examples of even blocks, as illustrated in to even blocks in

Table 4.1.

Further complexity arises for higher powers of 2: There are two bilinear forms b±4 on

Z/4, and four b1,3,5,7
2m on each Z/2m when m ≥ 3. There are also four quadratic forms

q1,3,5,7
2m on Z/2m for every m ≥ 2, all with level 2m+1. Therefore, the bilinear forms

b±4 have two refinements each, while the rest have unique refinements. On top of all

this, even more complexity arises from the fact that factorizations of such forms is not

typically unique. It is therefore less straightforward to check equivalence of 2-adic forms.

It is nonetheless still possible to define a canonical 2-adic symbol[65] that is a complete

invariant for 2-adic equivalence of K-matrices. However, this symbol carries strictly more

information than the isomorphism class of the 2-part of the discriminant form because it

knows the parity of K. To characterize the even-odd equivalences that we investigate in

the next section, the usual 2-adic equivalence is replaced with equivalence of the 2-parts

of discriminant forms as in the odd p case above.

The 2-adic symbol contains slightly more information than just the equivalence class

of a quadratic form on the discriminant group. This is evident in our even-odd examples,

for which all p-adic symbols for odd p coincide, with the only difference occurring in

the 2-adic symbol. It is however clear that two K-matrices Keven and Kodd of different

parities are stably equivalent precisely when either Keven⊕1 and Kodd⊕1 are in the same

genus, or otherwise, when Keven ⊕ σz and Kodd ⊕ σz are in the same genus. A detailed

study of the 2-adic symbols in this context will appear elsewhere.
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4.6 Stable Equivalence between Odd and Even Ma-

trices: Fermionic Bulk States with Bosonic Edges

Phases

We now focus on the case of fermionic systems, which are described by oddK-matrices

(i.e., matrices that have at least one odd number on the diagonal). We ask: Under what

circumstances is such a K-matrix equivalent, upon enlargement by σz (or σx, since it

makes no difference for an odd matrix), to an even K-matrix enlarged by σz:

Kodd ⊕ σz = W T (Keven ⊕ σz)W? (4.77)

This question can be answered using the theory of quadratic refinements.[44, 64]

As we have alluded to earlier, the naive definition of a quadratic form on the discrimi-

nant group breaks down for odd matrices. To be more concrete, 1
2
u2 (mod 1) is no longer

well-defined on the discriminant group. In order to be well-defined on the discriminant

group, shifting u by a lattice vector λ ∈ Λ must leave q(u) invariant modulo integers,

so that e2πiq(u) in Eq. (4.23) is independent of which representative in Λ∗ we take for an

equivalence class in A = Λ∗/Λ. When K is odd, there are some vectors λ in the original

lattice Λ such that

q(u + λ) ≡ q(u) +
1

2
mod 1. (4.78)

Physically, such a vector is just an electron (λ · λ is an odd integer). One can attach an

odd number of electrons to any quasiparticle and change the exchange statistics by −1. In

a sense, the discriminant group should be enlarged to A⊕(A+λodd): quasiparticles come

in doublets composed of particles with opposite fermion parity, and therefore opposite

topological twists. The Gauss-Milgram sum over this enlarged set of quasiparticles is
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identically zero, which is a clear signature that the Abelian topological phase defined by

an odd K-matrix is not a TQFT in the usual sense.

While the T matrix is not well-defined for a fermionic theory, the S matrix, which

is determined by the discriminant bilinear form b([v], [v′]), makes perfect sense. This

is because a full braid of one electron around any other particle does not generate a

non-trivial phase.

Given a bilinear form b, a systematic approach for defining a quadratic form that is

well-defined on the discriminant group comes from the theory of quadratic refinements.

The crucial result is that a given bilinear form can always be lifted to a quadratic form q on

the discriminant group. The precise meaning of “lifting” is that there exists a well-defined

discriminant quadratic form such that b([v], [v′]) = q([v + v′]) − q([v]) − q([v′]).[44, 64]

With q, the topological twists are well-defined: e2πiq(u) = e2πiq(u+λ) for all u ∈ Λ∗ and

λ ∈ Λ. We will give a constructive proof for the existence of such a q, given any odd

K-matrix.

Once the existence of such a quadratic form q([v]) is established, we can evaluate the

Gauss-Milgram sum (4.27) and determine c− mod 8. We then appeal to the following

result of Nikulin [66]:

Corollary 1.10.2: Given an Abelian group A, a quadratic form q on A, and positive

integers (r+, r−) that satisfy the Gauss-Milgram sum for q, there exists an even lattice

with discriminant group A, quadratic form q on the discriminant group, and signature

(r+, r−), provided r+ + r− is sufficiently-large.

Using Corollary 1.10.2, we immediately see that an even lattice characterized by

(A, q, c− mod 8) exists, whose Gram matrix is denoted by Keven. Recall that the chiral

central charge c− is equal to the signature σ = r+− r− of the lattice. Next we show that

Keven is σz-stably equivalent to the odd matrix we started with: namely, (4.77) holds for
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this Keven. Since Keven and K share the same discriminant group and S matrix, they are

stably equivalent upon adding unimodular lattices, according to Theorem 1. 1. 9. In

other words, there exist unimodular matrices U and U ′ such that

K ⊕ U ' Keven ⊕ U ′. (4.79)

Apparently U ′ must be odd. We now add to both sides of the equation the conjugate of

U ′ denoted by U ′:

K ⊕ (U ⊕ U ′) ' Keven ⊕ (U ′ ⊕ U ′). (4.80)

On the right-hand side, U ′ ⊗ U ′ is equivalent to σz ⊕ σz ⊕ · · ·σz. On the left-hand

side, U ⊕ U ′ can be transformed to the direct sum of In where n = σ(U) − σ(U ′) =

σ(Keven)−σ(K) and several σz/x’s. Here In is the |n|× |n| identity matrix and when n is

negative we take it to be −I|n|. If n 6= 0 mod 8, then Keven has a different chiral central

charge as K. Therefore we have arrived at the following theorem:

For any odd K matrix, K ⊕ In is σz-stably equivalent to an even K-matrix for an appro-

priate n.

The physical implication is that by adding a certain number of Landau levels the edge

phase of a fermionic Abelian topological phase is always stably equivalent to a purely

bosonic edge phase which has no electron excitations in its low-energy spectrum.

The possible central charges of the bosonic edge theory are cferm +n+ 8m for m ∈ Z.

We can consider a fermionic system with an additional 8m + n Landau levels, where

m is the smallest positive integer such that 8m + n > 0. Such a fermionic theory has

precisely the same discriminant group as the original fermionic theory and, consequently,
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is associated with precisely the same bosonic system defined by the refinement q([u]).

So even if the original fermionic theory does not have a stable chiral edge phase with

only bosonic excitations, there is a closely-related fermionic theory with some extra filled

Landau levels which does have a chiral edge phase whose gapless excitations are all

bosonic. A simple example of this is given by the ν = 1/5 Laughlin state, which has

K = 5. The corresponding bosonic state has c = 4, so the ν = 1/5 Laughlin state does

not have a chiral edge phase whose gapless excitations are all bosonic. However, the

central charges do match if, instead, we consider the ν = 3 + 1
5

= 16/5 state. This state

does have a bosonic edge phase, with K-matrix

KA4 =



2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2


(4.81)

corresponding to SU(5)1. (Ordinarily, the Cartan matrix for SU(5) is written with −1s

off-diagonal, but by a change of basis we can make them equal to +1.)

In the following we demonstrate concretely how to obtain a particular discriminant

quadratic form q, starting from the odd lattice given by K. We already know that the

naive definition 1
2
u2(mod 1) does not qualify as a discriminant quadratic form. In order

to define a quadratic form on the discriminant group, we first define a quadratic function

Qw(u) according to:

Qw(u) =
1

2
u2 − 1

2
u ·w, (4.82)

for w ∈ Λ∗. Such a linear shift preserves the relation between the quadratic function (T
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matrix) and the bilinear form (S matrix):

Qw(u + v)−Qw(u)−Qw(v) = u · v. (4.83)

(Notice that u · v is the symmetric bilinear form b(u,v) in Stirling’s thesis [64]). Notice

that at this stage Qw is not yet a quadratic form on A, being just a quadratic function.

If, for any λ ∈ Λ, Qw satisfies Qw(u + λ) ≡ Qw(u) mod 1 or, in other words,

λ · λ ≡ λ ·w mod 2. (4.84)

then we can define the following quadratic form on the discriminant group:

q([u]) = Qw(u).

Expanding w in the basis of the dual lattice w = wIf
I and expanding λIeI , we find that

this condition is satisfied if we take wI ≡ KII mod 2. Thus, for a Hall state expressed in

the symmetric basis, we may identify w with twice the spin vector sI = KII/2.[75, 76]

A central result of Ref. [44] is that such a w leads to a generalized Gauss-Milgram

sum:

1√
|A|

e
2πi
8

w2
∑
u

e2πiQw(u) = e2πiσ/8, (4.85)

where, in order for the notation to coincide, we have replaced the chiral central charge

with the signature σ on the right-hand-side of the above equation. Note that the choice

of w here is not unique. We can check that the modified Gauss-Milgram sum holds for

w + 2λ∗ where λ∗ ∈ Λ∗. First note that

Qw+2λ∗(u) =
1

2
u2 − 1

2
u · w − u · λ∗ = Qw(u − λ∗) − 1

2
λ∗2 − 1

2
λ∗ · w, (4.86)
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while at the same time

(w + 2λ∗)2 = w2 + 4λ∗ ·w + 4λ∗2. (4.87)

Therefore,

e
2πi
8

(w+2λ∗)2
∑
u

e2πiQw+2λ∗ (u) = e
2πi
8

w2
∑
u

e2πiQw(u−λ∗) = e2πiσ/8. (4.88)

One can freely shift w by 2λ∗. Consequently, w is really an equivalence class in Λ∗/2Λ∗.

In Appendix D, we further prove that such a representative w can always be chosen

to lie in the original lattice Λ. We denote such a w by w0. The advantage of such a

choice can be seen from the expression

e2πiQw0 (u) = eπiu
2

eπiu·w0

the topological twists. Since w0 now lives in Λ, we have u · w0 ∈ Z and eπiu·w0 = ±1.

This corroborates our intuition that one can salvage the Gauss-Milgram sum in the case

of odd matrices by inserting appropriate signs in the sum.

In addition, we can prove that our quadratic function now defines a finite quadratic

form because Qw0(nu) ≡ n2Qw0(u) mod Z. To see why this is true, we use the definition

of q:

Qw0(nu) =
n2

2
u2 − n

2
u ·w0

≡
(
n2

2
u2 − n2

2
u ·w0

)
mod Z. (4.89)

The second equality follows from the elementary fact that n2 ≡ n (mod 2) together with

u ·w0 ∈ Z. Therefore the definition q([u]) = Qw0(u) mod Z is well-defined.
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Having found the discriminant quadratic form q(u), the generalized Gauss-Milgram

sum now can be re-interpreted as the ordinary Gauss-Milgram sum of a bosonic Abelian

topological phase. As aforementioned, there exists a lifting to an even lattice with the

signature σ′ ≡ (σ − w2
0) mod 8 where σ is the signature of the odd matrix K and thus

the number of Landau levels we need to add is n = −w2
0 mod 8.

Hence, we have the sufficient condition for the existence of an even lattice that is

stably equivalent to a given odd lattice: σ′ = σ, or w2
0 ≡ 0 mod 8.

An obvious drawback of this discussion is that it is not constructive (which stems

from the non-constructive nature of the proof of Nikulin’s theorem [66]): we do not know

how to construct uniquely the even matrix corresponding to a given discriminant group,

quadratic form q, and central charge c. The distinct ways of lifting usually result in

lattices with different signatures.

4.7 Novel Chiral Edge Phases of the Conventional

Bulk Fermionic ν = 8, 12, 8
15,

16
5 states

Now that the general framework has been established, in this section we consider a

few experimentally relevant examples and their tunneling signatures.

4.7.1 ν = 8

The integer quantum Hall states are the easiest to produce in experiment and are

considered to be well understood theoretically. But surprisingly, integer fillings, too, can

exhibit edge phase transitions. The smallest integer filling for which this can occur is

at ν = 8, because eight is the smallest dimension for which there exist two equivalence

classes of unimodular matrices. One class contains the identity matrix, I8, and the other
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contains KE8 , defined in Appendix A.7, which is generated by the roots of the Lie algebra

of E8. KE8 is an even matrix and hence describes a system whose gapless excitations

are all bosonic[20, 5] (although if we consider the bosons to be paired fermions, it must

contain gapped fermionic excitations.) Yet, counterintuitively, it is stably equivalent to

the fermionic I8; for W8 defined in Appendix A.7,

W T
8 (KE8 ⊕ σz)W8 = I8 ⊕ σz, (4.90)

This is an example of the general theory explained in Section 4.6, but it is an extreme

case in which both phases have only a single particle type – the trivial particle. The chiral

central charges of both phases are equal and so Nikulin’s theorem guarantees that the

two bulk phases are equivalent (when the bosonic E8 state is understood to be ultimately

built out of electrons) and that there is a corresponding edge phase transition between

the two chiral theories.

The action describing the I8 state with an additional left- and right-moving mode is

S =

∫
dx dt

(
1

4π
(I8 ⊕ σz)IJ ∂tφ

I∂xφ
J − 1

4π
VIJ∂xφ

I∂xφ
J +

1

2π

∑
I

εµν∂µφ
IAν

)
. (4.91)

The charge vector is implicitly tI = 1 for all I. As we have shown in previous sections,

the basis change φ′ = W8φ makes it straightforward to see that if the perturbation

S ′ =

∫
dxdtu′ cos (φ′9 ± φ′10) (4.92)

is the only relevant term, then the two modes φ′9 and φ′10 would be gapped and the system

would effectively be described by KE8 .

As in the previous examples, measurements that probe the edge structure can distin-

guish the two phases of the edge. Consider, first, transport through a QPC that allows
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tunneling between the two edges of the Hall bar. In the ν = 8 state with K = I8, the

backscattered current will be proportional to the voltage

IbI8 ∝ V (4.93)

because the most relevant backscattering operators, cos(φTI −φBI ), correspond to the tun-

neling of electrons. In contrast, when K = KE8 , there is no single-electron backscattering

term. Instead, the most relevant operator is the backscattering of charge-2e bosons – i.e.

of pairs of electrons – from terms like cos(φ′T1 − φ′T4 − φ′B1 + φ′B4 ), which yields different

current-voltage relation

IbE8
∝ V 3. (4.94)

An alternative probe is given by tunneling into the edge from a metallic lead. In the

K = I8 case, the leading contribution is due to electrons tunneling between the lead and

the Hall bar from the terms ψ†leade
iφTI , yielding

Itun
I8 ∝ V. (4.95)

However, in the KE8 case there are no fermionic charge-e operators to couple to the

electrons tunneling from the lead. Instead, the leading term must involve two electrons

from the lead tunneling together into the Hall bar. The amplitude for this event may be so

small that there is no detectable current. If the amplitude is detectable, then we consider

two cases: if the quantum Hall state is not spin-polarized or if spin is not conserved (e.g.

due to spin-orbit interaction), then the leading contribution to the tunneling current

is from terms like ψ†lead,↓ψ
†
lead,↑e

iφ′T1 −iφ′T4 , which represents two electrons of opposite spin
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tunneling together into the Hall bar, yielding

Itun
E8
∝ V 3. (4.96)

If the quantum Hall state is spin-polarized, and tunneling from the lead is spin-conserving,

then the pair of electrons that tunnels from the lead must be a spin-polarized p-wave

pair, corresponding to a tunneling term like ψ†lead,↓∂ψ
†
lead,↓e

iφ′T1 −iφ′T4 in the Lagrangian,

and we instead expect

Itun
E8
∝ V 5. (4.97)

Another important distinction between the two edge phases is the minimal value of

electric charge in the low-energy sector, which can be probed by a shot-noice measure-

ment [77, 78], as was done in the ν = 1/3 fractional quantum Hall state [79, 80]. The I8

phase has gapless electrons, so the minimal charge is just the unit charge e. However, the

E8 edge phase is bosonic and consequently the minimal charge is at least 2e (i.e. a pair

of electrons). (Electrons are gapped and, therefore, do not contribute to transport at

low temperatures and voltages.) Quantum shot noise, generated by weak-backscattering

at the QPC is proportional to the minimal current-carrying charge and the average cur-

rent. So we expect a shot-noise measurement can also distinguish the two edge phases

unambiguously.

4.7.2 ν = 12

In dimensions-9, -10, and -11, there exist two unique positive definite unimodular

lattices, whose K-matrices are (in the usual canonical bases) I9,10,11 or KE8 ⊕ I1,2,3. In

each dimension, the two lattices, when enlarged by direct sum with σz, are related by

the similarity transformation of the previous section. However in dimension-12, a new
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lattice appears, D+
12, defined in Appendix A.7. One salient feature of this matrix is that

it has an odd element along the diagonal, but it is not equal to 1, which is a symptom of

the fact that there are vectors in this lattice that have odd (length)2 but none of them

have (length)2=1. The minimum (length)2 is 2. Upon taking the direct sum with σz,

the resulting matrix is equivalent to I12 ⊕ σz – and hence to KE8 ⊕ I4 ⊕ σz using the

transformation of the previous section – by the relation W T
12(KD+

12
⊕ σz)W12 = I12 ⊕ σz,

where W12 is defined in Appendix A.7.

Consider the action of the ν = 12 state with two additional counter propagating

gapless modes and with the implicit charge vector tI = 1:

S =

∫
dx dt

(
1

4π
(I12 ⊕ σz)IJ ∂tφ

I∂xφ
J− 1

4π
VIJ∂xφ

I∂xφ
J +

1

2π

∑
I

εµν∂µφ
IAν

)
. (4.98)

The matrix W12 suggests a natural basis change φ′ = W12φ in which the perturbation

S ′ =

∫
dxdtu′ cos (φ′9 ± φ′10) (4.99)

can open a gap, leaving behind an effective theory described by KD+
12

.

It is difficult to distinguish the I12 edge phase from the E8 ⊕ I4 phase because both

phases have charge-e fermions with scaling dimension-1/2. However, both of these edge

phases can be distinguished from the D+
12 phase in the manner described for the ν = 8

phases in the previous subsection. At a QPC, the most relevant backscattering terms

will have scaling dimension 1; one example is the term cos(φ′T11 − φ′B11), which yields the

current-voltage relation

Ib
D+

12
∝ V 3. (4.100)

This is the same as in the E8 edge phase at ν = 8 because the most-relevant backscattering

operator is a charge-2e bosonic operator with scaling dimension 2. There is a charge-e
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fermionic operator exp(i(φ′T2 + 2φ′T12)), but it has scaling dimension 3/2. Its contribution

to the backscattered current is ∝ V 5, which is sub-leading compared to the contribution

above, although its bare coefficient may be larger. However, if we couple the edge to

a metallic lead via ψ†lead exp(i(φ′T2 + 2φ′T12)), single-electron tunneling is the dominant

contribution for a spin-polarized edge, yielding

Itun
D+

12
∝ V 3, (4.101)

while pair tunneling via the coupling ψ†lead∂ψ
†
leade

iφ′T11 gives a sub-leading contribution

∝ V 5. If the edge is spin-unpolarized, pair tunneling via the coupling ψ†lead,↑ψ
†
lead,↓e

iφ′T11

gives a contribution with the same V dependence as single-electron tunneling.

4.7.3 Fractional Quantum Hall States with Multiple Edge Phases

In Section 4.3, we discussed the ν = 8/7 state, which has two possible edge phases.

Our second fermionic fractional quantum Hall example is

K1 =

3 0

0 5

 (4.102)

with t = (1, 1)T . We again assume that a pair of gapped modes interacts with these two

modes, and we assume that they are modes of oppositely-charged particles (e.g. holes),

so that t = (1, 1,−1,−1)T . Upon enlarging by σz, we find that K1⊕σz = W T (K2⊕σz)W ,

where

K2 =

2 1

1 8

 (4.103)
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and

W =



1 3 0 1

0 3 0 1

0 0 1 0

1 8 0 3


. (4.104)

If the following perturbation is relevant, it gaps out a pair of modes:

S ′ =

∫
dx dt u′ cos(−3φ1 − 5φ2 + φ3 + 3φ4). (4.105)

Under the basis change (4.104), −3φ1−5φ2 +φ3 +3φ4 = φ′3 +φ′4, so the remaining theory

has K-matrix (4.103).

In the K1 edge phase (4.102), the backscattered current at a QPC is dominated by

the tunneling term cos(φT2 − φB2 ), which yields

Ib1 ∝ V −3/5, (4.106)

while the tunneling current from a metallic lead is dominated by the single-electron

tunneling term ψ†leade
3iφT1 , which yields

Itun
1 ∝ V 3. (4.107)

In the K2 edge phase (4.103), the backscattered current at a QPC is dominated by the

tunneling term cos(φ′T2 − φ′B2 ), yielding

Ib1 ∝ V −11/15, (4.108)

while the tunneling current from a metallic lead is dominated by the pair-tunneling term
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ψ†lead∂ψ
†
leade

iφ′T1 −7iφ′T2 , which assumes a spin-polarized edge, and yields

Itun
2 ∝ V 11. (4.109)

As we discussed in Section 4.6, the ν = 16/5 state can have two possible edge phases,

one with

K1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 5


, (4.110)

which is essentially the edge of the ν = 1/5 state, together with 3 integer quantum Hall

edges. The other possible phase has

K2 =



2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2


. (4.111)

Upon enlarging by a pair of gapped modes, the two matrices are related by K1 ⊕ σz =

W T (K2 ⊕ σz)W , where

W =



1 0 0 2 0 −1

−1 1 0 −4 0 2

1 −1 1 6 0 −3

−1 1 −1 −8 1 4

0 0 0 5 0 −2

−1 1 −1 −10 1 5


(4.112)
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If the gapped modes are oppositely charged holes, then the following perturbation carries

no charge:

S ′ =

∫
dxdtu′ cos(−φ1 + φ2 − φ3 − 5φ4 + φ5 + 3φ6) (4.113)

If this perturbation is relevant, it will gap out a pair of modes and leave behind an

effective theory describe by the K-matrix (4.111),

The two edge phases of the ν = 16/5 state can be distinguished by the voltage

dependence of the current backscattered at a quantum point contact and the tunneling

current from a metallic lead. In the K1 edge phase, the backscattered current at a

QPC is dominated by the quasiparticle backscattering term cos(φT4 − φB4 ), yielding the

current-voltage relation

Ib1 ∝ V −3/5. (4.114)

In the K2 edge phase, there are several terms that are equally most-relevant, including,

for example cos(φ′T1 − φ′B1 ), which yield the current-voltage relation

Ib2 ∝ V 3/5. (4.115)

Meanwhile, in the K1 edge phase, single-electron tunneling from a metallic lead given by,

for example, ψ†leade
iφT1 , yields the dependence

Itun
1 ∝ V, (4.116)

while in the K2 edge phase there are only pair-tunneling terms; one such term for a

spin-polarized edge is ψ†lead∂ψ
†
leade

iφ′T1 +iφ′T4 , which yields

Itun
2 ∝ V 5. (4.117)
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We now consider an example of a bosonic fractional quantum Hall state with ν =

12/23,

Kb
1 =

2 3

3 16

 (4.118)

and t = (1, 1)T . (This is a natural choice of charge vector for bosonic atoms in a rotating

trap. For paired electrons in a magnetic field, it would be more natural to have t = (2, 2)T )

By a construction similar to the one discussed in the fermionic cases of ν = 8, 12, 8/7, 8/15

and the bosonic integer quantum Hall cases of ν = 8, 16, this state has another edge phase

described by

Kb
2 =

4 1

1 6

 (4.119)

and t = (1,−1)T . As in the previous cases, the two edge phases can be distinguished by

transport through a QPC or tunneling from a metallic lead.

4.8 Some Remarks on Genera of Lattices and Bulk

Topological Phases

The focus in this chapter is on the multiple possible gapless edge phases associated

with a given bulk topological phase. However, having established that the former cor-

respond to lattices while the latter correspond to genera of lattices (or, possibly, pairs

of genera of lattices), we note here that some results on genera of lattices published by

Nikulin in Ref. [66] have direct implications for bulk topological phases. We hope to

explore these relations more thoroughly in the future.

We begin by noting that the data that determine a genus of lattices is precisely the

data that determine a 2 + 1-D Abelian topological phase. Recall that the elements of
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the discriminant group A of a lattice form the particle content of an Abelian topological

phase. We can turn this around by noting that the particle content and fusion rules

of any Abelian topological phase can be summarized by an Abelian group A whose

elements are the particle types in the theory and whose multiplication rules give the

fusion rules of the theory. The fusion rules take the form of the multiplication rules

of an Abelian group because only one term can appear on the right-hand-side of the

fusion rules in an Abelian topological phase. Meanwhile, specifying the S-matrix for the

topological phase is equivalent to giving a bilinear form on the Abelian group A according

to S[v],[v′] = 1√
|A|
e−2πib([v],[v′]). A quadratic form q on the Abelian group A determines

the topological twist factors or, equivalently, the T -matrix of an Abelian topological

phase according to θ[v] = e2πiq([v]). Finally, the signature of the form, the number of

positive and negative eigenvalues r+ and r− of the quadratic form q, determines the

right and left central charges, according to cR = r+ and cL = r−. The chiral central

charge c− = cR − cL is given by c− = r+ − r− which, in turn, determines the modular

transformation properties of states and, consequently, the partition functions of the bulk

theory on closed 3-manifolds (e.g. obtained by cutting a torus out of S3, performing a

Dehn twist, and gluing it back in). The signature is determined (mod 8) by the quadratic

form q, according to the Gauss-Milgram sum:

1√
|A|

∑
a∈A

e2πiq(a) = e2πic−/8

We now consider Nikulin’s Theorem 1.11.3, given in Section 4.5 and also his result

Proposition 1.11.4: There are at most 4 possible values for the signature (mod 8) for the

quadratic forms associated with a given bilinear form on the discriminant group.

Theorem 1.11.3 (given in Section 4.5) states that the S-matrix and r+ − r− (mod 8)
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completely and uniquely determine the T -matrix, up to relabellings of the particles that

leave the theory invariant. In Section 4.6 we show constructively that such a T -matrix

exists in the fermionic case. Proposition 1.11.4 tells us that, for a given S-matrix, there

are at most 4 possible values for the signature r+ − r− (mod 8) and, therefore, at most

4 possible T -matrices. One way to interpret this is that the elements of the T -matrix

are the square roots of the diagonal elements of the S-matrix; therefore, they can be

determined, up to signs from the S-matrix. There are, at most, four consistent ways of

doing this, corresponding to, at most, four possible values of the Gauss-Milgram sum.

Then, Theorem 1.10.2, stated in Section 4.6, tells us that the quadratic form defines

an even lattice. Thus, to any fermionic Abelian topological phase, we can associate a

bosonic Abelian topological phase with the same particle types, fusion rules, and S-

matrix. The bosonic phase has a well-defined T -matrix, unlike the fermionic phase. In

addition, we have:

Theorem 1.3.1: Two lattices S1 and S2 have isomorphic bilinear forms on their discrim-

inant groups if and only if there exist unimodular lattices L1, L2 such that S1 ⊕ L1
∼=

S2 ⊕ L2.

In other words, two lattices have isomorphic bilinear forms if they are stably equivalent

under direct sum with arbitrary unimodular lattices, i.e. if we are allowed to take direct

sums with arbitrary direct sums of σx, σz, 1, and KE8 . One example of this is two

lattices in the same genus. They have the same parity, signature, and bilinear form and

are stably equivalent under direct sum with σx, as required by the theorem. However, we

can also consider lattices that are not in the same genus. The example that is relevant

to the present discussion is a pair of theories, one of which is fermionic and the other

bosonic. They have the same S-matrix but may not have the same chiral central charges.
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The theorem tells us that the difference can be made up with unimodular theories. But

since σx and σz do not change the chiral central charge, the unimodular lattices given

by the theorem must be hypercubic lattices. (In the fermionic context, the E8 lattice

is σz-stably equivalent to the 8-dimensional hypercubic lattice.) In other words, every

fermionic Abelian topological phase is equivalent to a bosonic Abelian topological phase,

together with some number of filled Landau levels.

Finally, we consider Nikulin’s Corollary 1.16.3, given in Section 4.5, which states that

the genus of a lattice is determined by its parity, signature, and bilinear form on the

discriminant group. Recall that the parity of a lattice is even or odd according whether

its K-matrix is even or odd. The even case can occur in a purely bosonic system while the

odd case necessarily requires “fundamental” fermions, i.e. fermions that braid trivially

with respect to all other particles. Therefore, specifying the parity, signature, and bilinear

form on an Abelian group A is equivalent to specifying (1) whether or not the phase can

occur in a system in which the microscopic constituents are all bosons, (2) the S-matrix,

and (3) the chiral central charge. (According to the previous theorem, the T -matrix

is determined by the latter two.) This is sufficient to specify any Abelian topological

phase. According to Corollary 1.16.3, these quantities specify a genus of lattices. Thus,

given any Abelian topological phase, there is an associated genus of lattices. We can take

any lattice in this genus, compute the associated K-matrix (in some basis) and define a

U(1)r++r− Chern-Simons theory. A change of basis of the lattice corresponds to a change

of variables in the Chern-Simons theory. Different lattices in the same genus correspond

to different equivalent U(1)r++r− Chern-Simons theories for the same topological phase.

Therefore, it follows from Corollary 1.16.3 that every Abelian topological phase can be

represented as a U(1)N Chern-Simons theory.
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4.9 Discussion

A theoretical construction of a bulk quantum Hall state typically suggests a particular

edge phase, which we will call K1. The simplest example of this is given by integer

quantum Hall states, as we discussed in Sections 4.2 and 4.7. However, there is no

reason to believe that the state observed in experiments is in this particular edge phase

K1. This is particularly important because the exponents associated with gapless edge

excitations, as measured through quantum point contacts, for instance, are among the

few ways to identify the topological order of the state [43, 16]. In fact, such experiments

are virtually the only way to probe the state in the absence of interferometry experiments

[81, 82, 83, 84, 85, 86, 87] that could measure quasiparticle braiding properties. Thus,

given an edge theory K2 that is deduced from experiments, we need to know if a purely

edge phase transition can take the system from K1 to K2 – in other words, whether the

edge theory K2 is consistent with the proposed theoretical construction of the bulk state.

We would also like to predict, given an edge theory K2 deduced from experiments, what

other edge phases K3, K4, . . . might be reached by tuning parameters at the edge, such

as the steepness of the confining potential. In this chapter, we have given answers to

these two questions.

The exotic edge phases at ν = 8, 12 discussed in this chapter may be realized in

experiments in a number of materials which display the integer quantum Hall effect.

These include Si-MOSFETs [88], GaAs heterojunctions and quantum wells (see, e.g.

Refs. [89], [90] and references therein), InAs quanutm wells [91], graphene [92], polar

ZnO/MgxZn1−xO interfaces [93]. In all of these systems, edge excitations can interact

strongly and could be in an E8 phase at ν = 8 or the D+
12 phase or the E8 ⊕ I4 phase

at ν = 12. To the best of our knowledge, there are no published studies of the detailed

properties of edge excitations at these integer quantum Hall states.
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The novel edge phase that we have predicted at ν = 16/5 could occur at the ν =

3 + 1/5 state that has been observed[94] in a 31 million cm2/Vs mobility GaAs quantum

well. This edge phase is dramatically different than the edge of the ν = 1/5 Laughlin

state weakly-coupled to 3 filled Landau levels. Meanwhile, a ν = 8/15 state could occur

in an unbalanced double-layer system (or, possibly, in a single wide quantum well) with

ν = 1/3 and 1/5 fractional quantum Hall states in the two layers. Even if the bulks of the

two layers are very weakly-correlated, the edges may interact strongly, thereby leading

to the alternative edge phase that we predict. Finally, if an ν = 8/7 state is observed,

then, as in the two cases mentioned above, it could have an edge phase without gapless

fermionic excitations.

We have focussed on the relationship between the K-matrices of different edge phases

of the same bulk. However, in a quantum Hall state, there is also a t-vector, which

specifies how the topological phase is coupled to the electromagnetic field. An Abelian

topological phase specified by a K-matrix splits into several phases with inequivalent

t-vectors. Therefore, two different K-matrices that are stably equivalent may still belong

to different phases if the corresponding t-vectors are are not related by the appropriate

similarity transformation. However, in all of the examples that we have studied, given a

(K, t) pair, and a K ′ stably equivalent to K, we were always able to find a t′ related to t by

the appropriate similarity transformation. Said differently, we were always able to find an

edge phase transition driven by a charge-conserving perturbation. It would be interesting

to see if there are cases in which there is no charge-conserving phase transition between

stably-equivalent K, K ′ so that charge-conservation symmetry presents an obstruction

to an edge phase transition between K, K ′.

When a bulk topological phase has two different edge phases, one that supports

gapless fermionic excitations and one that doesn’t, as is the case in the ν = 8 integer

quantum Hall state and the fractional states mentioned in the previous paragraph, then a
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domain wall at the edge must support a fermionic zero mode. For the sake of concreteness,

let us consider the ν = 8 IQH edge. Suppose that the edge of the system lies along the

x-axis and the edge is in the conventional phase with K = I8 for x < 0 and the KE8

phase for x > 0. The gapless excitations of the edge are fully chiral; let us take their

chirality to be such that they are all right-moving. A low-energy fermionic excitation

propagating along the edge cannot pass the origin since there are no gapless fermionic

excitations in the E8 phase. But since the edge is chiral, it cannot be reflected either.

Therefore, there must be a fermionic zero mode at the origin that absorbs it.

We discussed how the quadratic refinement allows us to relate a given fermionic theory

to a bosonic one. One example that we considered in detail related K1 =

1 0

0 7

 to

K2 =

2 1

1 4

. Both of these states are purely chiral. However, we noted that we

are not restricted to relating purely chiral theories; we could have instead considered a

transition between the ν = 1/7 Laughlin edge and the non-chiral theory described by

K =


2 1 0

1 4 0

0 0 −1

. This transition does not preserve chirality, but the chiral central

charges of the two edge theories are the same. It can be shown that there exist regions

in parameter space where the non-chiral theory is stable – for example, if the interaction

matrix, that we often write as V , is diagonal, then the lowest dimension backscattering

operator has dimension equal to 4. Even more tantalizingly, it is also possible to consider

the ν = 1/3 Laughlin edge which admits an edge transition to the theory described by

K ′ =

−2 −1

−1 −2

 ⊕ I3×3. The upper left block is simply the conjugate or (−1) times

the Cartan matrix for SU(3)1. About the diagonal V matrix point, the lowest dimension

backscattering term is marginal; it would be interesting to know if stable regions exist.
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The theory of quadratic refinements implies that any fermionic TQFT can be realized

as a bosonic one, together with some filled Landau levels, as we discussed as the end of

Sec. 4.8. In particular, it suggests the following picture: a system of fermions forms a

weakly-paired state in which the phase of the complex pairing function winds 2N times

around the Fermi surface. The pairs then condense in a bosonic topological phase. The

winding of the pairing function gives the additional central charge (and, if the fermions

are charged, the same Hall conductance) as N filled Landau levels. The remarkable

result that follows from the theory of quadratic refinements is that all Abelian fermionic

topological phases can be realized in this way.

In this chapter, we have focused exclusively on fully chiral states. However, there are

many quantum Hall states that are not fully chiral, such as the ν = 2/3 states. The

stable edge phases of such states correspond to lattices of indefinite signature. Once

again, bulk phases of bosonic systems correspond to genera of lattices while bulk phases

of fermionic systems correspond either to genera of lattices or to pairs of genera – one

even and one odd. Single-lattice genera are much more common in the indefinite case

than in the definite case [65]. If an n-dimensional genus has more than one lattice in it

then 4[n
2

]d is divisible by k(n2) for some non-square natural number k satisfying k ≡ 0 or 1

(mod 4), where d is the determinant of the associated Gram matrix (i.e. the K-matrix).

In particular, genera containing multiple equivalence classes of K-matrices must have

determinant greater than or equal to 17 if their rank is 2; greater than or equal to 128 if

their rank is 3; and 5(n2) or 2 · 5(n2) for, respectively, even or odd rank n ≥ 4.

Quantum Hall states are just one realization of topological phases. Our results apply

to other realizations of Abelian topological states as well. In those physical realizations

which do not have a conserved U(1) charge (which is electric charge in the quantum Hall

case), there will be additional U(1)-violating operators which could tune the edge of a

system between different phases.
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Although we have, in this chapter, focussed on Abelian quantum Hall states, we

believe that non-Abelian states can also have multiple chiral edge phases. This will occur

when two different edge conformal field theories with the same chiral central charge are

associated with the same modular tensor category of the bulk. The physical mechanism

underlying the transitions between different edge phases associated with the same bulk

is likely to be the same as the one discussed here. In this general case, we will not be

able to use results on lattices and quadratic forms to find such one-to-many bulk-edge

correspondances. Finding analogous criteria would be useful for interpreting experiments

on the ν = 5/2 fractional quantum Hall state.
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Chapter 5

Perfect Metal Phases of

One-Dimensional and Anisotropic

Higher-Dimensional Systems

5.1 Introduction

Do stable zero-temperature metallic phases exist in one or two dimensions? A system

of non-interacting fermions will always be localized at T = 0 in dimensions D = 1, 2 in the

presence of generic types of impurities [95] 1. Localization can be avoided if the fermions

have sufficiently strong attractive interactions, but then they form a superconductor

(SC) rather than a metal [97, 98]. A system of charged bosons is similarly known to

have insulating and superconducting phases [99]. Although the critical point between

insulating and superconducting phases is metallic in both cases, it is not known in either

case whether a stable metallic phase exists. Such a metallic phase of fermions would

1With spin-orbit interactions, there can be a metallic phase in 2D, but any time-reversal symmetry-
breaking perturbation will lead to localization [96].
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necessarily be a non-Fermi liquid since a Fermi liquid becomes localized [100, 101].

In addition, we consider a second, related question: if an infinite array of 1D Lut-

tinger liquids is coupled, is there a completely stable, albeit anisotropic, non-Fermi

liquid phase? At the turn of the millennium, it was shown that inter-chain interac-

tions could stabilize “sliding Luttinger liquid phases” against many types of interactions

[102, 103, 104, 105, 106, 107, 108, 109]. On physical grounds, one could argue that any

other perturbation would be negligibly small and, therefore, would not have any effect

until extremely low temperatures were reached. But, as a matter of principle, it is not

known whether “sliding Luttinger liquid phases” are actually stable against all perturba-

tions. Therefore, as a question of principle, it is not known whether there is a completely

stable zero-temperature 1D multi-channel Luttinger liquid phase or an anisotropic 2D

phase of coupled Luttinger liquids.

In this chapter, we answer both questions in the affirmative. We show that there

are 1D phases of interacting fermions and bosons that are stable against all weak per-

turbations. These phases do not depend upon a symmetry for their stability, unlike the

edges of symmetry-protected topological phases [31, 110, 17, 18]. They are stable not

only against all types of disorder, but also against coupling to an external 3D super-

conductor. Since long-ranged order is impossible in 1D [111, 112, 113], the absence of

proximity-induced superconductivity is a reasonable definition of ‘non-superconducting’.

Due to its extreme stability, we call such a phase a perfect metal. If we form an array of

perfect metal wires, such an array is a highly-anisotropic 2D non-Fermi liquid metal or

Bose metal [114].

These results are based on a relation that we demonstrate between special values of

the interaction parameters of a 1D system with N channels of fermions (bosons) and N -

dimensional odd (even) unimodular lattices. Vectors in such a lattice correspond to the

different possible chiral excitations of the system, and the square of the length of a vector
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is twice the scaling dimension of the operator that creates the corresponding excitation.

A non-chiral excitation is made of excitations of both chiralities; at special values of

the interaction parameters, its scaling dimension is the sum of the scaling dimensions

of the two chiral operators. Small changes in the interactions away from these special

values mix the two chiralities, thereby causing small changes in the scaling dimensions.

Systems that correspond to so-called non-root unimodular lattices with no short vectors

are stable to all weak perturbations because all such interactions are irrelevant in the

renormalization group sense. The lowest dimension in which such an odd lattice exists is

N = 23 (the shorter Leech lattice); for even lattices it is N = 24 (the Leech lattice) [65].

5.2 Setup

The stable metallic phases that we describe in this chapter are constructed from

1D electronic systems in which the current-current and density-density interactions have

been chosen in a particularly novel way. Such phases can be accessed by perturbing the

conventional action describing N channels of free fermions in 1D:

S0 =

∫
dtdx

[
ψ†R,Ii(∂t − vI∂x)ψR,I + ψ†L,Ii(∂t + vI∂x)ψL,I

]
,

where the operator ψ†R,I (ψ†L,I) creates a right-moving (left-moving) fermion excitation

about the Fermi point kF,I (−kF,I) in channel I = 1, . . . , N . The velocity of the Ith

channel of fermions is vI . The leading quadratic perturbations couple ΨSC
IJ = ψR,IψL,J

to an external 3D charge-2e SC at wavevector kF,I − kF,J or the charge-density-wave

(CDW) order parameter ρ2kF
IJ = ψ†R,IψL,J to a periodic electric potential at wavevector

kF,I+kF,J . Both perturbations are relevant at the free fermion fixed point and generically

lead to a gapped ground state that explicitly breaks translation invariance and/or charge
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conservation.

The leading fermion-fermion interactions are density-density and current-current in-

teractions, parametrized by the symmetric matrix UI,J , with I, J = 1, . . . , 2N :

Sint =

∫
dtdx

[
UI,Jψ

†
R,IψR,Iψ

†
R,JψR,J

+ UI+N,J+Nψ
†
L,IψL,Iψ

†
L,JψL,J

+ 2UI,J+Nψ
†
R,IψR,Iψ

†
L,JψL,J

]
, (5.1)

where we assume throughout that the interaction is short-ranged. These quartic in-

teractions are marginal at tree level (in Feynman diagrammatic language). This cor-

responds to a calculation that is zeroth order in the couplings, and is equivalent to

power-counting. If the interactions are added to the free fermion action, the scaling di-

mensions of the quadratic SC and CDW perturbations, and also all higher-body fermion

interaction terms will generally change. Generally, attractive density-density interactions

drive SC perturbations more relevant, while repulsive interactions favor the CDW insta-

bility. Forward-scattering interactions that couple densities of the same chirality mix the

collective modes and renormalize their velocities.

5.3 Luttinger Liquids and Non-Root Unimodular Lat-

tices

To study the perfect metal, it is convenient to use the Luttinger liquid formalism.

Thus, we introduce a single, chiral boson φI (φI+N) for each chiral fermion ψR,I (ψL,I).

Our N -channel fermion system can be described by the following bosonic effective action:
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S =
1

4π

∫
dtdx

[
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

]
. (5.2)

KIJ is a 2N × 2N symmetric integer matrix. Density-density and current-current in-

teractions are parameterized by the symmetric, positive semi-definite 2N × 2N matrix

VIJ = vIδIJ + UIJ (with vI ≡ vI−N for I > N). In addition, we must supplement the

action with a periodicity condition φI ∼ φI + 2πmI , for mI ∈ Z.

The free fermion fixed point is described within this formalism by choosing K =

Kferm = IN ⊕ −IN and VIJ = vIδIJ , where IN is the N × N identity matrix. The

operators ψ†I,R = 1√
2πa
e−iφIηI and ψ†I,L = 1√

2πa
eiφI+NηI+N create, respectively, right- and

left-moving fermions in the Ith channel; a is a short-distance cutoff, and the Klein factors

ηI satisfy ηJηK = −ηKηJ for J 6= K. The density j0
I and current j1

I in the Ith channel

are given by jµI = 1
2π
εµν∂νφI with ε01 = −ε10 = 1.

A system of hard-core bosons can be re-expressed in terms of fermions by a Jordan-

Wigner transformation and then be bosonized as above, but with Kboson = σx ⊕ σx ⊕

. . .⊕ σx, where σx =
(

0 1
1 0

)
.

It is important to observe that there is still some redundancy in the expression for

the Luttinger liquid action. The field redefinition φI = WIJ φ̃J preserves the periodicity

conditions of the fields so long as W ∈ GL(2N,Z). However, this redefinition transforms

the action in Eqn. (5.2) into an action of the same form, but with K̃ = W TKW and

Ṽ = W TVW .

This seemingly innocuous observation has a surprising consequence. Consider the

operator cos(mIφI). It is a local operator that can be added to the Hamiltonian if it

is bosonic, which is the case when 1
2
mI(K

−1)IJmJ is an integer. It could, potentially,

open a gap if its right and left scaling dimensions are equal, i.e., if mI(K
−1)IJmJ = 0.

This operator is an irrelevant perturbation if its scaling dimension is greater than two,
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in which case, it will not open a gap in the infrared at weak coupling. The operator has

scaling dimension 1
2

∑2N
I=1(mI)

2 when V = vIδIJ . Suppose, instead, that K̃ = W TKW

and Ṽ = W TVW are block-diagonal (the former can always be accomplished with a

change of basis and the latter will be relaxed later):

K̃ =

K̃R 0

0 −K̃L

 , Ṽ =

ṼR 0

0 ṼL

 , (5.3)

with positive-definite K̃R,L and ṼR,L. Then, the field redefinition φI = WIJ φ̃J allows

us to compute the scaling dimension of cos(mIφI) = cos(mIWIJ φ̃J): (∆R
m,∆

L
m) =

(1
2
m̃RK̃−1

R m̃R, 1
2
m̃LK̃−1

L m̃L), where m̃J = m̃
R(L)
J = mIWIJ for J = 1, . . . , N (J =

N + 1, . . . , 2N). If the off-diagonal blocks in V are non-zero, then the total scaling

dimension ∆R
m + ∆L

m will generally change, but the spin ∆R
m −∆L

m will remain the same.

To understand how a perfect metal phase could exist, in which all such operators are

irrelevant, it is useful to express the above ideas more geometrically. As described in

the Supplementary Online Material, we can associate the N -dimensional integral lattices

Γ̃R,L, with positive-definite inner products, to the matrices K̃R,L. The K-matrices are

the Gram matrices of the lattices and basis changes in the lattice transform the K-

matrices according to K → K̃ = W TKW . Since 1 = det(Kferm/boson) = det(K̃) =

det(K̃R)det(K̃L), we conclude that |det(K̃R,L)| = 1. Therefore, Γ̃R,L are unimodular

lattices. Consequently, the full matrix K̃ = K̃R⊕−K̃L is associated with the unimodular

lattice Γ̃R ⊕ Γ̃L of signature (N,N). An operator cos(m̃J φ̃J) can be associated with a

vector (ṽR, ṽL) ∈ Γ̃R ⊕ Γ̃L, where ṽR,L = m̃R,L
I f̃ IR,L and f̃ IR,L are bases for Γ̃R,L satisfying

f̃ IR,L · f̃JR,L = (f̃ IR,L)a(f̃
J
R,L)a = (K̃−1

R,L)IJ with a = 1, . . . , N . The scaling dimension of the

operator is (∆R
m,∆

L
m) =

(
1
2
|ṽR|2, 1

2
|ṽL|2

)
for block-diagonal Ṽ , as in Eqn. (5.3).

Therefore, if there are no ṽR,L ∈ Γ̃R,L such that |ṽR|2 = |ṽL|2 and 1
2
|ṽR|2 + 1

2
|ṽL|2 ≤ 2,
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or, simply, |ṽR|2 = |ṽL|2 ≤ 2, then there are no relevant or marginal spin-0 perturbations

of the Luttinger liquid action Eqn. (5.2) with the choice of couplings in Eqn. (5.3).

If, moreover, there are no such vR,L, even if |ṽR|2 6= |ṽL|2, then there are no marginal

or relevant perturbations of any kind. A lattice Γ is called a non-root lattice if all

v ∈ Γ satisfy |v|2 > 2 (a vector with |v|2 = 2 is called a root vector). Therefore, we

have reduced the problem of finding a metallic state that is stable against all spin-0

perturbations to the problem of finding a non-root unimodular lattice Γ̃R whose Gram

matrix K̃R is related to K = Kferm (for a system composed out of fermions) or K = Kboson

(for a system composed out of bosons) according to K̃R ⊕ −K̃L = W TKW for some

W ∈ GL(2N,Z) and unimodular K̃L. This also guarantees the irrelevance of almost

all local chiral perturbations, with some exceptions that we discuss further below (even

though such perturbations cannot open a gap).

At this point, we make use of two fortuitous mathematical facts. The first is that

there is a unique signature (N,N) unimodular lattice of each parity, up to SO(N,N)

rotations acting on the basis vectors, where a lattice is said to have even parity if the

norm-squared of all vectors is even and said to have odd parity otherwise [65]. Therefore,

any difference between the Gram matrices of two such lattices can only be due to a

difference in choice of basis. Consequently, all signature (N,N) unimodular K-matrices

of the same parity are GL(2N,Z)-equivalent [115, 116]. In particular, there exists a

W ∈ GL(2N,Z) such that W TKfermion/bosonW = K̃R ⊕ −K̃L for any positive-definite

odd/even unimodular lattice Γ̃R ⊕ Γ̃L with Gram matrix K̃R ⊕−K̃L. The second fact is

that there exist positive-definite unimodular lattices that contain no roots. In fact, for

any integer n, there exists an N -dimensional positive-definite unimodular lattice whose

shortest vector |v|2 = n [13]. The minimal possible dimension N increases with n. For

n = 3, the minimal N = 23 (the shorter Leech lattice), while for n = 4, the minimal

N = 24 (the even Leech lattice). The Gram matrices KsL and KL of these two lattices
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are given in the Supplementary Material.

To summarize, there is a unique signature (N,N) unimodular lattice, up to SO(N,N)

transformations. All associated signature (N,N) unimodular K-matrices give the same

operator spectrum of conformal spins since these are SO(N,N) invariants. However, each

unimodular K-matrix gives a different spectrum of scaling dimensions because these are

not SO(N,N) invariants. Non-root unimodular lattices are associated with theories with

no relevant cosine operators.

5.4 Shorter Leech Liquid

We first consider the case in which K̃R = K̃L = KsL, which we call the symmetric

shorter Leech liquid. We will call block diagonal Ṽ , shown in Eqn. (5.3), the decou-

pled surface. On the decoupled surface, the minimum scaling dimension of an opera-

tor is 3/2 if it is completely chiral and 3 if it is spin-0. Small changes in Ṽ can only

change these scaling dimensions slightly, so there is a finite region of parameter space

in which all potential gap-generating perturbations are irrelevant. For block diagonal

Ṽ , we can compute the scaling dimensions of various perturbations using the GL(46,Z)

transformation Ws, given explicitly in the Supplementary Online Material, that satisfies

W T
s KfermWs = KsL ⊕ −KsL. Note that there are many possible GL(46,Z) transfor-

mations satisfying W T
s KfermWs = KsL ⊕ −KsL and, therefore, many different possible

matrices V that lead to the same block diagonal Ṽ . The Ws that we construct in the

Supplementary Online Material is not symmetrical between right- and left-movers, which

means that our choice of velocities and interactions is not parity-invariant. Although this

facilitated our calculations, it is not essential for any of our conclusions.

Table 5.1 lists the scaling dimensions of the electron creation operators ψ†R/L,I ; inter-

channel exchange operators J⊥R/L;I,J = ψ†R/L,IψR/L,J ; SC and CDW order parameters ρ2kF
IJ
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and ΨSC
IJ ; and quartic inter-channel interactions in the particle-hole channel, Op.-h.

IJ ≡

ψ†L,IψR,Iψ
†
R,JψL,J , and particle-particle channel, Op.-p.

IJ ≡ ψR,IψL,Iψ
†
L,Jψ

†
R,J . We have in-

dicated the channel indices at which the minimal scaling dimension is obtained for each

operator. Note that the operator ρ2kF
IJ scatters a left-moving fermion in channel J to a

right-moving fermion in channel I. As noted in the Table 1 caption, the inter-channel

I = 2, J = 4 CDW order parameter has lower scaling dimension than in any single other

channel. We also see that the most relevant operator is the 2kF charge-density-wave order

parameter in channel 5. All of these operators have very high scaling dimensions. The

most relevant operator with 4 fermion fields is ψR,2ψ
†
L,2ψ

†
R,4ψL,3, with scaling dimension

10. Note that operators of this form destabilize the sliding Luttinger liquid phase in large

parts of the phase diagram [108].

The lowest dimension operators are very complicated combinations of the original

electrons. From the θ-function for the shorter Leech lattice [65], we can see that there

are 4600 fermionic dimension-3/2 operators of each chirality. One simple (in the tilded

basis) dimension-3/2 chiral operator is eiφ̃1 , but this has a very complicated form in terms

of fermion operators (given in the Supplementary Online Material) and has total electric

charge −201. There are (4600)2 dimension-3 operators. A relatively simple dimension-3

operator (given in the Supplementary Online Material) is a combination of 10 fermion

creation and 12 fermion annihilation operators.

There are also dimension-(1, 0) and (0, 1) fields ∂φ̃I . These shift the Fermi momenta.

By coupling such operators together, we can change the matrix ṼIJ , which is a marginal

deformation of the phase. If such a deformation moves the system off the decoupled

surface, it will change the scaling dimensions of cosine operators, but will leave their con-

formal spins unchanged. On the decoupled surface, there are dimension-(2, 0) and (0, 2)

chiral operators – in fact, 93150 of each [65]. An example is given in the Supplementary

Online Material. They are strictly marginal, due to their chirality, and, so long as they
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∆ψ
R,I ∆ψ

L,I ∆J⊥
R,IJ ∆J⊥

L,IJ ∆2kF
IJ ∆SC

IJ ∆p.-h.
IJ ∆p.-p.

IJ

s 11/2 17/2 23 13 5 28 17 21
a 9/2 1/2 20 1 5 5 113 5

Table 5.1: The scaling dimensions of various physical operators in the symmetric (s)
and asymmetric (a) shorter Leech liquids. The scaling dimensions depend on the
channel indices I, J . We have listed the minimal possible scaling dimensions, which
are attained by ψR,4, ψL,3; J⊥R;2,4, J⊥L;3,4; ρ2kF

5,5 ; ΨSC
2,4; Op.-h.

2,5 ; Op.-p.
3,4 in the symmetric

case and ψR;2 ψL;21; J⊥R;2,5, J⊥L;21,22; ρ2kF
2,21; ΨSC

2,21; Op.-h.
2,5 ; Op.-p.

2,5 in the asymmetric case.

are sufficiently small, they will not make any of the irrelevant operators relevant. Hence,

they do not destabilize the shorter Leech liquid, but their coefficients can be non-zero

and they can play a role in determining physical properties on the decoupled surface.

Off the decoupled surface, such an operator will have scaling dimension (2 + α, α) or

(α, 2 + α) and will, therefore, be irrelevant. These observations also apply to the other

perfect metals described in this chapter.

5.5 Asymmetric Shorter Leech Liquid

We now consider the case in which K̃R = KsL but K̃L = I23, which we call the

asymmetric shorter Leech liquid. On the decoupled surface, the minimum scaling dimen-

sion of a right-moving chiral operator is 3/2, but a left-moving chiral operator can have

dimension-1/2. While the minimal dimension of a spin-0 operator is 3, as in the case of

the symmetric shorter Leech liquid, there are again harmless strictly marginal operators

of dimension-(3/2, 1/2) on the decoupled surface.

On the decoupled surface, we can compute the scaling dimensions of various pertur-

bations using the GL(46,Z) transformation Wa that satisfies W T
a KfermWa = KsL ⊕−I23

and is given explicitly in the Supplementary Online Material. They are given in Ta-

ble 5.1. It is unclear whether the asymmetric shorter Leech liquid can be adiabatically
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connected to the symmetric one through a sequence of perfect metal Hamiltonians.

5.6 Region of Stability of Perfect Metals

As we tune the interactions away from the decoupled surface of any perfect metal

phase associated with a non-root unimodular lattice, some of the irrelevant perturbations

will decrease in scaling dimension and will, eventually, become relevant. The parameter

space is too large for us to fully map out the region of stability of either the symmetric

or asymmetric shorter Leech liquids. However, as a representative example, consider

the one-parameter family of symmetric Leech theories with Ṽ (λ) = vMT
s O

T
s (λ)Os(λ)Ms.

Here, v is a velocity scale, Os(λ) is an SO(23, 23) rotation, and Ms is a matrix satisfying

Ṽ (0) = MT
s Ms; both are given in the Supplementary Online Materials. Ṽ (0) is of the

form given in Eqn. (5.3) with ṼR = ṼL = KsL. The minimal scaling dimension of a spin-0

operator is 3e−2λ, which becomes relevant at λ ≈ 0.203, where the largest change in an

element of Ṽ is 1.25v.

This illustrates that while the perfect metal phase exists only in special regions of the

parameter space of Ṽ , none of the couplings require fine-tuning.

5.7 Discussion

Thus far, we have focused on fermionic systems. However, the same basic strategy

applies to bosonic ones as well. The bosonic system associated with the Leech lattice,

the lowest dimension non-root even unimodular lattice, is stable against all weak spin-

0 perturbations, since their minimal scaling dimension is 4. We will call this phase the

Leech liquid. If we consider systems with more channels, then even the minimal dimension

chiral perturbations are irrelevant. In 48 dimensions, there are 4 lattices with minimal
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norm 6. Moreover, in the n = 8k channel asymmetric fermionic case, it is possible for

the right-moving sector to be associated with an even lattice so that all right-moving

excitations are bosonic.

While the channel numbers in our construction might seem large, recall that they

correspond to the experimentally controllable number of filled spin-polarized sub-bands

of a narrow wire.

Perfect metals are described by conformal field theories (CFTs) with no primary

operators of low scaling dimension. CFTs with a large gap in the spectrum of operator

scaling dimensions must have large central charge, according to Hellerman’s inequality

0 < ∆1 < (c+ c)/12 + 3/2π [117]. This may explain why our phases have a large number

of channels. According to the AdS3/CFT2 correspondence [118], such CFTs correspond

to weakly-curved gravity duals without light BTZ black holes [119].

If we couple a Fermi liquid lead to a point in the middle of a symmetric shorter

Leech wire then, on the decoupled surface, the tunneling conductance will be Gtun ∼ T 10

due to the high scaling dimension of electron operators; in an asymmetric shorter Leech

wire, it will be Ohmic, Gtun ∼ T 0, as in a Fermi liquid, due to the left-moving sector.

These exponents vary continuously as we move away from the decoupled surface. Other

properties are proportional to high powers of T due to the high scaling dimensions of the

operators in Table 5.1.

An array of 1D symmetric shorter Leech or Leech liquids forms an anisotropic 2D per-

fect metal. Since the minimal scaling dimension of any quasiparticle creation operator in

each 1D wire is 3/2 (fermions, shorter Leech) or 2 (bosons, Leech), all couplings between

wires are irrelevant except for the marginal couplings between densities and currents on

the different perfect metal wires. The irrelevance of tunneling operators precludes the

possibility of charge transport between wires, but density-density and current-current

interactions will enable inter-wire energy transport. Although inter-wire density-density

156



Perfect Metal Phases of One-Dimensional and Anisotropic Higher-Dimensional Systems Chapter 5

and current-current interactions can change the dimensions of cosine operators, the lat-

ter are highly irrelevant in the limit of decoupled wires, so there is a non-zero range of

parameter space within which couplings between cosine operators remain irrelevant.

An array of asymmetric shorter Leech liquids presents an even more interesting pos-

sibility. The left-moving channels are chiral Fermi liquids at the decoupled point, and

interwire couplings will drive a crossover to a 2D chiral Fermi surface. On the other hand,

the right-moving channels are chiral shorter Leech liquids, and inter-wire tunneling op-

erators are irrelevant. Such a system could combine 2D Fermi liquid properties with 1D

shorter Leech liquid properties and exhibit interesting non-Fermi liquid behavior.
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Chapter 6

Transport in a One-Dimensional

Hyperconductor

6.1 Introduction

6.1.1 Goal of this chapter

In this chapter, we study transport in the one-dimensional non-Fermi liquid intro-

duced in Ref. [[120]]. This metallic phase is very different from a Fermi liquid: in addition

to anomalous single-electron properties, it is a perfect metal at zero-temperature, with

infinite DC conductivity even in the presence of impurities, unlike a Fermi liquid. We

call such a material a “hyperconductor,” to distinguish it from a superconductor, since a

hyperconductor does not have a Meissner effect at zero temperature; its electrical conduc-

tivity is finite at any non-zero temperature; and its thermal conductivity diverges as the

temperature approaches zero. The goal of this chapter is to compute the temperature and

frequency dependence of the electrical and thermal conductivity of a hyperconductor at

low temperature. The temperature dependence of the conductivities depends on whether
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the Fermi surface is commensurate with the lattice. In the commensurate case, both the

electrical σ and thermal κ conductivities behave as a power law: σ, κ ∝ 1/T 1−2(2−∆X)

with the special case ∆X = 2 occurring along a surface in parameter space. This con-

stitutes a violation of the Wiedemann-Franz “law,” which states that the ratio κ/σT

is constant, and is due to differing relaxation mechanisms of the electrical and thermal

currents. In the incommensurate case, there is a range of temperatures over which both

σ and κ diverge exponentially, although with differing algebraic prefactors, as T → 0;

at the lowest temperatures, σ ∝ κ/T ∝ 1/T 2−2(2−∆X). The above temperature depen-

dences reflect the non-Fermi liquid physics of this hyperconductor. As a concrete and

well-controlled example of transport in a non-Fermi liquid, these results may shine light

on general principles regarding non-Fermi liquids and transport in strongly-correlated

electron systems.

6.1.2 General remarks about metallic transport

Transport provides one of the most important characterizations of a physical system.

It is often said that the DC electrical conductivity is the first property to be measured

when a new material is investigated. However, this is usually followed by noting that it

is often the last property to be understood, highlighting the subtle nature of transport

properties, when compared with thermodynamic ones.[121] This is one of the difficulties

involved in understanding metallic states whose low-temperature behavior is not con-

trolled by the Fermi liquid fixed point but by some other fixed point – generally called

a ‘non-Fermi liquid’. Experimental systems that are candidate non-Fermi liquid metals

have primarily been identified by the occurrence of DC conductivity exhibiting unusual

temperature dependence. Perhaps the most famous example is the normal state of the

cuprate high-temperature superconductors[122, 123] around optimal doping, where the
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DC electrical conductivity σ ∼ 1/T over a large range of temperatures T . It is difficult

to construct models that show such behavior; non-Fermi liquids[124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145] (e.g.,

fermion-gauge field systems) often have more pronounced anomalies in single-particle

properties, but more conventional behavior in transport.[146] See Refs. [[147]] and [[148]]

for two counterexamples.

The rate at which the conductivity of a metal approaches its zero-temperature value

is determined by the available relaxation mechanisms, which are, in turn, reflective of the

nature of the zero-temperature metallic state. In a clean Fermi liquid, umklapp scattering

provides the leading low-temperature momentum-relaxation mechanism and results in the

familiar contribution, δρxx(T ) ∝ T 2, in spatial dimensions D > 1, [149, 150] to the DC

electrical resistivity. 1 In 3D, an electron-phonon interaction contributes δρxx ∝ T 5 below

the Debye temperature, while ρxx(T ) ∝ T is found above the Debye temperature.[150]

Similar behavior is found for the scattering of electrons by other collective bosonic modes.

However, at the lowest temperatures, which is inevitably below the Debye temperature

or its analogues for other collective bosonic modes, the resistivity vanishes faster than

linearly in almost all theoretical models.

One way to understand this is as follows. In a metal, the resistivity generally vanishes

at low temperatures as ρ ∼ 1/τtr, where τtr is the decay rate for the current, usually

called the transport lifetime. On dimensional grounds, 1/τtr ∝ (gT−∆g)2 · T where g is

the coupling constant that dominates the relaxation of the current and ∆g is its scaling

dimension. (For umklapp-dominated relaxation, g is the strength of umklapp scattering

process and ∆g is its scaling dimension, with ∆g = 2−∆X if X is the umklapp scattering

operator specified in Eq. 6.24. For disorder-dominated relaxation, g2 is the variance

of the disorder and 2∆g is its scaling dimension, with 2∆g = 3 − 2∆X if X is the

1In D = 1, the umklapp scattering may result in a linear dependence upon temperature [[151]].
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operator that is coupled to disorder in Eq. 6.27.) If the coupling g is an irrelevant

perturbation, ∆g < 0, (including the case of a marginally irrelevant perturbation) at the

zero-temperature metallic fixed point, then the resistivity vanishes faster than linearly

with T , which is the usual case. If, on the other hand, g is a relevant or marginally relevant

perturbation, ∆g > 0, then the fixed point is not stable, and the ultimate low-temperature

behavior is determined by some other fixed point. Hence, ρ ∝ T can only occur in a

model that contains a strictly marginal operator, ∆g = 0, that relaxes the current. This,

in turn, implies that an observed ρ ∝ T is either an intermediate temperature behavior

that does not survive to the lowest of temperatures, as in the case of electron-phonon

scattering above the Debye temperature, or it is a consequence of physical processes

encapsulated by a strictly marginal operator. See Refs. [[152, 153, 154]] for related

scaling arguments.

The 23-channel Luttinger liquid parameter regime that was called the ‘asymmetric

shorter Leech liquid’ in Ref. [[120]] has many such marginal operators. This model is a

1D hyperconductor, in the sense defined above: its electrical and thermal conductivities

diverge at zero temperature in the presence of arbitrary (perturbative) electron-electron

and disorder-mediated interactions. However, the temperature and frequency dependence

of these transport coefficients is interesting because of the presence of these marginal

operators. The purpose of this chapter is to explore this dependence.

In the presence of conservation laws, there is an important caveat to the scaling

considerations given above.[155, 151, 156, 157, 158, 159, 160] Some theoretical models

may have conservation laws that prevent the electrical and/or thermal currents from fully

relaxing, thereby leading to infinite conductivities. Some care is required in these cases,

since approximate calculations of transport relaxation times τtr may give finite answers

due to the failure of these approximations to properly account for these conservation

laws. An additional complication is that the Fermi momentum kF and the reciprocal
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lattice vectors G enter into (pseudo)-momentum conservation for low-energy excitations.

As a result, these momentum scales, which are nominally short-distance or ultraviolet

scales, may enter into the low-temperature, low-frequency response.[161] Conservation

laws, together with these momentum scales, may conspire to modify the simple scaling

form 1/τtr ∝ (gT−∆g)2 · T to 1/τtr ∝ (gT−∆g)2 · T · f(p/T ), where f(x) is a scaling

function that could have, for instance, the asymptotic form f(x) ∼ e−x for large x and

p is some characteristic momentum (e.g. a combination of the Fermi momentum and

reciprocal lattice vectors) that is relevant to the relaxation of the current. One possible

consequence is that the Wiedemann-Franz law may be implied by scaling, but need not

be realized because of symmetry considerations.

6.1.3 Organization of this chapter

The remainder of this chapter is organized as follows. In Sec. 6.2, we review the

construction of the hyperconductor of Ref. [[120]]. In Sec. 6.3, we discuss the relation

between conservation laws and dissipative transport with an eye towards the application

to the hyperconductor phases. In Sec. 6.4, we calculate the electrical and thermal con-

ductivities of the hyperconductor at both commensurate and incommensurate filling for

a pure system with umklapp scattering and a weakly disordered system. The memory

matrix formalism provides the calculational tool of this section. We conclude and out-

line future plans in Sec. 6.5. We include three appendices that provide details for the

calculations underlying the results presented in Sec. 6.4.

6.2 Review of the 1D Hyperconductor

In this section, we give a highly condensed review of the derivation of the hypercon-

ductor of Ref. [[120]] in order to establish notation that is used in the remainder of this
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chapter. For the most part in this chapter, when we use the term, hyperconductor, we

specifically have in mind the example previously called the 1D ‘asymmetric shorter Leech

liquid,’ however, we emphasize that the notion is more general and we are merely study-

ing one particular realization. The reader interested in the details of this construction is

directed to Ref. [[120]].

The 1D hyperconductor that is the subject of this chapter obtains from the low-energy

effective theory of a particular interacting model of electrons in a 1D quantum wire. We

can regard the bands with different values of the transverse momentum, as well as the

two spin states of the electron, as separate channels. The simplest example then, and

the one we will study in this chapter has N = 23 channels of spinless fermions ΨI .

At low energies, the non-relativistic fermions can be linearized into a theory of N = 23

channels of chiral linearly-dispersing spinless (Dirac) fermions, with a left and a right

mover in each channel. Their complete action is given by:

Slin = S0 + Sint (6.1)

S0 =

∫
t,x

[
ψ†R,Ii(∂t + vI∂x)ψR,I + ψ†L,Ii(∂t − vI∂x)ψL,I

]
(6.2)

Sint =

∫
t,x

[
UI,Jψ

†
R,IψR,Iψ

†
R,JψR,J

+ UI+N,J+Nψ
†
L,IψL,Iψ

†
L,JψL,J

+ 2UI,J+Nψ
†
R,IψR,Iψ

†
L,JψL,J

]
(6.3)

where the operator ψ†R,I (ψ†L,I) creates a right-moving (left-moving) fermion excitation

about the Fermi point kF,I (−kF,I) in channel I = 1, . . . , N and we have used the short-

hand
∫
t,x
≡
∫
dtdx. The velocity of the Ith channel of fermions is vI . It is important to
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keep in mind that the linear regime only includes momenta smaller than some cutoff Λ,

where Λ� kF

As the real symmetric matrix UI,J for I, J = 1, . . . , 2N specifying the density-density

interaction is varied, the system explores the parameter space of a 23-channel Luttinger

liquid. As discussed in Ref. [[120]], there is an open set of UI,J for which all potentially-

gap-opening or potentially-localizing perturbations to Eq. 6.1 are irrelevant; this entire

parameter regime is the hyperconductor phase. The calculations of Ref. [[120]] that

establish the existence of this phase as well as the following transport calculations rely

on the bosonic representation of Eq. (6.1):

Sb =
1

4π

∫
t,x

[
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

]
. (6.4)

with K = Kferm = −IN⊕IN , VIJ = vIδIJ +UIJ , IN the N×N identity matrix, and I, J =

1, . . . , 2N in Eq. (6.4). The operators ψ†I,R = 1√
2πa
eiφIγI and ψ†I,L = 1√

2πa
e−iφI+NγI+N

create, respectively, right- and left-moving fermions in the Ith channel; a is a short-

distance cutoff, and the Klein factors γI satisfy γJγK = −γKγJ for J 6= K. The bosonic

fields satisfy the equal-time commutation relations [φI(x),ΠJ(y)] = iδI,Jδ(x− y), where

the canonical momenta ΠI = 1
2π
KIJ∂xφJ . (The index on the fields ΨI,R/L runs from

1, . . . , N , while the index on the bosonic fields φI runs from 1, . . . 2N .)

The hyperconductor construction is based on the observation that under an SL(2N,Z)

basis change, φI ≡ WIJ φ̃J , it is possible to transform K to the Gram matrix K̃ =

W TKW = −K̃R ⊕ K̃L of a signature (N,N) lattice of the form −Λ̃R ⊕ Λ̃L where Λ̃R,

Λ̃L are positive-definite unimodular2 N -dimensional lattices. For N ≥ 23, there exist

non-root positive-definite unimodular lattices – i.e., lattices such that all vectors v in the

lattice satisfy |v|2 > 2 – and there exist matrices W that transform Kferm to the corre-

2The unimodularity follows from the unimodularity of Kferm = −IN ⊕ IN and the determinant-
preserving property of W .
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sponding Gram matrices. If, in this basis, Ṽ = W TVW is block diagonal (i.e., does not

mix right-movers and left-movers), then all potentially gap-opening or localizing opera-

tors cos(m̃I φ̃I) are irrelevant when Λ̃R or Λ̃L is non-root, where m̃J = mIWIJ . Stability

persists for a small but finite range of values of any parameters in the model (i.e., away

from block diagonal Ṽ ), including the chemical potentials in each channel, the veloci-

ties, and all the inter-channel and inter-spin interactions. In the hyperconductor phase

considered in this chapter, Λ̃R is the so-called shorter Leech lattice, the unique non-root

unimodular integral lattice in 23 dimensions, while Λ̃L is Z23, the ordinary hypercubic

lattice, which is not a non-root lattice. This phase was called the asymmetric shorter

Leech liquid. (See Refs. [162, 8] for a fuller discussion of the mathematical technology

underlying the hyperconductor construction.)

For simplicity, we perform the calculations in this chapter using an interaction matrix

ṼIJ in the transformed basis that is simply proportional to the positive-defined matrix

K̃R⊕ K̃L, so that all of the eigenmodes have equal velocities v. We similarly assume, for

simplicity, that kF,I = kF for all I.

The salient feature of the asymmetric shorter Leech hyperconductor that is relevant to

this chapter is the existence of a large number of marginal backscattering operators of the

form cos
(
m̃I φ̃I

)
when Ṽ = W TVW is block diagonal and Λ̃R and Λ̃L are, respectively,

the shorter Leech lattice and Z23. In conformal field theory[163] (CFT) terminology,

these operators have different right and left scaling dimensions (∆R,∆L) =
(

3
2
, 1

2

)
. If Ṽ is

moved slightly away from block diagonal, then the scaling dimensions of any such operator

will be shifted to (∆R,∆L) =
(

3
2

+ y, 1
2

+ y
)
, where y will depend on the particular

operator in question. For block diagonal Ṽ , these scaling dimensions are protected by

their chirality: their RG equations do not contain higher-order terms.[164] (See Appendix

E.4 for a review of this argument.) As a result, transport coefficients exhibit anomalous

power-law dependence all the way to zero temperature. For block diagonal Ṽ , this is
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manifested as DC electrical resistivity ρDC ∝ T all the way to zero temperature.

6.3 Symmetry and Transport

In this section, we describe some of the complications associated with computing the

transport properties of a 23-channel Luttinger liquid. Most of the material in this section

has been described elsewhere (see below for references) but, for the sake of completeness,

we give a review of transport that is tailored to the application of the formalism described

in the next section. The reader that is interested primarily in our results may wish to

skip this rather technical section on a first reading of this chapter.

6.3.1 Conservation Laws

The conservation of total electrical charge and total energy,

d

dt
Q =

d

dt
H = 0, (6.5)

(where Q and H are the total electrical charge and energy operators) make it possible for

those quantities to diffuse, thereby leading to finite electrical and thermal conductivities.

If, however, the charge or energy currents, respectively Je or JT , were conserved,

d

dt
Je = 0 or

d

dt
JT = 0, (6.6)

then the electrical or thermal conductivity would be infinite. Even if the charge and en-

ergy currents were not themselves conserved, the electrical or thermal conductivity would

still be infinite, if there were some other conserved quantities with non-zero ‘overlap’ (in

a sense to be made precise in Eq. (6.29)) with the charge or energy current. Hence,
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finite conductivities only occur when the corresponding currents have no overlap with

any conserved quantities.[165, 166, 156]

In addition to total charge and energy there are other globally conserved quantities

(we will interchangeable call them charges) for the fixed point action of a hyperconductor

in Eq. (6.4). There are 47 conservation laws at the asymmetric shorter Leech fixed

point that are important for transport: the charges of the right- and left-movers in each

channel as well as the total energy.3 We now discuss these conservation laws, as well

as the relaxation mechanisms due to irrelevant perturbations of the fixed point that are

required to make these conductivities finite.

Continuous translation symmetry of the parent non-relativistic theory, whose low-

energy effects are captured by Slin, gives a globally conserved charge (total momentum),

here written in fermionic language:

P = P0 + PD, (6.7)

P0 = kF
∑
I

(
NR
I −NL

I

)
, (6.8)

PD =

∫
x

[
ψ†R,I(i∂xψR,I) + ψ†L,I(i∂xψL,I)

]
, (6.9)

where NR
I , NL

I are, respectively, the number operators of the right-moving and left-

moving Dirac fermions in channel I:

NR,L
I =

∫
x

ψ†R/L,IψR/L,I . (6.10)

PD, as suggestively named, is the momentum of a Dirac fermion theory also described

3In fact, there are an infinite number of conserved charges of the Luttinger liquid action describing the
hyperconductor fixed point which take the form of products of the chiral current operators defined Eq.
(6.15). These additional charges have vanishing overlap with the chiral currents and momentum operator
to lowest order in the scattering interaction, and so make subleading contributions to the conductivity
and will be ignored.
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by Slin, but where ψ†R,I

(
ψ†L,I

)
creates a right-moving (left-moving) fermion about zero

momentum instead of the Fermi point kF,I (−kF,I). From the perspective of the low-

energy theory, the total momentum operator P arises from two separately conserved

emergent symmetries of Slin: the first is generated by a chiral rotation of the right-

and left-moving fermions by the “angle” kF while the second is generated by continuous

translations in the linearized Dirac theory. P0 accounts for the large momenta ∼ kF ,

while PD accounts for deviations from the Fermi surface.

These expressions can be rewritten in bosonic form:

NR
I =

1

2π

∫
x

∂xφI , (6.11)

NL
I =

1

2π

∫
x

∂xφN+I , (6.12)

and

PD =
1

4π

∫
x

KIJ∂xφI∂xφJ . (6.13)

The fermionic and bosonic expressions for P = P0 +PD are the integrals over all space of

the component T tx of the energy-momentum tensor derived via Noether’s theorem from,

respectively, the fermionic Eq. (6.1) and bosonic Eq. (6.4) forms of the effective action.

The fixed point action Sb has emergent U(1)NL × U(1)NR chiral symmetries (φI →

φI + cI) generated by the charges Q
R/L
I :

QR,L
I = eN

R/L
I . (6.14)

The continuity equation for each chiral charge and the equations of motion for the bosonic
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fields allow us to obtain the corresponding currents:

JeR,I =
e

2π
VIJ

∫
x

∂xφJ , (6.15)

JeL,I = − e

2π
VN+I,J

∫
x

∂xφJ . (6.16)

The total electrical and thermal currents are then given by:

Je =
N∑
I=1

(
JeR,I + JeL,I

)
, (6.17)

JT = − 1

4π

2N∑
I,J,L=1

VIJKIIVIL

∫
x

∂xφJ∂xφL, (6.18)

where the Hamiltonian,

H =
1

4π

∫
x

VIJ∂xφI∂xφJ , (6.19)

and corresponding thermal continuity equation gives JT . We study the case when all

of the eigenvalues of VIJ are the same, so that the Dirac momentum PD is equal to the

thermal current JT .

Particle-hole symmetry breaking band-curvature effects couple the electrical and ther-

mal currents to one another. For completeness, we give, in fermionic form, the corre-

sponding corrections to the expressions for the currents:

δJe = g
e

m
PD, (6.20)

δJT =
g

m

∑
I

∫
x

[ (
∂tψ

†
R,I

)
∂xψR,I +

(
∂xψ

†
R,I

)
∂tψR,I

+
(
∂tψ

†
L,I

)
∂xψL,I +

(
∂xψ

†
L,I

)
∂tψL,I

]
. (6.21)
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In an operator formalism, the time derivative of the fermion operator above is com-

puted by taking the commutator of the fermion operator with the Hamiltonian H. If

the fermions have quadratic dispersion, so that there are no higher-order corrections to

these expressions for the currents, the action is Galilean-invariant. The band curvature

corrected electrical current then gives the expected relation between the total electrical

current and total momentum, Je + δJe = e
m
P . Band curvature effects that do not break

particle-hole symmetry introduce corrections to Je that are odd in the φI and corrections

to JT that are even in the φI . These and other corrections due to band curvature are

interesting and deserve further study (see Ref. [167] for a review), however, we focus

upon the linearly dispersing regime in this chapter.

To summarize, the fixed point action Sb has 47 individually conserved quantities, QR,L
I

and PD, that generally have non-zero overlap with the electrical and thermal currents.

One linear combination of these conserved quantities, the total electrical charge Q =∑
(QR,

I + QL
I ), will always4 remain conserved, but it has no overlap with either the

electrical or thermal currents and so it does not prevent their decay. The other 46

conservation laws must be broken in order for the system to have finite electrical and

thermal conductivities.

6.3.2 Relaxation Mechanisms

To see the relation between the conductivity and conservation laws, it is helpful to

consider the most general expression for the real part of the optical conductivity:[159]

σ′(ω, T ) = 2πD(T )δ(ω) + σreg(ω, T ), (6.22)

4Assuming that the system is not coupled to an external superconductor to violate charge conservation
or driven to violate energy conservation.
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where D(T ) is the so-called Drude weight. If D(T ) is finite, it signals that the DC

conductivity is infinite. Using Mazur’s inequality,[165, 166] Zotos, Naef, and Prelovsek

pointed out in Ref. [156] the following implication of conserved charges for electrical

charge transport:

D(T ) ≥ 1

2LT

∑
k〈JeQk〉2

〈Q2
k〉

, (6.23)

where L is the length of the system. The angled brackets denote the thermodynamic

average and the right-hand side of Eq. (6.23) is independent of time because the Qk are

conserved quantities. This inequality says that in the presence of conserved charges Qk

which have non-zero overlap with Je, the electrical current does not completely relax,

and the system has dissipationless charge flow even at finite temperature T . (See Eq.

(6.29) for an equivalent notion of an ‘overlap’ which is the one that we adopt in this

chapter.) A similar inequality and conclusion applies for the thermal current JT .

It follows that to fully relax the electrical and thermal currents a system must break

all conservation laws, apart from the conservation of total charge and total energy, which

have vanishing overlap with the electrical and thermal currents. At zero-temperature and

zero frequency, the fixed point theory Sb determines the response of the system. Since

this theory has the 47 conservation laws described above, it has infinite conductivity.

Note that, in a time-reversal invariant 23-channel Luttinger liquid, we would only need

to break 24 conservation laws since the time-reversal symmetric conserved quantities

would ordinarily have vanishing overlap with the electrical current; but the asymmetric

Leech liquid hyperconductor is not time-reversal invariant.

At finite temperature and frequency, irrelevant perturbations can have an effect on

the response functions of the system. The bulk of this chapter is a discussion of the

effects of such perturbations. In particular, we answer two questions: Which operators
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can relax the currents? Which are the most important ones?

In order to break the conservation of the Dirac momentum PD and the chiral elec-

trical currents {JeR/L,I}, we need to include physical processes that (1) break continuous

translation symmetry with respect to the low-energy effective theory Sb and (2) break

particle number conservation within each channel, but (3) conserve total charge and

energy. Umklapp scattering at incommensurate fillings and disorder break continuous

momentum conservation and generally break the conservation of the chiral currents in

individual channels, and so we focus on them here.

Umklapp processes scatter some number of right-movers into left-movers so that the

total momentum change is a reciprocal lattice vector. The most general umklapp term

is specified by a vector of integers m
(α)
I , I = 1, . . . , 2N :

Hu =
∑
α

Hu
α

=
∑
α

[
hu
α + h.c.

]
=−

∑
α

λα

∫
x

[
1

a2
eim

(α)
I kF,Ix−ip(α)Gxeim

(α)
J φJ + h.c.

]
,

(6.24)

where λα is the coupling constant, G is a basis vector of the reciprocal lattice, a is a

short-distance cutoff,5 and the Einstein summation convention is employed. Here, the

operator X to which we referred in our general remarks in Sec. 6.1.2 is X = eim
(α)
J φJ . The

most important umklapp processes at low energies are those for which the corresponding

operators X = eim
(α)
J φJ have the lowest scaling dimension. In the asymmetric shorter

5Typically, the presence of a multiplicative prefactor proportional to a power of the short-distance

cutoff a is understood when writing vertex operators of the form, exp
(
im

(α)
J

)
. We retain it here when

writing vertex operators of scaling dimension equal to 2 to avoid confusion. See Ref. [[163]] for further
details.
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Leech hyperconductor studied in this chapter, such operators have scaling dimension

(∆R,∆L) = (3/2, 1/2), so they are marginal. The integer p(α) is the “order” of the

umklapp process, or the number of Brillouin zone foldings after which the momentum

m
(α)
I kF,I is again in the first Brillouin zone. Thus, p(α) is actually fixed by m

(α)
I kF,I , but

we will retain it as a formally free parameter. At commensurate filling, there is always a

p(α) such that m
(α)
I kF,I = p(α)G, but we work more generally. Without loss of generality,

we may take the difference m
(α)
I kF,I − p(α)G ∈ [0, 2π) where the lattice constant has been

set to unity. Charge conservation is maintained by requiring equal numbers of creation

and annihilation operators:
∑N

I=1m
(α)
I =

∑N
I=1 m

(α)
N+I .

While any single umklapp process Hu
α might break the conservation of individual cur-

rents (e.g., [Hu
α, J

e
R/L,I ] 6= 0), a linear combination of currents might still be conserved.[158]

(The linear combination corresponding to total charge is always conserved, however, it

has no overlap with the total electrical current.). That is why our model generally requires

at least 46 carefully chosen umklapp processes, i.e., m
(α)
I vectors to break all conservation

laws. Such a requirement is not unreasonable. In the spirit of effective field theory, we

expect all operators consistent with symmetry to be present in the low-energy effective

action. We simply focus on the minimal set of scattering processes that dominate the

low-energy physics. See the accompanying Mathematica file for explicit expressions of

the m
(α)
I that we choose to study.

To study whether some linear combination (other than the total charge) aIJI with

JI = JeR,I for I = 1, . . . N and JeI = JeL,I−N for I = N + 1, . . . , 2N is also conserved, we

compute the equal-time commutators:

[Hu
α, aIJ

e
I ] =iaIb

α
I h

u
α + h.c., (6.25)
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where the vectors bαI are defined by,

bαI =
(
eλαsgn(N − I)sgn(N − J)VIJ

)
m

(α)
J , (6.26)

and we define sgn(X) = +1 for X ≥ 0 and sgn(X) = −1 for X < 0. We ask whether

there exist solutions aI = a ∈ R2N −{0}, such that ∀α, aIbαI = 0. All umklapp operators

preserve total U(1) electrical charge, therefore the vectors m
(α)
I specifying them can

span at most a 2N − 1 dimensional space. The linear equations, aIb
α
I = 0, say that

a is orthogonal to this space. It follows that when the number of linearly independent

umklapp terms NU (α = 1, . . . , NU) equals 2N − 1, a lies in the 1-dimensional space

corresponding to total charge, and so no non-trivial conserved linear combination of the

currents exists.

Disorder can also relax the electrical and thermal currents by violating conservation

laws. A generic disorder-mediated backscattering term takes the form:

Hdis =
∑
α

λdis
α H

dis
α

=
∑
α

λdis
α

∫
x

[
ξα(x)

1

a2
eim

(α)
I φI + h.c.

]
, (6.27)

where α indexes the various backscattering terms specified by m
(α)
I ∈ Z. At low tem-

peratures, the most important backscattering processes are again due to the dimension

(3
2
, 1

2
) operators eim

(α)
I φI introduced in Eq. (6.24). However, due to randomness in ξα(x),

their effect is weaker than that of uniform umklapp terms. (In the general remarks in

Sec. 6.1.2, the operator X = eim
(α)
I φI in Eq. (6.27).)

For simplicity, we will take all the couplings λdis
α = λdis equal and ξα(x)ξ∗β(x′) =

δαβDδ(x − x′) with ξα(x) = 0, where the overline denotes disorder averaging. Then, we

use the replica trick to integrate out the disorder, thereby obtaining the following term
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in the replicated action:

Sdis−avg = (λdis)2D
∑
A,B

∑
α

∫
t,t′

∫
x

1

a4
eim

(α)
I (φAI (t)−φBI (t′)). (6.28)

For a dimension (3
2
, 1

2
) operator eim

(α)
I φI , the coupling (λdis)2D of the interaction in the

replicated theory has scaling dimension equal to −1. Hence, the interaction is irrelevant

and its effects are formally subleading compared to the uniform umklapp terms con-

sidered above. However, in the commensurate case, umklapp terms commute with PD;

disorder is the leading effect that violates conservation of PD, thereby leading to finite

thermal conductivity. Meanwhile, in the incommensurate case, the effects of uniform

umklapp terms are exponentially-suppressed at low temperatures, and disorder becomes

the leading effect that relaxes both electrical and thermal currents at low temperatures.

In summary: for a pure system at commensurate filling, the Dirac momentum PD is

not relaxed, however, there is no overlap between the chiral electrical currents JeI and

PD when particle-hole symmetry is preserved. Thus, we need 45 umklapp operators to

relax the electrical current. When particle-hole symmetry is broken by band-curvature

corrections at commensurate filling, 〈JePD〉 6= 0, so both the electrical and thermal con-

ductivities diverge. When the filling is incommensurate or disorder is present, particle-

hole symmetry is broken, so there is generally an overlap between the electrical currents

and the Dirac momentum. However, PD does not generally commute with an umklapp

process at incommensurate filling or a disorder-mediated scattering interaction, thereby

allowing momentum relaxation. In this case, both the electrical and thermal transport

coefficients can be finite in the presence of 46 scattering interactions. The additional in-

teraction arises from the additional conserved charge PD. To see this one must generalize

the previous argument by writing the commutator in Eq. (6.25) as a total derivative.
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6.3.3 Memory Matrix

The details of the memory matrix formalism can be found in Refs. [[168, 169, 158,

170, 171]]; we merely observe that it is well-suited for computing transport coefficients in

the hydrodynamic regime: when there are globally conserved quantities (energy, electrical

charge) that propagate diffusively. Unlike a direct application of the Kubo formulae it

makes the role of these conservation laws transparent. In essence, it is a reorganization of

the perturbative expansion of the current-current correlation functions of interest.[159]

We choose as a complete basis of conserved quantities the set

{Qp} = {JeR,1, ...JeR,N , JeL,1, ...JeL,N−1, PD}

. JeL,N can be excluded because total charge is always conserved, so a correlation function

involving JLN can be obtained from an expression involving the other currents. There is a

notion of a symmetric inner product on the vector space of conserved quantities provided

by the static susceptibility matrix:

χ̂pq = (Qp|Qq)

≡ 1

L
GR
QpQq(ω = 0). (6.29)

The retarded Green’s functions GR
QpQq(ω) are calculated at temperature T (left implicit

in the definitions below) and evaluated at real frequency ω. (Recall that there is no mo-

mentum dependence in the static susceptibility matrix χ̂pq because the conserved charges

are obtained by integrating densities over all space.) Thus, the static susceptibility may

be used to define the notion of an ‘overlap’ between two conserved quantities. Note that

the real-time thermodynamic correlation functions involved in Mazur’s inequality Eq.

(6.23) are non-zero if and only if the corresponding static susceptibilities are non-zero.
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The memory matrix M̂(ω) has contributions from each separate umklapp and disorder-

mediated scattering process, both labeled by α. We schematically write this as:

M̂(ω) =
∑
α

(
λ2
αM̂u

α(ω) + (λdis
α )2DM̂dis

α (ω)
)
, (6.30)

(M̂u)pqα =
1

L

〈F u
p,α;F u

q,α〉ω − 〈F u
p,α;F u

q,α〉ω=0

iω
, (6.31)

(M̂dis)pqα =
1

L

〈F dis
p,α;F dis

q,α〉ω − 〈F dis
p,α;F dis

q,α〉ω=0

iω
. (6.32)

Here, F u
q,α = i

λα
[Hu

α,Qq], F dis
q,α = i

λdis
α

√
D

[
Hdis
α ,Qq

]
, and Qq is a conserved charge (either

JeR/L,I or PD). 〈F u
p,α;F u

q,α〉ω and 〈F dis
p,α;F dis

q,α〉ω are retarded finite-temperature Green’s

functions evaluated to leading order using Sb in Eq. (6.4). λα and λdis
α parameterize the

umklapp scattering and coupling to disorder, respectively, and D is the disorder variance

of Gaussian-correlated disorder. As mentioned above, we take λα = λ and λdis
α = λdis for

all α for simplicity. M̂u contains the contributions to the memory matrix from umklapp

scattering, while M̂dis contains the contributions from the disorder-mediated interaction.

We stress that the form of the memory matrix given above is correct to leading order in

the scattering interaction. See Refs. [[168, 169, 158, 170, 171]] for further discussion.

The label α also specifies the momentum mismatch of an incommensurate scattering

process,

∆kα ≡ m
(α)
I kF,I − p(α)G ∈ [0, 2π), (6.33)

for unit lattice constant, and the vector of integers m
(α)
I that defines the umklapp process.

The vectors m
(α)
I , in turn, help determine, along with the matrix VIJ , the right and left

scaling dimensions (∆R,∆L) of the operators entering scattering interactions in Eqs.

(6.24) and (6.27). Recall that we choose to take the Fermi vectors in all channels to be
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equal, kF,I = kF .

The conductivities associated to the various charges Qp are encoded in the matrix,

σ̂(ω) = χ̂
(
N̂ + M̂(ω)− iωχ̂

)−1

χ̂, (6.34)

where

(N̂)pq ≡ χ̂pq̇ =
(
Qp, i[

∑
α

(Hu
α +Hdis

α ),Qq])
)
. (6.35)

We show in Appendix E.3 that, at least to quadratic order in the umklapp λ and disorder

λdis couplings, N̂ = 0.

The electrical conductivity σ is determined by the (2N − 1) × (2N − 1) submatrix

σ̂JeI ,JeJ . The thermoelectric conductivity α̃ is determined by the (2N − 1)-dimensional

vector σ̂JeI ,PD/T . The thermal conductivity κ =
σ̂PD,PD

T
− α̃2T

σ
. For commensurate fillings

and in the disorder-dominated regime, the thermoelectric conductivity can be ignored to

leading order so that the thermal conductivity is equal to the PD − PD component of σ̂.

6.4 Hyperconductor Transport

We now assemble the conductivity matrix σ̂. The first ingredient is the static suscep-

tibility matrix, which takes the following form:

χ̂JeI JeJ =
e2

4π
sgn(N − I)sgn(N − J)VIJ , (6.36)

χ̂JeIPD =0, (6.37)

χ̂PDPD =
Nπ2T 2

6
, (6.38)
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where there is no sum over I and J and we have computed to zeroth order in any

perturbation to Sb. See Appendix E.1 for details on the calculation of the static suscep-

tibilty matrix and the auxiliary Mathematica file for the explicit expression for VIJ . See

Appendix E.2 for details on the evaluation of the memory matrix elements.

In the following two sections, we study the contributions to the conductivity in sys-

tems at commensurate and incommensurate fillings in the presence of both umklapp

scattering and disorder. For the most part, we focus upon the decoupled surface sub-

space within the hyperconductor phase, however, we provide the more general expressions

for the DC conductivities where appropriate.

6.4.1 Commensurate Fillings

If the electron filling is commensurate with the lattice, kF divided by the reciprocal

lattice basis vector is a rational fraction, and so the momentum mismatch ∆kα in any

umklapp scattering process may vanish. Umklapp scattering interactions with ∆kα =

0 provide the dominant contribution to the electrical conductivity matrix. Thus, we

consider Sb together with 45 umklapp terms, all with ∆k
(α)
p = 0. As argued earlier, the

most important umklapps are those with total scaling dimension (∆R,∆L) = (3/2, 1/2).

DC Conductivity

We first note that F u
PD,α

vanishes when ∆k(α) = 0 , along with all the memory

matrix elements involving it. This tells us that the dynamics of the electrical current-

carrying excitations decouple from the thermal carriers (with PD remaining conserved)

at commensurate fillings without disorder. In computing the electrical conductivity, it is

sufficient to choose {JeI } as the complete basis of hydrodynamic modes. The conservation

of PD in the linearly-dispersing regime also implies that the thermal conductivity κ is
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infinite in a pure system since
(
PD|JT

)
6= 0. At commensurate fillings, disorder is the

leading effect that causes finite thermal conductivity, as we discuss.

To obtain the DC conductivity at commensurate fillings, we need the memory matrix

elements obtained in Appendix E.2.2:

(M̂u)
JeI J

e
J

α (T ) =
π4

32
UJeI ,αUJeJ ,αT, (6.39)

where the finite, non-zero coefficients, UJeI ,αUJeJ ,α ∝ e2 are defined in Eq. (E.20). This

immediately gives the DC electrical conductivity,

σ(T ) ∝ e2

λ2

1

T
. (6.40)

As promised, the electrical resistivity vanishes linearly in temperature. Note that the

dimensionless proportionality constants in Eq. (6.40) and in subsequent conductivity

formulas are finite and non-zero.6

We have neglected band curvature terms in the preceding and subsequent calcula-

tions by working with the linearized action in Eq. (6.4). Their inclusion does not lead to

finite thermal conductivity since any non-oscillatory term will commute with PD. How-

ever, particle-hole symmetry-breaking band curvature terms will mix PD and JeI , thereby

leading to infinite electrical conductivity so long as PD is conserved.

Disorder, on the other hand, does cause PD to decay. While it gives a subleading con-

tribution to the electrical conductivity in the commensurate case – disorder contributes

the O(T 2) correction in Eq. (6.50) to the DC electrical memory matrix elements – it is

6In general, inversion of the 46 × 46 memory matrix is computational difficult and so a precise
determination of the overall numerical constant prefactors is currently out of reach. Nevertheless, we
have checked that the memory matrix is generically non-singular and so we may safely understand the
contributions to the relaxation of the various currents by scaling out any dimensionful quantities from
the memory matrix. The remaining numerical matrix then merely contributes a finite constant whose
overall value we do not determine.
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the leading contribution to the relaxation rate of the thermal conductivity:

κ(T ) ∝
(

1

D(λdis)2

)
1

T
, (6.41)

where we have used the static susceptibility matrix in Eq. (6.38), the disorder memory

matrix elements in Eq. (6.52), and the fact that κT is equal to the PD−PD component of

the conductivity tensor σ̂ when the thermoelectric coefficient vanishes (to leading order).

Eqs. (6.40) and (6.41) constitute a violation of the Wiedemann-Franz “law.” Marginal

umklapp scattering is the leading low-temperature relaxation mechanism for the electrical

current, whileO(1) irrelevant disorder is the leading relaxation mechanism for the thermal

current at commensurate fillings. In this case, the Lorentz ratio,

L =
κ

σT
∝ λ2

e2D(λdis)2

1

T
(6.42)

diverges as T → 0.

Remaining within the hyperconductor phase, but departing from the decoupled sur-

face, the exponents for the electrical and thermal conductivities will generally be modified

to the form: σ ∝ 1/T 1−2(2−∆X) and κ ∝ 1/T 1−2(2−∆X), where deviations of ∆X from 2

encode the shift of the scaling dimensions of the scattering processes away from marginal-

ity.

AC Conductivity

The AC conductivities at commensurate fillings are found similarly. From Appendix

E.2.2,

(M̂u)
JeI J

e
J

α (ω) = UJeI ,αUJeJ ,α

[π2

32
ω + i

π

16
ω log(a2ω)

]
, (6.43)
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where a2 is proportional to the short-distance cutoff a. Therefore, the AC electrical

conductivity at T � ω takes the form:

σ(ω) ∝ e2

iω
(
c1 + c2 log(a2ω)

)
+ c3ω

, (6.44)

for constants c1, c2 and c3. The finite contribution to the real part of the electrical AC

resistivity has given the Drude peak finite width.

Disorder is required for finite AC thermal conductivity. Using the memory matrix

element in Eq. (6.52), we find:

κ(T/ω � 1) ∝ T 3

ic4ωT 2 + c5Dω4
, (6.45)

for constants c4 and c5.

6.4.2 Incommensurate Fillings

When the filling is incommensurate, there is no scattering process for which ∆kα =

0. In this case both the electrical and thermal conductivities are generally finite and

so we use the charge basis {Qp} = {JeR,1, ...JeR,N , JeL,1, ...JeL,N−1, PD}. Band-curvature

corrections contribute subleading terms to the temperature dependence and will not be

considered.

The ∆kα associated to the 46 umklapp scattering processes defined by them
(α)
I vectors

are all generally different from one another. Nevertheless, we set ∆kα = ∆k for all α in

the presentation of the results below.
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DC Conductivity

The memory matrix elements for umklapp scattering at incommensurate filling is

provided in Appendix E.2.2 whose results we quote below.

Infinitesimally close to commensurate filling, ω ≤ ∆k � T , we may borrow our

previous results computed precisely at commensurate filling with the understanding that

∆k 6= 0 in the expression for F u
PD,α

in Eq. (E.16). The leading contribution to the

electrical conductivity is unchanged from Eq. (6.40). However, the thermal conductivity

is now finite even in the absence of disorder,

κ(T ) ∝ T 2

λ2∆k2
. (6.46)

As expected, the thermal conductivity is divergent as commensurability is restored, ∆k →

0. The Lorentz ratio is a decreasing function of T 2 in the regime ∆k � T as the

temperature is decreased.

As the temperature is lowered, we enter the regime T � ∆k in which the DC electrical

and thermal memory matrix elements take the asymptotic low-temperature form:

(M̂u)pqα (T ) =
π2

32
Up,αUq,α

∆k2

T
e−

∆k
2T . (6.47)

The resulting DC electrical and thermal conductivities for T � ∆k:

σ(T ) ∝ e
2

λ2

T

∆k2
e

∆k
2T ,

κ(T ) ∝ 1

λ2

T 4

∆k4
e

∆k
2T . (6.48)
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In this case, the Lorentz ratio,

L ∝ T 2

e2∆k2
, (6.49)

vanishes as T → 0 in the absence of disorder. If we had considered instead a more generic

model in which the Fermi momenta were not identical, the ∆k would then no longer be

same. This would imply that the leading contribution to the memory matrix in Eq.

(6.47) would be dominated by the contribution with minimal ∆k.

Disorder, if present, eventually dominates the low-temperature transport. The disor-

der DC electrical and thermal memory matrix elements derived in Appendix E.2.3:

(M̂dis)
JeI J

e
I

α =
2π3

3
ŨJeI ,αŨJeJ ,αT

2, (6.50)

(M̂dis)
JeIPD
α =0, (6.51)

(M̂dis)PDPDα =
8π5

5
ŨPD,αŨPD,αT

4, (6.52)

where the coefficients Ũp,αŨq,α are defined in Eqs. (E.28). For generic, perturbative values

of the couplings, the disorder-dominated regime occurs when the exponentially-vanishing

contribution to the memory matrix in Eq. (6.47) is overcome by the disorder-dominated

contribution above. The resulting electrical and thermal conductivities in the presence

of disorder for temperatures T � ∆k:

σ(T ) ∝ e2

D(λdis)2

1

T 2
,

κ(T ) ∝ 1

D(λdis)2

1

T
. (6.53)

Away from the decoupled surface, the low-temperature results will be modified as follows:
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σ = κ/T ∝ 1/T 2−2(2−∆X). In this regime, the Lorentz ratio,

L ∝ 1

e2
, (6.54)

is constant, although the gapless metallic phase is certainly not a Fermi liquid. The

Wiedemann-Franz law is satisfied at the lowest of temperatures for incommensurate

fillings because disorder is the dominant relaxation mechanism at incommensurate fillings

for both the electrical and thermal currents.

AC Conductivity

The AC conductivity at incommensurate filling follows straightforwardly from the

previous analysis. For T ≤ ∆k � ω, the AC electrical conductivity is unchanged from the

previous result in Eq. (6.44). In fact, the real part of the AC electrical resistivities can be

found from inversion of the DC electrical conductivities in Sec. 6.4.2 by the replacement

T → ω in all algebraic prefactors and so we shall not write them out explicitly.

Let us now concentrate on the real part of the AC thermal conductivities. For T �

∆k � ω,

κ(ω) ∝ 1

λ2

T 3

∆k2ω
. (6.55)

For T < ω � ∆k with T � (∆k2/ω) exp(ω−∆k
2T

) and in the absence of disorder the

thermal conductivity is dominated by incommensurate umklapp scattering,

κ(ω) ∝ 1

λ2

T 3ω

∆k4
e

∆k−ω
2T , (6.56)

where we used Eq. (E.27). Notice the divergent thermal conductivity as T → 0. Finally,
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in the disorder-dominated regime with T 2 � Dω3,

κ(ω) ∝ 1

D

T 3

ω4
. (6.57)

6.5 Conclusions

In this chapter, we have determined the DC and AC electrical and thermal con-

ductivity of the one-dimensional hyperconductor phase introduced in Ref. [[120]] in the

presence of umklapp and disorder-mediated scattering. For instance, we have shown that

this metallic phase exhibits a DC conductivity σ ∼ 1/T 1−2(2−∆X)) down to T = 0 without

fine-tuning at commensurate fillings, thereby manifesting the non-Fermi liquid nature of

the phase. In addition, we have discussed the relation between conservation laws and

transport which has allowed us to provide examples of violations of the Wiedemann-

Franz law. As a simple example, the thermal conductivity is only finite in the presence

of disorder, while the electrical conductivity can be finite in a pure system at commen-

surate filling with only umklapp scattering. More generally, we have seen how differing

relaxation mechanisms for the electrical and thermal currents can result in violations of

the Wiedemann-Franz law.

The power-law σ ∼ 1/T obtains along the ‘decoupled surface’ of the hyperconductor

when the interactions determined by ṼIJ – see Sec. 6.2 – are block diagonal at com-

mensurate fillings. On this surface, ∆X = 2. The hyperconductor phase survives within

a finite window off the decoupled surface by the addition of off-diagonal terms to ṼIJ

mixing right-moving and left-moving hyperconductor excitations. Departing from the

decoupled surface, but remaining within the hyperconductor phase, the relaxation of

the current is controlled by 46 umklapp scattering operators with conformal dimensions(
3
2

+ δ, 1
2

+ δ
)

so that ∆X = 2 + 2δ, with δ determined by the distance from the decou-
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pled surface. The conductivity will generally behave σ ∼ 1/T 1−2(2−∆X) with ∆X > 2

down to T = 0. For ∆X < 2, the zero-temperature perfect metal fixed point is unstable.

However, the relevant perturbations are chiral and, therefore, cannot open a gap. At low

temperatures, they may strongly renormalize the velocities, shift the Fermi momenta,

or otherwise modify the ground state (without opening a gap) in such a manner that

the dangerous processes can no longer occur. In the marginal case, ∆X = 2, such an

instability presumably occurs at sufficiently large marginal coupling.

The large marginal coupling limit of this hyperconductor regime is an interesting

testing ground for Hartnoll’s recently conjectured[172] lower bound on the diffusion con-

stant, D ≥ ~v2
F/(kBT ). This bound applies to systems in the “incoherent” metallic

regime where there is no overlap between the electrical current and momentum operator.

If satisfied, this lower bound implies an upper bound on the coefficient of the linear in

temperature DC electrical resistivity that we found at commensurate fillings.

The distinction between a hyperconductor and a superconductor is that a hyper-

conductor does not have long-ranged order.7 This distinction is not apparent in zero-

temperature electrical transport, which is infinite in both cases. (It does manifest itself

in the differential tunneling conductance, which vanishes algebraically with voltage in

the hyperconductor but is strongly suppressed at voltages below the energy gap in a

superconductor – it would be zero but for Andreev reflection.) However, the difference

between a hyperconductor and a superconductor is clearer in low-temperature transport.

In a superconductor, the electrical resistivity vanishes for all temperatures below the

critical temperature, but in a hyperconductor, the resistivity increases smoothly, with

the temperature dependence described above. In the incommensurate case, the resitivity

is exponentially-small in temperature over a wide range of temperatures, has the feature

7In the case of a 1D system, long-ranged order is impossible. However, a 1D superconductor develops
long-ranged order when in contact with a 3D superconductor, while a 1D hyperconductor does not. It
resists the development of a proximity effect due to weak coupling to a 3D superconductor.
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of very small (albeit not vanishing) resistivity without the threat of a sudden large jump

at a critical temperature. While a superconductor conducts electrical current without

dissipation even in the presence of impurities for T < Tc, a hyperconductor has non-zero

resistivity for T > 0, but strongly suppressed – in the hyperconductor studied here, the

impurity contribution is suppressed by a factor (T/TF )2∆X−2 with ∆X ≥ 2. Meanwhile,

a hyperconductor has radically different thermal transport than a superconductor. In a

superconductor, thermal currents are only carried by excited quasiparticles and phonons.

Therefore, the thermal conductivity divided by the temperature vanishes with decreasing

temperature. In particular, the electronic contribution to the thermal conductivity of an

s-wave superconductor has activated form. In a hyperconductor, on the other hand, the

thermal conductivity diverges as a power-law at the lowest temperatures and diverges

exponentially with inverse temperature over a wide range of temperatures. Thus, the

hyperconductor phase, though neither a superconductor nor a superfluid, has an elec-

trical conductivity that approaches that of the former and a thermal conductivity that

approaches that of the latter.

In the future, we plan to understand the 2D metallic phase that emerges from an

array of hyperconductor wires. This wire array should exhibit diffusive finite-temperature

transport both along and transverse to the wires and be stable to weak disorder. this

chapter makes clear the reason why finite conductivities obtain along the wires. To

understand the latter two statements, we need only observe that such an array forms a

sort of ‘chiral transverse Fermi liquid’ in the sense that only half of the Fermi surface

excitations can hop between wires at the lowest of energies, reminiscent of the chiral

metals studied in Refs. [[173, 174, 175]] (see Ref. [[176]] for related work). In these

works [173, 174, 175], it was found that a collection of wires, each hosting a chiral Fermi

liquid (obtained from the edge excitations of a collection of integer quantum Hall systems

layered in a transverse direction), exhibits diffusive transport transverse to the wires
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and does not localize. One important difference between these constructions and the

2D hyperconductor is the diffusive, as opposed to ballistic, finite-temperature transport

exhibited by the hyperconductor along the wires.
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Future Directions

The most interesting basic question that is important to answer is whether Perfect Metals

can exist in wires with fewer channels. Here we have some bounds already. For example,

from Theorem 2.0.8 no unimodular lattice can have minimal norm larger than 2 in less

than 10 dimensions, and larger than 4 in less than 24 dimensions. That suggests that a

12 channel wire (2× 12 = 24) may support a Perfect Metal phase in which absolutely all

interactions are irrelevant at weak coupling.

We can weaken the condition a bit and require than only mass-generating perturba-

tions are irrelevant. This translates to the condition that an operator have equal left

and right scaling dimensions (conformal spin zero). In that case 10 channels may be

enough to force one of the two sectors to have norms bigger than 2. However, the effect

of relevant spin non-zero operators in the IR is unclear and concerning. Even if they

perturbatively their couplings do not enter into the β functions of mass generating cou-

plings, we can nevertheless never be sure because they will grow strong and we won’t be

able to compute scaling dimensions in a strongly interacting theory.

A related direction of investigation is whether non-chiral edge phases can be stabi-

lized at boundaries of 2+1 topological phases. Chapter 4 is an investigation into the
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possible chiral phases. The work of Haldane[52] discusses asymmetric non-chiral phases

which cannot be simplified to a chiral theory by locking counter-propagating modes. It

effectively reduces to the inexistence of null-vectors in the indefinite integral lattice as-

sociated with the edge theory. Levin[51] considers non-chiral edges with equal numbers

of right and left-movers and only asks whether it can be gapped out in principle, with

arbitrary interactions. Both these considerations are of a topological flavor. Instead what

is unclear is whether one can construct an non-chiral edge theory (with signature (n, 1),

for example) which is dynamically stable in the sense that the mass-generating operators

(or all) are irrelevant.

We know that no integral unimodular lattices with no roots exist in less than 23-

dimensions, so we must expand the search space beyond these. The Perfect Metal con-

struction rotates the In,n hypercubic into an indefinite lattice that decomposes into two

definite integral unimodular ones. It is interesting to know whether an interesting inde-

composable lattices can be reached from In,n.

Alternatively it is important to understand whether an indefinite hypercubic lattice of

signature (n,m) can ever be transformed, through SO(n,m), into a decomposable lattice

that is made of unimodular but not integral lattices, or even non-unimodular individually

but only together.

One can observe that the rotating to Γ8 ⊕−Γ8 produces a theory in which all cosine

operators are at most marginal. That however requires fine-tuning. We investigated

whether there are infinitesimal SO(8, 8) rotations that deform the lattice so as to increase

all the scaling dimensions, but the answer is no.

While the Perfect Metals require no fine-tuning, we do not know what fraction of

the parameter space is in a PM phase. What is clear is that in the shorter Leech case

there are infinitely many choices for the W ∈ SL(46,Z) that give a PM phase, and they

generically correspond to different values of the final charge vector. As a result these
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phases are truly distinct. Since each occupies a finite volume in parameter space, it is

plausible that a significant fraction of it is in some PM phase. Note that the parameter

space is actually not compact because SO(23, 23) is not.

In the context of quantum Hall edges, the story of the ν = 2/3 edge (Ref [177]) raises

another set of interesting questions: can disorder, which will generically be there, play a

stabilizing role and drive the system into each of the allowed chiral phases.

A natural follow-up to the work of Chapter 4 is to ask whether non-Abelian 2+1

topological phases admit multiple chiral edge phases, and how to classify them. This

line of reasoning is particularly exciting because it may provide much more accessible

experimental signatures for identifying the correct bulk phase description from the many

existing.
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Appendix A

Lattices and Matrices

In this appendix, we collect formulas for the various lattice vectors and matrices we use

throughout the main text.

To fix some notation, consider the standard basis for RN ,

x̂I =

(
0 · · · 0 1 0 · · · 0

)t
, (A.1)

where the 1 appears in the I-th row for I = 1, ..., N . The root lattice ΓG of any rank N

Lie group G is defined in terms of linear combinations of the x̂I . Given a basis eI for

the lattice, we may construct the Cartan matrix or K-matrix, (KG)IJ = eaIηabe
b
J where η

is the diagonal matrix diag(1M ,−1N−M) and 1P is the P -component vector with every

entry equal to unity. The Cartan matrix summarizes the minimal data needed to specify

a Lie group. Geometrically, a diagonal entry (KG)II is equal to the length-squared of

the root I and an off-diagonal entry (KG)IJ gives the dot product between roots I and

J and so can be interpreted as being proportional to the cosine of the angle (in RN)

between the two roots. Given the inverse (K−1
G )IJ , we may define dual lattice vectors

f Ia = (K−1
G )IJηabe

b
J that satisfy f Iae

a
J = δIJ .
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A.1 ΓE8

A basis for the root lattice ΓE8 of the rank 8 group E8 is given by

eI = x̂I − x̂I+1, for I = 1, ...6,

e7 = −x̂1 − x̂2,

e8 =
1

2
(x̂1 + ...+ x̂8). (A.2)

The associated K-matrix takes the form,

KE8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 −1 0 0 0 0 2 −1

0 0 0 0 0 0 −1 2



. (A.3)

The inner product is Euclidean so ηab = δab.

A.2 ΓE8 ⊕ ΓE8

The rank 16 Lie group E8 × E8 is equal to two copies of E8. We take as our lattice

basis for ΓE8 ⊕ ΓE8 ,

eI = x̂I − x̂I+1, for I = 1, ...6,

e7 = −x̂1 − x̂2,
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e8 =
1

2
(x̂1 + ...+ x̂8),

e8+I = x̂9+I − x̂10+I, for I = 1, ..., 6,

e15 = x̂15 + x̂16,

e16 = −1

2
(x̂9 + ...+ x̂16). (A.4)

The associated K-matrix, KE8⊕E8 , takes the form,



2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2



.

The inner product is again taken to be ηab = δab.
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A.3 ΓSpin(32)/Z2

A basis for the root lattice ΓSpin(32)/Z2 of the rank 16 Lie group Spin(32)/Z2 is given

by,

ẽI = x̂I+1 − x̂I+2, for I = 1, ..., 14,

ẽ15 = x̂15 + x̂16,

ẽ16 = −1

2
(x̂1 + ...+ x̂16). (A.5)

The associated K-matrix, KSpin(32)/Z2
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

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4



.

The inner product is given by ηab = δab.

A.4 ΓE8 ⊕ ΓE8 ⊕ U

To write a basis for the ΓE8 ⊕ ΓE8 ⊕ U lattice, we must enlarge the dimension of our

previous ΓE8 ⊕ ΓE8 lattice by two. Thus, we take as our lattice basis,

eI = x̂I − x̂I+1, for I = 1, ...6,
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e7 = −x̂1 − x̂2,

e8 =
1

2
(x̂1 + ...+ x̂8),

e8+I = x̂9+I − x̂10+I, for I = 1, ..., 6,

e15 = x̂15 + x̂16,

e16 = −1

2
(x̂9 + ...+ x̂16),

e17 = 1
r
x̂17 + 1

r
x̂18,

e18 = r
2
x̂17 − r

2
x̂18. (A.6)

The associated K-matrix,KE8⊕E8⊕U , takes the form,
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

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



.

The inner product is taken with respect to ηab = (117,−1).
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A.5 ΓSpin(32)/Z2
⊕ U

We must again enlarge the dimension of ΓSpin(32)/Z2 by two in order to write a basis

for ΓSpin(32)/Z2 ⊕ U ,

ẽI = x̂I+1 − x̂I+2, for I = 1, ..., 14,

ẽ15 = x̂15 + x̂16,

ẽ16 = −1

2
(x̂1 + ...+ x̂16),

ẽ17 = −rx̂17 + rx̂18,

ẽ18 = − 1
2r

x̂17 − 1
2r

x̂18. (A.7)

The associated K-matrix,

KSpin(32)/Z2⊕U =



2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 2 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



.
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The inner product is taken with respect to ηab = (117,−1).

A.6 SO(17, 1) and SL(18,Z) Transformations

There exist two distinct even, self-dual 16-dimensional lattices, ΓE8⊕ΓE8 and ΓSpin(32)/Z2 ,

that cannot be rotated into each other via an SO(16) transformation [37]. However, if

we augment each lattice by U , we obtain a Lorentzian lattice of signature (17, 1), i.e., the

augmented lattice has the inner product ηab = diag(117,−1). Such lattices are unique up

to an SO(17, 1) rotation. Following [38], the SO(17, 1) transformation, OG, relating the

ΓE8 ⊕ ΓE8 ⊕ U and ΓSpin(32)/Z2 ⊕ U lattices is given by,



1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 1 0 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 1 0 0 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 0 1 0 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0 1
2r
− −1+r2

2r
− 1

2r
− 1+r2

2r

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 − 1
2r
− −1+r2

2r
1
2r
− 1+r2

2r
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

r
−1
r

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
r
2

r
2

r
2

r
2

r
2

r
2

r
2
− r

2
+ 1−r2

r
r − 1−r2

r
0 0 0 0 0 0 0 1

2
+

(1−r2)(−1+r2)
r2 −1

2
− r2 + 1−r2

r2

−r
2
−r
2
−r
2
−r
2
−r
2
−r
2
−r
2

r
2

+ 1+r2

r
−r − 1+r2

r
0 0 0 0 0 0 0 −1

2
+ r2 − 1+r2

r2
1
2

+
(1+r2)

2

r2



.

201



Lattices and Matrices Chapter A

OG acts on basis vectors as

Oa
G be

b
I =

∑
J

mJ
I ẽ

a
J , (A.8)

where mJ
I are a collection of integers.

Because OG lies in the component of SO(17, 1) connected to the identity transfor-

mation, we may build OG from a series of infinitesimal transformations beginning at 1.

First, we rewrite,

OG = ηW (A)ηW (A′), (A.9)

where

W (A) = exp

1

2


0 A −A

−At 0 0

−At 0 0


 , with (A.10)

A =
2

r

(
07,−1, 1, 07

)
, (A.11)

A′ = −2r

((
1

2

)8

, 08

)
. (A.12)

We then introduce the (infinitesimal) parameter s by rescaling A,A′ → sA, sA′ and

defining,

OG(s) = ηW (sA)ηW (sA′). (A.13)

(While the resulting matrix does not fit between the margins of this page, the expression

is not beautiful.)

Substituting the transformation Eq. (A.8) into the periodicity condition, Xa ≡ Xa +
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2πnIeaI , for the ΓE8 ⊕ ΓE8 ⊕ U lattice, we find:

(OG)abX
b ≡ (OG)abX

b + 2πñJ ẽaJ , (A.14)

where we have defined the integer vector ñJ =
∑

I n
ImJ

I . However, Eq. (A.14) is simply

the periodicity obeyed by X̃a. Therefore, we identify X̃a = (OG)abX
b. Having identified

Xa and X̃b through the SO(17, 1) transformation OG, we can obtain the SL(18,Z)

transformation WG that relates KSpin(32)/Z2⊕U and KE8⊕E8⊕U by conjugation. The desired

transformation is read off from the relation,

φ̃J = f̃Ja (OG)abe
b
Iφ

I =: (WG)IJφ
I , (A.15)

which follows immediately from Eq. (A.8). We find:
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WG =



−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−4 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0

−5 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0

−6 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0

−7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

−8 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 −1

−9 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 1 −1

−10 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 2 −2

−11 0 0 0 0 0 9 0 0 1 0 0 0 0 0 0 3 −3

−12 0 0 0 0 0 10 0 0 0 1 0 0 0 0 0 4 −4

−13 0 0 0 0 0 11 0 0 0 0 0 1 0 0 0 5 −5

−14 0 0 0 0 0 12 0 0 0 0 0 1 0 0 0 6 −6

−7 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 3 −3

−8 0 0 0 0 0 7 0 0 0 0 0 0 0 1 0 4 −4

−2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 −2

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 2 −2

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 −2 2



.

This matrix satisfies W T
GKSpin(32)/Z2⊕UW = KE8⊕E8⊕U .
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A.7 Relevant large matrices

Here we define matrices referred to in 4.7:

KE8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 −1 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 −1 0 0 0 0 2 −1

0 0 0 0 0 0 −1 2



(A.16)

W8 =



−5 −5 −5 5 5 5 5 5 8 16

−10 −10 −10 9 9 9 9 9 15 30

−8 −8 −8 8 7 7 7 7 12 24

−6 −6 −6 6 6 5 5 5 9 18

−4 −4 −4 4 4 4 3 3 6 12

−2 −2 −2 2 2 2 2 1 3 6

−7 −7 −6 6 6 6 6 6 10 20

−4 −3 −3 3 3 3 3 3 5 10

1 1 1 −1 −1 −1 −1 −1 −3 −4

−2 −2 −2 2 2 2 2 2 4 7



(A.17)
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KD+
12

=



2 0 1 0 0 0 0 0 0 0 0 −1

0 2 −1 0 0 0 0 0 0 0 0 0

1 −1 2 −1 0 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0

0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 0 0 −1 2 0

−1 0 0 0 0 0 0 0 0 0 0 3



(A.18)
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W12 =



11 6 6 −6 −6 −6 −6 −6 −6 −6 −6 −6 0 22

−9 −4 −5 5 5 5 5 5 5 5 5 5 0 18

−18 −9 −9 10 10 10 10 10 10 10 10 10 0 36

−16 −8 −8 8 9 9 9 9 9 9 9 9 0 32

−14 −7 −7 7 7 8 8 8 8 8 8 8 0 28

−12 −6 −6 6 6 6 7 7 7 7 7 7 0 24

−10 −5 −5 5 5 5 5 6 6 6 6 6 0 20

−8 −4 −4 4 4 4 4 4 5 5 5 5 0 16

−6 −3 −3 3 3 3 3 3 3 4 4 4 0 12

−4 −2 −2 2 2 2 2 2 2 2 3 3 0 8

−2 −1 −1 1 1 1 1 1 1 1 1 2 0 4

3 2 2 −2 −2 −2 −2 −2 −2 −2 −2 −2 0 −7

0 0 0 0 0 0 0 0 0 0 0 0 1 0

2 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −4



(A.19)
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Appendix B

Mass-Generating Operators for

bosonic IQH edge transitions

We consider spin-0 operators that take the form cos(paX
a), with pa ∈ Γ8 ⊕ Γ8 ⊕ U and

ηabpapb = 0. Even if 1
2
δabpapb > 2, which means that cos(paX

a) is irrelevant at s = 0, this

operator may become relevant at an intermediate value of s. At general s, the scaling

dimension of the operator is 1
2
δabqaqb = |q18|2, where qb = pa(O

−1
G (s))ab. In writing the

scaling dimension in terms of q18 only, we have used the fact that qb is a null vector in

R17,1 (ηabqaqb = q2
1 + ... + q2

17 − q2
18 = 0). Thus, cos(paX

a) will become relevant at s if

pa(O
−1
G (s))a18 is sufficiently Lorentz contracted so that q2

18 < 2.

If the direction of the boost O−1
G (s) happened to be along the 1-direction, then we

know that the only components of pa affected by the boost are the 1st and 18th compo-

nent; they are contracted/dilated according to:

 p1

p18

 7→
 cosh(α) − sinh(α)

− sinh(α) cosh(α)


 p1

p18

 . (B.1)
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Therefore, multiples of the eigenvectors (1,±1)T with eigenvalues exp(∓α) have compo-

nents that are maximally contracted/dilated. If the boost took the above simple form, it

would be simple to choose a vector pa whose 18th component after the boost was max-

imally contracted. This vector would determine the most relevant operator at a given

point in the (r, s) phase diagram.

Unfortunately, O−1
G (s) is defined in terms of a rather complicated combination of

rotations and boosts, and so it is not a priori obvious which spatial direction to choose

in order to maximize the possible contraction, i.e., it is difficult to know the direction

v of the boost. However, we know that we can view the O−1
G (s) transformation as:

O−1
G (s) = MTΛM , where M is a rotation that aligns v along the 1-direction and Λ is a

boost along the 1-direction. (Both of these transformations, of course, depend upon the

initially chosen r and s.) To find null vectors whose components maximally contract,

we need only consider the eigenvector of O−1
G (s) given by M tr(1, 016, 1)tr with eigenvalue

exp(−α), for some constant α depending upon r and s. For (r, s) = (3, 3/5) we find that

this maximally contracting eigenvector takes the simple (approximate) form:

pa = .3f 7
a + (.1− .6)f 8

a + .1f 16
a + f 17

a − .9f 18
a . (B.2)

While the components of this vector are maximally contracted under O−1
G (s) in the sense

discussed above, it is certainly not an element of ΓE8 ⊕ ΓE8 ⊕ U since the coefficients

are not integral. We can find a vector with very large components that is nearly parallel

to this vector, but it will be irrelevant because O−1
G (s) cannot contract it by enough at

(r, s) = (3, 3/5).

However, we can find a shorter lattice vector that is sufficiently aligned with the

maximally contracting vector, but of lower starting dimension so that we obtain a relevant
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operator at the point of interest. Indeed, if we take the ansatz:

pa = nf 7
a + (m− 2n)f 8

a +mf 16
a + n17f

17
a + n18f

18
a , (B.3)

it is straightforward to find n,m, n17 and n18 determining a relevant spin-0 operator

at (r, s). At (r, s) = (3, 3/5), we may take n = 1,m = 2, n17 = 2 and n18 = −3.

We lack a proof that this ansatz is sufficient to exclude all possible non-chiral points

in the (r, s) phase diagram. However, we have yet to find a point (r, s) for which this

ansatz is unsuccessful. Thus, we expect the non-chiral phase to be entirely removed by

this collection of operators combined with those discussed earlier. (Note, we expect the

resulting chiral phase for this operator to be Spin(32)/Z2.)
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Appendix C

Using the Gauss-Smith Normal

Form to find the Discriminant

Group

We now apply the method described in Section 4.5 to the SO(8)1 theory,which is given

by the following K matrix:

K =



2 0 1 0

0 2 −1 0

1 −1 2 −1

0 0 −1 2


(C.1)

It is not clear, simply by inspection, what vectors correspond to generators of the fusion

group.
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The Gauss-Smith normal form is

D =



1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2


(C.2)

Hence, the fusion group of the theory is Z/2× Z/2.

and the Q matrix

Q =



2 0 1 0

3 1 0 1

2 0 0 1

1 0 0 0


(C.3)

So the fusion group is generated by the two quasiparticles corresponding to (2, 0, 0, 1) and

(1, 0, 0, 0). We can then compute the S, T matrices and the result agrees with what is

known (all nontrivial quasiparticles are fermions and they have semionic mutual braiding

statistics with each other).

Another useful piece of information from the Smith normal form is that the discrim-

inant group for a 2× 2 K-matrix

K =

a b

b c

 (C.4)

with gcd(a, b, c) = 1 and d = |ac− b2| is Z/d. More generally, it is Z/f × Z/(d/f) when

gcd(a, b, c) = f .
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Appendix D

Construction of special w ∈ Λ

In this appendix we proove that a special w ∈ Λ exists such that λ · λ ≡ λ · w mod 2

for all λ ∈ Λ.

We begin by showing that for any K-matrix, there exists a set of integers wJ such

that

KII ≡
N∑
J=1

KIJwJ mod 2, for all I (D.1)

where N is the dimension of the K-matrix.

Assume the K-matrix has M ≤ N rows that are linearly independent mod 2; denote

these rows R1, ...RM and define the set R = {Ri}. The linear independence of the Ri

implies that Eq (D.1) is satisfied for these rows, i.e., there exists a set of integers (w0)J

satisfying

KII ≡
N∑
J=1

KIJ(w0)J mod 2, for all I ∈ R (D.2)

For a row I 6∈ R, the elements of the Ith row in K can be written as a linear combination

of the rows in R:

KIJ ≡
∑
Ri∈R

cIRiKRiJ mod 2, for I 6∈ B (D.3)
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where the cIRi ∈ {0, 1} are coefficients. It follows that for I 6∈ R:

KII ≡
∑
Ri∈R

cIRiKRiI ≡
∑
Ri∈R

cIRiKIRi

≡
∑

Ri,Rj∈R

cIRicIRjKRiRj ≡
∑
Ri∈R

c2
IRi
KRiRi

≡
∑
Ri∈R

cIRiKRiRi mod 2 (D.4)

Furthermore, for I 6∈ R

N∑
J=1

KIJ(w0)J ≡
N∑
J=1

∑
Ri∈R

cIRiKRiJ(w0)J

≡
∑
Ri∈R

cIRiKRiRi mod 2 (D.5)

Hence, for I 6∈ R, KII ≡
∑N

J=1KIJ(w0)J mod 2. Since this equation already holds for

I ∈ R, we have shown that w0 is a solution to Eq (D.1).

It follows that for any choice of λ = λJeJ ∈ Λ,

λ · λ =
N∑

I,J=1

λIλJKIJ ≡
N∑
I=1

λIKII

≡
N∑
I=1

λI

N∑
J=1

KIJ(w0)J ≡ λ ·w0 mod 2 (D.6)

where w0 = (w0)JeJ is a vector in Λ.
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Appendix E

Transport in hyperconductors

E.1 Static Susceptibility Matrix

The static susceptibility matrix χ̂pq = 1
L
GR
QpQq(ω = 0) where the conserved charges

Qp and Qp of the action Sb involved in the retarded Green’s function GR
QpQq are either

one of the chiral electrical currents,

JeI =
e

2π
sgn(N − I)

∫
x

VIJ∂xφJ

=
e

2π
sgn(N − I)

∫
x

VIJOJa∂xXa, (E.1)

or the Dirac momentum,

PD =− 1

4π

∫
x

sgn(N − I)∂xφI∂xφI

=− 1

4π
sgn(N − a)

∫
x

∂xXa∂xXa. (E.2)

In the above equations, x ∈ (−L,L) with the length of the system L→∞, sgn(Z) = +1

for Z ≥ 0 and sgn(Z) = −1 for Z < 0, and JeI = JeR,I for I = 1, . . . , N and JeI = JeL,N−I
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for I = N + 1, . . . , 2N with N = 23. Note that I is not summed over on the right-hand

side of Eq. (E.1). We have introduced the fields φI = OIaXa with OIa ∈ SO(23, 23) that

diagonalize the action Sb, tuned via the interaction matrix VIJ to the asymmetric Leech

liquid point,

Sb =
1

4π

∫
t,x

[
sgn(N − I)∂tφI∂xφI − VIJ∂xφI∂xφJ

]
=

1

4π

∫
t,x

[
sgn(N − a)∂tXa∂xXa − v∂xXa∂xXa

]
. (E.3)

Henceforth, we set the velocity v = 1. To isolate the leading temperature and frequency

dependence of the conductivity, we need only compute the static susceptibility with

respect to Sb.

The bosonic action Sb enjoys the particle-hole symmetry φI → −φI , Xa → −Xa.

Thus, the retarded Green’s functions GR
JeIPD

= 0 when computed with respect to Sb and

so we focus upon the JeI −JeJ or PD−PD static susceptibilities. Scattering interactions at

incommensurate fillings, interactions mediated by disorder, and higher-derivative band

structure corrections to Sb generally break particle-hole symmetry and, thus, induce a

non-zero overlap between the electrical currents and the momentum. We ignore such

overlaps as they contribute higher-order corrections to the conductivity than that to

which we choose to work. At commensurate fillings and in the absence of higher-derivative

corrections, particle-hole symmetry is preserved.

To compute the retarded correlator, we exploit the relation GR
QpQq(ω) = GE

QpQp(iωE →

ω + iδ) with the infinitesimal δ > 0 between the retarded Green’s function and the

Euclidean Green’s function at Euclidean frequency ωE. The frequency ω of the retarded

correlator has been analytically continued to the upper-half plane. We shall often simply

set δ = 0 without mention. Thus, the static susceptibility χ̂pq = 1
L
GE
QpQp(ωE = 0).
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We begin with the JeI − JeJ components of the static susceptibility,

χ̂JeI JeJ ≡
1

L
lim
ωE→0

∫
τ

eiωEτ
〈
JeI (τ)JeJ(0)

〉
=
e2Mab

IJ

4π2L
lim
ωE→0

∫
τ,x,y

eiωEτ
〈
X ′a(τ, x)X ′b(0, y)

〉
,

(E.4)

where X ′(τ, x) ≡ ∂xX(τ, x),

Mab
IJ =sgn(N − I)sgn(N − J)VIKVJLOKaOLb

=sgn(N − I)sgn(N − J)(O−1)aI(O
−1)bJ , (E.5)

the Euclidean time τ ∈ [0, 1/T ] and the brackets denote the thermal average at temper-

ature T . In simplifying Eq. (E.5), we have made use of the identity OIaVIJOJb = δab.

Because Sb is diagonal when expressed in terms of the Xa fields, the only non-zero cor-

relators in Eq. (E.4) occur when a = b and we obtain the well-known result,[163]

〈X ′a(τ, x)X ′b(0, 0)〉 =− δab
( πT

sinh
(
πT (x− sgnaiτ)

))2

, (E.6)

where we have used the short-hand, sgna = sgn(N−a). It will be convenient to calculate

a slightly more general Fourier transform than Eq. (E.4) by replacing the exponent in

Eq. (E.6), 2→ 2h with h assumed to be half-integral. Thus, we consider
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1

L

∫
τ,x,y

eiωEτ
( πT

sinh
(
πT (x− y − sgnaiτ)

))2h

(E.7)

=− (πT )2h

2L

∫
x+,x−,τ

eiωEτ
1(

sinh
(
πT (x− − sgnaiτ)

)2h

=− π2h(2T )2h−1

∫
x−

esgna2πTx−
1

2πi

∮
|ζ|=1

ζ
ωEτ

2πT
+h−1

(ζ − esgna2πTx−)2h

=− T 2h−1

2ωE

(2π)2h

(2h− 1)!

2h−1∏
i=1

( ωE
2πT

+ h− i
)
.

In the first line, we made the change of variables, x± = x ± y and then integrated

over x+; in the second line, we made the change of variable ζ = exp(2πT iτ), performed

the contour integration about the circle |ζ| = 1, and then integrated over x−. Thus, we

find for the current-current static susceptibility:

χ̂JeI JeJ =
e2

4π

2N∑
a=1

Maa
IJ

=
e2

4π
sgn(N − I)sgn(N − J)VIJ , (E.8)

where I, J are not summed over and we used the relation (O−1)T .(O−1) = V .
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Following an analogous procedure, we now calculate the PD−PD static susceptibility,

χ̂PDPD ≡
1

L
lim
ωE→0

∫
τ

eiωEτ
〈
PD(τ)PD(0)

〉
=

2

16π2L
sgn(N − a)sgn(N − b)

×
∫
τ,x,y

eiωEτ
〈
X ′a(τ, x)X ′b(0, y)

〉2

=
1

8π2L

∫
τ,x,y

eiωEτ
〈
X ′a(τ, x)X ′a(0, y)

〉2

,

(E.9)

where we used Wick’s theorem in going from the first to the second line and the fact that

the only non-zero correlators occur when a = b in going from the second to the third

line. We may now borrow the general result in Eq. (E.7) by setting h = 2 to conclude:

χ̂PDPD =
Nπ2T 2

6
. (E.10)

E.2 Memory Matrix Elements

Recall the definition of the memory matrix reviewed Sec. 6.3.3 which we repeat here

for convenience. The memory matrix M̂(ω) (the temperature dependence is left implicit)

is defined as follows:

M̂(ω) =
∑
α

(
λ2
αM̂u

α(ω) + (λdis
α )2DM̂dis

α (ω)
)
, (E.11)

(M̂u)pqα =
1

L

〈F u
p,α;F u

q,α〉ω − 〈F u
p,α;F u

q,α〉ω=0

iω
, (E.12)

(M̂dis)pqα =
1

L

〈F dis
p,α;F dis

q,α〉ω − 〈F dis
p,α;F dis

q,α〉ω=0

iω
. (E.13)
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Here, F u
q,α = i

λα
[Hu

α,Qq], F dis
q,α = i

λdis
α

√
D

[
Hdis
α ,Qq

]
, and Qq is a conserved charge (ei-

ther JeR/L,I or PD). 〈F u
p,α;F u

q,α〉ω and 〈F dis
p,α;F dis

q,α〉ω are retarded finite-temperature Green’s

functions evaluated using Sb. λα and λdis
α parameterize the umklapp scattering and cou-

pling to disorder, respectively, and D is the disorder variance of the Gaussian-correlated

disorder, ξα(x) = 0, ξα(x)ξ∗β(y) = Dδαβδ(x − y). For simplicity, we take λα = λ and

λdis
α = λdis for all α. M̂u contains the contributions to the memory matrix from umklapp

scattering, while M̂dis contains the contributions from the disorder-mediated interaction.

We stress that the form of the memory matrix given above is correct to leading order in

the scattering interaction. See Refs. [[168, 169, 158, 170, 171]] for further discussion.

E.2.1 Evaluation of the F u,dis
p,α

To compute the F u,dis
p,α commutators, we make use of the equal-time commutators:

[
eim

(α)
J φJ (x),

φ′I(y)

2π

]
= m

(α)
I sgnIδ(x− y)eim

(α)
J φJ (x). (E.14)

We find for the commutators F u
p,α of the Qp with the umklapp scattering operators:

F u
JeI ,α

= −2e sgn(N − I)sgn(N − J)VIJm
(α)
J

×
∫
x

1

a2
sin
(

∆kαx+m
(α)
K φK

)
, (E.15)

F u
PD,α

= 2∆kα

∫
x

1

a2
sin
(

∆kαx+m
(α)
K φK

)
,

(E.16)

where the momentum mismatch ∆kα ≡
∑

I m
(α)
I kF − p(α)G, G is a basis vector for the

reciprocal lattice, and we have taken the Fermi momenta in all channels to be equal.

Recall that a is a short-distance cutoff. We see that the Dirac momentum PD commutes
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with the umklapp operators when ∆kα = 0, i.e., when the translation symmetry of

the low-energy effective theory is preserved. The result for [Hu
α, PD] is found using the

integration by parts,

∫
x

ei∆kαx
m

(α)
K

2
{φ′K , eim

(α)
L φL} ≡ −i

∫
x

ei∆kαx∂xe
im

(α)
L φL

= −∆kα

∫
x

ei∆kαx+im
(α)
L φL , (E.17)

where we have dropped the boundary term and have defined the derivative operator on

the right-hand side of the first line via a symmetric ordering prescription: ∂x exp(im
(α)
I φI) ≡

i
2
m

(α)
J

(
∂xφJ exp(im

(α)
I φI) + exp(im

(α)
I φI)∂xφJ

)
.

The commutators F dis
p,α of theQp with the disorder-mediated interactions are computed

in a similar fashion:

F dis
JeI ,α

=
ie√
D

sgn(N − I)sgn(N − J)VIJm
(α)
J

×
∫
x

[
ξα(x)

1

a2
eim

(α)
K φK − h.c.

]
, (E.18)

F dis
PD,α

= − 1√
D
v2

∫
x

[(
∂xξα(x)

) 1

a2
eim

(α)
K φK + h.c.

]
.

(E.19)

We see that the umklapp commutators in Eqs. (E.15, E.16) may be obtained from the

disorder commutators in Eqs. (E.18, E.19) by substituting ξα(x) = exp(i∆kαx).

E.2.2 Evaluation of the (M̂u)pqα

We begin with the evaluation of the retarded two-point correlation functions 〈F u
p,α;F u

q,β〉ω.

To leading order in the umklapp (and disorder) perturbations, these correlators are only

non-zero when α = β because of the linear independence of the m
(α)
I so we set α = β in
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the remainder. Also, notice that 〈F u
p,α;F dis

q,β〉ω = 0 because the disorder we study has zero

mean, ξα(x) = 0. We simplify the following expressions by introducing the coefficients:

UJeI ,α =− 2esgn(N − I)sgn(N − J)VIJm
(α)
J ,

UPD,α =2v2∆kα. (E.20)

We see that UPD,α = 0 for commensurate fillings when ∆kα = 0 because translation

invariance in the low-energy effective theory Slin (interpreted as Dirac fermions created

about zero-momentum) is preserved, resulting in divergent thermal conductivity.

Just as in Appendix E.1, we compute the retarded correlators by Fourier transform-

ing the Euclidean real-space correlation functions and then analytically continuing the

Matsubara frequencies ωE to real frequencies ω by way of the formula, GR
Fu
p,αF

u
q,α

(ω) =

GE
Fu
p,αF

u
q,α

(iωE → ω + iδ) ≡ 〈F u
p,α;F u

q,α〉ωE→−iω+δ.

Thus, the Fourier transformed Euclidean correlation functions take the form:

1

L
〈F u

p,α;F u
q,α〉ωE

=
Up,αUq,α

L

1

a4

∫
x,y,τ

eiωEτ
〈

sin
(

∆kαx+m
(α)
K φK(τ, x)

)
sin
(

∆kαy +m
(α)
L φL(0, y)

)〉
=
Up,αUq,α

4L

∫
x,y,τ

eiωEτ
[
ei∆kα(x−y)

〈eim(α)
K φK(τ,x)

a2

e−im
(α)
L φL(0,y)

a2

〉
+e−i∆kα(x−y)

〈e−im(α)
K φK(τ,x)

a2

eim
(α)
L φL(0,y)

a2

〉]
=
Up,αUq,α

2L

∫
x,y,τ

eiωEτ cos
(

∆kα(x− y)
) (πT )4

sinh3
(
πT ((x− y)− iτ)

)
sinh

(
πT ((x− y) + iτ)

) ,
(E.21)

where x, y ∈ (−L,L) with L → ∞ and τ ∈ [0, 1/T ]. The first equality follows from
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direct substitution of Eqs. (E.15, E.16); for the second equality, we have only retained the

non-zero terms in the product; for the third equality, we have used the standard thermal

real-space Euclidean two-point function of a dimension (∆R,∆L) = (3/2, 1/2) vertex

operator 1
α2 exp(im

(α)
J φJ).[163] It is a great simplification of the calculation that all vertex

operators considered have the same scaling dimension. If only a fraction of the operators

necessary to relax the currents had dimension (3/2, 1/2) and the remaining operators

were of higher dimension, it would be straightforward to calculate their effects by methods

similar to those presented here. These operators would give subleading contributions to

the memory matrix leading to slower relaxation of some conserved currents. As a result

these operators would give the dominant contributions to the matrix of conductivities.

Similar to Appendix E.1, we evaluate Eq. (E.21) by first making the change of

variables x± = x± y and ξ = e2πiTτ . We assume a short-distance cutoff 0 < a < |x− y|.

The integral over x+ factors out, canceling the 1/L prefactor, and we are left with the

following integral to evaluate:

1

L
〈F u

p,α;F u
q,α〉ωE

=− 4π4T 3Up,αUq,α

∫
x−

e−2πTx− cos(∆kαx−)
1

2πi

∮
|ζ|=1

ζ
ωE
2πT

+1

(ζ − e−2πTx−)3(ζ − e2πTx−)

=
π2TUp,αUq,α

4

×
∫ ∞
a

dx−
e−ωEx− cos(∆kαx−)

sinh3(2πTx−)

[
4π2T 2 + ω2

E sinh2(2πTx−) + πTωE sinh(4πTx−)
]
.

(E.22)

Next, we Wick rotate, ωE → −iω + δ, Eq. (E.22) to obtain the retarded Green’s

function,
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1

L
〈F u

p,α;F u
q,α〉ω

=
π2TUp,αUq,α

4

∫ ∞
a

dx−
e−δx−+iωx− cos(∆kαx−)

sinh3(2πTx−)

×
[
4π2T 2 + (−iω + δ)2 sinh2(2πTx−) + πT (−iω + δ) sinh(4πTx−)

]
. (E.23)

The remaining integral in Eq. (E.22) can be evaluated exactly to obtain the memory

matrix elements (M̂u)pqα defined in Eq. (E.12). The exact expression is rather compli-

cated and so we shall examine it in various low-frequency and low-temperature limits

for both commensurate and incommensurate fillings. To study the low-frequency and

low-temperature behavior of (M̂u)pqα , we first perform two expansions. First, we expand

the result as the short-distance cutoff a → 0, keeping only the singular and finite non-

zero terms. Any a → 0 singularities are a reflection of the short-distance divergences

of the correlation function. Second, we expand to linear order in δ, however, we find

it sufficient to study the resulting expression at δ = 0 as the real part of the memory

matrix is generally non-zero at finite ω and finite T .

Commensurate Fillings

For commensurate fillings we set ∆kα = 0. For ω/T � 1, the expression for the

memory matrix element at commensurate fillings has the following behavior,

(M̂u)pqα

(ω
T
� 1

)
= Up,αUq,α

[π4

32
T + i

πω

16
log(a1T )

]
, (E.24)

where we have dropped all O(δ) terms and absorbed all constants via a redefinition of

the cutoff a→ a1. We shall make these multiplicative redefinitions of the short-distance

cutoff a→ ai in each of the following expressions. In the opposite regime when T/ω � 1,
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we find the following expression for the memory matrix elements at commensurate filling,

(M̂u)pqα

(T
ω
� 1

)
= Up,αUq,α

[π2

32
ω + i

π

16
ω log(a2ω)

]
, (E.25)

where a1 6= a2.

Incommensurate Fillings

When the filling is incommensurate, ∆kα 6= 0. We shall study the memory matrix

for frequencies and temperatures ω, T � ∆kα.

For ω/T � 1, the expression for the memory matrix elements at incommensurate

fillings have the following behavior,

(M̂u)pqα

(ω
T
� 1

)
=Up,αUq,α

[π2

32

((∆kα)2

T
+ 4π2T

)
e−

∆kα
2T

+i
πω

16
log(a3∆kα)

]
, (E.26)

where we have only retained the leading term present for T → 0. Precisely at T = 0

(but first ω → 0), the real part of the (M̂u)pqα

(
ω
T
� 1

)
vanishes when ∆kα 6= 0 and we

obtain a purely imaginary memory matrix which implies a finite Drude weight. When

T/ω � 1, the incommensurate memory matrix takes the form,

(M̂u)pqα

(T
ω
� 1

)
=Up,αUq,α

[π2

16

((∆kα)2

ω
+ ω

)
e
ω−∆kα

2T

+
iπ

32

(
ω log

(
a2

4((∆kα)2 − ω2)
)

+
(∆kα)2

ω
log
(

1− ω2

(∆kα)2

))]
. (E.27)

While we have studied the memory matrix for incommensurate fillings in the limit

ω, T � ∆kα, we have checked that the initial expression obtained before taking the

225



Transport in hyperconductors Chapter E

low-frequency or low-temperature limits reverts to the commensurate values by taking

∆kα = 0.

E.2.3 Evaluation of the (M̂dis)pqα

Because the same vertex operators are used in both the umklapp and disorder-

mediated interactions, the calculation of the disorder memory matrix elements (M̂dis)pqα

will be very similar to that of the previous section. We begin with the evaluation of

the retarded two-point correlation functions 〈F dis
p,α;F dis

q,α〉ω which we determine by analyt-

ically continuing the Euclidean correlator 〈F dis
p,α;F dis

q,α〉ωE . We again simplify the ensuing

expressions by introducing the coefficients,

ŨJeI ,α =i e sgn(N − I)sgn(N − J)VIJm
(α)
J ,

ŨPD,α =− v2, (E.28)

that occur in the disorder commutators in Eqs. (E.18,E.19).

Unlike the correlators of the commutators involved in the umklapp calculation, we

need to examine each of 〈F dis
JeI ,α

;F dis
JeJ ,α
〉ωE , 〈F dis

JeI ,α
;F dis

PD,α
〉ωE , and 〈F dis

PD,α
;F dis

PD,α
〉ωE in turn.

First consider:

1

L
〈F dis

JeI ,α
;F dis

JeJ ,α
〉ωE=iω+δ

= −
(πT )4ŨJeI ,αŨJeJ ,α

LD

∫
x,y,τ

eiωEτ
ξα(x)ξ∗α(y) + ξ∗α(x)ξα(y)

sinh3
(
πT ((x− y)− iτ)

)
sinh

(
πT ((x− y) + iτ)

)
=
π2T ŨJeI ,αŨJeJ ,α

4LD

∫
x+

∫ ∞
a

dx−
e(−δ+iω)x−

sinh3(2πTx−)

[
ξα(x)ξ∗α(y) + ξ∗α(x)ξα(y)

]
×
[
4π2T 2 + (−iω + δ)2 sinh2(2πTx−) + πT (−iω + δ) sinh(4πTx−)

]
, (E.29)
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where x± = x± y and we have performed identical manipulations to those explained

in the previous section to evaluate Eqs. (E.21), (E.22), and (E.23).

To explicitly evaluate the integrals over x+ and x− in Eq. (E.29), we must choose

a form for the functions ξα(x) parameterizing the disorder. As we have discussed, we

have chosen to consider zero-mean Gaussian-correlated disorder, ξ(x) = 0, ξα(x)ξ∗α(y) =

Dδ(x − y). To make contact with the pure system calculation of umklapp scattering

at incommensurate fillings, we comment that this form of the disorder may be obtained

by choosing a disorder potential, ξα(x) =
∫

∆pα
ξ̃(∆pα)ei∆pαx with ξ̃(∆pα) = 1. We see

that incommensurate fillings can be understood as a particular disorder realization with

ξ̃(∆pα) = δ(∆pα −∆kα).

Before integrating over x+ and x− in Eq. (E.29), we first disorder average. This allows

us to again factor out the x+ integral to cancel the 1/L prefactor and also to replace the

product of disorder potentials ξα(x) inside the first brackets by 2Dδ(x − y), where the

δ(x− y) is understood to evaluate all terms containing x− = a, the short-distance cutoff.

We find:

1

L
〈F dis

JeI ,α
;F dis

JeJ ,α
〉ω

=
π2T ŨJeI ,αŨJeJ ,α

2

e(−δ+iω)a

sinh3(2πTa)

×
[
4π2T 2 + (−iω + δ)2 sinh2(2πTa) + πT (−iω + δ) sinh(4πTa)

]
.(E.30)

Next, consider 1
L
〈F dis

JeI ,α
;F dis

PD,α
〉ω. The calculation of this correlator is identical to

the previous one except that the overall coefficient now involves the ŨJeI ,αŨPD,α and the
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product of disorder potentials in the first line of Eq. (E.29) is replaced:

ξα(x)ξ∗α(y) + ξ∗α(x)ξα(y)→ξα(x)∂yξ
∗
α(y)− ξ∗α(x)∂yξα(y)

=∂y

(
ξα(x)ξ∗α(y)− ξ∗α(x)ξα(y)

)
. (E.31)

Upon disorder averaging, the term in the parentheses in Eq. (E.31) vanishes. Thus, we

find:

1

L
〈F dis

JeI ,α
;F dis

PD,α
〉ω = 0. (E.32)

There is no overlap to leading order in the disorder-variance D between the electrical

and thermal currents.

Finally, we evaluate 1
L
〈F dis

PD,α
;F dis

PD,α
〉ω by replacing in Eq. (E.29):

ŨJeI ,αŨJeJ ,α →ŨPD,αŨPD,α,

ξα(x)ξ∗α(y) + ξ∗α(x)ξα(y)→∂xξα(x)∂yξ
∗
α(y) + h.c.

(E.33)

Disorder averaging, performing the integration by parts with respect to ∂x/y = ∂x+±∂x− ,

discarding all boundary terms, and evaluating x− = a, we find:

1

L
〈F dis

PD,α
;F dis

PD,α
〉ω =

π2TŨPDŨPD
2

∂x−∂x−

[ e(−δ+iω)x−

sinh3(2πTx−)

[
4π2T 2 + (−iω + δ)2 sinh2(2πTx−)

+πT (−iω + δ) sinh(4πTx−)
]]∣∣∣

x−=a

(E.34)
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Equipped with the above correlation functions, we may now evaluate the memory

matrix elements (M̂dis)
JeI J

e
I

α and (M̂dis)PDPDα . As before, we determine these memory

matrix elements by expanding about the limit a→ 0 and subsequently expanding about

δ = 0. It is sufficient to set δ = 0. In summary, we find:

(M̂dis)
JeI J

e
I

α =ŨJeI ,αŨJeJ ,α

[2π3

3
T 2 +

π

6
ω2 − i3π

24

ω

a

]
, (E.35)

(M̂dis)
JeIPD
α =0, (E.36)

(M̂dis)PDPDα =ŨPD,αŨPD,α

[8π5

5
T 4 +

2π3

3
T 2ω2 +

π

15
ω4 + i

π

15

ω

a3

]
. (E.37)

We notice that the logarithmic singularities that occurred in the umklapp memory

matrix elements for a = 0 are replaced by power-law singularities. Such singularities

reflect the short-distance divergences as correlation function insertion points become

coincident. They only occur in the imaginary part of the memory matrix elements at

finite frequencies. Our prescription is to remove such power-law divergences by hand and

concentrate on the real parts of the memory matrix elements that determine the long-

wavelength response of the system. This prescription leads to agreement with related

computations[178, 179] studying the tunneling conductance between quantum wires at a

single point contact.
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E.3 N̂ Matrix

In this appendix, we show that N̂ = 0 to quadratic order in the umklapp λ and

disorder λdis couplings using rather general considerations. Recall the definition:

(N̂)pq ≡ χ̂pq̇ =
(
Qp, i[

∑
α

(Hu
α +Hdis

α ),Qq])
)
. (E.38)

E.3.1 Umklapp Contributions

First, consider the contribution to N̂ from umklapp processes Hu
α. Observe that

i[Hu
α,Qq] = λF u

q,α and i[Hdis
α ,Qq] =

√
Dλdis, where Qq ∈ {JeI , PD}, so that by using the

definition of the static susceptibility and conventions in Appendix E.1:

(N̂)pq =
λ

L
lim
ωE→0

∫
τ

eiωEτ 〈Qp(τ)F u
q,α(0)〉, (E.39)

and likewise for the disorder contribution studied momentarily where the bracket denotes

the Euclidean correlation function at temperature T . At leading order in λ, the above

two-point function 〈Qp(τ)F u
q,α(0)〉 vanishes when computed with respect to Sb; more

specifically, 〈∂xφI(τ, x)eim
(α)
J φJ (0,y)〉 = 0 and 〈∂xφI(τ, x)∂xφI(τ, x)eim

(α)
J φJ (0,y)〉 = 0 when

computed with respect to Sb. At quadratic order, λ2, there is the correction,

δ(N̂)pq =
λ2

L
lim
ωE→0

∫
τ,τ ′,z

eiωEτ 〈Qp(τ)F u
q,α(0)Hu

α(τ ′, z)〉. (E.40)

The above correlation function, computed with respect to Sb factorizes, into the sum of

two three-point functions:
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λ2

L

∫
τ,τ ′,z

eiωEτ 〈Qp(τ)F u
q,α(0)Hu

α(τ ′, z)〉

∝iλ
2(πT )5

L

∫
τ,τ ′,x,y,z

eiωEτ
[C1e

−i∆kαXzy − C2e
i∆kαXzy

sinh
(
πT (Xzy + iτ ′)

) ]
× 1

sinhh
(
πT (Xxy − iτ)

)
sinhh

(
πT (Xxz − iτ + iτ ′)

)
sinh3−h

(
πT (Xzy − iτ ′)

) ,
(E.41)

for constants C1 = (−1)hC2 (whose precise magnitude will not be required) equal

to the operator product coefficients for the fusion, Qp exp(im
(α)
I φI) ∼ exp(im

(α)
I φI), and

h = 1 when Qp = JeI and h = 2 when Qp = PD. Above, we have introduced the

“difference coordinates” Xxy = x − y,Xxz = x − z,Xzy = z − y. At ωE = 0, we notice

that the integrand is odd under the reflection of all spatial and temporal coordinates

followed by the shifts, τ, τ ′ → τ −1/T, τ ′−1/T . Therefore, the integral is zero at ωE = 0

and the quadratic contribution to N̂ from umklapp processes vanishes.

E.3.2 Disorder Contributions

Next, consider the contributions to N̂ from disorder-mediated processes Hdis
α . The

term linear in λdis again vanishes for the same reason as before. At quadratic order, we

consider Eq. (E.40) with the superscript u replaced by dis. The form of the resulting

three-point function is very similar to that which appears in Eq. (E.41). The difference is

due to the disorder ξα appearing in the disorder commutators Eqs. (E.18, E.19) and Hdis
α .

For F dis
q,α = F dis

JeI ,α
, we disorder average and insert δ(y − z) into integrand in Eq. (E.41)

at ωE = 0: when Qp = JeI , the three-point function vanishes using the above reflection

and translation argument; when Qp = PD, the three-point function vanishes identically
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after setting y = z and using C1 = C2 for h = 2. For F dis
q,α = F dis

PD,I
, we disorder average,

replace the relative minus sign between C1 and C2 by (+1), and insert ∂yδ(y−z) into the

integrand in Eq. (E.41): when Qp = JeI , the integrand vanishes identically similar to PD

before; when Qp = PD, we may again apply the reflection and translation argument to

conclude that the integral vanishes at ωE = 0. Thus, we may safely ignore the N̂ matrix

in our transport calculations.

E.4 Exact Marginality Along the ‘Decoupled Sur-

face’

In this Appendix, we argue perturbatively for the exact marginality, along the de-

coupled surface, of the dimension (∆R,∆L) = (3/2, 1/2) operators used to relax the

electrical and thermal currents. Our argument strictly applies in the scaling limit in

which only classically marginal and relevant interactions are retained in the low-energy

effective theory with irrelevant interactions being set to zero.

Recall from Sec. 6.2 that the decoupled surface is a subspace within the hyperconduc-

tor phase in which the interaction matrix ṼIJ is block diagonal. The scaling dimensions

of operators are independent of ṼIJ when the theory lies on the decoupled surface; how-

ever, scaling dimensions vary continuously with ṼIJ upon departing from the decoupled

surface.

We consider the collection of operators Oα = cos
(
m

(α)
I φI

)
with scaling dimension

equal to (3/2, 1/2) along the decoupled surface whose coupling constants we denote by

gα . These operators are exactly marginal if their beta function βgα vanishes to all orders
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in the couplings of the theory,

ġα = βgα , (E.42)

where the dot denotes a variation of the coupling with respect to the renormalization

group scale. We will understand the contributions to βgα as arising from corrections to

scaling (i.e., conformal perturbation theory) of the zero-temperature two-point function,

〈Oα(z, z̄)Oα(0)〉 ∼ z−1z̄−3, (E.43)

for z = x + iτ, z̄ = x − iτ computed with respect to the fixed point action Sb in Eq.

(6.4).[163]

First, observe that Oα has unit spin, ∆R − ∆L, under the SO(2) = U(1) rotation

symmetry of the Euclidean theory. When the action is perturbed, Sb → Sb + gα
∫
Oα,

the SO(2) symmetry is broken. We may view gα as a spurion – a “field” that transforms

oppositely to the operator it multiplies so that the product is an SO(2) singlet – of this

broken rotational symmetry. This means that gα may be understood to have spin-(-1).

With this understanding, we may constrain the form of βgα .

The left-hand side of Eq. (E.42) is linear in gα and so the equality implies that βgα also

carries spin-(-1). Thus, we must determine what spin-1 combination of operators could

possibly contribute to βgα .[164] Working in the scaling limit where all irrelevant operators

are ignored allows us to disregard any contribution from high-dimension operators with

negative spin. There are no marginal spin-(-1) operators because the lowest scaling

dimension of a right-moving vertex operator is equal to 3/2. There do exist spin-(-1)

relevant and spin-(-2) marginal operators which are quadratic and quartic in the fermions

of the left-moving sector along with marginal spin-0, i.e., dimension (1, 1) operators, and
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spin-2 operators in addition to the marginal Oα operators. Perturbations by spin-(-1)

operators can be absorbed by a field redefinition of the left-moving fermion sector and

so we ignore such deformations.

A general contribution to the Oα two-point function contains N−2 spin-(-2) insertions,

N0 spin-0 insertions, N2 spin-2 insertions, and NOβ Oβ insertions. Note that we are

collectively referring to all additional insertions of the Oβ operators as NOβ . In order for

βOα to carry spin equal to -1, we require the number of insertions of various operators to

satisfy:

2N−2 −NOβ − 2N2 = −1. (E.44)

Thus, NOβ should be odd.

All operators in the left-moving sector can be built from products of the fermion

operators and their spatial derivatives. Since the left-moving sector is describable in

terms of interacting chiral fermions, fermion parity constrains any non-zero contribution

to the Oα two-point function to contain an even number of left-moving fermion operators:

4N−2 +NOβ + 2N2 + 2N0 ∈ 2Z. (E.45)

The first contribution to the left-hand side of Eq. (E.45) assumes an operator quartic in

the fermion operators. An operator that is only quadratic with a single spatial derivative

acting on one of the fermions might also contribute. However, this has no effect on the

conclusion that the parity of the left-hand side must be even.

Eq. (E.45) is not consistent with Eq. (E.44) as the former requires NOβ to even. The

only resolution is that the Oα operators are exactly marginal in the scaling limit and so

βgα = 0. There is likewise no renormalization of the Luttinger liquid parameters of Sb
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due to the spin-1 Oα operators.

Exact marginality of the dimension (3/2, 1/2) operators and the Luttinger param-

eters along the decoupled surface is a consequence of the chirality or spin-1 nature of

the Oα operators which is ultimately due to the asymmetric nature of the left-moving

and right-moving excitations in the asymmetric shorter Leech liquid underlying the hy-

perconductor studied in this chapter. The de-coupled renormalization group equations

described above should be contrasted with those of the Kosterlitz-Thouless transition

that involve a dimension (1, 1) vertex operator and the Luttinger parameter.[169] It is

this difference that results in the logarithmic corrections to scaling in the expressions for

the conductivities in the work of Giamarchi on transport in a 1D Luttinger liquid.[155]
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