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Abstract

The relationships between the levels of transcripts and the levels of the proteins they encode have not been examined
comprehensively in mammals, although previous work in plants and yeast suggest a surprisingly modest correlation. We
have examined this issue using a genetic approach in which natural variations were used to perturb both transcript levels
and protein levels among inbred strains of mice. We quantified over 5,000 peptides and over 22,000 transcripts in livers of
97 inbred and recombinant inbred strains and focused on the 7,185 most heritable transcripts and 486 most reliable
proteins. The transcript levels were quantified by microarray analysis in three replicates and the proteins were quantified by
Liquid Chromatography–Mass Spectrometry using O(18)-reference-based isotope labeling approach. We show that the
levels of transcripts and proteins correlate significantly for only about half of the genes tested, with an average correlation
of 0.27, and the correlations of transcripts and proteins varied depending on the cellular location and biological function of
the gene. We examined technical and biological factors that could contribute to the modest correlation. For example,
differential splicing clearly affects the analyses for certain genes; but, based on deep sequencing, this does not substantially
contribute to the overall estimate of the correlation. We also employed genome-wide association analyses to map loci
controlling both transcript and protein levels. Surprisingly, little overlap was observed between the protein- and transcript-
mapped loci. We have typed numerous clinically relevant traits among the strains, including adiposity, lipoprotein levels,
and tissue parameters. Using correlation analysis, we found that a low number of clinical trait relationships are preserved
between the protein and mRNA gene products and that the majority of such relationships are specific to either the protein
levels or transcript levels. Surprisingly, transcript levels were more strongly correlated with clinical traits than protein levels.
In light of the widespread use of high-throughput technologies in both clinical and basic research, the results presented
have practical as well as basic implications.
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Introduction

An underlying assumption in many biological studies is the

concordance of transcript and protein levels during the flow of

information from DNA to phenotype. Clearly, protein levels are

greatly influenced by post-translational processing and inherent

variations in stability but, in general, it is assumed that

perturbations of transcript levels are substantially correlated with
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protein levels. The extent to which this occurs, however, remains

poorly understood and understanding the relationships across

scales, from DNA to phenotype, has both practical and basic

implications. For example, ‘‘genetical genomics’’ studies examine

transcript levels as a function of genetic variation and use this

information to construct models, such as interaction networks, to

explain complex phenotypes [1–8]. Systems based approaches, in

particular, have relied heavily on transcriptome data [9].

Concordance of protein and transcript levels has been studied in

yeast and plants. A recent comparative study in a yeast segregating

population showed that there is a significant but modest

correlation between transcript and protein levels [10]. Moreover,

this report also found that, in general, loci that influence protein

abundance are different from those affecting transcript abun-

dance. A similar comparative analysis of molecular phenotype

mapping in Arabidopsis [11] was reported subsequently. In this

report the authors investigated the commonality of hotspot loci

(defined as loci affecting a large number of traits within each

biological class) across various biological scales and observed a

general theme consistent with the phenotypic buffering of

perturbations affecting molecular phenotypes as one looks to

scales further away from the DNA variation (e.g. proteome vs

transcriptome). Both of these reports emphasize the value gained

from bringing together information from various biological scales,

as each dataset will add new information to the phenotypic effect

of DNA variation.

We now report global analysis of transcript-protein relationships

in mice using a genetic approach involving thousands of naturally

occurring perturbations. For this, we have utilized a recently

developed panel of permanent inbred strains of mice, termed the

Hybrid Mouse Diversity Panel (HMDP), that allows high

resolution mapping of complex traits [12]. We chose to examine

protein and transcript levels in liver given the importance of the

organ in metabolic traits relevant to disease.

Results

Study design
The experimental design of our study is depicted in Figure 1. To

study the relationship between transcript and protein levels

globally, we examined 97 inbred strains of mice of the HMDP

representing a wide range of genetic diversity, including

,11,000,000 single nucleotide polymorphisms as well as copy

number variations [13,14]. As we have shown previously, this

population includes thousands of expression quantitative trait loci

(eQTL) that can be mapped in the population using association

analysis with correction for population structure using a mixed

model algorithm [12]. The resolution achieved in this way is, on

average, one to two orders of magnitude narrower than that using

linkage analysis [12]. Livers from the 97 strains were quantitatively

analyzed for global transcript levels using the Affymetrix HT-MG-

430A platform and for protein levels using LC-MS employing

AMT tag approach for identification and 16O/18O labeling for

quantification [12,15]. In the latter, each individually processed

and unlabeled sample is spiked with the 18O labeled ‘‘universal’’

reference pool (i.e. the pool made from mixing together the same

amount of isolated proteins from all samples) providing an internal

standard for accurate measurement of protein abundance across

biological samples. This dual-quantification, which combines the

label-free and isotope labeling techniques, has been shown to be

significantly superior over label-free methods in terms of

quantification precision [15] and offers a simple, robust, and a

more precise alternative to other proteomic techniques for

studying variations in protein levels across large biological samples.

In the LC-MS dataset, we also included 10 technical replicates

from the C57BL/6J strain to measure the reproducibility of the

sample preparation and technology which we describe in detail

below.

Peptide and microarray data quantification and quality
One technical issue for proteomic analysis relates to how

peptides with non-synonymous coding SNPs would present

themselves in the correlation and association analyses. In order

to annotate peptides detected by the tandem LC- MS/MS

fragmentation patterns, the mass spectra are matched against a

pre-established known reference database. In our case this

database, which was built from the pool of all the inbred strains

in the HMDP panel, was created by annotating the peptides

against the reference sequence (C57BL/6J strain) followed by

filtering out those peptides which have non-synonymous coding

SNPs documented in public database for any of the HMDP

strains. As a result of this preprocessing step, the peptides identified

by LC-MS were limited to those that did not contain known non-

synonymous SNPs in their amino acid sequences.

From the original 5363 peptides measured, we selected peptides

that a) had less than 50% missing measurements in the whole

population, b) had no internal lysine or arginine, and c) aligned

uniquely to one Ensembl gene. Fifty four percent of peptides (2893

peptides) passed these initial selection criteria. To assess the quality

of the measurements, we investigated the amount of technical

noise in the peptides selected. Having the control technical

replicates allowed us to measure the reproducibility of the LC-MS

measurement and assess whether the variation in the levels of the

selected peptides in the HMDP population was due to technical or

genetic variation. The distribution of the variance in the control

mice and in the HMDP panel are shown in Figure 2A (the blue

histogram). The mean and median across the ten replicates were

0.19 and 0.08 (the grey histogram), respectively, suggesting that,

for most peptides, the measurements were robust. In contrast, the

distribution of the variance was much broader in the genetic

population where the mean and median of variances across all the

peptides were 0.2 and 0.3 respectively (Figure 2A, the blue

histogram).

The relationship between RNA levels and peptide levels across

the HMDP genetic perturbations would be a function of the

Author Summary

An old dogma in biology states that, in every cell, the flow
of biological information is from DNA to RNA to proteins
and that the latter act as a working force to determine the
organism’s phenotype. This model predicts that changes in
DNA that affect the clinical phenotype should also similarly
change the cellular levels of RNA and protein levels. In this
report, we test this prediction by looking at the
concordance between DNA variation in population of
mouse inbred strains, the RNA and protein variation in the
liver tissue of these mice, and variation in metabolic
phenotypes. We show that the relationship between
various biological traits is not simple and that there is
relatively little concordance of RNA levels and the
corresponding protein levels in response to DNA pertur-
bations. In addition, we also find that, surprisingly,
metabolic traits correlate better to RNA levels than to
protein levels. In light of current efforts in searching for the
molecular bases of disease susceptibility in humans, our
findings highlight the complexity of information flow that
underlies clinical outcomes.

Global Mouse mRNA and Protein Levels Comparison
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genetic variation in the peptide levels as well as the degree of

nongenetic/technical variations in peptide quantification. Thus,

we defined a ‘‘signal to noise’’ measure for each peptide as the

ratio of the total variance in the HMDP over the variance in the

ten replicates. The variance in the ten replicates would be due to

nongenetic biologic variance as well as technical variance (herein

termed ‘‘noise’’) while the total HMDP variance would include

genetic variance, nongenetic biologic variance, and technical

variance. Accordingly, a large value of signal to noise could either

mean large genetic variation, small nongenetic variation, or both.

Conversely, a smaller value for signal to noise would either mean

small genetic variation, large nongenetic variation, or both. As can

be seen in Figure 2B, signal to noise ratios varied significantly

across different peptides.

We complemented the LC/MS studies for a small set of

proteins (11) by performing immunoblot quantitation in 9 of the

HMDP strains. Over half of the peptides exhibited significant

discrepancies in relative levels using the two methods and those

with small ‘‘signal to noise’’ ratios (small genetic variation and/or

large noise component) exhibited reduced correlations with the

immunoblotting results (p-value = 3.361025). Although immuno-

blotting is semi-quantitative, these results suggest that peptides

with a large signal to noise ratio will provide the best estimates of

the true relationship between RNA levels and protein levels.

(Immunoblot results are presented in Table S1, Table S2, and

Figure S1).

Transcript levels in inbred stains were measured by profiling

three mice for each strain, using Affymetrix MOE430A platform,

and taking the average of expression over the three biological

replicates. This design provided us with an opportunity to a) better

estimate the ‘‘true’’ values for the mRNA levels in each strain and

b) estimate the heritability of each probeset across the HMDP

population. The distribution of heritability estimates is shown in

Figure 2C. Consistent with previous reports [16], we detected a

broad spectrum of heritability estimates for the transcript levels

ranging from 0.07 to 0.95. Using ANOVA, we assigned

significance to the heritability values obtained for each probeset

and found that for as many as 50% of the probesets (11248

probesets), there was a significant (p-value,0.05 for strain term)

genetic component affecting the transcript levels.

Previous reports have documented conflicting results about the

reproducibility measurements generated by microarray platforms

[17–21]. To investigate this in our dataset, we compared the

expression levels measured by the Affymetrix microarray to the

expression levels measured by next generation sequencing (NGS)

in small subset of inbred strains. Using Illumina’s Genome

Analyzer we profiled the liver transcriptome of one C57BL/6J and

one DBA/2J mouse and generated ,17,000,000 sequences for the

fragmented mRNAs for each strain. Using Tophat [22] and

Cufflink [23] algorithms, we were able to uniquely align and count

4,800,000 and 7,000,000 sequences for C57BL/6J and DBA/2J

respectively (See Materials and Methods). After sequence align-

ment and quantification of the read counts, we compared the

transcriptome of the each strain against the microarray data

generated by the Affymetrix MOE430a platform (Figure 2D). This

comparison revealed a high concordance between the data

obtained from two technologies (Spearman correlation coefficient

of 0.69 for both C57BL/6J and DBA/2 samples). These results

were similar to a previous cross-platform comparative study [24]

and indicated that, for most transcripts, microarray data produce a

highly reliable estimate of transcript levels.

Based on the results reported above, in order to enrich for high

quality data and provide a better estimate of true relationships

between transcript and protein data, we focused on transcript and

peptide data with significant genetic and biological variation. For

peptide data, we used the signal to noise ratio parameter to further

filter the noisy peptides from our dataset. The cutoff we chose for

filtering peptides was a signal to noise ratio of 2. After removing

Figure 1. A schematic representation of the experimental design. 97 inbred and recombinant inbred strains in the HMDP panel were utilized
to study the relationships between transcripts, proteins, and clinical traits. The relationships between proteins and transcripts were assessed at the
biological level by the overall correlation across datasets, and at the genetic level by comparing the genome-wide association profiles of the two
datasets. The biological relationship between the transcripts and proteins was also assessed in the context of the physiological phenotypes by
relating these two datasets to the 42 clinical traits measured in the HMDP panel.
doi:10.1371/journal.pgen.1001393.g001

Global Mouse mRNA and Protein Levels Comparison
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the ‘‘noisy’’ measurements, we were left with 1543 peptides (see

Dataset S1 for the expression and Dataset S2 for the annotation of

the peptides). These 1543 peptides represented 486 Ensembl

Genes from which 39% were represented by only one peptide and

the remaining 60% were represented by two or more peptides

(Figure 2E). The most abundant number of peptides (.20 peptides

per gene) was found for 2 genes, aldehyde dehydrogenase 1 family,

member L1 (Aldh1l1), and carbamoyl-phosphate synthetase 1 (Cps1). For

the transcript data, we focused only on those transcripts that had a)

a significant genetic component underlying their variation

(heritability p-value,0.05), and b) unambiguous annotation in

the Ensembl database. To comprehensively compare the tran-

scripts and peptides, we also included those probesets that were

annotated as the same Ensembl gene/transcript as one of the

peptides in the protein data. This resulted in the total of 9896

probesets (representing 7185 Ensembl genes) from the initial

22670 probesets.

Proteome and transcriptome representation
To investigate the range of gene products present in the filtered

datasets, we generated a separate list of ‘‘GO Slim’’ terms for each

of the three major GO categories (Cellular Compartment or

‘‘CC’’, Molecular Function or ‘‘MF’’, and Biological Process or

‘‘BP’’) and used the ‘‘GO Term Mapper’’ website (http://go.

princeton.edu/cgi-bin/GOTermMapper) to classify and count the

number of proteins and transcripts in each of the 3 major GO

categories (Table S3). We also compared our results to the

background set (all genes annotated by Mouse Genome Infor-

matics) and using Fisher’s Exact test calculated the degree of

enrichment or underrepresentation for each GO class. Figure S2

depicts the results of this analysis for the Cellular Compartment

GO terms. While the proteome and transcriptome datasets

represent a wide range of gene products present in various cellular

compartments, the compartments are not equally represented. In

the protein data, mitochondrial genes were overwhelmingly the

largest set and in the transcript data the nuclear compartment was

at the top of the list for enriched CC GO terms. The enrichment

analysis showed that for both protein and transcript datasets the

majority of the GO terms tested were significantly over and under-

represented and these differences were more pronounced for the

protein data (Table S3). A likely explanation for this observation is

that the LC-MS analysis of the liver provides a biased sampling of

the proteome data (due to the abundance and/or cellular location

of the protein). The significant differences between the transcript

data and the background set may be partially explained by the bias

introduced in the design of the Affymetrix microarray. Alterna-

tively, since the transcript data by the virtue of filtering represent

the significantly heritable subset of all transcripts present on the

Affymetrix chip, one could postulate that in some cellular

compartments or cellular processes transcripts are more or less

likely to exhibit common genetic variation.

Modest concordance between transcript and protein
levels

We next examined the degree of concordance between the

transcript and protein levels. For this, we compared the transcript

and peptide measurements for every peptide-probeset pair that

mapped to the same Ensembl gene. This ‘‘gene-level’’ analysis

included 2010 peptide-probeset pairs (1342 peptides and 607

probesets) representing 396 Ensembl genes. Figure 3A shows the

correlation coefficient distribution for these 2010 peptide-probeset

pairs. Highly significant positive correlation (p-value,1e-06,

r.0.46) between RNA and protein was found for 21% of the

genes (85 out of 396) and ,15% of the peptide-probeset pairs (291

out of 2010). The most significant correlation (r = 0.87) was found

for the glyoxalase 1 gene (Glo1) where the peptide and transcript of

this gene correlated (Figure S3). Overall, we found that the

relationship between mRNA and protein levels was modest (mean

r = 0.27) and for 39% of the pairs (761 of 2010) the mRNA and

protein levels did not correlate significantly at the nominal 0.05 p-

value threshold. Our estimate of average correlation between

mRNA and protein was slightly higher than those reported in

other organisms, perhaps due to recent improvements in the LC-

MS technology and/or statistical power.

Next, we examined if the amount of technical noise and/or lack

of genetic variation could explain the modest correlation between

mRNA and peptide data. For this we classified each peptide based

on the signal to noise ratio (defined earlier) and looked at the

median correlation between mRNA and peptides within each

group. As shown in Figure 3B, we found that as the ratio of signal

to noise increases so does the correlation between the mRNA and

peptide levels of the gene. In fact the median correlation for the

least noisy group, comprising peptides with signal to noise ratio

.90%, was twice as large as the noisiest group of peptides

(peptides with signal to noise ratio ,60%). These results suggests

that the modest correlation between peptides and mRNA observed

in our study is partially due to either the presence of significant

nongenetic variation or small genetic variation in some proteins.

Alternative splicing is not a significant contributing factor
to the overall modest correlation of transcript and
protein levels

Aside from lack of genetic variation in peptides, another

plausible explanation for the lack of high correlation between

peptides and probesets could be the analytic approach chosen to

calculate correlations. In our study, we estimated the relationship

between mRNA and proteins by examining the correlations

between pairs of peptides and probesets that were annotated to the

same gene without considering the isoform information for that

gene. The choice of analytic approach presented here was mainly

due to the limitation of the technology we used to measure the

transcript levels. The probesets on the Affymetrix microarrays are

designed to hybridize mainly to the transcripts 39 end. Such design

will fail to accurately measure the levels of isoforms which are

identical at the 39 end but are differentially regulated at the

transcript level. The inability to measure isoform specific

expression can clearly impact the mRNA-protein correlation

results for certain peptides which represent specific isoforms as

LC-MS data may include peptides unique to a gene’s isoform.

Figure 4A and 4B illustrate an example of differential isoform

regulation identified in the LC-MS data. Acox1 (acyl-Coenzyme A

oxidase 1, palmitoyl) is a peroxisomal gene involved in fatty acid beta-

Figure 2. Proteome and transcriptome data quality. A) Reliability of peptide measurement in LC-MS. The distribution of variance among the
technical replicates in the LC-MS data (grey plot) and in the HMDP population (blue plot). B) The frequency of peptides with varying amount as
defined by the ‘‘signal to noise’’ ratio. C) Distribution of heritability (fraction of total variance attributed to genetics) in the transcript dataset. The
dashed line depicts the significant heritability estimates (p-value,0.05) D) Comparison of Affymetrix data with the Next Generation Sequencing data.
E) Number of peptides per gene in the filtered peptide dataset.
doi:10.1371/journal.pgen.1001393.g002
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oxidation pathway and metabolism of very long chain fatty acids,

and its deficiency causes pseudoneonatal adrenoleukodystrophy

[25] in humans. This gene produces four protein-coding products

(Acox1-001, Acox1-002, Acox1-003, and Acox1-201 as denoted in

Ensembl genome browser) shown in Figure 4A (bottom panel). All

isoforms except for ‘‘Acox1-002’’ include exon 4 of this gene. In

LC-MS data, 20 peptides were measured for this protein. One of

these 20 peptides (‘‘GHPEPLDLHLGMFLPTLLHQATEEQ-

QER’’) maps to the exon 4 sequence of this gene, thus, does not

represent the ‘‘Acox1-002’’ isoform which skips this exon.

Examining the expression profile and correlation of these 20

peptides revealed that all peptides representing ‘‘Acox1-002’’

isoform are highly intercorrelated (mean r = 0.86, Figure 4B) and

exhibit a similar expression profile (Figure 4A, top panel), but none

have either similarity in expression profile or significant correlation

with the peptide mapping to the exon 4 which is skipped in Acox1-

002 isoform (mean r = 0.23, Figure 4A top panel, and 4B). This

suggests that Acox1-002 isoform (with the skipped exon 4) is the

main isoform underlying the significant correlation among 19 of

the 20 peptides identified by LC-MS in our genetic population.

This example illustrates that the LC-MS data contain information

on differential regulation of isoforms, in contrast to the microarray

data.

To investigate if our inability to measure isoform specific

expression by microarrays could explain the lack of concordance

between mRNA and peptides, we utilized the next generation

sequencing data generated for the two inbred strains described

earlier. This dataset provided us with an opportunity to examine

the transcript level expression of the exons measured by NGS

with the protein level expression of exons measured by the LC-

MS. To investigate this, for each peptide we calculated the count

of exons in RNA-Seq data for two strains. We then compared the

DBA to B6 ratio of each exon in the peptide data to the DBA to

B6 ratio of normalized sequence counts (reported in FPKM units)

in the RNA-Seq data. The results of these comparisons are shown

in Figure 4C. Similar to the gene-level analysis, the exon level

analysis of all the filtered data also suggested a modest

relationship between the exon counts in the mRNA data vs exon

levels in the LC-MS data (r2 = 0.02). This global analysis

provided no support for the presence of differential splicing/

isoform regulation as being a significant factor in the mRNA and

protein overall relationships observed between LC-MS and

microarray data. The relationship between RNA-Seq data and

LC-MS peptide data is particularly strong (r = 0.42) for those

peptides exhibiting a strong correlation (r.0.5) with microarray

data (Figure 4C).

In an alternate approach to study the effect of differential

splicing on the correlation pattern, we examined our LC-MS data

at the isoform level and compared the results to the gene level

analysis. For this, we grouped various peptides of each protein into

unique and mutually exclusive clusters of known isoforms as

defined by the Ensembl database. In this classification we allowed

peptides to only represent one Ensembl protein ID and excluded

any peptide which matched with two or more Ensembl proteins.

Focusing on clusters with at least two peptides assigned to a cluster,

we calculated the within cluster correlation of of peptides and

compared the average within-cluster correlation to the average

correlation of peptides at the gene level analysis. The average

correlation of peptides at the gene level analysis was estimated at

0.47. In comparison, the average within cluster correlation of

peptides representing the same isoforms was estimated to be 0.52.

Combined with the NGS analysis described earlier, the small and

nonsignificant increase in the peptide concordance after taking

into account the isoform membership provides little support for

differential regulation of splicing/isoform expression as a signifi-

cant factor underlying the observed modest correlation between

transcripts and proteins.

Differential relationships of proteins and transcripts to
clinical traits

In light of the modest correlation observed between the

transcript and protein pairs, we examined the relationship of each

of these two datasets with clinical traits. In our HMDP panel, we

have previously measured a set of 42, some interrelated, metabolic

traits (see Materials and Methods). In this analysis, in order to

make a direct comparison across the two datasets, we once again

focused on the 396 genes for which we had at least one peptide

and one transcript measurement. At the 5% false discovery rate,

we observed that three quarters of probesets (457 from the total

607) significantly correlated with at least one of the clinical traits.

In contrast, at the same false discovery rate, only 28% of the total

Figure 3. Relationships between protein levels and transcript
levels. A) Histogram of correlation coefficients computed peptides and
probesets representing the same gene. The median correlation
coefficient is 0.27. B) Classification of correlations between probeset-
peptides based on signal to noise ratio in the peptide data (larger signal
to noise depicts less technical variation in the peptide measurement).
doi:10.1371/journal.pgen.1001393.g003
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Figure 4. Isoform-specific analysis of peptide data. A) An example of differential regulation of isoforms detected in the LC-MS data. Top panel,
comparison of similarity in expression variation of 20 peptides measured for Acox1. Grey plots illustrate the expression variation among inbred mice
for 19 peptides which represent all four Acox1 isoforms. Red plot illustrated the expression profile of the peptide representing the isoforms skipping

Global Mouse mRNA and Protein Levels Comparison
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peptides (380 out of 1342) showed significant correlation with at

least one of the 42 phenotypes. Despite the fact that the starting

number of peptides was twice the number of probesets (1342 and

607), the total number of significant correlations for the peptides

was only about half the number found for the probesets (2206 vs

1107). The same biased pattern was also observed at other

statistical thresholds as shown in Table 1. In addition to probeset-

pair analysis, we also carried a similar analysis at the gene level to

estimate what fraction of starting genes (396 total genes) a) exhibit

consistent relationship with clinical traits both at the transcript

level and the protein level b) exhibit trait relationships unique to

either of the two molecular phenotypes. From the 396 genes, 325

genes had at least one significant correlation at the 5%FDR with

clinical phenotypes and 162 had at least one significant correlation

with phenotypes at the protein level (Table 1). At the transcript

level, the total number of significant correlations amounted to

1781 vs 556 found at the protein level. From these, 234 relations

were found to be common for transcript and protein of the same

genes and 1547 were unique to transcripts only (Figure 5A).

Despite this overwhelming bias toward better correlation of

transcripts, we also found 322 unique relations at the protein level

(Table 1 and Figure 5A). Altogether, about half the significant

protein-trait correlations also exhibited transcript-trait correla-

tions, but only 15% of the significant transcript-trait correlations

exhibited corresponding protein-trait correlations.

Relationships as a function of Gene Ontology categories
and KEGG pathways

We sought to examine whether the concordance between

protein and transcript data was dependent on the biological

function and/or cellular location of the gene product. For this we

restricted the list of genes within each of the 3 major GO_slim

terms described earlier to the 396 genes for which we had at least

one probeset and one peptide measured. We then defined the

average relationship between protein and transcript products of

the genes within each GO category by computing the correlation

between the gene products and taking the average of these

correlations. The three panels in Figure S4 show the average

correlations of the transcript and protein product of the genes

grouped by their assigned GO categories. Striking differences in

the concordance between proteins and transcripts across some of

the GO categories were observed. For example, for Cellular

Compartment GO terms (CC), we found that peroxisomal and ER

genes have on average a better correlation between protein and

transcript products than other cellular compartments. We also

found that for some of the GO categories the similarity between

protein and transcript levels was almost non-existent (for example

in BP the ‘‘cell growth’’ class, Figure S4C). To assess the

significance of these observations, for each GO class we created

100,000 bootstrap datasets (each the size of the number of genes

assigned to the respective GO category) containing correlation

coefficient p-values randomly selected from the pool of peptide-

probeset correlation p-values. We then assessed the significance of

observed averaged correlation p-value for each class by comparing

it to the distribution of the averaged p-values in the bootstrapped

dataset (Table S4). In some GO groups, we found a class of genes

for which the relationship between the transcript level and protein

level is significantly better than for other GO groups. We also

found GO classes in which the transcript levels and protein levels

of the genes were significantly discordant (i.e. the relationship

between protein and transcript was significantly less than what

would be expected by chance). For example, in MF we found that

genes classified as having a role in ‘‘electron carrier activity’’ had a

strong relationship among the protein and transcript levels (p-

value = 8.9e-03) and this relationship is significantly compromised

for genes with ‘‘transporter activity’’ (p-value = 4e-05). Another

example of discordant group was genes involved in the translation

process (p-value,1e-05). Interestingly, the ‘‘translation’’ category

has been proposed recently to be involved in phenotypic buffering

in a yeast genetic interaction network. Overall, these results

indicate that cellular compartments and biological processes vary

in the degree to which the linear relationships between transcript

levels and their protein products are conserved.

We also examined the level of concordance among transcripts

and proteins of genes that are members of the same biological

pathway. For this, we focused on 212 biological pathways on the

KEGG website (http://www.genome.jp/kegg/). We annotated

the peptides and probesets according to their pathway member-

ship as determined by their Ensembl gene IDs. Ninety nine out of

212 pathways contained genes for which we had both more than

one transcript and more than one protein measured. Focusing on

these 99 pathways, we then performed the following three

correlation analyses: 1) correlation between peptides belonging

exon 4. Bottom panel, Ensembl genome browser’s schematic representation of four Acox1 isoforms. Arrow points to Acox1-002 isoform which skips
exon 4. B) Concordance between Acox1 peptides. The left boxplot depicts correlations among peptides that include Acox1-002 isoform. The right
boxplot depicts correlations between the peptide mapping to exon 4 and all other peptides. The scatter points overlaid on each boxplot represent
the pair-wise correlation values. C) Exon level analysis of peptide measurements by LC-MS and transcript measurements as measured by NGS in the
livers of the B6 and DBA inbred strains. The black dots depict the relationships examined by comparing peptide data to microarray data and the red
dots represent the highly significant relations found by peptide comparison with the microarray data. The lines depict the best fit as predicted by
linear regression (black line = regression of all peptides, red line = regression of highly significant peptides).
doi:10.1371/journal.pgen.1001393.g004

Table 1. Relationship of PT-pairs with clinical traits.

# Trait Correlations
Unique to Proteins

# Trait Correlations
Unique to Transcripts

# Trait Correlations Shared
Between Transcripts and
Proteins

# Proteins with
Significant
Correlation (%)

# Transcripts with
Significant Correlation
(%)

0.1% FDR 35 272 17 24 (6) 122 (31)

1% FDR 93 704 71 64 (16) 217 (55)

5% FDR 322 1547 234 162 (41) 325 (82)

doi:10.1371/journal.pgen.1001393.t001
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to the same pathway, 2) correlation between probesets belonging

to the same pathway, 3) correlation between probesets and

peptides belonging to the same pathway. Comparing the results of

these three analyses suggests that overall within-transcript

correlation of biological pathway genes is higher than within-

protein correlations (0.20 vs 0.14 mean Spearman correlation

coefficients) (Figure 5B), and transcript-protein correlations are the

weakest of all (mean Spearman correlation coefficient of 0.11).

From the 99 pathways, 79 pathways had better between-transcript

correlations than between-protein correlations and 20 had better

between-protein correlations. We also observed that for most

pathways when there was good concordance between the

transcripts there was also good concordance between the peptides

of that pathway (r = 0.39, Figure 5B).

Modest concordance of genetic loci controlling transcript
and protein levels

Next, we examined the genetic loci regulating protein and

transcript levels. It is known that the presence of SNP within probe

sequence can affect hybridization of the mRNA [26], leading to

both type-I and type-II errors in the genomewide association

analysis. In our Affymetrix dataset, as expected, we also observed a

significant effect of SNPs on genomewide association results for

fraction of the probes, as judged by comparing the significance

level for local eQTLs between probesets before and after masking

of probes containing publicly available SNPs (see Text S1 and

Table S5 for details, and Dataset S3 for the list of probes which

were masked from each probeset due to the presence of SNP). To

minimize this technical artifact, we removed all the SNP-

containing probes from their corresponding probeset before

normalization of the data and eliminated all the probesets which

contained 8 or more probes with SNPs (,300 probesets fell in this

category). Therefore, all the data reported below were generated

from masked probesets.

We performed genomewide association on both transcriptome

and proteome datasets using 95,854 SNPs with minor allele

frequencies greater than 10% obtained from the Broad Institute

(http://www.broadinstitute.org/mouse/hapmap) and Wellcome

Trust Center (WTCHG) (see Materials and Methods for details).

To account for the population structure and genetic relatedness

among strains in the genome-wide association mapping, we

utilized the Efficient Mixed Modeling Algorithm (EMMA) [27].

Furthermore, haplotype analysis of the inbred strains has shown

the presence of over 60,000 haplotype blocks of varying size

throughout the genome of inbred strains [28]. Since the presence

of these blocks could be a source for overestimation of extent of

genetic regulation and false positive associations, for each

transcript and protein we removed significant associations due to

high linkage disequilibrium (defined as R-squared of 0.5 or larger

between genotypes). Since the transcript and protein data have

different variance properties, which may subsequently affect our

statistical power to detect associations in the two different datasets,

we avoided the use of the same statistical cutoff for each dataset.

Instead, in order to achieve a comparable genome-wide cutoff

across the two datasets, we made use of false discovery rate and

compared the two association results by restricting the genome-

wide mapping results of each dataset to a list of associations with a

similar false discovery rates. The results are summarized in Table 2

and the eQTL profile for the combined set is depicted in

Figure 6A. At the 5% genome-wide FDR cutoff (p-value,1.7e-05)

we identified 14463 associations for the transcript data (referred to

as ‘‘eQTL’’ for expression QTL). At this cutoff stringency, 63% of

the transcripts (6299 out of 9896) mapped to at least one locus and

roughly one third of the transcripts (3651 out of 9896) mapped to

two or more loci (Table 2). In contrast, at the same 5% FDR (p-

value,9.6e-06), we only found 1368 significant associations for the

proteins (referred to as ‘‘pQTL’’ for protein QTL). The fraction of

total proteins with significant association was 672 genes (43%)

Figure 5. Relationships between the peptide data and transcript data with clinical traits and biological pathways. A) Correlations of
transcriptome and proteome with clinical traits. A scatter plot of correlation coefficients between 607 probesets and 1343 peptides with 42 clinical
traits (peptide-trait correlations are plotted on the x-axis and probeset-trait correlations are plotted on the y-axis). Red points are those correlations
which were significant for transcripts only, green points are those correlations which were significant for protein data only and black points are those
which were not significant in either of the two datasets. B) Concordance of transcripts and proteins in 115 KEGG biological pathways.
doi:10.1371/journal.pgen.1001393.g005

Global Mouse mRNA and Protein Levels Comparison

PLoS Genetics | www.plosgenetics.org 9 June 2011 | Volume 7 | Issue 6 | e1001393



from which 339 mapped to more than one locus (Table 2). In

general, the mapping data for molecular phenotypes can be

subdivided into ‘‘local eQTLs/pQTLs’’ to highlight the presence

of genetic variation near/within the gene controlling the transcript

or protein levels and ‘‘distant eQTLs/pQTLs’’ to discover trans-

acting gene-locus interactions at the genetic level [29]. An

empirical calculation of haplotype blocks in the HMDP panel

(based on continuous stretch of SNPs with the R-squared value

above 0.5) showed an average size of 0.73 Mb and a range from

less than a kb to 11 Mb (median = 0.25 Mb). Given this fine

mosaic structure in the HMDP genotypes, we defined a local

eQTL/pQTL as an eQTL/pQTL with the peak SNP located in

the 4 Mb window flanking 2 MB on either side of the transcription

start site and transcription termination site of the gene. Based on

this, from the total of 14463 significant associations in the

transcript data, 2066 were local and 12397 were distant eQTLs. In

the protein data the numbers of local and distant eQTLs were 144

and 1224, respectively. The proportion of variance explained by

the peak SNP in local pQTLs was 44%, local eQTL was 42%,

distant pQTL was 27%, and distant eQTL was 23%. The

difference in proportion of variance explained between the distant

pQTLs and distant eQTLs was highly significant (Student t-test p-

value,1e-16), however, a similar comparison showed no signif-

icant difference between the mean effect sizes of local pQTL and

local eQTLs (Figure S5). For each dataset, the proportion of

variance explained by the local SNPs was significantly larger, as

expected, as compared to the distant SNPs.

Absence of hotspot loci regulating numerous transcripts/
proteins

A previous study in plants found that a small number of loci

regulated the levels of many proteins [11]. Accordingly, we

examined our data for the existence of similar ‘‘hotspots’’. In the

transcript data, we found that the 14463 eQTLs mapped to 9108

distinct peak SNPs. Over 85% of these SNPs (8034 out of 9108)

were associated with either one or two transcripts and only a small

fraction (334 SNPs) were associated with five or more transcripts.

In the protein data, 1368 significant pQTLs mapped to 1088

Figure 6. Global analyses of proteome and transcriptome genetic regulation. A) Global eQTL profile for the 14463 eQTLs and 1368 pQTLs
superimposed on each other. In this plot, larger dots represent protein association and smaller dots represent transcript association. The diagonal line
with strong association depicts the local eQTLs and pQTLs and each off-diagonal dot depicts the location of distant eQTLs and pQTLs. B) eQTL
landscape for protein and transcript data. For each dataset, the genome was divided into 2 Mb bins and the number of eQTLs (grey) and pQTLs (red)
were counted separately in each bin as the windows were slid every 50 kb. The frequency of eQTLs and pQTLs in each window are plotted as the
fraction of total significant associations (14463 for transcripts and 1368 for proteins).
doi:10.1371/journal.pgen.1001393.g006

Table 2. Genome-wide association profiles for the proteome and the transcriptome data.

Global Analysis
Number of Probesets/
Peptides

Total Number
of Significant
Associations

Number of Probesets/
Peptides With at least
One Significant
Association (% Total
Phenotypes)

Number of Probesets/
Peptides with Local
Associations (% Total
Phenotypes)

Number of
Distant
Associations

Number of Probesets/
Peptides With More
Than One Significant
Association (% Total
Phenotypes)

Transcriptome 9896 14463 6299 (63%) 2066 (21%) 12397 3651 (37%)

Proteome 1543 1368 672 (43%) 144 (9%) 1224 339 (21%)

Transcript-
Protein Pairs

Number of Genes
(Number of Probesets/
Peptides)

Total Number of
Significant
Associations

Number of Genes
With at least One
Significant
Association (% Total
Genes)

Number of Genes
with Local
Associations (% of
Total Genes)

Number of
Distant
Associations

Number of Genes With
More Than One
Significant Association
(% Total Phenotypes)

Transcriptome 396 (607) 878 297 (75%) 79 (20%) 799 205 (51%)

Proteome 396 (1343) 920 242 (61%) 46 (9%) 874 171 (43%)

doi:10.1371/journal.pgen.1001393.t002
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distinct SNPs across the genome. From these 1088 SNPs, 930 were

associated with a single protein, 100 were associated with 2

proteins, and 14 SNPs were associated with 5 or more proteins.

From the 1368 peak markers associated with protein levels 438

(32%) were also a peak SNP for one or more transcripts. To

investigate if the distinct peak SNPs found in the transcript and

protein data map near each other, we divided the genome into

2 Mb bins and using a 50 kb sliding window counted the number

of associations in each bin. In the transcript data, the median

eQTL number/window was 8 and the highest number of

associations was found for bins on Chr 4 (from 98.7 Mb to

100.8 Mb) with 71 eQTLs, Chr 5 (from 80 Mb to 83.1 Mb, from

112.4 Mb to 114.4 Mb) with 79 and 75 eQTLs in each

respectively, Chr 7 (from 143.2 Mb to 146.2 Mb) with 78 eQTLs,

Chr 8 (from 93.0 Mb to 95.1 Mb) with 71 eQTLs, Chr 17 (from

43.8 Mb to 46.4 Mb) with 80 eQTLs, and Chr 18 (from 55.0 Mb

to 57.5 Mb) with 76 eQTLs. In the protein data, however, most

associations were randomly distributed except for a clustering of

associations on Chr 3 (from 36.5 Mb to 38.6 Mb) with 20 pQTLs

and Chr 11 (from 94.3 Mb to 96.7 Mb, and from 114.1 Mb to

118.1 Mb) with 19 and 21 pQTLs respectively (Figure 6B). These

results contrast to the previously published reports where hotspots

containing hundreds or thousands of eQTLs were observed

[30,31]. This could be partially explained by both our ability to

map molecular phenotypes with higher precision in the HMDP

panel and the relatively stringent genome-wide threshold chosen to

carry out the analysis. The eQTL hotspots on Chr 4 (from

98.7 Mb to 100.8 Mb) resides 6 Mb proximal and the Chr 5

hotspot (from 80 Mb to 83.1 Mb) resides 25 Mb distal to the Chr

5 hotspot reported recently in mouse-hamster radiation hybrid cell

line [32]. Despite the relative close distance in mapping, however,

we did not find a significant overlap between the genes mapping to

these two loci in the two studies.

Genetic regulation of transcript and protein levels
The global look at the eQTL profiles of the transcriptome and

proteome described above suggested that transcripts are more

extensively regulated at the genetic level than proteins. However,

since the transcriptome data is more comprehensive than the

protein data, the differences observed between two datasets might

be due to sampling bias. In order provide a measure of similarity

for genetic regulation of proteins and transcripts we restricted the

data to the set of 396 genes for which we had both protein and

transcript measurements available. As mentioned earlier, in this

restricted dataset the 396 genes are represented by twice as many

peptides as probesets (1343 peptides and 607 probesets). Similar to

the genome-wide global analysis, we avoided the use of single

statistical cutoff to compare association results across the transcript

and peptide datasets, as each dataset has its own variance

properties. Instead, we compiled separate lists of significant

associations for each dataset using the same FDR cutoff. Since

the FDR threshold is driven by the distribution of p-values in each

dataset, this allowed us to compare the two lists directly without

setting a single statistical cutoff for both datasets. Limiting the

mapping data to those associations that met the 5%FDR cutoff in

each dataset (p-value,1.7e-05 for transcripts and p-value,9.6e-

06 for proteins) we found that despite mapping twice as many

peptides as probesets the number of significant associations were

roughly equal (939 and 1083 significant associations for probesets

and peptides, respectively). This suggests that transcripts are twice

as likely to be genetically regulated as are peptides. Next, we

performed a gene level analysis where we assigned the associations

obtained in each data set to their respective genes and for each

gene investigated the degree of similarity in genetic regulation

across the protein and transcript dataset. As summarized in

Table 2 and consistent with the probeset/peptide analysis

described earlier, we found that the number of genes under

genetic regulation, as judged by fraction of total genes with at least

one significant genome-wide association, favors the transcript

dataset. Overall, from the initial 396 genes, 75% (297/396) of the

genes with transcript products had at least one significant result vs

61% (242/396) of the genes in the LC-MS dataset. The number of

genes with multiple eQTL and pQTL was 205 and 171,

respectively. We also looked at the comparison across datasets

after classifying the mapping results into local and distant eQTL

and pQTL. For distant associations, 281 genes mapped to 799

distinct loci in the transcript dataset and 236 genes mapped to 874

unique genomic locations in protein dataset. Overlapping the

association results from the two datasets for distant eQTL/

pQTLs, we found that only 25 loci overlap with each other. From

these 25 loci, 7 loci had the same peak SNP between the pQTL

and the eQTL and in the remaining 18 the distance of peak SNP

between the eQTL and pQTL ranged from 2.6 kb to 1.6 Mb. For

local eQTLs, we found approximately twice as many local eQTLs

as local pQTLs for the 396 genes (79 vs 46). To examine the extent

of overlap between local QTLs, we considered a pQTL and an

eQTL shared if they mapped within 2 Mb of each other. Using

this definition, there were 26 local QTLs shared between the

protein and transcript products of the gene. From these common

QTLs, 8 mapped to the same peak SNP in the genome-wide

association and 18 others mapped in various proximities of each

other ranging from 23 bp to 1.8 Mb. The number of shared local

QTLs suggests that majority of local pQTLs (26/46 = 56%) are

likely to be conserved at the transcript level, and only 1/3 (26/

79 = 32%) of eQTLs are conserved at the protein level.

Since local eQTLs are less likely to contain false positives [33],

we utilized them to assess if our definition of significance based on

FDR had any effect of the results of the comparative analysis we

described above. For this, since the transcript local eQTL counts

outnumbered the peptide counts, we set a fixed threshold for

significance in the transcript dataset (5% FDR, p-value,1.69e-05),

counted the number of pQTL overlaps with the significant eQTLs

at varying statistical cutoffs, and asked if the increase in the overlap

was more than what would be expected by chance. For this we

examined results at 5% FDR cutoff, 10% FDR cutoff, and 25%

FDR cutoff. At the 5%FDR (p-value,9.58e-06) there were 46

local pQTLs from which 26 overlapped with the 79 eQTLs.

Decreasing the p-value stringency to detect association in the

protein data, however, did not significantly increase the overlap

between eQTL and pQTL. At the 10% FDR (p-value,2.95e-05)

we detected 56 pQTL from which 28 overlapped with eQTLs (2

more than 5%FDR), and at the 25% FDR (p-value,0.0002) we

detected 68 pQTLs for which the overlap with eQTL was only 29,

one more than 10% FDR cutoff and 3 more than the 5%FDR

cutoff. These non-significant changes in overlap between eQTL

and pQTL suggest that the lack of overlap between eQTL and

pQTL as presented earlier was not due to the genomewide

significance thresholds set for each dataset.

We should emphasize that one limitation of our study originated

from our study design where we utilized different number of mice

per strain to estimate the transcript and the peptide levels. For

transcript levels we profiled the RNA from 3 mice per strain and

estimated transcript levels for genes by averaging over the data

obtained for three mice, but for the LC-MS data we only sampled

one mouse per strain. This design, by its nature, results in a higher

power to detect genome-wide associations and significant

correlations with clinical traits for transcript data in comparison

to the peptide data. In fact, mapping transcript levels by taking
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only the data from one of the three microarray data for each strain

gave us on average 36% fewer local eQTLs in comparison to what

we had obtained by averaging the expression phenotypes over the

three microarrays (Text S1 and Table S6). This difference would

not change the overall conclusions regarding the commonality and

the differences observed between the peptide and transcript

genome-wide mapping results.

Discussion

We report a comparative analysis of the genetic regulation of the

transcriptome and proteome in a mammalian system. By examining

the effects of thousands of genetic perturbations simultaneously on

transcript and protein levels in the HMDP, we were able to

investigate the global nature of relationships between the two. Since

the HMDP was typed for numerous clinical/physiologic traits, we

were also able to study the relationships of these to transcript levels

as compared to protein levels. Finally, we examined the

commonality of genetic drivers affecting transcript and protein

levels. We discuss these points in turn below.

We performed the comparison of protein and transcript levels

using two separate approaches. In one approach we comprehen-

sively compared the LC-MS peptide measurements to the

microarray expression estimates. In the second approach we

examined the relationship between the expression of exons

representing the peptides identified by the LC-MS to the

expression of exons counted in the next generation sequence

data. In addition, to address sources of technical and biologic

variation in our measurements, we filtered peptides with

significant nongenetic variation. In all these analyses we found

that the relationship between the protein expression and transcript

expression was modest at best and in only 50% of the cases did this

relationship reach nominal statistical significance. We also found

that the amount of genetic variation is a predictor of concordance

between peptides and transcripts.

Our data complements the data previously published for yeast

and plant indicating similar modest protein-transcript relationship.

As compared to yeast, we found a slightly higher estimate of

protein-transcript concordance (0.27 vs 0.18 correlation) when

considering all the peptide measurements and significantly higher

estimates (0.42 vs 0.18 correlation) when considering peptides with

large genetic variability. The higher estimates reported here are

likely to be more reflective of the true relationship between protein

and transcript levels as compared to the previous reports mainly

due to the choice of technology used to measure protein levels in

our study. We utilized the differential labeling technique as put

forth by Qian and colleagues where the label free samples are

combined with an internal control labeled with heavy isotope [15].

This mixture is then quantified and the results are reported as the

ratio of sample to the pool for each identified peptide during mass

spectrometry. This strategy, which offers the advantage of

overcoming peptide level variation due to platform robustness,

has been shown to more precisely quantify peptides as compared

to label free methods [15]. This was evident in our study as well

where we showed that in general the variance in technical

replicates was low, with an overall narrow distribution across the

peptides quantified.

Biologically, the modest relationship between the proteins and

transcripts is likely to be explained in part by molecular events

such as translational efficiency, alternative splicing, folding,

assembly into complexes, transport and localization, covalent

modification, secretion, and degradation, all of which affect

protein levels independently of transcripts. The importance of

these post-transcriptional processes is highlighted by a recent

report showing that the presence of genetic variation in some of

these post-transcriptional processes is associated with certain

human diseases [34]. We acknowledge that the design of our

study and our most comprehensive dataset, which was generated

by Affymetric microarrays capturing the 39 end of transcripts,

prevented us from comprehensively addressing the issue of

differential splicing. However, using two complementary ap-

proaches, NGS and concordance level of peptides, we examined

the possibility of differentially regulated isoforms as a predictor for

the lack of concordance between microarray data and LC-MS

data. In neither case did differential splicing appear to contribute

importantly to the lack of transcript-protein correlation.

An unexpected finding was the stronger association of transcript

levels with clinical traits as compared to protein levels with clinical

traits. This is likely due in part to the greater technical difficulties for

the quantification of proteins as compared to transcripts, but the

differences were quite striking and there may be additional

explanations. One possible explanation is that the molecular

phenotypes are reactive to the clinical phenotypes (rather than being

causal) and that there is increased buffering at the protein level. Apart

from the strength of the trait associations, the protein and transcript

associations in many cases did not overlap. For example, less than

15% of clinical trait-transcript correlations were replicated when

traits were correlated with the corresponding proteins.

At the genetic level we also found marked differences in the

number and locations of loci controlling protein and transcript

levels. When we directly examined protein-transcript pairs

corresponding to the same gene, we found that the transcript

data had twice as many associations as the protein data. One

plausible explanation for the existence of the differential genetic

regulation between proteins and transcripts is that of ‘‘phenotypic

buffering’’ as put forth previously [11]. An alternative explanation,

however, would be that in general the more removed a phenotype

is from the DNA variation, the more complex the phenotype

becomes. Thus, protein levels would be affected by all the factors

influencing transcript levels as well as numerous additional factors.

The consequence of increasing complexity in the phenotype is that

less of the variation in phenotype would become linked to a single

DNA variation.

In summary, we highlighted the similarities and differences in

genetic regulation of protein and transcript levels. Although a

component of the observed differences in regulation is likely to be

technical, particularly with respect to the protein levels, it is clear

that the proteomics and transcriptomics provide nonoverlapping

information. Thus, these data have important implications for

systems biology approaches that utilize such high throughput data.

They also raise fundamental questions about the complexity of the

relationships between various biological scales involved in complex

genetic traits.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the

appropriate committee. All experiments in this paper were carried

out with UCLA IACUC approval.

Animals and clinical phenotype collection
Male mice from the HMDP panel, approximately 6–10 weeks

of age, were purchased from Jackson Labs and were fed Purina

Chow (Ralston-Purina Co., St. Louise, MO) at 16 weeks of age.

All mice were maintained on a 12 h light/dark cycle. At 16 weeks
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of age, whole body fat, fluids and lean tissue mass of mice were

determined using a Bruker Optics Minispec nuclear magnetic

resonance (NMR) analyzer (The Woodlands, TX, USA) according

to the manufacturer’s recommendations. We also calculated the

total mass of the mice, sum of lean mass, free fluid, and fat mass,

and body fat percentage, fat mass/total mass. Following a 16-hour

fast, mice were weighed and then bled retro-orbitally under

isoflurane anaesthesia. Complete blood counts were performed

using a Heska CBC-Diff analyzer (Heska Corp, Loveland, CO,

USA). An external control sample with known analyte concentra-

tion was run in each plate to ensure accuracy. Glucose levels were

determined using commercially available kits from Sigma (St

Louis, MO, USA). Insulin levels were measured using commercial

ELISA kits (ALPCO Diagnostics). All measurements were

performed in triplicate according to the manufacturer’s instruc-

tions. Plasma lipids were determined as previously described [35].

Mice were euthanized by cervical dislocation and the mass of

individual tissues and fat depots (heart, kidney, retroperitoneal fat

pad, epididymal fat pad, subcutaneous fat pad, and omental fat

pad) were determined by dissecting and weighing each tissue/pad

separately after the mice were euthanized. Following this, liver

tissues were dissected out, flash frozen in liquid nitrogen, and kept

at 270 degrees until further processing.

RNA isolation, expression profiling, and RNA-Seq
experiment

At 16 weeks of age, the liver tissues of the mice were dissected

out, flash frozen in liquid nitrogen, and kept at 270 degrees until

further processing. For RNA profiling the RNA from 3 mice per

strain were hybridized to Affymetrix Mouse Genome HT_MG-

430A arrays. Frozen liver samples were weighed and homogenized

in Qiazol according to the manufacturer’s protocol. Following

homogenization, RNA extraction was performed using Qiagen’s

RNeasy kit (cat# 74104). Ninety two strains of mice had three

biological replicates, five strains had two biological replicates and

two strains had one biological replicate each. All RNA samples

were cleaned using a Biosprint96 (Qiagen, Valencia, CA) with

RNA cleanup beads (Agencourt Bioscience, Beverly, MA)

following manufacturer’s protocol with adaptations for use with

the Biosprint. The quality of the total RNA from the samples was

monitored by the Agilent 2100 Bioanalyzer (Agilent Technologies,

Palo Alto, CA) and RNA quantity was measured with a

NanoDrop (NanoDrop Technologies, Inc. Wilmington, DE)

following the manufacturer’s instructions. All samples were

arrayed into three 96 well microtiter plates following a randomized

design format that places samples from the same strain on different

plates to better estimate variance across testing strains. All target

labeling reagents were purchased from Affymetrix (Santa Clara,

CA). Double-stranded cDNAs were synthesized from 1 ug total

RNA through reverse transcription with an oligo-dT primer

containing the T7 RNA polymerase promoter and double strand

conversion using the cDNA Synthesis System. Biotin-labeled

cRNA was generated from the cDNA and used to probe

Affymetrix Mouse Genome HT_MG-430A arrays. The

HT_MG-430A Array plate consists of 96 single MG-430A arrays

arranged into standard SBS 96 well plate format. All cDNA and

cRNA target preparation steps were processed on a Caliper

GeneChip Array Station from Affymetrix. Array hybridization,

washing and scanning were performed according to the manu-

facturer’s recommendations. Scanned images were subjected to

visual inspection and a chip quality report was generated by the

Affymetrix’s GeneChipOperating System (GCOS) and Expression

console Affymetrix). Two of 288 chips were excluded due to low

QC scores. The image data was processed using the Affymetrix

GCOS algorithm utilizing quantile normalization or the Robust

Multiarray method (RMA) to determine the specific hybridizing

signal for each gene. Expression data can be obtained from Geo

database (GSE16780). To avoid the effect of SNP on hybridiza-

tion, we matched the location of ,14 million SNPs from dbSNP

database (NCBI) to the location of the individual probes on the

genome. If the location of the probe had a matching SNP within it

we flagged the probe and exclude it from the cdf file prior to RMA

normalization. If a probeset contained SNP in 8 or more 25-mer

probes, we excluded the probeset from the analysis. The cleaned

datasets were then background corrected and normalized using

the affy package (from bioconductor) using rma, pmonly, and

median-polish normalization methods.

RNA isolation for Next Generation Sequencing followed the

same protocol as the one described above for the microarray data.

For the RNA-Seq experiment, two inbred mice (C57BL/6J and

DBA/2J) were chosen. Library preparation was carried using

illumina’s mRNA-Seq 8-Sample Prep Kit protocol (Illumina, cat#
RS-100-0801). In brief, 1 to 10 ug of RNA was used for library

construction. In the first step the poly-A containing mRNA

molecules were purified using poly-T oligo-attached magnetic

beads. Next, the purified mRNA was fragmented into small pieces

using divalent cations, followed by double stranded cDNA

synthesis using random primers, adenylated at the 39 end and

ligated to the sequencing adapters. The ligated products were then

separated on 2% agarose gel, 200 bp fragments were selected and

PCR amplified using PE 1.0 and PE 2.0, and purified using

QIAquick PCR Purification Kit (QIAGEN, part # 28104). The

final library concentration was verified by Bioanalyzer. Sequenc-

ing reaction was performed by Illumina Genome Analyzer 2.0 at

UCLA Human Genetics microarray core. Raw sequences were

uploaded onto Galaxy website (at http://main.g2.bx.psu.edu/)

and using the Tophat software [22] was aligned against the

reference genome (M. musculus, mm9) downloaded from UCSC.

Alignment was performed by setting the parameter for misalign-

ment to one. Relative abundance of transcripts (in Fragments Per

Kilobase of Exon per Million read sequence units) was estimated

using the Cufflink software [23] and the Ensembl’s Mus_musculus

NCBIM37 as the reference annotation file.

Protein isolation and sample preparation
Male mice were euthanized using isoflurane followed by cervical

dislocation at 6–10 weeks of age. The liver tissue was immediately

frozen in dry ice until further processing. The 97 samples

corresponding to different mouse strains plus some extra samples

from C57BL/6J mouse were randomized into 10 batches of 10

samples. Each batch was processed separately prior to quantitative

LC-MS analysis. Before the LC-MS analysis the batches were put

together and the sample list was randomized one more time. The

extraction and digestion of the proteins was performed using a

commonly used protocol based on denaturation of protein in 8 M

urea followed by digestion with trypsin. Briefly, approximately

5 mg of liver tissue was resuspended in 100 ul denaturing solution

(8 M urea, 50 mM Tris-HCl pH 8.0 and 1 mM EDTA) and

homogenized with a motorized pestle. Upon homogenization, the

total protein content was measured by Bicinchoninic Protein Assay

(BCA, Pierce, Rockford, IL) and the 500 ug aliquots were taken

from each sample for further processing. DTT was added to a

concentration of 10 mM in sample, then to solubilize and unfold

the proteins the samples were incubated for 30 min at 37oC with

shaking. Cysteine residues were alkylated by adding iodoaceta-

mide up to 40 mM concentration and incubating for 1 hour at

37oC, with shaking, in the dark. For protein digestion the samples

were diluted 10-fold with 50 mM ammonium bicarbonate
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(pH 7.8), supplemented with 1 mM CaCl2, 10 ug of trypsin and

incubated for 3 hours at 37oC with shaking. The sample digests

were purified with solid phase extraction using C18 columns

(Discovery DSC-18, SUPELCO, 52601-U), lyophilized and

resuspended in 25 mM ammonium bicarbonate pH 7.8. The

peptide amounts were estimated with BCA assay. On the average

the amount of purified tryptic peptides was 200 ug. To generate

the 18O reference sample, 20 ug of each sample was pooled, then

boiled 10 minutes, followed by immediate cooling for 10 minutes.

The boiling/cooling steps were performed to inactivate trypsin

(this step helps to avoid back-exchange of 18O-labeled peptides).

The pooled reference was then subjected to solution-phase tryptic

18O exchange, followed by quenching of tryptic activity with

formic acid. The pooled sample was then added in equal amounts

with each individual sample for quantitation purposes.

Characterization of the mouse liver proteome
Construction of a library of proteins and tryptic peptides present

in the liver is an important step for follow-up quantitation. 10 ug

aliquots from all 97 strains were pooled together and subjected to

LC fractionation by strong cation exchange (SCX) chromatogra-

phy on a 200 mm62.1 mm Polysulfoethyl A column (PolyLC,

Columbia, MD) preceded by a 10 mm62.1 mm guard column,

using a flow rate of 0.2 mL/min. LC separations were performed

using an Agilent 1100 series HPLC system (Agilent, Palo Alto,

CA). Mobile phase solvents consisted of (A) 10 mM ammonium

formate, 25% acetonitrile, pH 3.0 and (B) 500 mM ammonium

formate, 25% acetonitrile, pH 6.8. Once loaded, isocratic

conditions at 100% A were maintained for 10 min. Peptides were

separated by using a gradient from 0–50% B over 40 min,

followed by a gradient of 50–100% B over 10 min. The gradient

was then held at 100% solvent B for another 10 min. Following

lyophilization, all thirty fractions collected during this gradient

were dissolved in 25 mM ammonium bicarbonate and stored at

280OC.

Each SCX fraction was analyzed with an automated custom-

built capillary HPLC system coupled online to an LTQ ion trap

mass spectrometer (Thermo Fisher, San Jose, CA) by using an

electrospray ionization interface. The reversed phase capillary

column was prepared by slurry packing 3-mm Jupiter C18 particles

(Phenomenex, Torrance, CA) into a 75 mm i.d.665 cm fused silica

capillary (Polymicro Technologies, Phoenix, AZ). The mobile

phase solvents consisted of (A) 0.2% acetic acid and 0.05% TFA in

water and (B) 0.1% TFA in 90% acetonitrile. An exponential

gradient was used for the separation, which started with 100% A,

and gradually increased to 60% B over 100 min. The instrument

was operated in a data-dependent mode with an m/z range of

400–2000. Ten most abundant ions from each MS scan were

selected for further MS/MS analysis by using a normalized

collision energy setting of 35%. Dynamic exclusion was applied to

avoid repeat analyses of the same abundant precursor ion.

The SEQUEST software (Thermo Fisher) was used to search

the MS/MS data against the mouse International Protein Index

(IPI) database (version 3.52 http://www.ebi.ac.uk/IPI). Human

keratins and porcine trypsin were added into the database as

expected contaminants. Trypsin cleavage specificity was required

for all of the considered peptides. The following criteria were used

to filter raw SEQUEST results: 1) Xcorr$1.9 and Del-

taCn2$0.21 for charge state +1; 2) Xcorr$2.5 and Del-

taCn2$0.26 for charge state +2; 3) Xcorr$2.8 and Del-

taCn2$0.32 for charge state +3. These criteria provide the

maximum number of peptide identifications not exceeding 1%

false discovery rate (FDR). To estimate the FDR of peptide

identifications we searched against a reversed database as

previously described [36].

Relative protein abundance quantitation
Relative peptide and protein quantitation was based on ratios

between intensities of natural 16O isotope containing peptides and

reference peptides labeled with stable 18O isotope at the carbonyl

group at the C-terminus of the peptide. To create a reference

sample we pooled together 20 ug aliquots from all strains and

labeled the C-termini with 18O isotopes using trypsin catalyzed

exchange in the presence of heavy H2
18O water as described

above and elsewhere [37]. Prior to the LC-MS analysis 3.75 ug

aliquots from each individual sample were mixed with the same

amount of 18O-labeled reference sample.

The 7 ug aliquots were analyzed on a LTQ-Orbitrap mass

spectrometer that was interfaced with a 75 um i.d.665 cm long

LC column packed with 3 um Jupiter C18 particles (Phenom-

enex). The mobile phase solvents consisted of (A) 0.2% acetic acid

and 0.05% TFA in water and (B) 0.1% TFA in 90% acetonitrile.

An exponential gradient was used for the separation, which started

with 100% A and gradually increased to 60% B over 100 min.

LC-MS datasets were analyzed by in-house software VIPER [38]

that detected features in mass – elution time space and assigned

them to peptides in AMT tag database as described elsewhere

[39,40]. Typically an LC-MS run identifies ,3,500 16O/18O

peptide pairs that co-elute with a 4.0085 Da mass difference.

As we mentioned before, the relative abundances of tryptic

peptides were calculated as the ratio between light and heavy

isotopes. The relative abundances then were normalized with

EigenMS procedure [41] to correct systematic biases that may

arise for example from unequal sample loading, batch-to-batch

differences in sample processing and LC column variability.

Briefly, the EigenMS procedure discovers the systematic trends

(so-called eigenpeptides) in the data using singular value

decomposition and then removes contributions of those eigenpe-

pides from each peptide. For all data analysis purposes the peptide

and protein intensities were log2 transformed and zero-centered

by subtracting the peptide or protein specific means taken across

all the samples.

Immunobloting experiments
To determine the protein levels by immunobloting, liver

samples were homogenized in RIPA including phosphatase and

protease inhibitors (Santa Cruz Biotech sc-24948), and protein

determination were done using the Biorad Dc Assay. Protein

samples were boiled following addition of Laemmli loading dye,

separated on Invitrogen precast gels, and transferred to PVDF

membranes. Membranes were rinsed in 16TBST (Cell signaling

#9997) blocked in 5% skim milk-TBST, rinsed in TBST, and

incubated with primary antibodies diluted in 3% BSA-TBST for

1 hr at 23degC or overnight at 4degC. Membranes were washed

in TBST and incubated with an HRP-conjugated anti rabbit IgG

KPL (#474-1516) 1/5000 in 5% skim milk-TBST. Membranes

were washed again, incubated in ECL-plus, and signal detected

using a Biorad Chemidoc or film. Densitometry was done using

the Biorad Quantity One software. The following list of antibodies

and working dilutions were used for each protein: Fasn (Cell

Signaling cat #3180, 1/2000), Acyl (Cell Signaling cat #4332, 1/

2000), Ywhae (Cell Signaling cat #9635, 1/2000), Vim (Cell

Signaling cat#3932, 1/1000), Rkip (Cell Signaling cat#5291, 1/

2000), Gapdh (Cell Signaling cat#3683, 1/5,000), Glo1 (Sigma

Chemical SAB1100242, 1/20,000), GstA4 (Sigma Chemical

SAB1100244, 1/20,000), AnxA5 (Sigma Chemical AV36687, 1/

2000), Hao1 (Sigma Chemical AV42480, 1/2000), Aldh3A2
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(Sigma Chemical HPA014769, 1/20,000), Actin (Sigma Chemical

A2066, 1/5,000), Acox1 (Abnova PAB4367, 1/2000).

Data filtering
For transcript data we applied three filtering steps based on 1)

genetic heritability, 2) probeset annotation. We have profiled 3

mice per strain which allowed us to estimate the broad sense

heritability for each transcript. Broad sense heritability for each

transcript was measured using ANOVA where strain information

was used as a grouping factor. The broad sense heritability which

is defined as the ratio of genetic variance over total variance for

the phenotype was estimated by dividing the sum of squares of

the strain information factor over total sum of squares in the

ANOVA. The significance of heritability was established if the p-

value for the strain information term in ANOVA was below the

nominal 0.05 threshold. The selection cutoff for including gene in

the analysis based on heritability was set to heritability p-value of

0.05. From the 22700 probesets 10186 probesets did not meet

this cutoff. For annotation filtering, we acquired the Ensembl

Gene ID for each Affymetrix probeset and selected those

probesets that were only annotated to only one Ensembl gene.

From the initial 22700 probesets, 4401 probesets had ambiguous

annotation (either did not map to a gene or mapped to more than

2 Ensembl genes). Overall, 9896 probesets met both filtering

criteria (significant heritability and unique Ensembl annotation).

For the protein data, the initial filtering steps were based on 1)

eliminating peptides with excessive missing values which would

otherwise have unreliable mapping information, 2) eliminating

peptides with missed internal cleavage sites which cause

unreliable measurement. To annotate peptides we utilized the

SpliceCenter web-based tool [42] to obtain the location of the

exon each peptide represents. Peptides which mapped to multiple

exons of more than one gene (as determined by SpliceCenter)

were excluded from the analysis because of ambiguous annota-

tion. The genomic exon coordinates for each peptide was then

used to query the Ensembl database to acquire the Ensembl Gene

IDs. In the second step of filtering peptides that had more than

the value of 2 for the ratio of total variance over technical

variance were chosen. Overall, 1543 peptides met the two-stage

filtering described above.

Genotyping and genome-wide association mapping
Inbred strains were previously genotyped by the Broad Institute

(http://www.broadinstitute.org/mouse/hapmap ), and they were

combined with the genotypes from Wellcome Trust Center for

Human Genetics (WTCHG). Genotypes of RI strains at the Broad

SNPs were inferred from WTCHG genotypes by interpolating

alleles at polymorphic SNPs among parental strains, calling

ambiguous genotypes missing. Of the 140,000 SNPs available,

95,854 were informative with an allele frequency greater than

10% and missing values in less than 10% of the strains. These

SNPs were used for both protein and transcript genome-wide

association analysis.

We applied the following linear mixed model to account for the

population structure and genetic relatedness among strains in the

genome-wide association mapping [27]: y = m+xb+u+e.

In the formula, m represents mean, x represents SNP effect, u

represents random effects due to genetic relatedness with

Var(u) =sg
2K and Var(e) =se

2, where K represents IBS (identi-

ty-by-state) matrix across all genotypes in the HMDP panel. A

restricted maximum likelihood (REML) estimate of sg
2 and se

2

are computed using EMMA, and the association mapping is

performed based on the estimated variance component with a

standard F-test to test b?0. We applied EMMA (Efficient Mixed

Model Association) as an R implementation of a linear mixed model.

The percent of variance explained for each molecular phenotype

was calculated using the SNP effect calculated from EMMA by

defining it as 1-(variance of residuals/variance of original pheno-

types). It should be noted that since EMMA is orders of magnitude

faster than other implementations commonly used, we were able to

perform statistical analyses for all pairs of transcripts and genome

wide markers in a few hours using a cluster of 50 processors. Both

pQTL and eQTL were defined as ‘‘local’’ if the peak association

SNP position was within a 4 Mb interval, flanking 2 Mb on either

side of the transcription start and end of the gene under regulation.

Genome-wide cutoff: Genome-wide cutoffs were calculated as the false

discovery rates using the ‘‘qvalue’’ package for FDR calculation in

the R statistical software [43]. Due to the computational complexity

associated with evaluating q-values for over 400 million p-values, we

computed the FDRs by taking the average FDR for 100 samples

each containing 5 million randomly selected p-values from the

original calculated p-values. FDR calculation was carried out

separately for the protein and transcript dataset.

GO analysis and other statistical methods/software
All statistical analyses and data visualizations were carried out

using the R statistical software (available at http://cran.r-project.

org/). Classification of proteins and transcripts to various GO

categories was accomplished using Mouse Genome Informatics

website at Jackson Laboratories and the GO ontology tool at

Princeton. For each probe and each peptide, we first obtained the

MGI IDs using the MGI batch query tool at http://www.

informatics.jax.org/ [44]. Using MGI IDs we utilized the GO

Term Mapper at http://go.princeton.edu, which is based on

map2slim algorithm [45] to obtain the GO annotations and

summary statistics. The background geneset used in this analysis

was the list of all genes annotated by MGI. To assess the significance

of the correlation coefficients observed in the PT-pair GO analysis,

for each GO category we created 100,000 bootstrap datasets each

equal in size to the number of genes assigned to the GO term.

Bootstrapping was carried out randomly and without replacement

from the pool of 584 original correlation p-values among the PT-

pairs. The significance of the observed average p-values for each

GO term is reported as the two-tailed test against the empirical

distribution created by the corresponding 100,000 permutation set.

All the correlation coefficients and corresponding p-values reported

in the paper are calculated using the bicor function in the WGCNA

R package [46]. The main advantage of using bicor, which

performs biweight midcorrelation calculation, over Pearson’s

correlation is based the robustness of the correlation coefficient

measurement to the presence of outliers in the data.
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Figure S4 Average correlations of the transcript and protein
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transcript pairs.
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detection.
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Table S6 Effect of biologic replicates on eQTL detection.
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