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ABSTRACT OF THE DISSERTATION 

 

Theoretical Models of Dirhodium Catalyzed Reactions and Divergent Heterolytic 

Fragmentations 

 

The work described in this dissertation builds upon a vast body of work in applied theoretical 

organic chemistry and spans various sub-disciplines within chemistry. Organic chemistry, 

organometallic chemistry, and organic chemistry relevant to biological systems—sub-topics of 

these areas are discussed in this dissertation. A common theme threads through all chapters: 

computational tools were used to investigate mechanisms of synthetically relevant—and 

theoretical—reactions to derive general, predictive, and portable models to inform future studies.* 

Chapter 1 outlines the state of modern, applied theoretical organic chemistry. One role of 

an applied theoretical organic chemist is to make sense of the complex patterns that emerge out of 

experimental synthetic organic laboratories. This includes, but is not limited to, deducing 

mechanistic models that experimentalists can arm themselves with in exploring new reactions. 

Theoretical chemists use computational methods, in the form of quantum chemistry calculations, 

 
* My general research interest and aim is to solve open questions in organic chemistry using quantum 

chemistry (computational) tools with an eye towards mechanistic model-generation of fundamental organic 

reactions. Through the lens of physical organic chemistry, the “swiss army knife” of organic chemistry, I 

pursue questions that hold potential to offer valuable insight into reactivity and selectivity of reactions that 

organic chemists care about, reactions that have broad and direct application in the synthesis of complex 

organic molecules. Knowledge gained from these mechanistic organic studies help experimental chemists 

hone their tools (i.e., reactions) to build molecular targets effectively. I aim for my mechanistic models to 

have broad potential for application in the areas of organic, bio-organic, organometallic, and physical-

organic chemistry.  
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to probe the nuances of organic reaction mechanisms. Chapter 1 discusses these methods along 

with caveats that inevitably come with limited scientific tools (such as ours).  

Part I of this dissertation (which includes Chapters 2-6) homes in on dirhodium(II)-

catalyzed reactions and provides examples for which mechanistic details, up until our theoretical 

investigations, were left in the dark: specifically, mechanistic nuances of ylide-

formation/sigmatropic rearrangements (Chapters 2 and 3), donor/donor carbene C-H insertion 

reactions (Chapters 4 and 5) are described. Specifically for metal-catalyzed ylide-forming 

reactions, whether dirhodium catalysts are explicitly bound to the ylide intermediate upon 

subsequent sigmatropic rearrangement (e.g., [1,2]- or [2,3]-shift) remained unknown. A 

“breadcrumb trail” of evidence in the literature, however, provided ample control experiments for 

a systematic and comparative theoretical analysis. Reactants, intermediates, and products of 

synthetically-relevant ylide-formation [1,2]- and [2,3]-rearrangements—and the transition state 

structures that connect them—were computed with density functional theory. It was found that 

whether the metal catalyst dissociates before rearrangement depends on the system—the most 

significant factor that directs catalyst dissociation before rearrangement, however, is the steric bulk 

of the group adjacent to the carbene center. Additionally, computational studies were done in 

collaboration with the group of Prof. Jared T. Shaw on dirhodium-catalyzed C-H insertion 

reactions of donor/donor carbenes (Chapter 5). A stepwise mechanism with an SE2 C-C bond 

formation was discovered in the C-H insertion reaction. Finally, dirhodium-catalyzed 

cyclopropanations of cycloheptatriene diazo compounds to semibullvalenes, described in Chapter 

6, showcases one example of a theoretical prediction encouraging a synthetic collaboration to test 

predictions sparked by theory (ongoing). 
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Part II of this dissertation describes a foray into heterolytic fragmentation reactions. In 

Chapter 7, computational studies of a designed 1-aza-adamantane model system—by density 

functional theory, natural bond orbital, ab initio molecular dynamics simulations, and external 

electric field calculations—revealed a divergent fragmentation, one in which a substrate can 

fragment to two unique products via different mechanistic pathways. Substituents, electrostatic 

environment, and dynamic effects were found to all influence pathways to competing products. 

Chapter 8 provides a portrait of through-bond stereoelectronic effects in products that 

emerge from a fragmentation reaction, 3-azabicyclo[3.3.1]nonanes. Computational studies of 

substituent effects, noncovalent interactions, natural bond orbitals, isodesmic reactions, and 

hydration propensities demonstrated that hyperconjugation/conjugation through-bond effects 

dominated the different reactivity between two similar compounds—a vinylogous chloride and a 

vinylogous ester. 

Finally, Part III of this dissertation describes an isolated project which benefitted from 

close collaboration between our group (theory) and the groups of Prof. Reuben Peters (Iowa State 

University), Prof. Qiang Wang (Sichuan Agricultural University) and Prof. Jeroen Dickschat 

(University of Bonn), all experimental groups in terpene chemistry. Collaboration between 

theoretical and experimental groups achieve a depth of mechanistic insight that is potentially 

missed in the absence of collaboration. This synergy is demonstrated in a collaborative project 

with all three groups, with whom a plausible mechanism was elucidated for the formation of a 

natural product, (14S)-cleistantha-8,12-diene, from barley diterpene synthase, HvKSL4 (Chapter 

9).  
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Chapter 1 

 

Modern Applied Theoretical Organic Chemistry†

 

 

 
There is no nobler aspiration of the human intellect than desire to compass the cause of things. 

 

- T. C. Chamberlin (The Journal of Geology, 1897, 103, 349-354)  

 

1.1 Introduction 

The development and refinement of useful models for organic reactions is the guiding light of 

applied theoretical organic chemistry. A theoretical organic chemist’s dream is to have their ideas 

written down on the glass of a hood and discussed among synthetic chemists, trying to make some 

sense of their reactions. If our developed models inspire new experiments, increase understanding 

about the chemical world, and are portable enough to predict new directions (ideally on a napkin), 

then we have done our job well. 

 Theoretical organic chemists are motivated by questions such as, ‘what is a reaction’s 

mechanism?’; ‘what does the stereo-determining transition state structure look like and what is its 

energy relative to other transition state structures?’; ‘why is this product preferred over the other?’; 

‘what are the physical forces behind this experimental observation?’ This field—which inevitably 

overlaps with parts of computational chemistry—provides answers and opens new questions by 

 
† Portions of this chapter are adapted and modified from the following published article: 

Laconsay, C. J.; Tantillo, D. J. Melding of Experiment and Theory Illuminates Mechanisms of 

Metal-Catalyzed Rearrangements: Computational Approaches and Caveats, Synthesis 2021, 53, 

3639-3652 with permission from Georg Thieme Verlag KG. 
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supplying models rooted in quantum mechanics.1 Theoretical organic chemists wield quantum 

chemistry calculations as tools in their adventures, be it ab initio or density functional theory (DFT) 

methods (see below). As a result (and in the spirit of Moore’s law),2 advances in computing power 

have lowered the cost for developing these models: as computing power accelerates so does 

discovery in theoretical organic chemistry. This has inevitably opened the doors to questions of 

greater complexity. 

 The continued advance into unknown chemical space by synthetic groups has increased 

the demand for satisfactory models for reaction mechanisms (and newfound understanding). 

Fortunately, faster and more efficient quantum chemical methods (like DFT) have allowed 

theorists to keep up in some areas. As a result, experimental and theoretical researchers will often 

venture together—the experimentalist asking ‘what’, and their theoretically-leaning colleagues 

asking ‘why’ (though it is not uncommon for the roles to reverse or for both camps to ask these 

questions simultaneously). The synergy between these collaborators helps them reach a layer of 

understanding that is inaccessible to either group if they were to venture new areas alone.  

While an experimentalist explores chemical space, the possible set of chemical species,3 a 

theorist explores the concomitant potential energy surface (PES) of one (or more) representative 

reactions to probe mechanism. Consider a synthetic paper. It will often describe the scope of a 

reaction (i.e., the chemical space). The breadth of the reaction scope communicates to the reader 

that their developed method is general, specified under a set of reaction conditions. A theory paper, 

on the other hand, might describe a one-dimensional “slice” (i.e., the reaction coordinate) of the 

3N-6 potential energy surface (i.e., the PES if it’s a non-linear molecule; N being the number of 

atoms). Whether the described, plausible mechanism is relevant to reactions of similar molecules 

is much more challenging to show. Nonetheless, despite the different levels of exploration (i.e., 
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exploration of chemical space versus energy space), there is much benefit gained by close 

collaboration between experimental and theory groups—both enhance understanding. 

1.2 Mechanistic Models 

A reaction mechanism is a model that describes how reactants are transformed to products 

(expressed in an arrow-pushing scheme, a PES picture, a collection of molecular dynamics 

trajectories, etc.).4 A plausible reaction mechanism is one with which all sets of valid experimental 

and computational evidence are consistent. Of course, the validity of pieces of evidence can be 

debated. However, if one discounts a piece of evidence in presenting a mechanistic model, the 

argument for doing so should be clearly stated. In that a mechanism is a model, it cannot be 

proven.5–8 Rather, the best one can do is sift through the multitude of possible mechanistic models 

that fit the available data, clearly define criteria for ranking them (or not), and propose future tests 

(experimental or computational) that can lead to model refinement.9 After interrogating and 

refuting hypotheses, one often generates enough confidence in a mechanism to consider it ‘valid’ 

or ‘accepted,’ which it remains until demonstrated otherwise, a notion stemming from, but not 

exactly aligned with, the ideas described by the philosopher Karl Popper.10,11 But one must not 

become too invested in an accepted model, for it could be invalidated by future tests. As Richard 

Feynman famously stated, “…you must not fool yourself and you are the easiest person to fool.”12 

In the words of astronomer John Gribbin, “the best that can be said is that it [the model] has passed 

all the tests applied so far.”13,14 Of course, a mechanism need not be proven to be useful.15 Often, 

a model’s utility and virtue lies in its ability to make valuable predictions.16 

This dissertation focuses on computational studies that provide evidence in support of or 

against a given reaction mechanism. Modeling mechanisms of complex reactions by quantum 

chemical calculations is now commonplace;17–19 however, we are aware of (and agree with) the 
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notion from philosophers of science that explanations of organic phenomena, as described by 

organic theory, simply cannot be reducible (in the philosophical sense) to quantum mechanics 

alone.20  

The first step of the modeling process in this context generally involves applying 

computational methods to assess the structural and energetic viability of an arrow-pushing 

mechanism (hypothesized based on existing experimental evidence) by computing relevant 

structures (reactants, intermediates, products, and the TSSs connecting them, all of which are 

called stationary points) on a PES (Figure 1.1).  

 

 

Figure 1.1. Simple potential energy surface, describing the energy change as a reactant (R) 

transforms to a product (P) through a single transition state structure (TSS) along the reaction 

coordinate. Horizontal lines in local minima denote zero-point energies for R and P. Activation 

barrier (E‡) and total energy change (E) are shown. 

 

A PES conveys a molecule’s change in energy (E) with respect to changes in structure 

(tracked by the reaction coordinate). For a molecule with N atoms, its internal potential energy will 
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be represented by a hyperdimensional surface of 3N-6 dimensions for non-linear molecules or 3N-

5 dimensions for linear molecules (for N ≥ 3). We know these dimensions because each nuclei 

have three ways of moving (or rotating) in the same direction in three dimensions along (or around) 

the x, y, and z axes. A PES is often represented with a reduced dimensional reaction coordinate 

diagram as in Figure 1.1, a one-dimensional “slice” of the hyperdimensional potential energy 

surface. Note that reduced dimensional PESs chosen based on chemical intuition, of course, have 

limitations, and tools like PathReducer21 aim to solve these issues by identifying key degrees of 

freedom that captures the most structural variance in the fewest dimensions. Key to generating 

PESs (and quantum chemistry, more generally) is the Born-Oppenheimer (BO) approximation, 

which decouples the movements of nuclei and electrons under the reasonable assumption that 

nuclei are much heavier than electrons—the view that electrons move in an average field of nuclei 

and vice versa. The BO approximation makes the exploration of a potential energy surface of 

moving nuclei into solving an electronic Schrödinger equation.   

Transition state theory (TST) relates the free energy barrier of a reaction to its rate.22 A 

postulated mechanism is consistent with the calculations if computed barriers (E‡, or G‡ when 

the vertical axis is Gibbs free energy; Figure 1.1) are low enough that the associated rate would be 

fast enough under the experimental conditions, based on the Eyring equation (uses G‡), in need 

of revision if computed barriers are much too high, or in need of a deeper dive if computed barriers 

are borderline, i.e., at the high end or just beyond the range of barriers that are reasonable. This 

process is iterated until a mechanism is found for which all computed barriers are reasonable and 

that can account for any side products.23 A ‘good’ computed energy profile,24 therefore, aims to 

provide a productive and portable model15 that (i) predicts a reaction mechanism that aligns with 

laboratory observations, (ii) provides otherwise elusive insight, and (iii) allows new hypotheses to 
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be generated that can be tested in subsequent experiments.25 As Plata and Singleton have noted, 

the “primordial currency of information provided by computational studies consists of the 

geometries and energies of intermediates and transition states along the mechanism.”26 Thus, 

rigorously scrutinizing theory’s performance against experiment is crucial.27 For more in-depth 

discussion of models in chemistry and what makes a good energy profile, we recommend the work 

of Eisenstein and coworkers.24  

 

1.3 Theoretical Approaches and Caveats 

1.3.1 Some Quantum Mechanics Basics 

All organic chemistry is concerned with nuclei, electrons, and their interactions. Thus, theoretical 

organic chemists can begin answering mechanistic (and structural) questions in organic chemistry 

by solving an electronic structure problem, i.e., solving the time-independent Schrödinger equation 

(eq. 1). 

 

Ĥ|Ψ〉 = E|Ψ〉       (1)  

 

The Schrödinger equation allows one to associate an energy (E) to a particular set of nuclei oriented 

in space and its concomitant distribution of electrons, expressed by a wave function (Ψ), and 

provides a way to obtain a chemical reaction’s potential energy surface and other parameters for 

deriving properties of interest (e.g., activation barriers, energies of reactions, etc.). Solving this 

equation requires the Hamiltonian operator (Ĥ), which operates on Ψ. Ĥ is made up of kinetic and 

potential operators, used to operate on Ψ to obtain Ψ back with an E, an observable—in quantum 
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mechanics, there is a quantum mechanical operator for every physical observable. We learn much 

about our molecular world by solving—or, in most cases, approximating—the Schrödinger 

equation. Alas, we can only solve it exactly for simple toy models, such as the hydrogen atom and 

H2
+ cation. Everything else, that is, everything that concern organic chemists, requires 

approximations.28 

 Though the history of quantum and computational chemistry begins with ab initio 

methods—wavefunction (Ψ) based electronic structure theories (such as Hartree-Fock theory and 

post-Hartree-Fock theory)—electron density (|Ψ|2 or ) based methods, such as Kohn-Sham 

density functional theory (DFT), are generally preferred for studying organic systems of the size 

we are concerned with here because, although the machinery of HF and DFT theories are generally 

the same, DFT methods are generally cheaper in terms of computational cost. The difference, 

however, lies in how the energy is calculated: HF theory calculates the energies directly from the 

orbitals, while DFT calculates the energy from the orbitals and an approximate functional of the 

electron density.‡ 

In practice, both methods use a self-consistent field (SCF) approach to approximate 

solutions to the Schrödinger equation. Within the Hartree-Fock (HF) procedure,28 for example, an 

SCF algorithm will begin with a set of nuclear coordinates and an initial guess of the molecular 

orbitals (one-electron wavefunctions, also called spin orbitals) that describe the positions of the 

electrons. In HF theory, the N-electron system is described by a single Slater determinant—as 

opposed to methods with multiple determinants, i.e, multiconfigurational methods—where 𝜒𝑁 is 

the Nth molecular (spin) orbital (eq. 1). When expressed as a Slater determinant, the wavefunction 

satisfies the antisymmetry principle.  

 
‡ For “DFT in a Nutshell”, see the following reference by Burke and Wagner: International Journal of Quantum 

Chemistry, 2013, 113, 96-101. 
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|Ψ0〉  =  |𝜒1𝜒2 ··· 𝜒𝑁〉       (1) 

 

According to the variational theorem, the ‘best’ wavefunction (Ψ0) is the one with lowest possible 

energy (E0) (eq. 2-4). In the equations below, Φ denotes some trial ground state wavefunction, and 

Ψ0 denotes the exact ground state wavefunction, and their energies, E0 and EΦ, respectively. 

 

   E0  ≤  〈Φ|Ĥ|Φ〉       (2) 

   E0  =  〈Ψ0|Ĥ|Ψ0〉       (3) 

E0  ≤  EΦ      (4) 

 

The SCF procedure iteratively solves the Schrödinger equation for the set of molecular orbitals 

that minimizes E. It does this by taking an initial “guess” of molecular orbitals (from a linear 

combination of atomic orbitals; LCAO), computing the average field ‘felt’ by each electron, and 

solving the one-electron Schrödinger equation using Slater determinants to generate a new set of 

molecular orbitals. The energy is evaluated at each of these steps, and the procedure is repeated 

iteratively until the average field felt by each electron and orbitals do not change within a set of 

criteria, in which case the calculation is said to converge and reach self-consistency, hence self-

consistent field. Density functional theory SCF calculations proceed in a similar manner except 

that Fock equations are now Kohn-Sham equations, and the initial guess begins with electron 

density, not molecular orbitals.29 The rest of the machinery is effectively the same. 

Though ab initio methods are useful for reliably obtaining accurate energies30 relative to 

DFT methods—and they often are used in subsequent calculations to correct DFT electronic 
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energies—they often require a prohibitive amount of computer time (vide infra). DFT methods, 

on the other hand, reach similar levels of accuracy at a cheaper computational cost, which greatly 

motivates their use in geometry optimizations and frequencies analysis, especially when studying 

organic systems increasingly large numbers of atoms.17,31–35 Note that reliably obtaining accurate 

absolute energies by DFT is (in most cases) futile: “when DFT results are examined critically, 

total energies of medium-sized molecules are often in error by one full hartree (627 kcal mol-1)”.30  

By “accuracy” in mechanistic DFT studies we mean accurate relative energies, which rely on 

cancellation of error. The standard error bars for reaching what is called “chemical accuracy” for 

relative energetic quantities is within 1 kcal mol-1 of experiment or high level computational 

method.36 In one sense, computational organic chemistry owes its existence to cancellation of 

error. 

 

1.3.2 Selecting an Appropriate Theoretical Approach 

Since we cannot solve the Schrödinger equation exactly for most systems, choosing an appropriate 

theoretical approach depends on the system at hand and the type of question being asked. Most of 

the systems considered in this dissertation are < 300 atoms, and so quantum chemistry methods 

are most appropriate for typical questions probing mechanism. Below, we home in on metal-

catalyzed sigmatropic rearrangements and small organic molecules that undergo heterolytic 

fragmentations. For most reactions in this realm, DFT is the most suitable theoretical approach. 

The literature is filled with a continuous stream of updated discussions regarding best practices of 

DFT on molecular computational chemistry. We recommend a recent article by Grimme for state-

of-the-art practices.37 
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As this dissertation focuses prominently on metal-promoted sigmatropic shifts, we discuss 

in details some general principles for applying computational chemistry to these transformations 

below, but for thorough tutorials on the nuances involved in modeling organometallic reactions, 

including nontrivial mistakes, misconceptions, and misinterpretations, we recommend the work of 

Baik, Peverati, Lan and coworkers.38–40 Many of the organometallic systems are relatively large, 

so choosing an appropriate density functional approximation and basis set (i.e., level of theory) is 

not always trivial. 

In addition to organometallic systems, this dissertation discusses small organic systems, 

such as those involved in heterolytic fragmentations. Heterolytic fragmentation reactions fall 

within the category of small to medium organic systems, which includes a large swath of 

compounds. So, finding an appropriate quantum chemistry method (usually DFT) to study 

fragmentations can be onerous, as it is in any small to medium organic system because there is a 

‘zoo’ of density functional approximations to choose from.41–44 We, therefore, recommend the 

general approach: (1) search the literature for computational benchmark studies that establish 

appropriate computational methods for the system at hand by testing methods against reliable 

experimental data (e.g., ionization potentials or known, experimentally-derived activation barriers) 

or high-level of theory reference calculation; (2) if benchmark studies do not exist, then select 

levels of theory (be it DFT or ab initio) appropriate for systems of similar size and conduct a 

benchmark study against higher-level methods (vide infra); (3) test various levels of theory against 

each other and ask ‘do my conclusions depend on the chosen level of theory?’. If the conclusions 

(qualitative or quantitative) depend on the level of theory, more consideration may be needed. 
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1.3.3 Recommended Computational Tools (for Relevant Systems) 

With the advent of high-performance computing hardware and development of user-friendly 

quantum chemistry software, the relationship between computation and experiment has 

strengthened.45,46 As mentioned above, DFT is currently the standard method of choice for 

interrogating the mechanisms on which we focus here. Unlike wavefunction theory (WFT) 

methods, which can be much more computationally demanding, DFT approaches solving 

electronic structure problems in terms of the electron density rather than the wavefunction 

(although wavefunction-based algorithms are generally used).29,47 The choice of DFT methods is 

generally a practical one; systems of the size (number of electrons) of interest here (i.e., medium 

to large organic systems) generally cannot be modeled in a justified amount of time with currently-

available post-Hartree-Fock WFT methods when DFT methods of similar accuracy can drastically 

reduce computational cost.39–45 Much has been written on what recipe of functional and basis set 

is best to achieve “chemical accuracy” for particular types of organometallic reactions, and we 

recommend several recent reviews for a more in-depth discussion on this topic.18,35,39,50 We 

provide several examples below that highlight the importance of (a) knowing which functionals 

and basis sets have been validated for particular metals (here, mainly Rh, Cu, and Au) undergoing 

particular types of reactions (e.g., closed shell versus open shell processes), (b) which functionals 

and basis sets are affordable but sufficient for addressing conformational complexity and 

variability of ligand arrangements, and (c) which models of solvation, both implicit and explicit, 

are appropriate for answering the mechanistic questions at hand. 
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1.3.4 Choosing a Functional and Basis Set 

Choosing a reasonable level of theory for any mechanistic study can be a daunting task.42,43 

Choosing a level of theory then becomes a balancing act between achieving the accuracy required 

for the particular question at hand and the associated computational cost. One challenge in 

choosing a level of theory for organometallic reactions is the lack of experimentally-determined 

rates and concomitant Gibbs free energy barriers, which enable the benchmarking required to 

accurately deduce an appropriate level of theory.24   

 What combination of functional and basis set do we recommend for metal-promoted 

sigmatropic shifts? The short, admittedly unsatisfying, answer is it depends.18 The DFT functional 

determines how the energy is calculated based on the wavefunction and the density. All functionals 

are approximate and its accuracy depends on the property of interest. The basis set is constructed 

from linear combinations of a set of basis functions to form the orbitals, and the size of the basis 

set determines the flexibility of the calculation—the larger the basis set, the more flexible the 

orbitals. We recommend that new practitioners consult the review by Schoenebeck and coworkers 

for more in-depth discussion.18  

We recommend a few starting points for reactions promoted by dirhodium 

tetracarboxylates, which constitute the bulk of the reactions described here. Some DFT functionals 

we and others17,18,24,45 have found useful include B97X-D,51 B3LYP-D3, B3LYP,52 MN15,53 

PW6B95-D3,54 and M06.55  It is now common to use density functionals with a dispersion 

correction (e.g., DFT-D3 such as B3LYP-D3)56 to account for medium- and long-range London 

dispersion (LD) forces—LD is the attractive term in the van der Waals equation and has been 

shown to be critical in many reactions, but ‘unduly underestimated’.57–59 Indeed, some groups have 

exploited LD interactions to fine-tune the design of new heterobimetallic paddlewheel complexes, 
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showcasing the importance of LD as a design element in the development (and computational 

modeling) of new catalysts.60,61  

For basis sets to use when optimizing geometries, we have had success using double- 

basis sets like Ahlrich’s def2 basis sets (e.g., def2-SVP62) or a double- Pople basis set for non-

metals (e.g., 6-31+G(d,p)) plus an effective core potential (ECP) for the transition metals (e.g., 

SDD63 or LANL2DZ64—we note that LANL2DZ lacks polarization functions but can be added on 

for certain atoms65). Energies can then be reevaluated through single-point calculations with a 

larger basis set, such as def2-TZVPP or 6-311+G(d,p) (with SDD for the transition metal). Single-

point calculations are those in which the nuclear configuration is kept fixed, but the electronic 

wavefunction is reevaluated to obtain energies. These types of calculations are used to accurately 

compute the electronic energy of the system with a larger, more flexible basis set. Generally, 

coupled cluster methods like CCSD(T) are preferable for SP calculations when the system of 

interest is small enough (e.g., organic molecules), but for the reactions of interest here, such high-

level WFT-based methods are not currently feasible. Moreover, some have advised using single-

reference post-HF methods with caution when applied to bond breaking and forming 

transformations involving transition metals.66 It is worth noting that a much more cost-effective 

alternative, domain-based local pair natural orbital CCSD(T) (DLPNO-CCSD(T)), has been 

shown to yield results that have accuracy close to CCSD(T) at a much lower computational cost.67 

Several caveats are in order regarding basis sets. First, basis set superposition error (BSSE) 

is attributed to an overestimation of the strengths of intermolecular interactions and thus 

overestimation of the binding energy between two fragments when small basis sets are used. This 

can lead, for example, to problems in predicting metal-ligand or metal-substrate binding energies. 

Second, basis set incompleteness error (BSIE) results from all fragments not having large enough 
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basis sets composed of appropriate types of basis functions, i.e., not providing results near the 

complete basis set (CBS) limit.95 We recommend the tutorial review by Morgante and Peverati, 

and references therein, for a deeper dive into the sources of these errors and ways to remedy them.70  

In short, however, larger basis sets are usually better, although that is not guaranteed for DFT 

calculations. It is also generally better to include diffuse basis functions (important for anions and 

systems with long-range non-covalent interactions) and/or polarization basis functions—which 

give molecular orbitals the potential for a larger spatial “spread” from the nuclei and increased 

“flexibility”, respectively—when quantitative agreement with experiment is necessary and doing 

so is cost-effective.69,70 However, one should be cautious in adding these to smaller basis sets (e.g., 

double- basis sets).69 Third, an ‘ultrafine’ integration grid, (e.g., (99,590) grid at minimum), is 

recommended, as smaller grids may introduce considerable errors in computed free energies.71 

This grid size is the default grid in commonly used software,72 but it is prudent to check for one’s 

software of choice. These caveats being mentioned, we would like to re-emphasize that the choice 

of theoretical method should be rooted in studies (previously reported or carried out during a 

mechanistic study) in which computational methods are benchmarked against experimental data 

or, if such data does not exist, against results from higher level theoretical methods.46 This is true 

regardless of the type of reaction being studied. 

 Some metal-carbene reactions may require consideration of electronic states beyond closed 

shell singlet states—i.e., all electrons paired—in which case, open shell electronic structure 

calculations become (radically) important.73,74 DFT methods, however, can still be useful if results 

are viewed with appropriate caution, e.g., consideration of whether reactivity comes from separate 

electronic states (DFT is likely okay) or relevant electronic states have multireference character 

(DFT is not okay).66,73,75–77 A collaborative experimental and theoretical study of Rh-catalyzed 
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oxonium ylide formation/[2,3]-rearrangement is a good case in point: Davies and coworkers 

discovered in their computations that an intermediate directly following the [2,3]-rearrangement 

transition state revealed other electronic states (closed-, open-shell singlet and triplet states) all 

within energies close to each other.78 In other words, it gets electronically complicated after ylide 

formation and the [2,3]-rearrangement occurs, and as the authors point out, requires 

multideterminant calculations for a full picture of the energetic landscape. Without employing 

these methods, however, they came up with a simplified model, which revealed that these states 

cross near the intermediate region on the PES, which indicates that the [2,3]-rearrangement is more 

“reactant-like” and spared any radical character. These computational results helped rationalized 

some of their experimental results. 

For the radical-inclined, we recommend the element Fe. Systems involving Fe are 

infamously challenging to model given the complexity introduced by different spin states. Though 

this has for many years encouraged theoreticians to avoid Fe, some have admirably taken the 

plunge.79,80 Take, for example, the importance of open-shell species in iron-containing systems, 

which has been crucial in studies of iron porphyrin (heme) carbenes, a source of lively debate. 

Here, DFT methods are still the method of choice.81,82 For advice on properly modeling such 

systems, we direct the reader to recent reviews.82–84  

 

1.4 Post-Transition State Bifurcations and Non-Statistical 

Dynamic Effects 

Post-transition state bifurcations (PTSBs) are important phenomena in organic chemistry which, 

when relevant in a reaction, cannot be adequately captured by classical TST. A PTSB describes a 
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PES with a fork in the pathway downhill in energy from the transition state along the reaction 

coordinate to the products (Figure 1.2).  

 
Figure 1.2 Left-hand reaction coordinate (blue): a schematic potential energy surface with a post-

transition state bifurcation (PTSB). Right-hand reaction coordinate (red): a schematic potential 

energy surface ideal for dynamic matching.  

 

Transition state theory and its relatives (e.g., variational TST85 and Rice-Ramsperger-

Kassel-Marcus theory, or RRKM86) are all statistical theories. Effects that cannot be explained by 

these theories, therefore, refer to non-statistical dynamic effects. The inherent assumptions of 

classical TST—that, for example, a single TSS leads to a single product, and that the rate and 

selectivity of a reaction is independent of the shape of the PES—break down when a PTSB is 

relevant and non-statistical dynamic effects govern selectivity (vide infra).22,85–89 In these cases, a 

single TSS can lead to more than one product and the shape of the PES does matter for a reaction’s 

selectivity. Much ink has been spilled on this topic since discovery of PTSBs that it would be 

inappropriate to attempt a thorough review here.87,90–98 This includes insightful reviews and 

research articles by past (and current) Tantillo-group members during the years leading up to this 

dissertation (2017-2022): work from Dr. Stephanie Hare,21,99–103 Dr. Renan Campos,104 Dr. Hsiao-
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Han Chuang,105 Dr. Mengna Bai,106 and (soon to be Dr.) Zhitao Feng.106,107 However, as Chapter 

3 involves a reaction with a PTSB, it is appropriate to briefly introduce the topic here. Note: the 

terms ambimodal108 and bispericyclic90 TSSs fall under the umbrella of reactions with a PTSB. 

Ambimodal and bispericyclic TSSs simply refer to the TSSs associated with a PTSB. These topics 

were pioneered by Caramella,90 and representative papers are cited here.109–112 Also note that there 

can be more than one PTSB on a PES! However, they usually follow one another sequentially.113 

Research on PTSBs is ongoing in many groups around the globe, so much so that it is regrettably 

impossible to mention all of them here.114–117    

 How do we study reactions with a PTSB? We must remember that molecules are not static, 

despite our valuable depictions118 of them as static pictures. Roald Hoffmann wrote that 

“molecules don’t sit still”.119 Molecules are dynamic and to model their dynamic behavior we must 

use molecular dynamics (MD) simulations. In our lab, we use ab initio MD (AIMD), sometimes 

called Born-Oppenheimer MD (BOMD) in trajectory studies to study the dynamic behavior of 

organic molecules and their effects on reactivity and selectivity. Quantum chemical computations 

are used to obtain a starting point for the trajectory studies—i.e., a stationary point like a TSS or 

minimum. With the same level of theory, force constants are computed, and based on reaction 

temperature, a sample of Boltzmann-weighted energy is randomly distributed in the vibrational 

modes. These vibrations are used to propagate the trajectories in the forward and backwards 

direction along the reaction coordinate, with the force constants re-computed at each time step “on 

the fly” (typically 1 fs time steps; shorter is better, but 1 fs is typically fine given the computational 

cost of such simulations).120 Trajectories are run until they reach a new minimum, at which point 

the trajectories are counted to ascertain information such as the product/reactant selectivity, degree 
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of recrossing trajectories—trajectories that pass the dividing barrier separating reactant and 

product more than once—and time required to reach the reactant or product minima.95 

The governance of nonstatistical dynamic effects in reactions where TST fails is more 

general than one might think, and even found in textbook reactions.88,89,121–123 One type of 

nonstatistical dynamic effect that emerges out of these circumstances—where a shallow 

intermediate exists downhill in energy from a TSS along a PES, or in cases where the surface 

around the transition state region if flat—is called dynamic matching. When a trajectory 

approaches a local minimum—say an intermediate along a PES—and holds enough energy and 

momentum to carry it over the second barrier to the product without rapid redistribution of its 

internal energy. The trajectory can simply “skip”, or spend less time in, the shallow intermediate 

(Figure 1.2). This phenomenon is what is referred to as dynamic matching, as described by Barry 

Carpenter.121 Another way this is sometimes stated is that the vibrational modes of the trajectory 

coming from the first reaction step are such that the so-called intramolecular (internal) vibrational 

energy redistribution (IVR) does not occur rapidly enough to equilibrate in the local minimum (in 

TST, assumed to be rapid). This will manifest itself in short to long lifetimes of the intermediate 

structure.93 

The impact of non-statistical dynamic effects on organic reactions is well-established for 

small systems in the gas phase or in implicit solvent—little is known in boxes of explicit solvent. 

In addition, much of our current understanding in this context comes from potential energy 

surfaces (E) of reduced dimensionality and (often) misses crucial information about the free energy 

surface (G). The relevance of non-statistical dynamic effects, therefore, is evidently complicated 

by solvent effects103,124 and effects due to entropy.125,126 This inevitably leaves the door open for 
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progress in this area. Indeed, much work is still needed to fully appreciate entropy and solvent 

effects on organic reactions.127,128 
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Chapter 2 

 

Melding of Experiment and Theory Illuminates Mechanisms of 

Metal-Catalyzed Rearrangements: Computational Approaches and 

Caveat§

 

 

 
The fertilizer was a blending of interests, where the organic chemist became a theoretician and 

the theoretician became an organic chemist. 

 

- Jeffrey I. Seeman (J. Org. Chem. 2015, 80, 11666).  

 

2.1 Introduction 

Sigmatropic rearrangements have long been used to facilitate synthetic campaigns toward 

challenging targets.1 While, historically, [3,3]-sigmatropic rearrangements have received the most 

attention, [1,2]- and [2,3]-sigmatropic rearrangements of onium ylides generated via carbene 

transfer reactions have garnered considerable attention, since they allow for formation of carbon-

carbon and/or carbon-heteroatom bonds that can be otherwise difficult to construct. Efforts to 

achieve these couplings stereoselectively with transition-metal catalysts have enabled reliable and 

effective methods to introduce new stereogenic centers in complex target molecules.2,3 The most 

commonly used transition-metal catalysts for these reactions are rhodium and copper-based 

 
§ This chapter is an adapted version of the following published article: Laconsay, C. J.; Tantillo, 

D. J. Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed 

Rearrangements: Computational Approaches and Caveats, Synthesis 2021, 53, 3639-3652 with 

permission from Georg Thieme Verlag KG. 
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catalysts,4,5 but catalysts based on other metals, such as gold,6,7 ruthenium,8–11 cobalt,12,13 

palladium,14–16 silver,17 nickel,18 and iron19–26, have also been developed for these purposes. 

In 1981, Doyle and coworkers27 brought new life to the field of transition-metal catalyzed 

[2,3]-sigmatropic rearrangements, building on past work by Kirmse and Kapps,28 by 

demonstrating utility for organic synthesis (Figure 2.1).29–36  

 

Figure 2.1 Ylide [2,3]-sigmatropic rearrangements via carbene transfer. 

 

Herein, we examine approaches, both theoretical and experimental, for probing the mechanisms 

of such reactions and feeding the resulting mechanistic knowledge into the reaction design process. 

Though metal-free carbenes can also form ylides via photochemical carbene transfer,37 this 

approach has been reviewed elsewhere.38,39 Recent research on diazo compound activation and 

carbene transfer by main group elements, such as the use of triarylboranes (e.g., B(C6F5)3), has 

also offered an alternative method to transition-metal catalyzed carbene transfer—this line of 

research is reviewed elsewhere as well.40,41 

Many mechanistic aspects of metal-promoted rearrangements are not well-understood. For 

instance, though these reactions often are employed in a stereoselective manner, the origin of 

enantioselectivity is not always apparent.3,42 In addition, it is sometimes unclear which steps in the 
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path to products actually involve a covalently bound metal.3,43,44 Freeing such details from the 

shadows presents an opportunity for discovery.  

 Experiment and theory provide approaches to studying mechanisms that are often carried 

out separately or in parallel.45 However, as we will discuss later, there are benefits from their 

intertwingling.46–48 Experimental studies frequently involve control experiments without metals, 

competition experiments, and kinetic profiling. Computational studies generally involve applying 

quantum chemical calculations to glean structural and energetic information about relevant 

reaction intermediates and transition-state structures (TSSs), commonly known as stationary 

points along a reaction pathway. In some cases, this information is augmented by analyses of 

noncovalent interactions and dynamic effects.49–54   

The goal of this chapter is to discuss examples in the literature where experiment and theory 

both supplied mechanistic details about sigmatropic rearrangements involving metal carbenes, 

including discussion of computational caveats to consider when studying these transformations, 

such as the effects of catalyst ligand conformations, solvation and non-statistical dynamic effects. 

We conclude with an outlook on the current state of the field, asking what questions remain 

unanswered and how theory and experiment can be merged more seamlessly. 

 

2.2 Conformations and Ligand-Binding Modes 

One significant challenge in modeling most reactions is ensuring that the conformational space 

available on the hyperdimensional potential energy surface (3N-6 dimensions for non-linear 

systems, N = number of atoms) is appropriately sampled. For example, Zimmerman and coworkers 

investigated the effects of conformational flexibility on reaction rates for reductive elimination of 

representative nickel bisphosphine catalysts (Figure 2.2).55 They found that the barriers for 
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reductive eliminations varied significantly between conformations, providing an important caveat 

for those working in this field. Low-cost computational methods, such as Grimme’s CREST, have 

proven effective for rapid conformational searching.56 Even with such tools, capturing the full 

conformer space—to the extent that one can do so—is still a significant challenge, especially when 

competing non-covalent interactions and increased complexity with more degrees of freedom (e.g., 

number of alkyl groups) dramatically increase the number of possible conformations.57 

 

 

Figure 2.2 Various effects on catalyst ligands that can influence conformer space and the 

energetically preferred mechanistic pathway. Adapted with permission from Vitek, A. K.; Jugovic, 

T. M. E.; Zimmerman, P. M. ACS Catal. 2020, 10, 7136–7145. Copyright 2020 American 

Chemical Society.  

 

In organometallic chemistry, complexity arises not only from ligands being large and 

“floppy” but also from ligand-metal binding modes sometimes not being static. In addition, it is 

important to determine whether multiple conformations of TSSs are close enough in energy to 

contribute to predicted rates, i.e., TSS conformations within 2-3 kcal/mol of the lowest energy TSS 

conformation should be accounted for by Boltzmann averaging. For example, in a joint 
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experimental and theoretical effort, the groups of Takacs (the experimentalist) and Liu (the 

theorist) demonstrated the critical role of conformationally flexible TADDOL-derived phosphite 

ligands on reactivity and selectivity in Rh-catalyzed asymmetric hydroboration, highlighting the 

importance of conformational issues for catalyst/ligand design.58 

A representative example relevant to metal-promoted [2,3]-sigmatropic shifts involves the 

use of chiral dirhodium tetracarboxylate paddlewheel (and related) catalysts. In general, chiral 

ligands in this field are quite large, so ligand conformations can become important.59–61 For 

instance, ligand blocking groups around the metal dimer catalyst core can adopt either up () or 

down () configurations leading to multiple arrangements (Figure 2.3) that should be considered.60 

And the ligands in each of these arrangements may be able to adopt several different 

conformations. Similar issues have been described for 4-fold symmetric iron complexes used for 

CO2 and O2 reduction.62,63 

 

Figure 2.3 Different possible ligand arrangements for chiral dirhodium(II) catalysts and their 

associated point groups (assuming chiral ligands). 
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 One approach to avoiding the problem of conformational complexity is to carry out 

calculations using small, inflexible ligands, e.g., formate groups, acetate groups or truncated chiral 

ligands. While this approach is often reasonable, one must be exceedingly cautious when 

employing it to assure that important substrate–ligand interactions are not missed. For instance, 

Hamada and Nemoto found changes in product distributions upon simply changing the ligand type 

in their dirhodium(II) catalysts from Rh2(NHCOtBu)4 to Rh2(NHCOMe)4 to Rh2(OCOMe)4 in a 

Rh-catalyzed carbene insertion into C-N bonds (Figure 2.4).64  

 

 

Figure 2.4 Mechanistic experiment on ligand effects in Rh-catalyzed formal insertion into amide 

C-N bonds. The yield of A, B, and C are dependent on ligand type. Figure adapted from on Hamada 

and Nemoto.64 

 

2.3 Solvation 

Accurately modeling the effects of solvent on reactivity has been a longstanding challenge. The 

more we learn about the ways in which different solvent models can impact computed energies—

which inform theoretical predictions/conclusions—the clearer it becomes that treating solvent 

accurately can make all the difference, especially in cases where the number of components 

involved is large and/or interactions with solvent molecules are potentially strong.65,66 As 

Eisenstein and coworkers described, there are three general approaches to modeling solvent, which 
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vary in computational cost: (1) implicit (continuum) solvent models, (2) hybrid models of explicit 

and implicit solvent (sometimes called “hybrid cluster-continuum models” or “microsolvation”), 

and (3) explicit solvent models.67 Solvent effects may be drastically important in metal-catalyzed 

rearrangements. For instance, the Koenigs group discovered a dependence of [1,2]- or [2,3]-

sigmatropic rearrangement product yields depending on the solvent in Rh-catalyzed rearrangement 

reactions.68 The origin of this solvent-dependence is still unknown.  

By far, the least computationally intensive approach, and most widely used today, is the 

implicit approach. In this crude but useful method to model solvent, the solute is placed within a 

solvent cavity described by a continuum with a fixed dielectric constant. Practitioners have a 

choice of implicit solvent models.69 Frequently used ones include density-based models (SMD)70 

and polarizable continuum models (PCM).71 As with the choice of level of theory, we caution 

against haphazardly selecting an implicit solvent model to use. Rather, these solvent models should 

be applied with the caveat that many were parameterized for particular atomic radii and 

nonelectrostatic terms. Some solvent models were developed specifically for use with certain 

functionals and many continuum solvent models are parameterized for reactions occurring at 298 

K.72,73 In general, we recommend comparing computed reaction barriers against experiment (e.g., 

rates, activation parameters, selectivity) with various models, but it is prudent to make sure that 

the results are not highly sensitive to the model chosen – that could be a sign of problems with the 

mechanism, not just the solvation model. If experimental data is lacking for a given reaction, 

basing the model selection on past benchmarking studies is the next best thing.74,75  

In some cases, including explicit solvent molecules may be critical to reproduce 

experimental observations.76,77 Computing the properties of solutes in a large box of explicit 

solvent molecules, however, is often not practical (which is the case for many of the reactions 
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discussed here). In cases where a full statistical treatment of solvent is absolutely necessary, 

however, such as those in which solvent-solute interactions or solvent reorganization is critical to 

the mechanism, ab initio molecular dynamics (AIMD) methods, in which solvent molecules are 

treated with quantum chemistry (often semiempirical methods, but ideally with a method as 

reliable as that used for the solute), can be used.77–80  

In lieu of modeling a box of explicit solvent, one might be able to model explicit solvent 

effects with the microsolvation approach. In this approach, only a few explicit solvent molecules 

around the solute are used within an implicit model for the remainder of the solvent.66 This 

approach may be useful in reactions where ionic or zwitterionic species dominate, whose relative 

energies are not expected to be computed accurately with implicit models.66 The microsolvation 

approach is viewed by some (including us) as a last resort effort when the options for accounting 

for solvent are otherwise exhausted (or computationally intractable), because many systems are 

adequately modeled in implicit solvent66 and adequately sampling configurations of explicit 

solvent molecules is a daunting (and frequently neglected) task.81,82 A study from our group,83 for 

example, indicates that including explicit solvent at the presumably vacant axial position of 

dirhodium complexes modulates reactivity of dirhodium tetracarboxylates, which aligns with a 

number of experimental studies that show that axial coordination can influence electronic 

communication between the two Rh atoms in these complexes.84–88 In this case, however, the 

question to be addressed with microsolvation was well-defined. It was specific to a particular 

position where solvent could bind. Any Lewis base (including reactants) could, in principle, 

coordinate the vacant, axial coordination site of dirhodium complexes, which may (or may not) 

have a non-negligible effect on reaction barriers.89 Considering nuances like these often shed light 

on particular gray areas of complex mechanisms. 
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A particularly problematic situation arises when ion pair intermediates occur along a 

reaction pathway. For instance, in a collaborative experimental and theoretical study with the 

Tambar group on tandem ylide-formation/rearrangement reactions promoted by Rh and Cu, we 

proposed a mechanism based on results of DFT calculations (IEFPCM(DCM)-UB3LYP-

D3(BJ)/SDD[6-31+G(d,p)]//IEFPCM(DCM)-UB3LYP/LANL2DZ[6-31G(d)]) involving an ion 

pair intermediate along the pathway to the product (Figure 2.5).90 It is known that ion pair 

intermediates (e.g., in carbocation reactions) can be formed and react before surrounding solvent 

equilibrates, necessitating explicit solvent modeling to account for dynamics.91 In our case, such 

modeling was not possible, so we resorted to simply proposing a reactivity model consistent with 

experiments and shored up by structural comparisons. We hope, however, that explicit solvent 

modeling of the accuracy we would need will become accessible in the future. 

 

 

Figure 2.5 Ion pair intermediate is proposed in the Cu-catalyzed pathway to [1,2]-products of 

indole-based oxonium ylides.  
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2.4 Synergy of Experiment and Theory—Case Studies 

Computational studies on reactions involving transition-metal catalysts have evolved alongside 

synthetic methodologies, providing useful insight into mechanisms. For instance, a substantial 

amount of mechanistic insight has been generated by studies involving close collaboration between 

groups specializing theory and experiment: ranging from C–H92–95 and Si–H insertion,96,97 

cyclopropanation,93,98–101 and mapping catalyst space.102 In this section, we review representative 

mechanistic studies of metal (mainly Rh and Cu)-catalyzed sigmatropic rearrangement reactions 

that have benefitted from attention from both experiment and theory camps.  

 

2.4.1 Metal-Bound or Free Ylides? 

First, we focus our attention on whether metal catalysts remain bound to substrates for [2,3]-

sigmatropic rearrangements catalyzed by Rh(II) and Cu(I) catalysts. Later, we will discuss [1,2]-

sigmatropic rearrangements.  

Though experimental groups have developed (and are developing) methodology for 

transition-metal promoted [2,3]-sigmatropic rearrangements—and, in doing so, have carried out 

control experiments that bear on mechanism—computational work has lagged behind.38,43,103–105 

A key question that emerged from experiment—that is still not definitively clear for many onium 

ylides formed by Rh(II) and Cu(I) catalysts by carbene transfer—is whether the metal catalyst 

remains explicitly bound to its substrate during the [2,3]-rearrangement step. The dearth of 

theoretical insight into this question was brought to our attention via recent appeals for theoretical 

insight in the work of Koenigs and coworkers and through our collaborative work with the Driver, 

May, Shaw, and Tambar groups.90,106,107 Hock and Koenigs have stated, “it would still be very 
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helpful if these experimental findings could be further supported by DFT calculations to improve 

our understanding of the subtle differences between these rearrangement reactions.”43 We took up 

this call to action (vide supra, Chapter 3). 

What experimental evidence was available for us to use in shaping our study? In control 

experiments where the metal catalyst is varied and all else is kept that same, if stereo-, chemo-, 

and regioselectivity are unperturbed, then a plausible explanation is that a free ylide is involved. 

For instance, whereas Clark and Hansen103 observed a catalyst-dependence on product ratio in 

their study of metal-catalyzed ylide [2,3]-rearrangements, which led to the conclusion that metal-

bound ylides were involved, Wang104 and Koenigs108 reported catalyst-independence on the 

product ratio for their ylide rearrangement reactions, suggesting the existence of free ylides.   

With this precedent, we set out to (1) confirm that our theoretical approaches could provide 

results consistent with experiments and (2) determine the physical factors that impact whether 

metal-catalyst remains bound during the rearrangement step, thereby setting the stage for future 

reaction design.44 In the four reactions examined, three with Rh and one with Au, we found that 

our calculations supported the conclusions from control experiments. Here, we utilized the 

(U)B3LYP/LANL2DZ[6-31G(d)] level of theory to investigate the mechanism (single-point 

calculations with dispersion correction and with other functionals produced qualitatively similar 

results). From this study we concluded that the steric bulk adjacent to the carbene center played 

the most significant role in determining whether a metal catalyst dissociated or remained bound to 

the ylide intermediate.  

 Almost simultaneously, Dang and coworkers published a related computational study 

(SMD(DCM)-M06-L/SDD[6-311++G(d,p)]//M06-L/SDD[6-31G(d)]). They found that allylic 

iodides and sulfides can form ylides in the presence of Cu(I)-bisoxazoline catalysts that can either 
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undergo a metal-bound or free ylide rearrangement (Figure 2.6).109 In particular, iodonium 

ylides110 were shown to have Cu bound during the [2,3]-rearrangement while sulfonium ylides 

rearranged free of Cu catalyst. By computing systems with different substrates, ligands, and 

solvents, they ascribed this difference to the (thermodynamic) stability of metal-bound and free 

ylides, which, they suggest, is mainly controlled by the heteroatoms (I or S).109.  

 In discussing the nature of the oxonium, sulfonium, and selenonium ylides in our study—

wherein we found metal-bound oxonium ylides and free sulfonium and selenonium ylides—we 

made the point that our conclusions “should not be generalized to all similar ylides undergoing 

[2,3]-rearrangements.”44 The work by Dang’s group bolsters our observation that the nature of the 

ylide is system-dependent. Enabled by the work done by experimental (and other computational) 

groups, we seem to have converged on two key factors that determine whether an ylide 

intermediate is free or metal-bound: (1) steric bulk directly attached to the carbene carbon44 and, 

(2) the electronic nature of the heteroatom directly bound to the carbene carbon.109 

 

Figure 2.6 Metal-bound and free ylide [2,3]-sigmatropic rearrangements of iodonium and 

sulfonium ylides supported by DFT calculations. Existence of a free sulfonium ylide and metal-

bound iodonium ylide undergoing the [2,3]-sigmatropic rearrangement has implications for 

experiment. See Liu, Z.; Jin, X.; Dang, Y. ACS Catal. 2021, 11, 691–702. 
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Metal dissociation before the end of a catalytic cycle may be more general. For example, 

Schomaker, Fernández and coworkers reported an aziridinium ylide-formation/[2,3]-

rearrangement reaction to form azetidines that appears to involve a free ylide intermediate.111,112 

The authors combined experimental and computational expertise (SMD(DCM)-B3LYP-D3/def2-

SVP) to reveal that not only is a free ylide energetically favorable over a Rh-bound ylide, but also 

that the stereospecificity (enantioretention and high diastereoselectivity) of this reaction can be 

attributed to a concerted [2,3]-sigmatropic rearrangement (Figure 2.7).112 

 

 

Figure 2.7 A free aziridinium ylide intermediate is predicted to be operative in a concerted [2,3]-

rearrangement to azetidines.  

 

Another joint experimental-theoretical study by Koenigs and coworkers led to the 

conclusion that free ylides are operative in [2,3]-sigmatropic rearrangements of organoselenium 

compounds with triazoles in the presence of dirhodium catalysts.89 

 Premature catalyst dissociation might afflict ylides undergoing [1,2]-rearrangements (or 

Stevens rearrangements for ammonium ylides) as well.32,113–116 For instance, in stereoselective C–

H insertions with Rh2(R-PTAD)4 catalysts, forming six-membered ring tetrahydroisoquinolines 

with high diastereo- and enantioselectivity, Shaw and coworkers observed no [1,2]-rearrangement 



40 
 

side products.107 In one case, however, they observed a rearrangement product and initiated a 

collaboration with our group to confirm that this was indeed the case (Figure 2.8). Our calculations 

((U)B3LYP/LANL2DZ[6-31G(d)]) revealed that the Rh-catalyst (modeled as Rh2(OAc)4) 

dissociated before the [1,2]-rearrangement step. Synergy between theory and experiment, again, 

illuminated mechanistic detail that might not have been revealed otherwise. These results echo 

past computational studies by our group, in collaboration with Driver and coworkers, on Rh-

promoted indole formation from vinyl/azidoarenes that involved competing [1,5]-shifts.106 For that 

reaction, our DFT calculations ((U)M06/SDD[6-31+G(d,p)]) led us to conclude that the Rh 

catalyst was not necessarily involved in the rearrangement step, since computations without Rh 

bound corresponded to the experimentally observed selectivity while those with Rh bound did not. 

 

Figure 2.8 Isoindoline product is formed by ylide-formation/Stevens [1,2]-rearrangement in the 

presence of Rh catalyst. DFT calculations support a free ylide Stevens [1,2]-rearrangement. 

 

 While these computational studies do not cover all types of metal-catalyzed sigmatropic 

rearrangements, they do point to potentially general principles. And while they vary in the degree 
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of integration between the computational and experimental teams, they show that combining 

results from both sides can shine light on mechanistic nuances. 

 

2.4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes 

As mentioned above, ligand binding modes and conformations in chiral dirhodium 

tetracarboxylate complexes can have important effects on reactivity and selectivity.117 In a study 

that reported the crystal structure and computed structure of one such paddlewheel complex, 

Rh2(S-PTTL)4, Fox and co-workers described the so-called “chiral crown” conformation (,,,) 

(Figure 2.9). They found that Rh2(S-PTTL)4 crystallized in this arrangement, consistent with the 

computed lowest-energy form found by DFT calculations (OLYP/TZP).118  By elucidating the 

preferred structure of this complex, they were able to pin specific structural features to chemo-, 

enantio-, and diastereoselectivity of intermolecular cyclopropanation reactions involving Rh2(S-

PTTL)4. A similar chiral crown conformation was discovered for Rh2(S-NTTL)4.
119 Subsequent 

X-ray crystallography and computational studies demonstrated that these chiral crown forms are 

more general for tert-leucine-derived dirhodium paddlewheel complexes,120 results with 

implications for the use of these (and potentially other related catalysts) in other reactions, such as 

[2,3]-sigmatropic shifts. 
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Figure 2.9 Chiral crown conformation of Rh2(S-PTTL)4. Adapted with permission from 

DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 7230–7231. 

Copyright 2009 American Chemical Society. 

 

2.4.3 No Metal, Just Light 

One study by the groups of Koenigs and Xu further highlights the synergy between theory and 

experiment. Their study revealed interesting diastereoselectivity differences between oxetane and 

thietane starting materials (Figure 2.10).121  

 

Figure 2.10 Erosion of diastereoselectivity in sulfonium ylides compared to oxonium ylide. 
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Presumably, after extrusion of nitrogen and carbene formation, a free ylide is generated, which 

undergoes [1,2]-rearrangement. The origin of observed differences in diastereoselectivity was 

investigated by DFT calculations (SMD(CHCl3)-(U)B3LYP/6-311+G(d,p)//SMD(CHCl3)-

(U)B3LYP/6-31G(d)), which revealed a diradical pathway for both oxetane and thietane derived 

ylides. The differences in diastereoselectivity were not attributed to divergent reaction 

mechanisms, but differences in critical C-O and C-S bond lengths in TSSs (Figure 2.11). One 

wonders, in the thietane ylides, if this type of reactivity could be controlled by chiral metal catalysts 

and enable asymmetric reactions using them.  

 

Figure 2.11 Energy surface for oxetane ring expansion by photochemical carbene transfer. Density 

functional theory calculations reveal diradical mechanistic pathway to ring expansion product. 

Adapted with permission from the Royal Society of Chemistry, Copyright 2019. S. Jana, Z. Yang, 

C. Pei, X. Xu and Rene M. Koenigs, Chem. Sci., 2019, 10, 10129. DOI: 10.1039/C9SC04069B. 

Published by The Royal Society of Chemistry. 

 

 

2.5 How To ‘Cope’ with Non-Statistical Dynamic Effects 

Similar to ylide-formation/[2,3]-rearrangements, C–H activation/Cope rearrangements ([3,3]-

sigmatropic shifts)122,123 can be promoted by dirhodium catalysts.124 Davies and coworkers, for 
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example, reported a joint experimental and theoretical study in which the mechanisms of these 

cascade processes were interrogated (Figure 2.12).125 Results from DFT calculations (B3LYP/6-

311+G(2d,2p)[Rh-RSC+4f]//B3LYP/6-31G(d)[Rh-RSC+4f]) support a pathway involving a 

concerted, yet highly asynchronous, hydride-transfer/C–C bond-forming process in which a post-

transition state bifurcation (PTSB) is involved. Reactions that contain PTSBs involve a single 

(ambimodal) transition-state structure on the potential energy surface that leads to two products 

without intervening minima—a fork in the pathway downhill in energy toward the products.54,126–

130 Here, the ambimodal transition-state structure corresponded to the hydride-transfer process and 

the two products were related by a Cope rearrangement. 

 

Figure 2.12 Post-transition state bifurcation is suggested in C-H activation/Cope rearrangement 

reaction by Davies and coworkers. If a PTSB exists, then nonstatistical dynamic effects determine 

product selectivity.  

 

To predict product ratios for reactions with PTSBs, one generally needs to carry out AIMD 

simulations. Our group did this for a related Rh2(OAc)4-promoted reaction involving a transition 

state for hydride transfer to a Rh-carbene that we found (using B3LYP/LANL2DZ[6-31G(d)] 
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calculations) to be connected to both -lactone and ketene/ketone products—the former arising 

from net C–H insertion and the latter from fragmentation (Figure 2.13).131 Using AIMD 

simulations, we predicted that fragmentation should be preferred over the desired C–H insertion 

process, consistent with experimental results reported by Lee.132 This study demonstrated that 

computational exploration of a reaction mechanism can lead to the proposal that unwanted side 

products might arise from PTSBs!133 Still, much has yet to be learned. Recent strides have been 

made in constructing bifurcating energy surfaces,134 predicting major products of PTSBs without 

elaborate (and, admittedly, expensive AIMD) simulations,135–137 exploring PTSBs important in 

biosynthetic pathways,138–145 and mapping reaction pathways in phase space.146  

 

Figure 2.13 Accounting for non-statistical dynamic effects revealed a post-transition state 

bifurcation in our mechanistic study of C-H insertion reactions to -lactone products. 

 

2.6 Outlook 

Electronic structure calculations are now ubiquitous in mechanistic chemistry due to significant 

leaps in modern computational power and reductions in barriers to entry for learning quantum 

chemistry software.147,148 In this review, we have merely touched the tip of the iceberg when it 

comes to applied computational approaches for solving complex mechanistic problems. For 
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example, some are utilizing statistical tools to generate catalysts maps for dirhodium(II)102 (and 

other) complexes to aid catalyst selection/design.149,150 Others are harnessing the power of machine 

learning methods for accelerated reaction discovery and chemical space exploration.151–153 

Nonetheless, we hope that we have given readers a snapshot of the utility of current computational 

approaches through tales of transition-metal catalyzed sigmatropic rearrangements. We also hope 

that the caveats we describe are taken to heart. Both theory and experiment bring powerful insight 

to the table in designing reactions. The future of both fields seems bright, but the future when 

theory and experiment teams work together seems even brighter. 
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Chapter 3 

 

Metal Bound or Free Ylides as Reaction Intermediates in Metal-

Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends* 

 

 
Should I stay or should I go now? / If I go there will be trouble/ And if I stay it will be double / So you got to 

let me know / Should I stay or should I go? 

 

- The Clash 

 

3.1 Abstract 

Density functional theory calculations were applied to study four previously published metal-

catalyzed [2,3]-rearrangements from onium ylide intermediates, in pursuit of generalizations about 

when, during these types of reactions, catalysts dissociate. Our results corroborate past studies 

where free ylide mechanisms were proposed to be operative. Results of calculations on case studies 

indicate that the origin of metal-catalyst dissociation can be attributed primarily to the steric 

bulkiness of functional groups adjacent to the carbene carbon.   

 
* This chapter is a modified version of the following published article: Laconsay, C. J.; Tantillo, 

D. J. Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-

Sigmatropic Rearrangements? It Depends, ACS Catalysis 2021, 11, 829-839 with permission 

from the American Chemical Society. Copyright 2021 American Chemical Society. 
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3.2 Introduction 

3.2.1 Ylide Formation/[2,3]-Sigmatropic Rearrangements 

Sigmatropic rearrangement reactions hold a privileged position in the synthetic organic chemist’s 

toolbox for forming new carbon-carbon/carbon-heteroatom bonds. Ylide formation/[2,3]-

sigmatropic rearrangement tandem reactions, or ‘duets’,1 have gained attention as an important 

tool for synthesizing heteroatom-containing compounds with high stereochemical fidelity. Of the 

two main methodologies for generating ylide intermediates for these reactions, the transition-metal 

catalyzed variant is milder than base-promoted methodologies.2,3 One question that remains 

unanswered for many transition-metal-catalyzed ylide formation/[2,3]-sigmatropic rearrangement 

reactions (from here on, just ‘ylide rearrangements’ for simplicity) is whether the catalyst is 

explicitly bound to the ylide during the [2,3]-rearrangement step.2–5 Does the metal catalyst remain 

covalently bound (what we refer to as ‘metal-bound’) to the substrate or dissociate (what we refer 

to as  a ‘free-ylide’ or ‘metal-unbound’ if the metal catalyst is nearby, but not covalently bonded 

to, the substrate) before the rearrangement step? This question has implications for 

stereoselectivity6 and regioselectivity,7 because whether the metal catalysts are able to effectively 

pass on chiral information depends on whether the catalyst is bound to its substrate during the 

stereodetermining step(s).6,8 For example, in a selective Au(I)-catalyzed C-H functionalization 

reaction of N-heterocycles, Koenigs and coworkers demonstrated, using density functional theory 

(DFT) calculations and control experiments, that the key proton shuttle step in the mechanism 

likely does not involve a Au-complex—the catalyst likely dissociates before the rate-determining 

(last) step.9 
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3.2.2 The Role of Dirhodium Metal Carbenes 

The combination of steps from reactant to product and concomitant regeneration of catalyst is 

called the catalytic cycle, and it is, often implicitly, assumed (at least in organometallic chemistry 

textbooks)10,11 that the catalyst remains bound to its substrate until the end of the cycle, when it 

releases the product and binds another reactant. Although this may be true for many catalytic 

cycles, we focus here on cases in which this assumption is not valid—specifically, reactions 

promoted by dirhodium tetracarboxylate catalysts. 

Chemists have made strides in stereoselective ylide rearrangements with electrophilic 

metal carbenes: not only are these reactions highly stereoselective, but they often show excellent 

chemo- and regioselectivities.8,12–20 The focus on metal carbenes21 for this reaction, and in 

particular, rhodium (Rh) carbenes generated in situ from diazo compounds and metal catalyst,22–

26 has in large part been motivated by the ability to control stereoselectivity by exploiting different 

chiral ligands. Rh carbenes24 are now commonplace in organic synthesis and especially useful in 

C-H functionalization. They are often categorized into five main groups: i.e. (1) acceptor,27,28 (2) 

acceptor/acceptor,14,29 (3) donor/acceptor,26,30,31 (4) donor,32 and (5) donor/donor33–38 (Scheme 

3.1a), depending on the electron withdrawing or donating ability of substituents adjacent to the 

carbene center. This versatility in functional group discretion enables one to fine-tune the reactivity 

and selectivity of the carbene intermediate, which make Rh carbenes amenable to a wide range of 

chemical transformations. Due to the electrophilicity of the metal-carbene intermediates bearing 

electron-withdrawing substituents, acceptor, acceptor/acceptor and donor/acceptor compounds are 

typically used in ylide rearrangements.20 Presumably safety factors, including thermal stability and 

ease of handling under desired reaction conditions, play a significant role as well—note the recent 

article by Green et al. on the thermal stability and explosive hazards of diazo compounds.39 
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Alternatives to metal catalysts and diazo compounds involve forming the ylide by deprotonation 

with a strong base—for instance, Tambar’s palladium-catalyzed allylic substitution chemistry,40 

or Smith’s isothiourea-catalyzed [2,3]-rearrangement.41,42 Low-energy light induced carbene 

transfer reactions have also been explored by Koenigs’s group as a viable method for ylide 

formations posed to undergo subsequent rearrangement43,44 and other reactivity.45 With exception 

to these examples, the use of metal carbenes from diazo precursors have generally guided much of 

the stereoselective ylide rearrangements—albeit, up until recently,4 with only modest 

enantioselectivity. We focus our efforts herein, therefore, on Rh-catalyzed ylide rearrangements. 

 

Scheme 3.1 (a) Five Major Classes of Rh Carbenes and (b) Rh Catalyst: Should It “Stay”, or 

Should It “Go”? 

 



59 
 

 

Metal-promoted ylide formation can occur between a metal-carbene and a Lewis-basic 

heteroatom such as nitrogen, oxygen, sulfur, selenium, and iodine to form ammonium,46  

oxonium,18,47–57 sulfonium,58–65 selenonium,66–68 and iodonium ylides,69 respectively (Scheme 

3.1b).70 Subsequent rearrangements from the onium ylide can ensue thereafter (or not62), and the 

type of rearrangement depends on the groups attached to the heteroatom.* Rearrangements that 

can occur from ylide intermediates include the Doyle-Kirmse rearrangement (i.e., [2,3]-

rearrangement from ylides of allylic sulfides),2,58,71–73 the Stevens rearrangement (i.e., [1,2]-

rearrangement of onium ylides),74–76 and the Sommelet-Hauser rearrangement (i.e., [2,3]-

rearrangement with an aromatic ring as a -component) rearrangements.77–81  

Detailed understanding of the role of the metal catalyst in these types of reaction is needed 

for future design of new catalysts and for studies on origins of stereoselectivity.82 This imperative 

applies not only to the onium ylide types mentioned above. For instance, the Schomaker group has 

reported that carbene-generated aziridinium ylides generate metal-free ylide intermediates after 

metal dissociation.83 Experimental groups have expressed the need for quantum chemical studies 

to corroborate conclusions arrived at by control experiments that support free-ylide mechanisms 

for onium ylide [2,3]-sigmatropic rearrangement and [1,2]-sigmatropic rearrangement 

reactions.2,4,5,60,67,84 Whether recently described selenonium ylide analogues are Rh-bound or ‘free’ 

has yet to be explored as well.  Previously, our group demonstrated through DFT calculations that 

a free ylide pathway is energetically favored over a metal-bound ylide pathway in Rh(II)-promoted 

indole formation of vinyl/azidoarenes (Scheme 3.2a).85 We also recently collaborated with the 

 
* Non-statistical dynamic effects can complicate [1,2]- and [2,3]-rearrangement product selectivity, as Singleton 

demonstrated for ammonium ylides.101 
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Shaw group and discovered an unexpected concerted,* metal-unbound (or free-ylide) Stevens 

rearrangement resulting in an isoindoline product during attempts to synthesize 

tetrahydroisoquinolines with donor/donor Rh-carbenes (Scheme 3.2b).33 

 

Scheme 3.2 Precedent for free ylide intermediates from computational studies. 

 

 

3.2.3 Aim of This Study 

Against this backdrop, we investigate whether Rh catalysts remain covalently bound or 

heterolytically dissociate before the [2,3]-sigmatropic-rearrangement step in ylide rearrangements. 

We first discuss DFT calculations for three previously reported reactions as case studies. We begin 

 
* Unexpected because Stevens rearrangements from quaternary ammonium ylides are typically discussed in the 

literature as going through stepwise, homolytic cleavage/recombination (radical-pair type) processes.102,103 
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with a reaction involving an oxonium ylide by Clark and Hansen82 and “walk” down group 16 (the 

chalcogens) of the periodic table to a reaction involving a sulfonium ylide example by Wang and 

coworkers4 and, finally, end with an example of a reaction by Jana and Koenigs involving a 

selenonium ylide.68 Then, we discuss our designed study based on Jana and Koenigs’s selenonium 

ylide intermediate: varying the electronic and steric nature of the ylide, we find under what 

conditions the Rh-catalyst remains bound in our computations. We close with a comparison to a 

recently reported Au-catalyzed [2,3]-rearrangement reaction.86  

 

3.3 Computational Methods 

DFT calculations were carried out in Gaussian 09.87 Transition-state structures (TSSs) were 

verified with frequency calculations and by identifying one imaginary frequency. Minima were 

verified as such by the absence of imaginary frequencies. Intrinsic Reaction Coordinate (IRC) 

calculations88,89 were used to further characterize TSSs.88–90 We carried out geometry 

optimizations at the unrestricted B3LYP level of DFT with the LANL2DZ basis set for Rh and 6-

31G(d) for all other atoms—i.e., uB3LYP/LANL2DZ[6-31G(d)] and one case in which we used a 

triple-zeta basis set (involving Se). The B3LYP functional has proven to be sufficient in 

successfully modeling experimentally relevant geometries and energies in past studies on related 

chemistry.33,85,91,92 To ensure that relative free energies are reasonable, we conducted unrestricted 

single-point calculations at the B3LYP-D3(BJ) and B97X-D93 level to account for dispersion.94,95 

These calculations also made use of a larger basis set (LANL2DZ[6-31+G(d,p)]). A data set 
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collection of computational results is available in the ioChem-BD repository96 and can be accessed 

via https://doi.org/10.19061/iochem-bd-6-68.* 

 

3.4 Results and Discussion 

 

Figure 3.1 Metal-catalyzed oxonium-ylide rearrangement to benzofuranones by Clark and 

Hansen, [M] = Rh(II)- and Cu(II)-catalysts.82 a) 13C-labelled experiments predict that [2,3]- to 

[1,2]-product ratio is dependent on the nature of Rh catalyst, favoring the [2,3]-product b) system 

modeled here with DFT calculations, where [Rh] = Rh2(OAc)4 . 

 

3.4.1 Oxonium Ylide 

Clark and Hansen performed 13C-labelling studies to gain insight into the mechanism of a metal-

catalyzed ylide rearrangement of diazo ketone substrates to benzofuranones, a reaction that had 

 
* A discussion of computational benchmark tests is described in the Supporting Information of ACS Catalysis 2021, 

11, 829-839. See p. S3-S7. 

https://doi.org/10.19061/iochem-bd-6-68
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been previously studied by Pirrung and Werner using dirhodium(II) acetate97 and similar to a 

reaction studied by Hashimoto and coworkers.55 Expanding on this methodology, Clark and 

Hansen used Cu, Ir, and Rh complexes—[Cu(acac)2] (acac = actetylacetonate), [{Ir(cod)Cl}2] and 

Rh2(OAc)4, among other similar catalysts (Figure 3.1).82 Determining the ratio of the 13C-labelled 

[1,2]- and [2,3]-products by 1H and 13C NMR spectroscopy, they observed a dependence of the 

ratio on the type of Rh-catalyst used. These results are inconsistent with a mechanism that forms 

a free oxonium ylide. Either the reaction undergoes a metal-bound ylide or alternative non-ylide 

pathway. Is the conclusion that the rhodium-catalyzed reaction involves a metal-bound ylide 

supported by DFT calculations?5 

We modeled both the free ylide mechanism and the metal-bound mechanism with DFT 

calculations starting from the metal-bound ylide (Figure 3.2), where the metal catalyst here, and 

from here on in the manuscript, is Rh2(OAc)4. We predict that the free ylide mechanism is 

kinetically unfavorable compared to the metal-bound ylide mechanism by at least 2 kcal mol-1 

(G‡ = 3.8 kcal mol-1), which is consistent with the conclusions made by Clark and Hansen. 

Intrinsic reaction coordinate calculations confirm that the Rh catalyst remains bound to the 

substrate in the metal-bound pathway.*  

 
* IRC data are described in the Supporting Information of ACS Catalysis 2021, 11, 829-839. See Figure S11, p. S16. 
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Figure 3.2 Energy profile for oxonium-ylide [2,3]-rearrangement step in the intramolecular 

cyclization to form benzofuranones (by Clark and Hansen).82 Free energies (in kcal mol-1) are 

reported at the B3LYP/LANL2DZ[6-31G(d)] level.  

 

3.4.2 Sulfonium Ylide 

The transition-metal catalyzed [Rh(II) or Cu(I)] reaction that generates a sulfonium ylide prior to 

a [2,3]-sigmatropic rearrangement is known as the Doyle-Kirmse reaction. Wang and coworkers4 

recently reported a highly enantioselective metal carbene-catalyzed Doyle-Kirmse reaction based 

on previous work by Uemura and coworkers.98 Whether the [2,3]-sigmatropic rearrangement step 

in this mechanism involves the metal-catalyst bound to the substrate remains unclear. Wang and 

coworkers dedicated a substantial portion of their study to control experiments to address this 
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ambiguity. They concluded from experiments that their asymmetric trifluoromethylthiolation via 

an enantioselective Doyle-Kirmse reaction likely undergoes a free-ylide mechanism (Figure 3.3).  

 

Figure 3.3 a) asymmetric Rh-catalyzed sulfonium-ylide rearrangement (Doyle-Kirmse reaction) 

by Wang and coworkers4 where MLn = Rh(II)- and Cu(I)-catalysts b) system modeled here with 

DFT calculations, where [Rh] = Rh2(OAc)4 . 

 

Our DFT results support a free ylide mechanism. Every attempt to locate a TSS that 

corresponds to a metal-bound structure failed. Specifically, potential energy scans resulted in the 

Rh catalyst dissociating from the ylide carbon and associating with a -face of the aryl ring. It is 

unlikely that alternative Rh catalysts with bulkier ligands would diverge from this result. Attempts 

to find a [2,3]-rearrangement TSS with the Rh catalyst unbound resulted in the so-called “metal-

unbound ylide” TSS shown in Figure 3.4. Intrinsic reaction coordinate calculations from this TSS 

led to a metal-unbound ylide.* Rh-catalyzed Doyle-Kirmse reactions using propargyl sulfides were 

also tested in the original experimental paper.4 We modeled the [2,3]-rearrangement for these 

 
* Ibid, S16 (see Figure S12). 
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substrates and find similar results to that of Figure 3.4—no Rh-bound rearrangement TSS could 

be located.*   

Loss of Rh catalyst to form the free ylide is predicted to be energetically favorable by >20 

kcal mol-1. Activation barriers from either the free ylide (blue) or the metal-unbound ylide (red) 

are comparable (~10 kcal mol-1), which can be attributed to the fact that the metal-unbound ylide 

is effectively a free ylide with the metal catalyst as a nearby spectator. Unlike the oxonium ylide 

system discussed earlier, however, these results suggest that this sulfonium ylide prefers to 

dissociate from the metal catalyst first, and then undergoes the rearrangement step.  

 

Figure 3.4. Energy profile for sulfonium-ylide [2,3]-rearrangement step in the Doyle-Kirmse 

reaction (by Wang and coworkers).4 Free energies (in kcal mol-1) are reported at the 

B3LYP/LANL2DZ[6-31G(d)] level. 

 
* Ibid, S13 and S15 (see Figure S10 and Table S3). 
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3.4.3 Selenonium Ylide 

Although discussed less frequently in the literature, selenonium ylides also can undergo 

rearrangements.99 These are effectively Doyle-Kirmse rearrangements with selenium in place of 

sulfur. Jana and Koenigs demonstrated this reaction recently using diazoalkanes and allyl selenides 

to generate homoallyl selenides (Figure 3.5).68  

 

Figure 3.5 a) asymmetric Rh-catalyzed selenonium-ylide rearrangement (Doyle-Kirmse reaction) 

by Jana and Koenigs68 where MLn = Rh2(OAc)4 b) system modeled here with DFT calculations, 

where [Rh] = Rh2(OAc)4. 

 

They observed that the selectivity is only slightly affected by the type of catalyst, lending 

support to the hypothesis that this reaction undergoes a free-ylide mechanism. Is this conclusion 

borne out in DFT calculations? 
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Figure 3.6 Energy profile for Rh-unbound and free ylide selenonium-ylide [2,3]-rearrangement 

step in the Doyle-Kirmse reaction (by Jana and Koenigs).68 Free energies (in kcal mol-1) are 

reported at the B3LYP/LANL2DZ[6-311G(d)]//B3LYP/LANL2DZ[6-31G(d)] level for structures 

including Rh and B3LYP/6-311G(d)//B3LYP/6-31G(d) without Rh.* 

 

Yes. Only a metal-dissociated TSS for the [2,3]-sigmatropic rearrangement could be 

located and all attempts to find a TSS with the metal bound resulted in the metal catalyst 

dissociating before the TSS (Figure 3.6). The free ylide pathway is energetically viable (only a 5.4 

kcal mol-1 barrier to product), supporting the conclusion the free ylide intermediates can undergo 

the rearrangement step.† As we observed in the sulfonium ylide system by Wang and coworkers 

 
* Ibid, S6 (see Table S0). 
† Ibid, S5 (further discussion on relative energies of Figure 3.6 is described in the SI). 
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(vide supra), TSS searches for a [2,3]-rearrangement TSSs with the Rh covalently bound resulted 

in only a catalyst-unbound TSS, with the Rh-catalyst associated to the aryl ring (Ph1). On the 

surface, these results suggest that for both the sulfonium and selenonium cases, only free ylide 

mechanisms are energetically viable and something about these two cases prevents the Rh catalyst 

from remaining bound to its substrate prior to rearrangement. 

These specific examples of rearrangement for each ylide type (oxonium, sulfonium, and 

selenonium) should not be generalized to all similar ylides undergoing [2,3]-rearrangements. 

However, our results support past experimental results that proposed free-ylide mechanisms based 

on cross-over experiments. 

 

3.4.4 Beyond Donor-Acceptor Carbenes—Studies for Understanding the 

Origin of Dissociation 

To understand why there is a preference for the Rh catalyst to remain covalently bound in the 

oxonium case, but heterolytically dissociate in the sulfonium and selenonium cases, we used the 

system studied by Jana and Koenigs (X = Se, Figures 3.5 and 3.6) as a case study. We explored 

how the electronic nature of the carbene center would influence the metal-bound ylide/free ylide 

equilibrium. In Koenigs’s study,68 an electrophilic carbene with at least one electron-withdrawing 

group (donor-acceptor) is used, and in most [2,3]-rearrangements from diazo compound-derived 

ylide intermediates, this is the case.3,20 Although, to our knowledge, donor-donor and donor diazo 

compounds have not been used in these specific reactions, we can study the effects of such 

compounds computationally.  

Of the five Rh carbene types (acceptor, acceptor/acceptor, donor/donor, donor/acceptor, 

and donor) studied here, which ones prefer to dissociate Rh catalyst prior to the [2,3]-sigmatropic 
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shift (Scheme 3.3)? We located a metal-bound [2,3]-rearrangement with the Rh catalyst explicitly 

bound to the carbene carbon in the acceptor and donor carbene cases only, and only for carbene 

intermediates in which one of the substituents adjacent to the carbene carbon was hydrogen (Table 

3.1). However, even these systems exhibited lower-energy rearrangement pathways with Rh 

unbound (i.e., we predict free ylides are operative).  

 

Scheme 3.3 Five types of Rh carbenes studied in [2,3]-sigmatropic rearrangement step. 
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Table 3.1 Selenonium-ylide [2,3]-rearrangement step in the Doyle-Kirmse reaction (based on 

study by Jana and Koenigs68 for donor, donor-donor, donor-acceptor, acceptor, and acceptor-

acceptor Rh carbenes. Free energies (in kcal mol-1) are reported at the B3LYP/LANL2DZ[6-

31G(d)] level. 

Rh-Carbene 
Metal-bound 

[2,3] TSS? 
G‡

metal-bound G‡
free-ylide 

Acceptor (R2 = CO2Me) Yes 17.3 13.9 

Acceptor (R2 = CN) Yes 19.1 10.0 

Donor Yes 18.3 1.6 

Acceptor-Acceptor No - 10.2 

Donor-Acceptor No - 11.7 

Donor-Donor No - 5.8 

 

Whether the Rh catalyst dissociates is sensitive to the identity of the substituents adjacent 

to the carbene carbon, which raises the question whether this sensitivity is a result of steric 

hindrance of the adjacent substituent or the electronic nature of the carbene. To address this 

question, we modeled the donor variant of Koenigs’s system—that is, the two adjacent groups to 

the carbene being H and Ph—and varied the para substituent on both phenyl rings (phenyl of the 

‘donor’ group or the phenyl attached to Se atom). We reasoned that any electronic variation 

induced by a para substituent might tip the balance in favor of a fully Rh-catalyst-dissociated 

[2,3]-sigmatropic rearrangement, as opposed to a Rh-bound one, by introducing a greater build-up 

or reduction in electron density at the benzylic carbon.  
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We find, however, that varying the electronic nature of either phenyl ring does not cause 

catalyst dissociation.* In all cases, we found a Rh-bound [2,3]-sigmatropic rearrangement. More 

importantly, any change to the electronic nature of the phenyl ring has only a small effect on 

barriers (< 1 kcal mol-1). This observation led us to suspect that catalyst dissociation originates 

from a steric effect of substituents adjacent to the benzylic position.   

We next varied the adjacent hydrogen substituent—keeping all else the same—to 

substituents with increasing steric bulk. In the first variation, when changing H to Me, we could 

no longer optimize a [2,3]-sigmatropic shift TSS with the Rh catalyst bound to the substrate. 

However, we did optimize a metal-unbound [2,3]-TSS with the catalyst dissociated. Failures to 

find metal-bound [2,3]-TSSs for even more sterically bulky groups, such as ethyl and isopropyl, 

and phenyl (i.e., the donor/donor variation, vide supra) led us to conclude that steric effects—

specifically, those caused by groups adjacent to the carbene carbon—are primarily responsible for 

preventing the Rh catalyst from being bound to its substrate during the [2,3]-sigmatropic shift 

event. 

   

3.4.5 All That Glitters is Not Gold—A Comparison to a Reaction with Gold-

Catalyst Dissociation 

Koenigs and coworkers reported a gold-catalyzed sigmatropic rearrangement from gold carbenes 

(Scheme 3.4).86 The authors argued for a free ylide mechanism because the diastereoselectivity of 

their reactions is consistent with their past reactions of similar systems.86 We sought to find out if 

this conclusion is also borne out in our DFT calculations. 

 
* Ibid, S9-S11. Figures S6-S8 show a Hammett plot that relates the para substituent’s Hammett constant to the free 

energy barrier of activation. 
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Scheme 3.4 a) Gold-catalyzed rearrangement reaction86 b) proposed catalytic cycle (shown in gold 

color) to product. 

  

Reported optimized conditions involved a tris-t-butyl phosphine gold complex 

(tBu3P(AuCl)), which we simplified to [CH3P(Au)]+ in our modeling, given past precedent in 

modeling gold-catalyzed sigmatropic rearrangements.100 Again, we could not successfully locate 

a metal-bound [2,3]-rearrangement TSS. Instead, we located a metal-unbound (or free) ylide that 

underwent the rearrangement step with a barrier of ~10 kcal mol-1 in free energy (Figure 3.7). This 

non-Rh example by Koenigs hints that this phenomenon could be more general and plague other 

transition-metal catalyzed rearrangements involving onium ylides.100, * 

 
* Ibid, S7 (further discussion of these results). 
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Figure 3.7 Energy profile for Au-catalyzed, metal-unbound sulfonium ylide [2,3]-rearrangement 

step.86 Free energies (in kcal mol-1) are reported at the B3LYP/LANL2DZ[6-31G(d)] level. 

 

3.5 Conclusions 

Do metal-promoted [2,3]-sigmatropic rearrangements involve metal-bound or free ylide reaction 

intermediates?5 The answer is: it depends on the system. Specifically, it will depend on the metal 

catalyst used, the substituents attached to the carbene carbon, the type of onium ylide involved, 

and whether remote functional groups are present that can alter the electronic nature of the carbene 

center. All of these factors can have severe effects on whether the metal catalyst ‘stays’ or ‘goes’. 

In this study, we sought to address which of these factors contribute most significantly to catalyst 

dissociation before rearrangement, here focused on experimentally reported ylide-formation/[2,3]-

rearrangement reactions catalyzed by Rh2(OAc)4. We discovered that the most significant factor 

was the steric bulk of the neighboring functional groups at the carbene carbon. Bulkier groups 



75 
 

adjacent to the carbene favored free ylide mechanisms even when the electronic nature of the 

carbene carbon was changed significantly and the onium ylide (e.g., oxonium, sulfonium, and 

selenonium) kept the same. In sum, should the Rh catalyst ‘stay’ or ‘go’ in these reactions? It 

depends on the steric clash of substituents adjacent to the carbene carbon.*  
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Chapter 4 

 

Effects of Axial Solvent Coordination to Dirhodium Complexes on 

the Reactivity and Selectivity in C–H Insertion Reactions: A 

Computational Study* 

 

 
The world is so complicated, tangled, and overloaded that to see into it with any clarity you must prune and 

prune. 

 

- Italo Calvino 

 

4.1 Abstract 

Density functional theory calculations were used to systematically explore the effects of axial 

ligation by solvent molecules on the reactivity and selectivity of dirhodium tetracarboxylates with 

diazo compounds in the context of C–H insertion into propane. Insertions on three types of diazo 

compounds—acceptor/acceptor, donor/acceptor, and donor/donor—promoted by dirhodium 

tetraformate were tested with and without axial solvent ligation for no surrounding solvent, 

dichloromethane, isopropanol, and acetonitrile. Magnitudes, origins, and consequences of 

structural and electronic changes arising from axial ligation were characterized. The results suggest 

that axial ligation affects barriers for N2 extrusion and C–H insertion, the former to a larger extent. 

 

 
* This chapter is a modified version of the following published article: Laconsay, C. J.; Pla-

Quintana, A.; Tantillo, D. J. Effects of Axial Solvent Coordination to Dirhodium Complexes on 

the Reactivity and Selectivity in C–H Insertion Reactions: A Computational Study, 

Organometallics 2021, 40, 4120-4132 with permission from the American Chemical Society. 

Copyright 2021 American Chemical Society. Anna Pla-Quintana carried out DFT calculations 

and contributed to the writing, editing, and revision of the final version of the manuscript. 
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4.2 Introduction 

4.2.1 Overview and Historical Context 

Dirhodium tetracarboxylate complexes (Scheme 4.1, left) are among the most commonly used 

catalysts in organometallic chemistry. These bimetallic complexes have a “paddle wheel” 

(sometimes called “lantern”) structure, containing a Rh–Rh single bond, the details of which has 

been subject to experimental and theoretical interrogations for decades.1–8 These complexes—

which have applications spanning from catalysis9,10 and biology11–13 to supramolecular 

chemistry14–17—are potent catalysts in organic chemistry because of their ability to promote 

nitrogen extrusion from diazo compounds to generate transient rhodium carbene intermediates 

(Scheme 4.1, center, L = CR2). These intermediates are capable of engaging in a wide range of 

chemical reactions including (2 + 1) cycloadditions (e.g., cyclopropanation, cyclopropenation, 

insertion into X–H bonds), various (n + 1) cycloaddition reactions where n > 2, and a diverse array 

of ylide reactions.18–27 The efficiency and selectivity imparted by dirhodium tetracarboxylate 

catalysts, including enantioselectivity when chiral carboxylate (or related) ligands are used, makes 

them especially useful tools in the construction of complex organic molecules.28–30 While one of 

the two rhodium atoms is involved directly in bond-making/breaking with substrates,31 the other 

is crucial for the overall catalytic performance of the complex, as it is involved in compensating 

for electronic alterations during a reaction (a phenomenon referred to as the trans effect or trans 

influence).32,33  
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Scheme 4.1 Dirhodium “paddlewheel” complexes have four bidentate bridging ligands and two 

axial sites for additional ligands (L) to bind. 

 

 

Each of the two rhodium atoms in a dirhodium tetracarboxylate is Lewis acidic and can 

complete an octahedral geometry by filling the coordination site along the axis of the Rh–Rh bond. 

In the bioinorganic realm, the availability of these labile axial sites is crucial for anti-tumor activity 

and DNA targeting.34 In heterogenous catalysis, axial ligation to dirhodium(II) complexes has been 

used to immobilize complexes in silica (e.g., SBA-15) materials.35,36 Davies et al., for example, 

used axial coordination of pyridine groups from polymeric resins as a means to reuse chiral 

dirhodium catalysts with low to no effect on catalyst activity.37–40 

Most reported X-ray crystal structures of dirhodium complexes contain bound axial 

ligands, usually solvent but sometimes substrates, other ligands, or other complexes (i.e., in 

coordination polymers).41–47 Even though dirhodium complexes have been known since the 1960s, 

it was not until 2002 that an X-ray crystal structure of a dirhodium complex without axial ligands 

was reported.48 The few reported X-ray structures of dirhodium carbenes crystallize as 

coordination polymers: OMe or NMe2 groups present in the carbene appendants coordinate to the 

rhodium not bearing the carbene carbon of the next unit.49,50 These complexes require CH2Cl2 and 

toluene to be stable in crystalline form and their unit cells contain highly disordered solvent 

molecules.49 
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In solution, axial solvent coordination to dirhodium complexes is well known,51–55 and even 

macroscopically evident due to its effect on the electronic structure of the complex. Coordination 

by solvent molecules is comparatively much weaker than carboxylate coordination. Nevertheless, 

as a result of populating a vacant Rh–Rh * orbital upon coordination (by solvent or other ligands), 

one will observe in color changes.56–59 Triple resonance NMR experiments confirmed that axial 

ligand coordination changes the chemical environment at the Rh nuclei, and the donor strength of 

a labile ligand is observed in 103Rh chemical shift “deshielding”.60 Several directions have been 

explored to effect changes on dirhodium complexes by way of axial ligation, some of which are 

summarized below.  

 

4.2.2 Axial Ligands 

Berry’s three-center/four-electron (3c/4e) bonding model in the Rh–Rh–CR2 fragment (Scheme 

4.1, center, L = CR2) helps rationalize the diverse reactivity of dirhodium carbenes.58 As a result 

of the communication between these three atoms, dirhodium carbene reactivity is potentially 

“tunable” by axial ligation opposite to the Rh–C bond. For instance, many have designed 

dirhodium complexes with improved catalytic properties54,61–65 by incorporating ligands with 

tethered axial donors (or ligands that shield the Rh core from axial coordination by external 

molecules66). However, this direction is still in its infancy compared to that of modifying electronic 

and steric properties of the bridging ligands.7   

Some have explored N-heterocyclic carbenes (NHCs) as external axial coordinating 

ligands. In one example, Snyder et al. isolated a dirhodium carboxylate complex with 

tetramethylimidazolidene coordinated to the axial position in order to obtain a dirhodium carbene 

structure suitable for X-ray structure characterization.67 No significant differences in activity or 
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selectivity were found with and without the NHC, which led the authors to conclude that an 

equilibrium was taking place that furnishes dirhodium carbene free of axial ligand as the active 

catalyst. Subsequently, Gois et al. utilized N,N-(2,6-diisopropylphenyl)imidazolidene, a more 

sterically hindered NHC, and obtained dirhodium dicarboxylates with axially coordinated NHCs 

to showcase different reactivity and selectivity.68 These complexes catalyzed C–H insertion 

reactions of diazo compounds at considerably slower rates than the compounds without axial 

ligation and with substantial differences in selectivity. These observations were attributed to a 

“push-pull” mechanism, in which an axial NHC causes a weakening of the Rh–CNHC bond in the 

presence of a bound diazo compound (“pull”), and the NHC weakens the Rh=Ccarbene partial double 

bond in the dirhodium carbene complex (“push”).68  

Axial complexation of groups that are not as strong -donors as NHCs have also been 

explored.69–71 Darko et al., for example, reported a heteroleptic dirhodium complex that contained 

a bridging ligand with a tethered thioether that axially coordinates to rhodium.70,71 Beneficial 

effects on the activity – and especially the selectivity – were observed upon using the heteroleptic 

complex as a catalyst for cyclopropanation. Further studies from the same group with mixed 

oxazolidinate/carboxylate dirhodium complexes confirmed the positive effect that the 

coordination of tethered thioether donors had on the catalytic activity of the complexes in Si–H 

insertion reactions and cyclopropanation reactions.63,64 The authors argued that the enhanced 

selectivity they observed was related to an increase in the energy of the LUMO of the complex 

upon coordination of the axial ligand.55  

Coordinating Lewis basic additives may also lead to divergent outcomes. For instance, 

Doyle and coworkers disclosed a dearomatizing formal [3+3]-cycloaddition of 

isoquinolinium/pyridinium methylides and enol diazoacetates whose chemo- and 
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enantioselectivity depended on Lewis base additives.72 The main difficulty in this strategy is to 

find a suitable concentration of the additive that favors mono-coordination over di-coordination, 

since the latter would render the catalytic system inactive (Scheme 4.1, center and right). Additives 

such as tetramethyl urea, Hünig’s base, N,N-diethylaniline, 2,4,6-trimethylpyridine, TfNH2, 

DMAP, and 2-chloropyridine also have been used to modulate the reactivity and selectivity of 

dirhodium tetracarboxylate complexes through axial coordination.73–77  

 

4.2.3 Solvent Effects 

Solvent effects can be crucial in catalysis.78 The effects of axial coordination by solvent on Rh-

carbene reactivity and selectivity should be considered, since it has been shown that reaction 

outcome can highly depend on the solvent.26,79–81 Weakly Lewis basic and non-polar/low-polarity 

solvents, expected to be poorly coordinating, such as dichloromethane or hexane, are generally 

considered the most efficient reaction media for C–H functionalization.29 Still, there are examples 

reported of C–H insertion82,83 and cyclopropanation84 reactions in water, a highly coordinating, 

polar solvent. Though acetonitrile (CH3CN), another Lewis basic solvent, sometimes works poorly 

in Rh-catalyzed reactions,85,86 it has been shown to be an effective solvent for others.87 Predicting 

an optimal solvent is not always trivial. For example, in a Rh-catalyzed C(sp3)–H amination, 

tBuCN was identified as the optimal solvent because the lifetime of Rh2(esp)2 was prolonged in 

tBuCN compared to that in acetonitrile or CH2Cl2.
88  

Computational studies exploring the effects of axial solvent coordination on reactivity and 

selectivity are sparse, though some exist.89–91 Davies and coworkers investigated one case (see 

Figure 6 of their study) of axially coordinated acetone on a dirhodium tetraformate catalyzed 

cyclopropanation of styrene by methyl phenyldiazoacetate, a donor acceptor carbene (at the 



88 
 

B3LYP/6-311G(2d,2p)[Rh-RSC+4f]//B3LYP/6-31G(d)[Rh-RSC+4f] level of theory).89 Their 

results indicated that acetone coordination slows down the rate of nitrogen (N2) extrusion (a barrier 

increase of 4.7 kcal mol-1) and makes it less exothermic (E = -3.1 kcal mol-1) compared to that 

without acetone coordination (E = -9.1 kcal mol-1). This reactivity difference, captured by DFT 

calculations, better aligns with their experimental data.  

Kisan and Sunoj reported a computational study (at the SMD(CHCl3)-M06/LANL2DZ[6-

31G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory) in which axial solvent (CHCl3) 

coordination was shown to have minimal effects on all reaction steps except for the step 

responsible for the enantioselectivity in an asymmetric N–H insertion reaction with cooperative 

dual catalysts: a chiral SPINOL-phosphoric acid and a dirhodium tetracarboxylate.90 In addition, 

axial coordination of the chiral SPINOL-phosphoric acid catalyst seemed to selectively stabilize 

the preferred transition state structure (TSS).90 Additionally, with the exception of some 

experimental-computational studies wherein axial ligation is explicitly considered in the 

computational studies (and compared to the non-complexed states),92–94 axial ligation is generally 

not considered in computational modeling of synthetically-relevant reactions (including our own 

work95,96).  

 

4.2.4 Goals of This Work 

If, for the most part, axial solvent ligation is ignored in computational studies of dirhodium 

catalyzed reactions, we ask ‘should it be’? The aim of the present work is to systematically evaluate 

the effects that coordination of single solvent molecules at the axial sites of dirhodium complexes 

has on C–H insertion reactions. Two main questions were the focus of our attention: (1) Is there a 

meaningful difference in reactivity and selectivity for such reactions when an implicit molecule is 
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axially coordinated? (2) Is it possible to rationally tune reactivity and selectivity by solvent? Our 

tool of choice for answering these questions is density functional theory (DFT), which has been 

used effectively to model related systems on many occasions.97 For more information on 

approaches and caveats for modeling organometallic reactions see our recent review97 (or see 

Chapter 2) and excellent reviews published by others.98–106 

 

4.3 Computational Methods 

DFT calculations were carried out with the Gaussian 09 quantum chemistry package.107 Stationary 

points were classified as either TSSs or minima on the potential energy surface (PES) by 

identification of one imaginary frequency for the former and the absence of imaginary frequencies 

for the latter. To confirm that TSSs are connected to particular minima, we employed intrinsic 

reaction coordinate (IRC calculations).108–110 For geometry optimizations, we used the B3LYP111 

functional with the LANL2DZ[6-31G(d)] basis set, i.e., the LANL2DZ effective core potential 

(ECP)112 for Rh and 6-31G(d) for all other atoms. Implicit solvent was treated with the conductor-

like polarizable continuum model (CPCM).113–115 Reported energies are from single points using 

CPCM with the M06116 functional with a larger basis set, the SDD117 ECP for Rh and the 6-

311+G(d,p) basis set for all other atoms. Natural bond orbital (NBO) calculations were carried out 

in Gaussian with Gaussian NBO version 3.1.118–121 

 We and others have shown that the B3LYP functional is a reasonable choice for geometry 

optimizations of relatively small systems involving dirhodium carbenes.98,101,122–125 In fact this 

level of theory provides good agreement with experiment for H‡  for N2 extrusion, the step that 

contains the turnover-determining transition state,126 for the reactions we describe below with the 

methyl diazoacetate-dirhodium formate adduct: we compute a H‡ = 15.1 kcal mol-1 with 
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B3LYP/LANL2DZ[6-31G(d)] versus an experimental H‡ of 15.0 kcal mol-1 for dirhodium 

tetraacetate-catalyzed cyclopropanation of ethyl diazoacetetate and styrene,127 which can also be 

compared with H‡ of 13.3 kcal mol-1 for N2 extrusion from diazoketones by Pirrung and 

coworkers.31 Additionally, we tested other functionals and ECP basis sets: M06,116 M06L,128 and 

MN15129 functionals with either the LANL2DZ or SDD basis set. Tracking the variation of relative 

electronic energies with respect to level of theory led us to conclude that M06/SDD[6-

311+G(d,p)], which predicted the N2 extrusion E‡ for the reaction mentioned above to be 16.4 

kcal mol-1,127 afforded a reasonable compromise of accuracy and computational cost.116* 

Optimized stationary points using dispersion-corrected B3LYP (i.e., B3LYP-D3(BJ))130,131 had 

little to no effect on the relative free energies.† As a result of these tests, we utilized the 

M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory throughout this study. 

Similar levels of theory have been employed for DFT investigations of synthetically-relevant, Rh-

catalyzed C–H insertions.132,133 All computed structures are available on the ioChem-BD 

platform134 and can be accessed via https://doi.org/10.19061/iochem-bd-6-111. Energies and 

lowest vibrational frequencies are summarized in the Supporting Information using the files names 

on the ioChem-BD database for ease of access. 

 

 
* Data from this computational test are described in the Supporting Information of Organometallics 2021, 40, 4120-

4132. See Figure S3 on p. S6. 
† Ibid, S7 (see Table S3 and discussion thereof). 

https://doi.org/10.19061/iochem-bd-6-111
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4.4 Results and Discussion 

4.4.1 Overall Approach 

For simplicity, we selected the C–H insertion of three representative diazo compounds 1a-

c—one each with acceptor/acceptor (A/A),20,135,136 donor/acceptor (D/A),21,22,28,137 and 

donor/donor (D/D)25,27,138,139 substituents—into propane (2) catalyzed by the simplest dirhodium 

tetracarboxylate, dirhodium tetraformate ([Rh2(formate)4], 3) (Scheme 4.2). We explored insertion 

both into the internal (CH2) and terminal (CH3) positions of propane, which lead to insertion 

products 4 and 5, respectively. Our model system closely resembles that employed in the seminal 

computational study of Nakamura and coworkers,140 in which propane and the same catalyst model 

was used. However, they only explored acceptor diazo compounds and did not consider the effects 

axial ligand binding might have on reactivity and selectivity.  

 

Scheme 4.2 Rh-catalyzed transformation of A/A, D/A, and D/D diazo compounds and propane to 

C–H insertion products. 

 

 

A schematic representation of the generally accepted mechanism for the C–H insertion 

process is shown in Figure 4.1 (blue inner ring). The reaction starts with nucleophilic attack of the 

diazo compound (1) on dirhodium tetraformate (3) to generate an ylide (6). Dirhodium carbene (7) 

is formed by N2 extrusion from 6. A weakly bound complex (8) is then formed, from which the 

carbene carbon inserts into a C–H bond of propane (2). Such C–H insertions are generally 
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concerted, but involve asynchronous formation of the new C–H and C–C bonds (with the former 

leading and the latter lagging).140,141 However, Shaw and coworkers have found that donor/donor 

carbenes can undergo two-step, stepwise C–H insertions,142 or exist at the borderlands143 of 

concerted and stepwise.144 Finally, dissociation of product 4 from weakly bound complex 9 

regenerates catalyst 3.  

 

Figure 4.1 Mechanism postulated for the insertion of a diazo compound into propane catalyzed 

by dirhodium tetraformate (only one formate is shown explicitly). Blue inner ring: no axial ligand. 

Green outer ring: one axial ligand bound. 

 

It is unclear whether axial solvent ligation is relevant at any point in this catalytic cycle 

(Figure 4.1, outer green circle versus inner blue circle). Solvent coordination may occur for some 

intermediates and not others (e.g., 3 to 3-L equilibria) and when it coordinates, it may or may not 
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have a significant effect on structure or reactivity. These issues are addressed below. Reactions 

with and without explicit coordinated solvent molecules were first studied in the gas-phase and 

then in three common solvents using the CPCM model: dichloromethane ( = 8.9), isopropanol 

( = 19.9) and acetonitrile ( = 37.5). We selected these solvents because they are commonly used 

in dirhodium catalyzed reactions, and because they provide variety of dielectric constants and 

donating ability. 

 

4.4.2 Effects of Solvent on Diazo Complexation: HOMO-LUMO Modulation 

To investigate the effects afforded by an axial ligand on diazo complexation, we first assessed the 

frontier orbitals, the highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO), and their change in energetic splitting upon axial ligation. For this 

section, we narrow our attention on donor-acceptor (D/A) systems, a reasonable middle ground in 

terms of electrophilicity, selectivity, and functional group tolerance in the literature, but similar 

qualitative energetic trends were noted for D/D and A/A systems so the conclusions drawn from 

the D-A systems can reasonably be extended to those systems.22*  

Berry demonstrated that axial ligand coordination raises the energy of the Rh–Rh * 

LUMO, and alters the HOMO-LUMO energy splitting.55,58,59 An examination of the frontier 

orbitals of solvent-unbound [Rh2(formate)4] (3) and solvent-bound compounds 3-L demonstrates 

that the LUMO energy increases by 1.3 eV (~ 30 kcal mol-1) from 3 to 3-ACN. While HOMO 

energies also increase, they do not increase by as much, and thus the net effect is an increase in 

the HOMO-LUMO gap (by 0.62 eV from 3 to 3-ACN; Figure 4.2). A similar effect is observed 

 
* Ibid, S4-S5 (see Tables S1 and S2 for data on D/D and A/A systems). 
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for dirhodium carbene structures 7 and 7-L, but the magnitudes of the changes are much smaller 

than those observed with free [Rh2(formate)4] (Figure 4.3). Darko and coworkers computed similar 

qualitative trends in the HOMO-LUMO gap for their tethered, axial thioether-coordinated 

dirhodium catalysts with DFT calculations (M06-2X/def2TZVPP level of theory).63 Increases to 

LUMO energies should lead to greater difficulty in forming 6/6-L. The results of our computations 

support this notion. 

 

 

Figure 4.2 Frontier molecular orbitals (HOMO and LUMO) and HOMO-LUMO gaps (in eV) for 

3 and 3-L structures computed at the M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] 

level of theory. 
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Figure 4.3 Frontier molecular orbitals (HOMO and LUMO) and HOMO-LUMO gaps (in eV) for 

7 and 7-L structures computed at the M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] 

level of theory. 

  

 

4.4.3 Explicit Versus Implicit Solvent—An Acetonitrile Case Study 

Next, we directed our attention towards whether including an explicit axial ligand changes 

predictions about mechanism and/or energetics compared to using an implicit solvent model. Of 

the three solvents studied, we expect acetonitrile to have the most significant effects on reactivity, 

since it is the strongest -donor,53,55,60 so we focus on it here first. 

Four approaches for modeling solvent were compared for the reaction of D/A diazo 

compound 1b and propane to form C–H insertion products (Figure 4.4): (1) neither implicit nor 

explicit solvent included (“no coord. / gas”), (2) implicit solvent, but no explicit solvent included 

(“no coord. / acetonitrile”), (3) explicit solvent, but no implicit solvent included (“acetonitrile / 

gas”), (4) both implicit and explicit solvent included (“acetonitrile / acetonitrile”). Free energy 

barriers (G‡’s, relative to the minimum immediately preceding the TSS in each case) for carbene 
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formation and C–H insertion at both the CH2 (“Internal”) and CH3 (“Terminal”) positions of 

propane were computed using all four approaches. Free energy barriers varied within 3 kcal mol-1 

for each reaction, a small change, but barriers for N2 extrusion increased upon explicit solvent 

coordination and barriers for C–H insertion decreased upon solvent coordination to a lesser degree. 

In summary, predicted effects are not large, but, if borne out in a flask, could alter rates by an 

order of magnitude or more. 

 

  

Figure 4.4 Variation of computed free energy barriers (G‡) for N2 extrusion (left), insertion at 

CH2 internal position (center), and insertion at CH3 terminal position (right) due to solvent model 

on donor-acceptor diazo compound (1b). All barriers are relative to the preceding minimum to 

each TSS. 
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4.4.4 Effects of Solvent on N2 Extrusion Barriers 

Once it was clear that axial solvent coordination affected frontier molecular orbital energies of 

diazo complex (Figures 4.2 and 4.3) and energetic barriers (Figure 4.4), we proceeded to compare 

barriers for N2 extrusion in other solvents (Figure 4.5). Here, all solvents are modeled with both 

implicit solvent and one explicit solvent molecule. Independent of carbene type, the barriers for 

N2 extrusion increase with stronger -donor ligands. The absence of a barrier for the D/D system 

without a coordinated solvent is notable – a caution for those modeling N2 extrusion in such 

systems.  

 

Figure 4.5 Comparison of the Gibbs free energy barriers of N2 extrusion for acceptor/acceptor 

(A/A), donor/acceptor (D/A) and donor/donor (D/D) diazo compounds in gas-phase (No solvent) 

and dichloromethane (DCM), isopropanol (iPrOH) and acetonitrile (ACN) solution. All barriers 

are relative to the preceding minimum to each TSS. 

 

 Gas-phase calculations with explicit solvent were used to isolate the effects of axial solvent 
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raise the energies of the (1) tetrahedral complex 6/(6-L), (2) the N2 extrusion TSS, and (3) 

dirhodium carbene 7/(7-L) relative to the sum of the free energies of 1-3 (Figure 4.6). An increase 

in N2 extrusion barriers (6/6-L → 7/7-L) is observed for more strongly donating axial ligands; a 

similar qualitative trend is observed when implicit and explicit solvent are modeled.* Why? 

Structures 6-iPrOH and 6-ACN, when optimized in the gas-phase from the endpoints of IRC paths 

originating from TSSs for N2 extrusion, are not bound tetrahedral minima (Rh–C bonds are ~3.8 

Å, C–N bonds are ~1.3 Å, and natural charges are redistributed); donation from the distal axial 

ligand appears to be sufficient to promote diazo dissociation., which, of course, hinders N2 loss. 

As described by Fürstner and coworkers, Rh d-orbital back-bonding promotes N2 extrusion and 

dirhodium carbene formation (Figure 4.6, inset),45 an orbital interaction that is not fully expressed 

until the diazo carbon binds rhodium. The situation observed for 6-iPrOH and 6-ACN in the gas-

phase is extreme, but a weaker version of the same effect is observed with any axial donor. 

 
* Ibid, S3 (see Figure S1 for data resulting from calculations resulting from inclusion of both implicit continuum 

solvent and explicit solvent. 
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Figure 4.6 Formation and decomposition of 6/6-L with and without solvent bound computed at 

the M06/SDD[6-311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] level of theory for D/A diazo 

compounds (1b). 

 

4.4.5 Effects of Solvent on CH2/CH3 Insertion Selectivity 

While the overall barriers for C–H insertion did not change much with solvent coordination, 

selectivity can be greatly affected by small changes in relative energies of transition states. The 

order of inherent reactivity for insertion into differently substituted alkyl C–H bonds is well-

established—primary << secondary < tertiary C–H bonds—so we would expect our computed 

barriers for insertion into the internal position of propane to be lower than those for insertion into 

the terminal position.140,145,146  
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Kisan and Sunoj highlighted the effect that axial ligation can have on the selectivity of 

asymmetric N–H insertion reactions catalyzed by dirhodium tetracarboxylates with a chiral 

SPINOL-phosphoric acid bound.90 In a similar manner, we can compute free energy differences 

(G‡) between transition states for insertion into internal versus terminal positions of propane. 

As shown in Figure 4.7, we computed synthetically meaningful differences in insertion barriers.* 

For A/A carbenes, strongly donating solvents decrease selectivity. For D/A and D/D carbenes, 

however, iso-propanol coordination leads to the best selectivity (i.e., the greatest magnitude in 

G‡). Though we are unaware of experimental studies where iso-propanol leads to optimal 

selectivity, past studies show that selectivity can be solvent-dependent.147 Given the magnitude of 

our predicted effects, decomposing their origins with current theoretical methods would not be 

reliable;79,148 Nonetheless, Darko and co-workers observed an increase in product yield for Si–H 

insertion reactions when dirhodium catalysts with tethered, axial coordinating ligands were used.63 

Results in Figure 4.7 suggest that perhaps tethered, axial coordinating ligands might also enhance 

regioselectivity.  

 
* Ibid, S4 (see SI Figure S2 for G‡’s from which the G‡ are derived). 
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Figure 4.7 Comparison of the Gibbs free energy barriers difference for insertion of the carbene 

into the CH2 and CH3 of propane for acceptor/acceptor (A-A), donor/acceptor (D-A) and 

donor/donor (D-D) carbenes in gas phase and dichloromethane (DCM), isopropanol (iPrOH) and 

acetonitrile (ACN) solution. 

 

4.4.6 Structural Changes Upon Axial Ligand Binding 

How strong is the interaction between the axial ligand and the dirhodium complex? One classic, 

although debated,149–151 means of characterizing bond strength is to use bond length as a measure 

for a series of related compounds. For the Rh–L interaction, where L is the atom of the axial solvent 

in contact with Rh, we compared d(Rh•••L) to the sum of the van der Waals radii of Rh and the 

bond atom of L ((rvdW)), assuming a covalent interaction exists if d(Rh•••L) < (rvdW) (Scheme 

4.3a).152 We also computed Wiberg bond indices (WBIs)153 for gas-phase geometries of 3, 3-L, 6, 

6-L, 7, and 7-L. These data are shown in Table 4.1. For all cases, d(Rh•••L) magnitudes are less 
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than (rvdW), however WBIs for Rh–L bonds are low: 0.1-0.4. WBIs are greatest for acetonitrile, 

as expected, but similar for iso-propanol and dicholoromethane. 

 

Scheme 4.3 a) key parameters collected in Table 4.1 b) representation of dz
2 orbitals that contribute 

to the donor-acceptor interactions between Rh2X4 fragments that make up the Rh-Rh single bond 

c) orbital representation of donor-acceptor interaction and d) d-orbitals of Rh-Rh bond. 
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Table 4.1 Key distances (d(Rh•••Rh) and d(Rh•••L)), pyramidality angles (), Wiberg bond 

indices (WBIs), and global electrophilicity index values () for dirhodium complexes with axial 

ligands: DCM (L = Cl), iPrOH (L = O), and ACN (L = N). All complexes bound to diazo substrates 

are D-A substrates. Distance and orbital energies were measured from gas-phase M06/SDD[6-

311+G(d,p)]//B3LYP/LANL2DZ[6-31G(d)] structures. 

 

Rh2 

Complex 

 

d(Rh•••Rh) 

(Å) 
 

d(Rh•••L) 

(Å) 

Rh-L 

(rvdW) 

(Å)a 

Rh-

Rh 

WBI 

Rh-

L 

WBI 

 (eV) 

3 2.40 88.3 - - 0.89 - 5.23 

3-DCM 2.41 88.1 2.73 3.94 0.84 0.28 4.34 

3-iPrOH 2.42 88.2 2.27 4.26 0.83 0.23 3.59 

3-ACN 2.43 88.2 2.20 4.10 0.81 0.36 2.91 

6 2.43 88.0 - - 0.77 - 3.82 

6-DCM 2.43 87.7 2.84 3.94 0.78 0.23 3.59 

6-iPrOH 2.43 87.7 2.32 4.26 0.81 0.21 2.48 

6-ACN 2.43 87.9 2.23 4.10 0.82 0.37 2.22 

7 2.48 87.9 - - 0.59 - 4.64 

7-DCM 2.49 87.6 3.21 3.94 0.57 0.10 4.68 

7-iPrOH 2.49 87.7 2.51 4.26 0.64 0.14 4.23 

7-ACN 2.49 87.5 2.49 4.10 0.63 0.23 3.84 

 

Changes in Rh–Rh bond distances (d(Rh•••Rh)) are small with solvent coordination (Table 

4.1). Pyramidality angle () (Scheme 4.3a) deviations from 90° are also small (Table 4.1), 

consistent with conclusions arrived at by Aullón and Alvarez.154 While distortions of  might be 

expected since an axial ligand donates electron density into the Rh-Rh  orbital, the bridging 

ligands, along with other orbital interactions, resist major deformation: (1) a 2c-2e- bond between 

the two dz
2 orbitals of individual Rh2X4 fragments and (2) a 1e- donor-acceptor interaction between 

a dz
2 of one Rh and the empty pz of the other Rh (Scheme 4.3b-d).55,154 
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While small increases in d(Rh•••Rh) for 3/3-L are accompanied by decreases in the Rh-Rh 

WBI, the Rh-L WBI increases in the series from no solvent to acetonitrile (Table 4.1). For 6/6-L 

and 7/7-L, changes in d(Rh•••Rh) (at most a 0.1 Å change) and Rh-Rh WBI are not as large (e.g., 

WBI = 0.05 for 6-ACN vs. WBI = 0.08 for 3-ACN), which suggests that the effects of axial 

solvent coordination on the Rh-Rh bond are not as potent compared to that of 3. We suggest that 

the strong structural changes observed for 3/3-L and diminished structural changes in 6/6-L and 

7/7-L might be a result of a competition between L and the diazo compound to engage in 3c/4e 

bonding. Berry rationalized minor changes to the Rh-Rh bond distance upon axial complexation 

of increasing sigma-donor capacity in his 3c/4e bond model by observing that axial ligand binding 

mostly impacts the unoccupied LUMO orbital (Scheme 4.3d); in other words, the Rh-Rh bond 

length 4.is generally insensitive to axial ligation.58 The results in Table 4.1 for Rh-Rh distances 

that match crystallographically determined Rh-Rh bond distances (distances fall within a narrow 

window of ranging from 2.35-2.45 Å)2,50,154—and the minor, almost negligible, changes in 

WBIs—support this model.  

Electrophilicity of the dirhodium core can be investigated by computing the global 

electrophilicity index (GEI, , equation 1,66,155–158 wherein   is electronegativity159 and  is 

chemical hardness).160 The GEI can be derived from HOMO and LUMO energies with equations 

2 and 3.  

 =         () 

 = - (EHOMO + ELUMO) / 2    () 

 = ELUMO – EHOMO     () 
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Computed GEI values for 3/3-L, 6/6-L, and 7/7-L (Table 4.1, the greater the value of , 

the greater the electrophilicity) suggest that axial ligation generally makes these structures less 

electrophilic and increasingly so from DCM to ACN. 

 

4.5 Summary and Outlook 

In this study, we used DFT calculations to compute energetic barriers for N2 extrusion and C–H 

insertion of A/A, D/A, and D/D carbenes with and without axial solvent ligation. Our attention 

centered around two main questions: (1) Is there a meaningful difference in reactivity and 

selectivity for such reactions when an implicit molecule is axially coordinated? (2) Is it possible 

to rationally tune reactivity and selectivity by solvent? In short, our study revealed that the answer 

to questions 1 and 2 are both “yes”. While the predicted effects are not large, they are not 

negligible. 

What do our results imply for future computational studies of dirhodium-catalyzed 

reactions, an increasingly important tool in aiding organic synthesis? We conclude that it is worth 

seriously considering axial solvent ligation in such studies. In some cases, the changes in relative 

energies will be small, in which case one can deduce that axial solvent might not play an important 

role. In some cases, however, including axial solvent may be essential to accurately capture 

reactivity and selectivity—e.g., in computationally modeling stereoselective reactions,161 in which 

case, accurately predicting G‡ may hinge on incorporating axial solvent in one’s model—and 

missing the opportunity to do so due to axial solvent neglect would be an unfortunate oversight. 
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Chapter 5 

 

A Stepwise SE2 Mechanism in the Insertion of Donor/Donor 

Carbenes into the C–H Bonds of Stereogenic Centers* 

 

 
While differing widely in the various little bits we know, in our infinite ignorance we are all equal. 
 

- Karl R. Popper 

 

5.1 Abstract 

A stepwise SE2 mechanism was discovered in a computational study of an experimentally 

observed C-H insertion reaction of a donor/donor Rh carbene. Collaboration with experiment 

(with Sarah Dishman and Jared Shaw) helped elucidate the mechanistic origin of 

stereoselectivity in this dirhodium(II)-promoted C-H insertion reaction into a stereocenter to 

benzodihydrofurans with two contiguous stereocenters. 

 

5.2 Introduction 

The activation of C-H bonds has transformed organic chemists’ ability to forge new chemical 

bonds. Metal-carbene intermediates play an indispensable role towards the development of 

 
* Portions of this chapter are reproduced or adapted from Dishman, S. N.; Laconsay, C. J.; 

Fettinger, J. C.; Tantillo, D. J.; Shaw, J. T. Divergent stereochemical outcomes in the insertion of 

donor/donor carbenes into the C–H bonds of stereogenic centers, Chem. Sci. 2022, 13, 1030-

1036 with permission from the Royal Society of Chemistry. Sarah Dishman (of Prof. Jared 

Shaw’s group) completed the experimental portions of this chapter. 
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efficient C-H activation methods. Indeed, while much is understood regarding metal-carbenes with 

one (or more)—so called “donor/acceptor” or “acceptor/acceptor” carbenes—less is understood 

about metal-carbenes with two electron-donating groups, or “donor/donor” carbenes. In particular, 

the general mechanism and origins of stereoselectivity of these reactions lack clarity. Herein lies 

the knowledge gap we aim to fill in part by studying an example system. 

 What is the stereochemical impact of the stereogenic insertion center in C-H insertions of 

donor/donor carbenes? Can chiral metal catalysts control diastereoselectivity? And is the 

transformation concerted, or is it stepwise? This study illustrates the structural features of C-H 

insertion centers that drive experimentally observed stereochemical outcomes. Based on data 

gleaned from the laboratory, we propose a mechanistic model (derived from our computations) 

which describes a stepwise SE2 mechanism for a C-H insertion reaction to trisubstituted 

benzodihydrofurans. 

 The current paradigm for acceptor carbene mechanisms is one based on concerted C-H 

insertions: both hydride transfer and C-C bond formation steps occur in one step. For example, 

studies by Taber1 and Doyle2 established stereochemical models for the C-H insertions of acceptor 

carbenes, models rationalized by the retained stereochemistry at the C-H insertion center. To our 

knowledge, no mechanistic studies on donor/donor carbenes exist to date. A fundamental 

understanding of the mechanism, and the stereochemical impact of C-H insertion centers, would 

therefore aid in the design of future studies involving donor/donor carbenes. 
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Scheme 5.1 a) Prior work: tertiary C–H insertion centers with acceptor carbenes. b) This 

work: donor/donor carbenes with chiral tertiary C–H insertion centers. 

 

 

 

5.3 Experimental Results 

Ethers 1 and 2 (Tables 5.1 and 5.2) were studied within this context to elucidate the effects of 

varying C-H insertion sites on the degree of stereocontrol from substrate and catalyst. Ether 1 has 

a benzylic C-H insertion center and is highly reactive, relative to a C-H insertion site which lacks 

a group that can stabilize the buildup of positive charge through resonance, such as ether 2, 

substituted with a methyl and homoallylic group. Tables 5.1 and 5.2 show the results of the C-H 

insertion reactions of 1 and 2, respectively, with chiral (Figure 5.1, 3) or achiral catalysts (4). A 

full discussion of the experimental details can be found in the original publication and supporting 

information of Dishman, S. N. et al. Chem. Sci. 2022, 13, 1030-1036. 
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Figure 5.1 Structures of hydrazone precursors and commonly used dirhodium catalysts with 

donor/donor carbene C–H insertion systems. 

 

For the purposes of this dissertation, however, which focuses solely on the computational results, 

we summarize some key experimental takeaways. 

 

Table 5.1 Alkyl/Aryl Stereogenic Insertion Centers. 

Entry SM Catalyst dra 

5a:5b 

erb (5a) 

(R,S):(S,R) 

Yield 

(%) 

1 (R/S)-1 R-3 >95:5 49:51 68 

2 (R/S)-1 S-3 >95:5 49:51 65 

3 (R/S)-1 4 >95:5 49:51 65 

4c (S)-1 R-3 >95:5 97:03 82 

5 (S)-1 S-3 >95:5 97:03 71 

6 (S)-1 4 >95:5 97:03 76 

a dr determined by 1H NMR analysis of unpurified reaction mixtures. b er determined by chiral HPLC. c Absolute 
stereochemistry confirmed by X-ray crystallography. 
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Table 5.2 Alkyl/Aryl Stereogenic Insertion Centers. 

Entry SM Catalyst dra 

6a:6b 

erb-6a 

(S,R): 

(R,S) 

erb-6b 

(R,R): 

(S,S) 

Yield 

(%) 

1 (R/S)-2 R-3 47:53 91:09 86:14 70 

2 (R/S)-2 S-3 48:52 11:89 16:84 68 

3 (R/S)-2 4 57:43 49:51 50:50 91 

4c (S)-2 R-3 86:14 99:01 99:01 77 

5 (S)-2 S-3 10:90 74:26 99:01 75 

6 (S)-2 4 53:47 98:02 99:01 58 

a dr determined by 1H NMR analysis of unpurified reaction mixtures. b er determined by chiral HPLC. c Absolute 

stereochemistry confirmed by X-ray crystallography 
 

Each C-H insertion reaction can yield two diastereomers and their enantiomers (four 

possible products) in a reaction that starts with either racemic or enantiopure substrate in the 

presence of either chiral (e.g., Rh2(R-PTAD)4, R-3) or achiral catalysts (e.g., Rh2(mes-CO)4, 4). 

Both racemic 1 and enantiopure 1 yielded the benzodihydrofuran product as a single cis 

diastereomer (5a, Table 5.1, entries 1-3) irrespective of which catalyst was used. The 

enantioselectivity followed a similar trend where racemic 1 provided racemic 5a and enantiopure 

1 gave a single enantiomer of 5a in 97:03 er (Table 5.1, entries 4-6) regardless of the catalyst 

employed in the reaction. Therefore, these substrates with highly activated benzylic C–H elicit 

highly stereoselective substrate-controlled C–H insertion reactions. 
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 To investigate the influence of the C-H insertion center on the diastereo- and 

enantioselectivity, we subjected 2 to the same reaction conditions in the presence the same chiral 

and achiral catalysts. While racemic 2 led to racemic mixtures of 6a : 6b in the presence of chiral 

catalysts (47 : 53 and 48 : 52 for R-3 and S-3, respectively) and slight enhancement of dr with 

achiral catalyst (57 : 43), we observe high er in the presence of chiral catalysts (Table 5.2, 1-2). 

This observation suggests that chiral catalysts may steer racemic 2 to enantio-enriched products. 

The results with (S)-2 were even more striking. Treatment of this substrate with R-3 resulted in 

preferential formation of trans benzodihydrofuran 6a (Table 5.2, entry 4) with high 

enantioselectivity. Use of the same substrate with S-3 resulted in inverted diastereoselectivity with 

the same enantiomeric preference as the reaction with R-3 (Table 5.2, entry 5)!  The eroded 

enantioselectivity for the formation of 6a in this case highlights the mismatch in stereochemical 

preference between the substrate and the catalyst. Finally, the insertion of (S)-2 with achiral 

catalyst (4) showed little diastereoselectivity while retaining the high substrate-induced 

enantioselectivity (Table 5.2, entry 6). On one hand, these results demonstrate that the stereocenter 

undergoing insertion controls the magnitude and orientation of enantioselectivity for both newly 

formed stereocenters in the product. The catalyst, on the other hand, can have a strong influence 

on the diastereoselectivity, and (R/S)-3 is a privileged catalyst scaffold for this system.3 These 

results are consistent with a highly stereoselective hydride transfer step that is followed by a 

diastereoselective ring closure that can be controlled by the configuration of the catalyst. 

 

5.4 Computational Details 

Density functional theory (DFT) calculations were carried out using the Gaussian 16 suite of 

programs.4 DFT methods were chosen because of the size of the molecules involved in this study 
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and their reliability to perform well in similar mechanistic studies. DFT methods (similar to those 

used here) have been successfully implemented in past computational mechanistic studies of C-H 

insertion reactions of dirhodium carbenes and other transition-metal catalyzed reactions in the field 

of homogeneous catalysis.5–10 Geometries of transition state structures (TSSs) and minima along 

the reaction pathway were optimized using the B3LYP11 functional with Grimme’s D3 correction 

with Becke-Johnson (BJ) damping (i.e., B3LYP-D3(BJ)) to correct for the lack of adequate 

dispersion treatment in B3LYP.12,13 Harmonic vibrational frequencies were computed at the same 

level, from which we extracted free energy correction values (vide infra) to compute relative free 

energies (G); imaginary vibrational modes were visualized to confirm we identified true TSSs; 

one imaginary frequency confirmed we computed first-order saddle points for TSSs and the lack 

of any imaginary frequencies confirmed we computed energy minima. Intrinsic reaction 

coordinate (IRC) calculations were carried out from each TSS to identify flanking minima on the 

potential energy surface.14–16  

All computations were carried out with an ultrafine integration grid (99 radial shells and 

590 angular points per shell), the default in Gaussian 16 and recommended minimum-sized 

integration grid to achieve quantitative accuracy.17 We employed a Pople-type double- basis set, 

6-31G(d) basis set18 for C, H, O, and N and the LANL2DZ19 basis set and effective core potential 

(ECP) for Rh (i.e., B3LYP-D3(BJ)/LANL2DZ[6-31G(d)]) for geometry optimizations. Single-

point calculations were subsequently carried out on the above-mentioned optimized geometries 

with the same functional, B3LYP-D3(BJ), using a larger, more flexible basis set and ECP—the 

Stuttgart/Dresden SDD ECP20 for Rh, and 6-31+G(d,p) for C, H, O, and N, which includes diffuse 

and polarization functions—to more-accurately account for the charged-minima and TSSs in this 

reaction (i.e., PCM(CH2Cl2)-B3LYP-D3(BJ)/SDD[6-31+G(d,p)]//PCM(CH2Cl2)-B3LYP-
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D3(BJ)/LANL2DZ[6-31G(d)]).21 We observed that increasing the basis set size from double-  to 

triple- (i.e., 6-31G to 6-311G) was too costly to be practical given the size of the system studied 

here and the computational resources at our disposal. Adding additional diffuse and/or polarization 

basis functions, too, can be harmful—not to mention increase the cost—so we reasoned that a 

minimally-augmented 6-31+G(d,p) basis set would suffice.22  

All optimized structure coordinates are reported on the ioChem-BD database for ease of 

access.23 The reader may find these structures at the following DOI: 

https://doi.org/10.19061/iochem-bd-6-94 

 

5.5 Mechanistic Model for Observed Stereoselectivity 

To investigate the C–H insertion mechanism leading to 6 and delve further into the origins 

of the observed stereocontrol, we turned our attention to computational studies. Density 

functional theory (DFT) calculations have previously aided our (i.e., a previous Shaw-

Tantillo collaboration) study of C–H insertion mechanisms of donor/donor carbenes.24 

However, unlike previous DFT explorations of similar reactions in which the Rh catalyst 

can be reasonably modeled with Rh2(OAc)4, or even Rh2(HCO2)4,
22 we could only 

reasonably investigate the current mechanistic question by modeling the insertion reaction 

of 6 within the chiral cavity23,24 of either Rh2(R-PTAD)4 or Rh2(S-PTAD)4. Given the size 

of the N-phthalimido and adamantyl ligands on Rh2(R-PTAD)4 (weighing in at 219 atoms 

and 940 electrons), and its concomitant computational cost, we reasoned that truncating the 

https://doi.org/10.19061/iochem-bd-6-94
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adamantyl groups to methyl groups struck a sensible balance between mechanistic insight 

and cost with the modeling capabilities at our disposal.23,24* 

 
Figure 5.2 a) Arrow pushing mechanism and SE2 transition-state structures leading to 6a and 

6b.† b) Reaction energy profile computed with DFT at the PCM(CH2Cl2)-B3LYP-

D3(BJ)/SDD[6-31+G(d,p)]//PCM(CH2Cl2)-B3LYP-D3(BJ)/LANL2DZ[6-31G(d)] level of 

theory; [Rh] = Rh2(R-PTAD)4. 

 
* One (perhaps significant) drawback of this truncation is the loss of fidelity with respect to the size and shape, or 

“entry surface area”, of the 3D chiral pocket shape.37 One of the possible roles of the adamantyl groups is to 

decrease the 3D pocket shape and pre-distort the substrate. With the computational cost associated with this study, 

however, it’s impractical to model with the adamantyl groups. So, we add a note of caution to the reader that, 

considering this tradeoff, the level of resolution of our conclusions may indeed approach, but not exactly reflect, 

that of reality. Faster machine learning tools may eliminate the need for this tradeoff.37 
† Full potential energy surfaces for formation of 6a/6b is described in the Computational Supporting Information of 

Chem. Sci. 2022, 13, 1030-1036. See SI Figure 4 for TS-6b. 
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A stepwise mechanism containing a short lived zwitterionic intermediate was found for the 

reactions of substrate 2, similar to that previously proposed for C–H insertions of donor/donor 

carbenes with primary, achiral insertion sites24 (see computational SI for details; all computed 

structures can be found in the ioChem-BD repository25). For clarity, the mechanism for formation 

of one enantiomer of the major diastereomer from diazo compound 7 is shown in Figure 5.2.* First, 

addition of the chiral catalyst results in a tetrahedral intermediate (11) with N2 poised to leave. The 

free energy barrier to extrude nitrogen is low (overall, a 6.3 kcal mol-1 barrier from 7) and this 

process is predicted to be highly exergonic (G = -32.2 kcal mol-1), forming one major rotamer of 

Rh carbene (8).  From 8, an initial hydride-shift from C-1 to C-2 is followed by an SE2 C–C bond 

closure step to yield the major product (6a).26 The hydride transfer occurs with high stereochemical 

fidelity, accounting for the high selectivity for the newly formed stereogenic center at C-2. The 

diastereomeric ratio observed is hypothesized to be due to the major oxocarbenium ion 

intermediate (9) rotating about the Caryl–O bond to expose one prochiral face, preferentially 

exposing one prochiral face based on the configuration of the catalyst. Although our computed 

mechanism is formally stepwise, the C–H insertion event can be considered to border the realm of 

a concerted, highly asynchronous mechanism (see Figure 5.3).27 

Although, we successfully identified transition states leading from 9 to 6a and from 

10 to 6b,† the transition state for 9 to 10 remains elusive. The observed 85:15 ratio results 

from the relative energy of these two transition states, as well as the interconversion of 9 to 

10. While it is difficult to disentangle the exact influence of these three transition states on 

diastereoselectivity, the data are consistent with an oxocarbenium ion whose 

stereochemical fate is determined by the catalyst.  Small perturbations resulting from 

 
* Ibid, see SI Figures 4-5 for detailed reaction profiles for formation of the other diastereomer and its enantiomer. 
† Ibid, SI Figures 4-5. 
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factors not explicitly modeled here, e.g., explicit solvent effects, deviations in the chiral 

crown structure, or non-statistical dynamic effects, could account for issues in delineating 

these three steps’ effect on the diastereoselectivity.28-33  Results in the supporting 

information* corroborate the experimental enantioselectivity: specifically formation of pro-

chiral R-3 bound Rh-carbene intermediate (SI-23) leading to (R,S)-6a is kinetically and 

thermodynamically unfavorable (G‡ = 4.3 kcal/mol and G = 3.9 kcal/mol relative to 

7) compared to that leading to (S,R)-6a, consistent with an er of 99:1 at 0°C (Table 5.2, 

entry 4).  

 

5.6 Discussion of Computational Results 

The robustness of our chosen level of theory was tested by employing a series of various 

functionals and computing the E‡ for TSS’s TS-6b and TS-6a (Table 5.3). Different functionals 

resulted in varying quantitative results in predicting E‡’s—the free energy differences fall 

within ~1-2 kcal/mol, all within typical DFT error. This result suggests that we are unable to 

accurately predict the experimentally observed diastereoselectivity with our employed DFT 

methods. However, these results do not diminish the validity and value of our main conclusions 

that the C-H insertion mechanisms with R-PTAD catalyst is stepwise. After all, the conclusions 

drawn from our studies are qualitative, not quantitative. 

  

 
* Ibid, SI Figures 4-5 
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Table 5.3 Single-point energy comparison of E‡ with various DFT functionals. E‡’s are 

computed as the difference between TS-6b and TS-6a. All single-points were carried out with the 

SDD basis set and ECP for Rh and 6-31+G(d,p) for all other atoms, unless stated otherwise (in one 

case we employ the def2-SVP basis set). Single-point calculations were computed at the B3LYP-

D3(BJ)/LANL2DZ[6-31G(d)]-optimized geometry. 
 

Functional E‡ (kcal mol-1) 

B3LYP-D3(BJ) 1.1 

B3LYP-D3(BJ)/def2-SVP 0.3 

PW6B95-D3(BJ) -0.1 

B97X-D 0.2 

PBE0-D3 0.1 

M06-D3 -0.6 

M06 -0.4 

MN15 -1.2 

 

The key advance that emerges out of our computational studies regards the nature of the 

bond-making and –breaking events in the C-H insertions event: that the C-H insertion event 

involves a formally stepwise mechanism with hydride transfer-SE2 C-C bond formation events. 

SE2 mechanisms are unusual and sparsely reported in the literature. As far as we know, they have 

not been reported for systems involving Rh. Electrophilic cleavages of organomercurial 

compounds usually exhibit SE2 retention of configuration at carbon mechanisms; while SE2 

inversion has been reported for some organotin compounds, it is much more rare (as far as we 

know).30 Concerted (sometimes asynchronous) C-H insertion mechanisms have been invoked 

frequently for donor/acceptor and acceptor carbenes and these have involved retention of 

configuration at the C-H insertion carbon, but previously-reported intramolecular C-H insertions 
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with donor/donor carbenes catalyzed by Rh2(OAc)4 also involve stepwise mechanisms. All of these 

mechanistic possibilities for hydride shift and C-C bond closure events are depicted on a More 

O'Ferrall-Jencks plot31,32 of the sort shown in Figure 5.3.33,34 The stepwise mechanism we report 

exists very close to (but not within) the border area (light blue) of concerted, and we suspect that 

this is the case due to the distortion the substrate must adopt in the chiral catalyst cavity (and this 

distortion may even be stronger with inclusion of adamantane groups at the methyl positions where 

we needed to truncate our R-PTAD catalyst model due to computational cost, as noted in the 

footnote above†). We hope that future work may validate this claim. 

 

Figure 5.3 Qualitative More O’Ferrall-Jencks plot for Rh-catalyzed C-H insertion of donor/donor 

carbenes. Past studies have either found clearly stepwise or concerted asynchronous mechanisms, 

whereas the mechanism discovered here borders the two. 
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5.7 Notable Limitations of Current Study 

That our current model is limited with respect to the origin of diastereoselectivity presents ample 

opportunity for future experimental and/or theoretical studies to update the current model. 

Variations in energies emerging out of the DFT functionals in Table 5.3 leave the origin of 

diastereoselectivity hanging in the balance and suggests that the use of much higher levels of 

theory and/or running dynamics simulations—an as-yet impractical task with currently available 

tools given the size of the system studied here—might aid in future studies.  

The relatively flat surface connecting the hydride-shift and SE2 TSSs on the PES also 

indicates caution when drawing conclusions based solely on stationary point analysis. A great deal 

of literature discusses dynamic effects that may govern selectivity of reactive species on broad, 

plateau-like regions of potential energy surfaces (PESs).35 Our model may be further updated by 

considering the effects of explicit solvent. As we mentioned above, truncating the catalyst may 

have had a significant effect on the chiral cavity shape, which poses an additional limitation on 

our model, but we do not believe this truncation compromises the evidence in favor of a stepwise 

mechanism. So, we are left with a “thin” mechanistic model, which is still valuable for the purposes 

of this study.36  

 In sum, we have gathered strong evidence that supports a stepwise C-H insertion 

mechanism involving an SE2 C-C bond closure step. Though the qualitative structure of our 

mechanism is championed by our results, the details about the origin of diastereoselectivity remain 

elusive. These limitations, however, should inspire future experimental or computational studies. 

We foresee in the future ab initio molecular dynamics and/or a fuller treatment of explicit solvent 

effects elucidating a clearer origin of stereoselectivity. 
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Chapter 6 

 

Can Dirhodium Complexes Catalyze Cyclopropanation of 

Cycloheptatriene Diazo Compounds to Synthesize Substituted-

Semibullvalenes? 

 

 
While it is mutually advantageous to tie theory with experiment, I still feel that theory should 

lead, rather than follow experiment in exploring chemistry. 

 

Paul Schleyer, J. Comp. Chem. 2001, 13, ix-xi  

 

6.1 Abstract 

In theory, yes. 

 

6.2 Introduction 

In 1966, Zimmerman and Grunewald introduced semibullvalene (SBV) to the world of chemistry, 

a fortunate stroke of serendipity. Upon photolysis of barrelene they discovered that they had 

synthesized SBV and its closely related C8H8 isomer, cyclooctatetraene (Scheme 6.1a).1 In 1972, 

Zimmerman and Sousa then synthesized cycloheptatrienyldiazomethane and studied its thermal 

and photochemical rearrangement to products resulting from nitrogen loss and subsequent 

rearrangement of the carbene intermediate, thinking they might observe SBV among other C8H8 

products.2 They did not. Instead, they isolated benzene, cyclooctatetraene, and heptafulvene, and 

acetylene. Considering advanced methods for “taming” carbene reactivity with transition metals 

(e.g., Rh) to make metal carbenes,3 one wonders whether metal carbenes might, in theory, pave 

the way to SBV à la Zimmerman. Indeed, more than 50 years later, SBV still remains a physical 
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organic chemist’s playground4,5 and finding ways to SBV would be synthetically useful. Here, we 

offer a theoretical prediction for a synthetic route to SBV via a cyclopropanation of dirhodium 

carbenes derived from cycloheptatrienyl diazo compounds. 

Synthetic and theoretical chemists have studied SBV from many angles. Some have studied 

its rapid, degenerate Cope rearrangement6,7 and fluxional8 (or locked9) behavior. Others leveraged 

the fluxionality of related carbon cage molecules, such as bullvalene and barbaralane, for 

applications in materials and sensing, sparking new interest in shapeshifting molecules.10–16 The 

Maimone group used shapeshifting anions in a total synthesis Ocellatusone C, highlighting that 

“the barbaralyl nucleus remains an outstanding synthetic challenge”.17 The synthesis of related 

fluxional carbon cages, such as SBV, apply to this statement as well.18 Past work on SBV 

investigated its electronic structure,19–21 heavy-atom tunneling capabilities (a theoretical 

prediction22 borne out by experiment),22–26 and Cope rearrangement barrier height27 with quantum 

calculations. Some have even introduced ways to reduce,19 eliminate,28 interrupt,29 and invert the 

activation barrier for its rearrangement to a homoaromatic minimum (Scheme 6.1b).30–36 Its 

bromination mechanism37 has been examined in detail, as has its dynamic behavior associated with 

its formation via a reaction with a post-transition state bifurcation (PTSB).38–40  

Efforts to synthesize SBV and its analogue, 2,6-diazasemibullvalene, abound (Scheme 

6.1c).41–47 One might think that chemists have exhausted ways to synthesize SBV, but with the 

continuous emergence and discovery of new reactions in organic chemistry, there remains room 

for breathing new life into SBV synthesis and that of other fluxional molecules. Using quantum 

chemical computations, we explore the viability of a new approach to synthesize monosubstituted 

SBVs via a dirhodium(II)-catalyzed cyclopropanation (CP) through a metal carbene intermediate 

(Scheme 6.1f).  
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Metal-carbene mediated chemistry has a long and winding history.3 Our group has 

collaborated closely with experimental groups to understand mechanisms of Rh-carbene mediated 

transformations, including C-H insertion48–50 and ylide formation reactions51–54 with the aim of 

developing synthetically-useful models of reactivity and selectivity. This chemistry has proven to 

be a playground of its own, a family of synthetically relevant organometallic reactions that display 

behaviors considered by some to be esoteric. For example, our groups has shown that some C-H 

insertion reactions involve cryptic post-transition state bifurcations (PTSBs) that provide facile 

routes to unwanted side products.55–57 Tandem processes58 from Rh-carbene intermediates—such 

as CP/Cope rearrangements,59–62 which have been applied in total syntheses to access (otherwise 

difficult to synthesize) seven-membered rings, or C-H insertion/Cope rearrangements63—may also 

involve PTSBs.56,57 Given this precedent, we additionally ask whether SBV can be generated by a 

CP that would involve a PTSB (Scheme 6.1f). 
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Scheme 6.1. Select examples of semibullvalene and barbaralone syntheses (a-e). This work (f).   

 

We are not the first group to suggest a transition metal-catalyzed synthesis of fluxional 

molecules from cycloheptatrienes. In 1967, the Doering group discovered a synthetic route to 

barbaralone from a cyclohepatrien-7-yl diazomethyl ketone.64 Building on that work in 1977, 

Casas and Serratosa synthesized barbaralone with a Cu-carbene mediated CP in their synthesis of 

bullvalene (Scheme 6.1d).65 Both methods result in products that are net cyclopropanations of the 

diazomethyl ketone with the transannular bond of the cycloheptatriene. 
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Recently, Ferrer and Echavarren synthesized barbaralones by gold(I)-catalyzed 

intramolecular oxidative cyclization of 7-ethynyl-1,3,5-cycloheptatrienes (Scheme 6.1e).66 The 

same group also reported generation of closely related and highly fluxional barbaralyl cations from 

7-alkynyl cycloheptatrienes by gold catalysis.67 Could Rh(II)-catalysts assist in this type of 

transformation? When the Echavarren group expanded on this work in 2021 they discovered that 

the use of Rh(II)-catalysts led to a decarbenation to alkynylcyclopropanes from 7-alkynyl 

cycloheptatrienes and attributed the result to a lower barrier for decarbenation (G‡ = 21.9 kcal 

mol-1) than the 6-endo-dig cyclization (G‡ = 24.4 kcal mol-1) with the use of Rh(II) catalysts.68 

Cu(I) catalysts have similarly been shown to work in a synthesis of barabaralyl-substituted allenyl 

acid esters from terminal alkynes and tropylium tetrafluoroborate.69  

May cycloheptatrienyl diazo compounds be a reasonable starting point to synthesize 

semibullvalenes using Rh(II)-catalysts through an intramolecular cyclopropanation, analogous to 

Echavarren’s intramolecular oxidative cyclization? Our explorations lead us to predict70,71 that 

regardless if this approach succeeds in the lab, unusual rearrangement chemistry will likely reveal 

itself from the metal carbene intermediate. 

 

6.3 Computational Methods 

Due to their low barriers for rearrangement, fluxional molecules are challenging to model—and 

so it is no surprise that the barrier and reaction energies for the Cope rearrangement of SBV has 

historically been challenging to accurately model. Many have considered the B3LYP72 functional 

reliable for obtaining reasonable geometries, and to a certain extent, reaction barriers that are 

consistent with experiment.29,73,74 In some cases, however, spurious intermediates and/or 
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significant deviation from experimentally-derived activation barriers have clouded the consensus 

on the reliability of B3LYP for Cope rearrangements.31,75,76 Karton reported three functionals 

(BMK, PW6B95, and MN12-SX) outperformed other functionals in predicting accurate Cope 

barrier heights and reaction energies when compared to CCSD(T)/CBS benchmark calculations 

and experiment.77 Based on Karton’s benchmark work showing that PW6B95 performs accurately 

for systems involving SBV and Rh,78 we settled on PW6B9579 as a functional with the def2-SVP 

basis set (i.e., PW6B95/def2-SVP), a reasonable level of theory for qualitative investigations of 

this kind which have no experimental precedent to compare data against.80 Additional tests to make 

sure our chosen level of theory is reasonable bolstered our confidence in our chosen level: 

specifically, we tested our chosen level’s ability to predict known experimental free energy 

barriers, such as the Cope rearrangement of SBV (5.581 to 6.282 kcal mol-1) and the isomerization 

barrier of cycloheptatriene to norcaradiene (7.2 kcal mol-1).83 Our results of 6.8 and 7.1 kcal mol-

1 for the Cope and isomerization barriers, respectively, are well within chemical accuracy (<1 kcal 

mol-1). Data from benchmark studies are summarized in Tables 1 and 2 below. 

 

 

Table 1. Computed Cope Rearrangement barriers of SBV, compared with experimental barriers. 

Reference G
‡

, TSS
Cope

 

81 and 82 (experiment) 5.581 - 6.282 

This work (PW6B95/def2-SVP) 6.8 

27 (theoretical benchmark study)a 6.727 

a CCSDT(Q)/cc-pVDZ//B3LYP-D3(BJ)/def2-TZVPP 
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Table 2. Computed 6-electron electrocyclic ring closing of cycloheptatriene to norcaradiene, 

compared with experimental barriers. 

 

Reference G
‡

, TSS
Cope

 G, Norc 

83 (experiment) 7.283 4.0 

This work (PW6B95/def2-SVP) 7.1 2.4 

84 (theoretical)a 8.284 4.1 

a B97X-D/def2-TZVPP-SMD(acetone)//B97X-D/def2-SVP 

 

Geometry optimizations and frequency calculations were carried out with Gaussian 16.85 

Transition state structures (TSSs) were identified by the presence of one imaginary vibrational 

frequency and subsequent intrinsic reaction coordinate (IRC) calculations identified the minima 

on the potential energy surface to which TSSs are connected.86–88 

 

6.4 Results and Discussion 

6.4.1 Acetyl-SBV 

The simplest reaction that we envisioned could be within reach experimentally was the 

transformation of diazo compound A to acetyl-SBV D/E (Figure 6.1, path II in green). We chose 

R to be a simple acetyl (Ac = COCH3) group, given the body of literature on acceptor and donor-
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acceptor carbenes.89 In addition, structures similar to (diazocarbonylmethyl)cycloheptatriene (A), 

have been described in the literature.90  

 
Figure 6.1 Possible mechanistic pathways explored. All relative free energies (PW6B95/def2-

SVP, G‡) are in units of kcal mol-1. (1) top, purple: conformational inversion followed by 1,2-

hydride shift; (2) second to top, green: SBV formation by CP; (3) second to bottom, blue: 1,2-

hydride shift; (4) bottom, red: norcaradiene formation followed by 1,2-hydride shift and 

electrocyclic ring-opening. 

 

 

Exposure of A to a Rh catalyst (here, we model Rh2(OAc)4 for simplicity) should lead to 

nitrogen extrusion to form Rh-carbene species C. The barrier for intramolecular CP of C (via (TSC-

D)) is predicted to be very low (5.3 kcal mol-1). Formation of Ac-SBV D is highly exergonic (-45.2 

kcal mol-1), and its Cope rearrangement is predicted to require a 13.3 kcal mol-1 barrier (TSD-E) to 

form the slightly less-favorable E (-41.5 kcal mol-1). While these results indicate that Ac-SBV 
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would not face a large barrier, possible competing reactions must be considered. For instance: (i) 

the cycloheptatriene–norcaradiene equilibrium (C ⇌ H) favors the norcaradiene H by ~7 kcal mol-

1, (ii) conformational isomerization slightly favors the isomer wherein the hydrogen at the C7, 

instead of the Rh-carbene, is positioned on the concave face of the cycloheptatriene (Scheme 6.2), 

and (iii) once the Rh-carbene is formed, side-reactions (such as β-hydride migration to 

heptafulvenes, e.g., C → F → G or C → J → K → G)91,92 can occur. We are unable to ignore the 

of kinetic instability of intermediate C.93 The variety of escape channels that can result is 

abundant—these possibilities were investigated in detail.94 

 

Scheme 6.2 Cycloheptatriene-norcaradiene equilibrium. Three-dimensional depictions. highlight 

the boat conformation of cycloheptatriene with “concave” and “convex” faces.  

 

 

Complications I – Electrocyclization. Cycloheptatrienes95–97 are generally in rapid 

equilibrium with norcaradienes (Scheme 6.2).98–101 If our desired CP reaction is to predominate, 

either its barrier must be lower than that for C/H equilibration or that equilibration must not lead 
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to an undesired reaction that serves as a kinetic trap. In our system, the 7-position (C7) sports a -

electron acceptor – the metal carbene group102 – which tends to favor norcaradiene formation.100 

H is predicted to be much lower in energy than C (and the C → H barrier is predicted to be 5.1 

kcal mol-1, lower than the CP barrier to D; Figure 6.1). However, the subsequent 1,2-hydride 

migration that would lead to catalyst dissociation is associated with a TSS that is much higher in 

energy than that for CP (17.7 kcal mol-1; TSSH-I). Consequently, the C → H → I… path does not 

appear to threaten our desired reaction. 

Complications II – Conformational Bias. Cycloheptatrienes are not geometrically flat in 

three-dimensions—instead, their sp3 carbon is bent out of plane in a boat conformation (cf. Scheme 

6.2).103 Parent tropilidene (i.e., hydrogens at C7) has a ring-inversion barrier of approximately 6 

kcal mol-1 by low temperature 1H NMR.104–106 As a result, the environments of the two groups on 

this carbon are different: one sits over the cycloheptatriene π-system, while the other points 

“outside”. For CP to occur, the carbene center must reside over the π-system. The carbene center 

prefers to reside outside (by 1 kcal mol-1; compare C vs. J). When the carbene center is outside, a 

1,2-hydride shift (a β-hydride migration) can occur (J → K) that is predicted to be rapid and 

exergonic.107 Our computed ring-inversion barrier (TSSC-J) is 4.4 kcal mol-1, which suggests the 

β-hydride migration might indeed be a dead-end kinetic trap (Path I).  

Complications III – Another β-Hydride Migration. A β-hydride migration also can occur 

directly from conformer C (Figure 6.1, Path III). While the TSS for this 1,2-hydride migration is 

predicted to be higher in energy than that for J (2.4 vs. 0.3 kcal mol-1), it is predicted to be lower 

than the desired CP step (5.3 kcal mol-1). Tendency to migrate hydride is increased for -

diazocarbonyl compounds—precursors to (donor-acceptor metal-carbenes)—due to their higher 

electrophilicity compared to donor and donor-donor metal-carbenes.48 Indeed, in Path C, we find 
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that the barrier for β-hydride migration directly from C is increased upon swapping out the 

carbonyl acyl group for a phenyl group, thereby making the donor-acceptor carbene into a donor-

donor carbene (Path C, 2.4 kcal mol-1 vs. 5.2 kcal mol-1).* However, though the barrier for β-

hydride migration increases upon changing the carbene from donor-acceptor to donor-donor, so 

does the CP barrier (Path II, 5.3 kcal mol-1 vs. 8.9 kcal mol-1). Swapping the acyl group for a 

phenyl group does not easily tip the selectivity in favor of CP to SBV—the data tell us (with a 

G‡ = 3.7 kcal mol-1) that the reaction would still favor β-hydride migration over CP. 

Our metal-carbene may escape our desired reaction through β-hydride migration escape 

channels to heptafulvene, G. Recall that heptafulvene was one product Zimmerman isolated in 

their original report.2 Additionally, in 1993, Tomioka et al. reported heptafulvene products in the 

gas-phase rearrangement of phenyl carbenes, presumably through 7-membered ring 

intermediates.108 Heptafulvene G can additionally undergo a 10- electrocyclic ring closing to M 

because of the acetyl group attached to C8, similar to that of the acetyl-heptafulvene reported by 

Houk.109† We computed the barrier to do so and the barrier is 15 kcal mol-1 from G to M, and 

downhill in energy. 

 

6.4.2 A Potential Antidote to β-hydride Migration 

One way around β-hydride migration complications is to introduce a different functional group at 

C7 in place of the hydrogen, a group with a lower migratory aptitude (e.g., CH3 for H). Though 

making this substitution in a computational study is trivial, implementing it in a synthetic campaign 

could be challenging. Our calculations indicate, however, that swapping out the H for a CH3 group 

 
* Data for donor/donor carbene is described in the Appendix, I-A. 
† Ibid, Appendix 1-A. 
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would switch the selectivity in favor of CP over a possible concerted, intramolecular C-H insertion 

(TSC-F; G‡ = 0.8 kcal mol-1; Figure 6.2) to a spirononatriene: a direct result of our attempts to 

locate a 1,2-methyl shift (not found). Though small-ring spiro compounds have precedent in the 

literature,110 to our knowledge, relatively few papers report structures resembling 

spirononatriene.111–114 Conformational inversion of CHT is energetically more favorable than CP 

(by 0.7 kcal mol-1), which can then undergo a 1,2-methyl shift to cycloheptafulvene (G). 

Isomerization to norcaradiene, H, is also possible. But the high barrier out of H to 

spironorcaradiene compound, I, relative to that for reverting to C does not necessarily make Path 

IV to I a probable escape route. Tricyclic spiro compounds like I have some literature precedent, 

but to our knowledge, spironorcaradienes of the sort we describe have not been reported, though 

some structures resemble it.115 Therefore, although C7 methyl substitution makes CP to SBV more 

likely than in the C7 hydrogen substituted case (Figure 6.1), methyl migration (Path I) could still 

preclude the desired chemoselectivity. Despite the lower barrier to isomerize to the other CHT 

boat (TSC-H; 4.9 kcal mol-1), TSC-H and TSC-D energies are close enough where SBV formation 

could be competitive with heptafulvene formation. So far, the C7-methylated system provides the 

most promising substrate for SBV synthesis from cycloheptatrienyl diazo compounds. Similar 

qualitative conclusions are realized for the donor Rh-carbene system (a G‡ = 1.4 kcal mol-1 

when Ac = Ph).* 

 
* Ibid, Appendix I-A (see Figure A.4). 
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Figure 6.2 Methyl substitution at C7 tips the chemoselectivity to CP over -hydride migration, 

but simultaneously introduces the possibility of concerted, intramolecular C-H insertion to 

generate a spirononatriene (F). 

 

 

6.4.3 Gold(I)-catalyzed synthesis of barbaralones 

For comparison, we examined Ferrer and Echavarren’s gold(I)-catalyzed oxidative 

cyclizations66,116 to barbaralones (Scheme 6.1e). In their 2016 study, Ferrer and Echavarren 

proposed two pathways to barbarlones—specifically, 6-endo-dig117 cyclization then oxidation or 

vice versa. We computed both possible pathways (Figure 6.3 and 6.4). The predicted barrier for 

cyclization in the unoxidized system is higher than that for the oxidized system. The oxidized 

system also has a significant energetic driving force (G = -37.8 kcal mol-1) that the unoxidized 
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system lacks.68 The results in Figure 6.4 resemble our computed CP path (Path II, Figure 6.1), but 

do not necessarily provide evidence for or against Ferrer and Echavarren’s proposal that oxidation 

takes place on barbaralyl gold(I) intermediates after cyclization—further calculations would be 

needed.66 Unlike their reaction, however, questions about oxidation state are irrelevant here with 

[Rh].  

 

 

Figure 6.3 Potential energy surface of barbaryl cation formation and sequential Cope 

rearrangements. Relative free energies (PW6B95/def2-SVP) shown are in kcal mol-1 and are 

relative to their respective reactants, R. 
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Figure 6.4 Potential energy surface of barbaralone cation formation and sequential Cope 

rearrangements. Relative free energies (PW6B95/def2-SVP) shown are in kcal mol-1 and are 

relative to their respective reactants, R. 

 

We compute that the [3,3]-sigmatropic rearrangement for the unoxidized system is 

stepwise (not surprising given the copious studies that have reported interrupted, and aborted 

pathways for Au-catalyzed pericyclic reactions, in addition to concerted ones).118–120 The 

intermediate that interrupts the rearrangement (IntU-2) can be described as a metal-stabilized 9-

barbaralyl cation.121,122 Free of catalyst and substituents, the 9-barbaralyl cation exhibits D3h 

symmetry and has been the focus of several studies since its description by Schleyer and 

coworkers.123  
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Figure 6.5 Comparison of Cs (IntU-2, Figure 6.3) and D3h (9-barbaralyl cation). Bond lengths (C-

C bonds) are angstrom (Å). 

 

6.5 Conclusions and Future Work 

We have provided a prediction of a Rh(II)-catalyzed CP strategy for potential application to 

synthesize monofunctionalized semibullvalenes from cycloheptatriene diazo compounds. The 

potential CP step is investigated by DFT calculations, the results of which indicate that CP is 

energetically feasible from the Rh-carbene intermediate generated after decomposition of diazo 

compound. Potential side reactions and isomerizations were explored. β-hydride migration is 

computed to be lower in energy than CP, leading to substituted heptafulvenes, a useful product 

that can be evolved further to other products—undesired side reactions can potentially be 

prevented by introducing a methyl group at C7 in place of hydrogen, though notably, 

spirononatrienes may also result.* Dynamics studies are underway to test for the possibility of a 

 
* Though not our aims here, such a side reaction might provide an interesting way to synthesize spirononatrienes, 

which, to our knowledge, only have few reports (< 10 studies)—see ref. 104-108. 

CS D3h
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post-transition state bifurcation in our system. We also look forward to the possibility that our 

prediction will be tested in the laboratory one day and (hopefully) validated. Work is currently 

being carried out in the lab of Prof. Jared Shaw to test our predictions.  
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Chapter 7 

 

Tipping the Balance: Theoretical Interrogation of Divergent 

Extended Heterolytic Fragmentations* 

 

 
The hardest thing of all to see is what is really there. 

 

- John A. Baker, The Peregrine (1967)  

 

7.1 Abstract 

Herein we interrogate a type of heterolytic fragmentation reaction called a ‘divergent 

fragmentation’ using density functional theory (DFT), natural bond orbital (NBO) analysis, ab 

initio molecular dynamics (AIMD), and external electric field (EEF) calculations. We demonstrate 

that substituents, electrostatic environment and non-statistical dynamic effects all influence 

product selectivity in reactions that involve divergent fragmentation pathways. Direct dynamics 

simulations reveal an unexpected post-transition state bifurcation (PTSB), and EEF calculations 

suggest that divergent pathways can, in principle, be selectively stabilized if an electric field of the 

correct magnitude is oriented appropriately. 

 

 
* This chapter is a slightly modified version of the following published article: Laconsay, C. J.; 

Tsui K. Y.; Tantillo, D. J. Tipping the balance: theoretical interrogation of divergent extended 

heterolytic fragmentations, Chem. Sci. 2020, 11, 2231-2242 with permission from the Royal 

Society of Chemistry. Ka Yi Tsui contributed key DFT calculations for elucidating the crucial 

role of substituents (including Wiberg bond orders), and contributed to the writing, editing, and 

revision of the final manuscript. 
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7.2 Introduction 

While complex molecular architectures are usually constructed using key bond-making reactions, 

destructive reactions, in which key bonds are broken, can also be used to advantage. Here we 

examine the mechanism and consequences of a particular type of molecular destruction – divergent 

extended heterolytic fragmentation. Carbon-carbon (C-C), carbon-heteroatom (C-X), and 

heteroatom-heteroatom (X-Y) heterolytic fragmentation reactions offer methods for synthesizing 

structural motifs (some found in complex natural products) that might be difficult to synthesize 

using methods focused on bond formation.1–7 Despite their continued use in organic synthesis8–16 

and their relevance to reactions occurring in mass spectrometers,17 the application of heterolytic 

fragmentations in which multiple -bonds are cleaved in synthetic campaigns is limited by putative 

strict conformational requirements (e.g., an anti-periplanar conformation for the bonds that cleave 

during fragmentation; Scheme 7.1).4,18 Few theoretical and mechanistic studies19–23 have provided 

insight into the physical underpinnings for this class of reaction since the seminal work of Grob.2 

Our aim in this arena is to increase the understanding of underlying mechanistic factors that govern 

these transformations to facilitate recognition of key patterns associated with fragmentation 

reactivity and thereby help guide syntheses of compounds whose construction remains a challenge. 

 

Scheme 7.1 General heterolytic fragmentation 
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     Two types of heterolytic fragmentations that have been reported in the literature but have 

received little theoretical attention are (1) extended fragmentations – heterolytic fragmentations 

that involve a chain of more than five atoms – and (2) divergent fragmentations – heterolytic 

fragmentations that involve the formation of two (or more) distinct products from a single 

substrate.4 Extended fragmentations are unsurprisingly rare due to the complexity of orchestrating 

many bond-breaking events in one transformation.24 Some experimental examples are shown in 

Figure 7.1a-b25–27 Highlighted in bold are the bonds involved in each fragmentation. Here we focus 

on designing systems where these sorts of cage-supported extended fragmentations can have 

divergent outcomes (Figure 7.1d; inspired by reaction in Figure 7.1c). 

 

 

Figure 7.1 Previous extended heterolytic fragmentations.26-28 
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Initially, our objective was to find the length limit for a concerted extended fragmentation, 

but we encountered unexpected divergent fragmentations en route to this goal; our work on this 

length limit will be reported elsewhere. Using model systems inspired by experimentally relevant 

molecules,27 we show that the outcome of divergent fragmentations can be substituent dependent, 

is sensitive to external electrostatic environments (i.e., in external electric fields (EEFs)), and can 

involve unusual potential energy surfaces (PES’s) with features such as plateaus and post-

transition state bifurcations (PTSBs,28–33 which make these reactions subject to non-statistical 

dynamic effects).34–37 The particular systems we examine (Figure 7.1d) involve divergence after 

the first -bond has broken, complicating the issue of where along the fragmentation reaction 

coordinate product selectivity is determined. 

 

7.3 Methods 

All density functional theory (DFT) calculations were carried out using the Gaussian 09 suite of 

programs.38 Transition-state structures (TSSs) and minima were verified as such by frequency 

calculations. Intrinsic Reaction Coordinate (IRC) calculations were used to further characterize 

TSSs.39–41 Eight different functionals were tested against B3LYP-D3(BJ) for Table 7.1, Entry 1 to 

verify that geometries of TSSs and minima were reasonably consistent among various methods.* 

However, the difference in free energy barriers identified by these functionals ranged over more 

than 10 kcal mol-1. Thus, B3LYP-D3(BJ) and M06-2X, each with the 6-31G(d) basis set, were 

tested against each other for entries 1-12 in Table 7.1, since, together, these two functionals 

covered the range of activation barriers. Employing these two functionals provided a check that 

 
* Data from benchmark studies is described in the Supporting Information of Chem. Sci. 2020, 11, 2231-2242. See 

Table S1 on p. S3 and discussion thereof. 
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DFT reasonably captured the qualitative product selectivity trends with which this study is 

concerned. Employing a larger basis set (that includes diffuse functions), 6-31+G(d), did not 

change the overall qualitative conclusions, therefore we only report 6-31G(d) results from here 

on.* Quasi-classical ab initio direct dynamics simulations for entries 3 and 4 in Table 7.1 were 

initiated from optimized TSSs using the Progdyn script package provided by Singleton.42 

Trajectories were propagated in time in both the reactant and product directions until they reached 

product or reactant wells on the PES: trajectories were allowed to propagate until either the C1–C2 

bond (Scheme 7.2) distance dropped below 1.58 Å, for which we report the trajectory as forming 

reactant 1, until the O3–C4 bond distance exceeded 3.2 Å and the C5–Y1 bond distance exceeded 

3.0 Å (while the C5–Y1 remained below 5.5 Å), for which we report the trajectory as forming 

product A, or until the C7–N6 bond distance exceeded 3.2 Å and the C5–Y1 bond distance exceeded 

3.0 Å (while the C5–Y1 remained below 5.5 Å), for which we report the trajectory as forming 

product B. External Electric Field (EEF) calculations43 were implemented using the “field” 

keyword in Gaussian 09.39† A recent study, in the form of the TITAN code, expands the various 

types of EEFs that can be generated.44 

 

 
* Ibid, S4 (see Table S1-A for data resulting from basis set test). 
† Ibid, S15. Detailed protocol of how EEF calculations were run are described in section S4 of SI.  
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7.4 Results and Discussion 

7.4.1 Substituent Effects on Product Selectivity 

In the course of our search for the length limit in concerted fragmentation, we found inspiration in 

Risch’s 1-aza-adamantane (I in Figure 7.1c).27,45 These 1-aza-adamantane structures have played 

a significant role in work done by the Castellano group in studying donor-acceptor through-bond 

interactions for crystal and materials design.46–48 A simplified model system was designed such 

that it satisfied the expected structural and stereoelectronic requirements49 for concerted 

fragmentation (1, Scheme 7.2). We hypothesized that this model system would undergo one of 

two possible concerted 7-atom fragmentations (red and blue arrows in Scheme 7.2). We 

successfully found a TSS, TSS(A)‡, that connects 1 to a product of extended fragmentation (A), 

where X = OCH3, Y1
 = Cl and Y2

 = Cl (red arrows, Scheme 7.2).27* We also postulated that 

changing Y1
 to chloroformate (OC(=O)Cl) with Y2

 = H might lead to a TSS that involves a 

concerted 9-atom fragmentation, given that chloroformate could decarboxylate to form CO2  and 

Cl–, which would break one additional bond (C–Cl). However, following multiple relaxed potential 

energy surface scans, candidate TSSs only optimized to TSS(B)‡ (for breaking the C7–N6 bond; 

blue arrows in Scheme 7.2) instead of TSS(A)‡ (for breaking the O3–C4 bond), i.e., TSS(B)‡ 

connects 1 to B.  

  

 
* Ibid, S35-S54. All IRCs of computed transition state structures can be found in section S8 of the Supporting 

Information. 
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Scheme 7.2 Divergent Fragmentation Pathways of 1. 

 

 

Calculations at the B3LYP-D3(BJ)/6-31G(d) and M06-2X/6-31G(d) levels reveal that the 

outcome of this divergent fragmentation (1 can form A or B) is dependent on substituents X, Y1 

and Y2 (Table 7.1). For example, changing the leaving group (or nucleofuge1), Y1, from 

chloroformate (O(CO)Cl) to chlorine (Cl) and Y2 = hydrogen (H) to chlorine (Cl) switched the 

energetically preferred fragmentation pathway from Path A to Path B. Additionally, some entries 

(entries 4, 6, 8, 10, and 12) in Table 7.1 have competing pathways, i.e. we could identify two TSSs 

on the PES that either lead to products A or B (products that are kinetically favored are bolded). 

Attempts to identify competing TSSs for entries including chloroformate at the Y1 position (odd 

numbered entries in Table 7.1) proved unfruitful, as TSS(A)‡ was the only TSS we could identify. 

We suspect that different through-space and through-bond electronic effects are the cause of 

different energetically preferred fragmentation mechanisms—this possibility will be discussed 

further below.50–52 Products A and B can be interconverted by a [3,3]-sigmatropic shift (TSS-AB), 

but the TSS for this interconversion consistently lies >30 kcal mol-1 uphill in free energy relative 
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to the less thermodynamically stable product.* Therefore, the influence of this interconversion on 

product selectivity is presumably negligible at reasonable experimental temperatures. Products A 

and B could be of synthetic utility, although synthesis of 1 presents its own challenges. DFT 

calculations predicted inconsistent results for entries 3 and 4 (vide infra). Worth noting here, too, 

is the effect of polar solvent on product selectivity when entries 1-12 are modeled in solvent: in all 

entries at the M06-2X level in an implicit conductor solvent model (CPCM)53,54 of water, no 

change in product selectivity was observed; at the B3LYP-D3(BJ) level in the same solvent, entries 

2, 6, and 8, switched from B to A as the predicted kinetic product. One of the possible reasons for 

this inconsistency between DFT methods for these systems when modeled in solvent is that they 

treat dispersion differently—in this case, solvent results are inconclusive, and we report gas-phase 

results from here on. 

 

Table 7.1 Substituent Effect on Divergent Fragmentation Pathway. Free energy barriers (G‡) are 

reported in kcal mol-1.  

 
* Ibid, S8 (see Figure S1 for representative example of [3,3]-sigmatropic shift). 

Entry X Y1 Y2 G‡
B3LYP-

D3(BJ), A 

 

G‡
M06-2X, 

A 

G‡
B3LYP-

D3(BJ), B 

 

G‡
M06-2X, 

B 

Predicted 

Kinetic 

Product(s) 

1 N(CH3)2 O(CO)Cl H 33.8 46.9 - - A 

2 N(CH3)2 Cl Cl - - 32.9 44.1 B 

3 NH2 O(CO)Cl H 28.5 39.4 - - A 

4a NH2 Cl Cl 28.2 41.5 - 38.8 A & B 

5 OCH3 O(CO)Cl H 34.4 46.8 - - A 

6 OCH3 Cl Cl - 48.2 33.6 43.8 B 

7 OCH(CH3)2 O(CO)Cl H 36.7 47.9 - - A 
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The behavior of the system in entry 4 proved to be sensitive to the theoretical method used. 

M06-2X calculations predict that product B formation is kinetically preferred over product A, 

which means that the C4–O3 bond stays intact while the other key bonds fragment. A representative 

plot of bond length changes along the reaction coordinate (Figure 7.2) reveals that this concerted 

fragmentation reaction is asynchronous: the C1–C2 bond cleaves before the C4–O3 or C7–N6 

bonds.55–57 However, a search for TSS(B)‡ at the B3LYP-D3(BJ) level only yielded a TSS 

connected to product A, TSS(A)‡; after re-optimizing this TSS(A)‡ at the M06-2X level, we 

identified a product-A-forming TSS that does not directly connect to reactant 1 as a minimum by 

an IRC. Instead, this TSS(A)‡ connected to an enolate structure that is similar to, but lower in 

energy than, 1, i.e., a potential precursor to the reactant. Thus, we do not directly compare barriers 

for two TSS’s at the M06-2X level, but we note that TSS(A)‡ is 2.7 kcal mol-1 higher in energy 

than is TSS(B)‡ if we compare the two TSSs free energies to that of 1. The peculiarities of the 

system in entry 4 will be discussed in more detail below. 

8 OCH(CH3)2 Cl Cl 37.3 51.1 35.9 47.0 B 

9 H O(CO)Cl H 35.2 47.5 - - A 

10 H Cl Cl 36.4 49.4 34.6 44.6 B 

11 F O(CO)Cl H 38.1 50.6 - - A 

12 F Cl Cl 39.2 52.7 37.6 47.7 B 

aThe TSS computed at B3LYP-D3(BJ) leads to product A only and the TSS computed at M06-2X leads to B by an 

IRC. A TSS that leads to A at M06-2X was also identified, but it doesn’t connect to 1 minimum by an IRC. 
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Figure 7.2 A representative example (from entry 4 of Table 7.1, M06-2X/6-31G(d)) of the 

evolution of key bond lengths involved in the fragmentation as the reaction progresses along the 

IRC. The transition state structure is at Reaction Coordinate = 0. 

 

7.4.2 Stereoelectronic Effects 

Why do different substituents have such a strong influence on which product is favored? We 

initially hypothesized that what drives the fragmentation towards one product or another is the net 

sum of stereoelectronic effects within the molecule that would favor breaking either the C4–O3 or 

the N6–C7 bond. We postulated that the change of one or two substituents would result in a tip in 

the delicate balance of donor-acceptor interactions and drive reactivity toward one product versus 

the other. Alabugin previously discussed fragmentation reactions in the context of donor-acceptor 

interactions (see “Remote Stereoelectronic Effects”, Chapter 8).49 For example, the concept of 

double hyperconjugation was introduced to explain the extra stabilization (-effect) from 

substituents in -cyclohexyl cations.58–60 We hypothesized that the geometric restrictions in our 1-
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aza-adamantane structure would enforce through-bond, ‘double-hyperconjugation-like’ 

communication through the -bond framework (Scheme 7.3). However, in our case, strong double 

hyperconjugation is not present, since the C1-C2 orbital is not parallel with respect to the 
C7-N6 

and 
C4-O3 orbitals. 

 

Scheme 7.3 (a) Double hyperconjugation. (b) The C-H orbital is parallel with respect to 

antibonding molecular orbitals (
C-N and 

C-O) of 1. 

  
 

 

To elucidate the stereoelectronic effects that might lead to a change in product selectivity, 

we used NBO calculations, a standard approach for quantifying the magnitude of donor-acceptor 

orbital interactions.49,61,62 A sum of second-order perturbation energies E(2) for TSSs for entries 

1, 2 and 4 (Table 7.1), at the M06-2X/6-31G(d) level, are shown in Table 7.2.* The E(2) energies 

are qualitatively consistent with what is observed in the DFT calculations. For instance, the greater 

donation of electron density into *
C4-O3 for entry 1 is consistent with formation of product A. The 

opposite is true for entry 2. Entry 4’s TSS has a similar amount of donation into the * orbitals of 

both C4–O3 and C7–N6 bonds, which is consistent with different preferred products at different 

levels of theory (vide supra). It is difficult to assign responsibility to any one donor-acceptor 

interaction that favors cleavage of either the C4–O3 or C7–N6 bonds (acceptors), when in fact, it is 

 
* Ibid, S11-S13, for the source of these values and discussion of NBO calculations. 
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a multitude of donors that donate electron density into these * (acceptor) orbitals. One of the 

major factors contributing to this challenge is the difficulty delineating inductive and field effects 

in remote stereoelectronic effects.49 This is especially prevalent in 1, which as a cage-supported 

molecule has many through-bond and through-space interactions.  

 

 

Table 7.2 E(2) values corresponding to the magnitude of donor-acceptor interactions involving * 

orbitals of C–O and C–N bonds (kcal mol-1; interactions involving all donors are summed). 

 

Entry *
C4-O3 *

C7-N6 

Predicted Kinetic 

Product(s) 

1 80.9 16.5 A 

2 16.8 430.3 B 

4 21.6 29.8 A & B 

 

The results above are mirrored by computed Wiberg bond indices, or ‘bond orders’ 

(BO).63,64 Wiberg BOs (computed in an NBO calculation) for the C4–O3 or C7–N6 bonds of the 

reactants alone are not predictive of which bond will break, consistent with a “dilution” of 

delocalization between the O– lone pair and the bonds that will break due to the intermediacy of 

another -bond that must break.* We also computed the change in the Wiberg BO, BO, which 

gives us insight into the perturbation each bond experiences upon reaching the TSS (Table 7.3). 

Not surprisingly, for most cases, the product formed can be predicted by which bond has the larger 

BO (i.e., smaller BO in the fragmentation TSS; Table 7.3). For the system in entry 4 (Table 7.1), 

the BO values are relatively close, however, precluding a clear prediction (vide infra).  

 
* Ibid, S14 (see Tables S3-S4). All range from 0.91-0.94, with only slightly lower BOs for the bond that breaks. 
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Table 7.3. Wiberg bond order at the TS and bond order change () of the C4-O3 and C7-N6 

bonds that break in forming products A and B, respectively. Wiberg BOs of reactants are omitted 

for clarity. Values are computed for M06-2X/6-31G(d) structures. Bold values correspond to 

products identified by an IRC calculation. 

 

Entry 

Wiberg BO, 

ReactantC-O 

Wiberg BO, 

ReactantC-N 

Wiberg 

BO, 

TSSC-O 

Wiberg 

BO, 

TSSC-N 

BOC-O BOC-N
 

Predicted 

Kinetic 

Product(s) 

1 0.92 0.95 0.53 0.92 0.39 0.03 A 

2 0.92 0.92 0.89 0.48 0.03 0.44 B 

3 0.91 0.94 0.55 0.92 0.36 0.02 A 

4 0.92 0.93 0.87 0.77 0.04 0.16 A & B 

5 0.92 0.94 0.49 0.92 0.43 0.02 A 

6 0.93 0.93 0.89 0.44 0.04 0.49 B 

7 0.92 0.94 0.48 0.92 0.44 0.02 A 

8 0.92 0.93 0.89 0.46 0.03 0.47 B 

9 0.91 0.94 0.45 0.93 0.46 0.01 A 

10 0.92 0.93 0.88 0.40 0.04 0.53 B 

11 0.92 0.93 0.51 0.93 0.41 0.00 A 

12 0.92 0.93 0.88 0.37 0.04 0.56 B 

 

7.4.3 Post-Transition State Bifurcations? 

The inconsistency between the B3LYP-D3(BJ) and M06-2X results in entries 3 and 4 in Table 7.1 

prompted us to explore the potential energy surfaces for these two systems using ab initio 

molecular dynamics (AIMD) simulations.32,65–67 Previous work suggests that IRCs obtained with 

two different theoretical methods that lead to different products despite originating at ostensibly 

the same TSS could indicate that a PTSB follows this TSS.68–70 In all dynamics simulations, 
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trajectories were initiated from the DFT-optimized TSSs and propagated in reactant and product 

directions until structures were reached that closely resembled minima on the PES (see Methods 

section for details).30,32,71–73  

For the system in entry 3 (Table 7.1), downhill trajectories from TSS(A)‡ predominantly 

form A, with a small number forming B (Figure 7.3) at the M06-2X level. Product A can also 

originate from a shallow carbanion intermediate, Int, through TSS(i)‡. Int is not found on the 

B3LYP-D3(BJ) PES.74,75* Mandal and Datta reported a similarly shaped PES in a gold(I)-catalyzed 

Diels-Alder reaction with a single intermediate well leading to two different products where the 

product selectivity is steered by dynamic effects.76 Trajectories originating from TSS(i)‡ also 

predominantly form A, with a slightly larger number forming B. Product A is thermodynamically 

favored, which may manifest in lower energy exit channels from both TSSs on the relatively flat 

energy surface in the vicinity of TSS(i-A)‡, Int and TSS(i)‡. No downhill trajectories from 

TSS(A)‡ result in formation of the imine product (B) when using B3LYP-D3(BJ) (Figure 7.3a). 

While the formation of some product B is consistent with the presence of a PTSB, the product 

distribution for this system is probably better described as arising from molecular motion on a flat 

energy surface. 

      

 
* Ibid, S38-S39, for IRCs. 



173 

 

 

 

Figure 7.3 (a) Free energy profile (electronic energies in parentheses) and “downhill” dynamics 

results for entry 3 (Table 7.1). Product distributions from AIMD simulations originate from either 

TSS(A)‡ or TSS(i)‡. (b) CYLview images77 of key TSSs on the PES for entry 3. Bond lengths in 

units of Å. 
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For the system in entry 4, no intermediate was found at either level of theory (Figure 7.4). 

Again, product A is much more favorable in free energy than product B. However, our AIMD 

calculations predict that products A and B are produced in comparable amounts using either 

functional. These results are consistent with a PTSB on the PES and non-statistical dynamic 

control of product distribution.30  

 

 

Figure 7.4 Free energy profile (electronic energies in parentheses) and “downhill” dynamics 

results from B3LYP-D3(BJ) and M06-2X PES’s for entry 4 (Table 7.1). Products that are 

connected by a solid or dotted line to the TSS indicate that they are connected by an IRC to the 

reactant.  

 

7.4.4 External Electric Fields 

Since changing substituents X, Y1, and Y2 altered the outcome of divergent fragmentations of 1, 

we questioned what might happen under the influence of an external perturbation like an external 

electric field (EEF). EEFs have recently received considerable attention, being referred to as 

“smart reagents” for catalysis because of their ability to control reactivity and selectivity.43,78–80 A 
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seminal study by Shaik and co-workers demonstrated that not only can an EEF lower or raise the 

barrier for a Diels-Alder reaction when oriented in one direction or the other along the “reaction 

axis”—that is, the (approximate) axis along which electrons reorganize to make and break bonds—

but an electric field oriented perpendicular to the reaction axis can induce endo/exo selectivity.81 

The potential for EEFs to control chemical transformations has captured the curiosity of many 

groups82–90 since Coote and co-workers experimentally demonstrated electrostatic catalysis of a 

Diels-Alder reaction in 2016.91 For example, a recent experimental study demonstrated EEF-

induced selective catalysis in a two-step reaction.92 

 

Effects on Reaction Rate  

Do electric fields oriented in different directions have accelerating/decelerating effects on 

the rate of fragmentation of 1? We selected entries 5 and 6 (Table 7.1) for our case studies because 

these entries are structurally similar, except for the identity of Y1 and Y2. To start any EEF study, 

the field’s orientation must be carefully defined (see SI).43 Figure 7.5 depicts the axis orientations 

employed here for EEF calculations and the effect of varying EEFs on the free energy barrier.* 

These results indicate that orienting the electric field down the “reaction-axis” (z) leads to an 

approximately linear change in activation barrier, which is consistent with what is known so far of 

EEF effects on reactivity.43 Orienting an electric field in other directions has a weaker effect, as 

expected.93 

 

 

 

 
* Ibid, S13. See Figure S6 and Figure S9 in the SI for representative examples of similar results with different axis 

orientations. 



176 

 

 

Figure 7.5 (a) External electric field effects on divergent fragmentation of 1 (entry 5, TSS for 

formation of A from Table 7.1). The high green data point at Fy = +0.005 results from a change in 

the reactant structure geometry in the presence of an EEF.*  (b) Effects on divergent fragmentation 

of 1 (entry 6, TSS for formation of B from Table 7.1). 

 

Effects on Product Selectivity—Divergent Outcomes from a Single Reactant 

 
* Ibid, S9. Reactant structures optimized in EEFs of Fy ≥ 0.005 au result in a structure shown in Figure S3. 
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     How is product selectivity impacted in divergent heterolytic fragmentations in the presence of 

an EEF? To test this idea, we turned to a previous study that examined a simpler divergent 

fragmentation using both experiment and theory. While examining a C–C bond fragmentation 

approach to synthesize allenes (Figure 7.6), Williams and co-workers observed that both alkyne 

and allene products were formed initially, in a >20:1 ratio.93 Over time, they observed that this 

ratio decreased to 3:1 favoring the allene. Our computed enthalpies and free energies agree 

qualitatively with their reported computational results and are consistent with experimental 

observations that initial allene formation is faster than alkyne formation: the predicted G‡ 

between TS-II and TS-I is 2.6 kcal mol-1 with B3LYP-D3(BJ) and 1.9 kcal mol-1 with M06-2X.* 

We envisioned that, since EEFs have a rate accelerating/decelerating effect, they also may have 

the ability to induce product selectivity in divergent fragmentations.      

 

Figure 7.6 Fragmentation reaction of Williams and co-workers examined in the presence of EEFs. 

M06-2X/6-31G(d) optimized TS-I and TS-II are shown with key bond lengths in Å. 

 
* Ibid, S21 (see Table S5).  
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The directional flow of electrons (or “reaction axis”43) in this system is assumed to point 

from the N atom to the Br atom down the +z axis (Figure 7.6). We postulated that, perpendicular 

to that axis, along the ±x axis, electron flow would be polarized to favor either Path A or Path B, 

i.e., one of TS-I and TS-II would be selectively stabilized while the other would be destabilized. 

This prediction is borne out in our computations (Figure 7.7). With a field of magnitude 0.004 au 

oriented in the –x direction, the free energy barriers for formation of the allene and alkyne are 

predicted to be equal, but different products are favored at higher or lower field strengths, i.e., 

there exists a mechanistic crossover point somewhere along the EEF spectrum. While the 

crossover point might occur at a different field strength with a different level of theory, this 

example serves as a proof-of-concept that one might be able to selectively produce either product 

of a divergent fragmentation with an appropriately oriented electric field.   

 

 

Figure 7.7 EEF effects on divergent fragmentation of 2, examined using M06-2X/6-31G(d)). The 

x component of the molecular dipole moment (x in Debye) is shown at each hundredth of an 

atomic unit (au) representing the magnitude of the electric field oriented in the in the ±x direction. 

Red circles correspond to Path A in Figure 7.6 and blue squares correspond to Path B. At points 

where the trendline falls off, we find that either the reactant structure and/or the TSS are not 

stationary points on the PES. 
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Do EEF’s have a similar product selectivity effect on the fragmentation of 1? To answer 

this question, we selected entries 6 and 10 (from Table 7.1) for our case studies because these 

entries each have two TSSs—one leading to product A (TSS(A)‡) and one leading to product B 

(TSS(B)‡). In both cases, product B is kinetically preferred in the absence of an EEF (with both 

B3LYP-D3(BJ) and M06-2X). The results of the EEF calculations in Figure 7.5 indicate that the 

z axis induces the most significant change to the free energy barrier. We hypothesized that an EEF 

along the ±z axis might have a significant (de)stabilizing effect on the free energy barriers, enough 

to switch product selectivity. Figure 7.8 displays the results of the calculations. Both TSS(A)‡ and 

TSS(B)‡ experience a linear change in the free energy barrier, however, only the barrier for 

formation of B is lowered in the presence of positive z (+Fz) fields. Attempts to optimize TSS(A)‡ 

in the presence of EEFs of +Fz > 0.001 au for entry 6 and +Fz > 0.003 for entry 10 led to TSS(B)‡. 

This result suggests that fields oriented in that direction might completely shut down the pathway 

to form product A. We note that we also carried out a test calculation, in which an EEF is oriented 

along the ±x and ±y axes, to test for switches in product selectivity, but observed no crossing of 

the free energy barriers for TSS(A)‡ and TSS(B)‡.* This means that there is no switch in selectivity 

for the divergent fragmentation of 1 in the presence of EEFs oriented in the x or y directions within 

the -0.01 au to +0.01 au magnitude range.94 Nevertheless, as EEFs in the -Fz direction increase in 

magnitude, the G‡ between TSS(A)‡ and TSS(B)‡ decreases (making the path to form A more 

competitive), and at some field, the selectivity switches. This, in principle, means that EEFs 

oriented down the ±z axis can alter product selectivity.   

 
* Ibid, S17-S18 (see Figures S7 and S8). 
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Figure 7.8 (a) External electric field effects (±Fz) on divergent fragmentation of 1 (entry 6, TSSs 

for formation of A and B from Table 7.1). (b) Effects on divergent fragmentation of 1 (entry 10, 

TSSs for formation of A and B from Table 7.1).  
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7.5 Conclusions 

Since the 1950s, with the identification and categorization of fragmentations as a class of organic 

reaction by Eschenmoser94 and its further development by Grob (with “…glaring disregard of the 

earlier contributions”3),1-2 the heterolytic fragmentation has become a useful tool in organic 

synthesis. Nonetheless, we believe that additional interesting chemistry remains to be discovered 

in this area. In this study, we have expanded the concept of heterolytic fragmentation by exploring 

a model fragmentation in which a single substrate can fragment via two distinct pathways to 

different products after an initial -bond cleavage – a divergent extended fragmentation.4 We 

demonstrated that substituents, electrostatic environment and dynamic effects can influence 

pathways to competing products. Direct dynamics simulations on some systems reveal flat regions 

of energy surfaces where selectivity is determined and yet another unexpected PTSB in a reaction 

of a complex organic molecule.33 Finally, EEF calculations suggest that divergent pathways can, 

in principle, be selected between if an electric field is oriented appropriately.* 
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Chapter 8 

 

The Role of Through-Bond Stereoelectronic Effects in the Reactivity 

of 3-Azabicyclo[3.3.1]nonanes* 

 

 
No stereoelectronic explanation, no matter how firm, can be absolutely, positively confirmed. 

 

- Claire M. Filloux (Angew. Chem. Int. Ed. 2015, 54, 8887) 

 

8.1 Abstract 

Hyperconjugation/conjugation through-bond stereoelectronic effects were studied with density 

functional theory (DFT) in the context of 3-azabicyclo[3.3.1]nonanes to unravel puzzling 

differences in reactivity between a vinylogous chloride (4) and a vinylogous ester (5). These 

compounds—whose structures differ only by one substituent—were found to display strikingly 

different reactivities in hydrochloric acid by Risch and co-workers (J. Am. Chem. Soc. 1991, 113, 

9411–9412). Computational analyses of substituent effects, noncovalent interactions, natural bond 

orbitals, isodesmic reactions, and hydration propensities lead to a model for which the role of 

remote, through-bond stereoelectronic effects is key to explaining 4 and 5’s diverging reactivity.  

 
* This chapter is a slightly modified version of the following published article: Laconsay, C. J.; 

Rho, T. C.; Tantillo, D. J., J. Org. Chem. 2022, 87, 3378-3388 with permission from the 

American Chemical Society. Copyright American Chemical Society 2022. Tyler C. Rho helped 

carry out DFT calculations and contributed to the editing and revision of the final manuscript.  
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8.2 Introduction 

Bond, through-bond.1 Interactions in chemistry can occur through-space and/or through-bond,2–4 

both of which have been the subject of intense research in theoretical chemistry2,3 and 

photoelectron spectroscopy.5–10 These interactions can affect reactivity/selectivity of molecules 

because their manifestations are net stabilizing or destabilizing and depend on molecular geometry, 

hence stereoelectronic.11–16 For example, many investigations have been sparked by 1-

azaadamantane structures (e.g., Scheme 8.1, 1) because of its unique, conformationally constrained 

architecture,17–19 rich in hyperconjugation.11,20,21 Additionally, 1-azaadamantanes (and derivatives 

like 1-azaadamantanones) have been synthesized22,23 and studied in the past for their tendency to 

undergo Grob fragmentations,24 for their intramolecular through-bond16 and charge transfer 

interactions,25 and for measuring electron spin distribution through a -skeleton by 13C contact 

shifts in NMR studies.26 We developed an interest in 1-azaadamantanone structures (e.g., 1, 

Scheme 8.1) and their 3-azabicyclo[3.3.1]nonane fragmentation products (e.g., 4 and 5, Scheme 

8.1) for their visually appealing27 and unusual structures, which hold functional groups of varying 

nucleophilicity and electrophilicity in particular orientations. 3-Azabicyclo[3.3.1]nonanes28 are of 

interest for their pharmaceutical applications29,30 and use in molecular recognition chemistry.31,32 

The 3-azabicyclo[3.3.1]nonane architecture also arises in Aristotelia alkaloid natural products 

(e.g., hobartine and aristoquinoline).33,34  
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Scheme 8.1 Unusual reorganization of 3-azabicyclo[3.3.1]nonanes through heterolytic 

fragmentation. 

 

 

Heterolytic fragmentation reactions (e.g., 2 → 3) can be useful strategic tools in organic 

synthesis.35–41 When applied successfully, fragmentation reactions can effect ring-expansion42,43—

see, for example, the total synthesis of vinigrol.44 Examples in which fragmentation reactions have 

been useful continue to emerge in the literature (e.g., in bioorthogonal self-immolative linkers)45 

and we suspect their utility will only continue to expand. Nevertheless, sparse mechanistic 

information hinders their broad use. Somewhat cryptic aspects of fragmentations that 

computational chemistry is uniquely positioned to address include: (1) directing competing 

divergent mechanisms to control product outcomes,46 (2) connection between the atom-length of 

a fragmentation and its concertedness, and (3) tendencies of particular groups to sequentially 

fragment (in stepwise or concerted but asynchronous pathways).24 Basic research47 into simple 

theoretical model systems that investigate the roles of stereoelectronic interactions in 
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fragmentations, and intermediates/products born out of them, would therefore be valuable for 

future investigations of heterolytic fragmentations. To this aim, we consider here through-bond 

effects in a 3-azabicyclo[3.3.1]nonane product borne out of a fragmentation reaction48—orbital 

effects that could have promoted its formation and that influence its fate. 

Compound 1, reported by Risch’s group, piqued our interest because it was reported that 1 

fragments to a “stable” intermediate, 4.48 Here, stable refers to kinetic stability (as opposed to 

thermodynamic stability) with respect to hydrolysis. Specifically, diketone 1 yields 2 when 

refluxed in thionyl chloride. Molecule 2 then fragments to a 3-azabicyclo[3.3.1]nonane derivative, 

4, upon workup [(1) aqueous ammonia, 25%; (2) methanol/NaOH; (3) concentrated hydrochloric 

acid].48 An alternative fragmentation of 2 could generate ,-unsaturated ketone 6, but the authors 

do not observe 6. Our calculations are consistent with this result: fragmentation to 6 is kinetically 

and thermodynamically less favorable than fragmentation to 3 (G‡ = 24.3 kcal mol-1, G = 16.4 

kcal mol-1 to 6 versus G‡  = 22.2 kcal mol-1, G = 10.2 kcal mol-1 to 3.)* Notably, treatment of 4 

with CH3O
- was reported to give structure 5, which “immediately reacts with hydrochloric acid at 

room temperature”48 to form 1, presumably via initial hydrolysis to the vinylogous acid. 

 

8.2.1 The Puzzle 

Herein, we use density functional theory (DFT) calculations to investigate why 5, and not 4, react 

in acid. While 4 is a vinylogous chloride, 5 is a vinylogous ester. Why 4 and 5 would react so 

differently in acid is not obviously clear, especially since one would expect an acid chloride to be 

more susceptible to hydrolysis than an ester. One possible answer is that swapping a chlorine atom 

 
* Data is described in the Supporting Information of J. Org. Chem. 2022, 87, 3378-3388. See Figure S1. 
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at C6 in 4 to a methoxy group in 5 results in changes in intramolecular orbital interactions in 4 that 

are not present, or are of different strengths, in 5. Here we assess how interactions between the 

amine and ,-unsaturated carbonyl substructures influence reactivity, both through-space and 

through-bond.49 Our results reveal that the divergent reactivity can be tied to through-bond orbital 

effects, which are scaffolded by the 1-azaadamantane cage.  

 

8.3 Methods 

 Density functional theory calculations were carried out using Gaussian 09.50 The 

Minnesota hybrid functional, M06-2X,51 was used for geometry optimization and frequency 

analysis for calculation of Gibbs free energies, as it has been shown to work well for systems 

involving hyperconjugation and minimizes error associated with extensive electron 

delocalization.52,53 A triple- Pople basis set, 6-311+G(d,p), was used with diffuse and polarization 

functions for all calculations. Intrinsic reaction coordinate (IRC) calculations were carried out to 

find the minimum energy pathways downhill in energy and each transition state structure’s 

flanking minima.54–56 To check the robustness of our level of theory, we computed amine proton 

affinities with B3LYP-D357,58 in the gas phase and M06-2X in a polarizable continuum (PCM)59 

solvation model and compared the results to that in Figure 8.2 (vide infra). The data gleaned from 

this case study led to consistent qualitative conclusions across the three levels. Thus, we reasoned 

that M06-2X/6-311+G(d,p) adequately captures qualitative trends for the systems studied here. All 

computed structures (including coordinates) can be found on the ioChem-BD repository60 at the 

following DOI: https://doi.org/10.19061/iochem-bd-6-120. Energies, file names, and lowest 

frequencies associated with each structure can also be found in the SI. 

https://doi.org/10.19061/iochem-bd-6-120
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Basicities were computed by using the proton transfer equilibrium equation (1) and a 

formula based on electronic energies (2).61 Relative basicity values (B) obtained from this method 

establish a reasonable sense of relative basicity for various R-substituted fragmented products 

(FPs). 

 

𝐴 + 𝐻+  →  𝐴𝐻+     (1) 

𝐵 =  𝐸(𝐹𝑃𝐻+  + 𝐻2𝑂) −  𝐸(𝐹𝑃 +  𝐻3𝑂+)   (2) 

 

Noncovalent interaction (NCI) plots62 were generated using Multiwfn version 3.7 with a 

medium quality grid.63 Natural bond orbital (NBO) analysis (version 3.1) was carried out in 

Gaussian 09 to obtain second-order perturbation NBO energies.64,65 Hydration propensities of our 

substrates were calculated using electronic energies (E) in a formula based on thermodynamic 

data66—hydration data may also be determined kinetically67,68—with the following equations (3 

and 4), where E is the non-hydrated species, and Ehyd is the hydrated species: 

 

∆𝐸𝑟𝑥𝑛 = 𝐸ℎ𝑦𝑑 − (𝐸 + 𝐸𝐻2𝑂)     (3) 

𝑙𝑛𝐾ℎ𝑦𝑑 = −(
∆𝐸𝑟𝑥𝑛

𝑅𝑇
)       (4) 

 

8.4 Results and Discussion 

8.4.1 Noncovalent Interactions (NCI) Analysis 

Structures 4 and 5 are unique in that the amine and -system are close enough that a through-space 

interaction could be relevant between the lone pair of the nitrogen (nN) and the -system (i.e., nN 
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→ 
C=C or nN → 

C=O) or between the N-H bond and the π-system. If through-space interactions 

are operative, then a noncovalent interaction (NCI) analysis should reveal any difference in 

through-space interactions that exist between 4 and 5. NCI analysis is a useful tool for qualitatively 

visualizing intra- and intermolecular noncovalent interactions within (or between) molecules.62 

The use of NCI analyses in computational organic chemistry studies has become increasingly 

important to characterize, visualize, and rationalize the role of weak, noncovalent interactions in 

mechanistic models.69–71 Colors in NCI plots indicate the type of interaction: blue indicates strong 

attraction on one extreme, and red indicates strong repulsion on the other; green lies in the middle 

of the two extremes and indicates weak interactions (e.g., dispersion interactions). Figure 8.1 

shows NCI plots for structures 4 and 5. The green in each plot indicates that weak interactions 

exist between the amine and the -system, but the degree to which it changes from 4 to 5 suggests 

that through-space effects remain effectively the same in 4 and 5 (analogous results were obtained 

for the N-invertomers of 4 and 5—4’ and 5’—and their N-protonated forms; see SI). A through-

space interaction argument alone is thus insufficient to explain Risch et al.’s observed diverging 

kinetic stabilities in acid. Though these plots by themselves do not definitively rule out the 

existence of strong through-space interactions between the amine and the enone moieties, they 

weigh against through-space effects having a consequential role in the fate of these structures in 

acid.  
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Figure 8.1 NCI index plots (blue, strong attraction; green, weak interaction; red, strong repulsion; 

isovalue = 0.5) of structures 4 and 5.  

 

8.4.2 Basicity of Amine and -system 

If, on the other hand, through-bond effects are important for the stabilities in acid of 4 and 5, we 

would expect to see a significant difference in computed basicity for the amine, the most basic site 

of 4 and 5. The strong basicity of the amine relative to other groups is reflected in our computed 

basicities: in Figures 8.2a and 8.2b when R = H, the basicities of the amine and ketone are -61.7 

and -45.7 kcal mol-1, respectively.  

 

4 5
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Figure 8.2 Relationship between R substituent para constant and (a) basicity of nitrogen (slope = 

7.0) and (b) basicity of carbonyl oxygen (slope = 20.8). The energy (E) axis range in both plots 

is kept consistent for easy comparison. 

 

Both 4 and 5 have local amine functionality and local vinylogous carbonyl derivative 

functionality. But these local functional groups may communicate with each other by through-

bond orbital effects. If this is the case, we would expect to observe changes in amine basicity upon 

changing the substituent at carbon 6 (C6, Scheme 8.1); it would not be the first time amine basicity 

is influenced by remote, neighboring functionality.72,73 Figure 8.2a shows the results of our amine 

basicity calculations with different C6 substituents plotted against their Hammett para constants, 

which reflect the π electron-donating and -withdrawing ability of R.74,75 Though the range of 

basicity (ca. 10 kcal mol-1) for the amine pales in comparison to the range of computed basicity 

for the ketone (Figure 8.2b, ca. 30 kcal mol-1), the correlation in Figure 8.2a (R2 = 0.88) with para 

values suggest that the amine lone pair is sensitive to the nature of the R group, an observation 

consistent with a through-bond interaction. Additionally, the difference in basicity values between 
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4 and 5, a E = 5.3 kcal mol-1, suggests that a Cl at C6 (4) makes the amine notably less basic 

than when a methoxy group is at C6 (5).  

The same basicity analysis was applied to the ketone group (Figure 8.2b). Oxygen 

basicities are highly correlated with the Hammett para value (R2 = 0.97), and more sensitive to R 

(slope = 20.8 versus slope = 7.0 in Figure 8.2a), as expected. Compound 5 (R = OCH3) has a 

greater ketone oxygen basicity than that of 4 (R = Cl): E’s = -55.5 kcal mol-1 and -44.1 kcal mol-

1 for 5 and 4, respectively. The greater basicity of 5 likely contributes to its greater instability in 

acidic solution by promoting its activation as an electrophile.  

One could consider the above discussion of data up until this point being also consistent 

with a through-space interaction between the R group and the amine group. But, as we argue in 

subsequent sections, through-space interactions make up only a minor role in comparison. While 

we acknowledge it is difficult to decouple through-bond and through-space interactions 

completely, the lack of clear evidence from NCI analysis for through-space interactions, and ample 

evidence of through-bond interactions, led us to arrive at the considerable role of through-bond 

interactions in this particular system (vide infra). 

 

8.4.3 It Takes Two to Tango—Hyperconjugation/Conjugation Effects 

How exactly does changing R influence the basicity of the amine? We surmised based on past 

literature on 1-azaadamantanones (such as 1), the precursor to intermediates 4 and 5, that through-

bond interactions may be the major means of modulating amine basicity.76,77 Despite the nitrogen 

lone pair being two bonds away from the carbonyl, it still participates in an interaction resembling 

that of double hyperconjugation or hyperconjugation/conjugation (Scheme 8.2a-f).78,79 In this 

particular case, the nitrogen lone pair in 1-azaadamantanones donates electron density into the * 
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orbital of the adjacent C–C bond, while simultaneously, the  orbital of the C–C bond donates 

electron density into the *C=O (Scheme 8.2e and 8.2f).80 Both double hyperconjugation (distinct 

from “two-way” hyperconjugation81) and hyperconjugation/conjugation are examples of remote 

stereoelectronic effects inextricably linked by a mediating single-bond bridge, and ample examples 

of their effects on organic structure and reactivity are documented.11,82–86 If intermediates 4 and 5 

indeed exhibit through-bond communication between the nitrogen lone pair and the enone 

substructure, we would expect computed basicities to be sensitive to R’s identity, and that is what 

is observed (Figure 8.2).  

 

Scheme 8.2 Select types of extended hyperconjugation (see ref. 11, Ch. 8 for an in-depth 

discussion of remote stereoelectronic effects). a) double hyperconjugation, b) 

hyperconjugation/conjugation, c) negative double hyperconjugation, d-f) negative 

hyperconjugation/conjugation 
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8.4.4 Natural Bond Orbital Analysis 

To further explore the possibility of through-bond effects, we computed second-order perturbation 

NBO energies, an analysis often used to quantify the strength of hyperconjugative donor-acceptor 

orbital interactions.20 Second-order perturbation NBO energy (E(2), equation 5) analysis measures 

donor-acceptor electron delocalization that results from filled orbitals interacting with unfilled, 

antibonding orbitals.87 In equation (5), n is the population of  donor orbitals, Fi,j is the Fock 

matrix element between orbitals i and j, and  and * are the energies of  and * natural bond 

orbitals (if, for example, one is computing E(2) energies between  and * orbitals). 

𝐸(2)  =  −𝑛𝜎
<𝜎|𝐹|𝜎∗>2

𝜀𝜎∗ − 𝜀𝜎 
 =  −𝑛𝜎

𝐹𝑖,𝑗
2

∆𝐸
 .     (5) 

 

If through-bond effects are relevant to the stability of 4 and 5, then we would expect to 

observe qualitative trends in E(2) NBO energies. Figure 8.3 plots E(2) NBO energies with 

Hammett para values. In the first case (Figure 8.3a), sums of E(2) values associated with 

hyperconjugation from nN → *
C-C of both adjacent C–C sigma bonds are plotted against para 

values. A weak correlation (R2 = 0.66) suggests that as the electron-withdrawing ability of the R 

substituent increases, donation into *
C-C antibonding orbitals slightly increases (~1 kcal mol-1 

increase in E(2)). In other words, through-bond communication between the nitrogen lone pair and 

R is non-negligible. The sum of E(2) values corresponding to nN → *
C-H hyperconjugation 

interactions (Figure 8.3b) are slightly better correlated (R2 = 0.72) with respect to para values, but 

smaller in magnitude (at most, 7.1 kcal mol-1 when R = NO2) because *
C-H orbitals are worse 

acceptors, in part, due to their poor orientation for good orbital overlap with respect to the nitrogen 

lone pair. No correlation between the sum of E(2) values corresponding to C-C → *
C=C and C-C 
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→ *
C=O donor-acceptor interactions and para values is observed (Figure 8.3c), To ensure our NBO 

analyses were reasonable, we checked whether a correlation is observed between the C=C → *
C=O 

donor-acceptor interaction (Figure 8.3d). Indeed, a strong, negative correlation (R2 = 0.90) exists, 

which is consistent with electron-withdrawing groups weakening a C=C → *
C=O interaction. 

 

Figure 8.3 Correlations of second-order perturbation NBO energies, E(2), and Hammett 

parameter, para (proxy for electron-donating and -withdrawing ability of substituent, R). Shown 

are correlations of E(2) values associated with a) sum of negative hyperconjugation interactions 

of nN → *
C-C of adjacent C-C sigma bonds (R2 = 0.66) , b) sum of negative hyperconjugation 

interactions of nN → *
C-H of adjacent C-H sigma bonds (R2 = 0.72), c) sum of C-C → *

C=C and 

C-C → *
C=O interactions (R2 = 0.01), and d) C=C → *

C=O interaction (R2 = 0.90). 

 

 In Figure 8.3a, we observe a slight correlation with the sum of E(2) values and π electron-

donating and -withdrawing ability, but are the nN → *
C-C interactions with adjacent C–C -bonds 
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evenly distributed between the two bonds? The range of E(2) values in Figure 8.4a for the 

component associated with the “proximal” donor-acceptor interaction (proximal to the R group) is 

effectively the same as that in 4b for the “distal” interaction (distal to the R group), ~0.7 kcal/mol, 

consistent with an evenly delocalized nitrogen lone pair into (seemingly indistinguishable) empty 

antibonding orbitals. However, we find that there is no correlation (R2 = 0.14) with respect to the 

proximal nN → *
C-C E(2) energy (Figure 8.4a) and an excellent correlation (R2 = 0.98) with 

respect to the distal nN → *
C-C E(2) energy (Figure 8.4b). The origin of this difference appears to 

be related to the other partner in the hyperconjugation/conjugation array, i.e., the ,-unsaturated 

carbonyl. We observe an unequal distribution of E(2) values for donation from C–C bonds into 

adjacent *-antibonding orbitals, with greater E(2) values for the distal interaction (C-C → *
C=O, 

Figure 8.4d) than the proximal interaction (C-C → *
C=C , Figure 8.4c), consistent with *

C=O being 

a better acceptor than is *
C=C. In short, the carbonyl modulates communication between the 

substituent and the distal C–C bond. 
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Figure 8.4 Correlations of second-order perturbation NBO energies, E(2), and Hammett 

parameter, para (a measure for electron-donating/-withdrawing ability of substituent, R). Shown 

are correlations of E(2) values associated with a) nN → *
C-C interaction of proximal C-C sigma 

bonds (R2 = 0.14), b) nN → 
C-C interaction of distal C-C sigma bonds (R2 = 0.98), c) C-C → 


C=C interaction of proximal C-C sigma bond with 

C=C of enone (R2 = 0.25) and d) C=C → 
C=O 

interaction of distal C-C sigma bond with 
C=O  of enone (R2 = 0.36). 

 

8.4.5 Isodesmic Reactions 

To isolate key stereoelectronic effects, thermochemical data derived experimentally or 

computationally are often used in hypothetical reactions (e.g., isogyric, isodesmic, 

hypohomodesmotic, homodesmotic, hyperhomodesmotic).88 These reactions can provide useful 

information for deducing how strong a delocalizing stereoelectronic effect is, but they are 

challenging to implement in practice because achieving an “ideal” reaction requires careful 

balancing of changes in bond type, charge, hybridization, and steric effects.20 Often, changing a 

NH2

OCH3

H

F Cl
CF3

NO2

8.5

8.7

8.9

9.1

9.3

9.5

9.7

9.9

10.1

10.3

10.5

-1 -0.5 0 0.5 1

E
(2

),
 k

c
a
l 
m

o
l-1

para

c) 

NH2

OCH3 H

F Cl
CF3

NO2

8.5

8.9

9.3

9.7

10.1

10.5

-1 -0.5 0 0.5 1

E
(2

),
 k

c
a
l 
m

o
l-1

para

b) 

NH2
OCH3

H

F
Cl

CF3

NO2

3

3.5

4

4.5

5

5.5

-1 -0.5 0 0.5 1

E
(2

),
 k

c
a
l 
m

o
l-1

para

NH2

OCH3

H
F

Cl
CF3

NO2

3

3.5

4

4.5

5

5.5

-1 -0.5 0 0.5 1

E
(2

),
 k

c
a
l 
m

o
l-1

para

d) 

a) 



203 

 

portion of a molecule to probe an effect introduces additional, sometimes undesirable interactions. 

Figure 8.5, for example, shows simple isodesmic reactions that switch the lone pair position from 

equatorial to axial (i.e., 4 → 4’ and 5 → 5’; 4’ and 5’ are examples of concave bases89), a 

transposition that introduces a N–H → *
C-C interaction at the expense of a nN → *

C-C 

interaction—for both 4 and 5, the reaction is uphill by at least 1 kcal mol-1. Though this 

hypothetical reaction seems like a reasonable method for acquiring a qualitative measure of the 

energetic stabilization due to nitrogen lone pair hyperconjugation, by switching the lone pair’s 

position, we also introduce possible through-space effects between the nN and the -system (vide 

supra). Like any isodesmic reaction, this one has flaws: the best we can do is asymptotically 

approach the ‘ideal’ isodesmic reaction. 

 

Figure 8.5 Isodesmic reaction. Amine inversion: lone pair from equatorial (4 and 5) to axial 

position (4’ and 5’). 

 

 The energies from Figure 8.5 reveal that 4’ and 5’ are only 1 to 1.5 kcal mol-1 higher in 

energy than 4 and 5, respectively, which suggests that we cannot ignore the relevance of this 

conformation and possible concomitant through-space interactions contributing to the 
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experimental observation discovered by Risch. However, NCI and NBO analysis on 4’ and 5’ did 

not provide cogent evidence that through-space effects predominate.*  

So far, through-bond effects appear responsible for 4 and 5’s kinetic stability in acid, and 

we have yet to uncover evidence to counter this model. What other isodesmic reactions might we 

interrogate that would convince us otherwise? Replacing the amine with a methylene (CH2) group 

would, in principle, take away any energetic stabilization from the amine lone pair participating in 

hyperconjugation/conjugation (Figure 8.6a). To keep each side balanced, we added a cyclohexane 

chair and a piperidine chair on the left and right-hand side, respectively. The ∆E for this reaction 

is, roughly, a measure of the difference between having amine lone pair hyperconjugative 

stabilization and C-H → 
C-C stabilization from a methylene group, but note that through-space 

interactions between the π-system and N–H versus C–H bonds are also present (although hopefully 

not significantly different). Taken together, the reactions shown in Figures 8.5 and 8.6a indicate 

that the net stabilization energy imparted by nN → *
C-C interactions in the context of other 

intermolecular interactions is likely on the order of 1 kcal mol-1 for both 4 and 5, and slightly more 

so for the latter. 

 
* Ibid, S4 (Figure S3). 
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Figure 8.6 Isodesmic reactions. a) Difference in stabilization energy due to amine lone pair versus 

C-H hyperconjugation into 
C-C antibonding orbital for 4 and 5. b) and c) “Deletion” of ketone 

functionality.  

 

 Is there an isodesmic reaction that measures the stabilization energy associated with the 

carbonyl group of the enone? Figure 8.6b shows that “deleting” the carbonyl group in 4 costs 

almost nothing (+0.2 kcal mol-1), while “deleting” the carbonyl group in 5 imposes a 1.7 kcal mol-

1 energetic penalty, a reasonable reflection of the energetic stabilization due to a donor group at 

the  position of a carbonyl group. Carbonyl deletion also affects an additional, intertwingled 

stereoelectronic effect: the so-called ‘vinylogous anomeric effect’11 (VAE, originally named the 

‘allylic effect’90), which results from the in-plane carbonyl oxygen lone pair interacting with the 

*
C-R orbital through the intervening C-C p bond. Contrasting these results to those in Figure 8.6c 

suggest that the amine in the bicyclic molecule attenuates the cost imposed by ketone “deletion”, 

consistent with the amine reducing the electrophilicity of the carbonyl group via the through-bond 

interaction described above (here the VAE is still present), i.e., without the amine present, the 
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communication between the Cl/OCH3 and the carbonyl group through the intervening π-bond is 

stronger and the penalty for losing that communication is larger.* 

 

8.4.6 A Closer Look—Trends in Basicity and Hydration Propensity 

That the ketone oxygen is more basic in 5 than in 4, and more sensitive to the substituent at the C6 

position, is corroborated by the data in Figure 8.2b. This result is not surprising. Changes to amine 

basicity (Figure 8.2a) were less obvious at the outset, however. Though changes to amine basicity 

with substituents at the carbonyl -position are smaller than those to the carbonyl itself, they are 

substantial (cf. Figure 8.2). As the electron-withdrawing ability of the C6 substituent increases, 

the amount of through-bond lone pair delocalization increases (approximated with E(2) in kcal 

mol-1), and the amine basicity is curtailed (Figure 8.7).  

 

 

Figure 8.7 Relation of amine basicity to sum of E(2) NBO energies from nN → *
C-C interaction; 

R2 = 0.80. 

 
* Ibid, S5 (see Figure S4 for additional computed isodesmic reactions). 

NH2

OCH3

H

F

Cl

CF3

NO2

-66

-64

-62

-60

-58

-56

-54

-52

6.2 6.4 6.6 6.8 7 7.2

B
a
s
ic

it
y
 (

k
c
a

l 
m

o
l-1

)

E(2), kcal mol-1



207 

 

An increased propensity for carbonyl protonation in 5 versus 4 should lead to increased 

electrophilicity, more facile attack by water, and more rapid hydrolysis (Scheme 8.3). But might 

an increased amine basicity have a similar effect? Covalent hydration propensities (lnKhyd) were 

computed for C6-substituted systems with and without the amine protonated to estimate their 

reactivity towards water in the hydrolysis from 5 to 6 (Scheme 8.3). The more positive lnKhyd, the 

greater the equilibrium lies toward the hydrate, suggesting a greater propensity to be attacked by 

water. 

 

Scheme 8.3 Plausible mechanism from 5 to 1 through hydrolysis and a Mannich reaction.48 

 

 

Three hydration sites were considered, for both neutral and N-protonated forms of 4 and 5 

(a total of six hydration scenarios):* (a) hydration at the carbonyl carbon, (b) hydration at C6 (-

position) resulting from water addition from the “bottom” face (i.e., distal with respect to the 

amine), and (c) hydration at C6 resulting from water addition from the “top” face (i.e., proximal 

 
* Ibid, S6 (see Figure S5). 



208 

 

with respect to the amine). In all scenarios, N-protonated versions showed overall greater hydration 

propensities than their non-protonated counterparts. Electron-withdrawing groups at C6 also 

showed greater hydration propensities (e.g., Figure 8.8).*  

 

 
Figure 8.8 Hydration propensities (lnKhyd) increase as electron-withdrawing ability of R increases. 

The greater lnKhyd the greater the energetic driving force to be hydrated by H2O; R2 = 0.63. 

 

For 4 and 5, whether hydration is favored at the carbonyl carbon or the -carbon depends 

on C6 substitution. In the case of 4, when the amine is protonated, hydration propensities at all 

possible sites are approximately equal (lnKhyd ~ 24). For 5, when the amine is protonated, hydration 

at the -carbon resulting from “bottom” face attack by water (the face distal with respect to the 

amine) is most favored (lnKhyd = 23.5). Thus, we proposed a mechanism in Scheme 8.3 wherein 

water attacks the -carbon from the “bottom” face (lnKhyd for “top” face water attack is 17.9). For 

this hydration scenario, N-protonation makes the hydration propensity for 4 (lnKhyd = 23.7) and 5 

about equal (lnKhyd = 23.5; Figure 8.8)!  An equal susceptibility for water attack such as this is not 

 
* Ibid, S8-S12 (data for other scenarios). 
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present when the amines of 4 and 5 are not protonated);* in fact, in that case, 4 is more likely to be 

hydrated (lnKhyd = 10.9 for 4 versus 7.2 for 5). In acid, however, the amines are likely protonated.  

These hydration propensity results add yet another explanatory (albeit complex) layer to 

the mix: that is, despite hydration propensities for 4 and 5 being equal once their amines are 

protonated, 5’s amine is more basic (Figure 8.7), hence more vulnerable to protonation and 

subsequent water attack. This result is consistent with the experimental observation that 5 is less 

kinetically stable under acidic conditions. Though we hesitate to single out any one property 

responsible for the stability of these molecules, the data is consistent with one overriding message: 

through-bond interactions modulate the reactivity of both the amine and enone components of 4 

and 5. 

 

8.5 The Upshot—A Model for Through-Bond Effects in 3-

Azabicyclo[3.3.1]nonanes 

So, why is 5 unstable in acidic solution and 4 stable? First, it should be emphasized, as was stressed 

in a recent review article by Alabugin et al.,52 that “molecular stability always depends on multiple 

factors. Singling one out of many can be misleading – unless there is a reason.” In this study, we 

singled out particular stereoelectronic interactions to decide if the strengths of these interactions 

correlated with the π-donating/withdrawing ability of the substituent at C6. While correlation does 

not equate to causation,91 and no model based on stereoelectronic interactions can be absolutely 

confirmed,92 the data gathered up to this point allow us to suggest a working model rooted in 

through-bond effects. This model hinges on the reactivity of both the more-basic amine nitrogen 

 
* Ibid, S10 (see Figure S8). 
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and the less-basic ketone oxygen, which communicate with each other through intermediary -

bonds. This study highlights the importance of remote through-bond effects (specifically, negative 

hyperconjugation/conjugation) in organic reactivity, an area still rich in opportunity for discovery. 

To not overlook (or underestimate) the importance of such interactions could make the difference 

between achieving a working model for explaining divergent reactivity of two (or more) molecules 

and being left in the dark. 
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Chapter 9 

 

Deceptive Complexity in Formation of Cleistantha-8,12-diene* 

 

 
All science can do is turn out the false lights so the true light can get us home. 

 

- Tobias Wolff, Old School (2003)  

 

9.1 Abstract 

A cleistanthane diterpene natural product, (14S)-cleistantha-8,12-diene (1), was produced from a 

diterpene synthase (HvKSL4), isolated from barley (Hordeum vulgare). Density functional theory 

calculations of the computed NMR shifts aided in the structure elucidation of the natural product 

with 1H, 13C, HSQC, and HMBC spectral data. Subsequent calculations and labeling studies 

explored two possible mechanisms for the biosynthesis of the diterpene product and provided a 

plausible mechanistic pathway from pimaradienyl cation. The significant finding from this work 

suggests that HvKSL4 must steer through a complex energetic landscape, manifesting in a 

complicated mechanism to 1. 

 

 
* This chapter is a modified version of the following published article: Liang, J.; Merrill, A. T.; 

Laconsay, C. J.; Hou, A.; Pu, Q.; Dickschat, J. S.; Tantillo, D. J.; Wang, Q.; Peters, R. J. 

Deceptive Complexity in Formation of Cleistantha-8,12-diene, Org. Lett. 2022, 24, 2646-2649 

with permission from the American Chemical Society. Amy T. Merrill (from the Tantillo group) 

completed the computational NMR portions of this study, and that work is not included here—

that can be found in the Supporting Information of the above cited publication. The Peters and 

Wang groups isolated and characterized the diterpene natural product. The Dickschat group 

carried out the mechanistic labeling studies. Croix J. Laconsay carried out the DFT mechanistic 

studies (described herein). 
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9.2 Introduction 

The Poaceae plant family is a particularly rich source of labdane-related diterpenoids.1,2 The 

biosynthesis of these diterpenoids begin from the general diterpenoid precursor (E,E,E) 

geranylgeranyl diphosphate (GGPP) by class II diterpene cyclases to produce the eponymous 

labdadienyl/copalyl diphosphate (CPP).3 However, relatively little is known about such 

biosynthesis in barley (Hordeum vulgare), with only the ent-CPP synthase HvCPS1 and ent-

kaurene synthase HvKS1 presumably involved in gibberellin phytohormone biosynthesis.4 

Nevertheless, barley contains several genes for KS-like (KSL) terpene synthases. Among these, 

HvKSL4 is of particular note, as its transcript accumulates in response to either UV-irradiation or 

infection with the fungus Piriformospora indica,5 similar to KSLs involved in 

specialized/secondary metabolism of known importance in other Poaceae plant species.2 Given the 

importance of barley as a source of drink, food, and fodder, as well as the critical physiological 

roles for labdane-related diterpenoids in cereal resistance to biotic and abiotic stresses,6 we 

selected HvKSL4 for characterization of such specialized metabolism in this key crop plant. 

HvKSL4 was cloned from UV-irradiated leaf tissue for biochemical characterization.* 

HvKSL4 was then incorporated into a previously described modular metabolic engineering system 

that enables expression in Escherichia coli engineered to produce potential substrates, specifically 

the three known stereoisomers of CPP,7 all of which are produced by Poaceae. HvKSL4 did not 

react with ent-CPP, but it does with both (normal) CPP (2) and syn-CPP. A recent preprint reported 

that HvKSL4 is found in a biosynthetic gene cluster in the barley genome and also contains 

HvCPS2 that produces 2, with derivatives of the resulting 1 found in planta.8 Herein we study that 

 
* Details of the experiment can be found in the Supporting Information of the original Organic Letters68 

publication— Org. Lett. 2022, 24, 2646-2649.  
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reaction (1 → 2).* HvKSL4 reacts with 2 to form an unknown major product (1, Figure 9.1a), 

along with small amounts of a single minor product that was shown to be isopimara-8,15-diene (3) 

by comparison to an authentic standard.† 

Scheme 9.1. Example cleistanthane type structures akin to product 1. All were isolated and 

reported in four papers by Pinto et al. in Phytochemistry between 1984 – 1995. Shown above are 

some example structures reported between 1988-1995. 

 

 

Past literature contains scattered examples of cleistanthane compounds whose backbone 

resembles that of 1.9–12 For instance, from 1984-1995, Pinto et al. reported numerous oxygenated 

and desaturated cleistanthanes (Scheme 9.1), many of which were isolated from plants from the 

Vellozia plant genus.9–11 Almost all the cleistanthane structures in Scheme 9.1 have aromatic C 

rings—that is, aromatized versions of 1—so 1 may be an important precursor in the cleistanthanes 

 
* see Supplemental Figure S1 of Org. Lett. 2022, 24, 2646-2649 for the results with syn-CPP. 
† Ibid, 12, Supplemental Figure S2. 
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class of natural products. At the outset, literature precedent for the stereochemistry and carbon 

backbone motif of 1 suggests that this product may be the byproduct of dynamical tendencies 

(possibly guided by the terpene synthase) in an unexplored post-transition state bifurcation (PTSB) 

pathway along the complex PES of diterpenes.13  

 

9.3 Computational Methods 

Gaussian0914 transition-state structure (TSS) and minima optimizations were carried out with a 

(99,590) grid (i.e., an ultrafine integration grid).15 Optimized TSSs were verified with frequency 

calculations and by identifying one imaginary frequency. Minima were verified as such by the 

absence of imaginary frequencies. Intrinsic Reaction Coordinate (IRC) calculations were used to 

further characterize TSSs.16–18 Becke’s hybrid, three-parameter functional with Lee, Yang, and 

Parr’s non-local correlation functional,19 that is, B3LYP, has been consistently provided sufficient 

accuracy at a reasonable computational cost for exploring mechanistic possibilities in terpene 

biosynthesis.20 Single-point calculations at the B3LYP/6-31+G(d,p) optimized geometries with 

the mPW1PW9121 and B97X-D22 functionals—that is, mPW1PW91/6-31+G(d,p)//B3LYP/6-

31+G(d,p) and B97X-D/6-31+G(d,p)//B3LYP/6-31+G(d,p), respectively—were performed to 

verify that the B3LYP/6-31+G(d,p) energies were reasonable. Cartesian coordinates of all 

structures can be found in the ioChem-BD repository23 at the following DOI: 

https://doi.org/10.19061/iochem-bd-6-75.*  

 

 
* Ibid, 54-56, energies and frequencies for all stationary points (see Supplemental Tables S24 – S26). 

https://doi.org/10.19061/iochem-bd-6-75


221 

 

9.4 Results and Discussion 

9.4.1 Metabolic Engineering and Characterization 

In order to identify the unknown major product (1) resulting from 2, metabolic engineering was 

employed to increase metabolic flux toward isoprenoids,24 and the resulting recombinant E. coli 

grown in larger volumes. This enabled isolation of a sufficient amount of 1 (∼2 mg) for structural 

analysis by NMR.* NMR analysis enabled us to determine that 1 is a perhydrophenanthrene 

tricycle with a methyl and ethyl substituent on the ‘C’ ring formed by HvKSL4 (Figure 9.1). 

However, two potential configurations for the ethyl substituent and double-bond arrangement in 

this ring could be reasonably proposed.† To help determine the relevant structure, computational 

predictions of chemical shift data were made for both, with further consideration of the ethyl 

epimers, and compared to those measured‡ (all structures deposited in ioChem-BD at this DOI: 

https://doi.org/10.19061/iochem-bd-6-75).23 The details of the NMR and computational NMR 

studies are readily available in the original publication and the SI therein. This dissertation chapter 

from here on solely focuses on an elaborated discussion of the quantum chemical mechanistic 

studies.  

 
* Ibid, 13 (Supplemental Table S1), and 14-16 (Figures S3−S7). 
† Ibid, 16 (Supplemental Figure S8). 
‡ Ibid, 17-24, Supplemental Tables S2−S9. 

https://doi.org/10.19061/iochem-bd-6-75
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Figure 9.1 HvKSL4 activity with CPP (2). (A) Total ion chromatogram for extract from E. coli 

expressing HvKSL4, engineered to also produce CPP (2), with peak numbering as described in the 

text. (B) Scheme showing 2 and reaction leading to identified products, as well as a “simpler” 

alternative mechanism leading to a cleistantha-12,15-diene (green arrows), as discussed in the text. 

 

 

9.4.2 Exploration of Possible Biosynthetic Mechanisms 

Possible mechanisms for the formation of 1 from A (Figure 9.2) were investigated using DFT 

calculations, a tool that has been integral in the exploration of mechanistic proposals for the 

formation of terpene natural products and the intrinsic reactivity of the carbocation intermediates 

that precede them.20,25,26 The mechanism begins with an enzyme-promoted carbocation formation 

of geranylgeranyl diphosphate as a result of departure of the diphosphate group. Subsequent 

cyclization steps yield either (-)-CPP or (+)-CPP, which then the terpene synthase uses to cyclize 

to pimar-15-en-8-yl (or ‘pimardienyl cation’ [A] from here on). The quest to find a reasonable 

mechanism from (-)-copalyl diphosphate (CPP) to 1, led us to revisit known mechanistic pathways 

previously studied by our group.13,27,28 Building upon these past studies, in which the pimaradienyl 

cation (A) has been shown to lead to a variety of natural and theoretically plausible products, we 
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found it reasonable to begin our mechanistic exploration from A. The biosynthesis of 1 may be 

closely related to that of key intermediates associated with abietane-type diterpenoids, for 

example, abietadiene28–33 and miltiradiene,27,34,35 which could mean that pimaradienyl cation is a 

common cationic intermediate between all three structures.   

Cation A exists on a complex hyperdimensional potential energy surface (PES), which 

poses a challenge for the synthase, as there may be myriad pathways to different products. Our 

group previously reported DFT calculations and direct dynamics results that suggest that the PES 

around A (and A’) is quite complex: it is flat in some regions, and contains sequential post-

transition state bifurcations (PTSBs) along its surface, which means that the inherent reactivity of 

carbocation intermediates along the reaction pathway are dictated by non-statistical dynamic 

effects.36–44 A PTSB is a reaction in which downhill from a single transition-state structure, the 

path of the reaction bifurcates, which can lead to divergent product outcomes that conventional 

transition-state theory fails to explain.45–48 As a result, these reactions can only be studied using 

molecular dynamics simulations.49–51 Because of this, terpene synthases face a formidable 

challenge to control product selectivity, as in the biosynthesis of miltiridiene.27 
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Figure 9.2 Possible mechanistic pathways for the formation of 1. Pathway 1 (top, shaded in red) 

and Pathway 2 (bottom, shaded in blue). Also indicated are relative energies (kcal mol−1) of 

minima and transition state structures calculated using density functional theory (mPW1PW91/6-

31+G(d,p)//B3LYP/6-31+G(d,p)). In both pathways the initial proton transfer exhibits a post-

transition state bifurcation (PTSB) leading to other products (and sometimes other PTSBs), as 

previously described.27,46 

 

 We find that the cationic precursors of 1 can be made via two energetically viable pathways 

from two different conformers of pimaradienyl cation (Figures 9.3 and 9.4).  

 

Figure 9.3 Potential energy surface for Pathway 1—A’ to 1. Shown are relative electronic energies 

(in kcal mol-1) at the B3LYP, mPW1PW91 (underlined), and B97X-D (italicized) levels of 

theory with a 6-31+G(d,p) basis set derived from single-point calculations at the B3LYP/6-

31+G(d,p) optimized geometries.  
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 Pathway 1 starts from a conformer of pimaradienyl cation, A’, which is lower in energy 

than A by about 2 kcal mol-1. From A’ a cyclopropanated intermediate, G, could be formed via a 

TSS that contains a PTSB—this TSS exists on the PES for abietadienyl cation formation, the 

biosynthetic precursor of abietic acid.13,28 With an energetic barrier of 30 kcal mol-1, TSA’-G is rate-

determining and would likely be catalytically controlled by the terpene synthase, as its inherent 

reactivity20 would preclude it from traversing such a high barrier under physiological conditions. 

An unusual 1,3-alkyl shift from G to H is energetically viable with a barrier of < 20 kcal mol-1.52 

One could envision H ring-opening to carbocation J (Figure 9.3), but we note that this step would 

require an energetic barrier of at least 15 kcal mol-1, which is unlikely given that it could be 

deprotonated (and quenched) at three positions. If H is deprotonated at the C12 methylene position 

(H to I, Figure 9.3), then the cyclopropyl ring can open if there is an acidic active-site residue (e.g. 

by a tyrosine/water)53 to form the cationic precursor, K, which by one more deprotonation step 

would result in 1. Although lysine residues are not likely found in the active sites of terpene 

synthases,54 ammonia molecules and ammonium cations are reasonable model bases and acids, 

respectively—we have successfully utilized these species in past terpene mechanistic studies.55–58 

 The concerted 1,3-alkyl shift that transforms G to H may not be so unusual. Literature 

precedent, both computational and labeling experiments, exists for such “pendular” shifts”59 in the 

carbocation cascade mechanisms forming cyclooctat-9-en-7-ol.60–63  This type of shift is also 

proposed in the biosynthesis of verrucosan-2-ol64 and in the transformation of thujopsene to 

widdrol.65 Ultimately, this step can be thought of as a cyclopropylcarbinyl cation – 

cyclopropylcarbinyl cation rearrangement (a 1,3 alkyl shift from C13 to C8) within the skeleton 

of the carbocation intermediates. 



226 

 

Pathway 2 begins from conformer A and forms B via a TSS leading to a PTSB.46 After a 

hydride shift to an allylic cation, C, either an ethyl shift (red arrow) or a methyl shift (blue arrow) 

result in the cationic precursors of 1 and 4 (C and D), respectively (Figure 9.4). The TSS for the 

rate-determining step for this pathway, that is, TSC-D, is approximately 20 kcal mol-1 out of C, 

which is an energetic barrier that is approaching the limit to, but does not preclude, being 

energetically viable under biological conditions above A.52 We suspect an enzyme would have a 

hand in lowering this barrier and/or controlling the prevention of 4 formation, as our computational 

NMR data provides good evidence that the product isolated is 1.* 

 

 

Figure 9.4 Potential energy surface for Pathway 2—A to 1 and 4. Shown are relative electronic 

energies (in kcal mol-1) at the B3LYP, mPW1PW91 (underlined), and B97X-D (italicized) levels 

of theory with a 6-31+G(d,p) basis set derived from single-point calculations at the B3LYP/6-

31+G(d,p) optimized geometries. 

 
* Ibid, 32-33 (Tables S14-S15, for computational NMR results of 4). 
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 We proposed two energetically viable mechanisms from pimaradienyl cation, A or A’, to 

the unexpected, isolated product 1. After confirming its structure with computational NMR 

calculations, and subsequent DFT mechanistic studies, two reasonable mechanistic pathways 

emerge for the biosynthesis 1. To support or refute our hypothesized pathways, we designed a 

deuterium-labeling study to distinguish between the two.66 Our initial design is shown in Figure 

9.5. If the methyl group at C14 were deuterated, for example, we hypothesized that we would be 

able to discern between the pathways: if 1 had deuterium at C14/C16, then that would lend support 

that Pathway 1 is the relevant pathway, and similarly if C14/C15 were deuterated, then that would 

lend support in favor of Pathway 2. 

  

 

Figure 9.5 Possible isotopic labelling experiment to test theoretical mechanistic hypotheses 

proposed herein. 

 

9.4.3 Labeling Studies 

Collaboration with the Dickschat research group facilitated a realization of these 

deuterium-labeling studies. In Pathway 1, and in the absence of deuterium in 2, exogenous 

deuteration the cyclopropane ring of intermediate I (Figure 9.2) would result in a deuterium at C15 

(not to be confused with C15 deuterium coming from deuterated 2 from Pathway 2 above). Studies 

of the reaction in 2H2O, including initial cyclization of GGPP to 2 by a class II diterpene cyclase 
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(which involves incorporation of a deuterium as previously shown67) were run to interrogate 

Pathway 1. Incorporation of an additional deuterium, beyond that found in 2 upon cyclization of 2 

to 1 by HvKSL4 was not observed, and weighs against Pathway 1.68* Given the frequency of 

intramolecular proton transfer in terpene synthase catalyzed reactions, the absence of incorporation 

from an exogenous source does not provide definitive evidence—i.e., as the cyclopropyl might be 

opened by 1,4-proton transfer from C12 to C15. Accordingly, additional labeling studies were 

carried out. These relied on generation of labeled GGPP from farnesyl diphosphate and isopentenyl 

diphosphate, using a GGPP synthase, as previously described,69–71 along with the synthesis of 

(15,15,15-2H3)-farnesyl diphosphate reported here.† This enabled a series of experiments to more 

fully investigate the predicted rearrangements (Scheme 9.2).  

 

Scheme 9.2. Labeling Studies of HvKSL4 Production of 1. Shown for the relevant pathway 2. 

 

 
 

 
* Ibid, 26 (Figure S11). 
† Ibid, 4 (Supplemental Results S3). 
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First, a coupled reaction with (1-13C,6-2H)GGPP was carried out, which results in (16-

13C,9-2H)-A, with observation of a triplet for C16 in the 13C NMR spectra demonstrating derivation 

to (16-13C,16-2H)-1.* This confirms 1,6-proton transfer within A to form isopimara-8-en-15-yl+ 

(B). Notably, approximately half of the minor product 3 retains the deuterium, suggesting a mixed 

origin from deprotonation of either A at C9 (loss of 2H) or B at C16 (retaining 2H). Second, a 

coupled reaction with (2-13C,19,19,19-2H3)GGPP was carried out, which results in (15-13C,14,14-

2H2)-A, with observation of a triplet for C15 in the 13C NMR spectra demonstrating derivation to 

(15-13C,14,15-2H2)-1.† This confirms the 1,3-proton transfer within B to form the allylic 

carbocation intermediate isopimara-8-en-14-yl+ (C). The subsequent 1,2-ethyl migration from C13 

to C14 formally proceeds from C as isopimara-8-en-14-yl+ to yield the rearranged carbocation 

intermediate cleistantha-8-en-13-yl+ (D). Finally, a coupled reaction with (4,4-2H2)GGPP was 

carried out, which results in (12,12-2H2)-A, with observation of the loss of a deuterium in the 

derived (12-2H)-1.‡ This confirms concluding deprotonation of D at C12 rather than intramolecular 

transfer. 

Use of pathway 2 by HvKSL4 for production of 1 emphasizes the complexity of the 

energetic landscape for this reaction, which includes previously reported alternative 

rearrangements of B.27 There are alternative transition states leading toward ring expansion 

(barrierless at the mPW1PW91 level of theory utilized here) or the 1,2-methyl migration leading 

to production of the cyclohexa-1,4-diene abietane miltiradiene (5.2 kcal mol−1 relative to B), and 

the inherent barriers for these are similar to that for the production of 1 (0.2 kcal mol−1). Even 

within the relevant pathway carbocation C can undergo an alternative 1,2-methyl shift (leading to 

 
* Ibid, 27 (Supplemental Figure S12). 
† Ibid, 28 (Supplemental Figure S13).  
‡ Ibid, 29 (Supplemental Figure S14). 
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a cassane backbone, such as in E and 4) rather than a 1,2-ethyl shift (c.f. blue vs red arrows in 

Figure 9.2), and the energetic barrier for each is essentially identical (19.9 versus 19.5 kcal mol−1, 

respectively, relative to C). While the energetic barrier for the 1,2-hydride shift from C14 to C8 

within the initially formed A to generate the pimar-15-en-14-yl+ precursor to vinyl containing 

cleistantha-12,15-diene (Figure 9.7)* is greater than that for transition to B (14.5 versus 11.3 kcal 

mol−1, respectively), it is still easily surmountable.  

 

 

Figure 9.7 Potential energy surface for pathway to the pimar-15-en-14-yl+ precursor to vinyl 

containing cleistantha-12,15-diene. Relative electronic energies were computed at the B3LYP/6-

31+G(d,p) and mPW1PW91/6-31+G(d,p)//B3LYP/6-31+G(d,p) (underlined values) levels of 

theory; they are reported in kcal mol-1. 

 

Thus, HvKSL4 must steer its reaction through a complex energetic landscape in order to 

selectively produce 1. This is hypothesized to enable formation of the nearly planar cyclohexa-

1,4-diene ring, indicating eventual aromatization in any derived phytoalexins. Indeed, the recent 

preprint reports that barley produces aromatic derivatives of 1.8 Accordingly, the work reported 

here elucidates the ability of terpene synthases to form not only various carbon backbones but also 

specific olefin isomers that enable further transformations via use of an alternative more extended 

mechanism, providing an additional contribution to terpenoid natural products biosynthesis. 

 
* Structure L is an unusual, non-classical carbocation. Significant hyperconjugation from the shifted hydride and 

vinyl group gives this carbocation an unusual source of kinetic stability, though not much (only 0.2 kcal/mol is 

required to shift the vinyl group according to B3LYP). Results from mPW1PW91 indicate that L is not a minimum 

on its surface (5.3 kcal mol-1 for L versus 5.1 kcal mol-1 to shift vinyl group). However, these single-point values 

were computed from the B3LYP-optimized geometries. On the B3LYP surface, L is a minimum (non-underlined 

values). 
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9.5 Conclusions 

In conclusion, a new diterpene product was isolated and elucidated using computational and 

spectroscopic NMR analysis. Stereoselectivity and constitutional questions about the structure of 

(14S)-cleistantha-8,12-diene (1) were resolved using computational NMR techniques. 

Computational and experimental labeling studies elucidated a plausible biosynthetic pathway from 

pimaradienyl cation to 1. 
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Supplementary Information 
 

Chapter 6: Can Dirhodium Complexes Catalyze Cyclopropanation of 

Cycloheptatriene Diazo Compounds to Synthesize Substituted-

Semibullvalenes? 
 

A-1. Supplementary Figures 

 

Figure A.1 Relative free energies (kcal mol-1) of donor-acceptor carbene system with the inclusion 

of M. PW6B95/def2-SVP level.  
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Figure A.2 Relative free energies (kcal mol-1) of donor-donor carbene system. PW6B95/def2-SVP 

level. 
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Figure A.3 Relative free energies (kcal mol-1) of donor-acceptor, C7-methyl system. 

PW6B95/def2-SVP level. Figure 6.2 of Chapter 6 with TSG-L and L structures. 
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Figure A.4 Relative free energies (kcal mol-1) of donor-donor, C7-methyl system. PW6B95/def2-

SVP level. 
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A-2. Energies and Frequencies 

All structures can be found on the ioChem-BD database at the following link: https://iochem-

bd.bsc.es/browse/handle/100/216065  

 

Energies and Frequencies for each reported structure can be found in the following Tables. 

 

Table A.1 Energies and lowest frequencies for structures in Figure A.1. 

Structure File Name G (Hartree) E (Hartree) 

G 

(kcal 

mol-1) 

 

(kcal 

mol-1) 

Lowest 

frequency 

(cm-1) 

N2 N2 -109.58265 -109.5699956 - - 2536.3 

A CHT_diazo_acc  -571.870736 -572.0134621 2.1 3.3 27.9 

B Norc_diazo_acc -571.87147 -572.0156583 1.6 2.0 51.8 

A_inverted CHT_invert_diazo_acc -571.871344 -572.0122815 1.7 4.1 18.8 

B_inverted Norc_invert_diazo_acc -571.871409 -572.0121117 1.6 4.2 3.9 

Rh cat Rh_cat -1135.530568 -1135.689383 - - 28.8 

C C_acc -1597.821946 -1598.138176 [0] [0] 14.6 

TSC-D TS_C_D_acc -1597.81356 -1598.131686 5.3 4.1 -181.7 

D D_acc -1597.893936 -1598.216906 -45.2 -49.4 16.7 

TSD-E TS_D_E_acc -1597.872801 -1598.193451 -31.9 -34.7 -482.7 

E E_acc -1597.888109 -1598.211159 -41.5 -45.8 24.8 

H H_acc -1597.833811 -1598.152008 -7.4 -8.7 22.6 

TSH-I TS_H_I_acc -1597.793722 -1598.106296 17.7 20.0 -835.3 

I I_acc -1597.857514 -1598.178614 -22.3 -25.4 21.5 

J J_acc -1597.823508 -1598.138777 -1.0 -0.4 14.8 

TSJ-K TS_J_K_acc -1597.821391 -1598.135044 0.3 2.0 -668.7 

K K_acc -1597.906173 -1598.224555 -52.9 -54.2 5.9 

TSC-F TS_C_F_acc -1597.818188 -1598.133031 2.4 3.2 -108.0 

F F_acc -1597.895786 -1598.215905 -46.3 -48.8 11.4 

G G_acc -462.362873 -462.4990248 -44.9 -31.5 13.8 

TSC-H TS_C_H_acc -1597.813749 -1598.129716 5.1 5.3 -438.6 

TSC-J TS_C_J_acc -1597.814906 -1598.131023 4.4 4.5 -45.8 

TSG-L TS_G_M_acc -462.337678 -462.4751012 -29.1 -16.5 -471.2 

L M_acc -462.370358 -462.5100371 -49.6 -38.4 93.7 

  

https://iochem-bd.bsc.es/browse/handle/100/216065
https://iochem-bd.bsc.es/browse/handle/100/216065
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Table A.2 Energies and lowest frequencies for structures in Figure A.2. 

Structure File Name G (Hartree) E (Hartree) 

G (kcal 

mol-1) 

 (kcal 

mol-1) 

Lowest 

frequency 

(cm-1) 

A CHT_diazo_don -650.302791 -650.4884838 10.1 12.3 25.3 

B Norc_diazo_don -650.306333 -650.4930408 7.9 9.4 32.5 

C C_don -1676.266856 -1676.627477 [0] [0] 20.0 

TSC-D TS_C_D_don -1676.252594 -1676.614596 8.9 8.1 -264.2 

D D_don -1676.331466 -1676.698097 -40.5 -44.3 24.4 

TSD-E TS_D_E_don -1676.313013 -1676.676226 -29.0 -30.6 -468.3 

E E_don -1676.325214 -1676.692448 -36.6 -40.8 30.6 

H H_don -1676.279569 -1676.635472 -8.0 -5.0 7.2 

TSH-I TS_H_I_don -1676.237852 -1676.595258 18.2 20.2 13.5 

I I_don -1676.301422 -1676.664444 -21.7 -23.2 -951.3 

TSI-G TS_I_G_don -1676.296623 -1676.659328 -18.7 -20.0 -447.0 

J J_don -1676.274045 -1676.635154 -4.5 -4.8 17.8 

TSJ-K TS_J_K_don -1676.264783 -1676.620822 1.3 4.2 -568.2 

K K_don -1676.336338 -1676.700694 -43.6 -45.9 16.3 

TSC-F TS_C_F_acc -1676.258522 -1676.61553 5.2 7.5 -394.8 

F F_acc -1676.337594 -1676.699875 -44.4 -45.4 13.6 

G G_acc -540.807892 -540.9871218 -44.9 -31.3 41.1 

TSC-H TS_C_H_don -1676.260244 -1676.620865 4.1 4.1 -407.3 

TSC-J TS_C_J_don -1676.264758 -1676.627498 1.3 0.0 -46.6 

 

Table A.3 Energies and lowest frequencies for structures in Figure 6.2 of Chapter 6 and Figure 

A.3. 

 

Structure File Name G (Hartree) E (Hartree) 
G 

(kcal 

mol-1) 

 

(kcal 

mol-1) 

Lowest 

frequency 

(cm-1) 

A CHT_diazo_acc_c7_me -611.178551 -611.3486835 1.1 4.1 56.8 

B Norc_diazo_acc_c7_me -611.183864 -611.3543773 -2.2 0.6 59.6 
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C C_acc_c7_me -1637.128299 -1637.474647 [0] [0] -4.5 

TSC-D TS_C_D_acc_c7_me -1637.11943 -1637.465999 5.6 5.4 -212.3 

D D_acc_c7_me -1637.202911 -1637.553619 -46.8 -49.6 22.3 

TSD-E TS_D_E_acc_c7_me -1637.184429 -1637.532269 -35.2 -36.2 -484.6 

E E_acc_c7_me -1637.200647 -1637.55029 -45.4 -47.5 22.8 

TSC-F TS_C_F_acc_c7_me -1637.118155 -1637.463194 6.4 7.2 -412.0 

F F_acc_c7_me -1637.191972 -1637.540372 -45.5 -46.7 18.8 

H H_acc_c7_me -1637.136923 -1637.482825 -11.0 -10.6 18.7 

TSH-I TS_H_I_acc_c7_me -1637.103685 -1637.447131 9.9 11.8 -530.5 

I I_acc_c7_me -1637.17657 -1637.527327 -35.9 -38.5 25.8 

J J_acc_c7_me -1637.125119 -1637.468563 2.0 3.8 18.7 

TSJ-K TS_J_K_acc_c7_me -1637.123495 -1637.468623 3.0 3.8 -321.1 

K K_acc_c7_me -1637.207122 -1637.552411 -49.5 -48.8 9.9 

G G_acc_c7_me -501.67425 -501.8369771 -53.6 -37.9 40.2 

TSC-H TS_C_H_acc_c7_me -1637.122124 -1637.465903 3.9 5.5 -416.7 

TSC-J TS_C_J_acc_c7_me -1637.120438 -1637.464391 4.9 6.4 -53.9 

TSG-L TS_G_L_acc_c7_me -501.649306 -501.8127448 -32.4 -17.2 -469.8 

L L_acc_c7_me -501.684686 -501.8502128 -54.6 -40.8 83.8 

 

Table A.4 Energies and lowest frequencies for structures in Figure A.4. 

Structure File Name G (Hartree) E (Hartree) 
G 

(kcal 

mol-1) 

 

(kcal 

mol-1) 

Lowest 

frequency 

(cm-1) 

A A_don_c7_me -689.609465 -689.8220573 10.3 11.5 27.0 

B B_don_c7_me -689.617057 -689.8304971 5.5 6.3 39.1 

C C_don_c7_me -1715.573773 -1715.959848 [0] [0] 16.2 

TSC-D TS_C_D_don_c7_me -1715.556462 -1715.944812 10.9 9.4 -258.9 

D D_don_c7_me -1715.64007 -1716.033051 -41.6 -45.9 22.6 

TSD-E TS_D_E_don_c7_me -1715.62806 -1716.015864 -34.1 -35.2 -454.5 

E E_don_c7_me -1715.640508 -1716.031412 -41.9 -44.9 17.0 

TSC-F TS_C_F_don_c7_me -1715.554171 -1715.940167 12.3 12.3 -464.7 

F F_don_c7_me -1715.630417 -1716.020631 -46.4 -47.6 16.7 

H H_don_c7_me -1715.584303 -1715.971183 -6.6 -7.1 11.3 

TSH-I TS_H_I_don_c7_me -1715.546668 -1715.931295 17.0 17.9 -575.5 

I I_don_c7_me -1715.612244 -1716.006041 -24.1 -29.0 21.6 

J J_don_c7_me -1715.567823 -1715.955105 3.7 3.0 15.2 

TSJ-K TS_J_K_don_c7_me -1715.563272 -1715.949484 6.6 6.5 -366.0 

K K_don_c7_me -1715.643784 -1716.033832 -43.9 -46.4 22.4 

G G_don_c7_me -580.114887 -580.3199478 -45.0 -31.1 43.4 

TSC-H TS_C_H_don_c7_me -1715.56758 -1715.954664 3.9 3.3 -393.3 

TSC-J TS_C_J_don_c7_me -1715.560226 -1715.948586 8.5 7.1 -31.9 
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Table A.5 Energies and lowest frequencies for structures in Figure 6.3 of Chapter 6. 

Structure File Name G (Hartree) E (Hartree) 

G (kcal 

mol-1) 

 (kcal 

mol-1) 

Lowest 

frequency 

(cm-1) 

R R -1175.781755 -1176.063456 [0] [0] 14.88 

TSU-1 TS_U_1 -1175.76417 -1176.045421 11.0 11.3 -285.05 

IntU-1 Int_U_1 -1175.782586 -1176.067892 -0.5 -2.8 10.27 

TSU-2 TS_U_2 -1175.773328 -1176.059304 5.3 2.6 -330.61 

IntU-2 Int_U_2 -1175.777698 -1176.06187 2.5 1.0 5.59 

TSU-3 TS_U_3 -1175.774846 -1176.060434 4.3 1.9 -327.28 

PU P_U -1175.780964 -1176.068006 0.5 -2.9 13.58 

 

Table A.6 Energies and lowest frequencies for structures in Figure 6.4 of Chapter 6. 

Structure File Name G (Hartree) E (Hartree) 

G (kcal 

mol-1) 

 (kcal 

mol-1) 

Lowest 

frequency 

(cm-1) 

RO R_O -1251.017674 -1251.302855 [0] [0] 9.48 

TSO-1 TS_O_1 -1251.011988 -1251.299177 3.6 2.3 -175.87 

IntO Int_O -1251.07793 -1251.370792 -37.8 -42.6 20.91 

TSO-2 TS_O_2 -1251.060547 -1251.351206 -26.9 -30.3 -423.55 

PO P_O -1251.075986 -1251.368401 -36.6 -41.1 24.54 

 




