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Since the first attempts to establish a consistent nosology in 
psychiatry1 there has been an appreciation for the difficulties 
in delineating patient populations2–4. Without objectively dis-

criminative biomarkers, diagnoses are made through the integra-
tion of subjective presentations, including patient experience and 
behavioral observations2–4. When research diagnostic systems are 
used in clinically ascertained case-control studies, diagnoses may 
be designated hierarchically, incorporate perceived severity, cen-
sor milder episodes and/or select for archetypical presentations; a 
process that may obscure complicating co-morbid or pre-morbid 

episodes4,5. In reality, psychiatric patients may present more het-
erogeneously, sharing features and blurring boundaries among 
disorders and between disorders and typical behavior2,4,6. To some 
extent this blurring is thought to extend to etiological features, with 
certain environmental risks predisposing to diverse outcomes2,7,8, 
non-specific efficacy of drug treatments implying shared neuro-
chemical pathologies9 and reports of extensive overlap in genetic 
risk factors3,4.

The large genetic component to susceptibility for psychiat-
ric outcomes is established from consistently moderate to high  
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There is mounting evidence that seemingly diverse psychiatric disorders share genetic etiology, but the biological substrates 
mediating this overlap are not well characterized. Here we leverage the unique Integrative Psychiatric Research Consortium 
(iPSYCH) study, a nationally representative cohort ascertained through clinical psychiatric diagnoses indicated in Danish 
national health registers. We confirm previous reports of individual and cross-disorder single-nucleotide polymorphism heri-
tability for major psychiatric disorders and perform a cross-disorder genome-wide association study. We identify four novel 
genome-wide significant loci encompassing variants predicted to regulate genes expressed in radial glia and interneurons in 
the developing neocortex during mid-gestation. This epoch is supported by partitioning cross-disorder single-nucleotide poly-
morphism heritability, which is enriched at regulatory chromatin active during fetal neurodevelopment. These findings suggest 
that dysregulation of genes that direct neurodevelopment by common genetic variants may result in general liability for many 
later psychiatric outcomes.
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heritability estimates10 and this contribution appears shared broadly 
among disorders. Initial observations of familial co-aggregation 
and genetic correlations for bipolar disorder (BIP) and schizophre-
nia (SCZ)11 have been extended to include other mood disorders, 
autism spectrum disorder (ASD) and attention-deficit/hyperactiv-
ity disorder (ADHD)5,12,13. Recent single-nucleotide polymorphism 
(SNP)-based investigations of shared polygenetic risk provide fur-
ther support in patient populations with similar symptom profiles, 
such as SCZ and BIP14,15 or major depressive disorders (MDD)14–16 
but are also extending this overlap to disorders with more dissimilar 
clinical profiles such as SCZ and ADHD15,17,18, anorexia (ANO)15 or 
ASD14,19. An emerging hypothesis is that at least a portion of genetic 
risk for psychiatric disorders is shared or perhaps non-specific with 
respect to outcomes.

Plausible substrates for such non-specific susceptibility are 
emerging from molecular genetic studies. The pleiotropic effects 
of large-effect copy number variants5,20 (CNVs) such as 16p11.2 
(ref. 21), 22q11.2 (ref. 22) and NRXN1 (ref. 23) suggest insults to neu-
rodevelopment and synaptic function may underlie some of the 
shared risk. The few studies of common variants directly investi-
gating shared etiology5 have implicated genes involved in calcium 
channel neurobiology. A recent integrative transcriptional study 
surmounted the challenges posed by the reliance on clinical phe-
notypes and the absence of biomarkers by using post-mortem gene 
expression profiles across multiple disorders to identify gene sets 

related to neuronal and astrocytic functions as shared molecu-
lar intermediaries24. Although plausible hypotheses are emerging, 
comparatively little has been done to characterize common variants 
that may have non-specific effects, especially in more representative 
patient populations.

Here we leverage the unique iPSYCH case-cohort study25. 
iPSYCH is composed of one of the largest single population sam-
ples of genotyped psychiatric patients in the world and a repre-
sentative, random sample from the same national birth cohort. 
iPSYCH has the unique advantage of ascertaining essentially all 
major psychiatric patients from a single population and diagnostic 
schema, uniformly ascertained according to care provided under 
the same public healthcare system. By comparison, the majority 
of psychiatric disorder cohorts are ascertained from clinics which 
may enrich for prevalent (under treatment at the time of ascer-
tainment) cases diagnosed by different schemas and in different 
populations, confounding, obscuring or otherwise diminishing 
cross-disorder inferences.

We performed a genetic dissection of this naturalistic and 
essentially complete patient population ascertained passively from 
a nation-wide Danish birth cohort (1981–2005, n =​ 1,472,762) 
for ADHD, affective disorder (AFF), ANO, ASD, BIP or SCZ 
(Supplementary Tables 1 and 2; Supplementary Fig. 1). We per-
form a diagnosis agnostic cross-disorder genome-wide association 
study (XDX GWAS) comparing common variant allele frequencies  
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Fig. 1 | SNP heritability and genetic correlation estimates for iPSYCH indications. a, Liability scale GREML SNP heritability estimates of iPSYCH indications 
according to Danish population lifetime risk. Significance determined by likelihood ratio test (LRT), one-tailed P value. Sample sizes and statistics are provided 
in Supplementary Table 3. b, Liability scale SNP heritability estimates according to typical lifetime risk estimates for each disorder are estimated in iPSYCH 
and taken from external studies, using both GREML and LDSC. Sample sizes and statistics are provided in Supplementary Table 4. c, LDSC SNP-based genetic 
correlations between iPSYCH and external studies for the same disorders. Significance determined by two-sided z-test. Sample sizes and statistics are provided 
in Supplementary Table 5. d, SNP-based genetic correlations among iPSYCH indications estimated via GREML and among external studies estimated via LDSC. 
For GREML, significance was determined by one-sided LRT; sample sizes and statistics are provided in Supplementary Table 6. For LDSC, significance was 
determined by two-sided z-test; sample sizes and statistics are provided in Supplementary Table 8. All error bars denote estimate standard errors of estimates. 
Bar color denotes data source and shading denotes estimation method. Star symbols denote significance after Bonferroni correction for 44 variance component 
estimates (P <​ 0.001). Cross symbols denote nominal significance (P <​ 0.05). OTH, other indications not falling within individual disorder categories.

Nature Neuroscience | VOL 22 | MARCH 2019 | 353–361 | www.nature.com/natureneuroscience354

http://www.nature.com/natureneuroscience


ArticlesNaTuRe NeuRoSCIenCe

between the entire patient (n =​ 46,008) and population control 
cohorts (n =​ 19,526). We explore the consistency of our findings in 
published reports and perform an independent replication study 
in a small, diverse sample from the same birth cohort (n =​ 7,163). 
Finally, we integrate published neurobiological data to suppose that 
the effects of common genetic variants with non-specific associa-
tions to psychiatric outcomes are mediated through dysregulation 
of early neurodevelopmental processes.

Results
The genetic architecture of iPSYCH diagnostic indications. We 
first asked if the genetic architecture for psychiatric diagnoses in 
the independent, population-based iPSCYH cohort was consistent 
with previous reports. The SNP heritability and genetic correla-
tions in iPSYCH are depicted in Fig. 1 and point estimates, s.e. and  
P values are listed in Supplementary Tables 3–8. SNP heritability was  
generally modest, ranging from 0.08 to 0.20 and s.e. were small  
(0.01 to 0.03), except for BIP (0.04) and SCZ (0.06). The SNP 
heritability for diagnosis agnostic psychiatric indications (XDX) 
was of similar magnitude as each individual disorder (Fig. 1a and 
Supplementary Table 3). We compare our estimates to those from 
external studies for the same disorders (Fig. 1b and Supplementary 
Table 4), including linkage disequilibrium score regression (LDSC) 
estimates in seven external GWAS (eGWAS) (Methods): atten-
tion-deficit hyperactivity disorder (eADHD), autism spectrum 
disorder (eASD), major depressive disorder (eAFF), eating disor-
ders (eANO), bipolar disorder (eBIP), schizophrenia (eSCZ) and 
a cross-disorder (eXDX) GWAS combining portions of eADHD, 
eAFF, eASD, eBIP and eSCZ. When presented together, the liability 
scale SNP heritability estimates by genetic restricted maximum like-
lihood (GREML) and LDSC for the iPSYCH indications are broadly 
concordant with external studies (Fig. 1b) suggesting an important 
contribution of common SNPs to underlying liability.

LDSC estimates of genetic correlation between iPSYCH indi-
cations and eGWAS of the same disorders were generally large 

(0.44–0.96; Fig. 1c and Supplementary Table 5), highly significant 
and consistent with the few previous reports of cross-cohort genetic 
correlations of the same psychiatric disorder14,16 (Supplementary 
Figs. 2 and 3). These data suggest that iPSYCH indications capture 
similar genetic effects to external studies, with expected levels of 
across cohort genetic heterogeneity. The moderate genetic correla-
tion between XDX and eXDX can likely be explained by differences 
in the proportion of individual case groups used in the two studies.

GREML point estimates of genetic correlations for all pairs of 
iPSYCH indications are at least moderate (Fig. 1d, Supplementary 
Tables 6 and 7) with the exception of ADHD–ANO (ρG =​ 0.01). 
Standard errors ranged from moderate (0.08) to large (0.39) and 
were largest for pairs involving the smallest samples (SCZ, 0.21–
0.39; BIP, 0.17–0.39). For ADHD–ANO and ANO–BIP standard 
errors were large enough that we could not reject the null hypoth-
esis, despite moderate point estimates (P >​ 0.05). Each iPSYCH 
indication also shows at least moderate genetic correlation with 
the aggregate of all remaining indications (Supplementary Fig. 4). 
LDSC estimates of genetic correlation using eGWAS (Fig. 1d and 
Supplementary Table 8) trend smaller than for iPSYCH indications 
of the same disorders, consistent with the additional cross-cohort 
genetic heterogeneity (Fig. 1c and Supplementary Figs. 2 and 3). 
Despite this, both sets of estimates suggest broad sharing of SNP 
effects among nearly all pairs of disorders.

A diagnosis agnostic GWAS. Motivated by the appreciable XDX 
SNP heritability and prevalence of substantial genetic correlations 
among iPSYCH indications, we performed a diagnosis agnostic 
GWAS (XDX). We combined all iPSYCH psychiatric patients into a 
single case cohort (n =​ 46,008). As GWAS controls (n =​ 19,526, see 
Methods) we used the subset of individuals randomly selected from 
the Danish national biobank (iPSYCH design controls, n =​ 30,000) 
with no current diagnoses and passing quality control. We identi-
fied four independent loci tagged by genome-wide significant index 
SNPs (referred to throughout as loci 1–4; P <​ 5 ×​ 10−8; Table 1 and 

Table 1 | Genome-wide significant associations

Locus Chr Range (hg19) Index SNP Position A1 A2 Info OR s.e. P Functional candidate genes

1 2q32.1 183,279,530–
183,680,199

rs4322805 183,535,884 A G – 1.07 0.01 2.92 ×​ 10−8 PDE1A, PPP1R1C

2 3p21.31-3p21.2 46,381,000–
52,161,508

3:48644636:G:A 48,644,636 A G 0.78 1.36 0.06 3.99 ×​ 10−08 AMIGO3, AMT, APEH, 
ARIH2, ATRIP, BSN, C3orf84, 
CCDC36, CCDC51, CCDC71, 
CDHR4, CELSR3, COL7A1, 
DAG1, DALRD3, DHX30, 
FBXW12, GMPPB, GPX1, 
IMPDH2, IP6K1, IP6K2, 
KLHDC8B, LAMB2, MON1A, 
MST1, NCKIPSD, NDUFAF3, 
NICN1, P4HTM, PFKFB4, 
PLXNB1, PRKAR2A, QARS, 
QRICH1, RBM6, RHOA, 
RNF123, SHISA5, SLC25A20, 
SLC26A6, SMARCC1, SPINK8, 
TCTA, TEX264, TMA7, TREX1, 
UCN2, UQCRC1, USP19, USP4, 
WDR6, ZNF589

3 3q13.32 117,453,031–
117,997,735

rs6780942 117,828,678 T C 0.96 1.10 0.01 1.11 ×​ 10−10 IGSF11

4 10q25.1 106,372,083–
107,364,513

rs12265655 106,744,534 C T 0.99 0.92 0.01 1.47 ×​ 10−09 SORC3a

Four loci indexed by genome-wide significant index SNPs in the XDX GWAS (n =​ 46,008 cases, 19,526 controls) implicate a number of candidate genes. OR, odds ratio; s.e., standard error the natural log of 
OR; A1, effect allele; A2, noneffect allele; Info, imputation information score. aSORCS3 was implicated by overlap, not functional connection.
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Fig. 2) and another 46 loci (loci 5–50) indexed by suggestive asso-
ciations (stratified false discovery rate, sFDR <​ 0.05; Supplementary 
Table 9). No locus showed genome-wide significant evidence of a 
second independent association after conditioning on the index 
SNP. The distribution of P values from the GWAS demonstrated 
moderate levels of inflation (genomic inflation factor, λGC =​ 1.15; 
Fig. 2b). A significant LDSC estimate for the XDX SNP heritability 
(liability scale SNP = .h 0 21SNP

2 , s.e.m. =​ 0.01) with an intercept close 
to unity (1.02; s.e.m. =​ 0.01) suggests this inflation is likely due to 
polygenes rather than population stratification or cryptic relatedness.

Although the XDX GWAS is most sensitive to variants with con-
sistent effects across diagnoses, variants strongly associated with 
a single indication could present as apparent cross-disorder asso-
ciations. However, rather than showing skewing of the odds ratios 
for one or two indications, the index SNPs for loci show consistent 
trends across nearly all indications when association tests were per-
formed comparing the XDX GWAS controls to each single-indica-
tion case group (Fig. 2c–f). This broad pattern holds for suggestive 
loci (Supplementary Tables 10 and 11). The XDX GWAS uncovered 
multiple loci with non-specific effects on risk across iPSYCH indi-
cations that are not driven by a single or small subset of disorders.

Independent statistical support. We sought independent sta-
tistical support for our associations from three sources. First, we 
queried the top associations from 4,299 GWAS aggregated in the 
NHGRI-EBI GWAS catalog for connections to our top 50 XDX loci 
(Methods; Supplementary Table 12). NHGRI had independently 
assigned a category to each GWAS that places psychiatric outcomes 
within the broader label of ‘neurological disorder’. In total, our 50 
loci were reported in the top hits of 22 out of 589 neurological disor-

der GWAS, with nearly all representing psychiatric outcomes more 
specifically and 21 out of 3,710 GWAS of other traits and diseases 
(Supplementary Table 12), a significant difference (binomial pro-
portion test; P =​ 3.48 ×​ 10−13). Specifically, genome-wide significant 
loci 2 and 4 and six of the suggestive loci found strong support 
in domain-relevant studies from the GWAS catalog. Locus 4 was 
recently reported as genome-wide significant in two meta-GWAS 
that include the iPSYCH data: one for MDD16 and one for ADHD18.

The GWAS catalog contains many studies but very few SNPs 
from each study, providing an incomplete picture of subtle poly-
genic trends. Thus, we also mapped our top 50 loci to the best 
proxy SNP in each of the seven eGWAS described previously 
(eADHD, eAFF, eANO, eASD, eBIP, eSCZ, eXDX) and, where  
possible, to the best proxy among the top 10,000 associations from 
a self-report major depressive disorder GWAS (ref. 26; eSR–MDD; 
Table 2, Supplementary Table 13). We observe significant external 
replication (P <​ 1.56 ×​ 10−3 correcting for four loci, each tested in 
eight studies) for locus 2 in the eADHD and eSCZ studies. Locus 
4 significantly replicated in the eSR–MDD and eSCZ studies. Even 
where not individually significant, the association trends are strik-
ingly consistent across all studies for loci 2–4. Importantly, our 
XDX trend is consistent for each of loci 1–4 and 35 out of 46 sug-
gestive loci, in the eSCZ GWAS; a disorder among the least repre-
sented in iPSYCH, emphasizing the plausibility that these loci are 
non-specific. As a test of this concordance, we used linear regres-
sion to ask if, across the top 50 loci, the signed effects (regression 
statistics; z-scores) for proxy SNPs in the eGWAS are significantly 
predicted from the XDX effects for the same SNPs. We observed 
significant concordance (P <​ 5 ×​ 10−3 to correct for ten concordance 
tests) between the XDX effects and the aggregated effects from all 
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seven eGWAS (Fig. 3a) as well as in the eSCZ GWAS alone (Fig. 3b). 
Concordance was also significant for the eADHD and eXDX GWAS 
(Supplementary Figs. 5–11).

As a third form of external validation, we repeated the association 
tests for each index SNP using linear mixed models in a small, inde-
pendent replication cohort. We included subjects excluded from the 
discovery GWAS cohort on the basis of outlying genetic ancestry (rep-
lication cohort: n =​ 7,163 with 4,481 cases; Supplementary Table 1;  
results: Table 2, Supplementary Table 14). Given the reduced sample 
size we did not expect, nor did we observe, any significant individual 
replications. We did observe, perhaps surprisingly given the diverse 
genetic backgrounds, a consistent trend at each of loci and for 31 of 
the additional 46 suggestive loci. This broad concordance was also 
significant by the same linear model as above (P =​ 0.004; Fig. 3c). 
Taken together, these analyses provide several forms of independent 
statistical support for the XDX loci identified here.

Tissue-specific partitioning of non-specific psychiatric diag-
nosis heritability. Next, we asked if the genetic effects constitut-
ing the XDX SNP heritability were stronger among SNPs linked to 
tissue-specific biological processes. We used LDSC regression for 
specifically expressed genes27 (LD-SEG; Methods) to test for an 
enrichment of SNP heritability in each of 601 SNP sets. The SNP 
sets were defined by Finucane et al.27 for proximity to genes pref-
erentially expressed (GTEx and DEPICT sets) or chromatin marks 
open and active (RoadMap sets) in a variety of human tissues. None 

of the SNP sets defined by proximity to specifically expressed genes 
showed evidence for enrichment (false dicovery rate, FDR >​ 0.05; 
Supplementary Figs. 12 and 13 and Supplementary Tables 15 and 
16). Among the SNP sets defined by chromatin marks (Fig. 4a 
and Supplementary Table 17), several related to gene regulation 
in fetal brain showed significant (P <​ 6.88 ×​ 10−5; germinal matrix: 
H3K4me3, P =​ 3.73 ×​ 10−5; female fetal brain: DNase, P =​ 1.31 ×​ 10−6; 
male fetal brain: DNase, P =​ 1.05 ×​ 10−5, H3K4me1, P =​ 3.02 ×​ 10−5) 
or suggestive (FDR <​ 0.05; germinal matrix: H3K4me1, 
P =​ 4.34 ×​ 10−4; female fetal brain: H3K4me1, P =​ 3.38 ×​ 10−4, 
H3K4me3, P =​ 3.45 ×​ 10−4) enrichment. No significant enrichment 
was observed in SNP sets related to chromatin marks in adult brain 
nor non-brain tissues (Supplementary Fig. 14 and Supplementary 
Table 18). Enrichment in the same fetal brain chromatin annota-
tions replicated in the eXDX and eSCZ GWAS, a result described 
in the LDSC-SEG report27 (Fig. 4b and Supplementary Table 19). 
Furthermore, iteratively removing subjects with each indication 
from the iPSYCH cases and re-estimating enrichment produced 
consistent results (Fig. 4c and Supplementary Table 20). Figures 4b,c 
emphasize the disorder non-specificity of these heritability enrich-
ments. The heritability enrichments for regulatory variants active in 
fetal brain seen for the XDX GWAS replicate as a class in an inde-
pendent cross-disorder GWAS (eXDX), in an independent psychi-
atric GWAS for a disorder (eSCZ) among the least represented in 
the iPSYCH patient population (Supplementary Fig. 1) and are not 
driven by any single iPSYCH indication.

Table 2 | Independent replication

Disc. Repl. eADHD eAFF eANO eASD eBIP eSR–MDD eSCZ eXDX

Locus Sign Sign P Sign P Sign P Sign P Sign P Sign P Sign P Sign P Sign P

1 +​  +​ 0.26 −​ 0.81 −​ 0.63 −​ 0.96 −​ 0.56 – 0.58 NA NA +​ 0.14 −​ 0.52

2 +​ +​ 0.14 +​a 1 ×​ 10−3 +​  0.05 +​ 0.09 +​ 0.07 +​ 0.01 NA NA +​a 9 ×​ 10−4 +​ 3 ×​ 10−3

3 +​ +​ 0.3 NA NA NA NA +​ 0.35 +​ 0.28 +​ 0.26 NA NA +​ 0.18 NA NA

4 −​ −​ 0.16 +​ 0.92 −​ 0.05 −​ 0.06 −​ 0.3 −​ 0.43 –a 1 ×​ 10−5 –a 8 ×​ 10−5 −​ 0.02

The sign of the effect of studied allele from the logistic regression association test (+​ , risk increasing; −​, risk decreasing) from the discovery GWAS (Disc.; 46,008 cases, 19,526 controls) is presented 
against nine replications. The signs from logistic regression association tests in the iPSYCH replication cohort (Repl.; 4,481 cases, 2,682 controls) are concordant, although the effects are not significant 
(two-tailed P >​ 0.05). Looking up the effect of the four loci in the published association statistics of eight independent studies (eADHD, n =​ 2,960 cases, 4,519 controls; eAFF, n =​ 9,240 cases, 9,519 
controls; eANO, n =​ 3,495 cases, 10,982 controls; eASD, n =​ 7,387 cases, 8,567 controls; eBIP, n =​ 9,784 cases, 30,471 controls; eSR–MDD, n =​ 75,607 cases, 231,747 controls; eSCZ, n =​ 34,241 cases, 
45,604 controls; eXDX, n =​ 33,332 cases, 27,888 controls) shows strong concordance in direction of effect, with some evidence of strict significance for replication. Full statistics are presented in 
Supplementary Tables 9 (Disc.), 13 (eGWAS), and 14 (Repl.). aSignificant after Bonferroni correction for 36 tests accounting for four loci in each of nine replication GWAS. NA, comparable SNP 
associations not available.
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Identifying and characterizing candidate genes. We used FineMap 
at each of the top 50 loci (GWAS sFDR <​ 0.05) to identify a set of 
credible SNPs for each locus (Methods). To identify candidate path-
ways through a set of plausible candidate genes, each credible SNP 
was subsequently connected to target genes using chromatin inter-
action maps for the developing human cortical laminae (Methods). 
Out of 627 credible SNPs, 400 implicated one or more of 281 can-
didate genes (160 protein coding; Supplementary Table 21). As a 
set, these genes were enriched pathways including axon and den-
drite development, receptor tyrosine kinases and histone regulators  
(Fig. 5a). Notably, histone regulators and chromatin remodelers have 
been recently implicated in various psychiatric disorders, including 
ASD and SCZ19,28,29. Consistent with the heritability enrichment,  
the candidate genes were more highly expressed during prena-
tal stages (P =​ 1.67 ×​ 10−10; Fig. 5b), with peak expression during 
mid-gestation in the human brain (Fig. 5c). To understand what 
cells these genes might be functioning in, we leveraged expres-
sion profiles of single cells extracted from fetal brain tissue and 
tested for candidate gene enrichment (Methods). Remarkably, we 
observe candidates to be enriched for genes preferentially expressed 
in radial glia, an early form of neural stem cell and interneurons 
(FDR <​ 0.05; Fig. 5d). These results suggest that the cross-diagnosis 
loci are implicated in corticogenesis and establishment of neural  
circuits during brain development.

Specific candidate genes implicated by genome-wide signifi-
cant loci include PDE1A and PPP1R1C for locus 1 (annotated 

local Manhattan plot, Supplementary Fig. 15). PDE1A encodes a 
Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase 
(PDE1s) that regulates cAMP and cGMP (ref. 30) and can regu-
late L-type and T-type voltage-gated calcium channels31. PPP1R1C 
encodes an inhibiting regulatory subunit of protein phosphatase 1 
(PP1), an enzyme involved in synaptic transmission and plastic-
ity as part of the post-synaptic density32 and has been shown to 
regulate neurite growth in cultured neurons33. Locus 2 is indexed 
by an uncommon SNP (MAF =​ 0.018) and covers a broad, gene-
dense region implicating 53 diverse genes (Supplementary Fig. 16). 
Among these, DAG1, QRICH1, RNF123 and SMARCC1 harbor de 
novo risk variants for ASD and CELSR3 for SCZ34,35. IP6K2 is impli-
cated by a well-described gene-enhancer connection (GeneHancer: 
GH03J048738)36 and previous studies of SCZ37 and ADHD38. 
Locus 3 implicates IGSF11 (Supplementary Fig. 17), a gene  
encoding a neuronal adhesion molecule that binds to and stabilizes  
AMPA receptors regulating synapse development and plastic-
ity39. Locus 4 overlaps considerably with the body of SORC3 
(Supplementary Fig. 18), which encodes a post-synaptic sorting 
and signaling receptor involved in aspects of neuronal functioning 
including synaptic plasticity40.

Discussion
In this study, we leveraged the uniquely designed iPSYCH study to 
provide an unprecedented perspective on the overlap in genetic eti-
ology underlying major psychiatric disorders. The iPSYCH cohort 
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has the advantage of coming from a nationally representative study 
interrogating an essentially complete population of patients against 
a representative sample of diagnosis-free individuals from the same 
Danish birth cohort. Previous results are based on cohorts identi-
fied independently at tertiary research centers by different research 
groups, often in different countries, factors which could reduce true 
XDX overlap or shared heritability. Here, patients are ascertained 
against a uniform background, including genetic background, diag-
nostic schema, system and other cultural or sociodemographic fac-
tors, limiting the potential impact of heterogeneity that may arise 
when comparing independently ascertained patient cohorts.

These strengths of iPSYCH and the decades of preceding epi-
demiological research on mental disorders in Danish health regis-
ters make iPSYCH uniquely suited for providing robust estimates 
of genetic parameters. There is less uncertainty in the underlying 
population that our sample represents and in key parameters, such 
as the assumed lifetime risk for a particular diagnosis definition in 
the population, that define the liability scale heritability. Further, 
the case-cohort, register-based sampling ensures that we capture all 
individuals diagnosed at the time of ascertainment, while clinical 
ascertainment may select a subset of patients that are not a repre-
sentative sample of the population of diagnosed individuals in terms 

of phenotypic presentation41 or genetic architecture42. The effects 
of clinical ascertainment may be exaggerated in cohorts collected 
for GWAS, which may enrich for treatment resistance, archetypical 
presentation, or features of severity in cases and exceptional mental 
health in controls, as a means to boost power for single locus discov-
ery. This kind of extreme sampling can create substantial upward 
bias in liability scale heritability, when not accounted for43.

The broad trend towards larger genetic correlations estimated 
within the iPSYCH cohort when compared to those estimated 
across external studies may be expected given a component of 
genetic risk for psychiatric disorders that is cohort, study or popu-
lation specific. The presence of within-population genetic effects 
is consistent with the trend for genetic correlations of the same  
disorder between iPSYCH and the corresponding external study 
to be less than 1. Importantly, we observe the magnitude of these 
correlations to be similar to the few previous reports14,16, suggesting 
population- or cohort-specific genetic effects are not a unique fea-
ture or flaw of the register-based ascertainment in iPSYCH.

Trends towards lower heritability and higher genetic correlations 
have also been ascribed to increased rates of misdiagnosis44. We 
emphasize that, although each individual patient was not reassessed 
when they were enrolled in iPSYCH, the registered diagnoses reflect 
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clinical diagnoses made by trained, certified psychiatrists; small 
validation studies have shown them to be highly reliable (for exam-
ples, see refs. 45,46). Further, it has been suggested44,47 that implau-
sibly large numbers of misdiagnosed cases are needed to explain 
large trends. Schork et al.47 have undertaken a series of sensitivity 
analyses to provide broader context for trending differences in the 
genetic parameters we present here. They consider various differ-
ences in aspects of ascertainment between iPSYCH and these exter-
nal studies including the accuracy of assumed lifetime risk, the age 
of control subjects, control subjects selected for exceptional mental 
health, cases selected for genetic severity and levels of misdiagnosis. 
Their analyses suggest that, for heritability, it is difficult to rule out 
sampling variability but suggest one plausible contributor to differ-
ence trends may be an overestimation due to extreme sampling43 
in external studies. Genetic correlations are more robust to sample 
ascertainment and we see the most likely contributor to be cross-
cohort genetic heterogeneity (for example, Fig. 1c), although more 
work is needed to fully understand factors that generate variation in 
genetic correlation estimates from real data.

In general, the broad concordance of the estimated genetic 
parameters suggests the totality of ascertainment-related factors 
may be relatively modest, although assessing the true extent of 
between-population heterogeneity in the genetic architecture of 
psychiatric will require additional large population-representative 
cohorts and considerations for ascertainment. With the contin-
ued emergence of large population-based ascertainments, such as 
iPSYCH, 23andMe26, the UKBiobank48 and large insurance record 
cohorts49, we feel this point is critically important for interpreting 
any differences that may emerge.

It is interesting that our functional interpretations of shared 
genetic risk factors, both in terms of polygenic trends and with 
respect to our top associations, converge on fetal neurodevelopmen-
tal processes. This epoch has been implicated by previous studies 
of large effect CNVs and rare or de novo variants but also by envi-
ronmental exposures (for example, ref. 50). Such convergence could 
suggest a critical developmental window during which part of the 
susceptibility to later psychiatric outcomes is defined. The overlap 
in timing for the action of genetic and environmental susceptibility 
factors may also help to carve out a hypothesis space for targeted 
investigations of gene–environment interactions.

While germline variants are present since the first moments of 
embryonic development, the chromatin they reside in and genes 
they may affect undergo a continual evolution of active and inac-
tive states across developmental and life stages. We note that our 
top associations are potential regulators of genes with familiar 
functions14,29, (post)synaptic and calcium channel biology. We also 
demonstrated that, in our study, these variants and their associated 
genes are most coherently involved in aspects of fetal neurodevel-
opment. If susceptibility emerges from disruptions to this familiar 
synapse and calcium channel biology but specifically during neuro-
nal proliferation, migration and establishment of circuits, this could 
have implications for the development of interventions. To make 
good on the promise that GWAS can identify plausible pharmaco-
logical targets, it will become critical to consider the developmental 
stages during which variants induce susceptibility. It may be the case 
that the pathology induced by an associated germline variant occurs 
in one developmental stage but actionable pharmacological targets 
represent different downstream molecular pathologies24. Explicitly 
considering the developmental course of pathological susceptibility 
implied by associated germline variants is a critical next step in the 
translational promise of GWAS results and emphasizes the impor-
tance of partitioning risk with development in mind.

While our study has a number of strengths, it also has a few 
important limitations. First, we have tried to be comprehensive in 
our bioinformatics integration of available data resources but exper-
imental work is needed to unequivocally confirm the functional  

hypotheses that arise from these genetic associations and subse-
quent candidate gene prioritization. Second, the relative youth of 
our cohort limits our ability to make strong claims about the effects 
in adult onset disorders. While we emphasize the evidence for rep-
lication in an external study of schizophrenia, future work should 
further investigate these findings across a broader spectrum of 
disorders. Third, although our sample is large for a single psychi-
atric cohort, it is still comparatively modest by GWAS meta-study 
standards, especially in other common, non-central nervous system 
disorders. As such, we cannot claim that our results suggest the 
only mechanisms through which common SNPs may create risk 
for multiple psychiatric disorders but only that our findings rep-
resent a minimal set of features that set the stage for well-informed 
mechanistic studies. Further, it is also likely that other susceptibility 
factors are more specific, contributing to the unique presentations 
of each disorder. Future work could take direct aim at these factors 
and their interactions with more general susceptibility factors, as 
we continue to update, partition and functionally characterize our 
conceptualizations of the genetic architecture underlying major 
psychiatric disorders.
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Methods
The iPSYCH study cohort and data. The iPSYCH cohort is described in detail 
elsewhere25. Briefly, iPSYCH samples from essentially the entire population of 
Denmark born between 1981 and 2005 (n =​ 1,472,762). In total, 87,764 individuals 
were selected. A total of 30,000 design controls were selected randomly from this 
birth cohort, without regard for psychiatric disorders, to create a representative 
population sample. The remaining 57,764 design cases were ascertained for 
indications of clinical diagnoses recorded in the Danish Civil51, National Patient52 
and/or Psychiatric Central Research53 Registers describing care received for 
ADHD, ANO, ASD, AFF, BIP or SCZ. Where available a dried blood spot was 
obtained from the Danish Neonatal Screening Biobank54. The use of this data is 
according the guidelines provided by the Danish Scientific Ethics Committee, the 
Danish Health Data Authority, the Danish data protection agency and the Danish 
Neonatal Screening Biobank Steering Committee. No statistical methods were 
used to pre-determine the sample size but our sample sizes are consistent with the 
state-of-the-field14,55.

For this study, indications were from the Danish National Patient Register52 
(complete through 2012) and Psychiatric Central Research Register53 (PCRR; 
complete through 2013) and coded according to criteria previously described56. 
Indications are International Classification of Disease57,58 (ICD) codes representing 
the clinical diagnosis associated with an instance of care provided at one of many 
psychiatric facilities throughout Denmark. Records include all admissions to 
inpatient psychiatric facilities since 1969 and outpatient psychiatric care received 
in all psychiatric hospitals, psychiatric wards and emergency rooms since 1995 
(ref. 53). Care administered by primary care or private practice physicians is not 
recorded into national registers. Diagnoses before 1994 were associated with 
codes from the ICD 8th revision58 and converted to equivalent ICD 10th revision57 
(ICD10) codes to match the majority of indications56. We define the following 
seven cases groups as having at least one indication with the corresponding ICD10 
(or equivalent ICD8) codes: cross-diagnosis (XDX: F00-99), attention-deficit/
hyperactivity disorder (ADHD: F90.0), affective disorders (AFF: F32-F39), 
anorexia (ANO: F50.0, F50.1), autism spectrum disorders (ASD: F84.0, F84.1, 
F84.5, F84.8, F84.9), bipolar disorder (BIP: F30-31), and schizophrenia (SCZ: F20). 
As an additional case group, we consider those patients with other psychiatric 
indications, exclusively (OTH: F00-F99 not listed previously, only). Case status can 
reflect the presence of a single or multiple indications and were not censored or 
integrated hierarchically. The counts, prevalence and co-occurrence of indications 
are shown in Supplementary Tables 1 and 2 and co-occurrence is depicted in 
Supplementary Fig. 1.

Initial genotyping was performed at the Broad Institute with amplified 
DNA extracted from dried blood spots and assayed on the Inifinium PsychChip 
v1.0 array25. In total, 78,050 subjects were successfully genotyped across 25 
waves at approximately 550,000 SNPs. A subset of good-quality common SNPs 
(n =​ 246,369) were phased into haplotypes in a single batch using SHAPEIT359 and 
imputed in ten batches using Impute2 (ref. 60) with reference haplotypes from the 
1,000 genomes project phase 3 (ref. 61). Imputed additive genotype dosages and 
best-guess genotypes were checked for imputation quality (INFO >​ 0.2), deviations 
from Hardy–Weinberg equilibrium (HWE; P <​ 1 ×​ 10−6), association with 
genotyping wave (P <​ 5 ×​ 10−8), association with imputation batch (P <​ 5 ×​ 10−8; 
Supplementary Figs. 19–23) and differing imputation quality between subjects  
with and without psychiatric diagnoses (P<​ 1 ×​ 10−6) as well as censored on  
MAF >​ 0.01). In total, 8,018,013 imputed dosages and best-guess genotypes were 
used for analysis.

Three sets of cohorts of unrelated subjects with homogenous genetic ancestry 
were created by sub-setting the design cohorts, one for our primary GWAS 
analyses (GWAS cohorts) and two for heritability by either LDSC regression 
analysis (LDSC cohorts) or by GREML SNP heritability analysis (GCTA cohorts). 
Genetic ancestry for all cohorts was characterized using principal components 
analysis using smartPCA implemented in the Eigensoft package v6.0.1 (refs. 62,63). 
We performed two iterations of censoring, removing subjects outlying from joint 
distribution of the first ten principle components defined in the subset of iPSYCH 
with four grandparents recorded in the Danish civil register as born in Denmark 
(n =​ 6,474 outliers removed; Supplementary Fig. 24), re-computing principle 
components on the remaining subjects and censoring again according to the same 
criteria (n =​ 689 outliers removed; Supplementary Fig. 25). Censored individuals 
were aggregated into a fourth ancestry diverse cohort (Replication cohort). For 
the GWAS and LDSC cohorts kinship was estimated using KING v1.9 (ref. 64) and 
individuals were censored to ensure no pair had closer than third degree kinship 
(n =​ 4,988 removed). For the GCTA cohorts, kinship was more strictly filtered such 
that no pair had GCTA-based estimate greater than 0.034, the absolute value of 
the minimum estimated kinship (n =​ 22,223 removed). When possible cases were 
retained and the control relative was censored. All subject genotypes were flagged 
for abnormal sample heterozygosity, high levels of missing genotypes  
(>​1%), sex concordance and inconsistencies among duplicate samples and those 
failing one or more tests were excluded (n =​ 364). In total, 65,534 subjects were 
retained in the GWAS and LDSC cohorts, 43,311 in the GCTA cohorts and 7,163 in 
the Replication cohort. A more detailed quality control protocol is available in our 
consortium white paper posted with our GWAS summary statistics (https://ipsych.
au.dk/downloads/).

For the GWAS cohort, control subjects were defined as the subset of the design 
controls with no indications of any mental disorders. This cohort was used for 
XDX LDSC heritability, XDX–eXDX genetic correlation, XDX GWAS, single-
indication odds ratios in Fig. 2c–f, and LDSC-SEG analysis. The same control 
definition was applied to the Replication cohort for internal replication tests. For 
the LDSC and GCTA cohorts, the definition of control subjects was different for 
each indication. Control subjects were the subset of the design controls without 
that indication, only, and are expected to have other indications at the population 
prevalence, consistent with a representative sample of the population without the 
considered diagnosis. These cohorts were used for single-indication GCTA and 
LDSC heritability and genetic correlation analyses. Unless explicitly noted, cases 
cohorts include all individuals with a specified indication, including those with 
co-morbid diagnoses.

Statistical analyses. All statistical tests were two-sided, unless specifically noted 
and assumptions (for example, data distribution, homoscedasticity and so on) were 
not formally tested. Randomization and blinding procedures do not apply to our 
study design.

SNP heritability and genetic correlations. SNP heritability and genetic 
correlations were estimated in the GCTA cohorts with the GREML approach 
available in GCTA v1.25.2 (refs. 65–67). Age, gender and ten principal components 
were included as fixed-effects covariates. Estimates were converted to the 
liability scale67 according to estimates of lifetime risk take from Pedersen et al.56 
(Supplementary Table 2). Estimation of genetic correlation between indications 
was performed using bivariate GREML66,68. For each pair of phenotypes, subjects 
with both indications were excluded and controls were randomly and evenly split, 
creating two independent case-control groups. Splitting and estimation were 
repeated five times for each pair and the median values were retained.

Published GCTA SNP heritability estimates for ADHD, AFF, ASD, BIP and 
SCZ were taken from Lee et al.14. GREML estimates of SNP for ANO and XDX 
were unavailable. GWAS statistics for eXDX55, eADHD69, eAFF70, eANO71, eASD72 
and eSCZ73 were downloaded from the Psychiatric Genomics Consortium (PGC) 
repository (http://www.med.unc.edu/pgc/results-and-downloads). Statistics for 
eBIP (ref. 75) were downloaded from the NHGRI-EBI GWAS catalog75. Linkage 
disequilibrium score regression (LDSC v1.0.0)76 was used to estimate SNP 
heritability for these published studies and for each single iPSYCH indication. 
Reference LD scores and protocol were provided by the authors (https://github.
com/bulik/ldsc/wiki). Genetic correlations between iPSYCH indications and 
published GWAS were estimated with LDSC15 using the authors’ protocols. For 
LDSC regression heritability and genetic correlation, single-indication iPSYCH 
GWAS were performed in the LDSC cohort according to the analysis approach 
described below. To facilitate comparisons a typical population prevalence was 
used for each liability scale transformation (XDX =​ 0.35, ADHD =​ 0.05, AFF =​ 0.15, 
ANO =​ 0.01, ASD =​ 0.01, BIP =​ 0.01, SCZ =​ 0.01)14,71, including re-scaling the 
iPSYCH GREML estimates.

Association testing. GWAS were performed using imputed additive genotype 
dosages and logistic regression implemented in PLINK v1.90 (ref. 77). The XDX 
GWAS included all subjects in the GWAS cohort (46,008 cases, 19,526 controls). 
Inflation was assed via genomic inflation factor (λGC)78 and LDSC76. Age, gender 
and ten principal components were included as fixed effects covariates. Stratified 
false discovery rates79 (sFDR) were estimated according to Story’s q value80 and 
computed independently for common (MAF ≥​ 0.05) and uncommon SNPs (0.01 
<​ MAF <​ 0.05). The suggestive SNP threshold of sFDR q value <​ 0.05 corresponds 
to a P value less than 1.02 ×​ 10−5 for common SNPs and less than 4.71 ×​ 10−7 for 
uncommon SNPs. Single-indication odds ratios in Fig. 2c–f and XDX GWAS 
excluding each single indication used in Fig. 4 were performed to provide context 
for the XDX results in the GWAS cohort. For the internal replication cohort 
(7,163 individuals, 4,481 cases), association tests used best-guess genotypes and 
linear mixed models implemented in GCTA66 accounting for relatedness and 
heterogeneity in genetic background with genome-wide estimates of empirical 
kinship. Gender and age were included as fixed-effects covariates.

Fine mapping. Region-based loci associated with independent index SNPs were 
defined and refined iteratively. The most significant SNP was selected and PLINK 
v1.9077 (https://www.cog-genomics.org/plink/1.9/) was used to estimate pairwise 
r2 LD between the index SNP and all SNPs within five megabases. All SNPs with 
r2 LD >​ 0.1 with the index SNP were considered index-associated SNPs. Locus 
bounds were determined by the physical positions of the furthest index-associated 
SNP upstream and downstream. The process was repeated until all suggestive 
SNPs were labeled as index or index-associated SNPs. Loci with overlapping index-
associated SNP sets were merged. Conditional analysis was performed within each 
locus, including the imputed dosage for the most significant SNP as a covariate 
and re-computing within locus association statistics. Secondary suggestive SNPs 
were retained as independent index SNPs and the process was repeated until no 
SNPs within the locus showed suggestive association. Credible SNPs were defined 
for each locus using FineMap v1.1 (ref. 81) with default parameters. For each locus, 
FineMap input SNPs had LD r2 >​ 0.6 with the index SNP and an association  
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P value less than 0.001. Using the per SNP posterior probabilities and Bayes factors 
provided by FineMap, we define credible sets as the the smallest collection of SNPs 
in each locus with a total posterior probability for containing the causal SNPs of 
95% (ref. 82), supplemented with the index SNP and any individual SNPs with 
log10(Bayes Factors) >​ 2.

External statistical support. The 25 June 2018 NHGRI GWAS catalog75 contains 
69,102 autosomal single SNP associations with positions that could be mapped to 
the hg19 reference aggregated from 4,299 GWAS described in 2,918 publications.  
A total 589 GWAS were labeled by NHGRI as ‘neurological disease’, a broad category 
including psychiatric outcomes; 3,710 were not. Catalog SNPs were connected to 
XDX loci according to an objective hierarchy. First, catalog SNPs were checked 
if they were an index SNP. If not, they were checked if they were a credible SNP. 
Remaining catalog SNPs were checked for r2 LD >​ 0.6 with a credible SNP using 
iPSYCH genotypes. If catalog SNPs were not present in the iPSYCH genotypes, 
we checked for an LD connection in the 1,000 genomes project phase 3 (ref. 61). 
Effect directions were aligned to the same strand by allele codes for unambiguous 
SNPs (A–T/C–G) and by frequency when the MAF was less than 0.40 for 
strand ambiguous SNPs (A–T/T–A, C–G/G–C). Enrichment for connections to 
neurological GWAS was tested with a binomial proportion test, although this test 
may not be optimally specified due to overlap among cataloged studies.

To connect each locus to the full results from the seven eGWAS described 
previously, we followed a similar protocol. Priority was given to index SNPs 
genotyped in both studies, then credible SNPs, then the strongest proxy-credible 
LD pair with r2 at least 0.6 in the iPSYCH data. Only strand unambiguous SNPs 
were considered (A–T/C–G). For concordance tests, we considered effects of the 
proxy SNP in both studies to ensure we used statistics for the same variant in 
the case where an index or credible SNP was not directly present in the eGWAS. 
Concordance was estimated via a linear model predicting the external z-score from 
the XDX z-score, including an intercept. The same concordance test was used for 
results from the internal replication association tests.

LDSC-SEG. LDSC regression for specifically expressed genes (LDSC-SEG)27 tests 
for enrichments in per SNP heritability among sets of SNPs defined for plausibly 
tissue preferential biological signatures while controlling for tissue general effects. 
Three sets of pre-computed annotation files (LD scores) are provided by the 
LDSC-SEG authors (GTEx, DEPICT and Roadmap; https://data.broadinstitute.
org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/biorxiv). The GTEx LD scores 
represent 53 variant annotations capturing preferentially expressed genes defined 
from human tissue RNA sequencing83. The DEPICT LD scores represent 152 
variant annotations capturing tissue preferential gene sets defined from an 
amalgamation of human, mouse and rat microarray experiments84. The Roadmap 
represent 396 variant annotations constructed from data produced by the 
Roadmap Epigenetics project85, namely the narrow peaks defined by Roadmap 
for DNase hypersensitivity, H3K27ac, H3K4me3, H3K4me1, H3K9ac and/or 
H3K36me3 chromatin marks in 88 cell types or primary tissues. Analytic protocols 
were as provided by the LDSC-SEG developers documentation (https://github.
com/bulik/ldsc/wiki/Cell-type-specific-analyses). P values less than 8.32 ×​ 10−5 
were declared significant to correct for testing 601 sets of LD scores and suggestive 
significance was determined by Story’s q value80 (FDR <​ 0.05 which corresponds 
to P <​ 8.27 ×​ 10−4). Replication LDSC-SEG partitioning used the eSCZ73 and eXDX 
statistics. Internal replication enrichments used results from seven secondary 
GWAS, each one censoring all patients with a different indication.

Identifying candidate genes. For each locus, candidate genes were identified by 
functional connections between credible SNPs and plausible targets according 
to the union of three selection criteria as described previously86. First, genes 
containing credible SNPs that cause missense variation or nonsense mediated 
decay were selected (133 credible SNPs implicating 13 candidate genes). Second, 
genes with credible SNPs located in the promoter regions were selected (2 kilobases 
upstream from the transcription start site; 15 credible SNPs implicating 12 
candidate genes). Finally, unannotated SNPs were assigned to genes on the basis 
of three-dimensional chromatin contacts defined by an interaction map for fetal 
brain (GEO accession number: GSE77565)86. Genes contacting regions containing 
credible SNPs were selected (252 implicating 262 candidate genes). In total, 400 
credible SNPs were assigned to 281 candidate genes.

Candidate gene enrichment tests. Gene ontology enrichments were performed 
using GOElite87 and ontologies from ENSMart88 v77 against a background of 
all autosomal protein coding genes. Developmental expression trajectories for 
candidate genes were plotted using a published transcriptome atlas constructed 
from post-mortem cortices (GEO accession number: GSE25219)89. Expression 
values were log-transformed and centered using the mean expression values for all 
brain-expressed genes. Mean expression values for the 281 candidate genes were 
plotted across prenatal (6–37 weeks post-conception) and postnatal (4 months 
to 42 years) developmental stages. Developing neural cell-type enrichments 
were estimated using expression profiles of single cells taken from fetal cortical 
laminae90. Cell-type specific genes were selected according to a significant  
(FDR <​ 0.05) Pearson correlation between the gene and an idealized cluster marker 

for each cell-type, following the approach described in the data generation report90. 
Candidate gene enrichment for each set of specifically expressed genes was 
estimated by logistic regression and adjusting for gene length.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
Code and scripts available by request from authors.

Data availability
In accordance with the consent structure of iPSYCH and Danish law, individual 
level genotype and phenotype data are not able to be shared publicly. Cross-
disorder (XDX) GWAS summary statistics are available for download (https://
ipsych.au.dk/downloads/). Summary statistics from secondary GWAS of single 
disorders are available upon request from the corresponding author. BrainSpan 
RNA data are available in the GEO with the accession code GSE25219. Fetal Brain 
Hi-C data are available in the GEO with the accession code GSE77565.
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in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection R v3.3.1 was used to organize subject records into appropriate input files.

Data analysis R v3.3.1, python v2.7, Plink v1.90 beta3, GCTA v1.25.2, LDSC v1.0.0, FineMap v1.1, GOElite, Eigensoft 6.0.1, KING v1.9,  SHAPEIT3, 
Impute2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

In accordance with the consent structure of iPSYCH and Danish law, individual level genotype and phenotype data are not able to be shared publicly.  Cross-disorder 
(XDX) GWAS summary statistics are available for download (https://ipsych.au.dk/downloads/).  Summary statistics from secondary GWAS of single disorders are 
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available upon request from the corresponding author.  

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description A genome-wide associate study of lifetime psychiatric diagnoses as of 2012 in a 1981-2005 birth cohort .

Research sample We used data from the iPSYCH case-cohort study: A random, representative sample of the Danish neonatal biobank for individuals born 
between 1981 and 2005, with a known mother, alive on their first birthday, who have not opted out of the Danish national register based 
research program and the complete population of individuals from the Danish population birth cohort meeting the same inclusion 
criteria and with a major psychiatric diagnosis in the national registers as of 2012.  The case sample was chosen to be complete and the 
random population sample to be representative and of comparable size to the largest individual case cohort. Further details can be found 
in PMID: 28924187.

Sampling strategy Data was ascertained according to a case-cohort design where the size of the cohort (random sample) was chosen to represent 2% of the 
broader population it was sampled from ( population of Denmark born between 1981 and 2005).  Cases were all cases in the population 
at the time of ascertainment.   These samples are state-of-the-field for single cohort GWAS studies, representing the largest of its kind, 
and consistent with previous reports adequately powered for discovery.

Data collection We used data from the iPSYCH case-cohort study: DNA was extracted from dried neonatal blood spots and amplified before genotyping 
on the Infinium PsychChip v1.0.  Blood was collected between 4-7 days after birth and stored at -20 C until the time of ascertainment.  
Psychiatric diagnoses were aggregated from national registers.  Demographic and social variables were aggregated from national civil 
registers. Further details can be found in PMID: 28924187.

Timing All data was initially collected in 2012 and psychiatric diagnoses were later updated, complete through 2014.

Data exclusions Among the 78,050 samples with genotype data available in the iPSYCH case-cohort study, 5,353 were excluded according to genotype 
and imputation quality control procedures described in great detail in Supplementary Note 2.  These data exclusion criteria were 
determined before the study was designed or conducted.  

Non-participation All subjects in the iPSYCH case-cohort data resource were initially included.  This sample was drawn only from those meeting consent 
requirements.

Randomization When control samples were split into random sub-cohorts for analysis the sample() function in R was used to select subsamples of 
subject unique IDs.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Patients were recruited according to consent by non-opt out from a national research program in which very few individuals opt 
out.  Our control sample was drawn nearly randomly from the national biobank making the potential for ascertainment effect 
negligible.  Our case cohort is the complete population as of 2012, which is young for psychiatric disorders meaning there may 
be some enrichment for early onset and some yet-to-convert cases in the controls for anyone disorder.   These are unlikely to 
affect most of our results.
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