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NON-RIGID MOLECULAR GROUP THEORY AND ITS APPLICATIONS |

K. BALASUBRAMANIAN

Department of Chemistry and Lawrence Berkeley Laboratory, University of
California, Berkeley, Californmia 94720 U.S.A.

ABSTRACT

The use of generalized wreath product groups as representations of symmetry
groups of non-rigid molecules is considered. . v

-Generating function techniques are outlined fof nuclear spin statistics and

" character tables of the symmetry groups of non-rigid molecules. Several appli-

cations of non-rigid molecular group theory to NMR spectroscopy, rovibrenic
splitting and nuclear spin statistics of non-rigid molecules, molecular beam
deflection and electric resonance experiments of weakly bound Van der Waal
complexes, isomerization processes, configuration interaction calculations and
the symmetry of crystals with structural distortions are described.

1. INTRODUCTION -

A molecule can be said to be non—rigid if it has an electronic potential sur-
face with barriers that can be surmounted by large amplitude nuclear motions
The symmetry groups of such molecules should contain the permutat1ons of nuclei
induced by these rapid nuclear motions and inversion operations. v
Longuet-l—liggins1 formulated the permutation-inversion approach to the symmetry
groups of non-rigid molecules. It is necessary that the symmetry groups of non-
rigid molecules have the permutations induced by tunneling operations to.inter—
pret many experimental data obtained from their spectra. For e.ample, the
“rotational spectra of these molecules exhibit a typical splitting attributed to
tunneling among various possible conformational structures. The non-rigid
molecular group theory has several applications in other areas of chemical
physics such as NMR spectroscopy, spectroscopy of weakly bound Van der Waal
complexes, molecular rearrangements, configuration interaction calculatlons, ‘
symmetry groups of crystals with distortions; chemical reactivity ete. Several
of these applications will be considered in this article.

Since Longuet—Higginsl formulation of the symmetry gtoups of non-rigid mole-
cules several other authorsz—67have investigated the structure of these groups

and many applications. Excellent reviews of these other schemes can be found iz

the articles of these authors in this volume and the review of Serre.23 S1nce

the space does not permit we will not go into the details of other schemes.



In this article we will first-outline wreath product representation developed
by the present\auchorAI-da for the symmetry groups of non-rigid molecules.’
Several applications to NMR spectroscopy, specttoécopy of weakly bound
complexes; isomerization reactions, CI calculations and crystals with structural

distortions are described with the intent of promoting further research aleong
. these directions.

2. SYMMETRY GROUPS bR NON-RIGID MOLECULES AS GENERALIZED WREATH PRODUCTS
A. Formulation '

The present author showed that symmetry groups of non-rigid molecules which
contain several internal rotors can be expressed as generalized wreath product

41,44
groups.

" We will briefly review the theory of generalized wreath product '
groups here with examples. ‘ _ : *

Let us start with an example of the non-rigid hydrazine molecule. The mole-
cule in its equilibrium conformation contains only a two-fold axis of symmetry.
This molecule is non-rigid in that twisting and inversion operations intercon-
vert all the 16 possible conformations into one another. Consider the permuta-
tional subgroup of this molecule. All the permﬁtation operations of the non-
rigid molecule can be generated by a group product of much simpler groups, knowt.
as wreath product. Let us model this molecule by a particles-in-box model.
Consider eaéh nitrogen atom as a box and the protons attached to that atom as

the two particles in the corresponding box (see Fig. 1). Then twisting

o © o o AB)(13X24
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a g g ? (AB) (14) (23)
8 A

Figure 1. Particle-in-box model for the permutation group of the non-rigid

Niﬁa, The permutation group’of’NZHA is~the wreath product of the.group of boxes
(52) anduparticles-(sz). ' '
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operation permutes the protons or the particles in each box. The two nitrogen
atous (and hence the protons attached to the nitrogen atoms) can be permuted by
an operation preserving the rigid symmetry of the molecule. Consequently, we
" have two permutation grodps namely, a permutation group G acting on the boxes in
the particle-in-box model and a éérmutation‘group H acting on particles in each
s - box. H can be called a torsion group if the particles in each box aré permﬂtéd
by torsion. Tﬁe symmetry group of the non-rigid molecule will consist of permu-
N ' "tations of particles in each box (torsional permutations), the permutations of
the boxes, which in turn induce permutations of particles in all boxes and in-
version operations.  All the operations generated by permutations of particles
in each box and the permutations of boxes are shown in Fig. 1. The resulting
operations span a group of order 8. These operations can be generated by know-
ing the operations in the group G and H. The gfoup of all particles in all the
‘boxes is the wreath product of the group G with the group H, denoted as G[H].
In this example, G and H are both 82. symmetric group of 2 obje%fs containing 2!
elements. Wreath product groups were first formulated by Pdlya which he called
Kranz groups. The order of G[H], |[G[H]| is given by (2.1). '

le(u}] = J6]-

ul /3] . | 3 (2.1)

where 18! is the number of boxes in the particle-in-box model of a non-rigid
molecule. The_édvantage of this group product is that the symmetry operations,
conjugacy class structures, irreducible representations and several cheﬁically
interesting generating functions of wfeath product G[H] can just be obtained in
terms of G and H. A formal definition of the wreath product groups éill be
given now. Let 7 be a map from B to H. Lef g be an element in G. Then G[H] is

the set of possible elements (g;7). Products of two elements (g;~) and (g';-")

is
(g;ﬂ)(g';%') - (gg';ﬂﬂé) : ' (2.2)
' ﬁé(ij - n'(g"t),  ieB. B (2.3)

Products of two maps 7 and 7' are.defined by

a77(4) = 7(D7' (1),  1eD. , (2.4
@x ' ' v '
Let us illustrate this with the hydrazine example. Let g be identity (i.e., ail
the boxes are in their natural positions) and g' be a permutation of boxes

‘denoted as (AB). Let 7 and 7' be the maps shown below.



n(1) = (12) 7' (1) = (1)(2)
. LT (2.5)
®(2) =-(34) w'(2) =+(34)

Then (g;w) = (12)(34) and (g';v') = (AB)(13)(24)(34). Note that g' permuts
boxes and, in turn, induces permutation of particles in all boxes. Product of

n and n' are shown below.

' (1) = 7()n' (1) = (12) ‘ : U
| | (2.6)
m'(2) = m(2)71'(2) = (3)(4)

Since g is just the identity element ﬂg' is 7' itself. The product (g;m)(g';-")
has the follawingvrepresentation. ’

(g™ (gtint) = ((AB);WW') ‘ , v (2.7)

with =n' defined by (2.6)° .
Define a group .G' which is isomorphic to G as follows.

—

G' = {(g;e')|geG, e'(J) ='1H, jeB}

where 1H is the idéntity ofvthe‘gtoup H. The group G[H] is then isomorphic to
gnl x Hy xoo. B) -G, b = |B|

: whgre

H, = ((esm) [n(3) = 1u, 341

with e is the identity of G. Note that H* = Hl x HZ x....be is simply b-fold
direct product of b copies of the group H. The group H* is known as the basis
group of G[H]. It can be shown that H* is an invariant subgroup of G[H]. Con-
sequently, the permutation representation of G[H] = Hﬁ;' G' is simply a semi-

direct product of H* and G'. The fact ‘that the symmetry groups of non-rigid
molecules can be expressed aé semidirect products was first noted by Altmann.11
Serre13 pointed out.the use of Mackey's theorem for semi-direct products in the

chemical contexts. WOodmanlo’l5

has also recognized the use of semi-direct pro-
duct groups in fépresenting the NMR groups of non-rigid molecules. Yeverthe- ~
less,'wreath product representation which is a special case of a semi-direct

prbduét'representation is superior to semi-direct products in that several pro-

perties of G{H] can be simply obtained if the corresponding properties of G and
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. ...The .group GF*[H], by definition is isomorphic to H* - G,

H are known. For example, conjugacy classes of S [H] for any H (where S 1s the

symmetric group of n objects) can be obtained from the conjugacy classes of S,

"and H as shown by Kerber.69 The irreducible representations of G[H] can ber’

obtained from the irreducible representations of G and H. The generating func-
tions for several problems concerning spectroscopy of non-rigid molecules can be '
obtained in terms of G and H, We will refer to G and H as composing groups in
the rest of the manuscript. ' ' ' '

Kerber and co-workers69.7l

have made significant contributions to the repre-
sentation theory of wreath product groups. We will briefly review their
methodology here. . ’ _

The irreducible representations of H* = Hl X H2 x..;be are the outer tensor
products

Fkx = Fl # Fz #....#Fb

where # denotes outer tensor product. The matrices of outer product are simply

the Kronecker’products of matrices contained in the outer product. In symbols,

—

F*(e;m) = F)(n(1)] x ?2[w<z)] X.eo XE [7(0)]

£, [n(D] £, , [7(D]....f, , [7()].
1,k Loy T e

For each representation F* there is a group known as inertia group of F* which
consists of elements in G[H] that leave F* invariant. Symbolically, the inertia
group GF*[H], is '

GpulH] = ((g;m) [F* &™) _px)
with )

(&M (einty = F?(giﬂ)—l(e;“')(gg")'

The group G!, is

Fx* F*

known as the inertia factor of F* and it is of the form
' ‘L et
Gpa = ((gien [P+ (8327 - pa)

Two representations F* and F*' are said to be equivalent if

gF* - F*' R



where g acts on F* as

BE_, he.dF .
S R LT

gF* = g(l-'1 # F, #....#/F) = F

To illustrate for G = Cz, the representations A1 # A2 and'A2 # Al are equivalent
by the above recipe. Let K be set of inequivalent representations among the

possible representations F*, If one knows the representation matrices of

F*(e;n) one can obtain the representation matrices of F*(g;m) by

~ - | .
Fr(gsm) = £, (1 £ [m(D]....f [(b)]

i k :
=1 =1 -1 )
gl 2 g2 ib,Sb

'F*(g;w) is simply a permutation of the columns of the matrix F*(e;n) induced by
g.l. Each irreducible representation in the set K of inequivalent representa-
tions from the inertia group GF*[H] induces a representation in G{H], which is '

irreducible. In symbols, the irréducible representations of G[H] are given by
~
r=(F*@®@F') + G[H]

where the arrow stands for an induced representation, F' is an irreducible rep-
resentation in the inertia factor group GF*' )

To illustrate consider the ferrocene molecule (CSHS)ZFe- . The barrier to
rotation of the ferrocene rings (Fe atom is sandwiched between the rings) meas-
ured in the gas phase 1s only of the order of a kcal and thus this molecule is a
non-rigid molecule. The rotation of the two (CSHS) rings can be described by
the 5-fold cyclic group gs. Thus the permutation group of the molecule is the
wreath product gz[gs],.where C, is the group which switches the 2 ferrocene
rings. The-characteerablg of 95 can be trivially obtained. The conjugacy
class structure of Cz[cslacan be easily obtained using the method outlined in
the paper of the author. In Table 1 we have shown all the irreducible repre-
sentations and character table of C [C 1.

Generalization of wreath product groups to generalized wreath product groups
is possible. -The simplest non-trivial example of such a system is shown. in Fig.

2 in particle-in-box model. In Fig. 2, let G = {(A)(B)(C)(D), (AD)(BC)} be a

Q0o o o o O [« 2= B o]

A. B C D
Figure 2. Particle-in-box.model of a-simplest non-trivial system with a gen-

eralized wreath product permutation group. This model represents the.NMR group
of butane.

b



TABLE 1 ‘ _
The character table of the rotational subgroup of the non-rigid ferrocene molecule
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Table I (continued)
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. review this here. Let lYil = m

9

permutation group of boxes. Note that G does not permute boxes containiné dif-
ferent number ‘of particles. Equivalently, the cycle products of G can be divi-
ded in to disjoints sets. When the cycle products of a group can be divided in
to more than one disjoint set it -is known as an intransitive group. The éyclic

group 95 of 5 objects 1s an example of a transitive group and the group G shown

.above is intransitive. The éycle,produéts of G can be divided into the disjoint
-sets Y1 = {A,D}, Y2 = {B,C}. Alternatively G does not permute elements in dif-

ferent Y sets. Let Hi be the group acting on particles in the boxes belonging
to the set Yi (let 1 < 1.2 t). Let G be the intransitive group acting on the
boxes such that the boxes can be divided into disjoint sets Yl,»Yz,...,Yt. Then
the group of all the particles in all the boxes is the generalized wreath pro-

"’Ht] defined below.

éuct group_G[Hl, Hz,.

-> Hi}f

G[ﬁl, HZ""’Ht] = {(g;wl;wz,....ﬂt)/gec, ﬂi:Yi

The product of any two elements (g;vl,ﬂz,....,ﬂt) and (g';wi,n;;...w;)‘is showm

below.

—

.: ', L L * - ". 1 L T
(3’“1'"2"“'":)(8 ’“1'"2""’"c) (g8 ,ﬂlﬂlg,vznzg,...,vtwtg)

with

RO n1<g“1j), jey, .

One can easily see that

- e, 1Y,
. 1 2
[T N S S0 F IR (11 W I %Y

- The representation theory of wreath product groups can be extended to general-

‘'ized wreath product gfoups as shown by the present author.44 We will briefly

4 Then G[Hl’HZ""’th] has the followiég per-

mutation representations.

'ml m, m,
A el
G[HI’HZ"f’th (H1 X HZ x...th )G

where

© G --{(g;el,ez,...,et)|ei(j) = 1“1}' and

¢

1. L
Hi ,-'{(e,el,ez,...,ni,e1+1,...et)}.
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‘-

ml m2 - m

The irreducible representations of H.~ x H,“ x...xH  are of the form
o * m* . m mi*l 2 t .
FX = Fl # F, #...#F: yith F- o= Fil # Fiz #'7°#Fim . Let the inertia

: i
. group of F* be GF*[HI.HZ....,Ht] and the corresponding inertia factor be G

1]

F*°
Let the inequivalent representations of the form F* constitute the set K. Then
the irreducible representations of G[HI’HZ""Hc] are

~/ _ -
(FA @ F") + G[H ,Hy,...H]

where F' is a representation of G;*. The tilde symbol has the same meaning as

in the representation theory of wreath product groups. F*'s are chosen from K.
We conclude this subsection with the note that the symmetry group of thé

~ system shown in Fig. 2 1s the generalized wreath product 52[83,52] if Hl =S

3

acts on the particles in boxes A and D and H2 = S2 acts on particles in boxes B
and C. This is an example of the NMR group of the non-rigid butane molecule as

we will show in a latter section.

B. “Generalized Character Cycle Indices {GCCI1's) -

Define a generalized character c¢cycle index (GCCI) of a group G corresponding

to character ¥ as

b, b b
n

172
1 x(g) X)Xy ee el X

X 1
GCCI* = T—T
G geG

b, b b . »
where X%, ...xnn is a representation of the permutation geG which generates bl

cycles of length 1, b2 cycles of length 2 etc. on its action on a set D of
objects. The GCCI corresponding to the totally symmetric representation is the
well-known cycle index of a group G defined by Pélya.68 These polynomials are
quite useful in generating the nuclear spin species and nuclear spin statistical
weights of rovibronic levels as shown by the present author. We will demon-
‘strate the usefulness énd applications of this in spectroscopy of non-rigid
molecules in the next section. In this section we will show how GCCIs of gen-
eralized wreath product group G[Hl’HZ"""H:] can be obtainedmig tergs*of
GgCE's of G, Hl, Hz,....etc. Let the inertia factor of F* = Fl # Fz oo
F t be G',. Then a GCCI of Gé* corresponding to a character x is given by

c,.(®
e = —— I, TIx( xg]
F* |G| geGp, 1

flote that the pro-
Cij(g)

where C__(g) 1is the number of j-cycles of g in the set Y

ij i
b, b, b
X, %,%...x_" in the GCCI can be. cast into the form J I x
172 n i1

duct - since

3
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any geG permutes only elemehts'within a Y-set. Let xk
m

4 - Let the corresponding GCCI be defined as.

be the character.of Fi
in the mi-fald outer product F
follows.

b, b
k_ .1 1.2

z, = T oA () x x5,
1 T TET ek, k 1%2

Define Zi: as follows.

A
Mo X
Zgg =%y (¥

14 )

3

where the subscript 2] on the x variable is a product. The arrow stands for
. A kY

replacin X, in Zik by xlj' A GCCI of an irreducible representation
*
- i v
r (#iFi Q@F") ¢ G[HI’HZ""Ht] is given by
r ‘ X Ak
P (G[H,,H,5...,H ]) = P (x,,+2.).
1’72 e 'F* 1] ij
- - L Me :
It is obtained by replacing every xij by Zij in Pé; if this j cycle in Yi is
constituted by j copies of the representation whoseF character is Ak. Thus all
the GCCI's of G[HI’HZ""HCI can be obtained in terms of the GCCl's of G, Hl,
HZ""‘Ht' _
Several illustrative examples of this technique can be found in the papers of

the present auttior,22233,72

The GCCI's obtained with this technique are also partial generators of their

character tables of non-rigid molecules as shown by the author.6S

3. ROVIBRONIC SPLITTING AND NUCLEAR SPIN STATISTICS OF NON-RIGID MOLECULES

N

A non-rigid molecule tunnels between the various possible conformational
rigid structures. Aé a consequence of this tunneling process a given rotational
level (and hence a rovibronic level) splits into finer levels which can be
called tunneling splitting.. Tunneling-splitting is ‘a function of barrier and
the nature of potential energy surface. In order to caiculate the splitting,
one first needs to correléte the rovibronic levels of the rigid molecule to the
non-rigid molecule. Watson6 showed that the symmetry species of the rovibronic
level of a molecule can be correlated to non-rigid molecule by the use of in-
duced representation. The symmetry group of the molecule‘in its equilibrium
geometry is, in geheral, a subgroup of the non-rigid molecule. An irreducible

representation of the rigid molecule can be extended (induced) to the symmetry —

gfgup of the non-rigid molecule. The concépt of induced repfesencations has

been dealt by Altmann32 in great details and the readers are referred to his
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work andvthe recent book'ofABunEer.73
The nuclear spin statistical weights of the split levels govern the intensity

patterns of transitions among these levelé. -For a molecule containing b1 nuclei

wi;h 3 spin states, b2 nuclei with a, spig sgatgs..o, the total number of .

nuclear spin functions can be seen to be allazz.... « One needs the character

of the representation spanned by these nuclear spin functions in the molecular

- symmetry group in order to find the nuclear spin statistical weights. ‘It is
very tedious to find the character of the representation spanned by nuclear spin
functions using their transformation properties, since they are numerous in
number. The present author developed generating function techniques for the

nuclear spin statistics of both rigid and non-rigid molecules of any s&mmétry.

32,53 Further, the author has developed computer pfograms which generate the

‘nuclear spin species and spin statistical weights?§’59 The input for this pro-

gram is the set of GCCI's which can be obtained for non-rigid molecules very
elegantly without having to know their character tables as shown in Sec 2B. We
will review this method here.

Let D be the set of nuclei and R be the set of the nuclear spin states of
nuclei in D. Then nuclear spin functions_ can be conceived of as maps from D to
R. Let the symmetry group of the non-rigid molecule be M and let the GCCI's of
G be denoted .as GCCI;. With each element‘rsR, let us associate a weight w(r),
which is used to book keep the number of various spin states in a given spin
function. The weight of a spin function is the product of the weights of the

spin states in the spin function. 1If the spin function contains b1 spin states

with the same weight Wi b2 spin states with the weight v, etc., then its weight
b. b

is WyWy e . The author showed that a generating function for nuclear spin

species can be obtained by the following substitution using a theorem of

W:I.ll:l.amsonu‘a and Merris.74b

N

G.F.X = GCCI;; [x, + 1 w(r)¥]
TeR

It is obtained by replacing every Xy in.GCCI; by 2 kw(r))k. The. coefficient
: b, b reR
of a typical term wl'wzz... in G.F.X gives the number of times the irreducible

representation T (whose character is x) occurs in the representation spanned by

nuclear spin functions. Consequently, rspin’ the representation spanned by spin

functions can be obtained without having to know the character of ?sPin. The

author has illustrated this technique with several examples.

We will conclude this section with an example of non-rigid B(CH3)3 molecule.
The molecule in its equilibrium geometry possesses C symmeﬁry and the symmetry

3h
group of the non-rigid molecule is D3h[g3]. The character table of this group



T

&

13

was obtsined by_Longuét-Higgiﬁs. Thevnuclear spin statistical weiéﬁﬁs‘bf:ths
levels split by tunneling were obtained by the present author using geﬁératipg
function techniques. The symmetric top rotational levels in C3h symmetfy'can’
be correlated to the split levels of non-rigid molecule. We show in Fig. 3 the

splitting pattern. and statistical weights of the 2 lowest levels of %(CD 3

—17 (2816)
Ig (2816)
—lg {(1792)
15 (2304)
14 (3520)
I3 (4224) -
15 (2464)
I, (31868)
E4 (0448)
E3 (0960)
A4 (0660)
A, (1144)

—_—— J=1,K=0

ig (28186)
7 (2816)
lg (1792)
. Is (2304)
ig- (3520)
13 (4224)
Iz (2464)
hh (3168)
Eq (0448)
L———_——E3 (0960)_
Ag (0660)
Ay (1144)

J=0,K=0

Figure 3. Tunneling-splitting, allowed transitions and nuclear spin statistics
of non-tigid 1']B(CDS)S Figure shows only the two lowest levels.

4. APPLICATIONS TO MOLECULAR BEAM DEFLECTION AND ELECTRIC RESONANCE EXPERIMENTS
’ OF WEAKLY BOUND VAN DER WAAL COMPLEXES

Klemperer and co-workers75 have shown that-it is possible to synthesize
wsakly bound complexes of several molecules like HZO, HF, NH3 etc. by a super;
sonic expansion. The Van der Waal complexes thus formed are non-rigid in that
the weak bonds can be broken and made. Further, in dimers like (NH3)2 the ﬁro—ﬁ

tons of each unit rotate around the hydrogen bond and the umbrella inversion of

' pfocohs are quite rapid. Molecular beam deflection and resonance experiments o:

these complexes reveal significant details about the dipole moment and structure
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of these polymers. The microwave spectra of these coﬁplexes show a typical.
tﬁnneling-splitting consistent with a model of a non-rigid complex. The
tunneling-splitcing is dependent on barrier heights and is quite lafge for these
complexes. Hyperfine splittings of Sﬁark transitions are consistent with spin
species obtained using the non-rigid molecular groups of these molecules.
Muenter and co-workers have studied Ammonic dimers75 using molecular beam de-
flection and electric resonance experiments. _

Dyke and co—wotkersS6 have recognized the use of wreath product groups in
representing the :symmetry of these complexes. All the permutation groups of
these complexes are wreath products. The PI groups are either semi-direct pro-
duct of P.and I grdups or.direct product of P and I groups depending on the
presence of inversion operation in the molecular symmetry group. To illustraﬁé
the PI groups of (H20)2, (NH3)2€énd (C6H6)2 are 52[82] x I, 52[53] x I,
52[D6] A 1, where the symbol A is used to denote a semi-direct product.

S. APPLICATIONS OF NON-RIGID MOLECULAR:GROUP THEORY TO NMR SPECTROSCOPY" -

-The’;arlyvapplicationS“of'group.theory”to simplifying . X\MR spin Hamiltonian .
are due to McConne, McLean and Reilley76 and Wilson.77 Soon after the develop-
ment of symmetry groups of non-rigid molecules by Longuet-Higgins, Woodmanlo’15
showed that NMR groups of these molecules can be expressed as semi-direct pro-
duct groups. He further showed that the composite particle representation is
much superior to the total representation at every stage of NMR computation
since the NMR Hamilfonian is much.simplef in this representation. flurry and

36’40766 developed the unitary group treatment for the NMR problem.

.co-workers
The present en.n:ho!:l.5 showed that the NMR group of any molecule can be obtained
by a diagrammatic technique by representing the NMR spin Hamiltonian by an inter-
act;pn diagram known as NMR'graph.

The NMR spin Hamiltonian is of the form

. -Z\)I +22J-f'-io
HNMR.iiz:l Rt

where vi is the chemical shift of the ith nucleus and Jij

stant between the nuclei i and j. The NMR group is defined as thé set of perru-

is the coupling con-

tations of nuclei that leave the NMR spin Hamiltonian invariant. Ih symbols, a
permutation of the nuclei is in the NMR  group if the corresponding permutation

matrix P satisfies



'\ij

ol

'52[83.32].
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The present author showed that.a diagrammatic representation of HNMR can be’

obtained by representing nuclei as vertices and edges by the coupling‘éonstants.

Such a diagram is shown in Fig. 4 for B(CH where the center is the l%

33

nucleus. . .

Figure 4. NMR graph ofllB(CH3)3. This is the interaction diagram of all the

- nuclear spins.

The NMR graph in Fig. brcan be expressed as a composition of a graph Q and T
shown ‘in Fig. 5. That is, the graph in Fig. 4 can be obtained by replacing

Figure 5. The NMR graph in Fig. 5 expressed as a composition of Q and T in this

figure. The graph in Fig. 4 is obtainable by replacing every open vertex of Q
by a copy of T. T- :

' every vertex of Q in Fig. 5 by a copy of T. In pérticle—in-box analogy vertices

in Q are the boxes and the vertices in T are the particles in boxes. The group
—S3~preserves-the—couplings restricted to Q and T. Consequently, - the ¥R -group
of B(CH3)3 is the wreath product 83[53]5 Figure 2 shows the particle-in-box
picture for the NMR group of butane which is the generalized wreath product

.Flurry and co-workers36’ao’%’Sl have developed the unitary group treatment
for the NMR problem using the independent particle Hamiltonian operators. The

uhitary group and symmetfic group treatments can be shown to be equivalent by

way of generating Gel'fand bases with symmetric group approach which are the
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basis séts for. unitary group Qpproach. ,

The present.author78 has developed tecentiy projection operator methods by
which the projection operators of NMR groups of very complex polyatomics can be
obtained without having to know the character tables of NMR groups. We have
shown in that paper that the projection operators of generalized wreath pro-
ducts can be obtained in terms of the projection operators of composing groups.
We consider molecules containing as many as-230 NMR spin functions.78 Using the
GCCI's of NMR groups, we obtained the NMR spin multiplets, The spin functions
were partitioned into equivalence classes of spin-functions using GCCI's an&
double coset. methods. The projection operators are then applied on spin func-
tions in each eqpivalence class (rather than the entire set of spin functions)
and the NMR spin couplings are generated for computationms.. Fot details of these

techniques the readers are referred to reference 78.

6. APPLICATIONS TO MOLECULAR REARRANGEMENTS AND ISOMERIZATION PROCESSES

Topological and symmetry analysis of isomerization processes is of great

inteiest in recent years.zz‘ ;25928,37

These topological schemes essentially
describe interrelationship among a set of isomers of a molecule in its equili-
brium geometry (rigid isomers) by non-rigid tunneling processes. These graph
theoretical schemes generate diagrams known as isomerization graphs which pro-
vide insight not only into pathways and mechanisms that interconvert rigid iso-
mers but also several important applications such as spontaneous generation of
optical activity and dynamic NMR spectroscopy. Dynamic NMR enables understan-
ding large amplitude .motions as a function of temperature at experimentally
feasible conditions. Experimentally, one observes splitting and coalescence of
NMR signals as a function of temperature.

Randi€47 and more recently Randié and Klein63 have studied the symmetry of
thg rearrangement processes of non-rigid molecules using the associated symmetrw
groups which are reminescent of non-rigid molecular symmetry groups. The pres-
ent author42 developédva topological scheme for this problem in which isomers
of the rigid molecule are tepiesented by vertices and the possible interconver-
sions by edges. 1t was:shown by the author64 that .the splitting patterns of
these reaction graphs can be obtained by subducing the irreducible representa-
tions spanned by the isomers of the non-~rigid molecule to the rigid symmetry
group. This idea is similar to correlation of rovibronic levels from one sym-
metry limit to another.

Applications of topological schemes to NMR spectroscopy can be found in the

papers of the-author.79

The coalescence and splitting patterns of NMR signals
"and intensity ratio patterns in dynamic processes can be generated using double

coset methods and cycle indices.
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The topic of isomers and related problems was recently reviewed by Slanina.8C
The readers are referred to this for more details.

-

7. APPLICATIONS TO CONFIGURATION INTERACTION CALCULATIONS

Recently the present authorsa showed that the number of symmetry-allowed
configurations can be reduced if some of the molecular orbitals (MO's) uséd in
configuration interaction (CI) calculations are degenerated. A CI calculation

is essential to introduce correlation to self-consistent field (SCF) description

-of the electronic states of a molecule. When MO's are degenerate these orbitals

can be considered as boxes which can be permuted in our particle-in-box model.
Further, each orbital (box) can contain at most 2 electrons and switching the
electrons in the boxes generates an equivalent configuration. The symmelry
group of configurations can be defined as the permutations of degenerate orbi-
tals and the electrons in the orbitals. This is precisely a generalized wreath
product group. Two configuraﬁions can be considered equivalent if one is trans-
formable into another by an element in the configuration symmetry groué. Thus
configurations can be partitioned into equivalence classes using this criterion.
In this formalism oneVneeds-to evaluate CI matrix elements and formulas between
one represéntative of an equivalence claés with all the other elements in
another class and matrix elements for eaéh pair of elements in an equivalence
class. All the other matrix elements can be constructed using the equivalence
of configurations. This cuts down the total number of matrix elements. To-
illustrate, the configuration symmetry gro@p of hexatriene in the localized
orbital representation is the wreath product SZ[SZ,SZ]. The number of équi—
valence classes of space types is 71 while the total number of space types is
141.

8. APPLICATIONS TO CRYSTAL PHYSICS

Wreath product groups are useful in describing symmetry of crystals with
structural distortions. The symmetry of crystals determines several inter-
esting phenomena such as X-ray diffraction patterns,isélection rules etc. There
are several solid state systems such as-NaNOz, K2M004, ionic crystals such as
TaSe2 which can not be assigngd to a crystallographic space group. These crys-
tals exhibit structural distortions. Their crystallographic properties such as
X-ray diffraction patterns cannot be predicted by using simple space groups.
Litvin81 has recently investigated such systems and showed éhqt the space groups
of these systems are subgroups of wreath products, in general. We will outline
here his formalism as adapted into our nétation.

Let R be a 3 x 3 rotation (improper or proper) matrix in eucledian space.

Let ¥ be a translation column vector. Then an element of the eucledian space
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group in 3 dimension 58(3) which consists of all proper and improper rotatidms
and translations in the eucledian space is denoted as F = (Rlz). An element.F

in 53(3) is a symmetry element of the crystal if

Fr = R|VT =RE + v _ ‘ , o
where both T and Fr are points in the crystal. That is the crystal isvinvariant
under ‘a éomposition of translation and rotation (proper or improper). Thé set

of all such F's which leave the crystal invariant forms a group F which

simply the symmetry'group of the crystal. Let the crystal distortions be deter-
mined by a function 3(;) which maps the points ; to vectors D of a vector space
V . The vector D is the distortion vector and V  is the distortion space. Let
!. be the group obtained when V" is considered as an abelian group under vector
addition. Then one can see that an operation in the group F is in turn induced
to the gfoup !—.' One can aefine a wreath product of tﬁe symmetry group of
crystal F with that of distortion group, ¥V . It can be denoted as F[V ] and it
is defined as follows. Lét Vv be an element in Xf and F be an element in F.

Then the set of elements (F;;(;)) describes the symmetry of a crystal with struc-
tural distortions. The product'of two elements (Fl;;l(;)) and (Fz;;z(;)'is

defined as in wreath products as
(Fp3¥ (D) (F,p59, (D) = (FF,39, (D) -¢2F1(¥>>

since !f is an abelian group under. vector addition the operation ':' in the
group is vector addition. Thus

31(?)-v2Fl('r’) =Y () + _'JZFI(?).

Note that as in the-definition of wreath products.

Ve B = VyF, 7N B
1 .
Inverse of any element (r;?(?)) is thus (F-l; -;(F;)).

Several applications of the wreath product groups thus defined for crystals
with structural distortions such as formulation of a new Bloch's theorem in
this group and applications to X-ray diffraction patterns of these crystals can

‘be found in Litvin's paper.
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