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Abstract

Young children generalize nouns in systematic waywey
generalize names for solithings by shapendnames for
non-solid things by materialRecent evidencesuggests
that the source of these biases is in the childreX&on:

the bias becomes apparent omlfter they know names for
things thatare solid and have a similar shapand they
know names forthings thatare non-solid and similar in
material. In Experiment 1, we train a simpennectionist
network with the regularities present in early nowgtabu-
laries and show that this network shows generalizapiat:
terns comparable to those of young children. In Experi-
ment 2 we look for othepossible biases cominfjom sta-
tistical regularitiesandfind that the network predicts that
children will not cross ontological boundaries in their word
generalizations. In Experiment 3 we test this prediction in
30-36 month-old children. We explain this finding in
terms of thestatistical regularities present young chil-
dren’s noun vocabularies.

Introduction

Young children are excellent learnersadifiect namesAfter
hearing a noun used once to hame obgct, they seem to
know the scope of the whole category. To expthis pro-
ficiency people haveroposed severamechanisms in the
form of constraints or biased.andau, Smith & Jones,
1988; Markman, 1989; Soj&;arey & Spelke, 1991). This

cabularies, generalizesvel nouns likechildrendo. In Ex-
periment 1 we train connectionist networks on rehgulari-

ties found in early vocabulary bysamuelsonand Smith
(1999) and showhat, like children,the networksgeneralize

by shape for solid objects and by material for non-solid sub-
stances. In Experiment 2 we examthes early lexicon for
other regularities thamight createbiases in a statistical
learnerand find that networkstrained onthis set exhibit
what we call an “ontology bias”. In Experiment 3 we test
for this bias in children.

Experiment 1

The goal of Experiment 1 is tdetermine ifthe regularities
present in earlynoun vocabulariesare sufficient to create
word learning biases in a simple associatiearner. Ifthis

is the case, itwould support theideathat the biases are
learned as part of learning the regularities in the lexicon. To
do this wetrained sinple connectionist networks with a
vocabularyorganizedusing the regularitiefound in early
lexicon by Samuelsoand Smith (1999)andthen wetested

the network’sperformance on an adaptation thfe novel
noun generalization task.

Architecture

We used a Hopfieldetwork, which is a simple settling
network. The network watainedusing ContrastiveHeb-

paper is about the shape and material biases and about a R Learning (Movellan, 1990), an algorithm whatjusts

“bias”, what one might call an “ontology bias”. In tkead,
we propose that all these biasm®l constraintsreduce to
associative learning and generalization by similarity.

Our starting point is aecentstudy by Samuelson &

weights on the basis of correlatiobgtweenunit activa-
tions. Figure 1. shows tharchitecture othe network. The
network has a \Wd Layer, in whichwords arerepresented
locally. That is,eachunit corresponds tamne word in the

Smith (1999). They examined the similarity structure of 3odretwork’s vocabularylndividual objectsare represented on

object categories, the names of whife typically known
by 30 month-olds. Theyound many nouns thatame
things thatare solid andsimilar in shapeand fewernouns
that refer to non-solid substances similar in materi@hey
also showed that children dmneralizenovel nouns for sol-
ids by shapeandfor non-solids by materialbut only after
they know many of these words. These ressiiggest that
these biases may be tipeoduct of statistical learning. In
other wordschildren’s noun generalizationsare themselves
generalizations over the nouns the child already knows.
In this paper weshow that a simple statisticdarner,
when trainedwith the regularitiegresent in earlywoun vo-

what we call the Dimension layer. Activation patterns on
this layer represent the shamad naterial ofeach individual
object or substancgresented tahe network. Morespecifi-
cally, the shape and material of an object (sayrdhiedness

of a particular ball and its yellow rubbery materia§ repre-
sented by amctivation pattern along the whole layer, in a
distributed fashion. In the Soliditiayer one unitstands for
Solid andanother for Non-SolidFinally, there is ahidden
layer that is connected to all the otleyersandrecurrently
with itself. Note that the Word Layer and the Dimension and
Solidity layersareonly connected¢hrough thehiddenlayer,
there are no direct connections among them.



Testing

We tested the networks in an analog of the novel rgam
t eralization taskusedwith children. Ourapproach isbased

Word Laver

on our conceptualization of the novel nogeneralization

task. In that task, thehild sees an exempland hears its

name. If, for example, thehild attendsexclusively to the

< Hidden shape of the named exemplar, then a test objechthtthes
Layer the exemplar in shape (although different from ekemplar

in material) should begerceived asighly similar to the

exemplar. Thus, we asked if the network’s intemeglesen-

tations — the patterns of activations on tigdenlayer -- of
a named exemplar and a test object were similar.

. The novel nourgeneralizatiortask usedwith children is

Shape Matera Solidity typically a forced choice task in which the child maisbose

Object Layer between arobject matching thaamedexemplar inshape

Figure 1. Architecture of the network used in Experiment@ndone matching in material. Accordingly, eachsimu-

1 and 2. lated test trial, wemeasuredhe similarity of theinternal

patterns of representation for two test objects —one matching
Training the exemplar in shapand one matching theexemplar in

The goal of the training phase was to_mimic in ork m?;?)rrgl.s ecifically, oneachtest trial, wecreated anovel
the vocabulary learning that a child brings into a novel noun pec Y, ' o
generalization experiment. Weinedthe networks on a exemplar object byandomly generating aactivation pat-
subset of the nounstudied by Samuelsonand Smith €™M along the shapand material dimensions. Then we
(1999). We specificallyselectedthe names for objects and combinedthe exempla_rs shape pattemith a novel ran-
substances, excluding names for people, animpidses and domly generated muerial pattern tocreate anovel shape-

abstract objects (e.g. windJhere werel49 training nouns. matching test object. A similarineasure othe exemplar
For each ofthese nouncategories weusedthe adult judg- and the shape match wesmputedusing theEuclideandis-

ments from Samuelsoand Smith (199) to constructate- tance betweerhe activ_ation patterns in thididden Layer
gory exemplars. Importantly, although adujlisged most after the exemplar and its shape match had been presented.

solid things to becategorized byshape,there were excep- obselz?tlIgrlﬁor\:}\/gir?i?]nert%tgge?ﬂ\é?’ls Tn?atteerrliasfl- m::fehn:;?h tSSt
tions and complications — e.g. muffins are judged talbe . y 9 P p

in both shape and material and bubbles are judged to be ndlgW ra_ndomly generated shape pattern .and then cqmputed the
solid but similar in shape. Our traininigstantiated the Similarity between exemplar and material match. Finally, we

structures attributed to these words by adults. usedthese _sim_ilarity raasures betweethe energent pat-
More specifically, the statistical regularitiegross the terns of activation on theiddenlayer to calcqlatehe prqb-
noun vocabularies were built into tihetwork’s training set ability of choosing the shape and the material matasésyg

. : ; Luce’s Forced Choice Rule.

in the following way. Firstfor each worahat thenetwork ; : . .

was to be tat?ght, ya pattern wasnerated taepresent its " this way, wetrained 10networks (with ‘10different
value along therelevant dimension -- the dimension on '2ndomly generatemtitial connection weights) with the ob-
which objects named by that noun wésand to besimilar. ject and substance terms younghildren know. During

: ini tedmultiple instances ofach trained
Second, at each presentation of the word, the value along &qgmmg, \We presen ;
irrelevantdimension wawariedrandomly. For example, the nfeusnerl:tr:('jl g}ﬁ ngmgrléfzgg:iiﬁaOdl@Edtgzﬁerggé réach nof
word “ball” wasjudged to refer tadhings thataresimilar in P ‘

shape; thus, particular pattern of activation waandomly these networks in the novel noganerahzatlortask using
chosenandthen assigned to represeball-shape. All balls 20 novel exemplar_s. Half of these exemplars veafned by
presented tdhe networkwere defined ashaving thisshape, patterns of activation representing saliungs af‘d.ha'f by
although each ball presented to the network also consisted F%ﬁf[t.em.s representing nonsottuings. If thg statisticalegu-

a uniqueand randomlygenerategbattern definingthe mate- |arities in early child vocabulary are sufficient to crelatm-
rial. So, each time the unit representing td “ball” was "9 Diases then the networks shopiesent a shape bias
turned on during training, the pattern representiayshape WNEN theexemplar is solicand amaterial bias when the
was presentedalong the shape dimensiand a different, exemplar is non-solid.

randomly generatedattern wagresentedilong thematerial Results
dimension. i )

Solid objects were assumed to have a biggege of val-  Figure 2 shows the networkgerformance inthe novel
ues along the shape dimensidimis assumption is in line noun generalization task. As &pparent, the connectionist
with the fact that solid thingscan hold more varied and networkspreferthe shape match in the solid trisded the
Comp|ex Shapes than non-solid thingsl material match in the non-solid trials. This supportsidba

that the statistical regularities in the lexicon are sufficient to



Network's Performance
Experiment 1

1.00

0.75

prop.
shape0.50 -
choices

0.25 |

solid trials non-solid trials

Figure 2. Network’s performance in Experiment 1. Tiet
works show shapandmaterial biasesomparable to those
of children.

create word-learningiases in a statisticdkarner. Ifthis is
true, then other regularities present in taeguage should
createtheir own “biases”. One ubiquitous regularity that
became obvious to us is that things tbladre a namshare
their solidity value. In othewords, names doot refer to
categorieghat spanacrossontological boundariesThis is
true for all words in children’s vocabulary excepte — egg,
which adults judged to haveoth solidandnon-solid forms.
If noun generalizations by the netwogte generalizations
over the structures dlready learnechoun categoriesthen
the network’s generalizations of new names for ndohiglgs
should adhere tothis constraint. Given a soligxemplar,
sameness in shape should not count if the test objexnis
solid; given a non-solid exemplar, samenessniaterial
should not count if that material is now solid. Experi-
ment 2 give this tests to the networks.

Experiment 2

The goal of Experiment 2 is to test the network on th
ontology bias. The networdrchitectureandtraining proce-
dure werethe same as in Experiment 1. Ten netwaxkse
trained using the same testipgpcedure as ifExperiment 1
except for the kinds of test objects used.

As in Experiment 1, on each test trial, enreated anovel
exemplar object byandomly generating aactivation pat-
tern along the shapendmaterial dimensionsand then cre-
atedshapeand material matches combining thexemplar’s
shapeand material patterns with noveandomly generated
material and shape patterns. Again, the network® tested

on 20 novel exemplars; half of them defined as solidteaifd
of them defined ason-solid. However, to makte ontol-
ogy violating test, the shape match for saikemplars was
defined asnon-solid and the material match fonon-solid
exemplars waslefined assolid. So for the solidrials, we
computedforced choice probability between a non-solid
shape matcland asolid material match, while imon-solid
trials we compared anon-solid shape matckwith a solid
shape match.

Results

Figure 3 shows the proportion of shag®icespredicted
by the networks for soliéxemplartrials and for non-solid
exemplartrials. As predictedfrom the regularities in the
training set, the networkshose the testem that matches
the exemplar in solidity. That is, when the exemplasabd
the networkprefersthe solid test object(even though it
does not match in shape) and when the exemplar is hon-solid
the networkprefersthe non-solid test itenfeventhough it
does not match in material). Thus, thattern ofgeneraliza-
tion observed inExperiment 1(andtypical in experimental
tests ofchildren) is now reversedithe networks exhibit a
shape bias in non-solid triaeEnd amaterial bias insolid
trials. In Experiment 3 we look for this effect in children.

Network's Performance
Experiment 2

1.00

0.75

prop.
shaped.50
choices

0.25

solid exemplar
non-solid shape
match

non-solid exemplar
solid material
match

Figure 3. Network’s performance inExperiment 2. The
networkspreferences are reversethen the shape match for
the solid exemplar is made non-sadiddthe materiaimatch
for the non-solid exemplars is made solid.



Shape Match

Exemplar Material Match
Ontology Violating Traditional
red sand paint
<
E .
""L,_j @ toothpaste with glitter metalic
) shaving cream blue clay
red sand paint
| | purple hair gel burlap

blue cheese cloth

==
S

WAZZLE

blue cheese cloth

toothpaste with glitter| Pink felt with bumps
shaving cream purple foam

purple hair gel green fur

Figure 4. Stimuli for Experiment 3A..

Experiment 3

The goal of Experiment 3 is to test theedictionmade by
the network in Experiment 1. Given a solid objestll
children refuse to generalidzé&s name to an object of the
same shape if the test object is 8otid? Given anon-solid
object, will children refuse to generalids name to anate-
rial match if the test object isolid? Experiment 3Aests
the first questiorusing solidexemplarsand Experiment 3B

tests thesecondquestionusing non-solid exemplars. Con-

domly assigned toExperiment 3Aand half of them were
assigned to Experiment 3B.

Stimuli The stimuli for Experiment 3A are shown in Fig-
ure 4. Therewveretwo exemplarobjects. Theexemplar for
one set, the Teema, wasl’ shapecoveredwith red sand-
paint. Theexemplar forthe other set, the ¥¢zle,was an
irregular “M” shape covered with blue cheese-clétbr each
exemplar theraverethreeobjects matching in material and
two sets of items matching in shape. Thmditional set
consisted of three solid objects tmaatchedthe exemplar in

structing stimulifor Experiment 3A (shape matches thatshapeand differed inmaterial (e.g. metallic claytyrofoam
differ in solidity) was easy; we can create the same shape auveredwith fur). The Ontology Violating setonsisted of
of hardened clay and shaving cream. Constructing stimuli f@hape matches made out of non-solid materials (e.g. shaving

the second question (material matctiest differ in solidity)

cream, hair gel).

required more creativity. What we did was use translucent gel The stimuli for Experiment 3Bare shown in Figure 5.

and translucenthardenedplastic for one setand off-white

hand lotion and off-white hardenedpaint for the other. In
both cases the material looked to be the same anfldges
by adults to be the non-sol@hd hardenedersions of the
same material.

Method

Subjects Twenty-four childrenbetweenthe ages of 30 and
36 months participated in this study. Half of themreran-

There were two exemplar objects. The exemplar forsmte
the Teema, was &” shapemadeout of translucengel.
The exemplar for the other set, theak¥le,was anirregular
“M” shape made out of hand lotion. Feachexemplarthere
was a set of shape matchmaadeout of threedifferent non-
solid substances. For the Teema, the shape matches were
made out of wax, glitteandnoxzema mixedvith sand; for
the Wazzle, the shape matches weaaeout of green sand,
toothpaste with glitteandshaving creamFor each exem-
plar there were also two sets ‘ofiaterial” matches: alradi-
tional set and an Ontology Violating set. For freema the



Material Match

Exemplar — B Shape Match
Ontology Violating Traditional
translucent plastic translucent gel
< @ @
=
Lu Mb @ noxzema with sand
translucent gel glitter
| | | | wax crystals
hardened paint hand lotion
IRAVA @ @ N
-
N . .
N _ toothpaste with glitter|
<§E hand lotion
fine sand
| ::l |:|/|,—_| shaving cream

Figure 5. Stimuli for Eperiment 3B.

Traditional set consisted of shapemadeout of translucent : , ;
hair gelandthe Ontology Violating setonsisted of shapes Children's P.erformance |
made out of translucent hard plastic. For thaz¥lethe Tra- Experiment 3
ditional setconsisted of shapesadeout of off-white hand
lotion andthe Ontology Violating setonsisted of shapes 1
made out of off-white hardened fabric paint.

Procedure The procedure useevas aforced choice task.
The child were shown an exemplar (i.e., frema)andtold

its name (“this is the Teema”). Thdild wasthen presented 0.75
with pairs of objects, ahape matclkand amaterial match,

and askedCan you show me th&eema?”. Each child was prop.
presentedvith the Traditionalset of oneexemplarand the shape 0.5
Ontology Violating set of the otheHalf of the children choices
wereassigned at random to judtfee Traditional version of

one exemplaand the Ontology Violating version of the 0.25 1

other. The two exemplamgere presented in separétecks.
Each shape-match/material-match pair was presented twice i

randomorderfor a total of 12trials. Theorder of the sets 0 A

was counterbalancedicrosssubjects; the position of the Experiment A ExperimentB
choices was counterbalanced across trials. solid exemplar non-solid exemplar
Results W traditional @ ontology violating

Figure 6 shows the proportion of shape choices forstiid

exemplar (Experiment 3Aand for the non-solidexemplar

(Experiment3B) Ontological Violatingand Traditional sets Figure 6. Results of Experiment 3.
respectively. In th@raditional sets, children’s performance

replicates previous findings: they present a clear shape bisisow increasedattention to the material of non-sokkem-
for the trials with solid exemplars (Experiment 3A) and plars (Experiment 3B). In the Ontology Violatirsgts, as



the networksimulationspredicted, children’shape bias de-
creased to chance levels in solid triafgl increased to above
chance in the non-solid trials.

Although these resultare consistent with a bias inhil-
dren to extend categorynames only within ontological
boundaries, there is an alternatie&planation. Children’s
preference for the same-solidity item could be a result of the
way the ontological violating choices alter teemplar-test
items’ similarity. For example, in thease ofthe solid ex-
emplar, the material match matches in both material and
solidity, while the shape match nawnly matches irshape
(and imperfectly at that, given the change of solidityhileé/
we can't be sure of which explanation is the casghiluren,
we know for a fact that it is more than just similarity for the
networks.

Conclusions

Learning a first language ishard problem.However, the
task appeardess daunting when weonsiderthat thekinds
of words childrerknow early present anrganizedstructure.
A smartlearner could learn t@xploit this structure to its
advantage. In this paper we have shown that a simple statis-
tical learner,with no other mechanisms thaassociative
learning and generalization bysimilarity, will learn shape
and material biases to match the systematic regulapitées
sent in its training set. Wkave also documented a new
bias, one which could be taken @sdence of amnderlying
ontology, but that also makes sense in terms of the statisti-
cal regularities present in the languagéis suggests that
word-learningbiasesand constraintscould be a product of
learning. While theevidence presented here @®nsistent
with this account, itdoesnot provide conclusive proof; the
regularities found in children’s vocabularies could beraul-
uct of pre-existing biaseddowever, the fact that we have
demonstratedhe computational plausibility of thkearning
accountandsimple parsimony suggest that this is not the
case.
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