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EXISTENCE OF GOOD SWEEPOUTS ON CLOSED MANIFOLDS

LONGZHI LIN AND LU WANG

(Communicated by Richard A. Wentworth)

Abstract. In this note we establish estimates for the harmonic map heat
flow from S1 into a closed manifold, and use it to construct sweepouts with

the following good property: each curve in the tightened sweepout, whose

energy is close to the maximal energy of curves in the sweepout, is itself close
to a closed geodesic.

1. Introduction

Given a minimizing sequence of sweepouts of the width (see (3.1)), we apply the
harmonic map heat flow on each curve in the sweepout to pull it tight while preserv-
ing the sweepout. Moreover the tightened sweepout has the following good property
(see Theorem 3.4): each curve in the tightened sweepout whose energy is close to
the maximal energy of curves in the sweepout is itself close to a closed geodesic.
In particular, the width is the energy of some closed geodesic. On closed non-
simply-connected surfaces, Grayson showed that there exist simple closed geodesics
in each nontrivial π1 homotopy class by the curve shortening flow; see [8]. On
the 2-sphere whose π1 homotopy group is trivial, Birkhoff used sweepouts to find
non-trivial closed geodesics; see [1], [2], [3], [4], [5], [13] and section 2 in [7] about
Birkhoff’s idea. The argument works equally well on other Riemannian manifolds.
The Birkhoff’s curve shortening process is a discrete gradient flow of the length
functional and the key point is a convexity formula for the energy functional which
controls the distance of curves from closed geodesics explicitly; see Lemma 4.2 in
[5] and cf. Theorem 3.1 in [6]. However, it requires some work to show the dis-
crete shortening process preserves the homotopy class of sweepouts. Instead, we
use a continuous method, i.e. the harmonic map heat flow, to tighten sweepouts,
which provides a natural homotopy of sweepouts. There are several applications of
the existence of good sweepouts on closed manifolds. For instance, in [5], Colding
and Minicozzi bounded from above, by a negative constant, the rate of change of
the width for a one-parameter family of convex hypersurfaces that flows by mean
curvature. The estimate is sharp and leads to a sharp estimate for the extinction
time. And a similar bound for the rate of change for the two dimensional width is
shown for homotopy 3-spheres evolving by the Ricci flow; see [6] and [15].
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2 LONGZHI LIN AND LU WANG

2. Harmonic Map Heat Flow

Throughout we use the subscripts θ and t to denote taking partial derivatives
of maps with respect to θ and t; u satisfies the harmonic map heat flow equation,
which is defined in (2.1). Let (M, g) be a closed Riemannian manifold. By the
Nash Embedding Theorem, M can be isometrically embedded into Euclidean space
(RN , 〈, 〉). Given a closed curve γ ∈ H1(S1,M), define the energy functional E(γ) =
1
2

∫
S1 |γθ|2dθ. The harmonic map heat flow is the negative L2 gradient flow of the

energy functional. Thus the equation of the harmonic map heat flow from S1 into
M is

(2.1) ut = uθθ −Au(uθ, uθ) on (0,∞)× S1; lim
t−→0+

u(t, ·) = u0 in H1(S1,M),

where Au is the second fundamental form of M in RN at point u(θ). We study the
long time existence and uniqueness of the solution of (2.1). For relevant results of
the two dimensional harmonic map heat flow, the reader could refer to [16]. Also
we would like to thank Tobias Lamm for bringing to our attention the paper [14] of
Ottarsson, which has some overlap with our paper and in which Theorem 2.1 was
proved under the stronger assumption of C1 initial data (and thus the C1 continuity
at t = 0)1.

Theorem 2.1. Given u0 ∈ H1(S1,M), there exists a unique solution u(t, θ) ∈
C∞((0,∞)× S1,M) of (2.1).

The following is devoted to the proof of Theorem 2.1. First, by the corollary on
page 124 of [10], given any initial data u0 ∈ C∞(S1,M), there exists T0 > 0 and
a unique solution u ∈ C∞([0, T0) × S1,M) of (2.1). We show that the solution u
can be extended smoothly beyond T0. First, note that the energy is non-increasing
under the harmonic map heat flow:

Lemma 2.2. For 0 ≤ t1 ≤ t2 < T0,

(2.2) E(u(t1, ·))− E(u(t2, ·)) =

∫ t2

t1

∫
S1

|ut|2dθdt.

Proof. Multiply the harmonic map heat equation by ut and integrate over [t1, t2]×
S1, ∫ t2

t1

∫
S1

|ut|2dθdt =

∫ t2

t1

∫
S1

〈uθθ, ut〉dθdt = −
∫ t2

t1

∫
S1

〈uθ, uθt〉dθdt

= E(u(t1, ·))− E(u(t2, ·)).
�

Next we derive the gradient bound of u.

Lemma 2.3. (∂t − ∂2
θ )|uθ|2 ≤ 0.

Proof.

∂t|uθ|2 = 2〈uθ, uθt〉 = 2〈uθ, uθθθ〉 − 2〈uθ, (Au(uθ, uθ))θ〉
= 2〈uθ, uθθθ〉+ 2〈uθθ, Au(uθ, uθ)〉

1In our setting, the C1 continuity at t = 0 may not be true. For our purpose that the harmonic
map heat flow preserves the homotopy class of sweepouts, we use a different argument to show

the H1 continuity at t = 0.
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= ∂2
θ |uθ|2 − 2|uθθ|2 + 2|Au(uθ, uθ)|2 ≤ ∂2

θ |uθ|2.

�

Since u ∈ C∞((0, T0)×S1,M), it follows from Lemma 2.2 and the local maximum
principle (see Theorem 2.1 in [9] or Theorem 7.36 in [12]2) that for any τ > 0 and
(t, θ) ∈ [τ, T0)× S1,

(2.3) |uθ|2(t, θ) ≤ C0 max{1, τ−1/2}E(u0),

where C0 is a positive constant. Furthermore, by Proposition 7.18 in [12], |uθθ| and
|ut| are bounded on [2τ, T0)×S1. And by induction, for any τ > 0, the higher order
derivatives of u on [2τ, T0)×S1 are bounded uniformly by constants depending only
on M , E(u0), τ and T0. Hence u can be extended smoothly to a solution of (2.1)
beyond T0. In other word, there exists a unique solution u ∈ C∞([0,∞) × S1,M)
of (2.1), if u0 ∈ C∞(S1,M).

Next, in general, given u0 ∈ H1(S1,M), we can find a sequence um0 ∈ C∞(S1,M)
approaching u0 in the H1 topology. Let um be the solution of the harmonic map
heat flow with initial data um0 . Thus by (2.3) and discussion above, for any τ > 0
and T0 > τ , um and all their derivatives are bounded uniformly, independent of
m. Hence by the Arzela-Ascoli Theorem and a diagonalization argument, there
exists a map u ∈ C∞((0,∞) × S1,M) solving the harmonic map heat flow with
E(u(t, ·)) ≤ E(u0). And it follows from the lemma below that t −→ u(t, ·) is a
continuous map from [0,∞) −→ H1(S1,M).

Lemma 2.4. Given ε > 0, there exists δ > 0, depending on M , u0 and ε, so that
if 0 ≤ t1 < t2 and t2 − t1 < δ, then

(2.4) ‖u(t2, ·)− u(t1, ·)‖H1(S1) ≤ ε.

Proof. Note that by Lemma 2.2, limt→0 u(t, ·) = u0 in the L2(S1,M) topology.
Moreover, we have∫

S1

|u(t2, θ)− u(t1, θ)|2dθ ≤
∫
S1

∣∣∣∣∫ t2

t1

utdt

∣∣∣∣2 dθ ≤ (t2 − t1)

∫ t2

t1

∫
S1

|ut|2dθdt.

Next, by Lemma 2.2 and the Cauchy-Schwarz inequality,∫
S1

|uθ(t2, θ)− uθ(t1, θ)|2dθ

=

∫
S1

|uθ(t1, θ)|2dθ −
∫
S1

|uθ(t2, θ)|2dθ − 2

∫
S1

〈uθ(t2, θ), uθ(t1, θ)− uθ(t2, θ)〉dθ

= 2

∫ t2

t1

∫
S1

|ut|2dθdt+ 2

∫
S1

〈uθθ(t2, θ), u(t1, θ)− u(t2, θ)〉dθ

≤ 2

∫ t2

t1

∫
S1

|ut|2dθdt+ 2

(∫
S1

|uθθ(t2, θ)|2dθ
) 1

2
(∫

S1

|u(t2, θ)− u(t1, θ)|2dθ
) 1

2

≤ 2

∫ t2

t1

∫
S1

|ut|2dθdt+ 2(t2 − t1)
1
2

(∫
S1

|uθθ(t2, θ)|2dθ
) 1

2
(∫ t2

t1

∫
S1

|ut|2dθdt
) 1

2

.

2Note the orientation of the time direction in Gruber’s paper [9] is opposite to that in our
paper and [12]. And we apply the local maximum theorem referred with p = 1.
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If C2
0 (t2 − t1) < 1, then, by Lemma 2.2, (2.1) and (2.3),

(2.5)

∫
S1

|uθθ(t2, θ)|2dθ ≤
∫
S1

|ut(t2, θ)|2dθ + (t2 − t1)−1 sup
M
|A|2 · E(u0)2.

We derive the evolution equation of |ut|2:

∂t|ut|2 = 2〈ut, utt〉 = 2〈ut, uθθt〉 − 2〈ut, (Au(uθ, uθ))t〉
= ∂2

θ |ut|2 − 2|utθ|2 + 2〈utt, Au(uθ, uθ)〉
= ∂2

θ |ut|2 − 2|utθ|2 + 2〈Au(ut, ut), Au(uθ, uθ)〉.

Thus by (2.3), if t > t3 = t1 + (t2 − t1)/2,

(2.6) (∂t − ∂2
θ )|ut|2 − 4(t2 − t1)−1 sup

M
|A|2 · E(u0)2 · |ut|2 ≤ 0.

Hence∫
S1

|ut|2(t2, θ)dθ ≤ inf
t3≤t≤t2

∫
S1

|ut|2(t, θ)dθ + C(t2 − t1)−1

∫ t2

t1

∫
S1

|ut|2dθdt

≤ (C + 2)(t2 − t1)−1

∫ t2

t1

∫
S1

|ut|2dθdt,

where C depends on M and E(u0). Combining the inequality above, (2.5) and
Lemma 2.2, there exists δ > 0 so that (2.4) holds. �

It follows from Lemma 2.4 and (2.3) that there exists R0 > 0, depending only on
M and u0, so that for t ≥ 0, 2π · supM |A|2 ·

∫
{t}×IR0

|uθ|2dθ < 1/64 , where IR0 is

any segment on unit circle of length 2R0. To prove the uniqueness of the solution
of (2.1), we need the following lemma.

Lemma 2.5. Suppose that u is a solution of (2.1) in C∞((0,∞)× S1,M). Then

(2.7)

∫ T

0

∫
S1

|uθθ|2dθdt ≤
T

4R2
0

E(u0) + 2 [E(u0)− E(u(T, ·))] .

Proof. The following estimate is inspired by the proof of Lemma 6.7 on page 225
of [17]. Fix (t1, θ1) ∈ (0,∞) × S1. Let IR(θ1) denote the arc segment on the unit
circle centered at θ1 with length 2R. And let φ be identically one on IR0/2(θ1) and
cut off linearly to zero on IR0(θ1) \ IR0/2(θ1). Thus,

|uθ|4(t1, θ1) = φ2|uθ|4(t1, θ1)

≤
(∫

S1

2|φ||uθ||uθθ|(t1, θ)dθ +

∫
S1

|φθ||uθ|2(t1, θ)dθ

)2

≤ 8

(∫
S1

|φ||uθ||uθθ|(t1, θ)dθ
)2

+ 2

(∫
S1

|φθ||uθ|2(t1, θ)dθ

)2

≤ 8

∫
IR0

(θ1)

|uθ|2(t1, θ)dθ ·
∫
S1

|uθθ|2(t1, θ)dθ +
8

R2
0

(∫
IR0

(θ1)

|uθ|2(t1, θ)dθ

)2

,

where the last inequality follows from Hölder’s inequality and that φ is supported
in IR0(θ1) with |φθ| ≤ 2/R0. Hence, for 0 < t0 ≤ T ,∫ T

t0

∫
S1

|uθ|4dθdt ≤ 16π · ε(R0) ·

(∫ T

t0

∫
S1

|uθθ|2dθdt+R−2
0

∫ T

t0

∫
S1

|uθ|2dθdt

)
,
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where

(2.8) ε(R0) = sup
t≥0, θ1∈S1

∫
{t}×IR0

(θ1)

|uθ|2dθ.

Therefore, it follows from (2.1) and Lemma 2.2 that∫ T

t0

∫
S1

|uθθ|2dθdt ≤
∫ T

t0

∫
S1

|ut|2dθdt+ sup
M
|A|2 ·

∫ T

t0

∫
S1

|uθ|4dθdt

≤ [E(u0)− E(u(T, ·))] +
1

2

∫ T

t0

∫
S1

|uθθ|2dθdt+
T

8R2
0

E(u0).

Absorbing the righthand side into the lefthand side and noting that the estimate is
independent of t0, (2.7) follows immediately. �

Now we are ready to show the uniqueness of the solution of the harmonic map
heat flow.

Lemma 2.6. Given u0 ∈ H1(S1,M), let u and ũ be solutions of (2.1) in C∞((0,∞)×
S1,M). Then u = ũ.

Proof. Define v = u− ũ, thus

(2.9) vt = vθθ −Au(uθ, uθ) +Aũ(ũθ, ũθ).

Multiplying both sides of (2.9) by v and integrate over [0, t0]× S1, we get∫
{t0}×S1

|v|2dθ + 2

∫ t0

0

∫
S1

|vθ|2dθdt

= 2

∫ t0

0

∫
S1

〈Aũ(ũθ, ũθ)−Au(uθ, uθ), v〉dθdt

≤ C(M)

∫ t0

0

∫
S1

|v|2(|ũθ|2 + |uθ|2)dθdt+ C(M)

∫ t0

0

∫
S1

|v||vθ|(|ũθ|+ |uθ|)dθdt

≤ C(M)

∫ t0

0

∫
S1

|v|2(|ũθ|2 + |uθ|2)dθdt+

∫ t0

0

∫
S1

|vθ|2dθdt

≤ C(M)

∫ t0

0

(
‖uθ‖2C0({t}×S1) + ‖ũθ‖2C0({t}×S1)

)∫
S1

|v|2dθdt+

∫ t0

0

∫
S1

|vθ|2dθdt.

By Lemma 2.2, 2.5 and Sobolev embedding theorem, there exists δ > 0, depending
on M and u0, so that if t0 ≤ δ, then

C(M)

∫ t0

0

‖ũθ‖2C0({t}×S1) + ‖uθ‖2C0({t}×S1) dt

≤ C(M)

∫ t0

0

∫
S1

|ũθθ|2 + |uθθ|2dθdt

≤ C(M)

[
E(u0)

t0
2R2

0

+ 4E(u0)− 2E(u(t0, ·))− 2E(ũ(t0, ·))
]
≤ 1

2
.

Thus, absorbing the righthand side into the lefthand side,

(2.10) sup
0≤t≤δ

∫
{t}×S1

|v|2dθ + 2

∫ δ

0

∫
S1

|vθ|2dθdt ≤ 0.

Since [0, T ] is compact, Lemma 2.6 follows by iteration. �
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3. Width and Good Sweepouts

In [5], Colding and Minicozzi introduced the crucial geometric concepts: sweep-
out and width.

Definition 3.1. A continuous map σ : [−1, 1]× S1 −→M is called a sweepout on
M , if σ(s, ·) ∈ H1(S1,M) for each s ∈ [−1, 1], the map s −→ σ(s, ·) is continuous
from [−1, 1] to H1(S1,M) and σ maps {−1} × S1 and {1} × S1 to points.

The sweepout σ induces a map σ̃ from the sphere S2 to M and we will not
distinguish σ with σ̃. Denote by Ω the set of sweepouts on M . The homotopy class
Ωσ of σ is the path connected component of σ in Ω, where the topology is induced
from C0([−1, 1], H1(S1,M)).

Definition 3.2. The width W = W (Ωσ) of the homotopy class Ωσ is defined by

(3.1) W = inf
σ̂∈Ωσ

max
s∈[−1,1]

E(σ̂(s, ·)).

For α ∈ (0, 1) fixed, let γ : S1 −→M be a smooth closed curve and G be the set
of closed geodesics in M . Define distα(γ,G) = inf γ̃∈G ‖γ − γ̃‖C1,α(S1). We prove

the following proposition for the solution of (2.1), which is the key to the proof of
Theorem 3.4:

Proposition 3.3. Given 0 < α < 1, W0 ≥ 0, t0 > 0 and ε > 0, there exists δ0 > 0
so that if W0 − δ0 ≤ E(u(t0, ·)) ≤ E(u0) ≤W0 + δ0, then distα(u(t0, ·), G) < ε.

Proof. If Proposition 3.3 fails, then there exist 0 < α < 1, W0 ≥ 0, t0 > 0,
ε > 0, and a sequence of solutions uj of the harmonic map heat flow satisfying
that W0 − 1/j ≤ E(uj(t0, ·)) ≤ E(uj0) ≤ W0 + 1/j and distα(uj(t0, ·), G) ≥ ε. It

follows from the evolution equation of |ujt |2 (see (2.6)), (2.3), Lemma 2.2 and the
local maximum principle (see Theorem 2.1 in [9] or Theorem 7.36 in [12]) that

(3.2) sup
θ∈S1

|ujt |2(t0, θ) ≤ C
[
E(uj(t0/2, ·))− E(uj(t0, ·))

]
,

where C depends on M , t0 and W0. Thus supθ∈S1 |ujt |(t0, θ) −→ 0 and it follows
from (2.3) that

∥∥uj(t0, ·)∥∥C2(S1)
is uniformly bounded by constants depending on

M , t0 and W0. Therefore by Arzela-Ascoli’s Theorem and Theorem 1.5.1 in [11],
there exists a subsequence (relabelled) uj(t0, ·) converging to u∞ in C1,α(S1,M)
and u∞ is a closed geodesic in M . This is a contradiction. �

Let σ be a sweepout on closed manifold M and σj be a minimizing sequence of
sweepouts in Ωσ, that is

(3.3) W ≤ max
s∈[−1,1]

E(σj(s, ·)) ≤W + 1/j.

Applying the harmonic map heat flow to each slice of σj , we get a map Φj :
[−1, 1] × [0,∞) × S1 −→ M and for each s ∈ [−1, 1] fixed, Φj(s, t, θ) solves (2.1)
with Φj(s, 0, θ) = σj(s, θ). It follows from the proof of the long time existence and
uniqueness of the solution of (2.1) that for any t0 ≥ 0, the map s −→ Φ(s, t0, ·) is
continuous from [−1, 1] to H1(S1,M) and thus Φj(·, t0, ·) is still a sweepout on M .
Since [−1, 1] is compact, for any ε > 0, there exists δ > 0 so that: if 0 ≤ t1 < t2 ≤ t0
and t2 − t1 < δ, then

∫ t2
t1

∫
S1 |Φjt (s, t, θ)|2dθdt < ε for any s ∈ [−1, 1]. Hence by

Lemma 2.4, for any t0 > 0, Φj(·, t0, ·) is homotopic to σj . Therefore it follows from
Proposition 3.3 that the Φj(·, t0, ·) are good sweepouts on M . That is,
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Theorem 3.4. Given 0 < α < 1, t0 > 0 and ε > 0, there exists δ > 0 so that if j >
1/δ and s ∈ [−1, 1] satisfies E(Φj(s, t0, ·)) ≥W −δ 3, then distα(Φj(s, t0, ·), G) < ε.

In [5], Colding and Minicozzi show that the width is non-negative and is positive
if σ is not the zero element in π2(M). In fact, assume that W (Ωσ) = 0 and σ̂ ∈ Ωσ
is such that the energy of each slice of σ̂ is sufficiently small. Then each slice,
σ̂(s, ·), is contained in a strictly convex neighborhood of σ̂(s, θ0) and note that
s −→ σ̂(s, θ0) is a continuous curve on M . Hence a geodesic homotopy connects σ̂
to a path of point curves and thus σ̂ is homotopically trivial. Since G is closed in
the H1(S1,M) topology, we have

Corollary 3.5. If M is a closed Riemannian manifold and π2(M) 6= {0}, then
there exists at least one non-trivial closed geodesic on M .

Remark 3.6. Instead of using the unit interval [−1, 1] as the parameter space for
the curves in the sweepout and assuming that the curves start and end in point
curves, we could have used any compact space P and required that the curves are
constants on ∂P. In this case, ΩP is the set of continuous maps σ : P × S1 −→M
so that for each s ∈ P the curve σ(s, ·) is in H1(S1,M), the map s −→ σ(s, ·) is
continuous from P to H1(S1,M), and finally σ maps ∂P to point curves. Given
σ ∈ ΩP , the homotopy class ΩPσ is the set of maps σ̂ ∈ ΩP that are homotopic to
σ through maps in ΩP . And the width W = W (ΩPσ ) is defined by

(3.4) W = inf
σ̂∈ΩP

σ

max
s∈P

E(σ̂(s, ·)).

Theorem 3.4 holds for general parameter space; the proof is virtually the same
when P = [−1, 1].
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