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Summary

Amyloid disorders, such as Alzheimer’s disease (AD), involve aggregation of secreted proteins. 

However, it is largely unclear how secretory pathway proteins contribute to amyloid formation. 

We developed a systems biology framework integrating expression data with protein-protein 

interaction networks to estimate a tissue’s fitness for producing specific secreted proteins, 

and analyzed the fitness of the secretory pathway of various brain regions and cell types 

for synthesizing the AD-associated amyloid-precursor protein (APP). While key amyloidogenic 

pathway components were not differentially expressed in AD brain, we found Aβ deposition 

correlates with systemic down- and up-regulation of the secretory pathway components 

proximal to APP and amyloidogenic secretases respectively in AD. Our analyses suggest that 

perturbations from 3 AD risk loci cascade through the APP secretory support network and 

into the endocytosis pathway, connecting amyloidogenesis to dysregulation of secretory pathway 

components supporting APP and suggesting novel therapeutic targets for AD.

A record of this paper’s Transparent Peer Review process is included in the Supplemental 

Information.
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eTOC Blurb

Amyloid diseases like Alzheimer’s disease involve aberrant protein aggregation. Here by 

analyzing protein-protein interactions between the secretory pathway and its products, the authors 

predict tendencies for amyloid deposition based on secretory pathway expression. By focusing 

on the core support network, they link known genetic and epigenetic alterations in Alzheimer’s 

disease to the secretory pathway.

Introduction

No mammalian cell exists alone. Indeed, each cell dedicates >1/3 of its protein-coding genes 

to interact directly with other cells and its environment (Uhlén et al., 2015, 2019), using 

hormones and receptors for communication, enzymes and other proteins to modify their 

extracellular matrix, transporters for exchanging metabolites, etc. The mammalian secretory 

pathway is tasked with the synthesis, post-translational modification (PTM), quality control, 

and trafficking of these secreted proteins (secPs) (Novick et al., 1981; Reynaud and 

Simpson, 2002). SecPs account for >25% of the total proteome mass(Hukelmann et al., 

2016; Tan et al., 2017), and are among the most tissue-specific genes in the human genome 

(Uhlén et al., 2015). The precision and efficiency of the mammalian secretory pathway result 

from the concerted effort of hundreds of secretory machinery components (secMs) including 

chaperones, enzymes, transporters, glycosyltransferases, metabolites and lipids within the 

secretory pathway (Feizi et al., 2013, 2017; Gutierrez et al., 2020; Lund et al., 2017). Since 
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many secPs relay signals between cells or modify a cell’s microenvironment, each cell must 

carefully regulate the synthesis and localization of each secP.

Perturbations to the secretory pathway result in misfolded proteins, which induce ER stress 

and apoptosis. In amyloid diseases, the misfolded proteins can aggregate into toxic amyloid 

fibrils, which ultimately lead to cell death. Aβ deposition, a major pathological hallmark 

of Alzheimer’s disease (AD), stems from the perturbed processing of the transmembrane 

amyloid precursor protein (APP). In Aβ aggregation, alternative proteolytic cleavage of 

amyloid precursor peptide by β- (rather than α-secretase) releases the secreted form of APP, 

the aggregation-prone Aβ1–42.(De Strooper et al., 1998; Lammich et al., 1999; Vassar 

et al., 1999) Furthermore, additional PTMs in the secretory pathway may affect APP 

cleavage (Thinakaran and Koo, 2008; Wang et al., 2017), phosphorylation (Lee et al., 2003), 

glycosylation (Joshi and Wang, 2015; McFarlane et al., 1999, 2000; Schedin-Weiss et al., 

2014) and trafficking (Jiang et al., 2014; Wang et al., 2017). However, protein aggregation 

could stem from the perturbation of diverse processes, but no systematic exploration of all 

processes supporting proper APP processing has been done (Knowles et al., 2014). Several 

large-scale GWAS also identified more than 45 AD risk loci (Dourlen et al., 2019; Jansen et 

al., 2019; Kunkle et al., 2019), although for many loci, it remains unclear how they induce 

AD pathology. Furthermore, a large part of AD heritability remains unknown (Dourlen et al., 

2019; Ridge et al., 2016). The genetic landscape of late-onset Alzheimer’s (LOAD) is highly 

heterogeneous, with multiple complex molecular interactions contributing to the disease 

phenotype. Therefore, the discovery of concerted expression changes in LOAD, such as 

the remodeling of immune-specific modules requires systems approaches on large datasets 

(Zhang et al., 2013).

To unravel the molecular changes leading to Aβ deposition, we focused on the roles of 

the secretory pathway in amyloidogenesis. The secretory pathway is responsible for the 

processing, quality control and trafficking of key components of the amyloidogenic pathway 

(Greenfield et al., 1999; Hartmann et al., 1997), such as APP and the secretases, so we 

investigated if there is a systemic dysregulation of the secMs supporting their production 

and processing. To do this, we first developed a network-based approach that leverages 

protein-protein interaction (PPI) and mRNA and protein abundance data to quantify a cell 

or tissues’ “secretory machinery support”. This measures the fitness of a tissue or cell for 

properly secreting a specific secP based on the expression of its supporting secMs. Next, we 

investigated if there are disruptions in the secretory machinery support for key players of the 

amyloidogenic pathway (i.e., APP and the secretases), leading to increased Aβ deposition 

in LOAD, based on data from several large-scale clinical bulk- and single-cell RNA-Seq 

datasets (Mathys et al., 2019; Wang et al., 2018). We found significant dysregulation of 

the secretory pathway proximal to APP and the secretases, and this dysregulation is a 

major determinant of Aβ deposition. We further demonstrated that the concerted expression 

changes in the secretory support modules for the APP, BACE1, and PSEN1 can be linked 

to known AD risk genes and their regulation targets. In terms of subcellular localization, 

the core perturbed network enriches for known hotspots for Aβ production such as ER, 

cytosol and endosomes. Moreover, we found that the AD risk loci activate endocytosis via 

the core support network, and we identified a candidate TF binding motif that is conserved 

in the promoter regions of the interaction network genes. Together, our analyses suggest 
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mechanisms underlying impaired protein secretion, which could propose novel therapeutic 

targets for the treatment of AD. It also proposes mechanisms by which AD genetics 

imbalance the secretory pathway, thus resulting in Aβ deposition, cell death, and cognitive 

impairment.

Results

Secreted proteins and secretory machinery show similar tissue-specific expression

The secretory pathway synthesizes and transports a variety of secreted proteins, each with 

different requirements for their synthesis and secretion (e.g., different physicochemical 

properties and post-translational modifications). With the human secretome being one of 

the most tissue-specific subsets of the human proteome (Ramsköld et al., 2009; Uhlén et 

al., 2015), we hypothesized each tissue expresses just the secMs needed to synthesize and 

process secPs from the tissue. Supporting this, we observed that clustering tissues by secP 

gene expression grouped tissues similarly as when clustering by secM gene expression 

(Figure 1, p-value = 0.0145; Figure S1). Thus, the secMs are not merely housekeeping 

proteins always expressed to support any proteins being secreted; rather, they express in a 

tissue-specific fashion to meet the demands of different tissues (Feizi et al., 2017). However, 

the question remains if the pairings between secMs expressed in each tissue represent those 

needed to specifically support the secPs they secrete.

Tissue specific expression of secMs predict expression of their client-secreted proteins

To further dissect the pattern of secP-secM co-regulation seen across tissues, we 

incorporated two sources of information: protein-protein interactions (PPIs) and secM gene 

expression. We harness PPIs to identify the secMs relevant to each secP, since PPIs are 

one of the major modalities through which machinery proteins in the secretory pathway 

assist protein secretion (Anelli and Sitia, 2008; Bonifacino and Glick, 2004; Ikawa et al., 

1997; Pearl and Prodromou, 2006). Further, secMs responsible for secP post-translational 

modifications are well-captured by PPIs between the secPs and the secMs (Figure S2). To 

focus on spatially proximal interactions, we filtered the PPIs for interactions between secMs 

and other secretory pathway-resident proteins for each secP (see Methods), resulting in a 

“secM support network” consisting of 3658 genes. By overlaying secM gene expression on 

this network, one can quantify the secM support for secretion of each secP. To systematically 

quantify the fitness of the secM support network for producing each secP in a tissue, 

a machinery support score is calculated for each secP by a random walk algorithm that 

integrates secM gene expression levels proximal to each secP in its PPI network. More 

specifically, for each secP, we added the protein to the secM support network, and centered 

the network on the secP. We then performed a random walk on the secM support network 

starting from the secP. We adapted the transition probabilities of the random walk to 

incorporate gene expression of the secMs so that propagation is constrained by not only 

PPI network topologies but also the expression of the secM components, allowing one 

to contextualize cell- and disease-specific interactomes (methods and supplemental note; 

Figure 2a). The algorithm assigns a component score to each protein in the network, 

representing its availability to the secP of interest. The “secretory machinery support score” 

(i.e., the average component scores the secretory pathway components receive from the 
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random walk) then quantifies the overall secretory pathway support for the given secP 

(Table S1). Using this approach, we found the secretory machinery support score for each 

secP increases in tissues wherein the secP is more highly expressed (Figure 2b, Figure 

S3). Further, the machinery support score considerably improves the prediction of secP 

protein abundance from mRNA expression across tissues (Figure S4 and supplemental note). 

Thus, by accounting for the mRNA/protein expression of PPIs surrounding each secP, the 

machinery support score quantifies a tissue’s relative fitness for synthesizing and secreting 

the secP of interest.

Aβ deposition in Alzheimer’s disease is characterized by perturbed secretory support of 
amyloid precursor protein

The co-regulation of the secP and their cognate secMs results from millions of years 

of evolution. Thus, the question arises whether perturbations to such co-regulation could 

underlie the molecular pathology in AD. Specifically, Aβ deposition is a major hallmark of 

AD-pathology. The precursor to Aβ, APP, is moderately to highly expressed (high transcript 

levels and moderate protein levels) in the cerebral cortex. While APP overexpression from 

APP duplication can cause early-onset (familial) AD (Bushman et al., 2015; Rovelet-Lecrux 

et al., 2006), sporadic (non-familial) AD does not show differential transcript abundance for 

APP between AD and non-AD individuals despite the increase in Aβ plaques (Matsui et 

al., 2007). However, APP does undergo post-transcriptional processing, with pathogenic Aβ 
being released from APP following sequential cleavage by β- and γ-secretases, while the 

α-secretase promotes the correct processing of APP.

To test the relevance of secretory pathway expression to AD, we analyzed RNA-Seq data 

from 4 brain regions in 298 AD and age-matched control subjects (from the Mount Sinai 

Brain Bank (Wang et al., 2018)) and single-cell RNA-Seq from the prefrontal cortex 

(Brodmann area 10) of 48 individuals (Mathys et al., 2019) (Figure 3). APP was not 

differentially expressed in AD brains at both the single-cell (Mathys et al., 2019) and the 

tissue level (Wang et al., 2018). This is not surprising since the amyloidogenic pathway 

giving rise to neurotoxic Aβ takes place post-translationally (De Strooper et al., 2010). 

Additionally, expression of neither BACE1 nor PSEN1 correlated with plaque abundance 

in affected brain regions (Figure 3). However, each gene had significant changes in 

machinery support scores correlating with severity (Figure 3b, Tables S2–3). Specifically, 

the supporting machinery score for APP decreased in affected brain regions, showing 

suppressed scores in cells with amyloid deposition (p<0.0066). The largest effect was in cell 

types that are major producers of Aβ, including neurons (Greenfield et al., 1999; Hartmann 

et al., 1997; Laird et al., 2005), reactive astrocytes (Frost and Li, 2017; Liddelow and Barres, 

2017; Phatnani and Maniatis, 2015; Sofroniew and Vinters, 2010) (Figure 3a, Figure S5), 

and in brain regions affected early in the onset of AD (Figure 3b, Figure S6). However, 

BACE1 and PSEN1, which aid in amyloidogenesis, showed an opposite trend, with affected 

cells increasing machinery support for these secretases (Figure 3b; p-values for Brodmann 

area 36 (parahippocampal gyrus, BM36) and Brodmann area 44 (inferior frontal gyrus, 

BM44): p <0.0038 and p<0.014 for β-secretase; p<0.13 and p<0.083 for γ-secretase).
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Secretory pathway support of APP is most strongly suppressed proximal to APP

The secretory machinery support score for APP is significantly decreased in AD. However, 

it is unclear if the decline in APP support score is due to a general suppression of many 

secMs throughout the secretory pathway or a local repression in which only the secMs most 

proximal to APP are down-regulated. To test this, we defined a core support network for 

APP based on network proximity and gene expression. As the abundance and proximity to 

APP vary across the secMs in the network, we break down the APP support score into the 

individual component scores for each protein in the secM support network (Table S4). This 

quantifies each secM’s corresponding contribution to the secretory support of APP. When 

the secMs are rank-ordered by their individual component scores, their contribution to the 

APP support score follows a pattern of exponential decay (Figure S7A), suggesting that the 

support score is mostly determined by a smaller number of proteins with high proximity 

to APP (Figure 4A). While the entire APP support network is not differentially expressed 

between AD and healthy brains, we wonder if this is the case with secMs that are major 

contributors to the support score. When we overlaid the differential expression across brain 

regions and cell types and considered progressively smaller subsets of the APP support 

network consisting of proteins with the highest component scores, we saw the strongest 

repression at around 20–30 secMs, suggesting that the proteins nearest to APP are the most 

suppressed (Figures 4A, S7B, S7C).

Changes in APP-supporting PPIs are regulated by AD risk loci

Large GWAS screens found AD risk genes impacting many pathways (Kunkle et al., 2019; 

Lambert et al., 2013). Although the secretory pathway is tasked with the synthesis and 

processing of APP, it is not generally implicated in LOAD pathogenesis, since secretory 

pathway genes are not enriched among LOAD risk genes from large-scale GWAS studies 

(Kunkle et al., 2019). However, our results show transcriptional perturbations of machinery 

support for key amyloidogenic genes; thus, there may be a concerted regulatory change for 

modules supporting APP production and proteostasis in the secretory pathway. Thus, we 

tested if regulatory AD risk loci (i.e., transcription factors) regulate the secMs interacting 

with APP. While the entire APP support network does not enrich for the AD risk genes 

nor their regulatory targets, we wondered if AD risk loci selectively target the secMs 

more proximal to APP in the PPI network. As we assessed enrichment for AD risk gene 

targets in subnetworks that were progressively closer to APP (i.e., more focused on the 

support network interacting most directly with APP), we found the secMs supporting APP 

were increasingly enriched for targets of AD risk regulatory genes (Figures 4B, S8, S9). 

The results are reproducible across multiple GWAS significance thresholds (Figure S9). 

Since the enrichment of AD risk gene targets steadily increased in statistical significance 

with increasing proximity to APP in the PPI network, we focused on the top 20 proteins 

interacting the most closely with APP from the support network. This resulted in an APP 

support subnetwork where the enrichment significance for AD risk gene targets peaks. This 

cutoff also coincides with the subnetwork with the strongest suppression of secM expression 

(Figures 4A, S7B, S7C).
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Core support network overlaps significantly with genomic loci with differential histone 
acetylation in AD brain

Epigenetic alterations have been linked to neurodegeneration in human AD brains and 

AD mouse models (Lardenoije et al., 2015; Liu et al., 2018). Thus, we analyzed data 

from three epigenome-wide association studies to investigate if the core support network 

is overrepresented for hotspots of aberrant epigenomic reprogramming in AD. We found 

that proteins proximal to APP on the support network show significant enrichment for Aβ 
related epigenetic changes measured in H3K9ac profiles from 669 aged human prefrontal 

cortices (Klein et al., 2019) (Figure 5, top row). Additionally, the enrichment around the 

core network is higher for H3K9ac peaks annotated as being in enhancer domains than 

those in promoter domains. In another epigenome-wide association study comparing aging- 

and AD-related histone acetylation changes (Nativio et al., 2020), we found the H3K122ac, 

H3K27ac and H3K9ac peaks that differ significantly were disproportionately located near 

the core support network (Figure S10, top row). Interestingly, while AD and aged brains 

often share similar epigenetic signatures (Nativio et al., 2018), enrichment of AD-related 

peaks (Figure S10, bottom row) is stronger in the core support network than that of aging­

related peaks (Figure S10, middle row). Thus, we observe considerable epigenetic changes 

in human AD brain around the APP supporting network.

The enriched epigenetic changes were further captured in a mouse model of AD. 

Specifically, histone methylation and acetylation marks were profiled in CK-p25 mice 

with increased Aβ levels and controls (Gjoneska et al., 2015). While the core network is 

depleted for significantly altered H3K4me3 peaks in CK-p25 mice, AD-associated H3K27ac 

alterations are significantly enriched among proteins proximal to APP (Figure 5, bottom 

row). This is in line with our previous observation in which the core support network is a 

hotspot for AD-related acetylation marks, especially around the enhancer domains.

AD risk loci activate endocytosis via the core support network

We analyzed the content of the core support network, and found it is enriched for genes in 

the amyloidogenic pathway. Specifically, we saw interactions were concentrated in the ER, 

endosomes, and the cytosol (Figure S11, FDR p<1.1e-3), consistent with the localization 

of amyloidogenesis. For example, the endosome hosts intracellular Aβ production with its β­

secretase, and is enlarged in autopsies from AD (Cataldo et al., 2000) and stem cell models 

(Israel et al., 2012). To further unravel the link between endocytosis and the core support 

network, we analyzed the patterns of the core network differential expression between AD 

and controls across multiple cohort studies using gene regulatory networks obtained from 

ENCODE (ENCODE Project Consortium, 2012) and Ingenuity Pathway Analysis (IPA) 

(Krämer et al., 2014). Complementing our previous observation that a significant portion 

of the core support network is endosome-resident, we saw significant up-regulation of 

genes associated with endocytosis (p-value = 8.95e-14), mediated by the core supporting 

machinery (Figures 6A, S12) across various brain regions.

We further analyzed the APP core support network and identified transcription factors (TFs) 

that are most strongly associated with the perturbed secM module. The APP core support 

network coincides significantly with the regulatory targets of 3 genes from AD risk loci: 
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NR1H3, MAF and SPI1 (Dourlen et al., 2019; Jansen et al., 2019; Kunkle et al., 2019; 

Lambert et al., 2013). To investigate the extent to which these AD risk genes perturb 

transcription of the supporting machinery in AD, we analyzed the differentially expressed 

genes between AD and controls across multiple cohort studies using gene regulatory 

networks obtained from ENCODE (ENCODE Project Consortium, 2012) and Ingenuity 

pathway analysis (IPA) (Krämer et al., 2014).

In addition to predicting upstream transcriptional regulators associated with 

amyloidogenesis from gene signatures or differentially expressed genes, we searched for 

conserved TF binding sites among the top-ranked dysregulated genes of the core-network in 

Alzheimer’s Disease. Specifically, we conducted de novo TF binding site motif discovery 

for the 20 genes in the core support network (Figure 6B; see Methods). We identified 

one significant TF motif (E value= 9.8e-3) that is present in 7 of the genes in the 

core support network (Figure S13), which is associated with the SP1, SP2, and SP3 

transcription factors. SP1 is important in AD (Citron et al., 2015; Santpere et al., 2006) 

and is predicted to bind the 3 genes from AD risk loci (NR1H3, MAF, and SPI1) with 

high confidence via three elite enhancers (Fishilevich et al., 2017) GH11J047390 (GH 

score=2.2), GH16J079764 (GH score=2.4), and GH11J047247 (GH score=2.1) respectively 

(Table S5). Furthermore, several motif binding sites across the core support network 

significantly overlap with loci with major epigenetic alterations in AD (Figure 6B) (Klein 

et al., 2019; Nativio et al., 2018, 2020). For example, the motif binding site at the promoter 

region of ARF1 completely overlaps with a histone acetylation mark H3K122ac that is 

significantly altered in AD but not aged subjects (chr1:228259654-228280877, Wilcoxon 

Rank Sum P-value 0.004). Another locus of significantly altered H3K122ac peaks in AD 

individuals (chr2:65353363-65359754, Wilcoxon Rank Sum P-value 0.01) overlaps with 

the motif binding site at RAB1A. The motif binding site at HSP90AA1 overlaps with 

significantly altered peaks for H3K122ac and H3K9ac, which are repressed and upregulated 

respectively in AD (chr14:102543639-102575586, Wilcoxon Rank Sum P-value 0.05 and 

chr14:102543639-102575586, Wilcoxon Rank Sum P-value 0.05). Thus, a perturbation to 

multiple TFs could disrupt the APP core support network, wherein both genetic risk genes 

(NR1H3, MAF, and SPI1) and global regulators can contribute to the dysregulation of the 

core network.

Further analysis suggests the AD risk genes and the core support network genes are 

further co-regulated with an activation of endocytosis in the AD pathogenesis. We further 

characterized the functional association of the conserved TF motif by scanning all promoters 

of genes in the genome for the motif (see Methods for details). The conserved TF motif 

was significantly enriched in the promoter regions of known endocytic pathway genes 

(p-value=4.28e-4) and several other pathways relevant to AD pathogenesis (Table S6, 

Figure S11). Together, these results suggest a concerted change in endosomal activities 

and dysregulated pathways between normal and AD brains that arises due to the differential 

expression of the core supporting machinery surrounding APP.
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Discussion

In the past four decades, the Alzheimer’s research community has made huge strides 

towards elucidating molecular processes contributing to amyloid deposition. However, 

despite involving aggregation of secreted proteins, it remained unclear to what extent 

the core processes of protein secretion and proteostasis are involved. Here we developed 

a systems biology approach that analyzed the interactions between key amyloidogenic 

components and the secretory pathway. This approach predicted the propensity for amyloid 

deposition at the single-cell level. To gain systems-level insights into LOAD, we used the 

framework to identify a subset of the secretory pathway components on which concerted 

suppression and several regulatory elements of AD converged. We further demonstrated that 

an increase in endocytic activities in LOAD can be attributed to key AD risk genes via the 

core support network.

LOAD is a complex disease. The identification of three rare mutations in APP, PSEN1 

and PSEN2 that occur in early-onset familial AD and the discovery of APOE constitute 

our primary knowledge of the genetic landscape of LOAD. More recently, high-throughput 

technologies such as GWAS and whole exome sequencing have identified more than 45 

genetic risk loci of LOAD. However, the additional risk loci exert only very small risk 

effects (Bertram et al., 2010), and the link between genetic risk variants and amyloid 

deposition remains incompletely understood. Despite the highly heterogeneous expression 

of APP and other key amyloidogenic components across AD and healthy subjects, we 

demonstrated concerted down-regulation of secretory machinery proximal to APP in AD 

patients. This highlights the secretory pathway as a determinant of amyloid deposition, 

which had not been a major focus of AD research. Incidentally, the proteostasis network, 

with which the secretory pathway shares a significant overlap, has been an increasingly 

popular target of protein aggregation and aging studies. The human chaperone network, 

a major component of the proteostasis network, undergoes continual remodeling during 

an organism’s lifespan (Brehme et al., 2014; Hipp et al., 2019; Walther et al., 2017). 

However, in the aging AD brain, the directions of regulation of these chaperones are 

rather uncoordinated across different chaperone families and even within the same family 

(Brehme et al., 2014). Our observations of concerted repression of key proximal secretory 

pathway components show that improper expression of the secretory pathway, of which the 

chaperone network is a subset, is associated with the deposition of amyloid.

Even though the secretory pathway is in charge of post-translational processing and 

targeting of APP up until its cleavage by the secretases, its implications in AD have 

been insufficiently researched primarily due to the lack of AD risk genes in the pathway 

(MacArthur et al., 2017). Our results showed that genes contributing the most to the APP 

support network in the secretory pathway are significantly enriched for targets of AD risk 

genes and AD related epigenetic changes, suggesting a mechanistic link between genetic and 

epigenetic variants of AD and secretory pathway dysregulation, complementing previous 

systems-level approaches to understanding LOAD with a focus on immune- and microglia­

specific modules (Zhang et al., 2013). To further unravel the link, we examined the core 

support network consisting of secretory pathway components most proximal to APP. We 

noticed 3 AD risk genes that are also transcription factors showing regulatory evidence over 
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the core support network according to both curated and de novo pathway analyses. More 

importantly, we demonstrated a regulatory cascade originating from the 3 AD risk genes, 

mediated by the core support network and into the endocytosis pathway. The endosome, 

where the β-secretase is localized to and where its acidic pH is optimal for enzymatic 

cleavage, is a major site of intracellular Aβ production. Our findings thus offer a mechanistic 

view of amyloidogenesis involving the secretory pathway and the endosomes. This is in line 

with observations in embryonic cortical neurons that showed increased Aβ levels as a result 

of increased endocytic pathway activities and reuptake in APP in aged cells (Burrinha et 

al., 2019). We also observed significant enrichment of endosomal-localized proteins in the 

core support network for APP, further lending credence to the involvement of the secretory 

pathway in activating the endocytic pathway.

The dominant model of AD pathogenesis, the amyloid hypothesis (Hardy and Higgins, 

1992; Hardy and Selkoe, 2002; Selkoe and Hardy, 2016), posits that AD pathogenesis and 

the rest of the disease process such as tau tangle formation (Hardy et al., 1998; Lewis et 

al., 2001) result from the accumulation of Aβ via the imbalance between Aβ production 

and clearance. We examined the capacity of the secretory pathway in the context of Aβ 
production and processing, where the secretory support of APP and β- and γ- secretases 

were analyzed. While the concerted dysregulation of the secretory support for these key 

amyloidogenic components in AD brains theoretically leads to increased Aβ production, the 

impact on Aβ clearance warrants further investigation. It is worth noting that detectable Aβ 
deposition can precede the onset of AD by more than 15 years (Bateman et al., 2012; Jack 

et al., 2013), which likely coincides with the onset of the decline of the proteostasis network. 

Our findings highlight the roles of the secretory pathway in amyloidogenesis, which open 

new possibilities for early diagnosis and treatment research on LOAD. Furthermore, our 

systems approach can be further applied to other diseases in which the secretory pathway 

is perturbed, such as perturbed hormone secretion in endocrine disorders, changes in 

hepatokine secretion nonalcoholic fatty liver disease (Gorden et al., 2015; Meex et al., 

2015), and the secretion of diverse proteins in cancer (Robinson et al., 2019).

STAR Methods

Resource Availability

Lead Contact—Further information and requests for datasets should be directed to and 

will be fulfilled by the Lead Contact, Prof. Nathan E. Lewis (nlewisres@ucsd.edu).

Materials Availability—This study did not generate new materials.

Data and Code Availability—This paper analyses existing publicly available data. These 

datasets’ accession numbers are provided in the key resource table.

Source code and interactive notebooks for performing expression-guided random walk are 

publicly available at: https://github.com/LewisLabUCSD/AD_secretory_pathway

Scripts used to generate the figures presented in this paper are publicly available at https://

github.com/LewisLabUCSD/AD_secretory_pathway_figs
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Any additional information required to reproduce this work is available from the Lead 

Contact.

Method Details

Calculation of secretory pathway support scores

Random walk on interactome: To contextualize the secretion of a given secP, we used 

network propagation to quantify the influence of gene expression across neighboring genes. 

Let G(V, E) denote an undirected interactome with vertex set V containing n proteins and 

an edge set E the m interactions between them. Let wij be the edge weight (wij = 1 if G is 

undirected) between edges i and j and A be the adjacency matrix of G where Aij = {wij if 

{vi, vj} ∈ E; 0 otherwise}. Let x(t) be the location of the walk at time t. Note that given the 

previous walk location i at time t – 1, we can represent the probability of the walker moving 

from location i to j in a single step as:

W ij = Pr(x(t) = i ∣ x(t − 1) = j) = Aij
di

,  where di = ∑j
nAij . (Eq. 1)

Summing probabilities from all inbound locations we have :

Pr(x(t) = j ∣ x(t − 1)) = ∑i
nW ijPr(x(t − 1) = i) . (Eq. 2)

In matrix notation, this is p(t) = Wp(t – 1), where W is the transition matrix and each 

entry Wij denotes the aforementioned transition probability from i to j. In random walk with 

restarts (Page et al., 1998), at each step the walk resets to the origin with probability α, 

and the last equation becomes pRWR(t) = (1 – α) WpRWR(t – 1) + αp(0), where p(0) = ek 

denotes the initial distribution if the walker starts at vk. The restart parameter α was set 0.1, 

as advised by the linear optimal model given the size of the network (Huang et al., 2018).

Expression-guided random walk with restarts: The transition matrix can be modified 

to incorporate gene expression into each step of the propagation. If we let t = [t0, 

… , tn]T, where ti is the scaled expression corresponding to node vi , 0 ≤ ti ≤ 1, the 

expression-adjusted transition matrix can thus be given by Wadj = diag(t)W. The choice of 

t can either be protein levels where available or mRNA abundance. We show the validity 

of using mRNA abundance as input in the supplemental notes. We can normalize the 

adjusted transition matrix by adding self-loops: Wadj = Wadj + In × n − diag 1n × 1
⊤ Wadj , and 

the update rule, which we termed expression-guided random walk with restarts (eRWR), 

now becomes:

pRW R(t) = (1 − α)WadjpRW R(t − 1) + αp(0) . (Eq. 4)

Calculation of support scores and component scores: We performed eRWR on each 

secP of interest for 20 iterations (Supplemental Notes), and the final vector of probabilities 

pRWR(t = 20) represent the support component score for each gene on the network G(V, 
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E). The support score (σ) is the average of the support component scores of the secretory 

pathway proteins, σ = 1
|secM| ∑i ∈ secMpRWRi(t = 20).

Context filtering of the secretory pathway support network: We used the composite 

consensus human interactome PCNet v1.3 (Huang et al., 2018) (NDEX UUID: 

4de852d9-9908-11e9-bcaf-0ac135e8bacf) to be the static, context-agnostic network (G0(V0, 

E0)). For each secP, we create a subnetwork containing the secP and other essential secretory 

pathway genes by filtering the network for human secretory pathway components (Feizi et 

al., 2017; Gutierrez et al., 2020) and secretory pathway-resident proteins (Thul et al., 2017) 

to constrain the network spatially, resulting in a vertex-induced subgraph G(V = {V0 ⋂ (secP 

⋃ secM ⋃ secResident)}, (uv|uv ∈ E0 and u, v ∈ V}).

Transcriptomic and proteomic data processing and support scores calculation for 
normal human tissues: To calculate support scores for the normal human secretome, 

we used two datasets, the Human Protein Atlas (HPA) (Uhlén et al., 2015), and the deep 

proteome and transcriptome abundance atlas (deep proteome) (Wang et al., 2019) for tissue­

specific transcriptomes from healthy human donors in which matching proteomic data were 

also available. For data from the Human Protein Atlas, we downloaded the transcriptomic 

data—“RNA HPA tissue gene data” and performed log- and sigmoid-transformation on 

the transcript abundance (TPM) data, resulting in transformed gene expression profiles 

in the (0,1) range. For the HPA dataset, the support score was calculated based on the 

tissue-median of the transformed gene expression profiles for each secP. We retained the 

semi-quantitative nature of the immunohistochemistry protein abundance reporting, and 

we calculated the support scores summary statistics for proteins belonging to each of the 

staining levels—“High”, “Medium”, “Low” & “Not detected” separately.

With the fully quantitative proteomic data from the deep proteome (Wang et al., 2019), We 

calculated the support scores based on the protein iBAQ values. The iBAQ abundance values 

were transformed in a similar fashion as the transcript abundance from the HPA dataset. 

Namely, they were log- and then sigmoid-transformed into the (0,1) range, before being 

median-summarized by tissue and subsequently used in the calculation of the support scores.

Transcriptomic and proteomic data processing and support scores calculation for 
AD and healthy brains: To calculate support scores for key amyloidogenic pathway 

components in AD and healthy brains, we used two major transcriptomic datasets from 

the ROSMAP project (Religious Orders Study and Memory Aging Project)—single-cell 

(Bennett et al., 2018; Mathys et al., 2019) (Synapse ID syn18485175) and bulk RNA-seq 

(Wang et al., 2018) (Synapse ID syn3159438) data from individuals respectively with 

varying degrees of Alzheimer’s disease pathology. The single-cell transcriptomic dataset 

covers 80660 cells from the prefrontal cortex of 48 individuals. While annotations for 

major cell types were given, we further classified astrocytes into reactive and non-reactive 

astrocytes based on GFAP expression (Liddelow and Barres, 2017). The bulk RNA-seq 

covers 4 brain regions (Brodmann areas 10, 22, 36, 44) of 364 individuals.
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To transform the count data into appropriate expression inputs to the eRWR algorithm, 

count data from healthy tissue-specific transcriptomes and the AD single-cell RNA-seq data 

were first log-transformed to compress the extreme values. The values were then z-score 

standardized and passed through a logistic function, where the final transformed values have 

a range (0,1). For the AD bulk-RNA seq data, since the counts were already normalized and 

transformed, they were z-score standardized and transformed by a logistic function without 

first being log-transformed.

Statistical analysis

Relationship between support scores of secreted proteins and protein expression: To 

examine the dependencies between support scores and the transcript and protein abundances 

of the human secretome, we calculated the support score for each secreted protein in the 

human secretome (Uhlén et al., 2019) across various human tissues. We first calculated 

the spearman correlation coefficients between the tissue-median support scores and the 

transcript and protein abundances across all secreted proteins. To assess the statistical 

significance of the spearman correlation coefficients, a t-statistic t = r n − 2
1 − r2  where n 

and r indicate the number of paired observations and the pearson correlation coefficient 

respectively was computed. P-values were then calculated by comparing the t-statistic with 

its null distribution (the t-statistics approximate a t-distribution with n – 2 degrees of 

freedom under the null hypothesis) (Kendall and Stuart, 1977).

To further quantify the statistical significance of transcript abundance and protein level in 

determining overall protein abundance, a Bayesian hierarchical model was created (Method 

S1) where the abundance of each protein across the 29 tissues is drawn from a linear 

combination of mRNA levels and the support scores weighted by their respective regression 

coefficients. We used the rethinking R package(McElreath, 2020) to construct the model and 

sample the coefficients.

Relationship between support scores of key amyloidogenic proteins and amyloid 
plaque densities: We built a Bayesian hierarchical model (Method S2) to determine the 

extent to which the support scores for key amyloidogenic pathway components including 

APP and the secretases for each cell/sample in the single-cell (see the supplemental notes 

for adaptations to the model formula to account for sample covariates) and bulk RNA-seq 

dataset affects the amount of amyloid plaque measured. We regressed the scaled amyloid 

plaque densities corresponding to the individual from which the single-cell/bulk RNA-seq 

sample was collected against the gene expression and secretory pathway support scores 

of key amyloidogenic pathway components. To regularize the coefficients of interest, their 

Bayesian priors are all normally distributed around 0. The coefficients were sampled using 

the rethinking R package(McElreath, 2020).

Characterizing the core support network

AD risk genes and enrichment analysis of regulatory components: We obtained 45 

genome-wide significant risk loci identified by several AD GWAS studies as summarized 

previously (Dourlen et al., 2019), resulting in 176 high-confidence AD risk genes. We 
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compiled a separate set of AD risk genes from GWAS summary statistics (Jansen et al., 

2019; Kunkle et al., 2019) for loci above the genome-wide suggestive threshold, where 

MAGMA (de Leeuw et al., 2015) was used to aggregate p-values for SNPs to the gene-level 

independently for each GWAS dataset. P-values from the two datasets for each gene were 

then combined using Fisher’s method, resulting in 673 AD suggestive risk genes.

The transcription factors and their targets were obtained from ENCODE (Davis et al., 

2018) and ChEA (Lachmann et al., 2010) via the Enrichr portal (Kuleshov et al., 2016). To 

determine whether the core support network enriches for the regulatory targets of AD risk 

genes, we first calculated the level of overlap between the core support network and the 

targets of each transcription factor using Fisher’s exact test, where significantly overlapping 

transcription factors were defined as those with p-values of less than 0.05. A secondary 

enrichment was performed to quantify the level to which the significant transcription factors 

overlap with known AD risk genes. As mentioned earlier, two lists of AD risk genes were 

used. For the 673 AD suggestive risk genes, a traditional Fisher’s exact test was performed. 

For the risk genes originating from the 45 risk genome-wide significant risk loci, instead 

of calculating the direct overlap between the significant transcription factors and the 176 

high-confidence risk genes, we mapped the significant transcription factors back to the 

45 risk loci on which Fisher’s exact test was performed. This is motivated by the fact 

that many risk loci contain multiple risk genes that cannot be further pinpointed due to 

complex linkage disequilibrium patterns, a risk locus is considered hit if at least one of its 

mapped risk genes appears significantly enriched as a transcription factor. We performed this 

two-stage enrichment analysis starting from the full static support network towards the core 

support network by pruning back proteins furthest from APP in each iteration.

Enrichment analysis of genomic loci with AD-related epigenetic changes: Genomic 

coordinates for AD-related histone acetylation and methylation peaks (Gjoneska et al., 2015; 

Klein et al., 2019; Nativio et al., 2018, 2020) were mapped to the promoter and enhancer 

regions of genes from the entire support network according to the GRCh37 assembly. 

Significant epigenetic alterations were defined as those with adjusted association p-values 

of less than 0.05, or those labeled as epigenome-wide significant in the original study when 

no accompanying association statistics were available. The background was defined as the 

collection of all peaks detected for histone mark from each study. Following a similar 

enrichment analysis strategy to the one detailed in the previous section, we calculated the 

level of overlap between the support network and the significant epigenetic alterations via 

Fisher’s exact test across subnetworks of various sizes.

Enrichment analysis of subcellular compartments: We compiled lists of proteins for all 

subcellular structures consisting of proteins known to localize to the compartment of interest 

within the cell (Thul et al., 2017). We ordered the proteins in the full support network by 

the extent to which they deviate from their stationary support component score to control for 

network topology while accounting for secretory-resident proteins. To determine the degree 

to which the proteins from certain subcellular compartments are overrepresented in the core 

subnetwork, we applied Gene Set Enrichment Analysis (GSEA) (Korotkevich et al., 2016; 

Subramanian et al., 2005) with the subcellular localization gene-sets and the ranked core 
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support network components as input, eliminating the need for a hard significance cut-off. 

Subcellular compartments significantly enriched in the core subnetwork are defined as those 

with an FDR p-value of 0.05 or less.

Causal gene network analysis: To robustly define the core supporting subnetwork, we 

iteratively constructed subnetworks from proteins most proximal to APP and progressively 

include more distal proteins corresponding to different significance cutoffs. To robustly 

select the cutoff for the core supporting subnetwork, we performed the two-stage enrichment 

analysis on all subnetworks as detailed above (see “AD risk genes and enrichment analysis 

of regulatory components”). Additionally, we calculated the average differential expression 

between AD and healthy individuals for each subnetwork using fold changes from bulk and 

single-cell RNA Seq data depending on the source expression from which the subnetwork 

is calculated. We selected 20 proteins most proximal to APP to include in the final core 

subnetwork, where the cutoff coincides with the strongest enrichment of regulatory AD risk 

loci and the suppression of the core subnetwork.

To determine the regulator effects, we performed two network-based analyses. We first ran 

the upstream regulator analysis using the curated regulator networks from IPA (Krämer et 

al., 2014). The algorithm took as inputs the core subnetwork and the differential expression 

fold changes and p-values. Batch-corrected differential gene expression profiles between 

AD and healthy brains from the Mount Sinai study (Wang et al., 2018), the Mayo Study 

(Allen et al., 2016) and the ROSMAP study (Religious Order Study and Memory and 

Aging Project) (De Jager et al., 2018) were obtained from the AMP-AD Knowledge 

Portal (Synapse ID syn14237651). “Disease & functions” having considerable overlap with 

the core subnetwork were added, of which endocytosis is the most significant (p-value 

=2.34E-14).

De novo TF binding site motifs discovery and known TF binding site identification: We 

downloaded promoter sequences (version: GRCH38) from UCSC Genome Browser(Kent 

et al., 2002) for the core subnetwork. The promoter sequences are defined as sequences 

1,000 bases upstream of annotated transcription start sites of RefSeq genes with annotated 

5’ UTRs. To conduct de novo TF binding site motifs discovery, we first ran motif discovery 

using the MEME suite(Bailey et al., 2015) with default parameters to identify candidate TF 

binding site motifs within the promoter sequences by using the entire APP support network 

serving as background control. Then, the MEME discovered TF binding site motifs were 

analyzed further for matches to known TF binding sites for mammalian transcription factors 

in the motif databases, JASPAR Vertebrates (Sandelin et al., 2004), via motif comparison 

tool, TOMTOM(Gupta et al., 2007). We summarized all the enriched GO terms using 

‘Revigo’(Supek et al., 2011) (Figure S13) on the 81 GoMo identified specific enriched GO 

terms in the Biological Process (Table S6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Graph-based model links secretory pathway dysregulation to amyloid 

aggregation

• Concerted patterns of repression converge on the core support network

• Key Alzheimer’s disease perturbations overlap with the core support network
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Figure 1. The secMs and the secPs show coordinated expression profiles across different human 
tissues.
The tissue similarity structures from the perspective of the secretome and the secretory 

pathway expression were represented by two hierarchical clustering dendrograms, which 

were then compared with a tanglegram (Galili, 2015). Gene expression of the secretory 

pathway and its clients show a high level of coordination across human tissues, 

with precision significantly better than expected by sampling genes from each tissue 

(bootstrapping p-value 0.013 and 0.045 for data from GTEx (GTEx Consortium, 2015) 

and Human Protein Atlas (Uhlén et al., 2015) respectively).
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Figure 2. Expression data can quantify a tissue or cell’s fitness for synthesizing a secreted or 
membrane protein.
(A) In our systems biology approach, the mRNA or protein abundance is overlaid on a 

PPI network surrounding a secreted protein (secP). The secP synthesis fitness is quantified 

by summing the secM expression, scaled by distance from the secP (computed by a 

random walk), yielding a quantitative “machinery support score”. The calculation of the 

support score also provides a sub-network of proteins contributing to secP synthesis. (B) 
We quantified the machinery support score for every secreted protein in all tissues in the 

Human Protein Atlas and found a clear correlation between the secP expression and the 

relative machinery support score. This correlation was seen for both mRNA (top, spearman 

correlation coefficient, see methods) and protein (bottom, t-test) abundance. Thus, our 
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machinery support score allows one to quantify how fit a cell or tissue is for properly 

expressing and processing a secreted or membrane protein.
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Figure 3. AD-relevant genes show perturbed secretory machinery support scores.
(A) Overall, APP expression does not correlate with plaque densities across individuals 

in single-cell RNA-Seq. However, support scores show a negative correlation with plaque 

density, suggesting the secMs supporting proteostasis of APP are suppressed in AD. (B) 
Similar trends were seen in all brain regions surveyed (BM10, BM22, BM36, BM44, 

Figure S5). On average, no correlation is found between plaque abundance and gene 

expression of APP, BACE1 or PSEN1. However, secM support score for APP shows a 

negative correlation while the support scores for BACE1 and PSEN1 positively correlate 

with amyloid formation, suggesting AD pathogenesis involves dysregulation of the secretory 

pathway.
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Figure 4. The APP secM proteostasis network is not enriched for AD risk genes, but is enriched 
for AD risk gene regulatory targets.
The networks of secM proteins supporting APP production at two support component 

score cutoffs, representing the top n = 20 / n = 100 proteins contributing the most to the 

APP’s support score. The top 20 proteins with the highest component scores are labeled. 

(A) Starting from n=1 where the secM with the highest component score was considered, 

we incrementally included secMs less proximal to APP. The sizes of the subnetworks are 

indicated by the x-axis. At each iteration, we calculated the average differential expression 

(y-axis) between AD and healthy subjects for each subnetwork. The strongest repression 

of the AD support network occurs at around n=15~30. (B) We also calculated the degree 

to which the subnetwork enriched for regulatory targets of known AD risk genes above 

the genome-wide significance threshold (y-axis). The regulatory targets of AD risk genes 

are generally depleted among the general non-APP-specific secMs (Figure S9 for full trend 
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across all 3685 subnetworks), but targets of AD risk genes enrich strongly among the core 

secMs closest to APP.
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Figure 5. The APP core support network is enriched for genes whose enhancer regions contain 
AD-specific histone marks.
Following the notations from Figure 4, in each subplot the y-axis (odds ratio) shows the 

degree to which the core support network overlaps with genomic loci with differential 

histone modifications is indicated evaluated at modules of various sizes (x-axis), with a 

smaller n indicating a smaller subnetwork with only the proteins most proximal to APP. 

The subplots are arranged based on the region in which the differentially-enriched peaks are 

detected (columns), and the conditions compared (top row, Aβ-associated changes; bottom 

row, CK-p25 mice with increased Aβ levels vs. controls).
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Figure 6. The regulatory relationships surrounding the core support network.
(A) Regulatory structures of the 20 proteins from the core support network were constructed 

using IPA. Gene expression profiles from the 4 brain regions (BM10, BM22, BM36, BM44) 

(Wang et al., 2018), the Mayo Study (Allen et al., 2016) and the ROSMAP study (Religious 

Order Study and Memory and Aging Project) (De Jager et al., 2018) were averaged and 

overlaid on the core support network. The endocytosis pathway is strongly activated in 

AD brains via the core support network, which in turn is regulated by 3 genes from AD 

risk loci-- NR1H3, MAF and SPI1. The proteins harboring binding sites for the TF motif 

(shown in panel B) were outlined in red. (B) The TF motif (top panel) aligns significantly 

to 8 genes from the entire support network (bottom panel), 7 of which belong to the 

core support network. Align. P-value, statistical significance of the motif alignment to the 
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promoter region of each gene; overlap w/AD epigenetic Var., whether the motif binding site 

completely overlaps with significant epigenetic alterations in AD.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Semi-quantitative proteomic and transcriptomic data across 
human tissues

The Human Protein Atlas https://www.proteinatlas.org/humanproteome/
tissue

Quantitative proteomic data across human tissues (Wang et al., 2019) ArrayExpress:E-MTAB-2836

Transcriptomic profiles across human tissues (GTEx Consortium, 2015) https://www.gtexportal.org/home/index.html

ROSMAP scRNA-seq (Mathys et al., 2019) Synapse:syn18485175

ROSMAP bulk RNA-seq (Wang et al., 2018) Synapse:syn3157743

ROSMAP clinical metadata (De Jager et al., 2018) Synapse:syn3157322

PCNet v1.3 (Huang et al., 2018) NDEX UUID: 4de852d9-9908-11e9­
bcaf-0ac135e8bacf

Secretory pathway components (Gutierrez et al., 2020) https://github.com/LewisLabUCSD/
MammalianSecretoryRecon

Subcellular localization The Cell Atlas https://www.proteinatlas.org/humanproteome/cell

Aβ-related H3K9ac profiles (Klein et al., 2019) Synapse:syn4896408

Aging- and AD-related H3K122ac, H3K27ac and H3K9ac 
profiles

(Nativio et al., 2020) GSE153875

H3K27ac and H3K4me3 profiles from CK-p25 and control 
mice

(Gjoneska et al., 2015) GSE65159

LOAD risk loci, IGAP 2019 rare variant meta-analysis (Kunkle et al., 2019) NIAGADS:NG00075

LOAD risk loci, IGAP 2013 meta-analysis (Lambert et al., 2013) NIAGADS:NG00036

Software and Algorithms

Source code and interactive notebooks for expression­
guided random walk

This study https://github.com/LewisLabUCSD/
AD_secretory_pathway

Code for data processing, modeling, and figure generation This study https://github.com/LewisLabUCSD/
AD_secretory_pathway_figs

Rethinking R package (McElreath, 2020) https://github.com/rmcelreath/rethinking

Ingenuity pathway analysis (Krämer et al., 2014) http://www.ingenuity.com

MEME suite (Bailey et al., 2015) https://meme-suite.org/meme/
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