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Abstract
The [PSI+] prion phenotype in yeast manifests as a white, pink, or red color pig-
ment. Experimental manipulations destabilize prion phenotypes, and allow colonies to
exhibit [psi−] (red) sectored phenotypes within otherwise completely white colonies.
Further investigation of the size and frequency of sectors that emerge as a result of
experimental manipulation is capable of providing critical information onmechanisms
of prion curing, but we lack a way to reliably extract this information. Images of exper-
imental colonies exhibiting sectored phenotypes offer an abundance of data to help
uncover molecular mechanisms of sectoring, yet the structure of sectored colonies is
ignored in traditional biological pipelines. In this study,wepresent [PSI ]-CIC, thefirst
computational pipeline designed to identify and characterize features of sectored yeast
colonies. To overcome the barrier of a lack of manually annotated data of colonies, we
develop a neural network architecture that we train on synthetic images of colonies
and apply to real images of [PSI+], [psi−], and sectored colonies. In hand-annotated
experimental images, our pipeline correctly predicts the state of approximately 95%
of colonies detected and frequency of sectors in approximately 89.5% of colonies
detected. The scope of our pipeline could be extended to categorizing colonies grown
under different experimental conditions, allowing for more meaningful and detailed
comparisons between experiments. Our approach streamlines the analysis of sectored
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yeast colonies providing a rich set of quantitative metrics and provides insight into
mechanisms driving the curing of prion phenotypes.

Keywords U-Net · Image segmentation · Deep learning · Classification · Yeast ·
Prions

1 Introduction

Prion diseases are a class of fatal and incurable neurodegenerative diseases inmammals
that include Creutzfeldt-Jacob disease, fatal familial insomnia, Gerstmann-Straussler-
Scheinker syndrome, and Kuru (Prusiner 1996). Early research by Prusiner (1982,
1996) suggested that a protein-not a virus-coined as a proteinacious infectious particle-
or prion-was the key infectious agent in all types of prion diseases regardless of the
mammalian host, thus establishing what we know today as the prion hypothesis (Watts
et al. 2006; Nowak et al. 1998). These alternatively folded proteins act as templates
capable of inducing normally folded proteins of the same type to misfold (Hutti et al.
2020; Srivastava and Lapidus 2017; Hwang et al. 2009; Prusiner 1998) (see Fig. 1a).
Furthermore, these alternatively folded proteins are capable of undergoing templated
conversion to form aggregates (Nowak et al. 1998) which are capable of growing in
size or fragmenting into smaller aggregates that induce further alternative folding, thus
leading to a self-replicating aggregation process (Hutti et al. 2020; Collinge 2005).
Since the formalization of the prion protein (Prusiner 1998), the study of biological
processes behind prion disease and the search for appropriate solutions to eradicate
them remains an active area of research.

1.1 Yeast as a Model System

Prion proteins are not exclusive to mammals. The yeast Saccharomyces cerevisiae has
served as amodel system to understand themechanisms underlying the appearance and
progression of human diseases, including “prion-like” diseases such as Alzheimer’s
(Bagriantsev and Liebman 2006; Bharadwaj et al. 2010; Smith and Snyder 2006).
There are at least eight naturally occurring yeast prion proteins (Cascarina and Ross
2014; Wickner and Kelly 2016; Li and Kowal 2012) setting the stage for yeast-based
platforms to help screen potential anti-prion drug candidates (Ishikawa 2021). One of
the most widely studied prion protein in yeast is Sup35 which is an essential release
factor in translation-termination (Tuite and Cox 2007; Lyke et al. 2019). Sup35 aggre-
gates have the ability to self-propagate within yeast populations (Nowak et al. 1998).
When grown on solid media single yeast cells grow into circular colonies contain-
ing approximately 1× 106 cells and exhibit a white unpigmented [PSI+] phenotype
when the prion is present. In contrast, colonies that only contain the non-prion form of
Sup35 exhibit the red pigmented [psi−] phenotype (Klaips et al. 2014). Spontaneous
appearance of the [PSI+] phenotype is rare, occurring in approximately one in every
106 cell divisions (Lancaster et al. 2010; Halfmann et al. 2012). Remarkably, unlike
their human counterparts, the [PSI+] phenotype in yeast is reversible (Lemarre et al.
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Fig. 1 Yeast prion phenotypes are the result of multiscale processes. a At the molecular scale, alterna-
tively folded proteins (twisted) act as templates that convert normally folded proteins (straight) into the
alternatively folded form and assemble into aggregates. The aggregates then split into smaller segments
(fragmentation) which increases the number of aggregates. b At the cellular scale, the presence of prion
aggregates inside individual cells (represented as circles) are responsible for their white color, while the
absence of prions allows pigment generation and gives them their red color. The prion phenotype could be
lost sporadically, resulting in cured cells, while in rare instances-1 in 106—(indicated by a thinner arrow)
the prion phenotype appears spontaneously. c Phenotype expression in yeast involves multiscale processes.
The dynamics inherent in protein misfolding are found at the molecular level (a). At the subcellular level,
since prions are also found in yeast which undergo their own process of reproduction, allowing transmission
of prions between attached cells. At the cellular level, the presence of prions within a cell in turn determines
their phenotype (b). At the colony level, the collection of intercellular interactions that occur on the scale
of a cell results in structured regions of one phenotype within the colony. Molecular scale was visually
estimated from image data in (Kabani and Melki 2011). Subcellular and cellular scales were estimated
using data from (Zakhartsev and Reuss 2018). A rough estimate for the colony scale was obtained using the
minimum and maximum averaged surface area measurements of a mother cell in (Zakhartsev and Reuss
2018), multiplied by the approximate number of cells in colonies from data in (Joseph and Hall 2004) (color
figure online)

2020;Halfmann et al. 2012; Satpute-Krishnan andSerio 2005;Klaips et al. 2014).Heat
shock destabilizes the prion phenotype in yeast which in time gives rise to colonies
exhibiting both red and white phenotypes described as sectors (Cox 1965; Klaips et al.
2014). Figure1 B and C summarizes the possible events determining the phenotype
of newly born cells, and how the collective prion state of cells in a colony give rise
to sectored phenotypes at the colony level. This type of data provides information on
the prion state of a cell population and insight into changes to the prion phenotype in
response to experimental treatments.

To understand how sectoring occurs in yeast, we need to consider the underly-
ing dynamics (conversion, aggregation, and fragmentation) at the intracellular scale
(Fig. 1c). Mathematical models have been proposed that explore these dynamics
(Masel et al. 1999; Davis and Sindi 2016; Sindi et al. 2017) with one recently proposed
to explore how multiple prion strains interact (Lemarre et al. 2019). However, such
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dynamics take place inside individual yeast cells that have their own biological prop-
erties (such as division which allows for transmission of proteins between attached
mother-daughter cell pairs). The second phenotype occurs when a cell loses prions due
to a transmission defect or destruction of existing prions within a cell (Newnam et al.
2011). As cells continue to divide over time and form a colony of thousands tomillions
of individual cells, phenotypic sectoring becomes observable (Klaips et al. 2014) (see
Fig. 1c) indicating where subsequent daughter cells did not inherit the [PSI+] prion.

Thorough understanding of these multiscale processes may require large samples
of yeast colonies under different experimental settings. This however leads to two
potential problems. First, experimental settings do not always result in determinis-
tic observable experimental output. Second, analyzing each individual colony is an
extremely tedious process; colonies are often scored as sectored or pure, but there is
additional information based on the size and number of sectors to help better our under-
standing of prion curing. For these reasons, large-scale screening involving detailed
colony phenotypic analysis is unfeasible without the use of suitable instruments and
algorithms capable of utilizing this information.

1.2 The Role of Image Analysis

Technological advances have made it possible to use computational approaches to
handle variation in experimental data and efficiently quantify large, complex bio-
logical datasets with the added benefit of reducing manual laboratory labor while
producing outcomes comparable to manual labor. Such methods include software and
image-based methods to automate microbial colony counting (Tronnolone et al. 2018;
Choudhry 2016; Lamprecht et al. 2007), edge detection (Canny 1986) and for circu-
lar objects, the circle Hough transform (Hough et al. 1962; Atherton and Kerbyson
1999).With the availability of greater processing power, deep neural networks or more
specifically, convolutional neural networks (CNNs) have made it possible to quickly
identify objects of interest in general datasets when conventional methods are inade-
quate. Deep learning methods applied to images typically have one or two objectives.
One class of methods seek to classify entire images by associating them with a set of
user-defined classes; a couple examples of well-known models include ResNet (Tai
et al. 2017) and VGG (Simonyan and Zisserman 2014; Minaee et al. 2021). Another
class of methods use semantic segmentation to assign user-defined classes to each
pixel in an image, rather than assigning classes to the image as a whole; such models
include U-Net (Ronneberger et al. 2015) and Mask R-CNN (He et al. 2017). Meth-
ods in both cases are usually either trained from scratch or build off of a pre-trained
model-such as ImageNet (Deng et al. 2009)-then re-trained on a new dataset to be
applicable to specific settings. One disadvantage of using deep learning is that models
often require large quantities of data. One way to address this shortcoming is through
synthetic image generation to increase the size of the dataset and to address an imbal-
ance of features in the available data. Generative adversarial networks are often used
to create feature-similar images (Andreini et al. 2020) and, when images are not too
complex, annotations of the image data become simpler to automate (Kruitbosch et al.
2022). It is also possible to construct computational pipelines using both classes of
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deep learning methods to obtain ensemble data from colony-level images of yeast.
For example, the model proposed by Carl et al. (2020) segments and classifies indi-
vidual yeast colonies from images of plates using both semantic segmentation and
image classification and demonstrates performance superior to the tool CellProfiler
(Lamprecht et al. 2007) for their scenario.

The majority of image-based models applicable to yeast however are designed for
micro-colony data where individual cells are clearly visible using cell microscopy
techniques, while efficient and similar models for large-scale colonies visible at eye
level are less numerous. Such models however, while designed to perform specific
tasks, have the implication of significantly reducing manual quantification of dis-
tinct phenotypes in laboratory settings. For example, petiteFinder (Nunn et al. 2023)
leverages a phenotype linked to cellular respiration and long-term growth in yeast
to quickly identify colonies with either phenotype present. Both traditional (Rattray
et al. 2023) and hierarchical (Signoroni et al. 2023) approaches leverage contextual
information for models to distinguish between different species and strains present in
colony image data. Previous methods of feature detection on colony images largely
utilize images where colonies appear homogeneous. One likely reason for this is that
too much heterogeneity is too complex for such methods to perform well compared to
homogeneous colonies. When analyzing sectored colony data however, multiple phe-
notypes are present experimentally and should be present when analyzing such image
data. While previous methods exhibit adequate performance on counting heteroge-
neous colonies, they are not extensively tuned toward simultaneously quantifying and
classifying heterogeneous colonies.

While deep learning methods for semantic segmentation have been developed for
microscopy images of yeast such as YeastSpotter (Lu et al. 2019), YeaZ (Dietler et al.
2020), and YeastNet (Salem et al. 2021), each method is primarily optimized for
cellular-level images of yeast. Carl et al. (2020) has a method grouping colonies into
broad classes, but themanual annotations in the images used in this study are limited to
classifying colonies into these broad classes and do not account for size and frequency
of individual sectors. Sectored colony phenotypes provide a rich, chronological record
of intracellular and population level prion loss events which, if quantified and mined,
would provide support for uncovering the mechanisms leading to such loss events.
Biologists historically have not had the tools to systematically isolate or annotate
individual colonies for patterns, leaving biological data unexplored. Current biological
pipelines either ignore sectored colonies or consider them all of the same type even
though sectors differ by size, shape or structure of sectors observed in experiments.
While advances have been made to quantify heterogeneous colony phenotypes, we do
not yet have a related analysis performed on sectored S. cerevisiae colonies, nor do
we have a dedicated toolset geared for quantifying individual sectored colonies from
colony-level image data with human-comparable output. The goal of this study is to
use a blend of computational tools to accelerate the ability of biologists to closely
identify and explore critical subsets of colonies, starting with sectored [PSI+] S.
cerevisiae colonies.

In this paper, we introduce [PSI ]-CIC ([PSI ] Colony Image Classifier) a compu-
tational pipeline to segment and quantify individual colonies of S. cerevisiae found
in image data using both deep learning and conventional tools. In Sect. 2 we detail
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the [PSI ]-CIC algorithm from segmentation of plates to classification of colonies.
More specifically, we demonstrate our procedure for training a deep learning model
with a U-Net architecture (Ronneberger et al. 2015) on synthetic image data, applying
the trained U-Net on real colony image data, and estimating the regions of different
phenotypes within each colony using information from the segmentations to obtain
reasonable classifications of each colony. Sect. 3 shows results of [PSI ]-CIC’s per-
formance on a set of images where prion curing is induced by heat shock. Section4
details a discussion of the [PSI ]-CIC and how this work has an impact on the use of
image segmentation in the context of prion dynamics in yeast.

2 Methods

In Sect. 2.1, we describe the components of [PSI ]-CIC for analyzing sectored yeast
colony phenotypes (see Fig. 2). In the first component, we construct a neural network
based on a U-Net architecture (Ronneberger et al. 2015) to perform image segmenta-
tion on plates containing hundreds of yeast colonies, then use the output of the network
to locate and extract individual colonies. In the second component, we use image pro-
cessing tools to classify colonies as [PSI+], [psi−], or sectored and estimate the
frequency and shape of sectors present in each colony. Section2.2 discusses how we
train the network used in this component to recognize colonies. For this process, we
detail how to incorporate synthetic training data of yeast colonies (see Appendix A.2)
into the training process to both address the issue of limited annotated data avail-
able and to show its effectiveness in aiding segmentation of real colonies. Section2.3
details howwe evaluate the performance of the [PSI ]-CIC algorithm on the annotated
experimental images.

2.1 [PSI]-CIC Algorithm

We follow the approach by Carl et al. (2020) and use the U-Net architecture for per-
forming semantic segmentation on images of plates to assign a label to every pixel
in the images (see Fig. 2). U-Net is a type of supervised CNN originally designed for
biomedical image segmentation (Ronneberger et al. 2015; Carl et al. 2020; Overton
and Tucker 2020), but is widely generalized to other segmentation tasks. For the imple-
mentation of U-Net in this paper, we modify the original architecture (Ronneberger
et al. 2015) in the following way: First, we use images of size 1024×1024 as input
instead of size 572×572. Next, we apply padding to the image before each convolu-
tional layer to preserve the spatial resolution, which we believe is reasonable since
each image almost exclusively contains background pixels on their borders. Finally,
we modify the output layer such that the final segmentation is of the same spatial
resolution as the input image and has three feature channels corresponding to one of
three classes: background, white colony, or red colony. A softmax activation function
is applied to the output of the last layer to obtain the probability of each class per
pixel, then the label assigned to each pixel is the maximum probability across the
three classes.
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Fig. 2 Illustration of [PSI ]-CIC. Our proposed pipeline consists of a segmentation-classification frame-
work, where we semantically segment images of plates containing hundreds of yeast colonies (see Sect.A.1)
for the purpose of locating and classifying individual colonies. We create synthetic training images with
corresponding ground-truth masks (details in Appendix A.2) used to fine-tune a modified U-Net architec-
ture (purple arrows) (see Sect. 2.1) for performing segmentation on images of full plates. We then apply
the sufficiently trained U-Net (green arrows) to segment the test images where colonies are detected (see
Appendix A.3) and cropped for classification. The classification step leverages the spatial information in
the segmentation to propose an annotation of the regions in the colony which is used to classify a colony
as [PSI+], [psi−], or sectored (color figure online)

After training U-Net as described in Appendix A.4, we apply the images of interest
as input to the trained U-Net and obtain segmentations of each image, then apply
the resulting segmentations as input to an object detection method. Since colonies in
each image appear circular by eye, we use the circle Hough transform as our method
to detect colonies captured within the segmentation. Each colony detected with this
method is recorded and cropped out of both the image and its segmentation for use
in the classification step of [PSI ]-CIC (See Fig. 2). Details for the implementation of
the circle Hough transform is explained in Appendix A.3.

Once individual colonies and their segmentations are extracted from the full-size
images, the goal is to classify each colony as [PSI+], [psi−] or sectored. Figure3
shows the annotation procedure for counting and quantifying sectors in each detected
colony. The procedure here uses the colony segmentation as input, constructs and
analyzes a proposed annotation or “idealized" sectoring using the colors of the colony
regions, then uses the properties of the annotation to classify the colony.

We make a few assumptions about the colony segmentations in order to classify
colonies in our experimental images. Since colonies appear circular, we first assume
that the colony segmentations are sufficiently circular and that the center of the colony
is also the center of the image. Since the red and white regions of colonies in the
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Fig. 3 Novel annotation and sector counting procedure. Flowchart of our proposed scheme to estimate and
quantify red and white regions using the process described in Sects. 2.1.1 and 2.1.2. a Assuming that the
colony segmentation is split into red and white pixels (left top), we take the boundary of the colony and find
the connected components of the red and white colony pixels respectively. We locate the endpoints of each
component corresponding to the interfaces between red and white components, and for each point construct
a line segment from that point to the center of the colony (left bottom). The line segments partition the entire
colony into idealized regions whose color is defined by the boundary in each region (i.e. R1 for red andW1
for white) (right). b To ensure regions are consistent with their color, we use the purity metric as defined
in Sect. 2.1.1 to find the proportion of pixels inside each region that have the same color as the pixels on
the boundary (left). Any regions whose purity metric is less than 0.5 will have the outer boundary change
color (right top). After the change, adjacent components that have the same color (regions surrounding
dotted line segments) will be merged (right bottom). c Example of A and B applied to a segmentation of an
experimental colony. An annotation of the red and white regions is proposed from the colony segmentation
and its regions corrected in order to satisfy the purity constraint (see Sect. 2.1.2) (color figure online)

experimental images appear sector-like by visual inspection, we also assume that each
red and white region of the colony originate from the center and expand outward with
linear edges, forming the edges of a geometric sector. Finally, we assume that the
colony boundary forms the arc of each sector-like region, which closes and bounds
each region.

The following process uses these assumptions to propose idealized regions (see
Fig. 3a) for each colony. Given a colony segmentation, we first decompose it into its
interior and boundary components. A pixel in the colony segmentation is considered
a boundary pixel if it is a colony pixel that is also adjacent to a background pixel.
Otherwise, that pixel is considered to be an interior pixel. For simplicity,we skeletonize
the boundary of the colony so that it has pixel width 1. Next, we further decompose
both the interior and boundary components of the colony respectively into their red
and white regions, and then find the connected components of red and white pixels
separately on the boundary. For each component, we construct an “idealized" sector
(see Fig. 3a) whose boundaries are represented using the component itself as the arc
and two lines connecting the endpoints of the arc to the colony center.

To approximate where to draw the lines representing the other two boundaries of
an idealized sector, we proceed to find the endpoints on the arc using two methods.
This relies on there being no more than 2 endpoints for each skeletonized boundary.
We first use the hit-miss algorithm within the SciPy package (Virtanen et al. 2020) to
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find the endpoints of the skeletonized boundary. For the second case, we scan each
pixel on the skeletonized boundary and label a pixel as an endpoint if there is exactly
one other boundary pixel adjacent to it. Note that this brute force method is capable of
finding endpoints on a corner of a skeleton, while the hit-miss algorithm is capable of
finding endpoints near a corner. We then take the union of endpoints located from both
methods, because initial observations suggest they correct each other’s shortcomings.

The remaining two boundaries of the idealized sector are then drawn using Bre-
senham’s line algorithm (Bresenham 1965) to connect the endpoints with the colony
center via lines in pixel space, resulting in a closed shape representing the entirety
of the idealized sector boundary, while the collection of pixels within represents the
interior of the sector. This process is repeated for all red and white regions in the
colony, resulting in the full initial annotation representing the regional breakdown of
the colony.

2.1.1 Purity Metric

Since we assume each region in a colony appears sector-like, we attempt to quantify
how well colony segmentations meet this assumption, then perform an additional step
for regions which are inconsistent with this assumption. To quantify a region of a
colony, we need to analyze the physical structure of the region itself and use simple
methods to address inconsistent structure present in the segmentation. To that end, we
define a metric we call “purity" to denote the proportion of pixels in each red/white
region that are of the same class to measure how well each proposed region and the
aggregation of the regions in a colony resemble well-defined sectors.

We first define purity in terms of a single region of a colony. After creating the
regions as described in Sect. 2.1, the color of the region (red or white) is assigned to be
the same color as the pixels in the region along the boundary of the colony. If we have
a sectored colony with a red regions and b white regions (see Fig. 3a), we denote the
red regions as R1, · · · , Ra and the white regions asW1, · · · ,Wb. Next, we denote the
function N to be the number of pixels in a region that have a given color. For instance,
we define N (Ri , red) as the number of red pixels in region Ri , and N (Ri , white) as
the number of white pixels in region Ri . Since these are the only two colors for colony
pixels in our segmentations, the total number of colony pixels in the region is therefore
the sum: N (Ri , red) + N (Ri , white). We then define the purity, p of region Ri with
respect to the red pixels as

p(Ri , red) = N (Ri , red)

N (Ri , red) + N (Ri , white)
. (1)

Similarly, we define the purity of region Wj with respect to the white pixels as

p(Wj , white) = N (Wj , white)

N (Wj , red) + N (Wj , white)
. (2)

Equations (1) and (2) are also described as the proportion of colony pixels within the
region that are red or white respectively, and thus give values between 0 and 1, where
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values closer to 1 indicate the estimated region in the colony is more sector-like with
respect to the color of the region, and values far away from 1 indicate the region is far
from an idealized sector based on our assumptions.

To define purity for an entire colony, we apply weights to each region to account
for size differences between the regions. We first define NR and NW to be the number
of pixels across all red regions and all white regions respectively, i.e.

NR =
a∑

i=1

[N (Ri , red) + N (Ri , white)] ,

NW =
b∑

j=1

[
N (Wj , red) + N (Wj , white)

]
.

(3)

Without loss of generality, for each region Ri and Wj , we assign weights, μ(Ri ) and
μ(Wj ), where

μ(Ri ) = N (Ri , red) + N (Ri , white)

NR + NW
,

μ(Wj ) = N (Wj , red) + N (Wj , white)

NR + NW
.

(4)

We then define colony purity, pw, as the weighted average over all regional purities,
i.e.

pw =
a∑

i=1

p(Ri , red)μ(Ri ) +
b∑

j=1

p(Wj , white)μ(Wj ) (5)

or equivalently,

pw =
∑a

i=1 N (Ri , red) + ∑b
j=1 N (Wj , white)

NR + NW
. (6)

Just like in Eqs. (1) and (2), (6) above takes a value between 0 and 1, where values
closer to 1 indicate the estimated regions in the colony are collectively more sector-
like with respect to the output segmentation. On the contrary, if pw is far from 1, this
indicates that the estimated regions do not completely capture idealized sectors.

2.1.2 Purity Correction

Due to potential pixel-level classification errors in the segmentation step, shapes of
each region in the colony segmentationmay not sufficiently resemble idealized sectors.
Here, we include a procedure to identify inadequate regions by using the value of
the purity metric to perform a “correction" of those region with respect to the colony
segmentation.This results in a proposed regional annotation capturing standout regions
in the colony segmentation (see Fig. 3b).
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We assume that the red and white regions have been estimated and the purity for
each has been obtained using Eqs. (1) and (2). We then impose a constraint on the
purity of each region such that we require at least 50% of a region’s pixels to be of the
same color as the region itself to satisfy our assumption that the region is adequately
sector-like. If this constraint is not met for a region, then we swap the labels of the
pixels on the region’s boundary which in turn changes the color assigned to the region.
Mathematically, without loss of generality, if region Ri has a purity of less than 0.5
(i.e. p(Ri , red) < 0.5), then region Ri has more white pixels than red pixels. For such
regions, we change the labels of the pixels along the arc of region Ri corresponding
to the colony boundary from red to white. As a consequence, modifying the color of
the boundary leads to changing the assigned color of the region from red to white.
This process is repeated for all red and white regions independently. Following this
procedure, regions are merged if their corresponding boundary pixels are of the same
color (see Fig. 3b). By using the mediant inequality as shown in Eq. (7), if the purity
of each of these regions is at least 0.5, then the resulting merged region will also have
purity greater than 0.5. For example, if there are n red regions adjacent to each other
following the correction, then

0.5 ≤ min
1≤i≤n

p(Ri , red) = min
1≤i≤n

N (Ri , red)

N (Ri , red) + N (Ri , white)

≤
∑n

i=1 N (Ri , red)∑n
i=1 [N (Ri , red) + N (Ri , white)]

≤ max
1≤i≤n

N (Ri , red)

N (Ri , red) + N (Ri , white)

≤ max
1≤i≤n

p(Ri , red). (7)

If there were any changes made to regions that did not satisfy our constraint, we
then repeat the procedure as described in Sect. 2.1 to propose a regional annotation of
the colony accounting for the swapped boundary pixels, and recompute the purity for
all regions in the colony segmentation. This procedure is repeated until we obtain a
proposed regional annotation of the colony where all regions satisfy our constraint.

At the conclusion of purity correction, the color of the pixels on the outer boundary
for each independent region will be the same color as the majority of pixels in those
regions.We then use Eq. (6) as described in Sect. 2.1.1 to score howwell the proposed
regional annotation collectively captures sectoring behavior in the colony.

2.1.3 Class Assignment

Upon obtaining annotations of colonieswhose regions all meet the condition described
in Sect. 2.1.2, the number of red and white regions remaining are used to assign a
qualitative class on each colony. Colonies with no red regions and at least 1 white
region are labeled as [PSI+]. Colonies with at least 1 red region but have no white
regions are labeled as [psi−]. Colonies that have at least 1 red and white region
are labeled as sectored. In addition, sectored colonies are given a secondary label
indicating frequency of sectors. A sectored colony is labeled as S1 if it has one sector,
S2 if it has two sectors, and so on.
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2.2 Training (Image Segmentation)

Due to the lack of hand annotated colony images, we turn to training a neural network
with synthetic images where it is possible to efficiently create ground-truth masks
labeling each pixel. An example of a synthetic image generated with its corresponding
ground-truth mask is shown in Fig. 8. The objective of this approach is to generate sets
of synthetic images of yeast colonies which exhibit key features of the yeast colonies
found in the experimental images.

The key features in the images we consider for this work apply to the colonies
and the background information. For the colonies, these features consist of circular
colony shapes where each colony exhibits sectored red and white regions with slight
color variations. We use two representative colors (1 red and 1 white) to fill each
circle representing the colony, where the circle is filled with the white color and the
red sectors are overlayed. For the background, these features include the colors of the
plate, the table on which the plate rests and the border of the plate where aberrations
are present, each of which exhibit slight color variations. We choose a representative
color independently for each of these three features.

Two corresponding ground-truth masks are generated alongside each synthetic
image representing a pixel-by-pixel segmentation of the synthetic image and frequency
of sectors per colony respectively. The first mask is created by thresholding the syn-
thetic image, with each pixel in the mask depicting the true label of every pixel (red,
white, background). The second mask is generated by placing a small non-zero region
at the center of colony, whose intensity is greater when more sectors are present. For
simplicity, all the synthetic training images used here have exactly one sector in each
colony (see Sect. 4 for more information). More details pertaining to the process for
generating the synthetic images with corresponding ground-truth masks is described
in Appendix A.2.

After the masks are created, the synthetic image is subject to Poisson noise
to introduce slight color variations that are observed in the experimental images
(see Sect.A.1). Both the synthetic images and the masks are each saved with size
1024×1024. We then use our synthetic images to train a modified U-Net. (For details
see AppendixA.4) A total of 200 synthetic images with their two correspondingmasks
were generated for this study using the process described in this Section. Out of these
images, 150 were used directly for training U-Net, while the remaining 50 were set
aside for validation. We use Google Colaboratory to train our U-Net architecture on
the 150 images. (Additional details on model training are given in Appendix A.4)
After training U-Net, we use the experimental images as input to obtain an output
segmentation for the classification step of the [PSI ]-CIC algorithm. Since our exper-
imental images do not include pixel-by-pixel ground-truth annotations, the quality of
the segmentations were judged by eye before a usable set of parameters for U-Net was
used for the final version of our [PSI ]-CIC algorithm.
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2.3 Evaluation

Labels are assigned to each colony at the end of the [PSI ]-CIC algorithm (Sect. 2.1))
such that the conditions described in Sect. 2.1.2weremet. [PSI ]-CICpredicts colonies
with only one colored region as either [PSI+] if they were purely white or [psi−]
if they were purely red. Colonies that have at least one red and one white region are
first labeled as sectored, then are assigned a secondary label indicating the frequency
of sectors. We note that sector number is not the only feature of interest, but we use
it as a simple way to assess performance (see Sect. 4). In the experimental images,
sectored colonies have at most five sectors, so the possible classes assigned to sectored
colonies are S1, S2, S3, S4, and S5, denoting both a sectored colony with its frequency
of sectors.We evaluate the performance of [PSI ]-CIC by comparing the proportion of
extracted quantifiable colonieswhose true labelsmatch those predicted by [PSI ]-CIC,
both with and without the secondary label for sectored colonies.

3 Results

Here we present results on the performance of [PSI ]-CIC on segmenting and clas-
sifying colonies from the images used in this work. Section3.1 provides results on
the segmentation and classification of colonies found within the training images. Sec-
tion3.2 presents results on the segmentation and extraction of quantifiable colonies,
indicating how much of the annotated colony data [PSI ]-CIC was able to isolate.
Section3.2 provides results on the classification performance of [PSI ]-CIC.We show
that our method is sufficiently accurate at classifying colonies as [PSI+], [psi−] or
sectored.

3.1 Training Images

Figure 4 A shows an example of one synthetic image and its corresponding segmen-
tation with distinguishable colonies. From the 150 images used to train U-Net, we
obtained a cross-entropy loss of 0.0022 and achieved a segmentation accuracy of
99.96% for the training and validation images after 24 epochs. Approximately 12,786
colonies from the synthetic images were extracted for classification. The remaining
7,214 colonies were excluded since their centers were predicted to bewithin 150 pixels
from the border of the image.

When only the number of connected components of red andwhite boundary regions
were considered, approximately 98.2% of those colonies (12,250 colonies) were cor-
rectly classified as having exactly one sector, while the other 236 colonies were
incorrectly classified as either [PSI+] or [psi−]. When our purity correction scheme
is applied, the prediction accuracy drops to 95.8%, with 547 colonies incorrectly clas-
sified as either [PSI+] or [psi−]. Upon closer inspection of the incorrectly classified
colonies, we found that colonies predicted as [PSI+] had no more than 4% of their
composition as red and colonies predicted as [psi−] had no more than 4% of their
composition as white, regardless of whether purity correction was applied. This sug-
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Fig. 4 Plate level segmentations. a Example of a synthetic image (top left) and its corresponding output
segmentation (top right) from the trained U-Net, with two isolated colonies shown up close. The U-Net
segmentations have the following color code: Background pixels are black, red colony pixels are gray,
and white colony pixels are white. b Output for U-Net using one of the experimental images as input. In
the middle are the original representations and corresponding output segmentations from U-Net for two
colonies from the image (color figure online)

gests that the classification accuracy of our proposed model requires a size threshold
on each sector in order to be detectable.

3.2 Testing Images

Before applying the full pipeline to our real plates, we examined if our pre-trained
U-Net was sufficient at pixel level segmentation on our real images. A possibility
we considered was performing additional processing on the raw images. Because we
have no ground truth data sets, this comparison was done by visual examination by
computational and biological researchers. For image set 1 (see Fig. 7left) we observed
the image resolution was sufficient that the pixel level segmentation appeared to dis-
tinguish colonies from background, although there were edge effects. However, for
image set 2 (see Fig. 7right) we found pixel level segmentation was improved after we
employed a color transfer method as described in Appendix A.1.
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Table 1 Isolating quantifiable colonies

Plate True Detections TP FN FP Precision Recall

1 355 322 243 112 79 0.755 0.685

2 190 156 122 68 34 0.782 0.642

3 269 318 186 83 32 0.853 0.691

4 236 283 192 44 91 0.678 0.814

5 177 187 151 26 36 0.807 0.853

6 127 139 121 6 17 0.877 0.953

7 106 122 106 0 16 0.869 1

8 92 98 81 11 17 0.827 0.88

9 127 101 91 36 10 0.901 0.717

10 112 119 105 7 14 0.882 0.938

11 131 136 120 11 16 0.75 0.779

Breakdown of the number of colonies found on each plate from the images used in this study. For each
image, “True” is the total number of colonies in the image that a biologist performingmanual countingwould
be considered quantifiable, or colonies that could be analyzed with simplicity. “Detections” is the number
of objects considered for classification, regardless of whether or not they were of quantifiable colonies.
Following image segmentation, “TP” (True Positives) is the number of quantifiable colonies extracted,
“FN” (False Negatives) is the number of quantifiable colonies that were not detected, and “FP” (False
Positives) is the number of non-quantifiable colonies detected. Precision is defined as TP/(TP+FP), which
is the proportion of all detections consisting of quantifiable colonies. Recall is defined as TP/(TP+FN),
which is the proportion of all quantifiable colonies detected.

Following the execution of the circle Hough transform on these images, we detected
approximately 1,981 circular objects (1266 in image set 1 and 715 in image set 2) (see
Table 1). We note that almost all of the colonies near the edge of each plate were
ignored as they were difficult to discern structurally. From these objects, 1,585 were
inspected to be of quantifiable colonies. Approximately 38 circular objects (which
included 30 quantifiable colonies) had ill-defined estimated regions and thus were
excluded from further analysis. After this, we had 1,555 quantifiable colonies which
we classified and compared against manual colony annotations.

From the quantifiable colonies, 415 colonies were predicted to be sectored, with
the number of sectors predicted ranging from 1 to 3. Approximately 89.5% of the
quantifiable colonies across all image sets used in this work were classified the same
as those manually annotated (Fig. 5a). For colonies labeled as homogeneous, 691 were
labeled as [PSI+] and 374 as [psi−] (Fig. 5b). In contrast, if we only count the number
of connected components on the boundary without performing purity correction, we
obtain only a 50.4% accuracy in predicting colony states, demonstrating that our purity
correction scheme in [PSI ]-CIC performs better for estimating regions in the colony
segmentations.

We use confusion matrices to see how both sector counting schemes place colonies
into the correct groups in more detail across both image sets (Fig. 5b). We clearly see
that including our purity correction scheme places more colonies on the main diago-
nal of the matrix. Surprisingly, all quantifiable colonies detected which were manually
annotated as [PSI+] were correctly predicted to be [PSI+]. This was not the case
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Fig. 5 Accuracy of colony-level predictions on quantifiable colony data. a Total number of colonies of each
class correctly classified. Blue and red bars indicate the number of colonies correctly classified without
and with purity correction respectively. The height of the bars represent the number of colonies correctly
classified, with the maximum number of colonies possible for each class indicated by the green bars. b
Confusion matrices showing the frequency of correct and incorrect predictions with our pipeline without
(left) and with (right) purity correction applied. The color of each cell indicates the percentage of colonies
with the same ground-truth class that were assigned a predicted class through our pipeline. Since [PSI ]-
CIC did not predict colonies to have more than 3 sectors, the 15 colonies whose true labels are S4 and
S5 are not included here. c Some examples of colony segmentations and annotations for [PSI+], [psi−]
and sectored colonies along with the frequency of sectors (S1, S2, S3). d Some examples of segmentations
and annotations for detected objects whose predictions were incorrect or which have no ground-truth class
(either not quantifiable or not a colony) (color figure online)

when purity correction was excluded. All but nine of the colonies manually annotated
as [psi−] were correctly classified, with the incorrectly classified ones labeled as S1
or S2. When purity correction is not applied, this method significantly overestimates
the number of sectored colonies whose manually annotated class is [psi−]. For sec-
tored colonies, our purity correction scheme shows improved accuracy in classifying
colonies with one or two sectors, but slightly less accuracy in classifying colonies with
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Table 2 Classification
performance

Class Precision Recall F1 Score

[PSI+] 0.969 1 0.984

[psi−] 0.908 0.979 0.942

Sectored 0.981 0.876 0.925

S1 0.788 0.810 0.799

S2 0.694 0.621 0.655

S3+ 0.5 0.5 0.5

Table of Precision, recall, and F1 score for each class on quantifiable
colonies predicted with [PSI ]-CIC. For each class, the following def-
initions apply independently: True positives (TP) are colonies whose
predicted class and ground-truth class match. False positives (FP) are
the set of colonies with one predicted class, but whose manually anno-
tated class is different. False negatives (FN) are colonies not predicted
to be of a given class, but were manually annotated with that class. Pre-
cision is defined is TP/(TP+FP), representing the number of colonies
correctly predicted to be of the given class, divided by the number of
colonies assigned this class. Recall is TP/(TP+FN), representing the
number of colonies correctly predicted to be of the given class, divided
by the number of coloniesmanually annotatedwith the given class. The
F1 score is the harmonic mean of both precision and recall. The bot-
tom three rows present the same measures but additionally include
frequency of sectors predicted for colonies as a condition for being
counted as TP

three or more sectors. Fifteen colonies from those extracted were manually annotated
as 4-sectored (S4) or 5-sectored (S5), but were not predicted with these classes.

Sectored colonies whose predicted class differs between those predicted without
and with purity correction have their predicted frequency of sectors reduced as part
of the correction scheme. This suggests our purity correction scheme is sufficiently
preventing overcounting of the number of regions per colony in our dataset. Fig-
ure5 C shows the segmentations and regional annotations of a few colonies which
were correctly classified. Examples of colonies which were either non-quantifiable or
incorrectly classified are shown in Fig. 5d.

The accuracy of colony classifications within each class is shown in Table 2. From
the imagesweused in this study,we found that all quantifiable colonies extractedwhich
were manually annotated as [PSI+]were correctly predicted as [PSI+], hence recall
for this class was 1. The source of precision being less than 1 is due to a small number
of 1-sector colonies being classified as [PSI+]. Similarly, recall for [psi−] colonies
was close to 1 due to some being incorrectly classified as sectored, and precision being
less than 1 due to a subset of manually annotated sectored colonies being incorrectly
classified as [psi−]. Interestingly, while the accuracy in correctly predicting sectored
quantifiable colonies is not as impressive, this category has the highest precision,
indicating that the highest proportion of colonies predicted to be sectored were also
manually annotated as sectored. However, when considering the frequency of sectors
in these colonies, performance degrades with higher frequency of sectors as shown in
the bottom half of Table 2.

123



   12 Page 18 of 31 J. Collignon et al.

Examples of regional colony annotations before and after purity correction are
shown in Fig. 6a. Many colony segmentations which had relatively small red or white
regions did not meet the threshold for the purity metric and were thus not counted as
separate regions. While the use of our purity correction scheme does alter the classi-
fications of approximately half of colonies classified, our results show approximately
42% of all previously misclassified colonies became correct when purity correction
was applied (Fig. 6b). In contrast, a subset of 55 colonies were classified incorrectly
with purity correction when the original predictions were previously correct, yet the
performance of our pipeline outweighs this disadvantage. In nearly all the colonies
classified, the proposed regional annotations of the purity corrected colonies exhibit
a higher weighted purity (Fig. 6c), as this was one of the objectives of our purity cor-
rection scheme as described in Sect. 2.1.2. Based on this information, our method is
able to better capture sector-like regions in the colony segmentations which in turn
improves accuracy in colony classification.

4 Discussion

Two aims of our pipeline for localizing colonies are to find all manually annotated
colonies, and to suggest a way to classify colonies where manual annotations are
not reliable. One objective [PSI ]-CIC achieves is ensuring high recall, allowing for
extraction of as many quantifiable colonies as possible from manually annotated data,
thus satisfying the first aim.While we note that the precision for detecting quantifiable
colonies is not very high (see Table 1), such performance is expected because nearly
all colonies in the images have a sufficient degree of circularity, not just quantifi-
able ones. As a result, our method extracted and provided reasonable predictions for
approximately 400 additional colonies from the images which were not considered
quantifiable. As such, [PSI ]-CIC could be used as an additional aid in quantifying
colonies that are not considered quantifiable to experimentalists. Furthermore, we
emphasize that while we use labels S1–S5 for sectored colonies as a way of showing
our results, our primary goal with [PSI ]-CIC is to provide a detailed annotation of
individual colonies for biologists to study. The use of labels S1–S5 is primarily for ease
of comparison between colonies in our image set while colony annotations provide
spatial information on sectors in addition to their frequency. While classification mod-
els are suited for predicting the class of an object of interest, it is challenging to also
obtain spatial information on the object, motivating our choice to design our algorithm
to separately address the problem of locating sectors before classifying colonies.

We observed a few major factors present in the colony images which had an influ-
ence on classification accuracy. First, we noticed that many colonies had at least one
red or one white region comprising less than 5% of the colony area. As a result, our
purity correction method in [PSI ]-CIC did not accurately isolate these small regions.
We believe this is likely a consequence of low image resolution. Near the center of the
colony, it is possible for multiple sectors to occupy the same pixel, making it appear in
the output segmentation that a sector may not originate at the colony center. Smaller
regions in the segmentation may also not satisfy the threshold of the purity metric as
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Fig. 6 Purity correction improves classification. a Example colony segmentations with annotated regions
before and after purity correction. b The predictions on the quantifiable colonies before and after purity
correction, partitioned by their manually labeled states. “Remained Correct” is the set of colonies whose
classifications both before and after purity correction matched their manually annotated classes. “Became
Correct” is the set of colonies which were incorrectly classified before purity correction, but were correctly
classified following purity correction. c Violin plots representing the distributions of differences between
purities of colonies with and without purity correction, with positive differences indicating higher purity
when correction is applied. Horizontal bars indicate the minimum andmaximum differences for each subset
of classified colonies based on their predicted state and sector frequencies (color figure online)

defined in Sect. 2.1.2 and as such our method suggests such regions to be part of an
adjacent region.

Second, there were also a subset of non-isolated quantifiable colonies whose indi-
vidual colonies were classified. Due to our assumption that colonies are circular,
adjacent clustered colonies may have overlapping regions present in each colony seg-
mentation. Furthermore, clustered colonies were more likely to be excluded from
classification since the circle detection step may have had insufficient information in
these regions to detect circles there. Visual inspection also suggests that [psi−] regions
in these colonies have a lower growth rate than [PSI+] regions, reducing circularity
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of the colony as a whole. However, this difference did not appear to have a significant
effect on the number of colonies detected.

Third, individual colony sizes-or similarly, image sizes-may affect both segmen-
tation and classification accuracy. Previous deep learning based segmentation tasks
involving microbial colonies on plates used images with spatial dimensions in the
couple thousands for each individual plate to adequately capture colonies within the
full range of sizes present (Carl et al. 2020; Ferrari et al. 2017). Capturing colony-
level information from images of full plates would typically necessitate having high
resolution images in order to ensure the individual colonies have a sufficient amount
of resolution needed to exhibit clear sectors. However, the purity correction scheme
in [PSI ]-CIC suggests that this size limitation need not be as strict if the objective
is to partially capture estimated sectored regions rather than to fully segment them.
Furthermore, a priori knowledge of colony sizes relative to the plate should still be
used to impose a minimum size limitation for colony images to ensure a sufficient
amount of detail is captured in the output of the model.

In contrast with the model proposed by Carl et al. (2020), [PSI ]-CIC relies on
the use of synthetic images for training U-Net to segment real colonies rather than
using real images directly. This is a convenient and reasonable strategy for simpli-
fying ground-truth mask generation because colonies in our images appear circular
and exhibit mostly geometric sector shapes by visual inspection. However, such a
strategy makes it more difficult for semantic segmentation models to generalize to
more complex image data. Despite this simplification, [PSI ]-CIC was still able to
sufficiently locate, partition, and classify colonies in the experimental dataset used
in our study. One limitation of this present study is that [PSI ]-CIC has been highly
tuned to the image resolutions in our colony image sets and does not use images of
differing resolution. Further accuracy for classifying colonies using [PSI ]-CIC may
be possible with images large enough to accurately annotate the interfaces between
the colony boundary and the interfaces between its red and white regions, but colonies
should be large enough for detection. Since the images used by Carl et al. (2020) are
more than 3000 pixels in both height and width dimensions-nearly three times higher
than the images used in our study-and colony sizes much smaller in proportion to
the plate sizes, such images may be too small to reliably segment and annotate if the
plate images are resized to 1024×1024. As such, a direct comparison of classification
results between [PSI ]-CIC and that of Carl et al. (2020) using their dataset and ours
will not be feasible unless both models are capable of sufficiently classifying images
of the same dimensions.We believe it is possible to tune [PSI ]-CIC to analyze images
of higher resolution tomake a direct comparison, as the creation of synthetic images of
different sizes is simple to implement in our approach. In addition, while our algorithm
may potentially utilize higher resolution images to obtain scalably higher resolution
colony annotations, computational scalability is a limiting factor requiring suitable
hardware. Future work should address consistency of results with respect to image
size and resolution to ensure a direct performance comparison could be made between
[PSI ]-CIC and Carl et al. (2020) as well as other similar image classification models
which could be adapted.

Theuse of traditional feature-based approaches to address our specificproblemwere
insufficient for our image data. One direction we have tried was converting each image
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to a single-channel scale (grayscale) to simplify colony detection, but we found that
many [psi−] and sectored colonieswere not being recognized. Twohypotheses are that
these colonies blend in with the background when images are converted to grayscale
and significant variation in colony phenotype affects the performance of feature-based
methods. Furthermore, [PSI+] is a whole spectrum of colony colors between red and
white.Webelieve tuning a deep learningmodel such asU-Net on images encompassing
this spectrumof variationwill allow formore streamlined analysis compared to feature-
basedmethods that do not account for the amount of heterogeneity present in our image
data. We note that the sector annotation pipeline we use is highly constrained to the
task of locating red and white regions in each colony. Alternate approaches such as
clustering of pixels based on color, may be more appropriate for features of interest
which exhibit a spectrum of colors (Weller et al. 2024). We emphasize that the goal
of our approach was not to solve all colony annotation problems, but to advance the
ability to quantitatively assess sectored [PSI ] colonies.

The use of synthetic images for training CNNs is useful for improving image seg-
mentation and classification when the quantity of annotated data is insufficient and the
synthetic images capture sufficient variation present in the desired images to be seg-
mented. While our synthetic images primarily capture the geometric features present
in the experimental images, these features vary quantitatively across the experimental
dataset. We point out three sources of variation which could be addressed to boost
complexity of the synthetic images. First, while the synthetic images account for most
of the color variation present in image set 1 as described in Sect.A.1, they do not
account for the color variation in image set 2 because the images in this set needed to
be pre-processed before they were passed to U-Net for segmentation. An ideal sam-
ple of synthetic images should have similar color distributions as in the experimental
images. Otherwise, U-Net would need to be independently retrained for each distin-
guishable set of images. The second source of variation consists of different colony
sizes among the synthetic and experimental images. The colonies in our synthetic
images have equal sizes, whereas the experimental images have a range of sizes. The
third source of variation is the frequency of sectors present in each colony. While each
of the synthetic images all contain colonies with exactly one sector each, sector sizes
were allowed to vary between colonies.

Even though our synthetic images do not fully capture all these sources of variation,
our results emphasize that our synthetic images contained enough information to train
U-Net to locate and segment colony features in the experimental images. In particular,
following the U-Net training procedure using the synthetic images as described in
Sect. 2.2, our results (Sect. 3.2) show [PSI ]-CIC is adequately capturing sector-like
regions in experimental colonies and further classifying them as described in Sect. 2.1.
We further note that while color and size are the two primary sources of variation in
our images, other sources are possible. For instance, in our approach to training U-
Net, our synthetic images contained colonies with at most one sector. We chose this
because visual inspection of the data used in thiswork shows that amajority of sectored
colonies identified were single-sectored. An extension of our approach would be to
train on synthetic colonies with frequencies of sectors matching the real data available.
In addition, while we acknowledge that using colony data capturing more complex
colony and sector morphologies will be useful for training our algorithm, the analysis
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of our algorithm on this type of data lies outside the scope of this present study. In
Klaips et al. (2014), sectoring patterns change under distinct treatment conditions, so
it will be useful to tailor a training set that incorporates prior available knowledge
on the outcomes of different treatments on yeast colonies. More structured and more
diverse training data is needed to incorporate additional sources of variation present
with experimental images and to ensure robust performance of [PSI ]-CIC across
multiple experimental conditions.

We emphasize that our [PSI ]-CIC algorithm is designed to provide a solution
for quantifying prion phenotypes in yeast from colony-level image data. While our
algorithm is extensively tuned to identify [PSI+] and [psi−] colonies, we recognize
that tuning to additional prion strain datasets which exhibit colony-level phenotypes
will be a useful extension of the applicability of our algorithm to test its generalizability
toward recognizing other strains. Furthermore, while our algorithm has been tested
on colonies each containing hundreds of thousands of cells, it has not been tested on
datasets containing smaller colonies where individual cells are visible and sectors less
defined. In both cases, deep learning models with many trainable parameters which
utilize image data must have suitable hardware such as a GPU to store and process
such data during the training process, a necessary limitation for our present work.
Further tuning of our algorithm on datasets outside the scope of this current work will
be necessary to address both the capability of the algorithm to generalize to similar
data. Doing so will significantly improve the usefulness of our algorithm in laboratory
settings to reduce the need for manual quantification of colony data.

We note that the primary features we considered when creating synthetic images for
training U-Net involve circles and known colors from experimental images. As such,
any other organism which exhibits these physical properties are prime candidates for
automating colony classification. A natural extension of our work would be to adapt
[PSI ]-CIC to classify colonies of Candida albicans which exhibit a white to opaque
color switch (Lohse and Johnson 2009; Sasse et al. 2013) as well as different colony
size phenotypes under the same growth timeline (Morschhäuser 2010). Additional
types of sectored image data at the colony level such as gene expression data obtained
through flourescent-based assays (Liu et al. 2016; Hallatschek et al. 2007) could be
incorporated to develop methods for spatial structural analysis of such data. These
considerations warrant a further generalizability study on the usefulness of [PSI ]-
CIC in segmenting images containing other species of yeast or other circular shaped
colonies as a future research direction.

5 Conclusion

In this study,weconstructed anewcomputational pipelinewecall [PSI ]-CICdesigned
for high-throughput segmentation and quantification of sectored yeast colonies found
in images of experimental plates. We show that synthetic images could be used for
training U-Net to segment colonies from experimental images based on their color and
simple shape. Results show that we are able to obtain acceptable colony counts from
plated colony images, given that the segmentation adequately captures the circularity
and regions of the colony. We demonstrate that [PSI ]-CIC obtains colony states and
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sector frequencies comparable to manual annotations from experimentalists. This is
the first model designed specifically for quantifying sectors in yeast colonies indicative
of changes in prion dynamics within individual cells. The work discussed here is a
big step forward for providing researchers a computational framework to gain novel
insights into the mechanisms driving prion loss in yeast colonies.

Appendix A

A.1 Image Acquisition and Pre-processing

Exponentially growing cultures of the yeast Saccharomyces cerevisiae strain 74D-
694 MATa: ade1-14, trp1-289, his3�-200, ura3-52, leu2-3, 112, [PSI+][P I N+]
were subjected to heat shock at 40◦C for 30min by water bath to induce curing.
Approximately 500 cells were then plated onto YPD-Cox media (0.25% yeast extract,
1% bactopeptone, 2% agar, 4% glucose) and grown for 3 days at 30◦C followed by 5
days at room temperature to allow colony pigmentation to develop. Images of plates
were acquired using an Epson V370 scanner.

A total of 11 images of different plates were acquired and used to test [PSI ]-
CIC. Image set 1 (plates 1–5) contains five images with one plate per image each
containing up to approximately 500 colonies (example in Fig. 7left). All the colonies
in these images are either white [PSI+], red [psi−], or sectored phenotype (a mix
of both [PSI+] and [psi−]). One of these five plates contains a large number of
colonies with sectored phenotypes. Image set 2 (plates 6-11) contains six images
which are similar to those in image set 1 (example in Fig. 7right), but these images are
less saturated overall and four of these plates contain a significant number of sectored
colonies present. These images were pre-processed using a color style transfer method
(Chia 2019) before further use.

Colonies in each image were hand annotated and sectoring of each quantified by
a yeast biologist. Colonies appearing entirely white or red were scored [PSI+] or
[psi−] respectively. If a mix of red and white pigment was present in a colony it
was scored as sectored. Colonies too small to reasonably determine the presence or
absence of sectoring were deemed unquantifiable and not considered in our results. If
the boundaries of multiple colonies intersect each other in a cluster extensively enough
such that half the colony volume is shared, the entire cluster is deemed unquantifiable.

Both image sets 1 and 2 were used for different experiments at different times. One
important feature to note across image sets 1 and 2 is variation of color and lighting
conditions. Since U-Net is trained on synthetic images whose color is based off the
images in set 1, U-Net may not accurately segment colonies from image set 2 because
by eye the color profiles are different from what U-Net was trained with. Instead of
retraining U-Net to address this issue, we opt toward pre-processing the real images
until they appear close to a “standardized" image.We use an implementation of a color
profile transfer scheme written by Chia (2019) and adapt it for execution on Google
Colaboratory. This code is an implementation of the work by Reinhard et al. (2001)
which transforms a source image by applying onto it the color characteristics of a
desired “target" image. The objective for this pre-processing step is to ensure that the
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Fig. 7 Yeast colony images. Example images of yeast colony plate 2 from image set 1 (left) and plate 8
from image set 2 (right) (color figure online)

images in set 2 have similar color features as the images in set 1 so that U-Net will
produce similar quality output segmentations.

For the purpose of this work, we chose the target image to be the image of plate 2 in
image set 1 (also shown in Fig. 7left). All six images in set 2 (plates 6-11) were used as
source images for the color transfer scheme before input to U-Net. No pre-processing
was done on image set 1 because these images have the color profiles that U-Net was
originally trained on. No adjustments in brightness and contrast were applied to these
images before or after the color transfer scheme was applied. While there are subtle
differences between the color profiles in the original and pre-processed images in set 2,
their output segmentations are significantly different. In particular, the segmentation of
the preprocessed images display obvious quality improvements such that many more
colonies could be sufficiently discerned for classification. Most of the colonies present
in the output segmentations were sufficient enough for the classification scheme as
described in Sect. 2.1.

A.2 Synthetic Image Generation

Due to the lack of hand annotated colony images, we turn to training a neural network
with synthetic images where it is possible to efficiently create ground-truth masks
labeling each pixel. An example of a synthetic image generated with its correspond-
ing ground-truth mask is shown in Fig. 8. This approach involves generating sets of
synthetic images of yeast colonies which exhibit key features of the yeast colonies
found in the experimental images, which comprise of colonies with sectored red and
white regions where the color of each slightly vary. We use two representative colors
for the colonies-1 red and 1 white color-to fill each circle representing the colony and
the overlying sector. Similarly, we use three representative colors for the background
corresponding to the interior of the plate, the border of the plate, and the table on
which the plate rests respectively and fill each of these regions with those colors. Each
color selected corresponds to an RGB vector [R,G, B] such that R,G, B ∈ [0, 255].

For each synthetic image, two representations as well as five masks are generated,
each with size 1024×1024. The two representations of each image include one with
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Poisson noise and one without. The images containing Poisson noise are used for
training U-Net in Sect. 2.2, while the images without Poisson noise are to simplify the
process for creating the associated ground-truth masks. The five masks created label
(1) the colony pixels, (2) the white colony pixels, (3) the red colony pixels, (4) the
red and white colony pixels merged, and (5) the number of sectors in each colony.
The first three masks are created through a series of grayscale conversions and binary
thresholding operations on the image at intermediate steps of the process. The fourth
mask is used as the ground-truth mask for training U-Net, while the fifth mask is used
to assess the accuracy of [PSI ]-CIC in quantifying the frequency of sectors in each
colony (see Sect. 2.2).

For each synthetic image, the process for creating the noisy/noiseless representa-
tions and ground-truth masks is as follows:

1. We first initialize the image by changing the color of the background represented
by the RGB vector [54, 54, 68]. This element represents the tabletop at which the
plate rests.

2. A circle of radius 30 whose center coincides with the image center is generated
above the background and filled with the color represented by the RGB vector
[137, 155, 160]. This element represents the body of the plate.

3. 100 points are sampled inside the circle generated in step 2 such that the minimum
distance between any two points is at least 2. Then, circles of radius 1 are generated
whose centers coincide with the sampled points. Each circle is then filled with the
color represented by the RGB vector [221, 217, 199]. These elements represent the
colonies on the plate.

4. Two circles of radius 29 and 31, each with the same center as the circle generated
in step 2 are generated. The space in between the circles is filled with the color
represented by the RGB vector [105, 107, 152]. This element represents the part
of the background corresponding to the border of the plate.

5. An image of size 1024×1024 is saved temporarily. Then, binary thresholding is
performed on the resulting image following a grayscale transformation. The result
is the final ground-truth mask representing colony pixels.

6. For each circle generated in step 3, two points are uniformly selected on the
circle, and lines connect those two points independently with the center of the
circle. The space in between is filled with the color represented by the RGB vec-
tor [148, 36, 23]. This element represents the red region of a colony. For circles
where n sectors will be generated, 2n points are uniformly selected, and the process
described here is performed for each pair of points along the length of the circle.

7. Step 4 is repeated to regenerate the border above the colonies.
8. An image of size 1024×1024 is saved. The result is the noiseless representation of

the synthetic image.
9. Binary thresholding is performed following agrayscale transformationon the image

from step 8. The result is the final ground-truth mask representing white colony
pixels only.

10. The white colony mask from step 9 is subtracted from the full colony mask in step
5. The result is the final ground-truth mask representing red colony pixels only.
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Fig. 8 Synthetic Representation of Experimental Images. (Left): Experimental image of yeast colonies with
both red and white phenotype obtained with permission from the Serio lab. (Middle): Synthetic image of
yeast colonies with both red and white phenotypes generated using Matlab. (Right): The ground-truth mask
indicating the label of each pixel in the synthetic image. Background pixels are black, red colony pixels are
gray, and white colony pixels are white (color figure online)

11. Since the red colony pixel and white colony pixel masks are fully disjoint, we
merge the two masks, assigning one label to white colony pixels and a different
label to red colony pixels while all background pixels are labeled 0. The result is
the final ground-truth mask showing the locations of red and white colony pixels
and is used for training U-Net.

12. An additional mask is created at the center of each colony which shows a small
squarewhose label is the number of sectors generated plus 1. The result is saved as a
mask of size 1024×1024. This represents the true labels for the frequency of sectors
in each colony within a synthetic image and is used to assess the performance of
[PSI ]-CIC (Sect. 2.3).

13. Finally, the noiseless image saved from step 8 is given Poisson noise, then saved
with size 1024×1024. The result is the noisy representation of the synthetic images
that is used for training U-Net (Sect. 2.2).

A.3 Colony Extraction

Implementation of the steps to locate colonies as described in Appendix A.4 is done
using the Python package oct2py (Silvester et al. 2011) to allow Octave to run
within the environment. Octave’s function imfindcircles is used to implement
the circle Hough transform (Hough et al. 1962) for locating circular objects in the
output segmentations. This function requires two additional parameters: a range of
radii of circular objects to detect, and a sensitivity to allow for the detection of objects
with slight circular imperfections. To explore the variability in colony sizes within
the experimental images, we first find all connected components of colony pixels in
their output segmentations, then for each connected component, we locate clusters
corresponding to isolated colonies and estimate their radii individually. To do this, we
place a bounding box around each connected component separately. Here, we make
the assumption that a connected component in the segmentation corresponds to an
isolated colony if it meets the following conditions:
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1. The connected component must have a number of pixels between a minimum and
maximum value. In our case, we require all connected components to have between
100 and 2000 pixels. This is a way to filter colonies that are too big or too small.

2. The bounding box of the connected component must have an aspect ratio close to 1.
In our case, we required the greater ratio between length and width of the bounding
box to be less than 1.2 to account for image compression and imperfections in the
circularity of colonies in the output segmentation. This is also a filter for remov-
ing most clusters of colonies from consideration, especially those whose colonies
appear to be co-linear.

3. The proportion of pixels within the bounding box consisting of either red or white
colony pixels must be between a minimum and maximum value. In our case, we
required that the proportion of pixels inside the bounding box to be between 0.7 and
0.9which containsπ/4, the ratio between the area of a circle and smallest enclosing
square respectively. This helps remove colonies whose circularity is insignificant
or are too close to the border of the plate.

The collection of radii is used to estimate a range of radii to use for detecting
circular objects in the entire segmented image. Since imfindcircles strongly
recommends that circular objects have a radius of at least 5 pixels, we also set an
arbitrary minimum of 7 pixels for the radius of circular objects. If the minimum
dimension of any bounding box is less than 7, we temporarily rescale the entire seg-
mentation so that the smallest dimension of any bounding box is 7, before using
imfindcircles, using the range of radii for the objects in the scaled image. The
sensitivity parameter of imfindcircles is set to 0.9 to allow adequately imperfect
circular objects in the output segmentations to be detected. Following the implemen-
tation of imfindcircles, the radii, center coordinates, and the coordinates of the
bounding boxes are recorded and saved in CSV files. If rescaling was done prior to
recording this data, the data is rescaled so that it corresponds to the original sized
segmentation. Finally, the region within each bounding box is cropped from the image
and saved as a separate image for classification.

A.4 [PSI]-CIC Implementation and Training

A total of 200 synthetic images and corresponding ground-truth masks were created
in MATLAB for use as training data, where 150 of these images are used directly in
training and 50 were set aside for validation. For each image, 100 non-overlapping
white circles representing colonies were placed within the region representing the
plate, then one red sector was placed above every colony in the image. Specific details
about the placement of colonies and sectors and generation of ground-truth masks
are described in Appendix A.2. For the purpose of classification, each of the 20,000
colonies across all synthetic imageswere labeled to have exactly one sector. All images
and ground-truth masks were saved as PNG files.

The remainder of [PSI ]-CIC is implemented in an interactive Python notebook
with GPU access using Google Colaboratory. Construction of the U-Net architecture
was implemented and compiled using the Keras packages in Tensorflow. The network
is trained using the synthetic images of size 1024×1024, with a batch size of 1 due
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to the size of the images used and the amount of computational memory available.
We use Tensorflow’s categorical cross-entropy loss function and Adam optimizer. The
number of epochswas not predetermined; instead, training stoppedwhen the validation
loss decreased by at most 0.001 over a period of 5 epochs. This is a helpful check
to prevent the model from overfitting to the image set. The learning rate is initially
set to 10−4, but as the validation loss decreases and reaches a local minimum, the
learning rate decreases by a factor of 10, with the minimum learning rate possible
being 10−6. Segmentation accuracy for each image is computed to be the number of
pixels whose labels match their corresponding ground-truth labels divided by the total
number of pixels in the image, while accuracy over the entire image set is the mean
of the individual accuracies.

After each epoch, a check is performed on the validation images to determine if the
segmentation accuracy is higher than in the previous epoch; if the accuracy is higher,
the new parameters are saved, which could be used as a checkpoint for future training
of U-Net. When U-Net is sufficiently trained to segment red and white colony pixels
in the synthetic images, we apply it to produce output segmentations of the colonies
for each experimental image whose pixels are assigned one of three labels (red, white,
or background). The segmentations of each plate are saved as individual PNG files.

Following segmentation of the images, steps for locating colonies are imple-
mented using oct2py (Silvester et al. 2011) in Python which enables the use of
Octave functions. The circle Hough transform is done using the Octave function
imfindcircles found within the image package and is used to detect circular
objects in the resulting output segmentation consisting of clusters of colony pixels
(both red and white). The specific use of imfindcircles for locating colonies is
described in detail in Appendix A.3. Objects detected close to the edges of the image
are filtered out. Information about the size and location of the extracted objects are
saved as CSV files, with one file per image. Proposed regional annotations for each
colony extracted are constructed as described in Sects. 2.1.1 and 2.1.2, and qualitative
classes are assigned to each colony as described in Sect. 2.1.3.
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