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Representation, Agency, and Disciplinarity: Calculus Experts at Work

Elke M. Kurz (kurz@mpib-berlin.mpg.de)
Max Planck Institute for Human Development; Lentzeallee 94
14195 Berlin, Germany

Abstract

Differential calculus provides various ways to conceptualize
change, any of which can be employed with applied
problems. Experts associated with different academic
disciplines (chemistry, physics, mathematics) were asked
to think out loud while working on a problem requiring a
differential equation for its exact solution. These experts
used strikingly different representations in solving the
problem. Comparisons between their protocols are based
on a historical-cognitive approach that ties present-day
representational practices of differential calculus to the
history and conceptual development of the calculus.
Agency, here defined as the task assigned to the problem
solver by the representation, is at the heart of this link
between past and present practices. Whereas the agency
characteristic of the Leibnizian calculus is choice, the
agency characteristic of Newtonian calculus is
transformation, and that of the modern function-based
calculus may, in applied contexts, be characterized as
observation and manipulation,

Multiple Representations

Contemporary use of calculus is characterized not only by
multiple notations, dy/dx, f’(x), y, and so on, but also
by multiple representations. This  representational
multiplicity of the differential calculus goes beyond the
distinction between graphical and symbolical mathematical
representation and implicates the central concepts of the
differential calculus, in particular, the derivative and its
conceptual precursors. In fact, the existence or multiple
representations is not unique to the differential calculus but a
feature of calculi in general (Kurz, Gigerenzer, & Hoffrage,
in  press). Representational multiplicity has been
characteristic of differential calculus since its very inception
in the late 17th century and was already present in the
mathematical writings of the two eminent figures credited
with its breakthrough, Isaac Newton (1642-1727) and
Gottfried Wilhelm Leibniz (1646-1716). For a considerable
time the nature of the mathematical representation of change
and the associated methods were the center of controversy. In
the second half of the 19th century these debates were settled
and questions concerning  rigorous  mathematical
representation of change became to a large extent merely of
historical interest. In another sense, however, calculus never
left its history behind.

In the historical literature it is frequently acknowledged
that in the course of his work, Newton employed various
algebraic and geometric methods to justify the new calculus;
moreover, Newton also employed various ways to
conceptualize change, using moments, fluxions, and the
ultimate ratio (Boyer, 1949; Kitcher, 1973). In the
Leibnizian calculus, by contrast, differentials were central
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(Bos, 1993). Although these various ways to conceptualize
change employed by Newton, Leibniz, and their respective
followers led to equivalent solutions of particular problems,
they still entailed different representations of change. The
subsequent conceptual development of calculus has added new
representations, specifically, representations based on explicit
definitions of the mathematical concept of limit, eventually
including a purely arithmetic representation--the "epsilon-
delta" formulation. However, in applied contexts the
historically recent and rigorous € — & formulation is usually
not the representation of choice. In an introductory calculus
textbook written by the mathematician Morris Kline (1967),
this point was made explicit: "The reader may conclude that
the mathematician constantly applies the £ -6 definition
to decide whether a function has a given number as a limit.
[...] The working mathematician and certainly the theoretical
physicist and engineer do not apply the rigorous definitions
and proofs. They reason on the basis of the geometrical
interpretation, physical evidence, intuitive arguments, and
relatively loose analytical procedures.” In effect, Kline was
raising a cognitive question: What are the mathematical
representations of change used in applied contexts?

Experts associated with different academic disciplines
(chemistry, physics, mathematics) were asked to solve a
problem requiring a differential equation for its exact
solution. These experts wused strikingly different
representations in solving the problem. In the following I
will first characterize the solutions worked out by the expert
participants. Then 1 will suggest systematic comparisons
based on a historical-cognitive approach (Kurz, 1997). This
approach ties present-day representational practices of
differential calculus to its history and conceptual
development. Agency, so my argument goes, is at the heart
of this link between past and present representational
practices.

Calculus Experts at Work

Calculus experts, as defined for the purposes of this project,
are people who have gone through the kind of mathematical
training obligatory, for instance, for most of the natural
sciences, and who encounter calculus on a regular basis in
their area of specialization. Three such experts were asked to
think out loud while solving a mixture problem called the
Flask Problem. The problem was adopted from Problems in
differential equations by Brenner (1963). The following
problem statement was presented to the expert participants:
"A flask contains 10 liters of water and to it is being added a
salt solution that contains 0.3 kilograms of salt per liter.
This salt solution is being poured in at a rate of 2 liters per
minute. The solution is being thoroughly mixed and drained
off, and the mixture is drained off at the same rate so that the
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flask contains 10 liters at all times, How much salt is in the
flask after 5 minutes?" The Flask Problem can be modeled by
a first-order linear ordinary differential equation, which stated
in Newtonian notation, is:x = 0.6 — 0.2x. Solving the
equation and taking into account that initially there is no salt
in the flask the answer to the problem is x = 3 — 3¢ or
1.9 kilograms (rounded to one decimal position).

What makes the Flask Problem a suitable problem? A
most important feature of the Flask Problem with respect to
the objective of this project--namely, the study of the
representational practice of calculus--is that the problem
requircs a conceptualization of instantaneous change.
Consider, for example, the following "mutilation" of the
problem: "A flask contains 10 liters of water and to it is
being added a salt solution that contains 0.3 kilograms of
salt per liter. This salt solution is being poured in at a rate of
2 liters per minute. How much salt is in the flask after 5
minutes?" The answer is, of course, 3 kilograms, almost
only an exercise in multplication. In this version the
problem still requires use of the rate of change of incoming
salt, but there is no need (cognitively speaking!) to operate
with the concept of instantaneous change. In its "full"
version the Flask Problem makes it necessary to
conceptualize instantaneous change and to operate with it.
An exciting feature of calculus is that it provides more than
one way to do that.

Participants were asked to think out loud, using
instructional materials adapted from Ericsson and Simon
(1993). The protocols were taped and transcribed (Kurz,
1997). Participants were allowed to use paper and pencil and
a hand calculator, but no access to reference books was
permitted. Participants were not told that the problem
requires calculus for its solution. The obtained protocols
were divided into problem solving episodes. This analysis
serves as the basis for the following brief descriptions of
participants T, U, and S’s problem solving processes.

The protocol obtained with participant T was also encoded
and represented as a Problem Behavior Graph (PBG; Kurz,
1997). The use of this approach was inspired by Tweney and
Hoffner's (1987) application of protocol analysis to the
scientific working diary of the British physicist Michael
Faraday. In their encoding of portions of Faraday's scientific
diary, Tweney and Hoffner (1987) modified the original state-
operator scheme (Newell & Simon, 1972) to accommodate
the complexity and multiplicity of relevant problem spaces
(some of which are best described as being open). Similarly,
the coding scheme developed here consisted of three major
categories: Plans, Actions, and Evaluations (see also
Kilpatrick, cited in Ericsson & Simon, 1993). With this
coding scheme an almost complete and highly reliable
encoding of T's protocol was achieved (reliability was
assessed across two independent coders for part of the data and
was in the range of 90%). The encoded protocol was then
used to construct a PBG for each problem solving episode.
However, these graphs were largely uninformative with
respect to the goal of achieving an understanding of the
representational use of the calculus. This is not surprising
given the task-independence of the coding categories. By
contrast, the encoding of Michael Faraday's scientific diaries
by Tweney and Hoffner was fruitful in this respect because
the experimental manipulations that Faraday performed could
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be seen as analogous to operators on mental states. No
attempt was made to encode and represent the other protocols
as PBGs; instead another "content-oriented" (Newell &
Simon, 1972) analysis based on the episodic structure of the
protocols was pursued.

Participant T: A mathematician

Participant T is a young, highly productive mathematician
whose major field is analysis. T is a faculty member in a
doctoral level mathematics department. He worked about 25
minutes on the Flask Problem. His protocol consisted of 11
episodes.

After having read the problem statement (Episode I), T
started out with a schematized pictorial representation of the
flask and the in- and outflow of mixture (Episode II). The
flask was depicted as a rectangle, fluid flowing in and out as
arrows. This picture was complemented by labeling the rate
at which solution flows in and out, and the concentration of
the salt solution coming in was noted next to the arrow
indicating influx. T proceeded by assigning variables
(specifically x, for "the concentration of kilograms per liter
at any given time") and briefly considered a rule of three-like
approach (Episode III). But because he could not find another
time 7 for which he knew the concentration, besides time t =
0, he abandoned the approach.

He then realized that he "should probably use some
calculus, in the sense of rates of change" (Episode IV), more
specifically, that a "derivative with respect to time" was
needed. But when trying to implement such a calculus-based
approach T found himself in a tangle of related concepts,
occurring in the following order (Episodes IV &V): "rates of
change, " ".3 kilograms per liter is the rate of, no!," "the rate
of change of salt, " "the derivative with respect to time, "
"the rate of change of the concentration, " "the rate of change
of the concentration for the whole thing, " and "a rate of 2
liters per minute. " He knew that he was “supposed to write
down sort of a derivative" but was "not seeing how to do this
right off the bat," a fact that caused him some consternation.

As a way out of the dilemma, he retreated to ,lime
increments* of 1 minute (Episode V). Having computed the
amount of salt entering the flask in 1 minute it struck him
as too gross an approximation to infer from there an answer
to the problem, namely the amount after 5 minutes. He
wanted to give an "accurate” answer. Therefore, he re-
introduced "the instantaneous rate of change," this time,
however, in a procedural interpretation (Episode VI):
"Instead | wanna try to figure out what's the instantaneous
rate of change of, well what's the saline solution after any
given time. So let me go to 30 seconds." His declared
conceptual stratagem was to work with decreasing fixed time
increments, that is, to choose smaller and smaller time
increments. This procedure would eventually lead to
increments that are infinitely small, namely, differentials. T
never went that far. After having struggled through 1-minute
time increments (Episode V) and 30-second time increments
(Episodes VI-VIII), it sufficed for him to consider the
possibility of "refining" further, as by using 15-second
increments (Episode X).

In fact, T’s actual computations never went beyond the
first minute of the physical process. Thus, when considering
30 second time intervals his computations were concemned



with the first and the second 30 seconds of the physical
process. As it turned out, these computations were riddled
with difficulty. In particular, for the first 30 seconds he could
assume that pure v'ater was drained from the flask. For the
second 30 seconds, huwever, he had to take salt loss into
account. These computations were cumbersome, including
checking and re-checking of results (Episodes VII-VIII), but
they paid off.

After the laborious computations concerned with 30-
second increments he felt no particular urge actually to
continue such a procedure with 15-second time increments,
the declared next step in his stratagem to “refine until
nothing" (Episode IX). Instead his computations had
prepared him for a new problem conceptualization. He
realized that “the rate in is always the same" (Episode X).
An insight that led him to the question "now the rate out
should be what?" Without much difficulty he was able to
determine the rate of outgoing salt and he was very pleased
at "coming up with the differential equation." Once
represented in this form T quickly solved the formulated
differential equation (Episode XI). His algorithms for such
solutions were obviously well-practiced. Unfortunately, his
differential equation was not entirely cormrect because the
value for the rate out was off by one decimal position; he had
not taken into account that the incoming salt was dissolved
in 10 liters of fluid. Consequently, his final solution was not
meaningfully interpretable and remained unsatisfactory to
him. However, at this point, being both frustrated and
pressed for time, he was unwilling to "debug" his solution.

Participant U: A chemist

U is a middle-career physical chemist and a faculty member
in a doctoral-level chemistry department. She is very active
in research and has published many papers in her field. U
spent approximately 40 minutes working on the problem.
Her protocol consisted of 12 episodes.

U spent considerable time (about 10 minutes) in reading
(Episode I) and re-reading the problem (Episode II). Her
reading was interspersed by questions (e.g., "Is that what it
says here?"), also concerning the phrasing and completeness
of the problem statement (e.g., "What do you mean ‘drained
off’?") and first inferences (e.g., ".6 kilograms of salt going
in and .6 kilograms per minute going out"--a misconception
she entertained briefly). At the end of her second reading she
singled out "the critical sentence here," namely, that "the
solution is being thoroughly mixed and drained off" (Episode
III). Thus, "the concentration would be increasing over a
period of a few minutes, and at some point you'd reach a
steady state where you were putting the same amount of salt
in as was going out." She continued to elaborate the steady
state concept (Episode IV), informally addressing two
questions: what the concentration at equilibrium would be
and how long it would take to reach this state.

Such exploration of process characteristics prompted her to
"draw a graph in time" in a coordinate system showing salt
concentration on the ordinate (Episode V). Figure 1 shows
the exact graph. U constructed her graph by first marking the
value that the concentration would reach after 1 minute:
"Over the first minute I've poured in 6 kilograms so this is
gonna be about .6." (This value was, in fact, off by one
decimal position; according to the problem statement .6
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kilogram are poured in over the first minute, thus resulting
in a concentration of .06 kilogram per liter.) Next, going to
2 minutes, she reasoned that the same amount of salt would
be poured in except now “some of it is coming out,” thus
"after 1 minute we’d be a little low." She therefore marked a
point slightly lower than 1.2. She determined a third point:
"At 3 minutes, we're up here to 1.8, but still again we are
low, we'd be even lower." Then, knowing that the steady
state concentration had to be .3, she realized that her scale
was not right. But she nevertheless established the general
asymptotic shape of the graph ("so it's gonna be coming up
like this and then it’s just gonna be a straight line for the
rest of the time"). Then she reminded herself of what the
problem statement asked for and inferred a solution (Episode
VI). However, given that her scale was wrong and that she
had not made a serious attempt at fixing this problem she
could not use her graph to "read off" the solution. Instead her
solution assumed that at 5 minutes the system had reached
steady-state concentration, which made the answer trivial (at
equilibrium the concentration is equal to the concentration of
incoming salt solution, 0.3 kg/liter), so 3.0 kg was her
answer.

0,307

0.25

0,201

0,157

concentration (kg/liter)

0,104

0,054
T =1 T - T T T
5 10 15 20 25 30 35
t(min)

Figure 1: How salt concentration in the flask changes
in time.

Somewhat worried that U would declare an end to her
problem solving, the experimenter asked her whether she
would be able to formulate an equation (Episode VII). She
answered in the affirmative and immediately wrote the
Leibnizian notation, dc/dr (¢ for concentration, ¢ for time),
denoting the “change in the concentration." She started the
right-hand side of the equation reasoning that “first the
concentration is 0" so "the intercept is 0." This reasoning
was flawed, in a sense confusing the differential equation
with its solution; it might have been prompted by her graph,
which had, of course, an intercept of zero. Next she added a
term denoting "the increase in the concentration" which was
0.6 with the units "kilograms per liter per minute." The
"concentration going out, " being the "minus part," created a
problem that she approached by making a “linear



assumption” (Episode VIII). This assumption, however,
created the anomaly of "not getting a steady state," as she
quickly realized. Therefore it had to be a nonlinear function,
but she was unclear as to its specific "functional form." As a
remedy she recapitulated her understanding of the physical
process--note the mathematical terminology--(Episode IX):
"So it's increasing at a constant rate," or, in other words,
"the concentration is increasing linearly." She was certain
"that it's not decreasing at a constant rate," and also that "a
constant amount"--read volume--of the perfectly mixed
solution was poured out. Her understanding was thus fairly
complete but not represented in the form of an equation.
After having silently reread at least parts of the problem
statement she emphasized that she was thinking about the
process “in terms of a continuous thing" but that the
approximation method she was going to propose next would
be a "quickie"” way to arrive at a solution. "Then [she] would
try to work back so that [she’d] have an instantaneous picture
of what was going on."

Her approximation method (Episode X) worked by
considering l-minute time intervals and matched with how
she had constructed her graph. In the first minute 0.6
kilogram of salt was added to the flask and she assumed again
that during the first minute no salt was deleted. In the second
minute another 0.6 kilogram was added and 1/5 of the
amount of salt in the flask after 1 minute was subtracted
because the salt was dissolved in 10 liters, 2 of which were
withdrawn from the flask during the second minute. With the
third minute another 0.6 kilogram of salt was added to the
amount in the flask and 1/5 of the amount of salt in the flask
after 2 minutes was subtracted. She camried this procedure
through to 5 minutes (Episode XI). In the process, U kept
checking the obtained values against her expectation
concerning the steady state of the system (e.g., "after 3
minutes I am more than halfway there"). She announced her
solution as "2.14 kilograms in 10 liters; that’s
approximate!"

As a final question the experimenter asked what could be
done to improve this approximation (Episode XII). She
responded that one would have to "take smaller time
intervals” and that she had tried "to do it the calculus way"
but that she could not "see how to, that way, now." With the
calculus, of course, "one could figure out what the
concentration was at any second” but she thought that “even
eyeballing it here [she] could predict that maybe at around
minute 7 or 7 1/2 would be when you’d reach steady state."
This estimate overestimated the change in gradient
considerably. (After 8 minutes, for example, the amount of
salt in the flask is still only 2.4 kilograms, rounded.)
However, that was a projection into the future of the system;
for the time interval for which she had actually computed the
approximation, from zero to 5 minutes, her intuitions were
quite refined. When asked for her best guess of the precise
solution her answer was "1.9 kilograms"--the value (rounded,
of course) that is obtained with the solution of the
differential equation!

Participant S: A physicist
Participant S is a theoretical physicist, internationally

known for contributions to his field. S teaches undergraduate
and graduate physics courses in a masters-level physics
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department. S spent about 50 minutes with the Flask
Problem. His protocol consisted of 18 episodes.

Reading the problem statement (Episode I) led S to assert
that "this problem is not such a simple problem. " It was
immediately clear to him that the problem implied a "rate
idea" and that "it is easy to figure out how much is added"
(Episode II). The "complication” was that "some of that salt
is being lost because it's being mixed and you probably
assume that it's thoroughly mixed and drained off and so you
have to figure out essentially how much is being lost
because as more is added the concentration increases and more
is being lost. " Thus, his task was "to put all this together
in some formulas or something and see these relationships."

Although S showed immediate insight into essential
aspects of the physical process as specified by the problem
statement, his first computations ignored some of its
specifications, in particular, that the volume of mixture in
the flask is constant. He computed that in 5 minutes 3
kilograms of salt enter the flask (Episode III). But then he
proceeded to compute the amount of salt leaving in 5
minutes, basing this computation on the total volume of
solution added in 5 minutes (Episode IV): In 5 minutes a
total of 10 liters of salt solution is added to the 10 liters of
water already in the flask resulting in a total of 20 liters of
mixture. Thus, the 3 kilograms of salt entering in 5 minutes
are, so he reasoned, dissolved in 20 liters. In 5 minutes a
total of 10 liters of mixture is withdrawn from the flask.
Because 10 liters are half of the total of 20 liters, half of the
3 kilograms of salt dissolved in 20 liters is withdrawn from
the flask. This leaves 1.5 kilograms of salt in the flask after
5 minutes. He emphasized that this was "a guess,” and he
(correctly) suspected it to be wrong. Fearing that participant
S might at this point declare an end to his problem solving,
the experimenter asked "Can you come up with an equation?"
"A good question," he agreed, because equations had been
"implicit" in what he had been thinking but now the
challenge was to "find what they are." It was clear to him
that it would need to be "sort of a rate equation" (Episode V).
He started to wonder whether he had missed something before
and therefore thought it best to "read this again" (Episode
VD).

After rereading the problem he determined x to be "the
amount of salt in tank" (Episode VII), thus specifying the
dependent variable (although he did not use this
terminology). The left-hand side of the equation had to be
“the time derivative of x" which was noted in Newtonian
notation. The right-hand side of the equation was "rate at
which it's added minus the amount that is leaving" (Episode
VIII). The rate of incoming salt was noted as "0.6 kg/min"
and followed by a minus sign. He immediately recast the rate
of incoming salt as "0.3(2)," also omitting the units of
measurement. Then he proceeded to the part following the
minus sign that was "also a function of time." He knew that
"the amount of fluid that is flowing out is 2." What he thus
wanted to figure out was how the amount of salt that was
leaving depended upon the concentration of salt solution in
the flask. The amount of salt in the tank "is always gonna be
x over 10." At this point he had in effect written out the
complete differential equation. After a lengthy pause (of 12
seconds) he came to the conclusion "that this might be the
right idea, really, ‘cause this says that the rate at which the



amount of salt changes depends upon how fast you add it."
Despite having put the complete differential equation on
paper, S had not yet fully conceived of it as the appropriate
mathematical model. There was no doubt for him that the
rate of incoming salt was the determined constant (Episode
IX). It was also clear that "the rate at which it flows out is
the same at which it enters, so that's gonna be 2." But "what
about the changes due to the increasing concentration?"
"How [did he] know what the concentration of salt is?" He
admitted, he didn’t know. At this point another insight
rescued him. Checking the units of measurement for the
right- and left-hand side of his equation (Episode X) he was
just delighted to find that "this has the units, this has the
right units!" He restated the equation in a concise form
asx=06-02x.

Now he had to solve the equation. He anticipated a little
bit of effort and challenge because he would have to
“integrate or something"” and he would "end up with some
kinda exponential function" (Episode XI). He reformulated
the equation in Leibnizian notation and proceeded to a
separation of variables. But before taking the solution any
further, that is, proceeding to integrate, he wanted to "think"
and "see" once more whether he liked "the way this is going"”
(Episode XII). He was “comfortable" with the "constant time
derivative which is because there is a constant source." The
question was "how do you deal with a changing rate of
outflow?" He could "see" that it was changing because "salt
concentration is rising and therefore more is flowing out."
There was no salt in the flask "to start with" and in the
“extreme future you would reach an equilibrium situation
where all of the original water had been replaced and therefore
the concentration inside the tank would be 0.3 kilograms per
liter and at that point you would have 3 kilograms in there."
"Unfortunately the problem didn't ask about the extremes,”
that is, the initial amount and the amount at equilibrium; it
asked for "the middle." An answer to this question could be
found by solving the differential equation; therefore, he
thought, "it's worth doing."

He proceeded with the solution by employing a
substitution procedure and after several steps arrived at the
following intermediary result 0.6 — 0.2x = ¢™*' (Episode
XIII). He solved for the dependent variable x and checked his
solution by evaluating the equation at /=0. It turned out that
"x is not equal to 0", thus the initial condition according to
which initially pure water was in the flask was not met.
Clearly something was "not right" (Episode XIV). He
diagnosed the problem: "Uh oh, I think I see that's because I
didn't do the right integration." Nevertheless he recognized
“elements of truth” because in the "long-term limit" he
would "get the right answer, " he would get the 3 kilograms.
He had to "figure out how to do the integrals,” thus handling
the "initial and final conditions correctly.” He started over
after his substitution procedure noting definite integrals to be
evaluated between 0 and x and 0 and ¢, respectively (Episode
XV). Now he was convinced he was on the right track: "All
right, so I know I have some good stuff going on here, I just
didn't get enough of it into my equation." Evalvating the
definite integrals he arrived at x(r) = 3(1 — ¢ ™' ). This
was a result he "liked," because “as t approaches infinity x
approaches 3" and at "t equals 0, x is equal to 0" (Episode
XVI) . Everything was ready for “the question we want to
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answer," namely, "what is x of 57" (Episode XVII). He used
a pocket calculator to determine the numerical solution
(Episode XVIII) and declared "1.896 kilograms" to be his
answer to the problem.

Agency and Disciplinarity

At the outset, it is worth noting that the problem was
seriously demanding for the expert participants--while this is
a prerequisite for rich verbal protocols, it was somewhat
surprising at first, unul the effort necessary to initially
represent the problem became apparent. Participants T and U,
both retreated to approaches utilizing discrete time intervals
when faced with difficulty on a conceptual level. However,
their approximation procedures were very different in
character. Participant S employed a genuine modeling
approach. I will concentrate here on differences in their
representations of change as such, particularly on the agency
implicated by these representations.

Participant T built his representation of the problem by
means of finite time intervals with the intent to develop
eventually an "instantaneous picture.” In the limiting case
this approach could consider infinitely small intervals, or
differentials; as such his approach was Leibnizian. By
contrast, the representation that participant U employed can
be characterized as Newtonian. Newton's and Leibniz' calculi
were concerned with variable quantities, but they conceived
them very differently (Bos, 1980). With Leibniz a variable
quantity ranged over a sequence of infinitely close values.
With Newton's fluxionary calculus variable quantities were
conceived as changing in time, and thus as dynamic (see
Freyd, 1987). In Newton’s own words (cited from his
Tractatus de quadratura curvarum of 1704 as translated and
reprinted 1n Struik, 1969): "I consider mathematical
quantities in this place not as consisting of very small parts;
but as described by a continued motion. Lines are described,
and thereby generated not by the apposition of parts, but by
the continued motion of points; superficies [surfaces] by the
motion of lines; solids by the motion of superficies; angles
by rotation of sides; portions of time by a continual flux:
and so in other quantities." Fluxions, the fundamental
concept in Newton's calculus, are the velocities or rates of
change of these variable quantities. In Leibniz' calculus, on
the other hand, differentials were fundamental (Bos, 1974). A
differential is the infinitely small difference between
successive values in a sequence of infinitely close values,
that is, the variable quantity.

T chose time intervals, first of 1 minute, then of 30
seconds and finally (at least hypothetically) of 15 seconds in
an attempt to "refine until nothing," until the differences--
read time intervals--had vanished. In this sense choice was
fundamental to his representation of change. Similarly, the
choice of infinitely close values of a variable quantity was at
the heart of Leibniz' calculus. Bos (1993) has emphasized
that Leibniz did not conceive of differentials by means of a
local limit process (like the derivative). Leibniz' limit taking
was global. With respect to a curve, for instance, this meant
that the curve remained composed of the sides of a polygon
even after extrapolation to the infinite case of an
infinitangular polygon. T's plan to "refine until nothing"”
might therefore not have been Leibnizian in intent, however,
his realization in terms of fixed increments was.



U transformed the change in salt into the continuous
motion of a point creating a graph in time. This
transformation was the result of her knowledge about process
characteristics (the steady state) and a particular way of
constructing an asymptotic graph in a Cartesian coordinate
system. Her approximation method finally paralleled her
construction of this graph: First she determined how much
was added, then she made sure that she was "a little low,”
that is, that she subtracted about the right amount, then she
used these points as reference points for the extrapolation of
the corresponding "motion." Similarly, Newton conceived of
mathematical quantities as motion of geometrical objects.

Mathematical representations of change, likc those
employed by participants T and U, include representation of
the problem solver's own agency (Kurz & Twenzy, 1998).
Agency is here understood as the task assigned to the
problem solver by the representation. The agency entailed in
participant T's Leibnizian representation can be characterized
as choice, the agency in the case of participant U's
Newtonian representation as transformation. In the sense that
the problem solver "knows" the representation he or she is
building and employing, he or she has "knowledge" about
the entailed agency. As Gooding has pointed out (1992),
agency is a matter of skill.

What kind of agency was implicated by participant S's
modeling approach? Participant S’s protocol was largely
concerned with finding a match between a mathematical
model and an understanding of the physical process. This is
in line with the fact that he had formulated the appropriate
differential equation long before he recognized the equation as
the appropriate mathematical model. In working out this
match he made the physical process “observable" and
“manipulable” in his mind's eye. This mental "simulation"
of the physical process "observed" a physical process in
time, from "no salt in there to start with" to an “extreme
future” in which "you would reach an equilibrium.” S's
model, mathematical and physical, described a physical
process changing in real-time. In some sense description was
observation in this case; this is parallel to what Nersessian
(1992) has pointed out for thought experiments. The agency
of ebservation and manipulation, the unity of which Tweney
(1992) and Gooding (1990) have emphasized in their
accounts of Michael Faraday's experimental investigations,
occurred at the interface of S's understanding of the physical
process and of his mathematical model. It could be argued
that the differential equation is the physical process model.
This is the case in a strict sense; however, the identification
of the understanding of the physical process with the
mathematical model stood at the end of S's solution process;
this in fact was his primary achievement.

The wide spread application of calculus in the sciences
seems to suggest that the calculus does not recognize
disciplinary boundaries. The representational practice of
calculus, however, has always recognized boundaries. In the
18th century, when Newtonian calculus was predominant on
the British Isles and Leibnizian calculus on the Continent,
the English Channel was such a boundary. As much as
participants T, U and S’s approaches are typical of paricular
academic disciplines or fields, the calculus still seems to
acknowledge boundaries--nowadays, those that map our
academic specializations.

590

Acknowledgments

I wish to acknowledge Ryan Tweney’s continucd! support of
this project. This work was supported in part by 2n award of
the American Psychological Foundation and a siholarship
awarded by Bowling Green State University, Ohio.

References

Bos, H. J. M. (1980). Newton, Leibniz and the Leibnizian
tradition. In 1. Grattan-Guinness (Ed.), From the calculus
to set theory, 1630-1910. London: Duckworth.

Bos, H. J. M. (1993). The fundamental concepts of the
Leibnizian calculus, Lectures in the history of
mathematics. Providence, RI: American Mathematical
Society.

Boyer, C. B. (1949). The history of the calculus and its
conceptual development. New York: Dover.

Brenner, J. L. (1963). Problems in differential equations.
San Francisco: Freeman.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis:
Verbal reports as data. Cambridge, MA: MIT Press.

Freyd, J. J. (1987). Dynamic mental representation.
Psychological Review, 94, 427-438.

Gooding, D. (1992b). Putting agency back into experiment.
In A. Pickering (Ed.), Science as practice and culture.
Chicago: University of Chicago Press.

Kitcher, P. (1973). Fluxions, limits, and infinite littlenesse:
A study of Newton's presentation of the calculus. Isis, 64,
33-49,

Kline, M. (1967). Calculus: An intuitive and physical
approach. New York: Wiley.

Kurz, E. M. (1997). Representational practices of differential
calculus: A historical-cognitive approach. Doctoral
dissertation, Department of Psychology, Bowling Green
State University, Ohio.

Kurz, E. M., & Tweney, R. D. (in press). The practice of
mathematics and science: From the calculus to the
clothesline problem. In M. Oaksford & N. Chater (Eds.).
Rational models of cognition. Oxford: Oxford University
Press.

Kurz, E. M., Gigerenzer, G., & Hoffrage, U. (in press).
Representations of uncertainty and change: Three case
studies with experts. In J. Shanteau, P. Johnson, & K.
Smith (Eds.), Psychological explorations of competent
decision making. New York: Cambridge University Press.

Nersessian, N. J. (1992). How do scientists think? Capturing
the dynamics of conceptual change in science. In R. N.
Giere (Ed.), Cognitive models of science. Minneapolis:
University of Minnesota Press.

Newell, A., & Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Struik, D. J. (Ed.) (1969). A source book in mathematics,
1200-1800. Cambridge, MA: Harvard University Press.
Tweney, R. D. (1992). Stopping Time: Faraday and the
scientific creation of perceptual order. Physis: Revista

Internazionale di Storia della Scienzia, 29, 149-164.

Tweney, R. D., & Hoffner, C. E. (1987). Understanding the
microstructure of science: An example. In Program of the
ninth annual conference of the Cognitive Science Society.
(pp. 677-681). Hillsdale, NJ: Erlbaum.



	cogsci_1998_585-590



