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ABSTRACT 

This is a method for finding the minimum of a function of an arbitrary 
number of variables by a series of successive approximations using a 
paraboloidal fit, The method is particularly suited for computer programming 
if a matrix inverting routine is available, · 
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L INTRODUCTION 

A method is described that is useful in finding the minimuin of a 
function of n variables by a series of trial attempts of rapid convergence. 
For machine computation it has the virtue of a very simple program in­
dependent of the number of variables. It has become common to test such 
methods by observing the number of formal steps required .to find the 
minimum of a quadratic form. This method does this in one step. 

The actual procedure involved is the following. A function of n. 
variables f(x.) is to be minimized. If the Xi are trial values, then the next 
trial values eire xi - dxi, where the dxi are the solutions of the linear equations 

n 

I 
i=l 

ax. ax. 
1 J 

dx. = 
1 

a£ 
ax. 

J 

(1) 

Since most computer libraries are equipped with matrix-solving routines, 
the problem of coding and finding the succes.sive trial values is simple. The 
derivatives, of course, are evaluated at the trial points successively. The 
matrix a 2£/ax. ax. is positive definite if the minimum is absolute and the 
correspondihg det~rmini:mt is greater than zero. {By "positive definite" is 
meant that the curvature at the minimum measured in any normal plane is 
greater than zero.) .If the curvature vanishes in any direction, the deter­
minant is zero ahd the minimum is not absolute. If the minimum is not 
absolutely definite but the determinant of the system is not zero, the method 
still converges to the minimum. 
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'IL PROOF 

The condition for a minimum of the function f(xi} is that for some point 
we have 

(2) 

If this derivative is expanded about x.O, we get 
l 

a f(x) 
--ax.-

1 
= + L 

j 

a 2f(x 0 ) 

ax. ax. 
1 J 

dx.:+ 
J 

(3) 

By virtue of Eq, (2), the first term on the right-hand side vanishes, By 
neglecting terms of the third or higher order we reach Eq, (1), Since we 
have dx

1
· = x. - x.O, the next approximation to x.o is given by 

1 1 1 

x.' = x. - dx., (4) 
1 1 1 

If f(xi} is quadratic, then the third and higher orders vanish identically, In 
this case the solutions represented by xi' are exact in one triaL 

IlL GEOMETRICAL 

A picture is available that can help interpret the method in special 
cases, In one dimension the method is illustrated in Fig, L In the diagram 
x represents a trial point to the minimum of f(x), the solid curve, The 
present method determines the best-fitting (osculating) parabola to that point 
and the minimum of the parabola determines the position of the next trial 
point, Clearly the fit is perfect if f(x) is a parabola itself, If the point is a 
maximum for the function, the method works equally welL In a two-dimen­
sionai problem where the minimum is absolute, a paraboloid of one .sheet 
with an elliptic cross.section is fitted to the trial point, If the minimum is 
not absolute, a saddle -point paraboloid is fitted to the trial point and the 
method still converges, Inn dimensions, the topology is more complicated. 
The 'sign of the determinant- G == I I a 2fj axi a Xj I I doe SJnOt give unique 
information on the curvature of the point, The eige.nvalues of the matrix give 
a measure of the curvature at the minimum, If they are all positive the 
minimum is absolute, if any are negative, it is not. The routine as described 
works equally well in all cases provided that none of these eigenvalues vanish. 

IV, SPECIAL CASES 

The most important special case is where II a
2
f/axiaxjilL vanishes 

at a trial point, This implies that at least one of the eigenvalues of the matrix 
Gi: = a 2f;a xi a xj vanishes at that point, This means that at xi on the surface 
f(~ = C, there is a direction where the variation of f(x) is linear to terms of 
order· dx3 in that neighborhood, The correct formal procedure is as follows, 
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Fig. l. Example of a trial fit by the parabolic method. The 
solid curve is the true function. The dotted curve is the · 
trial parabola to the point x. x' is the minimum of the trial 
parab'ola and is the new trial point. 
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Choose any of the n equations of the set of Eq. (1)--say, for example, that 
bel~ngix:-g to i =. 1; replace. each element Gij (Gij = o 2£! o x.i o xj) in that equation . , 
by ~ts s1gned mmor .6-ij w1th respect to G. Replace the nght-hand member 
of the equation, i = 1, oy zero. (That is, replace of/ox 1 by 0.) Solve the 
resultant set of equations for the dxi. Then proceed as 15efore. Analytically 
the equations to be solved are 

dx 1 + dx 
n = af 

OX 
n 

(5) 

It does not matter which one of the equations is replaced; the dxi that result 
are the same. This procedure is the best pro'cedure to follow if det G = 0. 

The pr-oof is as follows. Since det G vanishes, the eigenvalue equation 

~G .. dx. = Adx. 
j lJ J 1 

has as a possible solution A = 0. The eigenvector direction in dx. space 
corresponding to this root 1s a direction along which the second derivative of 
f is zero. It is desirable to proceed in a direction perpendicular to this 
direction consistent with the spirit of Eq. ( 1 ). In effect, there is a superfluous 
variable in this neighborhood and the n fizst derivatives of f are no longer 
linearly independent in this neighborhood . .,. The unnormalized eigenvector 
corresponding to A = 0 has as components the signed minors of any r.ow. By 
replacing Eq. (1), i = l, by 

I_ .6. 1 . dx. = 0, 
i J J 

we are imposing the condition that the direction of the step be perpendicular 
to the straight line and therefore leave its region as rapidly as possible. 

The geometrical interpretation in two dimensions is clear. The 
quadric surface that is a best fit is a paraboloid that is formed by parallel 
straight lines through a given parabola; such a surface has either no 

~:~ This is made formally clear by recognizing that the Jacobian of the' set 
of functions of/ o xi is det G and that the vanishing of this determinant implies 
a linear relation among the a f/ a xi. 

,,._ 



,. 

-7- UCRL-3816 Rev 

m1mmum or no absolute minimum. This step takes the function to the trough 
of the paraboloid in a direction perpendicular to the ruling lines. If the exact 
function behaves like this everywhere, there of ,course is no solution to the 
minimal problem. This situation is an analytic oddity and is not likely to 
occur in actual practice, unless a starting point is chosen that is not an 
approximate solution but rather a, "convenient" point suitable for a variety 
of similar calculations. If the first minors do not all vanish, Eq. (5} has a 
solution because its determinant has the value 

2 
~li ' 

which is a positive number different from zero. 

If the first minors all vanish, there' is a degeneracy associated with 
A. = 0 and this method can be generalized. However, this is so pathological 
a case that it would be well to 'either choose another trial point or re-examine 
the function £, 

V. APPLICATIONS TO LEAST-SQUARES FITTING . ~ 

In using this method to fit sets of data to n unknowns, the function f 
has the form 

m 
f = ~1 [

M - f (x. )l 2 

a. a. lJ w 
a. 

(6} 

where wa. is the statistical weight of the a.th measure Mo., By the usual 
methods it can be shown that the standard deviation of xi about its minimum 
value x.o is 

1 

(.6xl = 6.jdet G, I (7} 

where ~ij has the same meaning, as before, namely, the signed minor of Gij· 
The ~ii (the minors along the diagonal) must all be greater than zero and, 
s:ince G is the matrix for an absolute minimum, the sign is safe. (Perhaps 
the quickest way to see that ,6,ii > 0 is by the following argument. Construct 
the matrix G-1, where Gij is replaced by ~j/ (detG)n. This is the reciprocal 
of G. The eigenvalues of G-1 are the reciprocals of those of G, and there­
fore it follows that G- 1 is positive definite also. Therefore its diagonal 
elements ~ii are also positive'. } , 

If is important to note that this result, Eq. (7), is different--from the 
form usually encountered for the error in that second derivatives of the 
functions fi are involved. This may make an, appreciable difference in the 
estimate of the uncertainty in some cases. Finally, the test function 

2 f(~O) 
p:f =' ln:n {8) 
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should be constructed. Here P/ is the w. ell-known test. for the correctness 
of the functional dependencies fhat go into,.Eq. (6) .. For Pl >> 1, the ex­
perimental assumptions are under suspicion. For Pf2 << 1, the agreement 
can only be considered fortuitous. The rule, therefore, should be to include 
Pl as a facto:):" in Eq. (7), for P/ > 1, and ignore it for P/ < 1. 

There is a close relationship between this method and Gauss 1 s method 
as described in most of the standard statistical works. The ·method of Gauss 
as usually employed uses linearized functions fa. in the neighborhood of the 
minimum and an iterative procedure to find this minimum. It can be shoWn., 
however, that under some circumstances--depending on the values of 
a 2fa./ a xi a xj and the quality of the eventual fit- -the approximation aetuall y 
diverges no matter how close the initial point was chosen. If it· weren 1 t so, 
the standard method is much more rapid numerically because it does not 
require the second partial derivatives. With high-speed computing machines 
it would appear more desirable to use a method capable of exact convergence 
over a wide range of parameters than one which offers no a priori guarantee 
of convergence. 

This work was done under the auspices of the U. S. Atomic Energy 
Commission. 
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