
UCLA
UCLA Previously Published Works

Title
Integrating language models into classifiers for BCI communication: a review.

Permalink
https://escholarship.org/uc/item/3qc9p4d0

Journal
Journal of neural engineering, 13(3)

ISSN
1741-2560

Authors
Speier, W
Arnold, C
Pouratian, N

Publication Date
2016-06-01

DOI
10.1088/1741-2560/13/3/031002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qc9p4d0
https://escholarship.org
http://www.cdlib.org/

Integrating Language Models into Classifiers for BCI
Communication: A Review

W Speier1,2, C Arnold2,3, and N Pouratian1,3,4,5

1Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA

2Medical Imaging Informatics Group, University of California, Los Angeles, CA 90095, USA

3Bioengineering Department, University of California, Los Angeles, CA 90095, USA

4Neuroscience Interdepartmental Program, University of California, Los Angeles, CA 90095, USA

5Brain Research Institute, University of California, Los Angeles, CA 90095, USA

Abstract

The present review systematically examines the integration of language models to improve

classifier performance in brain-computer interface (BCI) communication systems. The domain of

natural language has been studied extensively in linguistics and has been used in the natural

language processing (NLP) field in applications including information extraction, machine

translation, and speech recognition. While these methods have been used for years in traditional

augmentative and assistive communication (AAC) devices, information about the output domain

has largely been ignored in BCI communication systems. Over the last few years, BCI

communication systems have started to leverage this information through the inclusion of

language models. Although this movement began only recently, studies have already shown the

potential of language integration in BCI communication and it has become a growing field in BCI

research. BCI communication systems using language models in their classifiers have progressed

down several parallel paths, including: word completion; signal classification; integration of

process models; dynamic stopping; unsupervised learning; error correction; and evaluation. Each

of these methods have shown significant progress, but have largely been addressed separately.

Combining these methods could use the full potential of language model, yielding further

performance improvements. This integration should be a priority as the field works to create a BCI

system that meets the needs of the ALS population.

1. Introduction

Motor neuron disorders such as amyotrophic lateral sclerosis (ALS) and brainstem injuries

can disrupt the neural transmission, resulting in the reduction of muscle control and

impairing a patient’s ability to communicate. Assistive communication technologies exist

that can help such patients by providing indirect communication methods based on

alternative muscle movements such as eye tracking [1]. These technologies, however, can be

difficult to implement and maintain in patients due to disease progression [2]. Brain

computer interfaces (BCI) can restore these ‘locked-in’ patients’ ability to communicate by

detecting their intent from electroencephalogram (EEG) signals and translating them into

HHS Public Access
Author manuscript
J Neural Eng. Author manuscript; available in PMC 2017 July 03.

Published in final edited form as:
J Neural Eng. 2016 June ; 13(3): 031002. doi:10.1088/1741-2560/13/3/031002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computer commands, possibly providing a more robust solution due to the relative

preservation of cortical physiology [3].

1.1 BCI communication

Several different BCI systems have been developed to enable communication for ‘locked-in’

patients by translating EEG signals into simulated keyboard input. The most common BCI

communication system is the P300 speller which presents the user with a grid of characters

on a computer monitor [4]. The user is instructed to focus on a target character while groups

of characters are illuminated (i.e., “flashed”) in a pseudo-random manner. When the target

character is flashed, a response known as the P300 signal is evoked and detected by EEG. A

classifier detects these responses and, after combining the responses from several trials,

determines the character that was most likely the subject’s target.

A similar BCI communication system is the rapid serial visual presentation (RSVP) speller

[5]. Like the P300 speller, this system elicits P300 signals by serially presenting visual

stimuli in a graphical interface. In the RSVP speller, however, the user focuses on the center

of the screen where characters appear in a random sequence. This system is generally slower

than the P300 speller because showing characters one at a time requires more time to display

all possibilities. It has the advantage of being gaze-independent, which improves signal

fidelity, particularly in neurologically impaired patients with restricted eye movement.

Similar to visual systems, evoked responses (ERPs) can be generated by auditory stimuli.

Systems such as the auditory multi-class spatial ERP (AMUSE) system present the user with

a series of distinct auditory stimuli [6]. These stimuli vary based on pitch and/or location,

with each combination assigned to a specific character. As in the visual P300 speller, the

target stimulus elicits an ERP which is detected by the classifier in order to choose a

character. Because the correspondence between characters and tones is not obvious, a

graphical interface is often included. Given enough training, a user could learn the

associations and the system could function without a visual interface. This would eliminate

any dependence on eye gaze, but would have additional requirements for the user’s

environment such as a lack of distracting noise.

Several other systems have recently been developed which utilize other neural signal

paradigms. Motor imagery has been used to navigate binary menus by mapping different

imagined movements (e.g., right hand vs. left hand) to different options [7]. This paradigm

has been adapted to create a spelling system by using these decisions to perform a binary

search through the alphabet [8]. Similarly, motor imagery is used in the hex-o-spell system

where the subject uses imagined movement to stop a cursor rotating between six sets of

characters [9]. This system reduces the time to choose a character by making selections

among six options rather than two, reducing the number of decisions required to select a

character from 26 characters from five to two.

Steady state visually evoked potentials (SSVEP) have also been utilized in BCI

communication systems. In SSVEP systems, multiple targets exist on screen which flicker a

different frequencies. When the user focuses on one of the targets, a visually evoked signal

in the user’s EEG matches the frequency of the flashing. When this frequency is observed in

Speier et al. Page 2

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the signal, the system selected the corresponding item. Because of limits in the number of

distinct frequencies that can be identified, systems generally either use a series of menus

[10] or move a cursor [11] in order to select from the set of possible characters. Other

systems have combined the P300 speller and SSVEP systems by flashing characters as in the

P300 speller and simultaneously having the nonflashing characters flicker at different

frequencies [12,13].

Because the signal-to-noise ratio (SNR) in EEG is relatively low, several trials are usually

combined in order to correctly classify responses. The resulting typing speed is therefore

slower than required for adoption [2], prompting significant research in the optimization of

BCI communication systems, both with respect to speed and accuracy. Approaches that have

been adopted to accomplish such optimization in the P300 speller include varying the grid

size [14], modifying stimulus presentation paradigms [15,16], optimizing system parameters

[17,18], changing the visual stimulus [19], and adopting different signal classification

algorithms [20–23]. Studies have also used electrocorticography (ECoG) to increase the

SNR for BCI communication [24,25].

1.2 Language Models

While the P300 speller is designed to provide a means for communication, BCI systems

have not traditionally taken advantage of existing knowledge about the language domain. In

2000, Donchin et al. noted that “there are substantial sequential dependencies in English,”

which could be utilized in classification [26]. However, traditional classification systems

treat typing as a series of independent selections from a set of characters with no prior

information. The domain of natural language has been well studied in other contexts and this

knowledge can be used to aid in any communication system [27]. By exploiting known

patterns and structures inherent in language, a bias can be added to a communication system

which can improve typing speed and accuracy as well as adding other features such as word

completion or automatic error correction. These methods are already widely employed in

electronic communication systems such as word processing [28] and text messaging[29,30],

but have only recently been considered for BCI communication.Language information can

be included in a BCI system by storing a model of typical text that the system expects to

generate as output. One example of such a model is a simple dictionary where the BCI

system looks up the letters being typed to verify that they form valid words. This type of

model can work as a filter that ensures that the system generates words that are valid in the

language. If a string of characters does not start any word in the dictionary, the system can

assume that there was a mistake and try to fix it by changing characters to match another

word. Such a system can also look up words that start with the current output to generate

“guesses” of the complete target word. These “guesses” can then be presented to the user so

that the remainder of the word can be completed at once rather than by individual character

selections, thereby increasing typing speed. One problem with these word based methods is

that they are limited to the words that are seen during language model training and generally

cannot handle out of vocabulary (OOV) words.

Other language models attempt to model character patterns based on corpora of existing text.

These models can provide a probability distribution for target characters based on previous

Speier et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

selections, which can be used as a prior probability for future selections. The corpora for

these models are generally publicly available sets of text from natural language research

groups [31,32]. The simplest such model captures patterns by finding the relative frequency

of n-grams, sequences of n consecutive characters. These models are created by parsing

through a corpus of text and counting the number of occurrences of these sequences. The

conditional probability of a character given the previous n−1 characters can then be

computed:

where c(xt−2, xt−1, xt) is the number of occurrences of the string ‘xt−2xt−1xt’ in the corpus.

The value for n is determined based on the tradeoff between the amount of information

contained in the model and the complexity of the model. The number of n-grams is

exponential in n, so classification algorithms can run too slowly for online classification with

a large value of n. Also, the system can be undertrained if the training corpus is not large

enough to represent all possible n-grams. Of note, context-relevant corpora can theoretically

be employed and provide improved performance over a general corpus.

1.3 Scope of the review

The use of language modeling in text entry systems for individuals with severe motor

disabilities has been prevalent in the field of augmentative and assistive communication

(AAC) for over 20 years, including applications such as word completion [33], grid scanning

[34–37], and interface optimization [38]. Language modeling in BCI communication has

followed similar paths, ranging from changes in the user interface to modifying the signal

classification algorithms. However, BCI communication systems differ from other AAC

systems because of the time consuming and challenging intent classification that must occur

at each step in the process. This difference indicates that language modelling in BCI

classifiers has great potential as users who have difficulty typing with a communication

system stand to gain the most from language integration [33]. There are additional

challenges as well because traditional language modelling methods need to be adapted to

address the noise and dimensionality of neural data. The current review focuses on how

language information can be used by a classifier to improve the speed and accuracy of

decision making when classifying neural signals for BCI communication.

A review of language models in BCI communication systems has been previously conducted

which was more broad in scope, focusing mainly on changes to the graphical interface rather

than the classifier [39]. Many of the methods covered in the previous review are similar to

those already used in other AAC systems such as arranging the interface optimally [40,41]

or dynamically [8] based on letter frequency and choosing between groups rather than

individual characters [42]. The review makes a cursory mention of using language

information in classification, but does not do a thorough review of the area or include details

of the methods. In addition, two years have passed since the publication of the previous

review, so it does not include recent work. Because of the recent nature of this field, many

groups are engaged in parallel tracks to try to utilize language information. Many of these

Speier et al. Page 4

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

systems could potentially work in conjunction with one another or could benefit from

building off of previous works. The goal of this review is to give an overview of the different

projects that have been completed in this area and to serve as a primer for integrating these

methods into a unified, next generation system.

Based on the literature cited, we identified and discuss 7 different domains in which

language models have been used to enhance BCI communication: (i) word completion; (ii)

signal classification; (iii) integration of process models; (iv) dynamic stopping; (v)

unsupervised learning; (vi) error correction; and (vii) evaluation metrics. The review of

current literature is followed by a discussion of how these methods interact and whether they

can be combined to further improve BCI communication rates. Finally, future directions for

language model integration are discussed.

2. Methods

The PubMed and IEEE databases were searched using the query:

(“language model” OR “natural language processing” OR “NLP” OR “predictive

spelling”) AND (“brain computer interface” OR “BCI” OR “P300” OR “SSVEP”)

The initial search produced 29 articles. These articles were then filtered by reading their

titles and abstracts to ensure that they fit within the scope of the review. Articles were further

excluded if they were theses or conference proceedings that duplicated journal articles by

the same authors, resulting in 13 articles. The query was then expanded by including any

references in these articles which fell within the scope of this review, resulting in a final set

of 28 articles.

3. Results

Among the 28 selected articles, two systems used a motor imagery based system, one used

an SSVEP system, 20 used the P300 speller, and six used the RSVP speller. Six articles

proposed systems that included word completion. Twenty of the articles proposed methods

for including language models in the classifier, including threshold methods, naïve Bayes,

reliability-based automatic repeat request (RB-ARQ), partially observable Markov decision

processes (POMDPs), and hidden Markov models (HMMs). Six articles utilize language

models to make further improvements to the system including dynamic stopping,

unsupervised training, and integration into invasive BCI systems. Eight articles addressed

error correction, both manual and automatic. Two articles introduced new evaluation metrics

taking language models into consideration.

3.1 Word completion

The earliest application of language information in BCI was integrating word and phrase

completion based on previous selections [43], similar to methods employed in text

messaging [30] and AAC devices [33]. These systems contain language models that consist

of dictionaries, usually with weightings based on the frequency of usage of the word. After

each character selection, the system performs a lookup of the partially completed word and

returns potential completions. These completions are then presented as selection options.

Speier et al. Page 5

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The user then has the option of continuing to spell by selecting individual letters, or

selecting one of the completions. This method has the potential to increase typing speed by

allowing the user to type multiple characters at once with a single selection. Errors can

potentially be harder to correct in this system because an incorrect completion could result

in multiple incorrect characters that would then all need to be deleted. This problem can be

mitigated by adding additional commands such as “undo,” which can remove all of the

characters at once.

Ryan et al. [43] conducted the first study using such a system. Their implementation ran a

P300 speller concurrently with the WordQ2 word completion software (version 2.5,

Quillsoft, Ltd., Toronto, ON). WordQ2 is assistive software designed to help people with

difficultly writing by suggesting word completions, helping the user with spelling.

Middleware was developed that routed the P300 output as input to WordQ2, which used

dictionary lookups to find potential word completions. The top completion suggestions were

then sent from WordQ2 to be presented to the user. The ten number spaces in the P300 grid

were remapped to WordQ2 commands such as selection of a completed word or undoing a

previous command. Their study showed that accuracy using this system decreased due to the

added complexity of the task, but typing speed increased because of the ability to select

multiple characters at once using word completion.

Lee et al. [44] presented a similar dictionary lookup scheme in a menu-based motor imagery

system. In their system, the user selects a series of numbers, each mapped to a group of

characters based on the T9 predictive text system used in some older mobile phones. For

instance, if a user wanted to spell the word “good,” the string “3552” would be selected

because “3” maps to “ghi,” “5” maps to “mno,” and “2” maps to “def.” These numbers

could also map to the word “home,” so the user needs a way to choose between the possible

target words. The system handles this by providing a column of words that match the typed

numbers, which the user selects from once the word is completed. Unlike the Ryan et al.

system, this method does not allow the user to type multiple characters at one time, and

actually increases the number of necessary selections by one. Instead, this system improves

typing speed by reducing the number of choices, making decisions easier for the classifier

and reducing the time required to cycle through possible selections.

Kaufmann et al. [47] integrated a dictionary lookup scheme for common German words into

the P300 system. Their system created a list of words that appeared in German internet

pages and sorted them by the number of times the occurred. After each selection, their

algorithm scanned the list for words starting with the current partially typed word. The top

six matches were returned and were presented in the first column of the P300 speller matrix.

To account for erroneous completions, they also provided a “delete word” option in the grid

which would delete back to the last previously typed space.

3.2 Classification

While automatic completion can increase typing speed by reducing the number of selections

required, embedding a language model into the classifier has the potential to increase the

accuracy and reduce the amount of time required for individual selections. In general, these

systems work by representing common character patterns in a language model, usually

Speier et al. Page 6

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

generated from a corpus of text. These patterns are used to create a probability distribution

over the next character to be selected given the text already typed, p(xt|xt−1, ..., x0). This

probability distribution is then used to bias the system in favor of those characters that are

more likely to be typed given knowledge of letter patterns in language. For instance, if the

user is typing in English and the previous character is “Q,” the system can be fairly certain

the next character is “U” before even considering the corresponding EEG signal. This

method effectively reduces the number of characters the system considers, making decisions

easier and requiring less data before making an accurate selection.

Speier et al. [45] presented the first such system, which incorporated trigram probabilities

through a naïve Bayes classifier. The system converts the output from a traditional classifier,

linear discriminant analysis (LDA) [68], into a conditional distribution by assuming that the

resulting scores would follow a normal distribution for each class

where μa, μn, , and are the means and variances of the scores for attended and

nonattended flashes, respectively, and is the set of characters flashed in group i for letter

t. The prior probability was determined using a trigram character model

The posterior probability distribution over the possible target characters was found by

multiplying the probability of the observed signals by the prior probability based on trigram

counts.

After normalization, this distribution yields the probabilities that each of the characters were

the attended target. Once the system is ready to make a selection the character with the

highest probability is selected. The probability distribution over the characters also create

opportunities for other improvements such as dynamic stopping (see section 3.4) and error

correction (see section 3.6).

Other groups have extended the trigram model to create models with other types of n-grams.

Samizo et al. [54] tested the relative performance of their subjects using unigrams, bigrams

and trigrams. They found that trigrams provided the fastest typing speed as they were able to

capture a larger variety of language patterns. Orhan et al. [46] further extended the model to

use 6-grams, which could capture larger character patterns, including many complete words.

Speier et al. Page 7

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

These studies show that increasing the length of the patterns captured allows the model to

better represent language, resulting in improved performance. However, as the model

complexity increases, the amount of data required to train it increases exponentially, known

as the curse of dimensionality. Thus, larger values of n will reduce the precision of the prior

probabilities using an n-gram model as the training corpus will not be large enough to

observe all possible character combinations. For instance, any combination that does not

occur in the corpus given a zero probability, regardless of whether the string is possible in

the language. This is a particular problem when typing uncommon strings that might not

have occurred in the training corpus, such as OOV words. When designing a system, then,

one must trade off the size of the model with the precision of its estimates, based on the size

of the training corpus.

One way to mitigate the concerns of undertraining the system is to incorporate smoothing

into the model. Smoothing works by moving probability mass in areas of a model that did

not have sufficient observations in the training corpus. These methods will essentially

default to a smaller, easier to train model in cases where the larger model was not

sufficiently trained. Orhan et al. [46] used Witten-Bell smoothing [69] in the 6-gram model

mentioned above. This method uses multiple models and creates the probabilities using a

weighted average of the probabilities. In this example using a 6-gram and a 5-gram model,

the probability becomes

where p̂(xt|xt−5:t−1) and p̂(xt|xt−4:t−1) are the 6-gram and the 5-gram probabilities,

respectively. The value of λ is determined so that it is close to 1 when the 6-grams are

common in the corpus, and close to 0 when the 6-grams are less common and the model is

not trained as well.

where T(xt−5:t−1) is the number of distinct characters that follow xt−5:t−1 in the corpus and

c(xt−5:t−1) is the total number of occurrence of xt−5:t−1 in the corpus. The probability

distribution will be close to p̂(xt|xt−5:t−1) in cases where sufficient training data exists and

will otherwise approach p̂(xt|xt−4:t−1). Witten-Bell can be reapplied between the 5-gram

probability and the 4-gram probability in cases where the 5-gram is uncommon, and can

cascade as necessary until a fully trained model is reached.

Kindermans et al. [55] used an alternative smoothing method, Kneser-Ney smoothing [70].

Like Witten-Bell, this method moves probability from complicated to simple models in

cases with insufficient training data. In this model, a fixed value, δ, is subtracted from the

counts using the more complicated models and the remaining probability is assigned using

the simpler model.

Speier et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where N1+(xt−5:t−1,·) is the number of distinct 6-grams that start with xt−5:t−1 in the corpus.

Like Witten-Bell, this approach can be applied on progressively simpler models until a fully

trained model is reached.

3.3 Process models

A more sophisticated approach to language integration treats spelling as a process model. In

these methods, typing is treated as a state model representing the user’s target characters.

While the subject is focusing on a character, the system is in the corresponding state. When

the character is selected, the system transitions to the state represented by the next character

with a transition probability determined from character patterns in natural language. In

general, this model is unobserved, so estimations of the current state must be made based on

the observed EEG signal and the transition probabilities determined by the language model.

Park and Kim [48] created the first such model using a partially observable Markov decision

process (POMDP). In a POMDP, typing is modeled as a series of discrete time points. At

each time point, the system is in one state in the model, it receives an input, and it performs

an action. In this implementation, the states of the system are characters being typed, the

input is an EEG response to a single stimulus, and an action is either continuing to look at

the current character, or to make a decision about the current character and transition to

another character. Probabilities of being in a state were computed based on bigram

probabilities. The probability of being in state xt was the total probability of being in any

state x′t−1 and transitioning into that state

The decision to transfer to a new character in this method is dependent on value and policy

functions that are optimized based on the state probabilities. This optimization is generally

intractable, and requires estimation based on approximation algorithms. In their study, the

point-based value iteration (PBVI) algorithm [71,72] was employed to determine the value

and policy functions for the system.

Orhan et al. [49] and Ulas and Cetin [52] created similar systems that models BCI spelling

as a hidden Markov model (HMM) in an offline setting with trigram transition probabilities.

This methods was later extended by Speier et al. [60] into an online system that incorporated

dynamic stopping and automatic error correction (see sections 3.4 and 3.6). Similar to the

POMDP method, this system models typing with a state model where a single state

represents attempting to spell a target character with transitions based on the co-occurrence

of characters in a language model. The model itself is not observable, so the system must

estimate the location in the model based on indirect observations. Unlike the POMDP

Speier et al. Page 9

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

method, a time point in this model represents the total amount of time that the user focuses

on a single character and the associated observations are all of the stimulus responses for

that character. The system computes the probability distributions in a similar manner,

modified to account for the trigram model

The optimal state sequence can then be found using the Viterbi algorithm

POMDPs and HMMs compute transitions by finding a sum or maximum over the possible

state space. While this is possible in simple n-gram models, it quickly becomes intractable

as language models increase in complexity. Sampling methods are necessary for estimating

the probability distribution over such models so that high probability sequences can still be

tracked without losing the ability to run analysis in real time. Speier et al. [66] applied

sequential importance resampling, a standard particle filtering (PF) method to handle more

complicated language models. In this system, a probabilistic automaton was used to

represent word frequency in English text. Because the model contains over 200,000 states,

maximizing over the entire state space in not possible in a real time system. PF methods

estimate the distribution over the state space by projecting possible realizations of the system

(called particles) through the model over time. Particles are resampled periodically based on

the observed signal, so the existing particle distribution closely reflects the posterior

probability of a given character. This method was tested online against simpler language

models and showed significant improvements in both typing speed and accuracy.

The main concern with using this method is the number of particles to use. Using more

particles increases the processing necessary for estimating the distributions. However, a low

number of particles could result in undersampling the distributions and missing important

possible sequences. Sensitivity analysis in the Speier et al. study showed that performance

levelled off in offline analysis when using more than 10,000 particles and it was sufficient

for good results in their online study.

3.4 Dynamic stopping

Traditional BCI communication experiments are designed with a static, predetermined

number of stimuli presented for each selection, often including 10–15 trials. The system

displays these stimuli and then runs the classifier to determine the most probable character

and a selection is made. In many cases, enough information could be obtained before all of

the stimuli are presented, so a character could be selected earlier, reducing the amount of

time required significantly since trial repetition is one of the most time consuming

components of the P300 speller system. This time savings can be achieved by running the

classification algorithm after each stimulus and testing the results against a target threshold

Speier et al. Page 10

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

value. This process is analogous to methods used in other AAC systems where dwell times

can be reduced for probable characters [36]. Termed dynamic stopping or dynamic

classification, methods for adapting the number of stimuli presented have been presented

before [22], but they have started with a uniform probability distribution and therefore took

longer to reach the required threshold.

The naïve Bayes method presented in Speier et al. [45] was the first system to incorporate

dynamic stopping along with a language model. Several subsequent methods have since

incorporated similar methods and it is quickly becoming the standard in P300 classification

[48,54,55,60,66]. Dynamic classification was implemented by setting a threshold

probability, pThresh, to determine when a decision should be made. The program flashed

characters until either one of the characters’ probabilities exceeded the threshold

or the number of flashes reached the maximum. The classifier then selected the character

that satisfied

When the subject attempts to spell a word that commonly occurs in the language model, the

prior probability is heavily weighted towards the target characters. In this case, selections

can be made after very few stimuli. Depending on how common the word is and the value of

the target threshold, this model can even select characters without presenting any stimuli,

effectively employing an autocomplete method. When the user is attempting to spell a word

that is less common, the prior probability tends to bias the system away from the correct

letters. Usually, the probability of the correct letters is still greater than a uniform

distribution over the characters, so the system does not perform more slowly unless another

character exceeds the threshold before enough EEG information can be collected to make

the correct decision.

When choosing the threshold value to use, system designers need to consider the speed

accuracy tradeoff. A lower threshold is easier to reach, meaning a system will make

selections faster and typing speed will increase. However, a lower threshold also increases

the risk that a non-target character will exceed the threshold spuriously, resulting in an error.

In offline studies, the threshold value is typically optimized by finding results for various

values and choosing the best for each subject. For online studies, it is generally impractical

to optimize the threshold value and an empirical value around 0.95 is used.

3.5 Unsupervised learning

Because neurological signals vary between people and over time, each BCI session is

usually preceded by a training session to calibrate the system. Because “locked-in” subjects

are prone to fatigue, minimizing this training session could maximize the amount of time

Speier et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

available for using the system for actual communication. Prior work has attempted to create

a general classifier that would remove the necessity for this training session [73]. In general,

these generic classifiers perform significantly worse because of the variation in the neural

signals between people. A better approach is to use a subject’s own signals to adapt a

classifier while the subject is using the system. This approach is difficult because the target

character is unknown prior to classification. A language model can make such an approach

possible by adding a bias to the system, allowing it to determine likely target characters and

train the classifier.

Kindermans et al. [74] proposed a method using expectation maximization (EM) to train the

system during an unsupervised session of free spelling. During use, the subject selects

characters for a target word or phrase as in the traditional system. After each selection, the

classifier attempts to retrain itself using an iterative process. First, EEG signals are classified

based on a random initial system configuration. Then, treating these classifications as true

labels, system parameters are optimized as in a training session. Using these parameters,

EEG signals are again classified and the process alternates until convergence to a single

configuration. This method is dependent on the initial configuration and can result in local

optima that do not accurately classify signals. In this study, the problem was addressed by

creating multiple initial configurations and running EM separately for each. The result with

the highest log likelihood would then be chosen as the true classifier.

While the initial system only used constraints of the system, Kindermans et al. [50] and

Speier et al. [58] created similar systems that extended the HMM method from section 3.4 to

train a BCI system using unlabeled data. As in the initial Kindermans study, this system uses

EM (in this case the Baum-Welch algorithm) to find the optimal system configuration given

the observed EEG data and the underlying language model. The expectation step models

typing as an HMM and uses the forward-backward algorithm to find the optimal state labels

by breaking the computation into two steps: the total probability of all sequences into state

and the total probability out of the state given the observed EEG data. These probabilities

are computed by assuming that current estimates of model parameters are correct values.

The total probability of the state can then be determined by multiplying these two

probabilities together for each time point.

Given the observed data and the labels from the expectation step, the maximization step

finds the values of model parameters, including the classifier weights which maximize the

log likelihood of the data. The optimal values of the weights can be found through a

traditional classifier by treating the estimated states as supervised labels. The maximal

values other parameters can then be determined by maximizing the log likelihood function.

The expectation and maximization steps are then alternated until the labels converge to the

optimal configuration. The Speier et al. study showed the capability of the classifier to learn

accurate labels given different starting conditions. If the initial conditions are completely

unbiased, containing no prior information about neural signals, the classifier is able to learn

accurate system parameters for most subjects. For two of the 15 subjects, however, the

classifier converged to a local optimum and did not classify any characters correctly.

Alternatively, a generic set of parameters learned from a separate population of subjects can

be used as a starting point for the algorithm. In this case, the classifier quickly learned

Speier et al. Page 12

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parameters for the system that matched those learned through traditional supervised training

for all subjects.

3.6 Error Correction

When assigning prior probabilities to characters, the additional problem arises about what

probability to give non-character selections, particularly backspace. When a language model

is not used, the backspace option is generally given the same probability as the other

elements in the grid [15,75], but it is less obvious how to weight this element in systems that

distribute prior probability unevenly based on a language model. The simplest solution is to

give these selections a static probability. Orhan et al. [46] proposed an option of giving the

backspace selection a static probability of 0.1. They also proposed an alternate possibility of

giving the backspace selection a probability based on the previous selection. In this case, a

backspace would have the probability

The remaining characters would then be scaled down by a factor of p(xt−1|xt−2,…, x0) to

make the total probability equal one. Kindermans et al. [55] proposed a similar method that

works in two steps. Initially, the backspace character is given a weight p̂(xt = ‘backspace’|
xt−1,…, x0) defined s above and all characters are given probabilities p̂(xt | xt−1,…, x0) based

on the language model. All of the probabilities are then reweighted based on the new total

probability including the backspace selection:

In both of these methods, the values of p(xt−i | xt−i−1,…, x0) must be stored for all i so that

the system can accurately assign probabilities to the backspace selection due to the

possibility that the user will want to perform multiple consecutive backspace operations.

Several of the presented studies have included the possibility of automatically correcting

errors through the algorithm. These methods are widely used in text messaging [29] and

have been applied previously to other AAC systems [33]. They generally work by having the

user continue to use the system after an error without attempting to correct it. After

subsequent characters are selected, the system looks back at previous selections and

determines whether they agree with the language model. If errors are detected, the system

attempts to replace them with more probable selections with little or no additional input

from the user.

The system presented by Ryan et al. [43] allows for some error correction when the user

selects word completions. When the WordQ software produces proposals for word

completion, it does not require an exact match with the incomplete word already typed.

Thus, even if a user mistypes a character, it is possible that WordQ would match the string to

the correct word and the system would present it as one of the options for completion. In this

Speier et al. Page 13

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

case, the correct word would overwrite the mistyped string, thereby correcting the error. In

cases where the error prevented the program from matching to the correct completion, the

user would be required to use a backspace key to make a manual correction.

Ahi et al. [41] presented a system that would attempt to match an entire input string to a

word in the dictionary. While the system was presented as only performing the matching

after the entire word was typed, it can be intuitively extended to a system where the

matching is performed to substrings of the words after each selection. Because the

optimization is performed over the entire substring after each selection, the output characters

can possibly change as additional characters are typed. For example, consider a situation

where the optimal string after two characters could be found to be “ta,” but after a third

character was typed the optimal string was “the.” In this case, the second character would be

overwritten from the initial decision, ‘a,’ to a new decision, ‘h,’ that agreed more with the

subsequent selection. This method assumes that boundaries between words are correct as

each optimization starts at the beginning of the word. Characters in a word are also in flux

until the word is completed, meaning that the user does not know if the system will be able

to correctly classify characters until the word is completed.

Process model approaches such as those presented by Speier et al. [60,66] optimize over the

entire output string and are able to update mistyped characters as more selections are made.

Characters are changed if subsequent characters create strings that do not agree with the

language model. Because the optimization is over the entire string, word boundaries are not

required to be correct. For example, the output string “themc” can be corrected to “the c,”

splitting the word to create an optimal output string. In the HMM model, these corrections

are based on local character patterns and can still type strings that do not match words in the

corpus. The PF method makes corrections using a word-based model, so it will correct text

to match words that appeared in the training corpus. In both cases, the system will be unable

to make corrections of errors that do not conflict with the language model. The string “then,”

for instance, could not be corrected to “than” because both are valid words and use common

character patterns. Manual corrections would need to be possible to make such corrections.

While optimization over the entire string allows for more errors to be corrected, it can lead

to problems in the case where manual corrections are also allowed. If a user believes the

system will correct an error and continues to type rather than correcting it, many additional

selections may be needed to delete subsequent characters in order to correct the error. Also,

there is an additional cognitive overhead if the user is expected to look at the entire typed

string to verify if any changes have been made. In practice, most corrections will involve

only the most recent word, so this overhead may not be significantly greater than in the

standard system. In addition, word suggestions could help with making changes to

characters that the system fails to correct without requiring multiple deletions (see

discussion). Usability studies need to be performed in order to determine the optimal

strategy for correction in this type of system, identifying situations where the system is able

to make the corrections automatically and when users should fix an error manually.

Speier et al. Page 14

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.7 Evaluation metrics

As new systems are proposed, evaluation metrics play an important role in the direction of

research as they are used to evaluate the improvement and relative value of systems’ results.

Several metrics have been developed for BCI communication output, but most were created

with traditional classifiers in mind. They therefore treat all characters as equally probable

and do not take interactions between subsequent selections into account. For example,

information transfer rate (ITR) essentially defines the amount of information contained in a

selection as the difference between selection accuracy and the accuracy from choosing

randomly. However, if the prior character is known to be ‘Q,’ a reader would likely assume

that the next character would be ‘U’ based on their knowledge of the English language.

Typing ‘U’ in this case does not provide much additional information. As a result, metrics

generally overestimate the amount of information that is conveyed in a system’s output.

Ryan et al. [43] demonstrated an additional problem with ITR in systems with word

completion that arises because ITR considers selections rather than output characters. In

their study, subjects were able to complete the target sentence in less time using their

proposed system, but the control system had a higher average ITR. This was because

selections in their system could contain multiple characters when words were completed, but

they were still considered a single selection by ITR. This disconnect is similar to concerns in

other AAC methods where economy of selections do not always translate into faster typing

speeds due to cognitive overhead, which is generally addressed by comparing total times to

produce a target output string [35]. Ryan et al. proposed a similar metric, output characters

per minute (OCM), which directly addresses typing speed by dividing the total number of

output characters by the time required to type them. This metric does not address errors in

output as it assumes subjects manually correct all errors. The metric also assumes all target

sentences are equally difficult to type, which is not true in general as those that are probable

in a language are generally easier in systems that use language models because they have a

higher prior probability or are likely to occur as suggestions for autocomplete.

Speier et al. [56] proposed a metric that incorporates some of this information to more

accurately assess the true amount of information that is conveyed in a BCI output string. It

achieves this by measuring the mutual information between the target string and the actual

output string with using a language model to represent the interactions between subsequent

selections. Given a perfect language model, this method would give an accurate estimate of

the information contained in an output string as it essentially subtracts out all of the

language information captured by the model. In practice, however, this method

overestimates the amount of information contained in the string because no language model

exists that perfectly accounts for all structure in language. The estimates from this method

still improve over those that ignore language information, and provide a framework for

incorporating more advanced models to further refine the estimates.

4. Discussion

Each of these avenues of integrating language information into BCI communication systems

has provided significant improvements over traditional implementations. Several of these

methods are currently employed simultaneously in systems: dynamic stopping is frequently

Speier et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

used in systems that use language models in the classifier; unsupervised learning has been

used to train a classifier in systems that model language as a process model; and a word

completion implementation has allowed for correcting of some errors. However, many of

these methods have been developed along parallel tracks and their interactions have not been

explored. In many cases, these methods could work in concert to further improve

communication speed and accuracy, resulting in a system closer to fulfilling the needs of the

target population.

Word completion could be integrated with a system with a language model in its

classification. In systems with an n-gram model, the two systems could run independently:

the n-gram model would be used for producing prior probabilities for individual characters

and a separate dictionary-based model could provide suggested completions. The main task

would be determining the prior probability for selecting one of the completions. This

probability could either be static or determined based on the relative frequencies of the

suggested words.

For systems with a word-based model, word completion and classifier integration can be

more closely combined. Word-based models can project the current state through the model

to determine the most likely completions of the current text. In systems with a dictionary-

based model, this method consists of simply looking up words that start with the typed text.

In the particle filtering algorithm, some particles could be projected through the model until

they reach a terminal state. A histogram of the paths these particles took would then

represent relative probabilities of the possible words that the user could intend to spell.

Word completion could provide an additional benefit when combined with an automatic

error correction method. BCI systems that use automatic error correction do so by

optimizing over the possible target strings. When computing the most probable string, these

methods also find alternative, less probable strings. These strings are currently discarded, but

could be presented to the user as options as in the completion method. By doing this, the

system is more likely to present the correct string, reducing the number of times that a user

will be required to manually correct the error. This method would also reduce the number of

times that characters are incorrectly changed, which is possible in cases where a user is

trying to spell a word that is similar in spelling, but less common than another word. For

example, a user trying to spell “theme” might have the word autocorrected to “there”

because of the relative frequency of the words, but both could be presented as options to

allow the user to override this mistaken correction.

Word and character based models could be combined in a classifier using a smoothing

method. As currently posed, word-based models such as the probabilistic automata and word

dictionaries do not allow users to spell OOV words. Because these models are based on

general corpora of language, they will often miss uncommon words, particularly proper

nouns. The smoothing methods currently used in n-gram models could be implemented here

to combine word and character level models. Using these methods, some probability would

be given to strings that follow character patterns that are consistent with language, even if

they do not make up words that occur in the model. This method would allow systems to

Speier et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

accept OOV words and they could subsequently be added to the word level model allowing

it to adapt to the user (see future directions).

The error correction methods used here have the potential to improve performance of

unsupervised learning methods. Kindermans et al. [76] recently implemented their

unsupervised method in an online system using the AMUSE auditory ERP system. In their

study, the classifier was only able to achieve an accuracy comparable to random chance as

the system started without any prior information, but as subjects continued to use the system,

performance increased significantly. The system then reanalyzed the previous selections as

the classifier was retrained using more data, allowing some earlier errors to be corrected.

These corrections did not take language information into account, however, as corrections

were made based only on a better-trained classifier. Combining this method with a language

model would improve these corrections further and could accelerate the unsupervised

learning by providing better labels for the EM algorithm.

4.1 Future directions

Current language models used in BCI systems are based on patterns in general corpora of

language, and are therefore not necessarily optimal for the specific context of BCI

communication. The frequency of words in published text differs from the word frequency

in everyday speech, and likely differs even further from locked-in patients who may use the

system frequently to communicate things related to their disease (e.g., asking for help

adjusting equipment). While general language models can help the user create valid words,

it could likely perform better if it can predict the topics of conversation, thereby tailoring the

model to the more likely words to be used. Topics of interest will vary between subjects so a

language model that reflects one person’s speech patterns will not likely be optimal for any

other subject. Ideally, a unique language model would be built for each individual user based

on the text that they generate using the system. Such a system could start with a more

general model, and gradually tailor it to the user over time as has previously been done in

other AAC systems [33]. The likely words and topics will also vary between time and

context, so an optimal language model should adjust to outside information such as the time

of day, the state of other devices in the room, or the identities of the people with whom the

subject is speaking. This adaptation to outside context has been shown in other BCI systems

[75], but has not yet been incorporated into language model-based communication.

Existing BCI systems limit their usage of language models to single words. Significant

information available from the relationships between words such as sentence structure and

parts of speech is ignored. Common phrases also make up a large part of everyday

communication, which could significantly accelerate typing speed if included in a language

model. While a complete model of language would be impractical for this application,

simplified models can be used to include some of the information, which could yield

significant improvements in system performance. The n-gram models currently used for

characters in BCI can be extended to words, which would provide a starting point for

including this information.

Prior information from the language model can also be used to change the stimuli presented

to the user. The number or frequency of character stimuli can be augmented based on the

Speier et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

probability of the character possibly reducing the number of necessary stimuli to make a

selection and thereby increasing system speed. The RSVP speller may be particularly

suitable for this approach as low probability characters can be removed from the set of

presented characters [46,67]. The P300 speller could be similarly use this approach by

applying pseudo-random flashing paradigms such as those presented by Townsend et al. [15]

and Jin et al. [16] to a reduced set of potential characters determined by the language model.

While the target population for this system is “locked-in” patients, most of the systems

presented here tested exclusively on healthy volunteers with only three including ALS

patients [59,61,63]. The translation of results from healthy subjects to the target population

is a general concern for the field as ALS patients can have additional difficulties such as the

loss of eye gaze control. The systems here that involve changing graphical interfaces such as

the word completion methods could therefore be more difficult for these subjects to control.

Systems that include automatic error correction could be problematic as well, as patients

would have the additional task of deciding which errors the system would be able to fix on

its own and which require manual correction. Some of these issues might possibly self-

correct over time as the patient becomes more accustomed to suing the system. Testing in

the target population will be required in order to determine the true improvement seen by

these patients when using a system with language models. Additionally, longitudinal studies

can demonstrate the long-term effectiveness of the systems as the patient familiarizes with

the system. Longitudinal studies could also allow for tailoring language models to the

individual subject to further improve performance.

5. Conclusion

While the exploration of integration of language information into BCI communication only

recently, significant advances have already been demonstrated. These improvements come

from various aspects of the system, ranging from changes in the user interface to modifying

the signal classification algorithms. Because of the recent nature of this concept, many

groups are engaged in parallel tracks to try to utilize this information. Many of these systems

could potentially work in conjunction with one another or could benefit from building off of

previous works.

Acknowledgments

This work was supported by the National Institute of Biomedical Imaging and Bioengineering Award Number
K23EB014326 (NP) and the UCLA Scholars in Translational Medicine Program (NP).

References

1. Ball L, Nordness A, Fager S, Kersch K, Pattee G, Beukelman D. Eye-gaze access of AAC
technology for persons with amyotrophic lateral sclerosis. J Med Speech Lang Pathol. 2010; 18:11–
23.

2. Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? Opinions and
priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;
12:318–24. [PubMed: 21534845]

3. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces
for communication and control. Clin Neurophysiol. 2002; 133:767–91.

Speier et al. Page 18

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-
related brain potentials. Electroencephalogr Clin Neurophysiol. 1988; 70:510–23. [PubMed:
2461285]

5. Acqualagna L, Blankertz B. Gaze-independent BCI-spelling using rapid serial visual presentation
(RSVP). Clin Neurophysiol. 2013; 124:901–8. [PubMed: 23466266]

6. Schreuder M, Rost T, Tangermann M. Listen, you are writing! Speeding up online spelling with a
dynamic auditory BCI. Front Neurosci. 2011; 5:112. [PubMed: 22016719]

7. Blankertz B, Curio G, Muller K-R. Classifying single trial EEG: Towards brain computer
interfacing. Adv Neural Inf Process Syst. 2002; 1:157–64.

8. D’albis T, Blatt R, Tedesco R, Sbattella L, Matteucci M. A predictive speller controlled by a brain-
computer interface based on motor imagery. ACM Trans Comput Interact. 2012; 19:20.

9. Blankertz B, Dornhege G, Krauledat M, Schröder M, Williamson J, Murray-Smith R, Müller K-R.
The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell. Proc 3rd Int
Brain-Computer Interface Work Train Course. 2006:108–9.

10. Cecotti H. A self-paced and calibration-less SSVEP-based brain–computer interface speller. Neural
Syst Rehabil Eng IEEE Trans. 2010; 18:127–33.

11. Volosyak, I., Moor, A., Gräser, A. Advances in Computational Intelligence. Springer; 2011. A
dictionary-driven SSVEP speller with a modified graphical user interface; p. 353-61.

12. Xu M, Qi H, Wan B, Yin T, Liu Z, Ming D. A hybrid BCI speller paradigm combining P300
potential and the SSVEP blocking feature. J Neural Eng. 2013; 10:26001.

13. Yin E, Zhou Z, Jiang J, Chen F, Liu Y, Hu D. A novel hybrid BCI speller based on the
incorporation of SSVEP into the P300 paradigm. J Neural Eng. 2013; 10:26012.

14. Sellers EWE, Krusienski DJDJ, McFarland DJ, Vaughan TM, Wolpaw JR. A P300 event-related
potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on
performance. Biol Psychol. 2006; 73:242–52. [PubMed: 16860920]

15. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE,
Vaughan TM, Wolpaw JR, Sellers EW. A novel P300-based brain-computer interface stimulus
presentation paradigm: Moving beyond rows and columns. Clin Neurophysiol. 2010; 121:1109–
20. [PubMed: 20347387]

16. Jin J, Horki P, Brunner C, Wang X, Neuper C, Pfurtscheller G. A new P300 stimulus presentation
pattern for EEG-based spelling systems. Biomed Tech. 2010; 55:203–10.

17. McFarland DJ, Sarnacki WA, Townsend G, Vaughan T, Wolpaw JR. The P300-based brain-
computer interface (BCI): Effects of stimulus rate. Clin Neurophysiol. 2011; 122:731–7. [PubMed:
21067970]

18. Lu J, Speier W, Hu X, Pouratian N. The effects of stimulus timing features on P300 speller
performance. Clin Neurophysiol. 2012; 124:306–14. [PubMed: 22939456]

19. Kaufmann T, Schulz SM, Grünzinger C, Kübler A. Flashing characters with famous faces
improves ERP-based brain–computer interface performance. J Neural Eng. 2011; 8:56016.

20. Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H. BCI Competition 2003 - Data Set
IIb: Support Vector Machines for the P300 Speller Paradigm. IEEE Trans Biomed Eng. 2004;
50:1073–6.

21. Xu N, Gao X, Hong B, Miao X, Gao S, Yang F. BCI Competition 2003 - Data Set IIb: Enhancing
P300 Wave Detection Using ICA-Based Subspace Projections for BCI Applications. IEEE Trans
Biomed Eng. 2004; 51:1067–72. [PubMed: 15188880]

22. Serby H, Yom-Tov E, Inbar GF. An improved P300-based brain-computer interface. IEEE Trans
Neural Syst Rehabil Eng. 2005; 13:89–98. [PubMed: 15813410]

23. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR. A
comparison of classification techniques for the P300 Speller. J Neural Eng. 2006; 3:299–305.
[PubMed: 17124334]

24. Brunner P, Ritaccio AL, Emrich JF, Bischof H, Schalk G. Rapid Communication with a “P300”
Matrix Speller Using Electrocorticographic Signals (ECoG). Front Neurosci. 2011; 5:5. [PubMed:
21369351]

25. Krusienski DJ, Shih JJ. Control of a visual keyboard using an electrocorticographic brain–
computer interface. Neurorehabil Neural Repair. 2011; 25:323–31. [PubMed: 20921326]

Speier et al. Page 19

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

26. Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-
based brain-computer interface. Rehabil Eng IEEE Trans. 2000; 8:174–9.

27. Jelinek, F. Statistical methods for speech recognition. MIT press; 1997.

28. Hart-Davis, G. Office 2010 Made Simple. Springer; 2011. Entering and Editing Text in Your
Documents; p. 165-97.

29. Fowler, A., Partridge, K., Chelba, C., Bi, X., Ouyang, T., Zhai, S. Effects of Language Modeling
and its Personalization on Touchscreen Typing Performance. Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems; ACM; 2015. p. 649-58.

30. Dunlop MD, Crossan A. Predictive text entry methods for mobile phones. Pers Technol. 2000;
4:134–43.

31. Bird, S. Proceedings of the COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics; 2006. NLTK: the natural language toolkit; p. 69-72.

32. Francis, WN., Kucera, H. Brown Corpus Manual. Providence, RI: Dept of Linguistics, Brown
University; 1979.

33. Darragh JJ, Witten IH, James ML. The reactive keyboard: A predictive typing aid. Computer (Long
Beach Calif). 1990; 23:41–9.

34. Foulds R, Soede M, van Balkom H. Statistical disambiguation of multi-character keys applied to
reduce motor requirements for augmentative and alternative communication. Augment Altern
Commun. 1987; 3:192–5.

35. Lesher G, Moulton B, Higginbotham DJ. Techniques for augmenting scanning communication.
Augment Altern Commun. 1998; 14:81–101.

36. Nantais T, Shein F, Treviranus J. A predictive selection technique for single-digit typing with a
visual keyboard. Rehabil Eng IEEE Trans. 1994; 2:130–6.

37. Roark B, Beckley R, Gibbons C, Fried-Oken M. Huffman scanning: using language models within
fixed-grid keyboard emulation. Comput Speech Lang. 2013; 27:1212–34.

38. Lesher GW, Moulton BJ, Higginbotham DJ. Optimal character arrangements for ambiguous
keyboards. Rehabil Eng IEEE Trans. 1998; 6:415–23.

39. Mora-Cortes A, Manyakov NV, Chumerin N, Van Hulle MM. Language Model Applications to
Spelling with Brain-Computer Interfaces. Sensors. 2014; 14:5967–93. [PubMed: 24675760]

40. Volosyak, I., Cecotti, H., Valbuena, D., Gräser, A. Evaluation of the Bremen SSVEP based BCI in
real world conditions. Rehabilitation Robotics, 2009. ICORR 2009. IEEE International Conference
on; IEEE; 2009. p. 322-31.

41. Ahi ST, Kambara H, Koike Y. A dictionary-driven P300 speller with a modified interface. IEEE
Trans Neural Syst Rehabil Eng. 2011; 19:6–14. [PubMed: 20457551]

42. Höhne J, Schreuder M, Blankertz B, Tangermann M. A novel 9-class auditory ERP paradigm
driving a predictive text entry system. Front Neurosci. 2011; 5:99. [PubMed: 21909321]

43. Ryan DB, Frye GE, Townsend G, Berry DR, Mesa-GS, Gates NA, Sellers EW. Predictive spelling
with a P300-based brain–computer interface: increasing the rate of communication. Intl J Human–
Computer Interact. 2010; 27:69–84.

44. Lee, S., Lim, H-S. Future Information Technology. Springer; 2011. Predicting text entry for brain-
computer interface; p. 309-12.

45. Speier W, Arnold C, Lu J, Taira RK, Pouratian N. Natural language processing with dynamic
classification improves P300 speller accuracy and bit rate. J Neural Eng. 2011; 9:016004.
[PubMed: 22156110]

46. Orhan, U., Hild, KE., Erdogmus, D., Roark, B., Oken, B., Fried-Oken, M. RSVP keyboard: An
EEG based typing interface. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on; IEEE; 2012. p. 645-8.

47. Kaufmann T, Völker S, Gunesch L, Kübler A. Spelling is just a click away–a user-centered brain–
computer interface including auto-calibration and predictive text entry. Front Neurosci. 2012; 6:72.
[PubMed: 22833713]

48. Park J, Kim K-E. A POMDP approach to optimizing P300 speller BCI paradigm. Neural Syst
Rehabil Eng IEEE Trans. 2012; 20:584–94.

Speier et al. Page 20

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

49. Orhan, U., Erdogmus, D., Roark, B., Oken, B., Purwar, S., Hild, KE., Fowler, A., Fried-Oken, M.
Improved accuracy using recursive bayesian estimation based language model fusion in ERP-
based BCI typing systems. Engineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE; IEEE; 2012. p. 2497-500.

50. Kindermans P-J, Verschore H, Verstraeten D, Schrauwen B. A P300 BCI for the masses: Prior
information enables instant unsupervised spelling. Advances in Neural Information Processing
Systems. 2012:710–8.

51. Ulas, C., Cetin, M. The first Brain-Computer Interface utilizing a Turkish language model. Signal
Processing and Communications Applications Conference (SIU), 2013 21st; IEEE; 2013. p. 1-4.

52. Ulas, C., Çetin, M. Incorporation of a language model into a brain computer interface based speller
through HMMs. Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on; IEEE; 2013. p. 1138-42.

53. Speier W, Fried I, Pouratian N. Improved P300 speller performance using electrocorticography,
spectral features, and natural language processing. Clin Neurophysiol. 2013; 124:1321–8.
[PubMed: 23465430]

54. Samizo, E., Yoshikawa, T., Furuhashi, T. Foundations of Augmented Cognition. Springer; 2013. A
Study on Application of RB-ARQ Considering Probability of Occurrence and Transition
Probability for P300 Speller; p. 727-33.

55. Kindermans P-J, Verschore H, Schrauwen B. A Unified Probabilistic Approach to Improve
Spelling in an Event-Related Potential-Based Brain–Computer Interface. Biomed Eng IEEE Trans.
2013; 60:2696–705.

56. Speier W, Arnold C, Pouratian N. Evaluating True BCI Communication Rate through Mutual
Information and Language Models. PLoS One. 2013; 8:e78432. [PubMed: 24167623]

57. Casagrande, A., Jarmolowska, J., Turconi, M., Fabris, F., Battaglini, PP. Brain and Health
Informatics. Springer; 2013. PolyMorph: A P300 Polymorphic Speller; p. 297-306.

58. Speier, W., Knall, J., Pouratian, N. Unsupervised training of brain-computer interface systems
using expectation maximization. Neural Engineering (NER), 2013 6th International IEEE/EMBS
Conference on; IEEE; 2013. p. 707-10.

59. Orhan U, Erdogmus D, Roark B, Oken B, Fried-Oken M. Offline analysis of context contribution
to ERP-based typing BCI performance. J Neural Eng. 2013; 10:66003.

60. Speier W, Arnold C, Lu J, Deshpande A, Pouratian N. Integrating language information with a
hidden markov model to improve communication rate in the P300 speller. IEEE Trans Neural Syst
Rehabil Eng. 2014; 22:678–84. [PubMed: 24760927]

61. Oken BS, Orhan U, Roark B, Erdogmus D, Fowler A, Mooney A, Peters B, Miller M, Fried-Oken
MB. Brain–Computer Interface With Language Model–Electroencephalography Fusion for
Locked-In Syndrome. Neurorehabil Neural Repair. 2014; 28:387–94. [PubMed: 24370570]

62. Mainsah BO, Colwell KA, Collins LM, Throckmorton CS. Utilizing a language model to improve
online dynamic data collection in P300 spellers. Neural Syst Rehabil Eng IEEE Trans. 2014;
22:837–46.

63. Mainsah BO, Collins LM, Colwell KA, Sellers EW, Ryan DB, Caves K, Throckmorton CS.
Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS
study. J Neural Eng. 2015; 12:16013.

64. Saa JFD, de Pesters A, McFarland D, Çetin M. Word-level language modeling for P300 spellers
based on discriminative graphical models. J Neural Eng. 2015; 12:26007.

65. Moghadamfalahi M, Orhan U, Akcakaya M, Nezamfar H, Fried-Oken M, Erdogmus D. Language-
Model Assisted Brain Computer Interface for Typing: A Comparison of Matrix and Rapid Serial
Visual Presentation. Neural Syst Rehabil Eng IEEE Trans. 2015; 23:910–20.

66. Speier W, Arnold CW, Deshpande A, Knall J, Pouratian N. Incorporating advanced language
models into the P300 speller using particle filtering. J Neural Eng. 2015; 12:046018. [PubMed:
26061188]

67. Moghadamfalahi, M., Gonzalez-Navarro, P., Akcakaya, M., Orhan, U., Erdogmus, D. Foundations
of Augmented Cognition. Springer; 2015. The Effect of Limiting Trial Count in Context Aware
BCIs: A Case Study with Language Model Assisted Spelling; p. 281-92.

68. Draper, NR., Smith, H. Applied regression analysis. John Wiley & Sons; 2014.

Speier et al. Page 21

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

69. Witten IH, Bell T. The zero-frequency problem: Estimating the probabilities of novel events in
adaptive text compression. Inf Theory, IEEE Trans. 1991; 37:1085–94.

70. Kneser, R., Ney, H. Improved backing-off for m-gram language modeling. Acoustics, Speech, and
Signal Processing, 1995. ICASSP-95., 1995 International Conference on; IEEE; 1995. p. 181-4.

71. Kim K-E. Exploiting Symmetries in POMDPs for Point-Based Algorithms. AAAI. 2008:1043–8.

72. Doshi, F., Roy, N. The permutable POMDP: fast solutions to POMDPs for preference elicitation.
Proceedings of the 7th international joint conference on Autonomous agents and multiagent
systems; International Foundation for Autonomous Agents and Multiagent Systems; 2008. p.
493-500.

73. Kaper, M., Ritter, H. Generalizing to new subjects in brain-computer interfacing. Engineering in
Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the
IEEE; IEEE; 2004. p. 4363-6.

74. Kindermans P-J, Verstraeten D, Schrauwen B. A bayesian model for exploiting application
constraints to enable unsupervised training of a P300-based BCI. PLoS One. 2012; 7:e33758.
[PubMed: 22496763]

75. Faller, J., Torrellas, S., Miralles, F., Holzner, C., Kapeller, C., Guger, C., Bund, J., Muller-Putz,
GR., Scherer, R. Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface.
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of
the IEEE; IEEE; 2012. p. 1827-30.

76. Kindermans P-J, Schreuder M, Schrauwen B, Müller K-R, Tangermann M. True Zero-Training
Brain-Computer Interfacing–An Online Study. PLoS One. 2014; 9:e102504. [PubMed: 25068464]

Speier et al. Page 22

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Speier et al. Page 23

Ta
b

le
 1

L
is

t o
f

B
C

I
sp

el
lin

g
sy

st
em

s
in

cl
ud

ed
 in

 th
is

 r
ev

ie
w

. T
he

 r
es

ul
ts

 v
ar

ie
d

be
tw

ee
n

st
ud

ie
s

ba
se

d
on

 th
e

m
et

ho
d

th
ey

 w
er

e
co

m
pa

re
d

to
 a

nd
 th

e
m

et
ri

c
us

ed

fo
r

an
al

ys
is

. M
is

si
ng

 v
al

ue
s

in
di

ca
te

 e
ith

er
 th

at
 th

e
pr

op
os

ed
 m

et
ho

d
w

as
 n

ot
 c

om
pa

re
d

to
 a

 m
et

ho
d

w
ith

ou
t a

 la
ng

ua
ge

 m
od

el
 o

r
th

at
 n

um
er

ic
al

 d
at

a
w

as

no
t p

ro
vi

de
d.

 T
he

 m
et

ri
cs

 u
se

d
w

er
e:

 o
ut

pu
t c

ha
ra

ct
er

s
pe

r
m

in
ut

e
(O

C
M

),
 in

fo
rm

at
io

n
tr

an
sf

er
 r

at
e

(I
T

R
),

 th
eo

re
tic

al
 b

it
ra

te
 (

T
B

R
),

 a
cc

ur
ac

y
(A

C
C

),

gU
til

ity
, a

nd
 s

ym
bo

ls
 p

er
 m

in
ut

e
(S

PM
).

P
ap

er
Sy

st
em

L
an

gu
ag

e
M

od
el

A
lg

or
it

hm
Su

bj
ec

ts
%

 I
m

pr
ov

em
en

t
(m

et
ri

c)

R
ya

n
[4

3]
P3

00
 S

pe
lle

r
D

ic
tio

na
ry

W
or

d
co

m
pl

et
io

n
24

 o
nl

in
e

40
.4

 (
O

C
M

)

A
hi

 [
41

]
P3

00
 S

pe
lle

r
D

ic
tio

na
ry

R
an

k
su

m
14

 o
ff

lin
e

24
1.

7
(T

B
R

)

V
ol

os
ya

k
[1

1]
SS

V
E

P
D

ic
tio

na
ry

W
or

d
co

m
pl

et
io

n
7

on
lin

e
9.

1
(I

T
R

)

L
ee

 [
44

]
M

ot
or

 I
m

ag
er

y
D

ic
tio

na
ry

W
or

d
co

m
pl

et
io

n
N

A
N

A

Sp
ei

er
 [

45
]

P3
00

 S
pe

lle
r

N
-g

ra
m

N
aï

ve
 B

ay
es

6
of

fl
in

e
50

.2
 (

IT
R

)

O
rh

an
 [

46
]

R
SV

P
N

-g
ra

m
N

aï
ve

 B
ay

es
3

on
lin

e
N

A

K
au

fm
an

n
[4

7]
P3

00
 S

pe
lle

r
D

ic
tio

na
ry

W
or

d
co

m
pl

et
io

n
19

 o
nl

in
e

71
.7

 (
T

B
R

)

Pa
rk

 [
48

]
P3

00
 S

pe
lle

r
N

-g
ra

m
Pa

rt
ia

lly
 o

bs
er

va
bl

e
M

ar
ko

v
de

ci
si

on
 p

ro
ce

ss
10

 o
nl

in
e

61
.8

 (
IT

R
)

O
rh

an
 [

49
]

R
SV

P
N

-g
ra

m
H

id
de

n
M

ar
ko

v
M

od
el

2
of

fl
in

e
6

(A
C

C
)

D
’a

lb
is

 [
8]

M
ot

or
 I

m
ag

er
y

N
-g

ra
m

W
or

d
co

m
pl

et
io

n
3

on
lin

e
N

A

K
in

de
rm

an
s

[5
0]

P3
00

 S
pe

lle
r

N
-g

ra
m

E
xp

ec
ta

tio
n

m
ax

im
iz

at
io

n
22

 o
ff

lin
e

19
.2

 (
A

C
C

)

U
la

s
[5

1]
P3

00
 S

pe
lle

r
N

-g
ra

m
H

id
de

n
M

ar
ko

v
m

od
el

6
of

fl
in

e
55

.3
 (

IT
R

)

U
la

s
[5

2]
P3

00
 S

pe
lle

r
N

-g
ra

m
H

id
de

n
M

ar
ko

v
m

od
el

6
of

fl
in

e
55

.3
 (

IT
R

)

Sp
ei

er
 [

53
]

P3
00

 S
pe

lle
r

N
-g

ra
m

N
aï

ve
 B

ay
es

2
of

fl
in

e
29

.1
 (

IT
R

)

Sa
m

iz
o

[5
4]

P3
00

 S
pe

lle
r

N
-g

ra
m

R
el

ia
bi

lit
y-

ba
se

d
au

to
m

at
ic

 r
ep

ea
t r

eq
ue

st
3

on
lin

e
42

.3
 (

gU
til

ity
)

K
in

de
rm

an
s

[5
5]

P3
00

 S
pe

lle
r

N
-g

ra
m

N
aï

ve
 B

ay
es

22
 o

ff
lin

e
61

.4
 (

SP
M

)

Sp
ei

er
 [

56
]

P3
00

 S
pe

lle
r

N
-g

ra
m

M
ut

ua
l I

nf
or

m
at

io
n

N
A

N
A

C
as

ag
ra

nd
e

[5
7]

P3
00

 S
pe

lle
r

D
ic

tio
na

ry
W

or
d

co
m

pl
et

io
n

10
 o

nl
in

e
N

A

Sp
ei

er
 [

58
]

P3
00

 S
pe

lle
r

N
-g

ra
m

E
xp

ec
ta

tio
n

m
ax

im
iz

at
io

n
15

 o
ff

lin
e

N
A

O
rh

an
 [

59
]

R
SV

P
N

-g
ra

m
N

aï
ve

 B
ay

es
3

on
lin

e
N

A

Sp
ei

er
[6

0]
P3

00
 S

pe
lle

r
N

-g
ra

m
H

id
de

n
M

ar
ko

v
m

od
el

5
on

lin
e

89
.3

 (
IT

R
)

O
ke

n
[6

1]
R

SV
P

N
-g

ra
m

N
aï

ve
 B

ay
es

18
 o

nl
in

e
N

A

M
ai

ns
ah

 [
62

]
P3

00
 S

pe
lle

r
N

-g
ra

m
N

aï
ve

 B
ay

es
17

 o
nl

in
e

12
.2

 (
IT

R
)

M
ai

ns
ah

 [
63

]
P3

00
 S

pe
lle

r
N

-g
ra

m
N

aï
ve

 B
ay

es
10

 o
nl

in
e

25
4.

6
(I

T
R

)

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Speier et al. Page 24

P
ap

er
Sy

st
em

L
an

gu
ag

e
M

od
el

A
lg

or
it

hm
Su

bj
ec

ts
%

 I
m

pr
ov

em
en

t
(m

et
ri

c)

Sa
a[

64
]

P3
00

 S
pe

lle
r

D
ic

tio
na

ry
W

or
d

L
ev

el
 M

od
el

7
of

fl
in

e
10

.3
 (

A
C

C
)

M
og

ha
da

m
fa

la
hi

 [
65

]
P3

00
 S

pe
lle

r,
R

SV
P

N
-g

ra
m

N
aï

ve
 B

ay
es

12
 o

nl
in

e
N

A

Sp
ei

er
 [

66
]

P3
00

 S
pe

lle
r

Pr
ob

ab
ili

st
ic

 a
ut

om
at

a
Pa

rt
ic

le
 F

ilt
er

in
g

15
 o

nl
in

e
21

.6
 (

IT
R

)

M
og

ha
da

m
fa

la
hi

 [
67

]
R

SV
P

N
-g

ra
m

N
aï

ve
 B

ay
es

11
 o

ff
lin

e
N

A

J Neural Eng. Author manuscript; available in PMC 2017 July 03.

	Abstract
	1. Introduction
	1.1 BCI communication
	1.2 Language Models
	1.3 Scope of the review

	2. Methods
	3. Results
	3.1 Word completion
	3.2 Classification
	3.3 Process models
	3.4 Dynamic stopping
	3.5 Unsupervised learning
	3.6 Error Correction
	3.7 Evaluation metrics

	4. Discussion
	4.1 Future directions

	5. Conclusion
	References
	Table 1

