
UCLA
UCLA Electronic Theses and Dissertations

Title
Efficiency and Fairness in the Allocation of Indivisible Goods

Permalink
https://escholarship.org/uc/item/3qc0b8c0

Author
Ikudo, Akina

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qc0b8c0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Efficiency and Fairness in the Allocation of Indivisible Goods

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Economics

by

Akina Ikudo

2021



© Copyright by

Akina Ikudo

2021



ABSTRACT OF THE DISSERTATION

Efficiency and Fairness in the Allocation of Indivisible Goods

by

Akina Ikudo

Doctor of Philosophy in Economics

University of California, Los Angeles, 2021

Professor Ichiro Obara, Chair

This dissertation studies the efficient and fair allocation of indivisible goods without

monetary transfer. It is a collection of three papers and uses school-choice programs

as a motivating example. I provide theoretical results that can guide the design of

new allocation systems as well as tools that can be used to enhance existing systems.

In Chapter 1, I analyze how information disclosure affects social welfare using a

stylized model. In my model, the utility of agents consists of a vertical “quality”

component and a horizontal “idiosyncratic taste” component. The exact qualities of

the objects are unknown to the agents, and the social planner seeks an information-

disclosure policy that will maximize the total utility. The results show that (1) the

optimal disclosure policy hides small differences in quality and reveals large differ-

ences in quality, (2) more information is disclosed when the valuations of the quality

are heterogeneous, and (3) the Immediate Acceptance mechanism is more conducive

for information disclosure than the Deferred Acceptance mechanism.
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In Chapter 2, I study the collocation of groups of students in school-choice pro-

grams. In particular, I examine when and how stochastic assignment matrices can

be decomposed into lotteries over deterministic assignments subject to collocation

constraints. I first show that—regardless of the number of pairs of twins in the

student body—twin collocation can be maintained in a decomposition if one extra

seat can be added to each school. I then propose a decomposition algorithm based

on Column Generation that can incorporate a wide variety of constraints including

collocation constraints.

In Chapter 3, I propose a new notion of fairness that combines the concept of rank

values and the maximin principle. An assignment is rank-egalitarian undominated

(REU) if there is no other assignment that is equally or more egalitarian for any set

of rank values. I show that each REU assignment can be generated as a solution to

a linear programming problem that maximizes the weighted sum of expected rank

values of the worst-off agents. I also provide an algorithm that generates special

subsets of REU assignments that are practically important.
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CHAPTER 1

Social Value of Information

1.1 Introduction

When is more information better? In individual decision-making problems, more

information weakly improves the welfare of the decision maker because extraneous

information can always be ignored. However, in social-choice problems, more infor-

mation can decrease social welfare because the conflict of interests among individuals

can be exacerbated with a greater availability of information.

In this paper, we analyze the optimal information-provision policy in indivisible-

goods allocation problems. Intuitively, the allocative efficiency improves when agents

have more accurate information about their own preferences. However, providing in-

formation can decrease utilitarian welfare when it undermines the diversity in pref-

erences. We analyze this trade-off using a stylized model.

In our model, the utility of agents consists of a vertical quality component and a

horizontal idiosyncratic-taste component. The quality of the objects to be allocated

is a random vector and the agents know only its distribution. The social planner,

who privately observes the realization of the quality, aims to maximize the total

welfare by strategically disclosing the information to the agents. The key feature of

the model is that all agents appreciate high-quality objects, but to various degrees.
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Our model is suitable for a wide range of applications including school-choice

programs. Students and parents generally prefer high-quality schools (e.g., high

average test scores and high graduation rate) that also satisfy their idiosyncratic

tastes (e.g., geographical proximity to their residence and the availability of particular

extra-curricular activities). The social planner (usually the education board) aims

to maximize the total benefit to the society by strategically providing information

about the quality of participating schools. We use the school-choice terminologies

for the rest of the paper.1

Disclosure of quality information has two opposing effects. On one hand, dis-

closure of quality provides the students with more accurate information about their

own preferences, which facilitates assortative matching; the students with high valu-

ations for quality are matched to high-quality schools. This increases the allocative

efficiency in the vertical dimension. On the other hand, disclosure of quality causes

crowding at high-quality schools, obscuring the heterogeneity in idiosyncratic tastes.

As a result, it decreases the allocative efficiency in the horizontal dimension.

The trade-off between the vertical and the horizontal sorting is summarized in

three main findings. First, hiding small differences in quality improves the welfare

over the full disclosure. This is because the gain from improved vertical sorting is

second order in quality difference (because a small fraction of students marginally

improves their utility by pursuing higher-quality schools) whereas the loss from dis-

turbed horizontal sorting is first order in quality difference (because many students

1Although the model is presented using the terminology in school-choice program, it is broadly
applicable to any problems where the utility consists of a vertical quality component and a horizontal
idiosyncratic-taste component. One example is the course-allocation problem in which all students
prefer courses taught by highly rated instructors but there is some heterogeneity in the preferences
for class time. Another example is matching between mentors and mentees, where all mentees
prefer mentors with more experience but also care about sex, race, age, etc. of the mentor.
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experience a small decrease in their utility due to externality). The concealment of

information is consistent with the observation that education boards generally do

not provide rankings of schools by academic performance.2

Second, we show that the social planner tends to disclose more information when

the valuations of the quality are more heterogeneous. Intuitively, there is more to

gain from the vertical sorting when students differ in their valuations of the quality.

To see this, consider a society where all agents equally value the quality, i.e., they

are identical in the vertical dimension. In such a society, no vertical sorting is

possible, and therefore, disclosure only obfuscates the heterogeneity in idiosyncratic

preferences, which leads to a loss to the society.

Third, we show that the Immediate Acceptance (IA) mechanism is more con-

ducive for information disclosure than the Deferred Acceptance (DA) mechanism.

The IA effectively punishes the students who top-rank very popular schools by forc-

ing them to forgo their fair chance of being admitted to schools that are less popular

but still highly desirable. Because of this penalty for crowding, the students pursue

the highest-quality school only if they have strong enough preference given the level

of congestion. In other words, the students reflect on their own preference relative

to the preferences of the others, which mitigates externalities. Because the decisions

made by the students are more socially conscious, the social planner is willing to

share more information with the students.

2On its online platform, New York City Department of Education allows users to filter schools
by subway lines, sizes of the school, sports teams, etc., but requires users to click on individ-
ual schools for the academic-performance information (https://www.myschools.nyc/en/schools/
high-school/). Similarly, the school directory provided by Boston Public Schools requires users
to click on individual schools, then click on School Report Card to see the information on academic
performance (https://www.bostonpublicschools.org/Page/628).

3
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This paper complements the growing literature on information acquisition in

indivisible-goods allocation problems. Bade (2015) shows that Serial Dictatorship is

the unique strategy-proof, non-bossy mechanism that provides the efficient level of

incentive to acquire information. The incentive to acquire information under var-

ious allocation algorithms is further studied in Harless and Manjunath (2018) and

Chen and He (2020). Using a three-school example, Artemov (2020) shows that

strategy-proof mechanisms provide agents with too little incentive to acquire infor-

mation about their own idiosyncratic preferences. These papers study acquisition of

information on the private-value component of the utility, while this paper examines

public provision of information on the common-value component of the utility. In

particular, we demonstrate that full disclosure of information is not optimal even

when information is free.

The general observation that more information is not necessarily good for society

has been made in Hirshleifer (1978). The author demonstrates that uncertainty in the

future state of the world is beneficial for society because it provides opportunity for

mutual insurance. In the context of majority voting, Gersbach (1991) demonstrates

that disclosing the state of the world, which affects the valuations of the project,

may not be socially efficient. More recently, the role of public and private signals in

coordination games is analyzed in Morris and Shin (2002). The authors show that

the increased accuracy of public signals can decrease social welfare because agents

may end up coordinating on noise. In this paper, we also observe the fundamental

incompatibility between agents’ self-interests and total utilitarianism.

Finally, this paper expands the literature on strategic information disclosure. One

example with an application in education is Ostrovsky and Schwarz (2010), in which

the authors show that universities can improve the average job placement of their

4



students by providing less information on their transcripts. In this paper, we cast

our model into the framework of Bayesian Persuasion (Kamenica and Gentzkow,

2011), where the sender’s utility depends only on the mean of the posterior belief

of the receiver. The optimality of the proposed disclosure policy is confirmed using

the price-theoretic solution method developed in Dworczak and Martini (2019). As

far as the author knows, this is the first paper to analyze the optimal information

provision in the context of indivisible-goods allocation problems.

The paper is organized as follows. A formal model is introduced in Section 1.2,

and non-optimality of full disclosure is proved in Section 1.3. For tractability, a

simple two-school model is introduced in Section 1.4, and the optimal disclosure

policies are analyzed in Section 1.5. The comparison of the optimal disclosure policies

under the Deferred Acceptance and Immediate Acceptance mechanisms is provided

in Section 1.6, followed by a conclusion in Section 1.7.

1.2 Model

We present our model using the terminologies in school-choice programs. However,

our model is applicable to any allocation problem in which the utility of agents

consists of a common quality component and an idiosyncratic taste component.

1.2.1 Fundamentals

There is a unit continuum of students, each demanding one seat, and a finite set S of

schools, where |S| ≥ 2. The capacity vector q ≡ (qs)s∈S satisfies
∑

s∈S qs = 1 so that

there are just enough seats for all students. The utility of student i for attending

5



school s is uis = θizs + εis, where θi ≥ 0 is the valuation of quality, zs is the realized

quality, and εis is the idiosyncratic taste. Let εi ≡ (εis)s∈S. The idiosyncratic tastes

may reflect students’ geographical proximity to the school, the variety of after-school

programs offered by the school, etc.

The complementarity between θ and z reflects the observation that some students

are more quality-sensitive than others. For example, students who have strong desire

to attend college (large θi) are more likely to have preference for, and benefit from,

attending schools that offer a greater number of AP (Advanced Placement) classes

and have a higher percentage of students graduating with college scholarships.

The valuation for quality θi also measures how much weight the student puts

on the school quality versus non-quality characteristics (idiosyncratic tastes). For

example, if a student has strong preference for schools that are close to their home,

their θi would be small in magnitude relative to εi, meaning that revealed quality is

unlikely to change their preference order.

The student’s type, ωi = (θi, εi), is a private value with a common prior F (ω)

with support Ω. We sometimes refer to a specific student as “student i” and other

times as “a type ωi student”. We denote the marginal distribution of θi by Fθ and the

marginal distribution of εi by Fε. We assume Fε is atomless (i.e., Fε is continuous)

so that the set of students with indifference has measure zero.

The school quality, z ≡ (zs)s∈S, is a random vector with prior distribution G(z̃).

We write z̃ to refer to the random variable, z for a realization, and ẑ for the mean

of a posterior belief about z̃. The school quality is independently distributed from

student types, and therefore, every student has the identical prior for z̃. All of the

above is common knowledge.

6



In our model, we assume the capacity and the quality of schools are fixed. In

other words, schools are passive players. The fixed-capacity assumption is reasonable

in the short term: there are legal limits on the number of students per classroom and

the expansion of school buildings requires some time. The fixed-quality assumption

is mainly imposed to keep the model tractable, but it is a reasonable assumption if

the school quality depends on factors that cannot be changed quickly, such as the

culture conducive for learning and the managerial ability of the school principal.

1.2.2 Allocation Mechanism

A probabilistic allocation is a matrix (xis)ωi∈Ω,s∈S, where xis is the probability that

a type ωi student are assigned to school s. An allocation is feasible if
∑

s∈S xis = 1

for each type ωi ∈ Ω and
∫
ωi∈Ω

xis dF (ωi) = qs for each school s ∈ S. A probabilistic

allocation mechanism is a mapping from the set of preference-order profiles to the

set of feasible allocations.

For simplicity, we assume all students have an equal priority and ties are broken

by a single lottery. We also limit our attention to the mechanisms that always

map to an allocation that is ordinally efficient (i.e., it is impossible to weakly first-

order stochastically improve xi ≡ (xis)s∈S for all ωi ∈ Ω with at least one strict

improvement) and satisfy equal treatment of equals (i.e., if two students submit the

same preference order, they receive the same probabilistic allocation).

We primarily focus on the Deferred Acceptance (DA) mechanism. For all possible

tie-breaking outcomes, we run the following DA mechanism. In the first round, each

student applies to the top school in their preference order. Each school temporarily

keeps as many applicants with the highest priorities as its capacity allows and rejects

7



the rest. In the second round, the rejected students apply to the next school in

their preference order. Each school considers new applicants together with the old

applicants they kept from the previous round. They temporarily keep as many

applicants with the highest priorities as its capacity allows and rejects the rest. The

process continues until no student is rejected or there is no more school to apply in

their preference order.

In our setting, the expected DA allocation over all possible tie-breaking outcomes

coincides with the Probabilistic Serial (PS) allocation described in Bogomolnaia and

Moulin (2002). This is because the DA is equivalent to the Random Serial Dicta-

torship (RSD) when there is a single priority class, and the RSD is asymptotically

equivalent to PS (Che and Kojima, 2010).

The PS works as follows. At the beginning, qs probability share is available for

each s ∈ S. Each student eats probability share of their most-preferred school at

the same speed until one of the schools becomes exhausted. The exhausted school

becomes unavailable. The process continues with the remaining schools: Each stu-

dent eats probability shares of their most-preferred school from the set of remaining

schools until one of the schools becomes exhausted. The algorithm terminates when

all schools are exhausted.

This mechanism is strategy-proof, and therefore, it is students’ best interest to

truthfully report their preference orders. That is, student i ranks schools in the

descending order of E[uis] = θiẑ+εis, where ẑ is the mean of the posterior belief. Note

that the expected utility depends only on the posterior mean rather than the entire

posterior distribution. This is because, fixing the strategies of the other students,

the utility is a linear function of z.

8



1.2.3 The Social Planner’s Problem

The social planner’s problem is to design a disclosure policy on z̃ that maximizes the

sum of the expected utilities. We consider public disclosures, in which all students

receive the same signal from the social planner. That the social planner can observe

the realized value of z̃ while the students know only the prior distribution G(z̃) rep-

resents the the reality that the education board usually has more precise information

about the school quality than the students.3

The timing of the game is as follows. The social planner chooses a disclosure

policy on z̃ and announces it to the students. The school quality is drawn from the

prior G(z̃). The social planner privately observes the realization z and maps it to

a signal according to the announced disclosure policy. Upon receiving the signal,

the students Bayesian-update their posterior belief ẑ. The students (strategically)

report their preference orders based on ẑ. The students are probabilistically assigned

to schools and the expected utilities realize.

Let x(ẑ) denote the equilibrium allocation when the posterior mean is ẑ. The

allocation depends only on the belief of the students and does not depend on the

actual realization z. Let xi(ẑ) denote the allocation for a type ωi student. The social

welfare when the realization of the quality vector is z and the posterior mean is ẑ is

w(z, ẑ) =
∫
ωi∈Ω

xi(ẑ) · ui(z) dF (ωi), where ui(z) = θiz + εi is the utility vector for a

type ωi student.

3For example, the education board has insider knowledge about the ability of the management
team and upcoming reforms that affect school qualities. Also, the education board has access to a
proxy for school quality that is not easily accessible by the students such as the number of computers
in classrooms and the number of books in the library. In addition, the education board can collect
new data on quality at its discretion, for example, by conducting standardized tests.
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Bayes consistency requires that E[z̃ | ẑ] = ẑ, i.e., when the students believe

ẑ, the realization of z̃ is ẑ on average. Because w(z, ẑ) is linear in z, we have

E[w(z̃, ẑ) | ẑ] = w(E[z̃ | ẑ], ẑ) = w(ẑ, ẑ). That is, the expected welfare is solely

determined by the distribution of the posterior means. We define welfare function

W (z) ≡ w(z, z) =

∫
ωi∈Ω

xi(z) · (θiz + εi) dF (ωi).

This can also be interpreted as the expected welfare under the full disclosure.

Given the welfare function W (z) and the prior distribution G(z̃), the social plan-

ner’s problem is to find a garbling scheme that maximizes the expected social welfare:

max
H

∫
W (z) dH(z)

s.t.

∫
v(z) dH(z) ≤

∫
v(z) dG(z) for all convex v(z)

This can be viewed as an instance of Bayesian persuasion where the payoff of the

sender (social planner) depends only on the posterior mean of the receiver (the con-

tinuum of students). In solving the social planner’s problem, we apply the techniques

developed in Dworczak and Martini (2019).

1.2.4 Illustrative Example

Suppose there are two schools, existing (E) and new (N), with capacities qE = qN = 1
2
.

We normalize the utility of attending the existing school to 0 for each student. In

other words, εiE = 0 for all i and zE = 0 with certainty. The utility of attending

the new school is uiN = θizN + εiN for student i. With slight abuse of notation, we

drop the school subscript and simply write ui = θiz + εi to denote the utility for the

10



new school. Suppose one half of students have θi = 0 and the other half have θi = 1.

Also suppose εi ∼ N(0, 1), independent across students, and independent of θi. The

quality z̃ of the new school follows the prior z̃ ∼ U [−6, 6].

Social welfare is plotted in Figure 1.1. The solid line, W F (z), represents the

welfare when the value of z is fully disclosed. It has a slanted W-shape centered

at z = 0. The dashed line, W 0(z), represents the welfare when the mean of the

posterior belief ẑ is degenerate at 0 (i.e., no disclosure).

Figure 1.1: Social welfare function for θ ∈ {0, 1} and ε ∼ N(0, 1).

If the social planner garbles in a way such that students believe ẑ = 0, then

W F (z) can be effectively replaced by W 0(z). This improves the expected social

welfare if W 0(z) > W F (z), which is the case for z ∈ [−3.18, 3.18]. Therefore, the

social planner maps all the values of z ∈ [−3.18, 3.18] to the same signal.4

4Optimal mapping is not unique. For example, mapping a realization z to a signal |z| for each
z ∈ [−3.18, 3.18] produces the same distribution of posterior means. For simplicity, we focus on the
mapping that uses the smallest number of signals.
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In general, the social planner can improve the expected social welfare over full

disclosure by pooling the values of z around an ideal point z0, where no school is over-

demanded and each student is assigned to their most-preferred school with certainty

(z0 = 0 in the example above). The intuition is as follows. Consider z1 > z0 such

that z1 ≈ z0. If the posterior belief is held at ẑ = z0, no school is over-demanded,

and each student is assigned to their most-preferred school according to the reported

preference, which is close to the true preference because z1 ≈ z0.

When the value z1 is disclosed, some students switch from reporting E � N to

reporting N � E. We call them switchers. Because of the switchers, the new school

becomes over-demanded. The welfare consequence is as follows. The total gain for

the switchers is second order in z1 − z0 because both the mass of switchers and

the gain per switcher are proportional to the quality difference. However, the total

loss for non-switchers is first order in z1 − z0 because the mass of non-switchers is

approximately constant and the loss per non-switcher increases proportionately with

the mass of switchers. Therefore, when z1 − z0 is small, the loss exceeds the gain.

The formal statement of this observation and its proof is provided in Section 1.3.

1.3 Non-Optimality of Full Disclosure

In this section, we show that the full disclosure of z̃ is not generally optimal. This is

because the welfare function has a dip around the point z0 ∈ R|S| where the demand

equals the supply at each school. The expected welfare can be improved by pooling

the realizations of z over the dip.

To formally state the result, we first need to introduce a few definitions. We say

student i demands school s if school s yields the highest utility for student i (i.e.,
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student i top-ranks school s under strategy-proof allocation mechanisms). Formally,

given the posterior mean ẑ, the demand of student i for school s is

dis(ẑ) = 1{θiẑs + εis > θiẑs′ + εis′ ∀s′ ∈ S}.

We maintain the assumption that Fε is atomless so that the set of students who are

indifferent between schools has measure zero. That is, we have
∑

s∈S dis(ẑ) = 1 for

almost all students.

The aggregate demand for school s is

Ds(ẑ) =

∫
ωi∈Ω

dis(ẑ) dF (ωi).

We define the demand vector D(ẑ) ≡ (Ds(ẑ))s∈S. Because there is a unit continuum

of students, we have
∑

s∈S Ds(ẑ) = 1 almost surely.

Recall that q ≡ (qs)s∈S is the capacity vector. Suppose there is a posterior mean

z0 such that q = D(z0). That is, the capacity (supply) equals the demand at each

school. Such z0 exists if there are not too many quality-insensitive students whose

preference orders cannot be altered through ẑ. In particular, we require

∫
ωi∈Ω

1{θi = 0 and εis > εis′ ∀s′ ∈ S} dF (ωi) ≤ qs for each s ∈ S.

When ẑ = z0, each student is assigned to their most-preferred school according to

the expected utility ui = θiẑ + εi. If the realization of z̃ is also z0, they are assigned

to their most-preferred school according to the actual utility ui = θiz + εi. In this

sense, the sorting is perfect when ẑ = z = z0.
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We wish to show that there is a dip in the welfare function around z0 and that

pooling the values of z around z0 improves the expected welfare over the full disclo-

sure. In order to do so, we need to ensure that (i) there is indeed a dip in the welfare

function around z0 and (ii) pooling around z0 is possible.

First, for the welfare function to have a dip around z0, some students must

change their reported preference orders in response to a change in belief. To see

this, consider a realization z 6= z0. Suppose disclosing the realized value z does

not affect the preference order of any student. Then di(z) = di(z
0) for all i, where

di(z) ≡ (dis(z))s∈S. Consequently, we have D(z) = D(z0) = q.

Then each student is assigned to their most-preferred school, i.e., the allocation

for student i is xi(z) = xi(z
0) = di(z

0) except for a measure-zero set of students. With

the allocation fixed at di(z
0), the welfare function, W (z) =

∫
ωi∈Ω

di(z
0) ·ui(z) dF (ωi),

changes linearly in z without a dip. Therefore, for the welfare function to be non-

linear, the demand must change when the posterior mean changes.

Definition 1. We say the demand is responsive to a change ~z at z0 if

lim
t→0

D(z0 + t~z )−D(z0)

t
6= 0.

We can ensure that the demand is responsive to almost any change ~z at z0 by

imposing appropriate restrictions on the type distribution Fω. However, there is

one exception. When ~z = 1α for some α ∈ R, it is inevitable that the demand

is not responsive. This is because the expected utilities, uis = θiẑs + εis, increase

or decrease uniformly across all schools, and therefore, student i demands the same

school between z0 + ~z and z0. Consequently, D(z0 + ~z ) = D(z0). The following

definition takes this into account.
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Definition 2. We say the demand is responsive at z0 if the demand is responsive

to a change ~z at z0 for all ~z ∈ {z ∈ R|S| | z 6= 1α for any α ∈ R}.

For the demand to be responsive at z0, there need to be quality-sensitive students

who are almost indifferent between their most-preferred school and their second-

most-preferred school. In other words, the conditional distribution Fε|θ>0 must have

a strictly positive density around the set of students who are exactly indifferent. This

is ensured if the set of students {εi ∈ supp(fε|θ>0) | θi > 0 and di(z
0) = 0} is in the

interior of supp(fε|θ>0). It follows that the responsiveness of the demand is ensured

at all z ∈ R|S| if supp(fε|θ>0) is R|S|.

Second, provided that the welfare function has a dip around z0, we want to be

able to pool the values of z around z0. Intuitively, the support of z̃ cannot have a

hole around z0 because otherwise there is no density to be consolidated at z0. For

example, if g(z) = 1 for z ∈ [−1,−0.5] ∪ [0.5, 1], pooling immediately around z = 0

is impossible. Also, z0 cannot be on a vertex of supp(z̃) because such a point cannot

be a convex combination of other z’s in the support. For example, if z̃ ∼ U [0, 1],

pooling around z = 0 is impossible.

We also want to preempt superficial pooling that has no effect on the expected

welfare. Specifically, we require that the pooling region to contain some points

outside the set {z ∈ supp(z̃) | z = z0 + 1α for some α ∈ R}. Because the welfare

function is linear over this set, pooling cannot be effectual if the pooling region

entirely consists of points in this set.

Definition 3. We say effectual pooling is possible around z0 if, for any ε > 0,

there is a set Z ⊆ {z ∈ supp(z̃) | 0 < ‖z − z0‖ < ε and z 6= z0 + 1α for any α ∈ R}

and non-negative weights λ(z) ≤ g(z), z ∈ Z, such that
∫
z∈Z zλ(z) dz∫
z∈Z λ(z) dz

= z0.
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Effectual pooling is possible around z0, for example, if z0 is in the interior of

supp(z̃). Note that for a pooling to be actually effectual, there must be some z with

a strictly positive weight such that D(z) 6= D(z0). We intentionally leave this out of

the definition to keep the assumptions about the type distribution Fε separate from

the assumptions about G(z̃). Now, we are ready to present our first result.

Theorem 1. Suppose there is z0 such that q = D(z0). If the demand is responsive

at z0 and effectual pooling is possible around z0, then the full disclosure of z̃ is

not optimal under the Deferred Acceptance mechanism. In particular, there is a

disclosure policy that pools the values of z around z0 that yields a larger expected

welfare than the full disclosure.

Proof. Pick z0 such that q = D(z0). Suppose the demand is responsive at z0. Recall

that w(z, ẑ) ≡
∫
ωi∈Ω

xi(ẑ) · ui(z) dF (ωi) is the welfare when the realization of z̃ is z

and the posterior mean is ẑ. We claim that there is ε > 0 such that

0 < ‖z − z0‖ < ε and z 6= z0 + 1α for any α ∈ R =⇒ w(z, z) < w(z, z0).

That is, the welfare can be improved by placing the posterior mean at z0 instead of

disclosing the realized value z.

If the above claim is true, then there is a pooling around z0 that improves the

expected welfare. Because effectual pooling is possible around z0 by assumption,

there is a set Z ⊆ {z ∈ supp(z̃) | 0 < ‖z − z0‖ < ε and z 6= z0 + 1α for any α ∈ R}

and non-negative weights λ(z) ≤ g(z), z ∈ Z, such that
∫
z∈Z zλ(z) dz∫
z∈Z λ(z) dz

= z0. If the

above claim is true, we have w(z, z) < w(z, z0) for all z with λ(z) > 0. It follows

that
∫
z∈Z w(z,z)λ(z) dz∫

z∈Z λ(z) dz
<

∫
z∈Z w(z,z0)λ(z) dz∫

z∈Z λ(z) dz
.
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Therefore, it remains to show that the claim is indeed true. To this end, we define

the value function V (z) ≡ w(z, z)− w(z, z0). It suffices to show that

lim
t→0+

V (z0 + t~z )− V (z0)

t
< 0 for all ~z ∈ {z ∈ R|S| | z 6= 1α for any α ∈ R}.

Consider an arbitrary change ~z such that ~z 6= 1α for any α ∈ R. Let z(t) = z0+t~z.

With slight abuse of notation, we write V (t), x(t), u(t), etc. to mean V (z(t)), x(z(t)),

u(z(t)), etc. Then the value function is

V (t) =

∫
ωi∈Ω

xi(t) · ui(t) dF (ωi)−
∫
ωi∈Ω

xi(0) · ui(t) dF (ωi)

=

∫
ωi∈Ω

{xi(t)− xi(0)} · ui(t) dF (ωi).

For readability, we use curly and square brackets to group terms and reserve paren-

theses for arguments of functions.

With further abuse of notation, we write V ′(t), x′i(t), u
′
i(t), etc. to mean the

right derivatives. For example, V ′(t) ≡ limt→0+
V (t)−V (0)

t
. Using the measure theory

version of the differentiation under the integral sign, we obtain

V ′(t) =

∫
ωi∈Ω

[x′i(t) · ui(t) + {xi(t)− xi(0)} · u′i(t)] dF (ωi).

By the Dominated Convergence Theorem and the boundedness of u′i(t), we obtain

V ′(0) =

∫
ωi∈Ω

[x′i(0) · ui(0)] dF (ωi).

We want to show that this is negative.
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Consider any student i. Because xi(0) assigns student i to their most-preferred

school according to ui(0), any other allocation decreases the utility of the student.

In other words, for any t > 0, we have xi(t) · ui(0) ≤ xi(0) · ui(0). It follows that

x′i(0) · ui(0) ≤ 0. This is true for any student, and therefore, V ′(0) ≤ 0.

We claim that there is a positive measure of students with x′i(0) · ui(0) < 0.

To see this, pick s∗ such that D′s∗(0) > 0. Such s∗ exists because the demand is

responsive at t = 0 and
∑

s∈S Ds(0) = 1. At t = 0, fraction qs∗ of students demand

school s∗. For t > 0, the fraction of students who demand school s∗ is Ds∗(t) > qs∗ ,

and their share of school s∗ is xis∗(t) = qs∗
Ds∗ (t)

per student. This has a strictly

negative slope at t = 0 because D′s∗(0) > 0. Furthermore, because Fε is atomless,

almost all of qs∗ students strictly prefer s∗ to all other schools. In other words,∫
ωi∈Ω

1{x′i(0) · ui(0) < 0} dF (ωi) ≥ qs∗ . It follows that V ′(0) < 0.

Note that the proof does not rely on the specific allocation under the Deferred Ac-

ceptance mechanism. Roughly speaking, the proof goes through as long as xi(z
0) =

di(z
0) almost surely and the allocation changes when the demand changes. In par-

ticular, the Immediate Acceptance mechanism we analyze in Section 1.6 has these

properties. A formal extension of Theorem 1 requires an equilibrium selection rule.

We leave it for future research.

The dip in the welfare function can be explained by the trade-off between two

opposing forces. On one hand, disclosing the realized value z allows quality-sensitive

students to pursue high-quality schools, which improves their individual utility. On

the other hand, disclosure makes high-quality schools over-demanded and causes

disturbance to the sorting, which imposes negative externality to the society. When

z ≈ z0, the latter effect dominates the former.

18



To see this, consider z ≈ z0 such that z 6= z0 + 1α for any α ∈ R. Noting that

ui(z)− ui(z0) = θi{z − z0}, the value function can be written

V (z) =

∫
ωi∈Ω

{
xi(z)− xi(z0)

}
· θi{z − z0} dF (ωi)

+

∫
ωi∈Ω

{
xi(z)− xi(z0)

}
· ui(z0) dF (ωi).

The first term captures the benefit to the switchers, who change their reports between

z and z0 in pursuit of higher-quality schools. It can also be interpreted as the benefit

to the society due to assortative matching in the vertical dimension, i.e., quality-

sensitive students are assigned to high-quality schools. The second term captures

the negative externality due to the disturbance to the sorting. As z → z0, the first

term diminishes more rapidly than the second term.

The intuition is as follows. Consider z ≈ z0. The switchers are almost indifferent

between their most-preferred school and the second-most preferred school. Also,

the mass of switchers is small because Fε is atomless. Because individual benefit is

proportional to quality difference and the mass of switchers is also proportional to

quality difference, the total gain for the switchers is second order in quality difference.

For non-switchers, if student i demands school s∗ regardless of whether they be-

lieve z0 or z, then the student has a distinct preference for s∗ over other schools,

and therefore, a reduction in xis∗ decreases their utility. Although individual loss is

small (because the change in allocation is small because the mass of the switchers

is small), there is a strictly positive measure of non-switchers who experience neg-

ative externality. Therefore, the total loss to non-switchers is first order in quality

difference. As a result, the loss exceeds gain when z ≈ z0.
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1.4 Two-School Model

So far, we have established that the full disclosure is not optimal in general. Now,

we analyze optimal disclosure policies. This section is dedicated to the development

of a framework for the analysis and the actual analysis is provided in Section 1.5.

We introduce a simple two-school model in Section 1.4.1, and transform the social

planner’s problem using a value function. In Section 1.4.2, we discuss the sufficient

condition for optimality presented in Dworczak and Martini (2019). We then derive a

formula for the value function in Section 1.4.3, which plays a key role in the analysis

of optimal disclosure policies we discuss in Section 1.5.

1.4.1 The Social Planner’s Problem

There are two schools, existing (E) and new (N), with capacities qE = qN = 1
2
. There

is a unit continuum of students, each demanding one seat. We normalize the utility

from attending the existing school to 0 for each student. That is, εiE = 0 for all i and

zE = 0 with certainty. The utility from attending the new school is uiN = θizN + εiN

for student i. With slight abuse of notation, we drop the school subscript and simply

write ui = θiz + εi to denote the utility from attending the new school.

The type of student i is a tuple ωi = (θi, εi), and is drawn from a common

distribution f(θ, ε), independently from other students. We assume ε is symmetric

around 0 for each θ, i.e., f(θ, ε) = f(θ,−ε). The quality of the new school (relative

to that of the existing school) is a random variable with prior G(z̃).5

5The new school does not have to be literally new. As long as there is some uncertainty about
the relative quality between the schools, our model is applicable. For example, school quality is
subject to uncertainty when a school hires a new principal or launches a new program.
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Given a reported preference profile, the seats are allocated through Deferred

Acceptance, which returns the unique allocation x(ẑ) that is efficient and treats

equals equally. Recall that the welfare function

W (z) =

∫
ωi∈Ω

xi(z) · {θiz + εi} dF (ωi)

can be interpreted as the welfare when realizations of z̃ are fully disclosed.

Suppose z̃ has realizations in some non-degenerate bounded interval [z, z], and

its support includes the endpoints z and z. Given the welfare function W (x) and

the prior G(z̃), the social planner aims to maximize social welfare by garbling:

max
H

∫ z

z

W (z) dH(z)

s.t. H is a mean-preserving contraction of G

We convert this problem to a form that is more convenient for analysis. For any

mean-preserving contraction H of G, we have EH [z̃] = EG[z̃]. Therefore, we can

subtract any linear function of z from the objective function without altering the

problem. More precisely, for any constants θ0 and ε0, the transformed problem

max
H

∫ z

z

[W (z)− {θ0z + ε0}] dH(z)

s.t. H is a mean-preserving contraction of G

is equivalent to the original problem. In particular, we can set θ0 = qN θ̄ and ε0 = qN ε̄,

where θ̄ = E[θ] and ε̄ = E[ε | ε > 0]. Essentially, we are subtracting qN{θ̄z + ε̄}, the

welfare that would arise when the posterior belief is fixed at ẑ = 0.
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This transformation is depicted in Figure 1.2 for the Illustrative Example from

Section 1.2.4. The welfare function (solid black line on the left graph) is a slanted

W-shape centered at z = 0. By subtracting the welfare that would arise when the

belief is fixed at ẑ = 0 (dotted green line on the left graph), we can transform it to

a symmetric, W-shaped function (solid black line on the right graph).

Figure 1.2: Transformation of the social planner’s problem.

Formally, we define a value function to be the difference between the welfare

under the full disclosure and the welfare under the no disclosure:

V (z) ≡ W (z)− qN
{
θ̄z + ε̄

}
The symmetry of value function (proved in Section 1.4.3) simplifies expositions.
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1.4.2 Sufficient Condition for The Optimality

Given the value function V (z) and the prior G(z̃), the social planner’s problem is

max
H

∫ z

z

V (z) dH(z)

s.t. H is a mean-preserving contraction of G.

Theorem 1 of Dworczak and Martini (2019) states the following: If there exists

a distribution function H and a convex price function p : [z, z]→ R with p(z) ≥ V (z)

for all z ∈ [z, z] such that

(i) supp(H) ⊆ {z ∈ [z, z] : p(z) = V (z)},

(ii)

∫ z

z

p(z) dH(z) =

∫ z

z

p(z) dG(z), and

(iii) H is a mean-preserving contraction of G,

then H is a solution to the social planner’s problem.

Condition (i) states that H can have a positive density only where the price

function coincides with the value function. Condition (ii) is satisfied if the price

function is linear over each pooling region. As depicted in Figure 1.2, the effect of

replacing G by H is as if the value function V (z) is replaced by the price function

p(z). When p(z) is convex, further garbling cannot improve the expected value.

Note that the prior, g(z̃), does not have to be symmetric around 0. Continuing

with the Illustrative Example, suppose z̃ ∼ U [−2, 4]. The optimal disclosure policy

and the price function are depicted on the left panel in Figure 1.3. The values of

z ∈ [−2, 2] are pooled, and the values of z ∈ [2, 4] are fully disclosed.
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Similarly, z̃ does not have to be uniformly distributed. For example, consider

g(z) = 1
12
·1{−4 < z ≤ 0}+ 1

6
·1{0 < z < 4}. When z̃ is not uniformly distributed, we

can stretch the horizontal axis proportionate to the probability density and proceed

as before. The optimal disclosure policy and the price function are depicted on the

right panel in Figure 1.3. The values of z ∈ [−4, 2] are pooled, and the values of

z ∈ [2, 4] are fully disclosed.

Figure 1.3: Optimal disclosure policy for θ ∈ {0, 1} for non-symmetric g(z).

1.4.3 The Value Function

Now, we derive a formula for the value function. For a given value of z > 0, consider

the set of students, {(θi, εi) | −θiz < εi < 0}. We call them switchers because they

switch from reporting E � N at ẑ = 0 to reporting N � E at ẑ = z. Changes

in welfare are caused by the switchers replacing non-switchers at the new school.

Due to the assumption f(θ, ε) = f(θ,−ε), the switchers are identical to those with

0 < εi < θiz, except that their εi have different signs.
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Lemma 1. The value function for the two-school model is symmetric around z = 0

and

V (z) =
1
2
M(z)

1
2

+M(z)

[{
θ̃(z)z + ε̃(z)

}
−
{
θ̄z + ε̄

}]
for z ≥ 0,

where

M(z) = E[1{0 < ε < θz}]

θ̃(z) = E[θ | 0 < ε < θz] θ̄ = E[θ]

ε̃(z) = −E[ε | 0 < ε < θz] ε̄ = E[ε | ε > 0]

The derivation is provided in Appendix 1.8.1. The value function reflects the

difference between the switchers and those who are replaced by the switchers at the

new school. In the formula, M(z) is the mass of the switchers, θ̃(z) is the average

valuation of the quality among the switchers, and ε̃(z) is the average idiosyncratic

taste among the switchers. The switchers partially replace non-switchers at the new

school. Among those who are replaced, the average valuation of the quality is θ̄ and

the average idiosyncratic taste is ε̄.

It is evident in the formula that disclosure has two opposing effects on social

welfare. On one hand, disclosing z allows quality-sensitive students to pursue the

higher-quality school, making the overall allocation more assortative in the vertical

dimension. The quantity
{
θ̃(z)− θ̄

}
z represents the benefit from improved vertical

sorting. On the other hand, disclosing z encourages students to demand the higher-

quality school even if they do not like the higher-quality school according to their

idiosyncratic taste (i.e., εi < 0). The quantity ε̃(z) − ε̄ represents the loss from

disturbed horizontal sorting. The overall effect on social welfare is determined by

the trade-off between these two effects.
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1.5 Optimal Disclosure Policy

In this section, we analyze the optimal disclosure policies using the two-school model.

We provide a sufficient condition for the optimality of the no-disclosure policy in

Section 1.5.1, and a sufficient condition for the optimality of some disclosure in

Section 1.5.2. Then, in Section 1.5.3, using families of distributions, we demonstrate

that heterogeneous valuations of the quality lead to more information disclosure.

1.5.1 Optimality of No Disclosure

Intuitively, the value function tends to be small when the valuations of quality θi are

small because there is not much gain from assortative matching. Indeed, when large

values of θi are rare, the gain from improved vertical sorting is always smaller than

the loss from disturbed horizontal sorting, making it optimal to conceal information.

Proposition 1. Suppose EG[z̃] = 0 and θ and ε are independently distributed. If

Thin-Tail Condition: E[θ | θ ≥ θ1] ≤ θ1 + E[θ] ∀θ1 ∈ supp(fθ)

is satisfied, then the no-disclosure policy is optimal.

The Thin-Tail condition is satisfied by, for example, degenerate distributions,

uniform distributions, and exponential distributions. It is violated by heavy-tail

distributions such as Pareto distributions and distributions with mass at θ = 0, i.e.,

Fθ(0) > 0 (their tail can be described heavy if we consider any θ > 0 is a part of the

tail). The Thin-Tail condition can also be violated by continuous distributions with

bounded support, e.g., a beta distribution with α < 1, for which fθ(0) is unbounded.
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The proof makes it obvious that the Thin-Tail condition is sufficient but not necessary

for the optimality of the no-disclosure policy.

It may seem surprising that there is no restriction on fε other than the indepen-

dence from θ and the symmetry around 0, i.e., fε(ε) = fε(−ε). Although fε does

not appear in the sufficient condition, it is embedded in the decision rule: Student

i reports N �i E if and only if θiz + εi > 0, or equivalently, θi >
−εi
z

. If the dis-

tribution of εi is such that εi is either ε∗ or −ε∗ for some constant ε∗ > 0, then the

absolute value of ε∗ does not matter because it is canceled out by z. In fact, because

θi and εi are independent, any distribution fε can be decomposed into a collection

of distributions with support {ε,−ε}. Therefore, the shape of fε does not matter.

Proof. Suppose EG[z̃] = 0. We claim that the no-disclosure policy is optimal if

V (z) ≤ 0 for all z ∈ [z, z]. This follows from Theorem 1 of Dworczak and Martini

(2019). Let H be degenerate at z = 0 and set p(z) = V (0) = 0 for all z ∈ [z, z].

It suffices to show that V (z) ≤ 0 for all z > 0 because V (z) = V (−z) and

V (z) = 0. For z > 0, the components of V (z) can be computed as follows:

M(z) = E[1{0 < ε < θz}] =

∫ ∞
0

fε(ε)
{

1− Fθ|ε
(ε
z

)}
dε

θ̃(z) = E[θ | 0 < ε < θz] =
1

M(z)

∫ ∞
0

Eθ|ε
[
θ
∣∣∣ θ ≥ ε

z

]
fε(ε)

{
1− Fθ|ε

(ε
z

)}
dε

ε̃(z) = −E[ε | 0 < ε < θz] = − 1

M(z)

∫ ∞
0

εfε(ε)
{

1− Fθ|ε
(ε
z

)}
dε

We substitute these into the value-function formula in Lemma 1 to obtain

V (z) =
1
2

1
2

+M(z)

∫ ∞
0

{
Eθ|ε

[
θ
∣∣∣ θ ≥ ε

z

]
z − ε− θ̄z − ε̄

}
fε(ε)

{
1− Fθ|ε

(ε
z

)}
dε.
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For a given value of ε ≥ 0, the integrand is non-positive if

Eθ|ε
[
θ
∣∣∣ θ ≥ ε

z

]
≤ ε

z
+ θ̄ +

ε̄

z
.

When εi and θi are independently distributed, the inequality holds for all ε ≥ 0 if

the Thin-Tail condition is satisfied. It follows that V (z) ≤ 0 for all z > 0.

The distribution of idiosyncratic taste is irrelevant for the sufficiency for the

following reason. For a given value of ε < 0, consider a set of students with εi = ε.

They report N �i E if and only if θi >
−ε
z

. According to the formula in the proof,

the contribution of these students to V (z) is non-positive if

{
E
[
θ
∣∣∣ θ ≥ −ε

z

]
− θ̄
}
z ≤ −ε+ ε̄.

The left-hand side is the gain from improved vertical sorting. It is proportional to the

difference in the valuations of the quality between the switchers and those who are

replaced by the switchers. It is also increasing in the quality difference between the

two schools. The right-hand side is the loss from disturbed horizontal sorting. The

switchers suffer from their own negative idiosyncratic taste for the new school, −ε.

They also exert negative externalities, ε̄, to those who are replaced by the switchers.

When z ≈ 0, the gain from improved vertical sorting is small because the quality

difference is small. As z increases, students with smaller θi start pursuing the new

school, which decreases the average θi among the switchers. The Thin-Tail condition

ensures that it decreases fast enough so that the gain never exceeds −ε, the self-

inflicted loss to the switchers. Thus, the negative externality ε̄, which depends on

fε, is irrelevant. Of course, we can obtain a tighter condition by incorporating fε.
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The assumption that θ and ε are independently distributed is crucial. To demon-

strate this point, suppose θ ∼ Exp(1) and ε | θ ∼ N(0, σ2(θ)). Figure 1.4 shows the

value functions for different choices of σ(θ). The functions σ(θ) are selected so that

each of them has ε̄ =
√

2/π. This ensures that the difference in the value functions

is due to the difference in the correlation between θ and |ε|.

Figure 1.4: Value functions for θ ∼ Exp(1) and ε | θ ∼ N(0, σ2(θ)).

The middle plot is the benchmark, where θ and |ε| are uncorrelated. When θ and

|ε| are positively correlated (left plot), the loss from disturbed horizontal sorting is

severer because the switchers tend to have a large |ε|. In contrast, when θ and |ε|

are negatively correlated (right plot), the loss from disturbed horizontal sorting is

mitigated because the switchers tend to have a small |ε|. When |z| is large enough,

the gain from improved vertical sorting exceeds the loss from disturbed horizontal

sorting. Clearly, the no-disclosure policy is not optimal in this case.
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1.5.2 Optimality of Some Disclosure

Now, we provide a sufficient condition for the optimality of some disclosure, i.e., the

mean of the posterior belief is not degenerate at the prior mean.

Proposition 2. Suppose EG[z̃] = 0. If each of the sets {z ∈ [z, 0) | V (z) > 0}

and {z ∈ (0, z] | V (z) > 0} has strictly positive measure, then some information is

disclosed under any optimal disclosure policy.

Proof. Let Z− = {z ∈ [z, 0) | V (z) > 0} and Z+ = {z ∈ (0, z] | V (z) > 0}. Define

z− = E[z | z ∈ Z−] and z+ = E[z | z ∈ Z+]. Let z denote the realization of z̃.

Consider the following disclosure policy. If z ∈ Z−, disclose it with probability p−.

If z ∈ Z+, disclose it with probability p+. If z 6∈ Z−∪Z+, do not disclose it. Choose

p− > 0 and p+ > 0 so that p−z− + p+z+ = 0. This ensures that the students believe

ẑ = 0 when the social planner is silent. Clearly, this disclosure policy improves upon

the no-disclosure policy.

Note that having V (z) > 0 for some z on one side of the domain is not suf-

ficient. To see this, consider the value function for the Illustrative Example from

Section 1.2.4. Suppose z̃ = −2 with probability 2
3

and z̃ = 4 with probability 1
3
.

Note that EG[z̃] = 0. As depicted on the left panel in Figure 1.5, the expected

value is negative under the full disclosure (or any partial disclosure). Therefore, it is

optimal to disclose no information and achieve the expected value of zero.

Also note that having V (z) > 0 for some z on both sides of the domain is not

necessary. Suppose z̃ = −3 with probability 4
7

and z̃ = 4 with probability 3
7
. Again,

we have EG[z̃] = 0. As depicted on the right panel in Figure 1.5, the expected value

improves with disclosure.
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Figure 1.5: The effect of disclosure on the expected value.

In general, we cannot verify the premise of Proposition 2 without computing the

value function. Therefore, the practical value of the proposition is limited. However,

we can gain insights into optimal disclosure policies by analysing the limit behavior

of the value function. In particular, if there is z∗ > 0 such that V (z) > 0 for all

|z| ≥ z∗, then some information is disclosed, provided that the support of G(z̃) is

wide enough. To this end, we provide two results regarding the limit values.

Lemma 2. Suppose E[ε | ε > 0] is bounded. If 0 < Fθ(0) < 1 then V (z) → ∞ as

z → ±∞.

The lemma states that if there is a strictly positive measure of students who

are completely quality-insensitive, then the benefit of disclosing z exceeds the loss

for extreme values of z. The intuition is as follows. Provided that E[ε | ε > 0] is

bounded, the disturbance to horizontal sorting can do only so much damage, while

the gain from improved vertical sorting keeps growing as z increases. This is because
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Fθ(0) > 0 ensures that, on average, the switchers value the quality more than those

who are replaced by the switchers. A formal proof is provided in Appendix 1.8.2.

The next lemma describes the limit behavior of the value function when there

is no mass at θ = 0. Although Fθ(0) = 0, the density of students at θ = 0 plays a

crucial role in determining the limit value.

Lemma 3. Suppose E[ε | ε > 0] is bounded. If fθ|ε(·) is bounded for all ε ∈ supp(fε)

then

lim
z→±∞

V (z) = 1
4

{
θ̄E[εfθ|ε(0) | ε > 0]− 2ε̄

}
.

In particular, if θ and ε are independent and fθ(·) is bounded, then

lim
z→±∞

V (z) = 1
4
ε̄
{
θ̄fθ(0)− 2

}
.

Suppose θ and ε are dependent. Fixing θ̄ and ε̄, the limit value increases as

E[εfθ|ε(0) | ε > 0] increases. Roughly speaking, this value is larger when θ and |ε|

are negatively correlated (refer to Figure 1.4 on page 29).

When θ and ε are independently distributed, the value function converges to a

positive value if and only if θ̄fθ(0) > 2. As in Lemma 2, the gain from assortative

matching keeps increasing in z as long as there are some students who do not pursue

the higher-quality school. The mass of students who do not pursue the higher-quality

school approaches fθ(0) in the limit. Fixing fθ(0) > 0, the benefit from assortative

matching is larger when the switchers have higher valuations for the quality, which

is reflected in a larger value of θ̄. Therefore, a larger value of θ̄fθ(0) is associated

with a larger limit value of the value function. A formal proof of the proposition is

provided in Appendix 1.8.3.

32



1.5.3 Heterogeneity in Valuations of Quality

Although Lemma 2 and 3 only describe the limit value of the value function, they hint

that whether the society benefits from information disclosure depends on the distri-

bution of θ. In this section, using families of distributions, we show that more infor-

mation is disclosed when the valuations of the quality are heterogeneous. Throughout

this section, we assume θ and ε are independently distributed and ε ∼ N(0, 1).

1.5.3.1 θ ∈ {0, θH}

Suppose θ is either 0 or θH . We set fθ(θH) = 0.5
θH

so that θ̄ = 0.5. The variance of θ is

0.5(θH−0.5), and therefore, the valuations of the quality become more heterogeneous

as θH increases. The value functions are plotted in Figure 1.6 for θH = 0.8, 1.0, and

1.2. They are all W-shaped, and the value function increases as θH increases.

Figure 1.6: Value functions for θ ∈ {0, θH}.
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Suppose z̃ ∼ U [−4, 4]. Let z∗ be the solution to V (z∗) = 0. An optimal disclosure

policy pools the values of z in the interval [−z∗, z∗] and fully discloses the values of

z such that |z| > z∗. We can show that V (z) is convex where V (z) ≥ 0 if fε satisfies

−f ′ε(z)
fε(z)

ε̄ ≥ 1
2

for all z such that V (z) ≥ 0, which is true for ε ∼ N(0, 1). The pooling

region shrinks as θH increases. In other words, more information is disclosed when

students have more heterogeneous valuations for the quality.

1.5.3.2 θ ∈ {θL, θH}

Suppose θ is either θL or θH with equal probabilities. We set (θL, θH) = (1−κ, 1+κ)

for some constant κ ∈ [0, 1) to maintain θ̄ = 1,. The variance of θ increases as

κ increases. The value functions are plotted in Figure 1.7 for κ = 0.88, 0.90, and

0.92. They are W-shaped around z = 0 and overall M-shaped. The value function

increases as κ increases because a greater heterogeneity in θ increases the gain from

improved vertical sorting.

Figure 1.7: Value functions for θ ∈ {1− κ, 1 + κ}.
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For small values of z > 0, we have V (z) < 0 as predicted by Theorem 1.

For medium values of z > 0, the switchers (who report E � N when ẑ = 0 and

report N � E when ẑ > 0), consist mostly of students with θi = θH , providing a

boost to the value function through assortative matching. Also, the switchers tend

to have only mildly negative εi on average.

For extremely large values of z > 0, almost everyone reports N � E, reducing the

gain from assortative matching. Also, the society suffers from severely disturbed hor-

izontal sorting. V (z) converges to − ε̄
2

= −
√

1
2π
≈ −0.399 as predicted by Lemma 3.

Suppose z̃ ∼ U [−20, 20]. Consider κ = 0.9. Figure 1.8 depicts optimal pooling

schemes6 that place posterior means at ẑ = ±6.24, the maxima of the value function.

Figure 1.8: Optimal disclosure policies for θ ∈ {0.1, 1.9}.

6Although there are infinitely many pooling schemes that maximize the expected value, none
of them has convex pooling regions. Dworczak and Martini (2019) provides necessary and sufficient
conditions for the existence of an optimal policy that partitions supp(z̃) into convex sets.

35



Intuitively, the social planner wants the students to pursue the higher-quality

school only if their θi is large enough and εi is only moderately negative; otherwise,

switchers cause too much of a disturbance to the horizontal sorting while creating

only a small gain through assortative matching. By making the students believe that

the quality difference is moderate, the social planner can encourage the right type of

students to pursue the higher-quality school.

Going back to Figure 1.7, observe that the maxima of the value function move

away from z = 0 as κ increases. It follows that if κ′ > κ then the signal associated

with the pooling scheme for κ′ is more informative than that for κ in the Blackwell

sense: The optimized distribution of the posterior means for κ′ is a mean-preserving

spread of that for κ. In other words, more information is disclosed when the variance

of θ is larger.

1.5.3.3 θ ∼ Lomax

Suppose θ follows a Lomax (Pareto Type II) distribution. The Lomax distribution

is a shifted Pareto distribution so that the support is R≥0. The Lomax distribution

with the scale parameter λ > 0 and the shape parameter α > 1 has the PDF and

the mean

fθ(θ) =
α

λ

[
1 +

θ

λ

]−(α+1)

and E[θ] =
λ

α− 1
.

The tail probability decays polynomially, and it decays slower for a smaller α.

The value functions are plotted in Figure 1.9 for α = 1.9, 1.8, and 1.7, with

λ = α− 1 so that θ̄ = 1. They are all W-shaped, and the value function increases as

α decreases. Intuitively, the benefit from assortative matching is greater when there

are more students with extreme values of θi, as measured by 1− Fθ(θ).
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Figure 1.9: Value functions for θ ∼ Lomax.

Suppose z̃ ∼ U [−6, 6]. An optimal disclosure policy is depicted for each value of

α. As α decreases (i.e., the tail becomes heavier), the center pooling region shrinks

while the left and the right pooling regions expand. This means that the social

planner reveals which school has a higher quality to students more often when there

are more students with extreme values of θi,

Comparing the disclosure policies for α = 1.7 and α = 1.8, neither provides more

information than the other in the Blackwell sense: While information is disclosed

more often for α = 1.7, disclosed information is more extreme for α = 1.8. More

precisely, while the posterior mean differs from the prior mean for a larger subset of

supp(z̃) for α = 1.7, the difference between the posterior means and the prior mean

is larger for α = 1.8. This is not surprising because the variance of θ is infinity for

all α ∈ (1, 2], and we cannot say whether a smaller or a larger value of α corresponds

to a greater heterogeneity in θ.
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1.6 Comparison of Mechanisms

In this section, we analyze how the specifics of the allocation rules affect the social

planner’s willingness to share information with the students. In particular, we com-

pare the optimal disclosure policies under the Deferred Acceptance (DA) mechanism

and the Immediate Acceptance (IA) mechanism, the two most-widely used allocation

mechanisms in school-choice programs. We introduce the continuous version of the

IA in Section 1.6.1. We then provide two examples in Section 1.6.2 to demonstrate

that the IA is generally more conducive for information disclosure than the DA. This

is because students internalize the negative externalities under the IA.

1.6.1 Immediate Acceptance Mechanism

There is a continuum of students with equal priorities, and ties are broken through

a single lottery. For each realization of the tie-breaking lottery, the (discrete version

of) IA works as follows. In the first round, the students apply to the top school in

their preference orders. Each school keeps the students with the highest priorities

up to its capacity and rejects the rest. The assignments of the accepted students are

final. In the second round, the rejected students apply to the next school in their

preference orders (even if there is no seat left at that school). If there is remaining

capacity, a school admits additional students with the highest priorities up to its

capacity and rejects the rest. The process continues until all schools become full or

students have applied to all schools in their preference orders.

Because there are infinitely many ways to break the ties for a continuum of

students, this algorithm is not implementable. Therefore, we develop a simultaneous-

eating version of the IA that integrates the randomization into the preference-based
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assignment. We say a student is hungry if they have not eaten a total of 1 probability

share. Their hungriness is 1 minus the total probability share they have eaten so

far. A student becomes full when they have eaten a total of 1 probability share.

At the beginning of the eating algorithm, qs probability share is available for

each school s ∈ S. In the first round, each student eats the probability share of their

most-preferred school at a unit speed. The first round ends when all students finish

eating their most-preferred school either because they become full or because their

most-preferred school becomes exhausted. Some schools may exhaust earlier than

other schools, and therefore, some students may have eaten less than other students.

In the second round, each student who is still hungry eats the probability share

of their second-most-preferred school at a speed equal to their hungriness at the

beginning of the round. There may not be any probability shares left to be eaten at

some schools, but students must spend time there. The second round ends when all

students finish eating their second-most-preferred school.

In general, in round k, each student who is still hungry eats the probability share

of the kth school in their preference order at a speed equal to their hungriness at

the beginning of the round. Round k ends when all students finish eating their

kth-most-preferred school. The algorithm terminates after |S| rounds.

One important difference between the DA and the IA is that the DA is strategy-

proof while the IA is not. Indeed, in some sense, the IA is meant to be manipulated. If

a student only slightly prefers a very popular school with a low admission probability

to a moderately popular school with a higher admission probability, the student may

strategically list the latter as his top choice. This is because the reported preference

order affects the effective priority.
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1.6.2 Comparison of Optimal Disclosure Policies

We compare the optimal disclosure policies between the DA and the IA under the

assumption that the students play the equilibrium strategies given their posterior

belief about the school quality. When the preferences of students are highly corre-

lated, the IA tends to achieve a greater social welfare in the equilibrium than the

DA because the students can communicate the intensity of their preferences through

manipulation (Example 1). However, there are situations in which the equilibrium

social welfare under the IA is smaller than that under the DA (Example 2).

In both examples, more information is disclosed under the IA than under the DA.

This is because the equilibrium play of the IA requires the students to consider con-

gestion at popular schools (which reflects the preference intensity of other students),

leading to reduction in negative externalities.

Example 1 (Aligned Incentives). There are three schools, A, B, and C, with ca-

pacities qA = qB = qC = 1
3
, to be allocated to a unit continuum of students. The

utility of attending school C is 0 for each student: εiC = 0 for all i and zC = 0

with probability 1. The valuation of quality, θi, is 1 for one half of the students

(quality-sensitive students) and 0 for the other half (quality-insensitive students).

The idiosyncratic tastes, εiA and εiB, are distributed independently across individ-

uals and across schools. Specifically, (εiA, εiB) ∼ U [0, 1]2. The school qualities, zA

and zB, are independently distributed from each other and (zA, zB) ∼ U [0, 2]2.

School C is always under-demanded, and therefore, the only sensible reports are

A � B � C and B � A � C. There are other reports that produce the same

outcome, but we ignore these to keep the analysis simple. Under the DA, student i

reports A � B � C if and only if uiA > uiB based on the posterior mean.
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Under the IA, the students consider the degree to which each school is over-

demanded. Let D∗A be the equilibrium demand for school A. The equilibrium demand

for school B is 1−D∗A. If a student reports A � B � C, they receive qA
D∗A

probability

share of school A. If a student reports B � A � C, they receive qB
1−D∗A

probability

share of school B. Thus, student i reports A � B � C if and only if

qA
D∗A

uiA >
qB

1−D∗A
uiB, where D∗A =

∫
1

{
qA
D∗A

uiA >
qB

1−D∗A
uiB

}
dF (ωi).

This defines the unique equilibrium. See Appendix 1.9.1 for detailed analysis.

The welfare functions are plotted in Figure 1.10. We hold zA + zB constant to

eliminate artificial inflation and deflation of social welfare. The welfare function of

the DA parallels that for the two-school model: The optimal disclosure policy has

a pooling region around zA = zB because the loss from disturbed horizontal sorting

exceeds the gain from improved vertical sorting when the quality difference is small.

Figure 1.10: Welfare comparison when incentives are aligned.
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In contrast, the welfare function of the IA is convex, and therefore, the full dis-

closure is optimal.7 The social planner is more comfortable with telling the students

which school is of a higher quality because the students would not pursue the most-

crowded, highest-quality school unless it yields a substantially larger utility than

the less-crowded, second-highest-quality school. In other words, the disturbance to

horizontal sorting is mitigated under the IA.

Two comments are in order. First, the strategy-proofness is not necessarily in-

compatible with the full disclosure. For this example, there is a strategy-proof car-

dinal mechanism that is outcome-equivalent to the IA, namely, the pseudo-market

for probability shares (Hylland and Zeckhauser, 1979). For an equal budget of 1, the

set of prices (pA, pB, pC) = (D∗A, 1−D∗A, 0) clears the market.

Second, the larger welfare under the IA can be explained by the alignment of

the incentives between the social planner and the students. The social planner does

not want the students to crowd the highest-quality school, and the students are

effectively discouraged from crowding under the IA: In order to pursue a high-quality,

over-demanded school, students must forgo the probability share of their second-

most-preferred school.

Note that the difference in the level of welfare is explained by the alignment of

incentives between the social planner and the students, while the difference in the

shape of welfare functions—which determines the optimal disclosure policy—is due

to the difference in how socially conscious the students are when they are making

their decisions. The next example makes this point clear.

7This does not contradict Theorem 1 because school C is under-demanded in this example. The
premise of the theorem requires that the capacity equals the demand at all schools.
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Example 2 (Misaligned Incentives). There are three schools, A, B, and C, with

capacities qA = qB = qC = 1
3
, to be allocated to a unit continuum of students. The

utility of attending school A is 1 for all students: εiA = 1 for all i and zA = 0 with

probability 1. Suppose the valuation of quality, θi, is 1 for one half of the students

(quality-sensitive students) and 0 for the other half (quality-insensitive students).

The quality-sensitive students prefer school B to C. Specifically, εiB ∼ U [0, 1] and

εiC = −1. The quality-insensitive students prefer school C to B. Specifically, εiC ∼

U [0, 1] and εiB = −1. It is known that zC = 0 with certainty and zB ∼ U [0, 1].8

Under both the DA and the IA, the quality-insensitive students always report

A � C � B (regardless of the value of ẑB) because school C is under-demanded and

there is no need to promote it in their preference order. The quality-sensitive students

strategically choose between reporting A � B � C and reporting B � A � C. As

ẑB increases, more students report B � A � C.

Under the DA, a quality-sensitive student i reports A � B � C if and only if

uiA > uiB, or equivalently, 1 > ẑB + εiB. Therefore, the fraction of quality-sensitive

students reporting A � B � C in the equilibrium is 1− ẑB.

Under the IA, let D∗A and D∗B denote the equilibrium demand for school A and

school B, respectively. Suppose D∗A ≥ qA and D∗B ≥ qB. That is, both school A and

school B are over-demanded, and therefore, each student can obtain a probability

8Here is one possible story that goes with this setting. School A is located in the middle of the
city and it is popular among both the quality-sensitive and quality-insensitive students. The quality-
sensitive students live on the East side of the city, which hosts school B. The quality-insensitive
students live on the West side of the city, which hosts school C. The students can walk to the school
that is located on the same side, and the utility is inversely proportional to the distance between
the school and their residence. To attend the school on the other side of the city, the students have
to take a bus and they don’t like it. School B recently hired a new principal, and its quality is
subject to uncertainty.
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share of either school A or school B, not both. Under this assumption, a quality-

sensitive student i reports A � B � C if and only if

qA
D∗A

uiA +

[
1− qA

D∗A

]
uiC >

qB
D∗B

uiB +

[
1− qB

D∗B

]
uiC ,

where D∗A and D∗B, are consistent with this decision rule. Indeed, for each ẑB ∈ (0, 1],

this is the unique equilibrium, and it satisfies D∗A ≥ qA and D∗B ≥ qB.9 Details are

provided in Appendix 1.9.2. For any ẑB ∈ (0, 1), a smaller fraction of quality-sensitive

students report A � B � C under the IA than under the DA.

The welfare functions are plotted in Figure 1.11. Although not apparent, the IA

welfare function is convex, and therefore, the full disclosure is optimal. In contrast,

the DA welfare function is concave, and therefore, the no disclosure is optimal.

Figure 1.11: Welfare comparison when incentives are misaligned.

9For ẑB = 0, there is another equilibrium, in which all quality-sensitive students report A �
B � C. This equilibrium coincides with that under the DA.
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The IA yields a lower social welfare than the DA because the incentives of the

students and the social planner are more misaligned under the IA than under the

DA. When ẑB is sufficiently large, quality-sensitive students want to un-crowd from

school A and pursue school B. However, the social planner wants all quality-sensitive

students to keep pursuing school A for the following reason. As more quality-sensitive

students un-crowd from school A, the total share of school A collectively allocated to

the quality-insensitive students increases, which decreases the total share of school C

collectively allocated to the quality-insensitive students. Then some share of school

C must be allocated to the quality-sensitive students, who experience negative util-

ity from attending school C. Therefore, un-crowding from school A is individually

optimal, but it hurts the quality-sensitive students as a whole.

Although the incentives are less aligned between the social planner and the stu-

dents, more information is disclosed under the IA than under the DA. Therefore,

the conventional wisdom that the alignment of the incentives between the sender

(the social planner) and the receiver (the students) facilitates information disclosure

seems to be valid only for comparisons within a mechanism, not across mechanisms.

As before, the IA is outcome-equivalent to the pseudo-market mechanism. For

an equal budget of 1, the set of prices (pA, pB, pC) = (D∗A, D
∗
B, 0) clears the market.

In both examples, the existence of market-clearing prices suggests that the stu-

dents internalize the externalities under the IA. Indeed, when solving for the equi-

librium strategy, the students consider the demand at each school, which reflects the

preferences of the others. In other words, the students are more socially conscious

under the IA, and therefore, they require less intervention from the social planner in

the form of information obfuscation.
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1.7 Conclusion

In this paper, we analyze the role of information in indivisible-good allocation prob-

lems using a stylized model. In our model, the utilities of the agents consist of a

vertical quality component and a horizontal taste component. Although the results

are presented using school-choice terminology, the model is more broadly applicable,

for example, to course allocation and mentor-mentee matching.

We provide three main results. First, we show that fully disclosing all information

about quality is not optimal in general, and social welfare can be improved by hiding

small differences in quality. This is because the efficiency gain from improved vertical

sorting (assortative matching) is second order in quality difference while the efficiency

loss from disturbed horizontal sorting is first order in quality difference.

Second, we show that more information is disclosed when the valuation of the

quality exhibits a greater degree of heterogeneity. This is because the heterogeneity

in the valuation of the quality increases the gain from assortative matching. In the

extreme case where all agents have the same valuation for the quality, there is no

assortative matching, and therefore, disclosure simply disturbs the horizontal sorting,

leading to a loss in social welfare.

Third, we show that the Immediate Acceptance mechanism is more conducive for

information disclosure than the Deferred Acceptance mechanism. Because crowding

is implicitly penalized under the Immediate Acceptance mechanism, the students

must consider whether their preference for high-quality schools is strong enough

relative to the preference intensity of the others. This makes the decisions of the

students more socially conscious, and therefore, the social planner is willing to share

more information with the students.
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1.8 Appendix: Proofs

1.8.1 Proof of Lemma 1

Lemma 1. The value function for the two-school model is symmetric around z = 0

and

V (z) =
1
2
M(z)

1
2

+M(z)

[{
θ̃(z)z + ε̃(z)

}
−
{
θ̄z + ε̄

}]
for z ≥ 0,

where

M(z) = E[1{0 < ε < θz}]

θ̃(z) = E[θ | 0 < ε < θz] θ̄ = E[θ]

ε̃(z) = −E[ε | 0 < ε < θz] ε̄ = E[ε | ε > 0]

Proof. First, suppose z > 0. We call student i a switcher if they report E �i N at

ẑ = 0 and report N �i E at ẑ = z. Because student i reports N �i E if and only if

θiz+εi > 0, student i is a switcher if and only if −θiz < εi < 0. Due to the symmetry

assumption f(θ, ε) = f(θ,−ε), the set of switchers {(θi, εi) | −θiz < εi < 0} is

identical to the set of students {(θi, εi) | 0 < εi < θiz}, except that their εi have

different signs. It follows that the mass of the switchers M(z), the average valuation

of the quality among the switchers θ̃(z), and the average taste for the new school

among the switchers ε̃(z) can be written as follows:

M(z) = E[1{−θz < ε < 0}] = E[1{0 < ε < θz}]

θ̃(z) = E[θ | −θz < ε < 0] = E[θ | 0 < ε < θz]

ε̃(z) = E[ε | −θz < ε < 0] = −E[ε | 0 < ε < θz]
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Because exactly half of students have εi > 0, the total mass of students reporting

N � E is 1
2

+ M(z). The probability share of school N is equally divided among

these students, who have the average valuation of the quality and the average taste

E[θ | ε > −θz] =
1
2
θ̄ +M(z) θ̃(z)

1
2

+M(z)
and E[ε | ε > −θz] =

1
2
ε̄+M(z) ε̃(z)

1
2

+M(z)
.

Therefore, the average value of school N is

E[θz + ε | ε > −θz] =
1
2
θ̄ +M(z) θ̃(z)

1
2

+M(z)
z +

1
2
ε̄+M(z) ε̃(z)

1
2

+M(z)

and the social welfare is W (z) = qE 0 + qNE[θz + ε | ε > −θz]. Given this, the value

function, V (z) = W (z)− qN(θ̄z + ε̄), simplifies to

V (z) =
1
2
M(z)

1
2

+M(z)

[{
θ̃(z)z + ε̃(z)

}
−
{
θ̄z + ε̄

}]
.

Next, suppose z < 0. We call student i a switcher if they report N �i E at

ẑ = 0 and report E �i N at ẑ = z. Because student i reports E �i N if and only

if θiz + εi < 0, student i is a switcher if and only if 0 < εi < −θiz. The mass of

switchers is E[1{0 < ε < −θz}], which equals M(−z). Among the switchers, the

average valuation of the quality is E[θ | 0 < ε < −θz], which equals θ̃(−z), and the

average idiosyncratic taste is E[ε | 0 < ε < −θz], which equals −ε̃(−z).

Because exactly half of students have εi < 0, the total mass of students reporting

E � N is 1
2

+M(−z). Among the students reporting E � N , the average valuation

of the quality is

E[θ | ε < −θz] =
1
2
θ̄ +M(−z) θ̃(−z)

1
2

+M(−z)
.
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The average idiosyncratic taste is

E[ε | ε < −θz] =
1
2
(−ε̄) +M(−z){−ε̃(−z)}

1
2

+M(−z)
.

The mass of students reporting N � E is 1
2
−M(−z). Among these students,

the average valuation of the quality is

E[θ | ε > −θz] =
1
2
θ̄ −M(−z) θ̃(−z)

1
2
−M(−z)

.

The average idiosyncratic taste is

E[ε | ε > −θz] =
1
2
ε̄−M(−z){−ε̃(−z)}

1
2
−M(−z)

.

School N is under-demanded, and therefore, each of 1
2
−M(−z) students reporting

N � E receives 1 probability share of school N. The remaining probability share,

M(−z), is equally allocated to the students reporting E � N . The average value of

school N is the weighted sum between the two groups, and the social welfare is

W (z) = qN

{ 1
2
−M(−z)

1
2

E[θz + ε | ε > −θz] +
M(−z)

1
2

E[θz + ε | ε < −θz]

}
.

Given this, the value function simplifies to

V (z) =
1
2
M(−z)

1
2

+M(−z)

[{
{θ̃(−z)}(−z) + ε̃(−z)

}
−
{
θ̄(−z) + ε̄

}]
.

This completes the proof.
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1.8.2 Proof of Lemma 2

Lemma 2. Suppose E[ε | ε > 0] is bounded. If 0 < Fθ(0) < 1 then V (z) → ∞ as

z → ±∞.

Proof. Because the value function is symmetric around z = 0, we only need to prove

the claim for z > 0. As stated in Lemma 1, the value function is

V (z) =
1
2
M(z)

1
2

+M(z)

[{
θ̃(z)− θ̄

}
z + ε̃(z)− ε̄

]
.

We prove V (z) → ∞ as z → ∞ by showing (1) The mass of switchers, M(z),

converges to a strictly positive value as z → ∞; (2) The difference in the average

valuations of the quality between the switchers and those who are replaced by the

switchers, θ̃(z) − θ̄, converges to a strictly positive value as z → ∞; and (3) The

average taste for the new school among the switchers, ε̃(z), is bounded below;.

First, we show that M(z) converges to a positive value as z →∞. Recall that

M(z) = E[1{0 < ε < θz}] =

∫ ∞
0

fε(ε)
{

1− Fθ|ε
(ε
z

)}
dε.

The integrand approaches fε(ε)
{

1− Fθ|ε(0)
}

as z →∞ and is dominated by fε(ε).

Thus, by the Dominated Convergence Theorem, we have

lim
z→∞

M(z) =

∫ ∞
0

fε(ε)
{

1− Fθ|ε(0)
}
dε = 1

2
{1− Fθ(0)} > 0,

where the last inequality follows from f(θ, ε) = f(θ,−ε).
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Second, we show that θ̃(z)− θ̄ converges to a positive value as z →∞. We have

θ̃(z) = E[θ | 0 < ε < θz] =
1

M(z)

∫ ∞
0

θ
{
Fε|θ(θz)− 1

2

}
fθ(θ) dθ.

The integrand approaches 1
2
θfθ(θ) as z →∞ and is dominated by 1

2
θfθ(θ). Thus, by

the Dominated Convergence Theorem, we have

lim
z→∞

θ̃(z) =
1
2
θ̄

1
2
{1− Fθ(0)}

=
θ̄

1− Fθ(0)
.

Consequently,

lim
z→∞

{
θ̃(z)− θ̄

}
=

Fθ(0)

1− Fθ(0)
θ̄ > 0.

Third, we show that ε̃(z) is bounded below. Recall that

ε̃(z) = −E[ε | 0 < ε < θz] = − 1

M(z)

∫ ∞
0

εfε(ε)
{

1− Fθ|ε
(ε
z

)}
dε.

The integrand approaches εfε(ε)
{

1− Fθ|ε(0)
}

as z →∞ and is dominated by εfε(ε).

Thus, by the Dominated Convergence theorem, we have

lim
z→∞

ε̃(z) = − 1
1
2
{1− Fθ(0)}

∫ ∞
0

εfε(ε)
{

1− Fθ|ε(0)
}
dε

> − 1
1
2
{1− Fθ(0)}

∫ ∞
0

εfε(ε)dε

= − ε̄

1− Fθ(0)
.

Given these,
{
θ̃(z)− θ̄

}
z is unbounded, while all other terms are bounded. It

follows that V (z)→∞ as z →∞.
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1.8.3 Proof of Lemma 3

Lemma 3. Suppose E[ε | ε > 0] is bounded. If fθ|ε(·) is bounded for all ε ∈ supp(fε)

then

lim
z→±∞

V (z) = 1
4

{
θ̄E[εfθ|ε(0) | ε > 0]− 2ε̄

}
.

In particular, if θ and ε are independent and fθ(·) is bounded, then

lim
z→±∞

V (z) = 1
4
ε̄
{
θ̄fθ(0)− 2

}
.

Proof. Because the value function is symmetric around z = 0, we only need to prove

the claim for z > 0. From Lemma 1, the value function is

V (z) =
1
2
M(z)

1
2

+M(z)

[{
θ̃(z)− θ̄

}
z + ε̃(z)− ε̄

]
.

We separately compute the limit values of M(z), ε̃(z), and
{
θ̃(z)− θ̄

}
z.

First, we show that M(z)→ 1
2

as z →∞. Recall that

M(z) = E[1{0 < ε < θz}] =

∫ ∞
0

fε(ε)
{

1− Fθ|ε
(ε
z

)}
dε.

The integrand approaches fε(ε)
{

1− Fθ|ε(0)
}

= fε(ε) as z → ∞ and is dominated

by fε(ε). Thus, by the Dominated Convergence Theorem, we have

lim
z→∞

M(z) =

∫ ∞
0

fε(ε) dε = 1
2
.
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Second, we show that ε̃(z)→ −ε̄ as z →∞. Recall that

ε̃(z) = −E[ε | 0 < ε < θz] = − 1

M(z)

∫ ∞
0

εfε(ε)
{

1− Fθ|ε
(ε
z

)}
dε.

The integrand approaches εfε(ε)
{

1− Fθ|ε(0)
}

= εfε(ε) as z →∞ and is dominated

by εfε(ε). Thus, by the Dominated Convergence Theorem, we have

lim
z→∞

ε̃(z) = − 1

1/2

∫ ∞
0

εfε(ε)dε = −ε̄.

Third, we show that
{
θ̃(z)− θ̄

}
z converges to θ̄E

[
εfθ|ε(0) | ε > 0

]
as z → ∞.

We can write

M(z) = E[1{0 < ε < θz}] =

∫ ∞
0

∫ ∞
ε
z

fθ|ε(θ)fε(ε)dθ dε

θ̃(z) = E[θ | 0 < ε < θz] =
1

M(z)

∫ ∞
0

∫ ∞
ε
z

θfθ|ε(θ)fε(ε)dθ dε

and therefore,

{
θ̃(z)− θ̄

}
z =

z

M(z)

∫ ∞
0

∫ ∞
ε
z

{
θ − θ̄

}
fθ|ε(θ)fε(ε)dθ dε.

As z goes to infinity, z
M(z)

approaches ∞, while the integral approaches 0. Thus,

the limit value is indeterminate. In preparation for applying L’Hôpital’s rule, we let

y = 1
z

and write

lim
z→∞

{
θ̃(z)− θ̄

}
z = lim

y→0

1

yM(1/y)

∫ ∞
0

∫ ∞
εy

{
θ − θ̄

}
fθ|ε(θ)fε(ε)dθ dε.
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For the denominator, we have

d

dy
[yM(1/y)] = M(1/y) + y

d

dy

[∫ ∞
0

∫ ∞
εy

fθ|ε(θ)fε(ε)dθ dε

]
= M(1/y) + y

∫ ∞
0

(−ε)fθ|ε(εy)fε(ε) dε,

which approaches 1
2

as y → 0.

For the numerator, we have

d

dy

[∫ ∞
0

∫ ∞
εy

{
θ − θ̄

}
fθ|ε(θ)fε(ε)dθ dε

]
=

∫ ∞
0

−ε
{
εy − θ̄

}
fθ|ε(εy)fε(ε) dε.

The integrand converges to εθ̄fθ|ε(0)fε(ε) as y → 0. Furthermore, because fθ|ε(·)

is bounded for each ε, there is f̄ such that fθ|ε(θ) ≤ f̄ for all θ and ε. Then the

integrand is bounded by εθ̄f̄fε(ε), and this function is integrable. Thus, by the

Dominated Convergence Theorem, the derivative of the numerator approaches

θ̄

∫ ∞
0

εfθ|ε(0)fε(ε) = 1
2
θ̄E
[
εfθ|ε(0) | ε > 0

]
as y → 0.

By applying L’Hôpital’s rule, we obtain

lim
z→∞

{
θ̃(z)− θ̄

}
z = θ̄E

[
εfθ|ε(0) | ε > 0

]
,

and the stated limit value follows.
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1.9 Appendix: Equilibrium Analysis

1.9.1 Details of Example 1

There are three schools, A, B, and C, with capacities qA = qB = qC = 1
3
, to be

allocated to a unit continuum of students. The utility of attending school C is 0

for each student: εiC = 0 for all i and zC = 0 with probability 1. The valuation

of quality, θi, is 1 for one half of the students (quality-sensitive students) and 0

for the other half (quality-insensitive students). The idiosyncratic tastes, εiA and

εiB, are distributed independently across individuals and across schools. Specifically,

(εiA, εiB) ∼ U [0, 1]2. The school qualities, zA and zB, are independently distributed

from each other and (zA, zB) ∼ U [0, 2]2.

For any realizations of (εiA, εiB) and (zA, zB), school C is unanimously the worst

school, and therefore, it is always under-demanded. Thus, the only sensible reports

are A � B � C and B � A � C. We ignore other outcome-equivalent preference

orders to keep the analysis simple.

Under the DA, student i reports A � B � C if and only if uiA > uiB, where uiA =

θiẑA + εiA and uiB = θiẑB + εiB. When ẑA = ẑB, exactly one half of students report

A � B � C because εAi and εBi are symmetric. As |ẑA − ẑB| increases, the fraction

of the quality-sensitive students pursuing the highest-quality school increases, and it

reaches 1 when |ẑA − ẑB| = 1.

Without loss of generality, suppose ẑA > ẑB. In the equilibrium, the allocation

for students who report A � B � C is xiA = qA
D∗A

, xiB = qA + qB − qA
D∗A

, and

xiC = qC , where D∗A =
∫
1{uiA > uiB} dF (ωi). The allocation for students who

report B � A � C is xiA = 0, xiB = qA + qB, and xiC = qC .
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The resulting welfare is plotted in Figure 1.10 in the main text. The welfare

function has a local peak at zA = zB, where school A and B are equally over-

demanded. Indeed, quality vectors (zA, zB) that satisfy zA = zB are similar to the

ideal point z0 we discuss in Section 1.3. The optimal disclosure policy pools the

values of zA − zB in the interval [−1.34, 1.34].

Under the IA, the students report strategically. Suppose ẑA > ẑB. We assume

both school A and B are over-demanded in the equilibrium, and later confirm this

assumption. When both school A and B are over-demanded, each student receives a

probability share of either school A or B, not both (i.e., at the beginning of the second

round of the simultaneous-eating algorithm, their second-most-preferred school is

already exhausted). The allocation for students who report A � B � C is xiA = qA
D∗A

,

xiB = 0, and ziC = 1 − qA
D∗A

. The allocation for students who report B � A � C is

xiA = 0, xiB = qB
D∗B

, and ziC = 1 − qB
D∗B

. Given this, student i reports A � B � C if

and only if
qA
D∗A

uiA >
qB
D∗B

uiB ⇔ uiA
uiB

>
D∗A
D∗B

,

where D∗A and D∗B are consistent with this decision rule. It can be confirmed that,

there is a unique equilibrium for each value of (ẑA, ẑB), and school A and B are

indeed over-demanded in the equilibrium, i.e., D∗A ≥ qA and D∗B ≥ qB.

The resulting welfare is plotted in Figure 1.10 in the main text. The welfare func-

tion is convex under the IA. The disturbance to the horizontal sorting is mitigated

under the IA because the IA discourages the students who are relatively indifferent

between school A and B from pursuing the highest-quality school. As a result, the

gain from improved vertical sorting always exceeds the loss from disturbed horizontal

sorting. It follows that the full-disclosure policy is optimal.
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The equilibrium strategies under the DA and the IA are contrasted in Figure 1.12

for (ẑA, ẑB) = (1.2, 0.8). The utility vector for the quality-insensitive students is

(uiA, uiB) = (εiA, εiB) ∼ U [0, 1]2, a unit square. For the quality-sensitive students,

the square is shifted up by ziA = 1.2 and to the right by ziB = 0.8. The students

shaded in red report A � B � C while the students shaded in blue report B � A � C

in the equilibrium.

uiB
1 2

uiA

1

2

θi = 0

uiB
1 2

uiA

1

2

θi = 1

(a) Deferred Acceptance

uiB
1 2

uiA

1

2

θi = 0

uiB
1 2

uiA

1

2

θi = 1

(b) Immediate Acceptance

Figure 1.12: The equilibrium strategy when (ẑA, ẑB) = (1.2, 0.8).
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Under the DA, the slope of the dividing line between the students reporting

A � B � C and the students reporting B � A � C is 1, and the fraction of students

reporting A � B � C is 0.660. Under the IA, the fraction of students reporting

A � B � C is 0.539, and the slope of the dividing line is 0.539/0.451 = 1.17. In

other words, the students pursue school A if and only if uiA/uiB > 1.17. Notice that

the quality-insensitive students actively avoid reporting A � B � C. This is because

they can secure a larger probability share by reporting B � A � C.

Under both the DA and the IA, as |ẑA − ẑB| increases, more students pursue

the highest-quality school, but at different rates. Under the DA, all quality-sensitive

students pursue the highest-quality school when |ẑA − ẑB| ≥ 1. Under the IA,

students are discouraged from crowding, and it is not until |ẑA − ẑB| ≥ 1.78 that all

quality-sensitive students pursue the highest-quality school. Also, under the IA, the

fraction of quality-insensitive students who actively avoid the highest-quality school

increases as |ẑA − ẑB| increases, keeping the middle-quality school over-demanded.

1.9.2 Details of Example 2

There are three schools, A, B, and C, with capacities qA = qB = qC = 1
3
, to be

allocated to a unit continuum of students. The utility of attending school A is 1 for

all students: εiA = 1 for all i and zA = 0 with probability 1. Suppose the valuation of

quality, θi, is 1 for one half of the students (quality-sensitive students) and 0 for the

other half (quality-insensitive students). The quality-sensitive students prefer school

B to C. Specifically, εiB ∼ U [0, 1] and εiC = −1. The quality-insensitive students

prefer school C to B. Specifically, εiC ∼ U [0, 1] and εiB = −1. It is known that

zC = 0 with certainty and zB ∼ U [0, 1].
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Under the DA, the quality-insensitive students truthfully report A � C � B. A

quality-sensitive student i reports B � A � C if and only if uiB > uiA, equivalently,

ẑB + εiB ≥ 1. The cutoff type, εDA = 1 − ẑB, is indifferent between reporting

B � A � C and reporting A � B � C. The fraction of students who un-crowd from

A is 0 when ẑB = 0, it increases linearly in ẑB, and it reaches 1 when ẑB = 1.

In the DA equilibrium (in which all students report truthfully), the demand for

school A is D∗A = 1
2

+ 1
2
εDA and the demand for school B is D∗B = 1

2
(1− εDA). The

equilibrium allocation under the DA is shown in the table below, where α = qA
D∗A

, the

per-student share of school A, and β =
qB−αD∗B

1/2
, the per-student share of school B in

the second round of simultaneous eating.

Report xiA xiB xiC

A � B � C α β 1− α− β

B � A � C 0 α + β 1− α− β

A � C � B α 0 1− α

Under the IA, for the quality-insensitive students, truthfully reporting A � C �

B is the optimal strategy because, for any belief ẑB ∈ [0, 1], school C is least de-

manded, and therefore, it is effectively free. For the quality-sensitive students, let

εIA be the cutoff type: the students with εiB ≤ εIA report A � B � C and the

students with εiB > εIA report B � A � C.

Suppose both school A and B are over-demanded in the equilibrium. Then the

expected utility from reporting A � B � C for student i is

qA
DA

1 +

(
1− qA

DA

)
(−1), where DA =

1

2
+

1

2
εIA.
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The expected utility from reporting B � A � C is

qB
DB

(εiB + ẑB) +

(
1− qB

DB

)
(−1), where DB =

1

2
(1− εIA).

The cutoff type εIA is indifferent between the two reports, and it is identified by

εIA =
1

2

[
−4− ẑB +

√
20 + 4ẑB + ẑ2

B

]
.

At ẑB = 0, we have εIA =
√

5 − 2 ≈ 0.236. In other words, fraction 0.764 of

quality-sensitive students report B � A � C when ẑB = 0 (recall that this fraction is

0 under the DA). The fraction of quality-sensitive students who report B � A � C

increases as ẑB increases, and it reaches 1 when ẑB = 1. This is consistent with the

assumption that DB ≥ qB = 1
3

for all ẑB ∈ [0, 1].

For ẑB ∈ (0, 1], this is the unique equilibrium. A quality-sensitive student i

reports A �i B �i C if εiB ≤ εIA and reports B �i A �i C if εiB > εIA. The

equilibrium allocation under the IA is shown in the table below, where D∗A and D∗B

are equilibrium demands.

Report xiA xiB xiC

A � B � C qA
D∗A

0 1− qA
D∗A

B � A � C 0 qB
D∗B

1− qB
D∗B

A � C � B qA
D∗A

0 1− qA
D∗A

When ẑB = 0, there is another equilibrium, in which all quality-sensitive students

report A � B � C and all quality-insensitive students report A � C � B.
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CHAPTER 2

Decomposition with Collocation Constraints

2.1 Introduction

Randomization is an essential part of fair resource allocation when the objects to

be allocated are indivisible. When there is only one type of object to be allocated,

a simple lottery restores fairness. For example, the Diversity Immigrant Visa pro-

gram allocates U.S. permanent residency through what is commonly known as the

green card lottery. When there are multiple types of objects to be allocated, the

randomization needs to be used in conjunction with an arrangement algorithm that

considers the preferences of the applicants. For example, school-choice programs aim

to achieve fair allocation of seats at public schools through matching algorithms.1

There are two ways to integrate a randomization and a preference-based arrange-

ment. In most allocation algorithms used in real life, the randomization precedes

the preference-based arrangement: A lottery is first used to randomly assign an ar-

tificial priority order over the applicants, then a deterministic assignment algorithm

is applied respecting the priority order and the preferences of the applicants. One

prominent algorithm is the Random Serial Dictatorship (RSD), in which applicants

1The seminal paper Abdulkadiroğlu and Sönmez (2003) introduced school-choice programs to
the mechanism design literature, and it has significantly expanded since then.
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are randomly ordered first, then they sequentially pick their favorite object. In

contrast, stochastic assignment mechanisms, such as Probabilistic Serial (PS) rule,

integrate the randomization with the preference-based arrangement, and directly

specify which applicant receives which object with what probability.

Although the PS has superior efficiency over the RSD,2 it is rarely used in reality.

There are two likely reasons. First, an average person can understand the working of

the RSD very easily, but they may have difficulty understanding the working of the

PS because it involves probability, a concept unfamiliar to many people. Therefore,

the PS is less likely to be adopted if decision makers are concerned about participant

alienation. Second, the RSD can be more easily implemented than the PS because the

RSD returns a deterministic assignment, which is ready for implementation, whereas

the PS returns a stochastic assignment, which requires some post-processing before

implementation. Kesten et al. (2017) offers a remedy to these shortcomings of the

PS by reformulating the PS as a variant of the RSD.

We argue that stochastic assignments are actually preferred to deterministic as-

signments as an output from allocation algorithms because they offer a greater flex-

ibility in implementation. We explain this perspective using an example in school-

choice programs. Suppose there are four students, 1 through 4, and two schools, A

and B, each with 2 seats. Every student demands one seat and prefers school A to B.

Also suppose students 1 and 2 are twins and their parents wish them to be assigned

to the same school.

2This observation is first formalized in Bogomolnaia and Moulin (2001), in which the authors
introduce the notion of stochastic-dominance efficiency (in their original term, ordinal efficiency)
and develop the Probabilistic Serial rule. Erdil and Ergin (2008) makes a similar observation in
the context of two-sided matching: An arbitrary tie-breaking in Deferred Acceptance algorithm—
which coincides with the RSD when there is only one priority class—introduces artificial stability
constraint, which in turn compromises the efficiency.
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Suppose we employ the RSD disregarding the collocation of the twins. There are

4! = 24 possible orderings of the students, of which the twins are assigned to the

same school in only 8 orderings. In other words, the twins are separated into different

schools with 2
3

probability. To ensure twin collocation, the RSD algorithm needs to

be substantially modified, which may render the modified RSD more enigmatic to

the participants of the program.3

In contrast, the PS returns a stochastic assignment matrix which simply specifies

that each student should be assigned to school A with 1
2

probability. To implement

this, we flip a coin to decide which two students are to be assigned to school A,

the twins or students 3 and 4. Notice that twin collocation is achieved without any

cost: We run the PS as it is, take the resulting stochastic assignment matrix, and

decompose it into a lottery over deterministic assignments—which needs to be done

anyway—keeping in mind the twin collocation. Therefore, the implementation is

much simpler for the PS.

In this paper, we take the stochastic assignment matrices as given and aim to

accommodate social desiderata such as collocation of twins during the decomposition

step. In the first half of the paper, we examine the feasibility of twin collocation in

school-choice programs. We show that any stochastic assignment matrix can be

decomposed with guaranteed twin collocation if one extra seat can be added to each

school. This is true for any number of pairs of twins in the student body. We then

examine the related problem of collocating students from the same community. We

3Alternatively, we can keep the RSD algorithm as it is and compute the stochastic assignment
matrix by enumerating all possible orderings of the students and corresponding deterministic as-
signments, then decompose the stochastic assignment matrix into a new lottery over deterministic
assignments. However, this approach is computationally prohibitive even for a moderate number
of students. For example, with 20 students, there are 20! ≈ 1018 possible orderings.
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show that two extra seats at each school is sufficient to guarantee each student a

company of at least one peer from their community, provided that students from the

same community have the same stochastic allocation.

These results are qualitatively similar to Nguyen and Vohra (2018), in which the

authors show that stability can be restored in the National Resident Matching prob-

lem with couples (who have joint preferences over pairs of hospitals) if the capacity

of each hospital can be increased by two, not exceeding four in total. However, twin

collocation in one-sided matching we study here (where twins must be assigned to the

same school) is fundamentally different from couple collocation in two-sided match-

ing (where couples prefer to be assigned to different hospitals in the same city). Our

result shows that twin collocation may be impossible even in large markets, while

Kojima et al. (2013) shows that there always exists a stable matching as long as the

number of couples is small relative to the market size.

In the second half of the paper, we ask the question “When twin collocation can

be guaranteed, how do we find the lottery decomposition that implements the given

stochastic assignment?” We first show that straightforward modifications of existing

algorithms fail. We then propose a new algorithm based on Column Generation, a

technique commonly used in the field of operations research.

A similar effort is made in Ashlagi and Shi (2014), in which the authors provide a

decomposition heuristic that maximizes the average number of peers from the same

community assigned to the same school. Their solution technique is a clever gener-

alization of the existing decomposition algorithm that is tailored specifically toward

community cohesion, whereas our algorithm based on Column Generation is more

general and can be used to accommodate any quantifiable assignment objectives.
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Here are some examples of social desiderata that can be integrated into the de-

composition step. Given a stochastic assignment matrix, an education board can ex-

plicitly balance the racial composition at each school instead of leaving it to chance.4

The total cost of providing bus transportation can be minimized by integrating the

bus-route planning into the decomposition step. Sibling priorities can be exercised

more effectively if, in any given year, students who have younger siblings are de-

liberately assigned to many different schools so that their younger siblings have a

guaranteed seat at the same school in subsequent years.

This paper is similar to Balbuzanov (2019) in that both aim to accommodate all

types of constraints. The author converts an arbitrary set of constraints to an equiv-

alent set of additive constraints with upper bounds. Then the simultaneous-eating

algorithm (Bogomolnaia and Moulin, 2001) is applied subject to these constraints.

Essentially, all permissible deterministic assignments are implicitly listed first, then

the weights on these assignments are adjusted by varying the eating speeds. In con-

trast, our decomposition algorithm can be added to existing stochastic assignment

mechanisms without any alterations to the assignment mechanisms.

This paper is organized as follows. We formally introduce allocation problems

in Section 2.2 and define decomposability of stochastic assignment matrices. We

introduce collocation constraints in Section 2.3 and examine the feasibility of de-

composition subject to these constraints. We demonstrate the limitations of existing

algorithms in Section 2.4 and propose a new decomposition algorithm in Section 2.5.

We conclude in Section 2.6.

4In this paper, we take the stochastic assignment as given, while in the controlled-choice lit-
erature, hard or soft constraints are imposed on the assignments to be implemented. Also, in the
controlled-choice literature, the primary focus is on the preservation of stability, which does not
exist in one-sided matching we study here.
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2.2 Preliminary

We write our model using the terminology in school-choice programs, but the model

can be applied to any indivisible-goods allocation problems. Let I = {1, ..., n} denote

the set of students and S = {s1, ..., sm} the set of schools. Let qs denote the capacity

(i.e., the number of seats) at school s ∈ S. We assume
∑

s∈S qs ≥ n. Each student

has strict preference over schools, and demands exactly one seat. Let P denote the

set of strict preferences and PI the set of preference profiles.

A stochastic assignment matrix X ≡ (xis)i∈I,s∈S specifies the probability xis with

which student i is assigned to school s for each i ∈ I and s ∈ S. A stochastic

assignment matrix X ≡ (xis)i∈I,s∈S is feasible if it satisfies the following constraints:

xis ≥ 0 ∀i ∈ I, s ∈ S (C1)∑
s∈S

xis = 1 ∀i ∈ I (C2)

∑
i∈I

xis ≤ qs ∀s ∈ S (C3)

Let X ≡ {X ∈ Rnm | (C1), (C2), (C3)} denote the set of all feasible stochastic

assignments. An ordinal assignment mechanism is a mapping from PI to X . When

a mechanism returns a matrix that contains non-integral values, the matrix needs to

be decomposed into a lottery over deterministic assignment matrices, which satisfy

xis ∈ {0, 1} ∀i ∈ I, s ∈ S (C1′)

Let Z ≡ {X ∈ Rnm | (C1′), (C2), (C3)} denote the set of all feasible deterministic

assignments.
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By an extension of the Birkhoff-von Neumann theorem (Birkhoff, 1946; Von Neu-

mann, 1953), it can be proved that each X ∈ X has a lottery decomposition over

Z. That is, for each X ∈ X , there is a set of non-negative weights (wZ)Z∈Z such

that X =
∑

Z∈Z w
ZZ. We say the decomposition includes Z or Z is in the

decomposition if wZ > 0.

We are interested in the decomposability of stochastic assignment matrices when

additional constraints are imposed. Given a set C of constraints, let X C denote the

subset of X that satisfy C, and let ZC denote the subset of Z that satisfy C.

Definition 1. For each X ∈ X C, we say X is decomposable respecting C if

there is a set of non-negative weights (wZ)Z∈ZC such that X =
∑

Z∈ZC w
ZZ.

Budish et al. (2013) identifies the sets of constraints that can be imposed on

assignment matrices without compromising decomposability. The authors consider

additive constraints of the form q
H
≤
∑

(i,s)∈H xis ≤ qH , where H is a subset of

student-school pairs {(i, s) ∈ I ×S} and is called a constraint set. A collection H of

constraint sets form a hierarchy (Laminar set family) if each pair of constraint sets

H1, H2 ∈ H are either disjoint (H1 ∩ H2 = ∅) or related by inclusion (H1 ⊆ H2 or

H2 ⊆ H1). The authors show that assignment matrices are decomposable respecting

a set of additive constraints on a collection H of constraint sets if and only if H forms

a bi-hierarchy, i.e., H can be partitioned into two hierarchies.5

Although this result is useful, there are many practically important constraints

that take non-additive forms. In this paper, we address one of such constraints,

namely, collocation of groups of students.

5Building on this result, Akbarpour and Nikzad (2020) shows that one may add soft constraints
that do not conform to the bi-hierarchy, and the soft constraints can be approximately satisfied.
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2.3 Decomposition with Collocation Constraints

In this section, we show that assignment matrices are in general not decomposable

respecting collocation constraints, and non-decomposability can persist in large mar-

kets. However, stochastic assignment matrices can be decomposed into a lottery over

deterministic assignments that violate the capacity constraints by a small amount.

In Section 2.3.1, we analyze the twin constraints, which require twins to be assigned

to the same school. In Section 2.3.2, we analyze the company constraints, which

require that each student has a company of at least one peer from their community

at their assigned school.

2.3.1 Twin Constraints

There are many situations in which collocation of groups of students is desirable. For

example, parents of twins and triplets often want their children to attend the same

school. Two families living next to each other may want their children to attend

the same school so that they can have joint tutoring sessions. If there are a couple

of students in the city who are especially talented in chess, collocating them to the

same school can facilitate their interaction with each other.

For exposition purposes, we call the groups of students to be collocated twins,

triplets, etc. For a pair of twins i and i′, the twin constraint requires the following:

xis = xi′s ∀s ∈ S.

We first show that assignment matrices are in general not decomposable respecting

the twin constraint.

70



Example 1 (Twin constraint). Suppose there are four students, 1 through 4, and

two schools, A and B, with capacities qA = qB = 2. Students 1 and 2 are twins and

they must be assigned to the same school. The table below shows the preference

profile and the stochastic assignment matrix we wish to implement.

Preference xiA xiB

Student 1 A � B 2
3

1
3

Student 2 A � B 2
3

1
3

Student 3 A � B 2
3

1
3

Student 4 B � A 0 1

In any decomposition, student 4 must be assigned to school B in all deterministic

assignments because x4B = 1. Also, a decomposition must include some deterministic

assignment in which students 1 and 2 are assigned to school B because x1B > 0 and

x2B > 0. However, students 1 and 2 cannot be assigned to school B together because

there are only two seats at school B and one of them is always occupied by student 4.

Therefore, this assignment matrix is not decomposable respecting the twin constraint.

This example can be scaled up while maintaining the same structure in the pref-

erence profile. That is, neither increasing the total number of students nor increasing

the number of seats at each school resolves the non-decomposability.

Proposition 1. Suppose there are m ≥ 2 schools, each with capacity q ≥ 1 or

larger. Also suppose there are
∑

s∈S qs students, two of which form a pair of twins.

For any finite q, there is a preference profile for which the PS assignment matrix is

not decomposable respecting the twin constraint.
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Proof. Arbitrarily label the schools s1, ..., sm. Consider the following preference

profile. The twins and additional qs1 − 1 students prefer school s1 to s2 to all

other schools. There are qs2 − 1 students who prefer s2 to all other schools. For

j ∈ {3, ...,m}, there are exactly qsj students who prefer sj to all other schools.

Under the PS, each student who prefers school s1 to s2 to all other schools is

assigned to school s1 with probability
qs1
qs1+1

and assigned to school s2 with probability

1− qs1
qs1+1

. All other students are assigned to their most-preferred school with certainty.

In particular, qs2 − 1 students must be assigned to school s2 in all deterministic

assignments in a decomposition. This is incompatible with the requirement that

the twins must be assigned to school s2 together in some deterministic assignments

because there is only one unoccupied seat.

It takes only one pair of twins to cause non-decomposability, and the non-

decomposability persists in large markets. Thus, if we insist on collocation of twins,

the capacity constraints must be relaxed. It turns out that—no matter how many

pairs of twins there are—we only need one extra seat at each school.

Proposition 2. Regardless of the number of pairs of twins, any stochastic assign-

ment matrix in which each pair of twins has the identical assignments can be decom-

posed into a lottery over deterministic assignments that collocate the pairs of twins

and violate the capacity constraint by at most one at each school.

Proof. Suppose we want to implement X = (xis)i∈I,s∈S. Let each pair of twins select

a representative for the pair. We partition the set of students I into three subsets:

the set of non-twin students Ĩ, the set of representative twins T , and the set of

non-representative twins T ′. We temporarily remove T ′, find a decomposition of X

restricted to Ĩ ∪ T , then add back T ′.
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We formulate the problem of decomposing the restricted matrix (xis)i∈Ĩ∪T,s∈S

as follows. Let rs =
∑

i∈T ′ xis be the total share of school s assigned to non-

representative twins. Because rs may not be integral, the maximum number of

seats we can reserve for T ′ without causing infeasibility is brsc, the largest integer

not exceeding rs. We modify the capacity constraint as follows:

∑
i∈Ĩ∪T

xis ≤ qs − brsc ∀s ∈ S.

We also impose an upper limit on the number of representative twins that can be

assigned to each school:

∑
i∈T

xis ≤ drse ∀s ∈ S,

where drse is the smallest integer that is at least as large as rs.

These two new constraints together with (C1) and (C2) form a bi-hierarchy of

additive constraints, and therefore, by Theorem 1 of Budish et al. (2013), there is a

decomposition. Pick any decomposition. Now, we add back the non-representative

twins. At school s ∈ S, they require at most drse seats, and we have reserved brsc

seats. Therefore, we only need one extra seat.

More generally, given a set of students {i1, ..., ik} ⊆ I to be collocated, the collo-

cation constraints for the group can be written

xi1s = xijs ∀s ∈ S, j = 2, ..., k.

Proposition 2 extends to collocation of triplets, quadruplets, and so forth.
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Proposition 3. For arbitrary k ∈ N, any stochastic assignment matrix in which each

set of k-multiples has the identical assignments can be decomposed into a lottery over

deterministic assignments that collocate the sets of multiples and violate the capacity

constraint by at most k − 1 seats at each school.

Proof. Suppose we want to implement X = (xis)i∈I,s∈S. We call each set of multiples

a family. Let each family of multiples select one representative sibling. Let Ĩ denote

the set of single students and let F denote the set of representative siblings. We

temporarily remove the remaining k−1 non-representative siblings from each family.

For each s ∈ S, let rs =
∑

i∈F xis. We reserve seats for the removed siblings

by modifying the capacity constraint to
∑

i∈Ĩ∪F xis ≤ qs − b(k − 1)rsc. We also

impose
∑

i∈F xis ≤ drse to ensure that no particular school has a high concentration

of representative siblings. These two constraints together with (C1) and (C2) form

a bi-hierarchy of additive constraints, and therefore, (xis)i∈Ĩ∪F,s∈S is decomposable.

Pick any decomposition. To add back the non-representative twins, we need at most

(k − 1)
⌈∑

i∈F xis
⌉

seats at school s, and we have reserved
⌊
(k − 1)

∑
i∈F xis

⌋
seats.

Therefore, the excess demand for seats is at most k − 1 at each school.

Indeed, there can be sets of multiples of different sizes. For example, collocation

of twins and triplets can be guaranteed if deterministic assignments are allowed to

violate the capacity constraint by up to two seats at each school.

Proposition 4. Suppose each set of multiples consists of at most k students. Then,

any stochastic assignment matrix in which each set of multiples has the identical

assignments can be decomposed into a lottery over deterministic assignments that

collocate the sets of multiples and violate the capacity constraint by at most k − 1

seats at each school.
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The basic idea for the proof remains the same: We remove all but one sibling from

each set of multiples; find a decomposition of the assignment matrix restricted to the

single students and the representative siblings with appropriate constraints imposed;

and add back the removed siblings. The proof is provided in Appendix 2.7.1.

2.3.2 Company Constraints

Related to twin constraints are company constraints, which require that each student

has a familiar face at their assigned school. Suppose the set I of students can be

partitioned into communities. Let c(i) denote the community that student i belongs

to. The company constraint requires that

xis ≤
∑
j 6=i

c(j)=c(i)

xjs ∀i ∈ I, s ∈ S.

In other words, each student is guaranteed a company of at least one peer from their

community at their assigned school. Equivalently, each school has either zero or

multiple students from each community.

Rationale for company constraints can be psychological, logistical, or financial.

When racial or religious minorities are assigned to the same school or classroom, they

may be able to provide emotional support for each other. To reduce the cost of bus

transportation, a dozen students living in a remote area can be deliberately assigned

to a few schools in small groups rather than to twelve different schools. Similarly,

immigrant students have a better chance of receiving necessary language support if

they are not scattered over many different schools because there may be a limited

number of language specialists in the city.
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Unfortunately, assignment matrices are not always decomposable respecting the

company constraint. Furthermore, non-decomposability persists even when there are

plenty of seats at each school.

Example 2 (Company constraint). Suppose there are three students, 1, 2, and 3,

and three schools, A, B, and C, each with three seats. Suppose all students are from

the same community. We wish to implement the following assignment matrix6:

Preference A B C

Student 1 A � B � C 1
2

1
2

0

Student 2 B � C � A 0 1
2

1
2

Student 3 A � C � B 1
2

0 1
2

This assignment matrix satisfies the company constraint: xis ≤
∑

j 6=i xjs for all

i ∈ {1, 2, 3} for all s ∈ {A,B,C}. However, decomposition is impossible because all

three students must be placed at the same school in any deterministic assignment to

respect the company constraint.

Adding extra seats does not resolve the non-decomposability because the non-

decomposability is caused by the cyclic structure of the assignment matrix. By a

cycle, we mean a sequence of non-zero probabilities linked either through a student

or a school. In this example, x1A
1←→ x1B

B←→ x2B
2←→ x2C

C←→ x3C
3←→ x3A

A←→ x1A is

a cycle. We suspect that cycles that involve an odd number of students play some

role in non-decomposability.

6This assignment is neither the expected RSD assignment nor the PS assignment. However, it
can be generated by an unfair Serial Dictatorship that randomly picks one of the two orderings of
the students, (1, 2, 3) or (3, 1, 2), with equal probabilities. It can also be generated by an extension
of the PS if each student is indifferent between their two most-preferred schools.
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Example 3 (Cycles). Suppose there are four schools, A, B, C, and D, each with

three seats. Suppose all students belong to the same community, and we wish to

guarantee each student at least one peer at their assigned school. Consider the

following assignment matrix:

A B C D

Student 1 1
2

1
2

0 0

Student 2 0 1
2

1
2

0

Student 3 0 0 1
2

1
2

Student 4 1
2

0 0 1
2

Student 5 1
2

0 1
2

0

First, suppose the community consists of students 1 through 4. There is a unique

decomposition that respects the community constraint: Randomize over the assign-

ments “students 1 and 4 to school A and students 2 and 3 to school C” and “students

1 and 2 to school B and students 3 and 4 to school D”. Notice that there is only one

cycle involving all four students.

Next, suppose the community consists of students 1 through 5. With the addi-

tion of student 5, the assignment matrix becomes non-decomposable respecting the

company constraint. A decomposition must include a deterministic assignment in

which student 1 is assigned to school B, which requires student 2 to be also assigned

to school B. Because none of students 3, 4, and 5 can be assigned to school B, these

three students must be assigned to some other school together. However, there is

no school to which all three are assigned with a positive probability. Notice that

students 1, 2, and 5 form a cycle. Students 3, 4, and 5 also form a cycle.
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This example suggests that there is something special about cycles involving an

odd number of students. In fact, for additive constraints, the equivalence between

absence of odd cycles, bi-hierarchy structure of the constraint sets, and decompos-

ability of assignment matrices is proved in Budish et al. (2013).7 Therefore, it would

not be surprising if cycles involving an odd number of students were responsible

for non-decomposability of assignment matrices respecting collocation constraints.

However, a further investigation of this topic may be of little practical value because

commonly used assignment mechanisms such as the RSD and the PS do not generate

cycles in their assignment matrices when the preferences of the students are strict.

We leave this topic for future research.

We end this section with one positive result. As demonstrated in Example 2

and 3, the company constraint can cause non-decomposability that persists even

when there are infinitely many seats at each school; however, if students from the

same community have the same stochastic assignment, the problem reduces to that

of collocating twins and triplets. Specifically, we can partition each community of

students into arbitrary groups of two and three, then apply Proposition 4 to obtain

the following result.

Corollary 1. Suppose each community has at least two students. Also suppose

all students within each community have identical stochastic assignments. Then

stochastic assignment matrices are decomposable respecting the company constraint

without violating the capacity constraint by more than two seats at each school.

7They define odd cycles as follows. Recall that a constraint set is a subset of student-school
pairs {(i, s) ∈ I×S}. A sequence of ` constraint sets (H1, ...,H`) in H is an odd cycle if ` is odd and
there exists a sequence of linking student-school pairs h1, ..., h` such that hj ∈ Hj ∩Hj+1 (where
`+ 1 ≡ 1) and hj 6∈ Sk for any k 6= j, j + 1. According to this definition, the cycles that involve an
odd number of students in our examples can be termed pseudo-odd cycles because the number of
constraint sets that constitute the cycles is not divisible by 4.
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2.4 Limitations of Existing Algorithms

So far, we have established that assignment matrices are not generally decomposable

respecting collocation constraints. We now ask the question, “When assignment ma-

trices are decomposable respecting collocation constraints, how do we actually find a

lottery over deterministic assignments?” In this section, we attempt to accommodate

collocation constraints through modifications of existing algorithms, which turn out

to be futile. An alternative approach is proposed in Section 2.5.

2.4.1 Modification of Existing Decomposition Algorithm

We begin with a proof sketch for a generalized version of the Birkhoff-von Neumann

theorem, which provides the basis for the existing decomposition algorithm. Consider

any feasible stochastic assignment matrix X0 ∈ X . If any column sum of X0 is non-

integral, add dummy students to I so that
∑

i∈I x
0
is is integral for each s ∈ S.

Pick any Z0 ∈ Z such that z0
is = 1 =⇒ x0

is > 0 for all i ∈ I and s ∈ S. The

existence of such Z0 can be proved by formulating the problem as a network-flow

problem and invoking the Integrality Theorem. Let w = min{x0
is | z0

is = 1}. Then

X0 can be partially decomposed as

X0 = wZ0 + (1− w)X1, where X1 =
X0 − wZ0

1− w
.

Because X0 and Z0 are in X and all their column sums are integral, X1 is also in X

and all its column sums are integral. Furthermore, X1 has one less non-zero elements

than X0. Therefore, by repeating this process, we can obtain a decomposition in a

finite number of iterations.
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We show that simply imposing the collocation constraint when finding a new

component Z ∈ Z of a decomposition—and keeping the rest of the algorithm

unchanged—is inadequate. With such a crude modification, the algorithm can fail

to find a decomposition when there exists one.

Example 4 (Greedy algorithm). Suppose there are five students, 1 through 5, and

three schools, A, B and C, with capacities qA = qB = 2 and qC = 1. Students 1 and

2 prefer school A to B to C, while students 3, 4, and 5 prefer school A to C to B. The

RSD and the PS both return assignment X̄ shown below. We wish to implement X̄

with the collocation constraint on students 1 and 2. This is possible because X̄ can

be decomposed as follows:

X̄ =



2
5

3
5

0

2
5

3
5

0

2
5

4
15

1
3

2
5

4
15

1
3

2
5

4
15

1
3


= 2

15



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1


+ 2

15



1 0 0

1 0 0

0 1 0

0 0 1

0 1 0


+ 2

15



1 0 0

1 0 0

0 0 1

0 1 0

0 1 0



+ 1
5



0 1 0

0 1 0

1 0 0

1 0 0

0 0 1


+ 1

5



0 1 0

0 1 0

1 0 0

0 0 1

1 0 0


+ 1

5



0 1 0

0 1 0

0 0 1

1 0 0

1 0 0


We refer to the assignments on the top row as Ztl, Ztc, and Ztr, and the assignments

on the bottom row as Zbl, Zbc, and Zbr, from left to right. These six assignments

are the only feasible deterministic assignments that satisfy the twin constraint.
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We show that the greedy algorithm that puts the maximum possible weight on a

newly found deterministic assignment in each iteration fails to find a decomposition.

Suppose the greedy algorithm finds Ztl first. The maximum weight the algorithm

can put on Ztl is min{2
5
, 4

15
, 1

3
} = 4

15
, and X̄ can be partially decomposed as

X̄ = 4
15
Ztl + 11

15
X ′ where X ′ =

(
X̄ − 4

15
Ztr
)
/(11

15
).

Because x′3B = x′4B = 0, in any decomposition of X ′, the weights on Ztc and Ztr must

be zero. This is incompatible with satisfying x′5B = 4
11

. Therefore, for the greedy

algorithm to work, it cannot start with Ztl. By similar arguments, we can show that

neither Ztc nor Ztr can be the first assignment to be found by the algorithm.

Suppose, instead, the greedy algorithm finds Zbl first. The maximum weight the

algorithm can put on Zbl is min{3
5
, 2

5
, 1

3
} = 1

3
, and X̄ can be partially decomposed as

X̄ = 1
3
Zbl + 2

3
X ′′ where X ′′ =

(
X̄ − 1

3
Zbl
)
/(2

3
).

Because x′′5C = 0, in any decomposition of X ′′, the weight on Ztl must be zero.

Then, to satisfy x′′1A = x′′2A = 3
5
, the total weights on Ztc and Ztr must be 3

5
. This is

incompatible with satisfying x′′5B = 2
5
. Therefore, for the greedy algorithm to work,

it cannot start with Zbl. By similar arguments, we can show that neither Zbc nor

Zbr can be the first assignment to be found by the algorithm.

Therefore, regardless of which Z ∈ Z enters the decomposition first, the greedy

algorithm fails to find a decomposition.

This example suggests that a modification to the existing decomposition algo-

rithm required to accommodate collocation constraints is not as simple as it seems.
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2.4.2 Modification of Existing Lottery Mechanism

Alternatively, we may try to accommodate collocation constraints by modifying ex-

isting assignment mechanisms that return deterministic assignments as an output.

This eliminates the need for decomposition altogether.

Example 5 (Successful modification of RSD). Suppose there are five students, 1

through 5, and two schools, A and B, with capacities qA = 3 and qB = 2. Students 1

and 2 are twins and they must be collocated. Every student prefers school A to B.

We wish to implement the expected RSD assignment, (xiA, xiB) = (3
5
, 2

5
) ∀i ∈ I.

One possible modification of the RSD is to treat the twins as one student. The

twins receive one lottery number, and when it is their turn to claim seats, they choose

their most-preferred school that has two or more remaining seats. For the twins to

be able to claim two seats at school A, their lottery number has to be the largest

or the second largest, which happens with probability 1
2
. Therefore, the expected

assignment for the twins is (x1A, x1B) = (1
2
, 1

2
). The twins are disadvantaged.

We complement this with another variant of the RSD that gives the twins an

advantage. We give each twin their own lottery number. When it is the turn of the

twin with the larger lottery number, let the twin with the smaller lottery number skip

the line. For the twins to be able to claim two seats at school A, one of the two lottery

numbers needs to be the largest or the second largest, which happens with probability

7
10

. Therefore, the expected assignment for the twins is (x1A, x1B) = ( 7
10
, 3

10
).

The desired expected assignment (x1A, x1B) = (3
5
, 2

5
) can be obtained by im-

plementing the one-lottery-number scheme with probability 1
2

and the two-lottery-

number scheme with probability 1
2
. Therefore, for this specific example, it is possible

to modify the RSD in simple ways to accommodate the twin collocation.
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Unfortunately, randomizing over the one-lottery-number and the two-lottery-

numbers schemes does not always work as demonstrated in the following example.

Example 6 (Unsuccessful modification of RSD). Suppose there are six students, 1

through 6, and three schools, A, B, and C, each with two seats. Students 1 and 2 are

twins and they must be assigned to the same school. Students 1, 2, 3, and 4 prefer

school A to B to C, while students 5 and 6 prefer school B to A to C. Suppose we

wish to implement the expected RSD assignment:

(xiA, xiB, xiC) =


(1

2
, 1

6
, 1

3
) for i = 1, 2, 3, 4

(0, 2
3
, 1

3
) for i = 5, 6

We show that the one-lottery-number scheme which treats the twins as one stu-

dent generates an assignment matrix that cannot be a part of any decomposition.

Consider the following priority order of the students: (3, 1/2, 5, 6, 4). First, student

3 claims a seat at school A. Then, the twins pass up school A because it has only one

seat left, and claim two seats at school B. Next, student 5 claims a seat at school A.

Finally, students 6 and 4 take the remaining seats at school C. This assignment can-

not be a part of any decomposition because student 5 is not supposed to be assigned

to school A with a positive probability.

Of course, this example does not prove that the RSD assignment cannot be

implemented respecting twin constraints through some randomization over variants

of the RSD. However, even if there are variants of the RSD that can collectively

reproduce the RSD assignment, it is likely that required modifications to the RSD

are convoluted. For this reason, we seek an alternative approach in the next section.
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2.5 Column Generation

Given a collection C of constraints, suppose we wish to decompose a stochastic as-

signment X̄ ∈ X C into a lottery over deterministic assignments in ZC. One possible

approach is to list all assignments in ZC, then find a set of weights (wZ)Z∈ZC that

constitutes a decomposition. This can be achieved by solving the following problem:

min
w

∣∣∣∣∣∑
Z∈ZC

wZZ − X̄

∣∣∣∣∣ ,
where | · | denotes the absolute value function. Any solution to this problem with the

minimized objective value of 0 is a decomposition. Although simple, this approach is

impractical because the number of assignments in ZC increases rapidly as the number

of students increases.

Instead of listing all assignments in ZC at once, we search for Z ∈ ZC one at a

time, using an algorithm based on Column Generation.8 The algorithm has three

components: a master problem, a subproblem, and a pool of feasible deterministic

assignments. We solve the master problem and the subproblem alternately: We

attempt to find a decomposition using the current pool of assignments by solving

the master problem, then we update the pool by solving the subproblem.

Given X̄ ∈ X C to be decomposed into a lottery over assignments in ZC, the

algorithm works as follows. We first identify one or more assignments in ZC to form

the initial pool Z1 ⊂ ZC of deterministic assignments.

8Column Generation is a technique commonly used in the field of operations research. The idea
is initially proposed in Ford Jr and Fulkerson (1958) and is related to Dantzig and Wolfe (1960).
Interested readers can refer to, for example, Desrosiers and Lübbecke (2005), which provides a good
introduction to the topic.
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In the first iteration, the master problem searches for a convex combination of

the assignments in Z1 that makes the resulting stochastic assignment X1 as close to

X̄ as possible. The shadow prices (dual variables) from the master problem indicate

which elements of X1 differ from X̄. Using this information, the subproblem searches

for a new deterministic assignment Z∗ ∈ ZC that helps close the gap between X1

and X̄. We add the newly found assignment to the pool: Z2 = Z1 ∪ {Z∗}.

In the second iteration, the master problem searches for a convex combination of

the assignments in Z2 that makes the resulting stochastic assignment X2 as close to

X̄ as possible. Using the information contained in the shadow prices from the master

problem, we identify a new deterministic assignment to be added to the pool.

The process continues similarly. As the pool expands, the discrepancy between

the best convex combination of the assignments in the current pool and X̄ diminishes.

The algorithm terminates when there is no discrepancy or when a further expansion

of the pool does not reduce the discrepancy.

We walk through the algorithm using the assignment matrix in Example 4, which

is reproduced in the table below. Recall that I = {1, 2, 3, 4, 5} and students 1 and 2

are twins. Also recall that S = {A,B,C} with capacities qA = qB = 2 and qC = 1.

The table also lists all feasible deterministic assignments that collocate the twins.

i Preference x̄iA x̄iB x̄iC Ztl Ztc Ztr Zbl Zbc Zbr

1 A � B � C 2
5

3
5

0 A A A B B B

2 A � B � C 2
5

3
5

0 A A A B B B

3 A � C � B 2
5

4
15

1
3

B B C A A C

4 A � C � B 2
5

4
15

1
3

B C B A C A

5 A � C � B 2
5

4
15

1
3

C B B C A A
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Suppose our initial pool is Z1 = {Ztl, Zbl}.

In the first iteration, the master problem (MP1) searches for optimal weights

(wtl, wbl) that minimize the discrepancy between X1 = wtlZtl + wblZbl and X̄. We

use slack variables, (δ+
is, δ

−
is)i∈I, s∈S, to record the element-wise upward and downward

deviations of X1 from X̄. Because
∑

s∈S x̄is = 1 for all i ∈ I, it is sufficient to record

the discrepancy for only two schools out of three.

(MP1) min
w,δ+,δ−

∑
i∈I

∑
s∈{A,B}

(δ+
is + δ−is)

s.t. wtlztlis + wblzblis + δ+
is ≥ x̄is ∀i ∈ I, s ∈ {A,B}

wtlztlis + wblzblis − δ−is ≤ x̄is ∀i ∈ I, s ∈ {A,B}

wtl + wbl = 1

wtl, wbl ≥ 0

δ+
is, δ

−
is ≥ 0 ∀i ∈ I, s ∈ {A,B}

The solution to (MP1) is (wtl, wbl) =
(

2
5
, 3

5

)
.

Let (λ+
is, λ

−
is)i∈I,s∈{A,B} denote the shadow prices associated with the first two

sets of constraints. Of the ten constraints that keep track of upward deviations,

two of them have non-zero shadow prices: λ+
5A = λ+

5B = 1, which implies that

student 5 should be assigned to school A and B more often. Of the ten constraints

that keep track of downward deviations, four of them have non-zero shadow prices:

λ−3A = λ−4A = λ−3B = λ−4B = −1, which implies that students 3 and 4 should be

assigned to school A and B less often. In other words, if there were assignments

in Z1 that assign student 5 to school A or B and student 3 or 4 to school C, the

discrepancy between X1 and X̄ would have been smaller.
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Given this information, we search for an assignment that complements the current

pool Z1. Specifically, we solve the following subproblem:

(SP) max
z

∑
i∈I

∑
s∈{A,B}

(λ+
is + λ−is)zis

s.t.
∑
i∈I

zis ≤ qs ∀s ∈ S

∑
s∈S

zis = 1 ∀i ∈ I

z1s − z2s = 0 ∀s ∈ S

zis ∈ {0, 1} ∀i ∈ I, s ∈ S

There are multiple optimal solutions to (SP). Suppose we find Ztc. We update the

pool accordingly: Z2 = Z1 ∪ {Ztc} = {Ztl, Zbl, Ztc}.

In the second iteration, the master problem (MP2) searches for the optimal

weights on these three deterministic assignments:

(MP2) min
w,δ+,δ−

∑
i∈I

∑
s∈{A,B}

(δ+
is + δ−is)

s.t. wtlztlis + wblzblis + wtcztcis + δ+
is ≥ x̄is ∀i ∈ I, s ∈ {A,B}

wtlztlis + wblzblis + wtcztcis − δ−is ≤ x̄is ∀i ∈ I, s ∈ {A,B}

wtl + wbl + wtc = 1

wtl, wbl, wtc ≥ 0

δ+
is, δ

−
is ≥ 0 ∀i ∈ I, s ∈ {A,B}

The solution to (MP2) is (wtl, wbl, wtc) =
(

2
15
, 3

5
, 4

15

)
.
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Guided by the shadow prices, the subproblem finds Ztr and it is added to the

pool. Continuing similarly, Zbc and Zbr are subsequently found and added to the

pool. At the end of the fourth iteration, the pool Z5 contains all six deterministic

assignments, and in the fifth iteration, the master problem finds the decomposition

X5 = 2
15
Ztl + 2

15
Ztc + 2

15
Ztr + 1

5
Zbl + 1

5
Zbc + 1

5
Zbr.

The corresponding shadow prices are all zero, indicating that X5 = X̄. Although

Z5 = ZC in this example, the final pool is usually much smaller than the set of all

permissible deterministic assignments.

In general, given an arbitrary set C of constraints, stochastic assignment X̄ ∈ X C

can be decomposed into a lottery over assignments in ZC as follows. We start with

an initial pool Z1 ⊂ ZC of deterministic assignments. In iteration k ≥ 1, the master

problem searches for a convex combination of the assignments in Zk that minimizes

the discrepancy between the resulting stochastic assignment and X̄:

min
w,δ+,δ−

∑
i∈I

∑
s∈S

(δ+
is + δ−is)

s.t.
∑
Z∈Zk

wZzis + δ+
is ≥ x̄is ∀i ∈ I, s ∈ S

∑
Z∈Zk

wZzis − δ−is ≤ x̄is ∀i ∈ I, s ∈ S

∑
Z∈Zk

wZ = 1

wZ ≥ 0 ∀Z ∈ Zk

δ+
is, δ

−
is ≥ 0 ∀i ∈ I, s ∈ S
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Using the information contained in the shadow prices (λ+
is, λ

−
is)i∈I, s∈S, the sub-

problem identifies a deterministic assignment that helps reduce the discrepancy:

Z∗ ∈ arg max
Z∈ZC

∑
i∈I

∑
s∈S

(λ+
is + λ−is)zis

We update the pool Zk+1 = Zk ∪ Z∗ and proceeds to the next iteration. The

algorithm terminates when all shadow prices from the master problem are zero (i.e.,

a decomposition is found) or when the subproblem returns one of the deterministic

assignments that are already in the pool (i.e., decomposition is infeasible).

Although we have not tested this algorithm using real data, algorithms based on

Column Generation generally run efficiently. We reiterate that our algorithm can

be used in conjunction with any stochastic assignment mechanism without altering

the assignment mechanism. This provides opportunities to improve welfare without

any cost. Thus, stochastic assignment mechanisms such as the PS should be given

serious consideration as an alternative to lottery mechanisms such as the RSD.

2.6 Conclusion

In school-choice programs, it is often desirable to assign groups of students, such

as twins, to the same school. In this paper, we take a stochastic assignment as

given, and attempt to achieve as much collocation as possible when decomposing the

stochastic assignment into a lottery over deterministic assignments.

With hard capacity constraints, stochastic assignments cannot always be decom-

posed respecting twin collocation. However, twin collocation can be guaranteed in a

decomposition if the capacity constraint can be relaxed by one seat at each school.
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This is true for any number of pairs of twins in the student body. Similarly, if we

are allowed to violate the capacity constraint by up to two seats at each school,

we can guarantee each student that they have a company of at least one peer from

their community at their assigned school, provided that the students in the same

community have the same stochastic assignment.

When a stochastic assignment can be decomposed respecting collocation of groups

of students, straightforward modifications of existing algorithms may fail to find a

decomposition. Therefore, we propose a new decomposition algorithm based on

Column Generation. The algorithm is versatile and can be used to accommodate a

wide range of constraints. A run-time comparison with Balbuzanov (2019) would be

an interesting topic for future research.

2.7 Appendix: Proofs

2.7.1 Proof of Proposition 4

Proposition 4. Suppose each set of multiples consists of at most k students. Then,

any stochastic assignment matrix in which each set of multiples has the identical

assignments can be decomposed into a lottery over deterministic assignments that

collocate the sets of multiples and violate the capacity constraint by at most k − 1

seats at each school.

Proof. Suppose we want to implement X = (xis)i∈I,s∈S. First, we partition students

into families of multiples and let each family select one representative. Let F denote

the set of representative students. Let F j be the set of representatives from the

families of j-multiples for j = 1, ..., k so that F =
⋃k
j=1 F

j.
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For j = 2, ..., k, from each family of j-multiples, we temporarily remove the j− 1

non-representative siblings. We then find a lottery decomposition of (xis)i∈F,s∈S, the

assignment matrix restricted to the representative students. Finally, we add back

the removed siblings to the school to which their representative siblings are assigned.

For each j ∈ {2, ..., k}, let rjs =
∑

i∈F j xis. We impose the following constraints:

xis ≥ 0 ∀i ∈ F, ∀s ∈ S (C1)∑
s∈S

xis = 1 ∀i ∈ F (C2)

∑
i∈F

xis ≤ qs −

⌊
k∑
j=2

(j − 1)rjs

⌋
∀s ∈ S (C3′)

k∑
`=j

∑
i∈F `

xis ≤

⌈
k∑
`=j

r`s

⌉
∀s ∈ S, j = 2, ..., k (C4)

Constraint (C3′) reserves seats for the removed siblings. Constraint (C4) ensures that

no school has a high concentration of representative students who have many siblings.

These constraints form a bi-hierarchy, and therefore, there is a decomposition.

It remains to show that we can add back the removed siblings without violating

the capacity constraint by more than k − 1 seats. At school s ∈ S, the greatest

number of extra seats are required when constraints (C4) are all binding. That is,

the multiples are maximally concentrated at school s when a deterministic assignment

Z is such that

∑
i∈F j

zis =

⌈
k∑
`=j

r`s

⌉
−

⌈
k∑

`=j+1

r`s

⌉
j = 2, ..., k − 1

∑
i∈Fk

zis =
⌈
rks
⌉
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In this case, the total number of seats demanded by the removed siblings is

QD =
k−1∑
j=2

(j − 1)

(⌈
k∑
`=j

r`s

⌉
−

⌈
k∑

`=j+1

r`s

⌉)
+ (k − 1)

⌈
rks
⌉
.

Letting Rj
s =

∑k
`=j r

`
s for j ∈ {2, ..., k} and Rk+1

s = 0, we can write the demand as

QD =
k∑
j=2

(j − 1)
(⌈
Rj
s

⌉
−
⌈
Rj+1
s

⌉)
.

The total supply of seats is the sum of the reserved seats and the extra k−1 seats

granted by the premise of the proposition. We want to show that the total supply

is at least as large as the maximum possible demand. To this end, first re-write the

number of reserved seats as⌊
k∑
j=2

(j − 1)rjs

⌋
=

⌊
k∑
j=2

k∑
`=j

r`s

⌋
≥

k∑
j=2

⌊
Rj
s

⌋
=

k−1∑
j=2

⌊
Rj
s

⌋
+
⌊
rks
⌋
.

Letting σjs = bRj
sc − brjsc − bRj+1

s c for j ∈ {2, ..., k − 1}, we can write

⌊
Rj
s

⌋
=
⌊
rjs
⌋

+ σjs +
⌊
Rj+1
s

⌋
=

k−1∑
`=j

(⌊
r`s
⌋

+ σ`s
)

+
⌊
rks
⌋
.

Thus, the total number of reserved seats can be written

k−1∑
j=2

{
k−1∑
`=j

(⌊
r`s
⌋

+ σ`s
)

+
⌊
rks
⌋}

+
⌊
rks
⌋

=
k−1∑
j=2

(j − 1)
(⌊
rjs
⌋

+ σjs
)

+ (k − 1)
⌊
rks
⌋
.

Combining this with the extra k− 1 seats granted by the premise of the proposition,
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we obtain the total supply

QS =
k−1∑
j=2

(j − 1)
(⌊
r`s
⌋

+ σ`s
)

+ (k − 1)
(⌊
rks
⌋

+ 1
)

=
k∑
j=2

(j − 1)
(⌊
rjs
⌋

+ σjs
)
,

where σjs = bRj
sc − brjsc − bRj+1

s c for j ∈ {2, ..., k − 1} and σks = 1.

We want to show that QD ≤ QS, or equivalently,

k∑
j=2

(j − 1)
(⌈
Rj
s

⌉
−
⌈
Rj+1
s

⌉)
≤

k∑
j=2

(j − 1)
(⌊
rjs
⌋

+ σjs
)
.

We keep track of excess demand by defining

γjs =
(⌈
Rj
s

⌉
−
⌈
Rj+1
s

⌉)
−
(⌊
rjs
⌋

+ σjs
)
, j ∈ {2, ..., k}.

Intuitively, the inequality QD ≤ QS holds if each excess demand γj
′
s > 0 for some

j′ ∈ {2, ..., k− 1} is canceled by excess supply γj
∗
s < 0 for some j∗ > j′. To this end,

we first show that γjs = 0, 1, or −1 for each j ∈ {2, ..., k − 1}.

For any j ∈ {2, ..., k − 1}, noting that Rj
s = rjs +Rj+1

s , we have

either
⌈
Rj
s

⌉
=
⌈
rjs
⌉

+
⌈
Rj+1
s

⌉
− 1 or

⌈
Rj
s

⌉
=
⌈
rjs
⌉

+
⌈
Rj+1
s

⌉
.

Thus, dRj
se − dRj+1

s e is either drjse − 1 or drjse. We also have

either
⌊
Rj
s

⌋
=
⌊
rjs
⌋

+
⌊
Rj+1
s

⌋
or

⌊
Rj
s

⌋
=
⌊
rjs
⌋

+
⌊
Rj+1
s

⌋
+ 1.

Recalling that σjs = bRj
sc − brjsc − bRj+1

s c, it follows that σj is either 0 or 1.
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Suppose dRj
se = drjse+dRj+1

s e−1. Then rjs cannot be integral, so drjse = brjsc+1.

Hence, γjs = (drjse − 1)−
(⌊
r`s
⌋

+ σjs
)

= −σjs, and therefore, γjs is either 0 or −1.

Suppose dRj
se = drjse + dRj+1

s e. There are three possibilities: (i) rjs is integral;

(ii) rjs is non-integral and Rj+1
s is non-integral; and (iii) rjs is non-integral and Rj+1

s is

integral. In case (i), we have bRj
sc = brjsc+bRj+1

s c, and therefore, γjs = drjse−brjsc =

0. In case (ii), Rj
s must be non-integral as well because otherwise dRj

se = drjse+dRj+1
s e

does not hold. Then we have dRj
se = bRj

sc + 1, drjse = brjsc + 1, and dRj+1
s e =

bRj+1
s c+1, and therefore, bRj

sc = brjsc+bRj+1
s c+1. Thus, γjs = drjse−(brjsc+ 1) = 0.

In case (iii), we have bRj
sc = brjsc+ bRj+1

s c, and therefore, γjs = drjse − brjsc = 1.

We have shown that γjs = 0, 1, or −1 for each j ∈ {2, ..., k − 1}. As to γks , using

the definitions Rk+1
s = 0 and σks = 1, we obtain γks = drjse − (brjsc+ 1). Therefore,

γks = 0 if rks is non-integral and γks = −1 if rks is integral.

We claim that each excess demand is promptly canceled by excess supply, i.e.,

for each j′ ∈ {2, ..., k − 1} with γj
′
s = 1, there is j∗ ∈ {j′ + 1, ..., k} such that γjs = 0

for all j ∈ {j′ + 1, ..., j∗ − 1} and γj
∗
s = −1. If this claim is true, excess demand is

more than canceled and we have QD ≤ QS.

It remains to show that the claim is true. Consider any j′ ∈ {2, ..., k−1} such that

γj
′
s = 1. This is possible only if Rj′+1

s is integral. If rjs is integral for all subsequent

j ∈ {j′ + 1, ..., k}, then γjs = 0 for all j ∈ {j′ + 1, k − 1} and γks = −1, so we

are done. Otherwise, let j∗ ∈ {j′ + 1, ..., k} be the smallest index for which rj
∗
s is

non-integral. Then, we have γjs = 0 for all j ∈ {j′ + 1, ..., j∗ − 1}. Furthermore,

Rj∗
s = Rj′+1

s −
∑j∗−1

j=j′+1 r
j
s, so Rj∗

s is integral. It follows that Rj∗+1
s = Rj∗

s − rj
∗
s is non-

integral (and therefore, j∗ cannot be k). Thus, we have
⌈
Rj∗
s

⌉
=
⌈
rj
∗
s

⌉
+
⌈
Rj∗+1
s

⌉
− 1

and
⌊
Rj∗
s

⌋
=
⌊
rj
∗
s

⌋
+
⌊
Rj∗+1
s

⌋
+ 1, which implies γj

∗
s = −1.
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CHAPTER 3

Rank-Egalitarian Assignments

3.1 Introduction

Resource allocation programs such as school-choice programs often use rank distribu-

tion as a performance measure. For example, Newark Enrolls, a public school-choice

program in New Jersey, reports “70.2% of rising 9th grade students gained access to

one of their top 3 choices” during the 2018–2019 matching cycle.1 Teach for America,

a nonprofit organization that sends college graduates to at-risk schools as teachers,

summarizes their placement as follows: 85% of applicants in 2018 were placed in one

of their top three regional choices.2 National Resident Matching Program, which

assigns medical school students to hospitals for postgraduate training, notes “The

percentage of all U.S. seniors who matched to their first-choice programs was 47.1 %,

the lowest on record; however, almost three-quarters (72.5%) of U.S. seniors matched

to one of their top three choices.”3 Despite its wide use as a performance measure,

rank distribution is rarely considered in the design of resource-allocation algorithms.

1https://www.nps.k12.nj.us/mdocs-posts/ues_match-pdf/

2https://www.teachforamerica.org/how-to-join/placement

3https://mk0nrmpcikgb8jxyd19h.kinstacdn.com/wp-content/uploads/2019/04/

NRMP-Results-and-Data-2019_04112019_final.pdf
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In this paper, we propose a resource-allocation algorithm that optimizes the rank

distribution while maintaining fairness. There are two main elements. The first is

rank values, which are similar to points in Borda counts in elections. For example,

the value of matching an agent to their first, second, and third choice may be 10, 9,

and 8, respectively. Unlike Borda counts, the rank values need not decrease linearly

as one goes down a preference list. For example, if there is only a small difference

in values of receiving one’s second and third choice, the rank values can be set to

10, 7, and 6 for the first, second, and third choice, respectively. Rank-value based

allocation algorithm is first proposed in Featherstone (2020). One novel feature of

our algorithm is that it can accommodate multiple sets of rank values should there

be disagreement among social planners regarding the right rank values.4

The second element is the maximin principle. Rawl’s Difference Principle (Rawls,

1971) states that “Social and economic inequalities are to be arranged so that they

are to be of the greatest benefit to the least-advantaged members of society.”5 In ap-

plications such as school-choice programs and kidney-exchange programs, the match-

ing outcome has significant and prolonged effects on the lives of individuals, and we

believe the maximin principle is the most suitable notion of fairness.6

4The idea of examining multiple instances of rank values has some similarities to Doğan et al.
(2018), in which the authors define social-welfare efficiency based on the ex-ante efficiency dom-
inance relation over the set of all cardinal-utility profiles consistent with the ordinal preferences.
Our framework allows social planners to specify the set of relevant or important rank values instead
of defaulting to the set of all permissible rank values.

5To implement the maximin principle, we must assume inter-agent comparability of welfare.
Whether such comparison is possible or should be made is discussed in detail in, for example,
Elster and Roemer (1993).

6In other applications, envy-freeness may be more relevant. An assignment is envy-free if every
agent feels their allocation is at least as good as the allocation of any other agent. As noted in
Brams and King (2005), maximin and envy-freeness are incompatible.
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There are a few algorithms based on the maximin principle in the matching lit-

erature. Bogomolnaia and Moulin (2004) analyzes the marriage problem where each

potential partner is either acceptable or unacceptable. They propose an egalitarian

algorithm that maximizes, in the leximin order, the probability of being matched

to an acceptable partner. In the context of pairwise kidney exchange, Roth et al.

(2005) proposes an algorithm that generates a Lorenz-dominant assignment, where

the utility of an agent is 1 if he receives a compatible kidney and 0 if he does not.

These algorithms are special cases of rank-value based algorithms tailored for binary

preferences. We extend the allocation algorithm to a general preference domain.

To the best of our knowledge, the current paper is the first to combine general

rank-value based algorithms with the maximin principle in the context of probabilis-

tic assignment.7 We make three contributions to the existing literature. First, we

propose a new concept of rank-fairness. An assignment is said to be rank-egalitarian

undominated (REU) over a set of instances of rank values if there is no other as-

signment that guarantees weakly larger expected rank values to the worst-off agents

at each instance of rank values. Second, we show that each REU assignment is an

optimal solution to a linear programming problem in which a weighted sum of the

minimum expected rank values is maximized. Conversely, optimal solutions to such

linear programming problems are REU. Third, we propose algorithms to generate

subsets of REU assignments that are practically important.

This paper is organized as follows. In Section 3.2, we define the allocation problem

and introduce notation. We provide an illustrative example in Section 3.3 to highlight

7In the fields of computer science and operations research—where the objects of interests are
deterministic rules—the complexity of the rank-value based maximin problems have been studied.
See, for example, Baumeister et al. (2017).
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the main idea, and formally define the REU assignments in Section 3.4. We then

show the connection between REU assignments and linear programming problems in

Section 3.5 and propose an algorithm to generate REU assignments in Section 3.6,

followed by a conclusion in Section 3.7.

3.2 Preliminary

Let I = {1, ..., n} denote the set of agents and O = {o1, ..., om} the set of object

types. A generic agent is denoted by i and a generic object by o. Let qo denote the

number of copies of object type o ∈ O. We assume
∑

o∈O qo ≥ n. This is without loss

of generality because we can always expand the set O to include a null object with

n copies. Agents have unit demands and strict preferences, �i, over object types.

When it is clear from the context, we drop the agent subscript and simply write �.

Let P denote the set of preference rankings and PI the set of preference profiles.

Let xio denote the probability that agent i receives object o. A probabilistic

assignment x = [xio]i∈I,o∈O is feasible if the following three conditions are satisfied:

xio ≥ 0 ∀i ∈ I, o ∈ O (C1)∑
o∈O

xio = 1 ∀i ∈ I (C2)

∑
i∈I

xio ≤ qo ∀o ∈ O (C3)

We denote the set of feasible assignments by X = {x ∈ Rnm | (C1), (C2), (C3)}. An

ordinal assignment algorithm is a mapping from the set of preference profiles to the

set of feasible assignments.
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The algorithms we introduce shortly select assignments based on rank values. An

instance8 of rank values v = (v1, ..., vm) is a vector of length m such that v1 ≥ v2 ≥

· · · ≥ vm, where rth element, vr, indicates the value of assigning an object ranked rth

by an agent. Rank values can be interpreted as utility of the social planner or proxy

for utilities of agents. Let V = {v ∈ Rm | 1 = v1 ≥ · · · ≥ vm = 0} denote the set of

all permissible instances of rank values. The normalization, v1 = 1 and vm = 0, is

without loss of generality, and the results in this paper do not depend on them.

Given a preference profile �= (�i)i∈I ∈ PI , let ri(o;�) denote the rank of

object o according to the preference ranking of agent i. For readability, we suppress

the dependence on the preference profile and simply write ri(o). For example, if

A �1 B �1 C, we have r1(A) = 1, r1(B) = 2, and r1(C) = 3, and the corresponding

rank values for A, B, and C can be written vr1(A), vr1(B), and vr1(C).

Given a preference profile �∈ PI , an assignment x ∈ X, and an instance of rank

values v ∈ V , the Expected Rank Value for agent i ∈ I is defined as

Γi(x, v;�) =
∑
o∈O

vri(o)xio

and the Minimum Expected Rank Value over the set of agents is defined as

Γ(x, v;�) = min
i∈I

Γi(x, v;�).

For readability, we suppress the dependence on the preference profile and simply

write Γi(x, v) and Γ(x, v).

8By an instance, we mean a tuple. It should not be understood as an occurrence. As we discuss
later, social planners select rank values. To avoid wordiness, we may refer to an instance of rank
values as simply rank values when the distinction is unimportant.
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3.3 Motivating Example

In this section, we compare two rank-value based allocations: Utilitarian Rank-Value

Allocation and Egalitarian Rank-Value Allocation. We show that the Egalitarian

allocation is fairer than the Utilitarian allocation, where the notion of fairness is

determined by the selection of rank values. We then generalize the Egalitarian Rank-

Value Allocation to accommodate various beliefs held by a group of decision makers.

The purpose of this section is to illustrate the main idea of the paper using an

example. Formal definitions are deferred to Section 3.4.

3.3.1 Comparison of Rank-Value Allocations

The first allocation, the Utilitarian Rank-Value Allocation, maximizes the sum of

the expected rank values.9 Given an instance of rank values v ∈ V , the algorithm

solves the Utilitarian Rank-Value Maximization Problem:

(URVMP) max
x∈X

∑
i∈I

Γi(x, v)

The second allocation, the Egalitarian Rank-Value Allocation, aims to help the worst-

off agent as much as possible by raising the lower bound on the expected rank value.

Specifically, it solves the Egalitarian Rank-Value Maximization Problem:

(ERVMP) max
x∈X

min
i∈I

Γi(x, v)

We illustrate the difference between the two allocations using an example.

9Featherstone (2020) introduces the algorithm as the Rank-Value Mechanism.
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Example 1. Consider a problem of assigning four objects (A, B, C, and D) to four

agents (1, 2, 3, and 4) with the following preference profile.

Profile I

Agent 1: A � B � C � D

Agent 2: A � C � B � D

Agent 3: C � B � A � D

Agent 4: B � A � D � C

The central question is what object should be assigned to agent 4. On one hand,

agent 4 should receive object B because he is the only agent who top-ranks object

B. On the other hand, agent 4 should receive object D because he is the only agent

who does not bottom-rank object D. The assignments for two different choices of

rank values are shown in the table below.

Rank
Value

Agent
Utilitarian Egalitarian

A B C D A B C D

Agent 1 1− α 0 0 α 15
31

12
31

0 4
31

vconvex = Agent 2 α 0 0 1− α 16
31

0 10
31

5
31(

1, 1
2
, 1

6
, 0
)

Agent 3 0 0 1 0 0 0 21
31

10
31

Agent 4 0 1 0 0 0 19
31

0 12
31

Agent 1 0 1 0 0 11
27

12
27

0 4
27

vconcave = Agent 2 1 0 0 0 16
27

0 6
27

5
27(

1, 5
6
, 1

2
, 0
)

Agent 3 0 0 1 0 0 0 21
27

6
27

Agent 4 0 0 0 1 0 15
27

0 12
27

α is an arbitrary constant such that 0 ≤ α ≤ 1.
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For the convex rank values, vconvex =
(
1, 1

2
, 1

6
, 0
)
, the Utilitarian allocation priori-

tizes giving the top-ranked objects to as many agents as possible, which may involve

unfair treatment of agents 1 and 2. In contrast, the Egalitarian allocation ensures

that each agent has a fair chance of receiving their more-preferred objects.

For the concave rank values, vconcave =
(
1, 5

6
, 1

2
, 0
)
, the Utilitarian allocation pri-

oritizes avoiding assigning the bottom-ranked objects to agents, and therefore, agent

4 is forced to take object D. In contrast, the Egalitarian allocation ensures no par-

ticular agent receives a large share of their less-preferred objects. In this sense, the

Egalitarian allocation treats agents more fairly than the Utilitarian allocation.

3.3.2 Selection of Rank Values

As demonstrated in Example 1, different choices of rank values lead to assignments

that emphasize different aspects of rank fairness. The question is then what is the

right instance of rank values to be used in the algorithm? One possibility is to elicit

cardinal utilities from agents and compute a “representative” utility.10 This may

be reasonable if the agents have similar cardinal utilities, but accurately eliciting

cardinal utilities is notoriously difficult, if at all possible. Alternatively, we may let

the social planner choose the rank values based on his personal belief about what is

best for the society. However, it seems unreasonable to ask a single individual to bear

the burden of identifying the right rank values, which dictate who lift themselves out

of poverty through education or who extend their lives through organ transplantation.

10This is the approach used in Bronfman et al. (2015). They conducted a survey to measure
the cardinal utilities and estimated the rank values vr = (m+ 1− r)2, r = 1, ...,m, where r is the
rank and m is the number of object types. Using the Random Serial Dictatorship assignment as a
starting point, they implement trading cycles that improve the expected rank values.
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Instead, we generalize the rank-value algorithms to allow for simultaneous consid-

eration of multiple instances of rank values. Consider a group of three social planners

faced with the assignment problem in Example 1. Suppose the first social planner

insists that each agent be given the maximum chance of receiving their top-ranked

object, and suggests using the rank values, v1 = (1, 0, 0, 0). If we follow his recom-

mendation, we can guarantee each agent 1
2

probability of receiving their top-ranked

object. The second social planner suggests v2 = (1, 1, 0, 0), which guarantees each

agent 3
4

probability of receiving one of their two top-ranked objects. The third social

planner suggests v3 = (1, 1, 1, 0) so that no one receives their bottom-ranked object.

To enable a simultaneous consideration of multiple instances of rank values, we

modify (ERVMP) as follows:

max
x∈X

λ1Γ(x, v1) + λ2Γ(x, v2) + λ3Γ(x, v3),

where λ1, λ2, and λ3 are non-negative weights that reflect the importance of each

instance of rank values (they could be also influenced by the strength of belief or

power dynamics of the social planners). To illustrate how the weights affect the

solution, we fix λ1 = λ2 = 1 and vary λ3. The resulting assignments are shown in

the table below.

Agent Preference
λ3 ∈ [1, 3) λ3 ∈ (3, 6) λ3 ∈ (6,∞)

A B C D A B C D A B C D

Agent 1 A � B � C � D 1
2

1
4

0 1
4

1
2

1
3

0 1
6

1
2

1
2

0 0

Agent 2 A � C � B � D 1
2

0 1
4

1
4

1
2

0 1
3

1
6

1
2

0 1
2

0

Agent 3 C � B � A � D 0 0 3
4

1
4

0 1
6

2
3

1
6

0 1
2

1
2

0

Agent 4 B � A � D � C 0 3
4

0 1
4

0 1
2

0 1
2

0 0 0 1

105



When λ3 = 3 or 6, any convex combination of the adjacent assignments also

solves the maximization problem. The three assignments in the table and their con-

vex combinations define the Pareto-frontier of (Γ(x, v1),Γ(x, v2),Γ(x, v3)). They are

maximally egalitarian in the sense that no assignment can unambiguously improve

the expected rank values of the worst-off agents.

Note that maximizing 1
3
Γ(x, v1)+ 1

3
Γ(x, v2)+ 1

3
Γ(x, v3) is different from maximiz-

ing Γ(x, v), where v = 1
3
(v1 +v2 +v3) =

(
1, 2

3
, 1

3
, 0
)
. Indeed, the allocation associated

with the latter is dominated by the allocation associated with the former in regard

to (Γ(x, v1),Γ(x, v2),Γ(x, v3)) as shown in the table below.

Agent Preference
maxx

1
3

∑3
j=1 Γ(x, vj) maxx Γ(x, 1

3

∑3
j=1 v

j)

A B C D A B C D

Agent 1 A � B � C � D 1
2

1
4

0 1
4

10
22

9
22

0 3
22

Agent 2 A � C � B � D 1
2

0 1
4

1
4

12
22

0 6
22

4
22

Agent 3 C � B � A � D 0 0 3
4

1
4

0 0 16
22

6
22

Agent 4 B � A � D � C 0 3
4

0 1
4

0 13
22

0 9
22

3.4 Rank-Egalitarian Dominance

In this section, we formally define the dominance relationship between assignments

based on egalitarian rank-fairness. Let Ṽ ⊆ V be the set of relevant or important

rank values. The set Ṽ can be a singleton or the set of all permissible rank values,

i.e., Ṽ = V = {v ∈ Rm | 1 = v1 ≥ · · · ≥ vm = 0}. In the example above with three

social planners, Ṽ = {v1, v2, v3}. For an arbitrary choice of Ṽ , we have the following

definitions.
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Definition 1. Fix a preference profile. Given a set Ṽ ⊆ V of rank values and

assignments x, x′ ∈ X, we say x′ rank-egalitarian (RE) dominates x over Ṽ if

Γ(x′, v) ≥ Γ(x, v) for all v ∈ Ṽ and Γ(x′, v′) > Γ(x, v′) for at least one v′ ∈ Ṽ .

Definition 2. Fix a preference profile. Given a set Ṽ ⊆ V of rank values, we say

an assignment x ∈ X is rank-egalitarian undominated (REU) over Ṽ if there

does not exist another assignment x′ ∈ X that RE-dominates x over Ṽ .

We denote the set of all REU assignments over Ṽ by XREU(Ṽ ). Because Γ(x, v)

depends on the preference profile, so does the definition of REU over Ṽ . We write

XREU(Ṽ ) instead of XREU(Ṽ ;�) for readability, but readers should keep in mind

that XREU(Ṽ ) is defined for each preference profile.

The concept of REU is similar to that of Pareto dominance. Pareto dominance

concerns the trade-off among agents, while the REU deals with the trade-off across

possible instances of rank values. If an assignment is REU over Ṽ , it is impossible

to make the worst-off agents better off at some v ∈ Ṽ without making the worst-off

agents worse off at another v′ ∈ Ṽ . Note that the set of worst-off agents according

to v is generally different from the set of worst-off agents according to v′. The REU

assignments are maximally fair in the sense that there is no other assignment that

unambiguously makes worst-off agents better off.

3.4.1 Efficiency

We first show that the REU assignments are not necessarily efficient. Consider Profile

I in Example 1, reproduced in the table below. Let Ṽ = {v3} = {(1, 1, 1, 0)}. Then,

any allocation in which agent 4 receives object D with certainty is REU over Ṽ . In

particular, the Inefficient assignment in the table is REU over Ṽ .
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Agent Profile I
Efficient Inefficient

A B C D A B C D

Agent 1 A � B � C � D 0 1 0 0 0 0 1 0

Agent 2 A � C � B � D 1 0 0 0 0 1 0 0

Agent 3 C � B � A � D 0 0 1 0 1 0 0 0

Agent 4 B � A � D � C 0 0 0 1 0 0 0 1

Although the Inefficient assignment is Pareto efficient in terms of Γi(·, v3), it is

inefficient in terms of Γi(·, v1) and Γi(·, v2). Because (ERVMP) concerns only the

expected rank values of the worst-off agents, it allows an inefficient allocation of

objects among better-off agents. In other words, it is oblivious to the allocation of

A, B, and C among agents 1, 2, and 3.

To avoid this kind of inefficiency, we impose the stochastic-dominance efficiency11,

and express it in terms of rank values. To this end, we first list all the extreme points

of V = {v ∈ Rm | 1 = v1 ≥ · · · ≥ vm = 0}, the set of all permissible rank values.

Let vj ∈ V denote the vector of j ones followed by m − j zeros. Formally, vj =(
1{r≤j}

)
r=1,...,m

for j = 1, ...,m − 1. We call these rank values dichotomous because

one possible interpretation is that each object is either acceptable or unacceptable.

Let V D = {vj | j = 1, ...,m− 1} denote the set of all dichotomous rank values.

Definition 3. We say an assignment x ∈ X is stochastic-dominance (sd) Pareto

efficient if there does not exist another assignment x′ ∈ X such that (i) for each

agent i ∈ I, we have Γi(x
′, v) ≥ Γi(x, v) for all v ∈ V D; and (ii) there is at least one

agent i′ ∈ I such that Γi′(x
′, v′) > Γi′(x, v

′) for some v′ ∈ V D.

11Bogomolnaia and Moulin (2001) introduced the concept and termed it ordinal efficiency.
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Note that we have an equivalent definition when V D is replaced by V because

Γi(x, v) is linear in v and V D is the set of extreme points of V .

Definition 4. Fix a preference profile. Given a set Ṽ ⊆ V of rank values, we say

an assignment x ∈ X is rank-egalitarian undominated* (REU*) over Ṽ if x is

REU over Ṽ and sd-Pareto efficient.

We denote the set of all REU* assignments over Ṽ by XREU∗(Ṽ ). Obviously,

we have XREU∗(Ṽ ) ⊆ XREU(Ṽ ) for any Ṽ ⊆ V . We briefly discuss (non-)relation

between XREU∗(Ṽ ) for various choices of Ṽ in Section 3.5.2.

3.4.2 Incentive

The following example demonstrates that a mechanism that always maps to a REU

assignment cannot be strategy-proof.

Example 2. Consider Profile II and Profile II′ in the table below. Given any v2 ∈

(0, 1), the assignment in the table, where α = 1
2−v22

and β = 1−v2
2−v22

, is uniquely REU

over Ṽ = {(1, v2, 0)} for each profile.

Agent Profile II A B C Profile II′ A B C

Agent 1 A � B � C 1
2

1
2

0 A � B � C α β 1− α− β

Agent 2 A � C � B 1
2

0 1
2

A � C � B 1− α 0 α

Agent 3 B � C � A 0 1
2

1
2

B � A � C 0 1− β β

Under Profile II, agent 3 can first-order stochastically improve his allocation by

misreporting B � A � C to induce Profile II′. Therefore, ensuring REU assignments

over Ṽ necessarily leads to a violation of strategy-proofness.

109



3.5 Necessary and Sufficient Conditions for REU

We now show a connection between the set of REU assignments and the set of

optimal solutions to a linear programming problem which maximizes the weighted

sum of the minimum expected rank values. We first focus our attention on finite

sets, V̈ ⊆ V , of rank values. We use the symbol V̈ instead of Ṽ to emphasize that

the set is a collection of finitely many instances of rank values.

Theorem 1. Fix a preference profile. Let a finite set V̈ ⊆ V of rank values be

given. If x ∈ X is an optimal solution to the Weighted Egalitarian Rank-Value

Maximization Problem

(WERVMP) max
x∈X

∑
v∈V̈

λvΓ(x, v)

for some set of strictly positive weights (λv)v∈V̈ , then x ∈ XREU(V̈ ). Furthermore,

if x is a unique optimal solution to (WERVMP), then x ∈ XREU∗(V̈ ). Conversely,

if x ∈ XREU(V̈ ), then x is an optimal solution to (WERVMP) for some set of non-

negative weights (λv)v∈V̈ , not all zero.

The relation between XREU(Ṽ ) and (WERVMP) is not one-to-one: One REU

assignment can be an optimal solution to multiple (WERVMP), and one (WERVMP)

can have multiple optimal solutions that are REU. For example, in Section 3.3.2, we

show that the sets of weights, λ1 = λ2 = 1 and λ3 ∈ [1, 3), produce the same solution,

and when λ3 = 3, there are multiple optimal solutions to (WERVMP).

We prove Theorem 1 using two lemmas. Lemma 1 establishes the convexity of

the set of attainable (Γ(x, v))v∈V̈ and Lemma 2 connects the Separating Hyperplane

Theorem to the optimality of a solution to a linear programming problem.

110



Lemma 1. Let a finite set V̈ ⊆ V of rank values be given. The set of attainable

vectors of minimum expected rank values is convex. That is,

U =
{
u ∈ R|V̈ |

∣∣∣ u ≤ (Γ(x, v))v∈V̈ for some x ∈ X
}

is convex.

Proof. Consider any u, u′ ∈ U . By definition, there is x, x′ ∈ X such that u ≤

(Γ(x, v))v∈V̈ and u′ ≤ (Γ(x′, v))v∈V̈ . Then, for any α ∈ (0, 1), we have

αu+ (1− α)u′ ≤ α(Γ(x, v))v∈V̈ + (1− α)(Γ(x′, v))v∈V̈

= α

(
min
i∈I

Γi(x, v)

)
v∈V̈

+ (1− α)

(
min
i∈I

Γi(x
′, v)

)
v∈V̈

≤
(

min
i∈I
{αΓi(x, v) + (1− α)Γi(x

′, v)}
)
v∈V̈

=

(
min
i∈I

Γi(αx+ (1− α)x′, v)

)
v∈V̈

= (Γ(αx+ (1− α)x′, v))v∈V̈

The second to the last equality holds because the expected rank value is linear in x.

Because X is convex, αx+ (1− α)x′ ∈ X, and therefore, αu+ (1− α)u′ ∈ U .

Lemma 2. Let a finite set V̈ ⊆ V of rank values be given. Given an assignment

x ∈ X, if the sets,

U =
{
u ∈ R|V̈ |

∣∣∣ u ≤ (Γ(x, v))v∈V̈ for some x ∈ X
}

and

U∗ =
{
u ∈ R|V̈ |

∣∣∣ u > (Γ(x, v))v∈V̈

}
,

are disjoint, then x is an optimal solution to (WERVMP) for some set of non-negative

weights (λv)v∈V̈ , not all zero.
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Proof. Suppose U and U∗ are disjoint for some assignment x ∈ X. We construct the

set of non-negative weights (λv)v∈V̈ for which x solves (WERVMP).

By Lemma 1, U is convex. Because U∗ is an open hyper-rectangle, it is convex.

Then, by the Separating Hyperplane Theorem, there exists a non-zero vector a ∈ R|V̈ |

and a constant b ∈ R such that a · u ≤ b for all u ∈ U and a · u > b for all u ∈ U∗.

We claim that each element of a is non-negative. To see this, suppose aj < 0 for

some j ∈ {1, ..., |V̈ |}. Take an arbitrary u ∈ U∗, and replace the jth element of u by

uj + (2a · u − b)/(−aj) and call this new vector u′. Clearly, u′ ∈ U∗. Furthermore,

a ·u′ = a ·u+aj(2a ·u− b)/(−aj) = −(a ·u− b) < 0, violating the inequality implied

by the Separating Hyperplane Theorem. Therefore, a ≥ 0.

Now, let u = (Γ(x, v))v∈V̈ . We claim that a·u = b. Consider a sequence of vectors

uk = u+ ( 1
k
, ..., 1

k
) for k ∈ N. Because uk ∈ U∗, we have a · uk > b. Take k to infinity

and we obtain a · u ≥ b. But u ∈ U , so a · u ≤ b. Thus, a · u = b. Therefore, x solves

(WERVMP) for (λv)v∈V̈ = a.

If the set U of attainable vectors of minimum rank values is strictly convex, then

(WERVMP) has a unique solution, and the solution lies on the Pareto-frontier of U .

However, if the boundary of U is linear, there are multiple solutions to (WERVMP),

and some of the solutions may not lie on the Pareto-frontier of U . Therefore, the

efficiency cannot be guaranteed without the uniqueness. We now prove Theorem 1.

Proof of Theorem 1. Given a finite set V̈ ⊆ V , suppose x ∈ X solves (WERVMP) for

some set of strictly positive weights (λv)v∈V̈ . Suppose, toward a contradiction, that

x /∈ XREU(V̈ ). Then there is x′ ∈ X such that Γ(x′, v) ≥ Γ(x, v) for all v ∈ V̈ and

Γ(x′, v′) > Γ(x, v′) for some v′ ∈ V̈ . Then, because the weights, (λv)v∈V̈ , are strictly
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positive, we have
∑

v∈V̈ λ
vΓv(x′, v) >

∑
v∈V̈ λ

vΓv(x, v), contradicting the assumption

that x is an optimal solution to (WERVMP). Therefore, x ∈ XREU(V̈ ).

Now, suppose x ∈ X is a unique optimal solution to (WERVMP). If x /∈

XREU∗(V̈ ), then x is sd-Pareto inefficient and there is another assignment x′ ∈ X

such that Γi(x
′, v) ≥ Γi(x, v) for all i ∈ I for all v ∈ V . It follows that Γ(x′, v) ≥

Γ(x, v) for all v ∈ V̈ because V̈ ⊆ V . But then
∑

v∈V̈ λ
vΓv(x′, v) ≥

∑
v∈V̈ λ

vΓv(x, v),

contradicting the assumption that x is the unique optimal solution to (WERVMP).

Therefore, the unique maximizer x must be REU* over Ṽ .

Conversely, suppose x ∈ XREU(V̈ ). Let

U =
{
u ∈ R|V̈ |

∣∣∣ u ≤ (Γ(x, v))v∈V̈ for some x ∈ X
}

and

U∗ =
{
u ∈ R|V̈ |

∣∣∣ u > (Γ(x, v))v∈V̈

}
.

The sets U and U∗ are disjoint because if there is u′ ∈ U ∩ U∗ then there must be

x′ ∈ X such that (Γ(x′, v))v∈V̈ ≥ u′ > (Γ(x, v))v∈V̈ , contradicting the assumption

that x ∈ XREU(V̈ ). The rest follows from Lemma 2.

Given Theorem 1, for a finite set V̈ ⊆ V of rank values, it is possible to generate

all assignments in XREU(V̈ ) by systematically varying the weights in (WERVMP).

However, the analysis of XREU(Ṽ ) for an arbitrary Ṽ ⊆ V , which may be an infinite

set, requires a generalization of the theorem. This is because (WERVMP) has hidden

constraints of the form Γ(x, v) ≥ Γi(x, v) for each i ∈ I for each v ∈ Ṽ . Obviously,

(WERVMP) cannot be properly formulated if Ṽ is an infinite set. It turns out that

we need only finitely many instances of rank values to construct (WERVMP) even

when Ṽ is an infinite set.
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Theorem 2. Fix a preference profile. Let a set Ṽ ⊆ V of rank values be given.

If there is a finite subset V̈ ⊆ Ṽ of rank values and a set of non-negative weights

(λv)v∈V̈ , not all zero, such that an assignment x ∈ X is a unique optimal solution to

the Weighted Egalitarian Rank-Value Maximization Problem

(WERVMP) max
x∈X

∑
v∈V̈

λvΓ(x, v)

then x ∈ XREU∗(Ṽ ). Conversely, if x ∈ XREU∗(Ṽ ), then, for any finite union V̆ ⊆ V

of finite polytopes that encloses Ṽ , there is a finite set V̈ ⊆ V̆ and a set of strictly

positive weights (λv)v∈V̈ such that x is an optimal solution to (WERVMP).

Theorem 2 is similar to Theorem 1, but there are some important differences.

For x ∈ X to be REU over Ṽ , in Theorem 1 where Ṽ is a finite set, it is sufficient for

x to be a solution to (WERVMP), whereas in Theorem 2 where Ṽ can be an infinite

set, x must be a unique solution. This is because x being REU over V̈ ⊂ Ṽ does not

necessarily imply x being REU over Ṽ as we see in Section 3.5.2.

For necessity, if Ṽ is a finite union of finite polytopes, we let V̆ = Ṽ and the set V̈

of instances of rank values that constitute (WERVMP) is a subset of Ṽ . However, if

the boundary of Ṽ has a curved surface, no matter what enclosure V̆ we select, there

is always a point that is inside V̆ and outside Ṽ . Therefore, we can only guarantee

that instances of rank values appearing in (WERVMP) reside inside V̆ and not

necessarily inside Ṽ . We do not anticipate this to be an issue because practically

meaningful Ṽ is unlikely to have a curved surface.

Although Theorem 2 guarantees the existence of (WERVMP) that generates

REU* assignment, it stays agnostic about the identity of V̈ . Therefore, Theorem 2
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does not provide a machinery to produce REU* assignments. In contrast, if Ṽ is a

finite set as in Theorem 1, the REU* assignments can be systematically generated

by varying the weights in (WERVMP). We defer the discussion on how to generate

REU* assignment over an infinite set Ṽ to Section 3.6.

The proof of Theorem 2 relies on the division of Ṽ into subsets of instances of

rank values such that a particular agent is worst off in each subset. Let V̂ ⊆ V

be a finite convex polytope. Given a preference profile �∈ PI and an assignment

x ∈ X, let Wi(x, V̂ ;�) denote the set of v ∈ V̂ for which agent i is worst off under

assignment x. We suppress the dependence on the preference profile and simply

write Wi(x, V̂ ). Formally,

Wi(x, V̂ ) =
{
v ∈ V̂

∣∣∣ Γi(x, v) ≤ Γi′(x, v) ∀i′ ∈ I
}
.

Because Wi(x, V̂ ) is an intersection of V̂ and n−1 half-space, each Wi(x, V̂ ) is convex

and has finitely many extreme points. For each i ∈ I, let Ẅi(x, V̂ ) denote the set

of extreme points of Wi(x, V̂ ). With these notations, we are now ready to prove

Theorem 2.

Proof of Theorem 2. Suppose x ∈ X is a unique solution to (WERVMP) for a finite

set V̈ ⊆ Ṽ of rank values and non-negative weights, (λv)v∈V̈ , not all zero. Suppose,

toward a contradiction, that x 6∈ XREU∗(Ṽ ). Then, either x 6∈ XREU(Ṽ ) or x is

sd-Pareto inefficient. Either way, there is x′ ∈ X such that Γ(x′, v) ≥ Γ(x, v) for

all v ∈ Ṽ . Then, in particular, Γ(x′, v) ≥ Γ(x, v) for all v ∈ V̈ because V̈ ⊆ Ṽ . It

follows that
∑

v∈V̈ λ
vΓ(x′, v) ≥

∑
v∈V̈ λ

vΓ(x, v), contradicting the assumption that x

is the unique optimal solution to (WERVMP). Therefore, x ∈ XREU∗(Ṽ ).
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Conversely, suppose x ∈ XREU∗(Ṽ ). Consider any finite union V̆ ⊆ V of finite

polytopes that encloses Ṽ . That is, Ṽ ⊆ V̆ . Let V be a decomposition of V̆ into finite

convex polytopes. That is,
⋃
V̂ ∈V V̂ = V̆ , where each V̂ is a finite convex polytope.

We further decompose each V̂ into Wi(x, V̂ ), i ∈ I. Let V̈ =
⋃
V̂ ∈V

⋃
i∈I Ẅi(x, V̂ ) be

the set of all extreme points of this decomposition, and define

U =
{
u ∈ R|V̈ |

∣∣∣ u ≤ (Γ(x, v))v∈V̈ for some x ∈ X
}

and

U∗ =
{
u ∈ R|V̈ |

∣∣∣ u > (Γ(x, v))v∈V̈

}
.

If U and U∗ are disjoint, the existence of (WERVMP) follows from Lemma 2, and

the weights can be made strictly positive by dropping the instances of rank values

with zero weights. Therefore, it remains to show that U and U∗ are disjoint.

Suppose, toward a contradiction, that there is u′ ∈ U ∩U∗. Then there is x′ ∈ X

such that (Γ(x′, v))v∈V̈ ≥ u′ > (Γ(x, v))v∈V̈ . Pick any V̂ ∈ V . Pick any i′ ∈ I with

non-empty Wi′(x, V̂ ). Pick any v ∈ Wi′(x, V̂ ). There is a set of non-negative weights,

(αw)w∈Ẅi′ (x,V̂ ), such that v =
∑

w∈Ẅi′ (x,V̂ ) α
ww. Using the linearity of Γi(x, v) in v

and the concavity of the min function, we obtain Γ(x′, v) ≥
∑

w∈Ẅi′ (x,V̂ ) α
wΓ(x′, w).

We also have
∑

w∈Ẅi′ (x,V̂ ) α
wΓ(x,w) = Γ(x, v) because agent i′ is worst off for all

w ∈ Ẅi′(x, V̂ ) and Γi(x, v) is linear in v. Because Γ(x′, w) > Γ(x,w) for all w ∈

Ẅi′(x, V̂ ), it follows that Γ(x′, v) > Γ(x, v).

Because this is true for arbitrary v ∈ Wi′(x, V̂ ), we have Γ(x′, v) > Γ(x, v) for

all v ∈ Wi′(x, V̂ ). Because this is true for arbitrary i′ and V̂ =
⋃
i′∈IWi′(x, V̂ ),

we have Γ(x′, v) > Γ(x, v) for all v ∈ V̂ . Because this is true for arbitrary V̂ ∈ V

and Ṽ ⊆
⋃
V̂ ∈V V̂ , we have Γ(x′, v) > Γ(x, v) for all v ∈ Ṽ . This contradicts the

assumption that x ∈ XREU∗(Ṽ ). Therefore, U and U∗ are disjoint.
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3.5.1 Uniqueness of Solutions

Because the uniqueness of solutions to (WERVMP) plays a key role in Theorem 2,

we wish to understand it better. However, whether there is a unique solution to

(WERVMP) depends on the interaction of preference profile and the instance of

rank values, making it difficult to predict the uniqueness of solutions before actually

solving (WERVMP).12 The following example demonstrates this point.

Example 3. Consider the following preference profile and assignments. Both as-

signments solve (ERVMP) maxx∈X Γ(x, v) for v = (1, 2
3
, 1

3
, 0).

Agent Preference A B C D A B C D

Agent 1 A � B � C � D 4
11

5
11

1
11

1
11

4
11

1
2

0 3
22

Agent 2 A � C � D � B 1
11

0 10
11

0 1
11

0 10
11

0

Agent 3 A � B � D � C 6
11

0 0 5
11

6
11

0 0 5
11

Agent 4 B � C � D � A 0 6
11

0 5
11

0 1
2

1
11

9
22

In fact, for any rank values v = (1, v2, v3, 0) such that

v2 − v3

1− v2

=
v3

v2 − v3

,

agents 1 and 4 can trade objects B, C, and D without affecting their expected rank

values. Indeed, there are multiple optimal solutions to (ERVMP) for these rank

values except when v2 solves v3
2 + v2

2 = 1. At this v2, the equation v2
2 + (1− v3)v2 = 1

is also satisfied, and it is optimal to allocate the entire C to agent 2.

12After solving (WERVMP), we can determine whether the obtained solution is unique by solving
one more linear programming problem as described in Appa (2002).
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In this example, a small perturbation to the rank value restores the uniqueness of

the solution to (ERVMP). However, for some preference profiles, there are multiple

solutions to (ERVMP) for any choice of rank value. This prompts us to develop an

algorithm that does not rely on the uniqueness of solutions to (ERVMP), which we

explore in Section 3.6. Our current understanding of the uniqueness of solutions to

(ERVMP) is limited to the following.

Proposition 1. (i) For n = m = 3, if no pair of agents have the same preferences,

there is a unique solution to (ERVMP) for any rank values v = (1, v2, 0) such that

0 < v2 < 1. (ii) For n ≥ 4, each agent having a distinct preference is not sufficient

for the uniqueness of solution to (ERVMP).

The proof of Proposition 1 (i) is provided in Appendix 3.8.1. Example 3 serves

as a proof of Proposition 1 (ii). Whether the multiplicity of optimal solutions is

ubiquitous in real-world problems is an interesting topic for future research.

3.5.2 (Non-)Relation Among REU Assignments

The following is an immediate consequence of Theorem 2.

Corollary 1. If Ṽ ⊆ V is a finite union of finite polytopes, we have

XREU∗(Ṽ ) ⊆
⋃

V̈⊆Ṽ | |V̈ |<∞

XREU∗(V̈ ).

Obviously, it is practically impossible to enumerate all finite subsets of Ṽ even

when we have a good bound for |V̈ |. Unfortunately, we cannot say much beyond this

about the relation between XREU∗(Ṽ ) for various choices of Ṽ ⊆ V .
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Proposition 2. There are preference profiles for which the following relations do

not hold:

(i) For V ′, V ′′ ⊆ V , if V ′ ⊆ V ′′ then XREU∗(V ′) ⊆ XREU∗(V ′′).

(ii) XREU∗(V D) ⊆ XREU∗(V ).

(iii) XREU∗(V ) ⊆ XREU∗(V D) ∪
(⋃

v∈V XREU∗({v})
)
.

Recall that V D =
{(
1{r≤j}

)
r=1,...,m

∣∣∣ j = 1, ...,m− 1
}

is the set of all dichoto-

mous rank values, which are the extreme points of the set V of all permissible rank

values. Even though V D is representative of V , there is no clear relation between the

sets of REU* assignments between the two. Given the non-relation between REU

assignments, we focus on generating some REU assignments instead of all of them.

Example 3 provides a proof of (i). The assignment on the right is REU* over

{(1, 2
3
, 1

3
, 0)}, but it is not REU* over {(1, 2

3
, 1

3
, 0), (1, 1, 1, 0)} because it is RE-dominated

by the assignment on the left. The proofs of (ii) and (iii) are provided in Ap-

pendix 3.8.2 and 3.8.3, respectively.

3.6 Generating REU Assignments

Now, we address the question of how to generate REU assignments over an arbitrary

Ṽ ⊆ V . One possible approach is to pick an arbitrary V̈ ⊆ Ṽ , construct (WERVMP)

with some weights, and hope that the optimal solution is unique. This approach

is simple, but inefficient. Also, when there is a small group of agents who rank

unpopular objects highly, we may never obtain a unique optimal solution for any

choice of V̈ because (WERVMP) is oblivious to better-off agents.
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Here, we propose an alternative way of checking whether an assignment is REU.

It directly examines whether there is another assignment that weakly improves the

minimum expected rank value for every v ∈ Ṽ , with a strict improvement for at least

one v ∈ Ṽ . The following proposition is stated for the case where Ṽ is a finite convex

polytope, but it can be easily modified for Ṽ that is a finite union of finite polytopes.

The proof is similar to that for Theorem 2, and is deferred to Appendix 3.8.4.

Proposition 3. (Test of RE dominance) Let a finite convex polytope V̂ ⊆ V and an

assignment x ∈ X be given. Let V̈ =
⋃
i∈I Ẅi(x, V̂ ). Let I ′ ⊆ I be the set of agents

for which the interior of Wi(x, V̂ ) is non-empty. For each i ∈ I ′, pick an arbitrary

point wi in the interior of Wi(x, V̂ ). Solve the following problem:

max
x∈X

∑
i∈I′

si

s.t. Γ(x, v) ≥ Γ(x, v) ∀v ∈ V̈

Γ(x,wi) ≥ Γ(x,wi) + si ∀i ∈ I ′

si ≥ 0 ∀i ∈ I ′

The maximized objective value is zero if and only if x ∈ XREU(V̂ ).

When x is not REU over V̂ , the test provides v ∈ V̂ at which the minimum

expected rank value can be improved, namely, wi′ . By adding wi′ to V̈ , we can

contract the set of optimal solutions to (WERVMP). The following corollary states

that we can indeed construct V̈ iteratively. Instead of maximizing the weighted sum

of the minimum expected rank values, we can sequentially set the lower bound on

the minimum expected rank value evaluated at each v ∈ V̈ .
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Corollary 2. Theorem 2 holds when (WERVMP) for V̈ is replaced by Constrained

Egalitarian Rank-Value Maximization Problem with some rank value v′ ∈ V̈ and

constants (Γ∗(v))v∈V̈ \{v′}:

(CERVMP) max
x∈X

Γ(x, v′)

s.t. Γ(x, v) ≥ Γ∗(v) ∀v ∈ V̈ \ {v′}

The equivalence is established as follows. For each (CERVMP), an equivalent

(WERVMP) can be obtained by adding the constraints to the objective function

weighted by the shadow prices. For each (WERVMP), to construct an equivalent

(CERVMP), select any v′ ∈ V̈ to be used in the objective function, and set Γ∗(v) =

Γ(x∗, v) for the remaining v ∈ V̈ , where x∗ is an optimal solution to (WERVMP).

Given Corollary 2, we can search for REU assignments in a sequential manner.

Specifically, the following algorithm finds a REU assignment over arbitrary Ṽ ⊆ V .

Algorithm to generate a REU assignment over Ṽ .

1. Set X0 = X and select an arbitrary assignment x ∈ X0.

2. If x ∈ XREU(Ṽ ), stop.

Otherwise, find v ∈ Ṽ such that Γ(x′, v) > Γ(x, v) for some x′ ∈ X0.

3. Set X1 = arg maxx∈X0 Γ(x, v).

4. Set X0 = X1. Select some x ∈ X0. Go to Step 2.

The resulting x is REU over Ṽ .
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In Step 2, if x is the unique element in X1, we have x ∈ XREU∗(Ṽ ) by Theorem 2.

If there are multiple elements in X1, we may use Proposition 3, which either confirms

that x ∈ XREU(Ṽ ) or provides v to be added to V̈ . Restricting the domain of the

search to X0 in Step 3 is equivalent to solving (CERVMP) with added constraints.

We show how the algorithm works using the preference profile in Example 3,

which is reproduced here. Suppose we want to find a REU assignment over Ṽ = V .

Agent Preference
x∗ x′

A B C D A B C D

Agent 1 A � B � C � D 4
11

5
11

1
11

1
11

4
11

1
2

0 3
22

Agent 2 A � C � D � B 1
11

0 10
11

0 1
11

0 10
11

0

Agent 3 A � B � D � C 6
11

0 0 5
11

6
11

0 0 5
11

Agent 4 B � C � D � A 0 6
11

0 5
11

0 1
2

1
11

9
22

In the first iteration, in Step 1, let’s set the initial x to be the equal division,

xio = 1
4

for all i ∈ I and o ∈ O. In Step 2, clearly, x 6∈ XREU(Ṽ ), so let’s pick

vl =
(
1, 2

3
, 1

3
, 0
)
. In Step 3, we solve (ERVMP) maxx∈X Γ(x, v), which has infinitely

many solutions, including x∗ and x′ in the table. The maximized objective value is

23
33

. In Step 4, let the new x be x′.

In the second iteration, in Step 2, because x is not REU over Ṽ , we pick another

v ∈ Ṽ , say v3 = (1, 1, 1, 0). In Step 3, we solve the following (CERVMP):

max
x∈X

Γ(x, v3) s.t. Γ(x, vl) ≥ 23
33

Assignment x∗ in the table is the unique solution to this problem. Therefore, we

have found a REU assignment over Ṽ .
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Proposition 4. For any set Ṽ ⊆ V of instances of rank values, the algorithm to

generate a REU assignment over Ṽ terminates in at most n(m− 1) + 1 iterations.

Proof. Let Ṽ ⊆ V be given. Because we choose one instance of rank values in each

iteration, we will have chosen n(m−1) instances of rank values at the end of iteration

n(m − 1). No instance of rank values is chosen twice because an improvement in

Γ(x, v) is impossible for any v that has previously been chosen. Let V̈ be the set of

instances of rank values that have been chosen by the end of iteration n(m− 1).

Given x ∈ X0 at the end of iteration n(m − 1), divide Ṽ into Wi(x, Ṽ ), i ∈ I.

Because Γ(x, v) = Γi(x, v) for all v ∈ Wi(x, Ṽ ) and Γi(x, v) is linear in v for each

i ∈ I, the surface Γ(x, v) plotted over the space Ṽ is piecewise linear; i.e., Γ(x, v) is

a hyperplane over each Wi(x, Ṽ ). Moreover, the hyperplane over Wi(x, Ṽ ) is pinned

at each v′ ∈ Wi(x, Ṽ ) ∩ V̈ to the constrained-maximized value of Γ(·, v′). Because

the space Ṽ is m − 2 dimension (due to the normalization v1 = 1 and vm = 0), the

graph of Γ(x, v) over Ṽ is m − 1 dimension, and it takes m − 1 instances of rank

values to completely fix the hyperplane.

If we are at the end of iteration n(m− 1), it must be that each Wi(x, Ṽ ) contains

exactly m−1 instances of rank values in V̈ , and each hyperplane is completely fixed.

Therefore, it is impossible to improve Γ(x, v) at any v ∈ Ṽ .

Note that the proposed algorithm is just one possible way of producing REU

assignments, and there are REU assignments that cannot be produced by the al-

gorithm. One such example is assignment x∗ in Example 5 in Appendix 3.8.3. It

requires simultaneous consideration of multiple instances of rank values rather than

sequential one.
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Once we find REU assignments, we can obtain REU* assignments by imposing

sd-efficiency as follows. Suppose x ∈ XREU(V̈ ) is an optimal solution to (WERVMP)

with V̈ for some strictly positive weights, (λv)v∈V̈ . Let Γ∗ be the maximized objective

value. Pick an instance v′ ∈ V of rank values that is strictly decreasing, and solve

the following problem:

max
x∈X

∑
i∈I

Γi(x, v
′) s.t.

∑
v∈V̈

λvΓ(x, v) ≥ Γ∗

Any optimal solution to this problem is REU* over V̈ . This is merely one of many

possible ways to impose sd-Pareto efficiency.

3.6.1 Special REU Assignments

Although social planners are free to specify any set Ṽ ⊆ V of instances of rank

values, some are practically more meaningful than others. In particular, the set

of all dichotomous rank values, V D =
{(
1{r≤j}

)
r=1,...,m

∣∣∣ j = 1, ...,m− 1
}

, permits

simple interpretation: An assignment in XREU∗(V D) maximizes a weighted sum of

the guaranteed minimum probability each agent receives an object ranked rth or

higher for r = 1, ...,m− 1.

If it is important to impartially allocate high-ranked objects, in Step 2 of the algo-

rithm, we can select v1 = (1, 0, 0, ..., 0) in the first iteration, v2 = (1, 1, 0, ..., 0) in the

second iteration, and so forth. The resulting assignment maximizes the probability

that each agent receives their top-ranked object, then that for the two top-ranked

objects, and so forth. This assignment is similar to the Probabilistic Serial Rule

(Bogomolnaia and Moulin, 2001), but they are not identical.
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If it is important to impartially allocate low-ranked objects, we may first select

vm−1 = (1, ...1, 1, 0), then vm−2 = (1, ...1, 0, 0), and work our way up to v1. The

resulting assignment minimizes the probability that each agent receives their bottom-

ranked object, then that for the two bottom-ranked objects, and so forth. This

assignment is ex-post egalitarian: the maximum rank of the objects that are assigned

with a positive probability is minimized.13 Unfortunately, it creates an incentive to

misreport. If an agent moderately prefers an unpopular object, he would hide that

information to avoid ending up with the object. This issue can be mitigated by, for

example, imposing equal-division lower bound.14

More generally, the order in which elements of V D are added to (CERVMP) can

be arbitrarily chosen. For example, if the two most important criteria are maximizing

the guaranteed probability that each agent receives their top-ranked object and that

for one of three top-ranked objects, then v1 and v3 should enter (CERVMP) first.

By changing the order in which v ∈ V D enters (CERVMP), we can trace the Pareto-

frontier of (Γ(x, v))v∈V D .

3.7 Conclusion

In this paper, we introduce the rank-value based fairness notion, rank-egalitarian

dominance, and the set of rank-fair assignments. An assignment is rank-egalitarian

undominated (REU) over a set of instances of rank values if there is no other assign-

13This idea is presented in Proll (1972), and is termed the bottleneck assignment.

14Equal division x assigns each agent an equal probability share of each object; i.e., xio = qo/n.
When

∑
o∈O qo > n, let each agent discard the probability share of their lowest-ranked objects until

the total probability share reduces to 1. An assignment x ∈ X satisfies equal-division lower bound
if Γ(x, v) ≥ Γ(x, v) for all v ∈ V D.
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ment with the minimum expected rank values weakly larger at each instance of rank

values and strictly larger at some instance of rank values. Defining rank-fairness over

a set of instances of rank values relieves the social planner from the burden of having

to identify the right instance of rank values.

We then provide the necessary and sufficient conditions for an assignment to

be REU. Each REU assignment is a solution to a linear programming problem that

maximizes the weighted sum of the minimum expected rank values evaluated at each

instance of rank values in the set. Conversely, if an assignment solves such a problem,

then it is REU. We also show that REU assignments can be sought sequentially, and

propose an algorithm that generates subsets of REU assignments that may be of

interest to market designers.

We hope the foundation we laid here facilitates future discussions of rank-value

based algorithms, which have potential to improve rank-fairness and rank-efficiency.

In particular, much work is needed to understand the incentive properties of rank-

value based algorithms, both theoretically and empirically.

3.8 Appendix: Proofs

3.8.1 Proof of Proposition 1 (i)

Proposition 1.(i) For n = m = 3, if no pair of agents have the same preferences,

there is a unique solution to (ERVMP) for any rank values v = (1, v2, 0) such that

0 < v2 < 1.

Proof. If each agent top-ranks different objects, the optimal assignment is trivial

and unique. Thus, assume this is not the case. For n = m = 3, there are only two
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non-trivial preference profiles (modulo relabeling of objects and agents) for which no

two agents have the identical preference:

Profile II Profile II′

Agent 1: A � B � C Agent 1: A � B � C

Agent 2: A � C � B Agent 2: A � C � B

Agent 3: B � A � C Agent 3: B � C � A

Consider Profile II. Given any rank values v = (1, v2, 0), where 0 < v2 < 1, we claim

that any solution to (ERVMP) satisfies either x3A = 0 or x1B = x2B = 0. To see

this, suppose x3A > 0 and x1B > 0. Then agent 3 and 1 can trade η = min{x3A, x1B}

units of object A and B, and they will be strictly better off. Subsequently, agent 1

can give 1
2
η(1− v2) units of object A to agent 2 and receive the same amount of B or

C from agent 2, which makes agent 2 better off. Agent 1 is also better off because the

expected rank value has increased by at least 1
2
η(1 − v2). Because the trade makes

every agent better off, the initial assignment cannot be a solution to (ERVMP). A

similar argument holds for the case where x3A > 0 and x2B > 0. Therefore, it must

be that if x solves (ERVMP), then either x3A = 0 or x1B = x2B = 0.

Suppose x1B = x2B = 0. Then x3B = 1. Agents 1 and 2 are equally well off when

x1A = x2C = 1
2−v2 and x1C = x2A = 1−v2

2−v2 , which yields the expected rank value of

1
2−v2 . Because the expected rank value is 1 for agent 3, agents 1 and 2 are worse off

than agent 3. But then agent 3 can help agent 1 by taking less share of object B and

more share of object C. Subsequently, agent 1 can help agent 2 by taking less share

of object A and more share of object C. Thus, x1B = x2B = 0 cannot be a part of

an optimal solution. It follows that x3A = 0.
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Similarly, if x solves (ERVMP), the allocation of object B and C must satisfy

either x1C = x3C = 0 or x2B = 0. If x1C > 0 and x2B > 0, then agent 1 can trade C

for B with agent 2 and subsequently give some fraction of B to agent 3. If x3C > 0

and x2B > 0, then agent 3 can trade C for B with agent 2, and subsequently, agent

2 can give some fraction of A to agent 1 (if agent 2 does not own any fraction of

A, it means x1A = 1, and agent 1 is best off, so there is no need to improve the

expected rank value of agent 1). In any case, there is a sequence of trades that

improves the minimum expected rank value. Therefore, it must be that any solution

x to (ERVMP) satisfies either x1C = x3C = 0 or x2B = 0.

Suppose x1C = x3C = 0. Then x2C = 1. It follows that x1A = x3B = 1, and agent

2 is strictly worse off than agents 1 and 3. But agent 1 can help agent 2 by taking

less share of object A and more share of object C. Therefore, x1C = x3C = 0 cannot

be a part of an optimal solution. Hence, we have x2B = 0.

Therefore, an optimal solution must be in the following form:

x1A = α x1B = β x1C = 1− α− β
x2A = 1− α x2B = 0 x2C = α

x3A = 0 x3B = 1− β x3C = β

If one of agent 1 or agent 2 is worst off, then both must be worst off because otherwise

the better-off agent can help the worst-off agent by trading A for C. If one of agent 1

or agent 3 is worst off, then both must be worst off because otherwise the better-off

agent can help the worst-off agent by trading B for C. Thus, all of them must be

equally worse off, which uniquely pins down α = 1
2−v22

and β = 1−v2
2−v22

. In other words,

the solution to (ERVMP) is unique. The proof for Profile II′ is similar.
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3.8.2 Proof of Proposition 2 (ii)

Proposition 2. (ii) XREU∗(V D) 6⊆ XREU∗(V ) for some preference profile.

Example 4. Consider the following preference profile and assignments. We claim

that x0 ∈ XREU∗(V D) \ XREU∗(V ).

Agent Preference
x0 xε

A B C D A B C D

Agent 1 A � B � C � D 3
7

2
7

3
14

1
14

3
7

+ ε 2
7
− ε

2
3
14
− ε

2
1
14

Agent 2 B � A � C � D 0 5
7

3
14

1
14

0 5
7

+ ε
2

3
14
− ε

2
1
14

Agent 3 A � C � D � B 4
7

0 1
7

2
7

4
7
− ε 0 1

7
+ ε 2

7

Agent 4 C � D � B � A 0 0 3
7

4
7

0 0 3
7

4
7

First, x0 ∈ XREU(V D) because x0 solves the following (WERVMP):

max
x∈X

Γ(x, v1) + Γ(x, v2) + 2Γ(x, v3)

It can be easily confirmed that x0 is sd-Pareto efficient. Thus, x0 ∈ XREU∗(V D).

Next, we show x0 /∈ XREU∗(V ). Let dir(x) =
∑

o∈O xio · 1{ri(o)≤r} denote the

probability that agent i receives an object ranked rth or higher under assignment x.

Let di(x) = (di1(x), ..., dim(x)). Under x0, agent 1 is worst off at every v ∈ V

because d1(x0) = (3
7
, 5

7
, 13

14
, 1) is first-order stochastically dominated by d2(x0), d3(x0),

and d4(x0). Now, consider xε with 0 < ε ≤ 1
14

. Observe that di(x
ε) first-order

stochastically dominates d1(x0) for each i = 1, ..., 4. Therefore, Γ(xε, v) ≥ Γ(x0, v)

for all v ∈ V . Furthermore, Γ(xε, v) > Γ(x0, v) at v = (1, 1
2
, 0, 0). Thus, x0 is

RE-dominated by xε over V , i.e., x0 /∈ XREU(V ). This means x0 /∈ XREU∗(V ).
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3.8.3 Proof of Proposition 2 (iii)

Proposition 2. (iii) XREU∗(V ) 6⊆ XREU∗(V D)∪
(⋃

v∈V XREU∗({v})
)

for some pref-

erence profile.

Example 5. Consider the following preference profile and assignments. We claim

that x∗ ∈ XREU∗(V ), but it is not REU over V D or over any singleton set.

Agent Preference
x∗ x′

A B C D A B C D

Agent 1 A � B � C � D 1
2

1
4

0 1
4

1
3

2
9

4
9

0

Agent 2 B � A � C � D 0 3
4

0 1
4

0 5
9

1
3

1
9

Agent 3 A � C � D � B 0 0 1 0 1
3

0 2
9

4
9

Agent 4 A � B � D � C 1
2

0 0 1
2

1
3

2
9

0 4
9

First, x∗ ∈ XREU∗(V ) because it uniquely solves the following (WERVMP):

max
x∈X

Γ
(
x,
(
1, 1, 1

2
, 0
))

+ Γ
(
x,
(
1, 2

3
, 1

3
, 0
))

Next, x∗ 6∈ XREU∗(V D) because x∗ is RE-dominated by x′ over V D.

Lastly, we show that x∗ is not REU over {v} for any v ∈ V . Suppose, toward a

contradiction, that x∗ ∈ XREU∗({v∗}) for some v∗ = (1, v2, v3, 0) ∈ V .

We claim that v2 6= 1. To see this, suppose v2 = 1. Then v3 6= 0 because

otherwise agent 4 would have received more of object A and B. Also, v3 6= 1 because

otherwise agents 1 and 2 would not have received any fraction of object D. Thus,

0 < v3 < 1. Then the minimum expected rank value under x∗ is min{3
4
, 1

2
+ 1

2
v3}. It

can be improved by the assignment below:
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i Preference A B C D Γi

1 A � B � C � D 1
2
− v3

16
1
4

1
8

1
8

+ v3
16

3
4

+ 1
16
v3

2 B � A � C � D 0 3
4

1
8

1
8

3
4

+ 1
8
v3

3 A � C � D � B 0 0 3
4

1
4

3
4

+ 1
4
v3

4 A � B � D � C 1
2

+ v3
16

0 0 1
2
− v3

16
1
2
(1 + v3) + v3

16
(1− v3)

Therefore, x∗ 6∈ XREU({v∗}). Thus, our assumption that v2 = 1 must be false.

Also, it must be that v2 6= 0 because otherwise agent 3 would have received some

fraction of object A. Thus, 0 < v2 < 1. In this case, the minimum expected rank

value under x∗ is min{1
2

+ 1
4
v2, v2,

1
2

+ 1
2
v3}. It can be improved by the following

assignment with α = v2
2

and β = 1−v2
8

:

i A B C D Γi

1 1
2
− αβ 1

4
+ β 0 1

4 − (1− α)β 1
2

+ 1
4
v2 + v2(1−v2)

16

2 0 3
4
− β αβ

2
1
4

+ β − αβ
2

1
2

+ 1
4

(
1+v2

2

)
+ αβ

2
v3

3 αβ
2

0 1− αβ
2

0 v2 + αβ
2

(1− v2)

4 1
2

+ αβ
2

0 0 1
2
− αβ

2
1
2
(1 + v3) + αβ

2
(1− v3)

Therefore, x∗ 6∈ XREU({v∗}). Hence, there is no v∗ ∈ V for which x∗ ∈ XREU({v∗}).

3.8.4 Proof of Proposition 3

Proposition 3. (Test of RE dominance) Let a finite convex polytope V̂ ⊆ V and an

assignment x ∈ X be given. Let V̈ =
⋃
i∈I Ẅi(x, V̂ ). Let I ′ ⊆ I be the set of agents

for which the interior of Wi(x, V̂ ) is non-empty. For each i ∈ I ′, pick an arbitrary
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point wi in the interior of Wi(x, V̂ ). Solve the following problem:

max
x∈X

∑
i∈I′

si

s.t. Γ(x, v) ≥ Γ(x, v) ∀v ∈ V̈

Γ(x,wi) ≥ Γ(x,wi) + si ∀i ∈ I ′

si ≥ 0 ∀i ∈ I ′

The maximized objective value is zero if and only if x ∈ XREU(V̂ ).

Proof. Let V̂ ⊆ V and x ∈ X be given. To simplify the notation, instead of writing

Wi(x, V̂ ) and Ẅi(x, V̂ ), we write Wi and Ẅi. We show that the maximized objective

value is strictly positive if and only if x 6∈ XREU(V̂ ).

Suppose x 6∈ XREU(V̂ ). Then there is x∗ ∈ X and v′ ∈ V such that Γ(x∗, v) ≥

Γ(x, v) for all v ∈ V̂ and Γ(x∗, v′) > Γ(x, v′). We claim that v′ ∈ Wi′ for some i′ ∈ I ′.

Recall that V̂ =
⋃
i∈IWi. Because each Wi is a closed convex set, Wi with an empty

interior can be dropped, and we obtain V̂ =
⋃
i∈I′Wi. Pick i′ ∈ I ′ such that v′ ∈ Wi′ .

Because x∗ RE-dominates x over V̂ , for each w ∈ Ẅi′ , we have Γ(x∗, w) ≥ Γ(x,w),

which is equivalent to Γi(x
∗, w) ≥ Γi′(x,w) for all i ∈ I. Then, for each i ∈ I, there

must be ẇi ∈ Ẅi′ such that Γi(x
∗, ẇi) > Γi′(x, ẇi) because otherwise—due to the

linearity of Γi(x, v) in v—we have Γi(x
∗, v′) = Γi′(x, v

′), which implies Γ(x∗, v′) =

Γ(x, v′), a contradiction. Now, because wi′ is an interior point of Wi′ , there is a set

of strictly positive weights (αw)w∈Ẅi′
such that wi′ =

∑
w∈Ẅi′

αww. It follows that

Γi(x
∗, wi′) > Γi′(x,wi′) for each i ∈ I, and therefore, Γ(x∗, wi′) > Γ(x,wi′). Thus,

si′ > 0, and the objective value is strictly positive.
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Conversely, suppose the objective value is strictly positive for some feasible solu-

tion x∗. Then, there is i∗ ∈ I such that si∗ > 0. Equivalently, Γ(x∗, wi∗) > Γ(x,wi∗).

Therefore, if Γ(x∗, v) ≥ Γ(x, v) for all v ∈ V̂ then x∗ RE-dominates x over V̂ , and

we are done.

Indeed, for any feasible solution x, we have Γ(x, v) ≥ Γ(x, v) for all v ∈ V̂ .

Consider any i′ ∈ I. For any v ∈ Wi′ , there is a set of non-negative weights (αw)w∈Ẅi′

such that v =
∑

w∈Ẅi′
αww. First, because Γi(x, v) is linear in v and the min function

is concave, Γ(x, v) ≥
∑

w∈Ẅi′
αwΓ(x,w). Second, because Γ(x, v) = Γi′(x, v) for all

v ∈ Wi′ , we have
∑

w∈Ẅi′
αwΓ(x,w) = Γ(x, v). Third, any feasible solution x satisfies

the constraint Γ(x, v) ≥ Γ(x, v) for all v ∈ V̂ , and therefore, Γ(x,w) ≥ Γ(x,w) for

all w ∈ Ẅi′ in particular. These three relations imply that Γ(x, v) ≥ Γ(x, v) for any

v ∈ Wi′ . Because i′ is arbitrary and V̂ =
⋃
i′∈IWi′ , we have Γ(x, v) ≥ Γ(x, v) for all

v ∈ V̂ .
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