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A NOTE ON UNITARY OPERATORS IN C*-ALGEBRAS

By B. Russo anp H. A. Dyr

1. Introduction. We show that, in any C*-algebra @, convex linear combina-
tions of unitary operators are uniformly dense in the unit sphere of @. In
other terms, the unit sphere in @ is the closed convex hull of its normal extreme
points, even though non-normal extreme points will in general be present.
This fact has several useful technical implications. For example, it follows
that the norm of a linear mapping ¢ between C*-algebras can be computed using
only normal operators, that is, from the effect of ¢ on abelian *-subalgebras.
In addition, we show that a linear mapping between C*-algebras which con-
serves the identity and sends unitary operators into unitary operators is a
C*-homomorphism.

2. The main result. Let @ be a C*-algebra, that is, a uniformly closed self-
adjoint algebra of operators on some complex Hilbert space H. Throughout,
we assume that @ contains the identity operator I. U(@) will denote the set
of unitary operators in @, and co(U(®)) the convex hull of U(@).

LemmA 1. In any von Neumann algebra M, co (U(M)) is weakly dense in the
unit sphere of M.

Proof. This follows readily from the known fact that, in a von Neumann
algebra M with no finite summands, the weak closure of U(M) is the unit sphere
({38, Theorem 1 et seq.]). For completeness, however, we include a proof of
the lemma.

Let C denote the weak closure of co(U(M)). To show that C is the unit
sphere, by Krein—Mil’'man, it suffices to show that C contains all extreme points
of the unit sphere. Using [5, Theorem 1], it follows readily that these are the
partial isometries V in M such that, for some central projection D, V*V > D
and VV* > I — D. Therefore, replacing M by appropriate direct summands
and noting that C* = C, it suffices to consider the case V*V = I. In addition,
we can assume that VV* = P = I. Given vectors z; ,y; (z = 1, --- , n) and
€ > 0, we will exhibit a unitary U in M such that |((U — V)z,, y:)| < ¢, for all 4.

Let I be the range of I — P. Then the V"IR are mutually orthogonal
(n > 0) and the restriction of V to the orthogonal complement N of P, V"IN
is unitary. Let @, be the projection on V"R, and choose n such that
> isn Qx| < €/2(1 + max ||y;]]), for all . Let U = V on the subspace
NEMD - VWM, =V on V""'IM, and = I on @ysnss VM. Then
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U is unitary, U e M, and |((U — V)z;, y:)| = [(Xisa (U — V)Quz: , vyl <
2| D ksn @uil| |ly:]] < e. The lemma follows.

TreorEM 1. In any C*-algebra @, co(U(Q)) is uniformly dense in the unit
sphere of Q.

Proof. Any C*-algebra is *-isomorphic to a C*-algebra all of whose states
are weakly continuous. In fact, let ¢ be the universal representation of Q.
By definition, ¢ = @, ¢, , where p ranges over the entire state space of @ and
¢, is the *-representation of @ determined by p. Then each state of ¢(®) is
canonical (see, for example, [11]). So we may assume in proof that all states
of @ are weakly continuous.

Suppose T ¢ @, ||T|| < 1, and that T does not lie in the uniform closure of
co(U(@)). By a standard separation theorem, there will exist a continuous
linear functional o on @, a real ¢, and an ¢ > 0 such that

2.1) Red(4) <c <c+ e < Rea(),

for all 4 in co(U(@)). The functional ¢ will be a finite linear combination of
states of @, each assumed weakly continuous. Let M be the strong closure of
@. By the Glimm-Kadison variant of the Kaplansky density theorem [4,
Theorem 2]. U(@) is strongly dense in U(M). Therefore, (2.1) holds for all
A in co(U(M)). Again by weak continuity, (2.1) holds for all 4 in the weak
closure of co(U(M)). In view of Lemma 1, this is a contradiction. The theorem
is proved.

For abelian C*-algebras (namely, for C(X), X compact Hausdorff), Theorem 1
has been proved by Phelps [8]. Little is known about the pre-closed convex
hull co(U(@)). For a von Neumann algebra M, co(U(M)) coincides with the
unit sphere if and only if M is finite; this follows readily from results in [5].
For a general C*-algebra, co(U(@)) contains the open sphere about 0 of radius
3. [To see this, let the C*-algebra @ act on H, and let A be a regular operator
in @ of norm 1. If A = U |A] is the polar decomposition of A in L(H), then
U is unitary, |4]| ¢ @, and so U = A(JA])™ ¢ @ It is standard that |4] is a
convex linear combination of two unitary operators in &, and therefore the
same applies to A. Now, if 7' is any operator in @ of norm < %, then T 4 I
is regular, since || — (T + %I)|| < 1, and one has

T = 3T+ 3D + (T - 3D].

It follows that T is a convex linear combination of four unitaries.]

3. Applications. Each C*-algebra @ is the linear span of its unitary group
U(@). For each A ¢ @, we define

3.1) [lA]lo = inf 2. N,

taken over all representations 4 = Y *_, \,U; of A as a finite linear combi-
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nation of unitaries. A simple calculation shows that ||A4[|y is & normed algebra
norm on @ such that ||4]] < ||4]|v -

Lemma 2. Forall A, ||A]] = ||4]|v -

Proof. Availing ourselves of the comments following Theorem 1, we see
that if [|4|| = 1, then for each ¢ > 0, ||(1/(2 + ¢)A4]||v < 1. It follows that
3 Al < [|4]] £ |l4llv , for all 4, so that the two norms are equivalent.
By the theorem, each A with ||4||=1 is the ||-limit of a sequence with ||4,|[y=1.
Since the A, must also converge to A in ||y-norm, it follows that ||4|ly = 1.
In general, therefore, ||4|| = ||4]]v .

Recall that a mapping ¢ between C*-algebras is termed positive if ¢(4) > 0

whenever 4 > 0.

CoroLLARY 1. The norm of a linear mapping ¢ of a C*-algebra @ in a normed
linear space ® s supy.vcay |[0(U)||. Moreover, if & is a C*-algebra and ¢(I) = I,
then ¢ is positive if and only if ||¢p|| = 1.

Proof. Let K = supy.yoy ||¢(U)|]. IfAde@, A = > \U,,then ||¢p(4)]] <
(22 INDE, so [[¢()]l < K ||A]ly = K ||A]], by Lemma 2.

We turn to the second statement. That ||¢|| = 1 entails the positivity of
¢ when ¢(f) = I is well known: if z is a unit vector in the representation space
of ® and if ¢(4) = (¢(4)zx, ), then o is a linear functional on @ of norm 1 with
value 1 at I, and any such functional is a state [2; 25]; therefore, A > 0 forces
o(4) > 0, so that $(4) > 0. Furthermore, the converse is known when the
algebra @ is abelian. In this case, by results of Stinespring [9], ¢ is completely
positive, and therefore has the form ¢(A) = V*p(4)V, where V is an isometry
and p is a *-representation of @. Therefore, ||¢p(4)|] < |[o(4)]] < ||A]]. This
fact and the first paragraph show that, for any C*-algebra @, the positivity of ¢
entails ||p(4)]| < ||4]], for all A. Since ¢(I) = I, one therefore has ||¢|| = 1.

Using this, one can put Bonsall’s minimal norm theorem [1] in the following
sharper form: in order that a normed algebra norm ||, on a C*-algebra coincide
with the C*-norm, it is necessary and sufficient that ||4|/, < ||4]| on all abelian
*-subalgebras of @. Similarly, it follows that an identity-conserving linear
order isomorphism between C*-algebras is an isometry. This reduces [6,
Corollary 5] to [5, Theorem 7], which asserts that such a mapping is a C*-
isomorphism.

By definition, a C*-homomorphism of a C*-algebra @ in a C*-algebra ® is a
*.linear mapping ¢ of @ into ® such that ¢(4%) = ¢(4)? for all self-adjoint A
in @ Asis known (see Stgrmer [10]), such a mapping is the sum of a *-homo-
morphism and a *-anti-homomorphism; more precisely, there is a central pro-
jection E in the W*-envelope of ¢(®) such that 4 — ¢(4)E is a *-homomorphism
and A — ¢(4)(I — E) is a *-anti-homomorphism.

CoROLLARY 2. Let ¢ be a linear mapping of the C*-algebra @ in the C*-algebra
® such that Y(U(R)) < U(®). Then, ¢ has a factorization $(4) = Up(4),
where U e U(®) and ¢ is a C*-homomorphism.
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Proof. We set U = y(I), ¢(A) = U 'Y(4). Then ¢ conserves unitaries
and ¢(I) = I. Application of Corollary 1 shows that ||¢|| = 1 and, in turn,
that ¢ is positive (and hence, a *-mapping).

It remains to show that ¢(4”) = ¢(4)? for all self-adjoint A. In any case,
by Kadison’s generalized Schwarz inequality, [6], one has ¢(4%) > ¢(4)°.
Applying this to a self-adjoint operator of the form U + U*(U ¢ U(®)), one
obtains after expansion ¢(U?) + #(U** > ¢(U)* + ¢(U*)*. The same in-
equality holds with U replacing U. But this reverses the preceding inequality
in U. Since, up to a scale factor, each self-adjoint A has the form U + U¥*,
we have proved that ¢(4%) = ¢(4)? for all self-adjoint A, and the corollary
is proved.

In particular, if M is a finite factor and ¢ is a unitary-conserving mapping
of M on itself, then the ¢ of the corollary is either a *-isomorphism or a *-anti-
isomorphism. For factors of type I, , this has been proved by Marcus [7].
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