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Abstract of the Dissertation

Estimation of Graphical Models: Convex

Formulations and Algorithms

by

Jinchao Li

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Lieven Vandenberghe, Chair

A Gaussian graphical model is a graph representation of conditional independence

relations among Gaussian random variables. A fundamental problem in the esti-

mation of Gaussian graphical models is the selection of the graph topology given

relatively small amounts of data. This problem is often solved via ℓ1-regularized

maximum likelihood estimation, for which many large-scale convex optimization

algorithms have been developed. In this thesis, we consider several extensions of

Gaussian graphical models and develop fast algorithms based on convex optimiza-

tion methods.

As a first extension, we consider the restricted sparse inverse covariance se-

lection problem where the set of zero entries of the inverse covariance matrix is

partially known and an ℓ1-norm penalization is applied to the remaining entries.

The proximal Newton method is an attractive algorithm for this problem since the

key computations in the algorithm, which include the evaluation of gradient and

Hessian of the log-likelihood function, can be implemented efficiently with sparse

chordal matrix techniques. We analyze the convergence of the inexact proximal

Newton method for the penalized maximum likelihood problem. The convergence

analysis applies to a wider class of problems with a self-concordant term in the ob-

jective. The numerical results indicate that the method can reach a high accuracy,

ii



even with inexact computation of the proximal Newton steps.

As a second extension, we consider Gaussian graphical models for time series,

with focus on the estimation of multiple time series graphical models with similar

graph structures or identical graph structure but different edge coefficients. We

formulate a joint estimation method for estimating multiple time series graphical

models simultaneously, with a group penalty on the edge coefficients for differ-

ent models. We apply the Douglas-Rachford algorithm to solve the estimation

problem for the joint model, and provide model selection methods for choosing

parameters. Both synthetic and real data (fMRI brain activity and international

stock markets) examples are provided to demonstrate the advantage of the joint

estimation method.

The last extension is the generalization of Gaussian graphical models for time

series to latent variables. We illustrate the effect of latent variables on the condi-

tional independence structure, and describe a Gaussian graphical model for time

series with latent variables. The Douglas-Rachford method is applied to this prob-

lem. Simulations with synthetic data demonstrate how the method recovers the

graph topology.
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CHAPTER 1

Introduction

A graphical model is a graph representation of the relation among a set of random

variables, where nodes are used to represent the variables and edges are used to

represent the relations among them. As graphical models have the advantage

of combining probability theory with graph theory, they have become a popular

statistical tool in areas including machine learning and statistics [FHT01, Bis06,

KF09, Mur12]. Based on whether the edges are directed or not, graphical models

can be classified as directed graphical models and undirected graphical models. A

typical type of directed graphical models is the Bayesian network, where the joint

distribution of the nodes is factorized via a directed acyclic graph (DAG) [Dar09].

It can facilitate the combination of prior knowledge and data, and is widely used

to learn causal relationships of the variables. It also can readily handle incomplete

data and is an effective method to deal with data over-fitting [Hec95] in Bayesian

network learning.

Undirected graphical models, compared with Bayesian networks, are undi-

rected and can be cyclic. Despite of the lack of directionality, the potential

cyclic feature makes undirected graphical models capable of tackling problems

that Bayesian networks cannot address. Thus, they have received wide applica-

tions in different areas including machine learning, computer vision, and statistics

[RH05]. Throughout the thesis, we focus on undirected graphical models. The

background of undirected graphical models will be provided for the purpose of

making our topic easier to understand, but only essentials parts are included. For
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more details, we refer readers to [Lau96, Jor99, Jor04, WJ08, KF09].

1.1 Static Gaussian graphical models

Among undirected graphical models, one simple example is a Gaussian graphical

model (GGM). Nodes in Gaussian graphical models are used to represent com-

ponents of an n-dimensional multivariate Gaussian random variable x ∼ N(0,Σ).

An edge exists between node xi and node xj if and only if xi and xj are condi-

tionally dependent, conditioned on all the other variables in the graph.

1.1.1 Covariance selection

In Gaussian graphical models, xi and xj are conditionally independent given all

the remaining components, if and only if (Σ−1)ij = 0. Therefore, the topology of

the graph is equivalent to the zero pattern of the inverse covariance matrix Σ−1

(also known as precision or concentration matrix). Based on the availability of

the graph topology as a priori knowledge, we consider three estimation problems:

graphical model estimation with a given topology, without a given topology, and

for the cases when the topology is partially known.

Covariance selection with a given pattern Given data samples following a

Gaussian distribution N(0,Σ), the inverse covariance matrix can be estimated by

maximum likelihood estimation (MLE),

maximize
N

2
log det Σ−1 − N

2
tr(CΣ−1), (1.1)

where C is the sample covariance matrix. Problem (1.1) has a trivial solution

Σ−1 = C−1 if C is nonsingular. However, C−1 is not a good estimate for Σ−1 if

the sample size is small. Even worse, C can be singular. A better estimation can

be obtained if the conditional independence structure E ((i, j) 6∈ E if they are
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conditionally independent) is given as a priori knowledge, whereby the estimation

problem can be formulated as:

minimize − log detX + tr(CX)

subject to Xij = 0, (i, j) 6∈ E,
(1.2)

where we have made the variable substitution X = Σ−1 to make problem (1.2)

convex. This is the well-known problem in Gaussian graphical models named

covariance selection [Dem72]. Problem (1.2) has a closed form solution for certain

sparsity patterns, but in general needs to be solved using iterative optimization

algorithms.

ℓ1-norm penalized sparse covariance selection The covariance selection

problem has received wide applications, but the sparsity pattern is usually un-

known. To address this issue, one approach is to iterate through all possible

patterns by exhaustive searches and select the best pattern based on model se-

lection criteria. But this method is computationally intractable, especially for

high-dimensional data. A better and more widely used approach is to add an

ℓ1-norm penalty in the objective function [FHT07, YL07, BEd08], i.e., to solve

minimize − log detX + tr(CX) + λ
∑

i 6=j

|Xij |. (1.3)

The ℓ1-norm penalty in (1.3) can be interpreted as imposing a Laplace distribution

prior onX , and by imposing the ℓ1-norm penalty, sparsity is introduced inX , thus

yielding a sparse inverse covariance matrix. The ℓ1-norm penalized problem (1.3)

is also well suitable for high dimensional data when the number of variables n is

greater than the sample size N . Problem (1.3) is not easy to solve using clas-

sical methods due to two reasons. First, the ℓ1-norm penalty in the objective

function is non-differentiable, so methods that require the evaluation of gradient

and Hessian can not be applied directly to this problem. Second, the optimiza-

tion variable is an n × n matrix. For a graph with n vertices, we need to solve

3



a problem with n2 optimization variables. If interior-point methods are applied

to this problem, O(n6) operations are needed, which is too costly for large scale

problems. Therefore, this problem has received wide interest from researchers and

many algorithms have been proposed in recent years, most of which are based on

block coordinate descent methods or first-order splitting methods. Some other al-

gorithms have been proposed to speed up the computation by exploiting the graph

structure [DVR08, MH12, HDRB12a, HSDR14]. For readers interested in more

details, we refer to [FHT07, BGd08, DGK08, SR09, Lu09, Lu10, LT10, WST10].

Restricted covariance selection In some scenarios, the zero pattern is par-

tially known, and we want to penalize the remaining entries with an ℓ1-norm

penalty to introduce sparsity on the unknown part of the zero pattern. In those

cases, we can formulate the problem by combining (1.2) and (1.3),

minimize − log detX + tr(CX) + λ
∑

i 6=j |Xij|
subject to Xij = 0, (i, j) 6∈ E.

(1.4)

We refer to (1.4) as restricted covariance selection. This problem has been ana-

lyzed by only a few authors [LT10, WST10], and known algorithms are limited

to relatively small problems (a few thousands variables). As one contribution of

this thesis, we reformulate (1.4) by extending the nonzero pattern E to a chordal

structure E ′ by chordal embedding [DVR08], and penalize the edges in E ′\E with

an indicator function. The proximal Newton method is an attractive algorithm

for the reformulated problem, since the key computations involved are the evalu-

ations of gradient and Hessian of the log-likelihood function, which can computed

efficiently with algorithms for chordal sparse matrices [VA14, AV15]. More details

will be provided in chapter 3.
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1.1.2 Covariance selection with latent variables

For many applications throughout science and engineering, one may not have

access to observations of all the relevant variables. That is, some variables are

hidden or latent. However, according to the definition of conditional indepen-

dence, whether node xi and node xj are conditionally independent is based on the

information of all the other variables. If some important variables are missing,

the estimation result will be inaccurate. The effect of latent variables on Gaus-

sian graphical models has been analyzed by Chandrasekharan et al. in [CPW10].

To be specific, let xo denote the observable variables and xh denote the hidden

variables. Then the covariance matrix of full variables xo ∪ xh can be denoted as

Σ =





Σoo Σoh

Σho Σhh



 ,

and the corresponding precision matrix can be denoted as

Σ−1 = K =





Koo Koh

Kho Khh



 .

Using Schur complement, we can get

Σ−1
oo = Koo −KohK

−1
hhKho.

In this problem, we are interested in estimating Koo, but due to the lack of obser-

vations of latent variables, the estimation result is Σ−1
oo . If we define S = Koo, and

L = KohK
−1
hhKho, then S is sparse if the corresponding graphical model is sparse,

and L is low rank if the number of latent variables is small compared to the

number of observable variables. With this variable substitution, the estimation

problem can be formulated as:

minimize − log det(S − L) + tr (C(S − L)) + γ‖S‖1 + λ tr(L)

subject to S − L ≻ 0, L � 0.

5



This model has been extended to autoregressive (AR) time series [ZS14]. The

details will be covered in chapter 5, where fast first-order algorithms for the time

series latent model will also be discussed.

1.1.3 Joint Gaussian graphical models

In some applications, we are interested in estimating multiple graphical mod-

els simultaneously, where the models share certain similarities with each other,

but each one has their own uniqueness. For instance, in the area of brain con-

nectivity network estimation [Fri11, QHLC14], the brain connectivity networks

are similar for people sharing common features like demographic and health sta-

tus, but vary based on each individual’s own status. In this scenario, estimat-

ing the brain network as a single one fails to exploit the fundamental differ-

ences among the graphs, while estimating them separately may overlook the

commonality of the networks. Thus, a joint graphical model is proposed to

estimating multiple graphical models with distinct but related conditions alto-

gether. Two classes of approaches have been discussed to encourage similarity

among graphs, i.e., an edge based approach and a node based approach. An

edge based approach [KSAX10, GLMZ11, ZW12, DWW14] assumes that the sim-

ilarity cross graphs is independent for each edge, and a node based approach

[MCH+12, TLM+14, MLF+14] assumes that the similarities and differences among

the graphs are introduced by nodes.

Let us assume there are K distinct graphs, where each one has N (k) obser-

vations. If we use X(k) to denote the inverse covariance matrix for condition

k and use C(k) to denote the empirical covariance matrix for condition k, the

log-likelihood takes the form

ℓ
(

X(1), . . . , X(K)
)

=
1

2

K
∑

k=1

N (k)
(

log detX(k) − tr(C(k)X(k))
)

.

6



Then the penalized maximum log-likelihood problem can be formulated as

minimize
X(1),...,X(K)

−ℓ
(

X(1) . . . , X(K)
)

+ γ
K
∑

k=1

∑

i 6=j

|X(k)
ij |+ h(X(1), . . . , X(K)),

where the first penalty is used to penalize the off-diagonal elements of K precision

matrices, and the penalty function h(X(1), . . . , X(K)) is taken to encourage shared

characteristics among X(k), k = 1, . . . , K. Two commonly used penalty terms

for the edge based approach are the fused graphical lasso (FGL) and the group

graphical lasso (GGL).

Fused graphical lasso The fused lasso penalty [TSR+05] takes the difference

between pairs of graphs and combines them in the following function:

h(X(1), . . . , X(K)) = λ
∑

k 6=k′

∑

i,j

|X(k)
ij −X

(k′)
ij |,

where λ is a nonnegative tuning parameter. When λ is large, many edge coef-

ficients will be identical across graphs. Therefore, FGL penalizes the difference

across classes aggressively, and it encourages not only structure similarity, but

also similar edge values.

Group graphical lasso The group lasso penalty [YL07] penalizes the edges

at the same position across graphs altogether while the penalization of edges at

different positions are conducted independently. For edges at the same position

in different graphs, the ℓ2-norm penalty is used. This can be characterized as

h(X(1), . . . , X(K)) = λ
∑

i,j

√

√

√

√

K
∑

k=1

(X
(k)
ij )2.

Compared with FGL, GGL penalizes the edges less aggressively, and focuses on

introducing similar structures instead of similar edge values.
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1.2 Gaussian graphical models for time series

The Gaussian graphical model can be generalized to stationary Gaussian time

series to explain the relationships between different sequences. As in the static

Gaussian graphical model, each node denotes one component of time series vari-

ables, and each absent edge means the corresponding two variables are condition-

ally independent.

To extend graphical models, we first need to consider the definition of con-

ditional independence for time series. In the definition given in [Bri01, Dah00],

conditional independence is based on the whole temporal sequence of all the other

random variables. For a multivariate Gaussian time series sequence x(t), whether

xi(t) and xj(t) are conditionally independent is based on the correlation of these

two components after removing the linear effects of the rest of the time series. In

other words, xi(t) and xj(t) are conditionally independent if ǫi(t) and ǫj(t) are

independent, where ǫi(t) and ǫi(t) mean optimal linear prediction residuals using

the remaining components except i and j. It has been shown in [Bri01, Dah00]

that two components xi(t) and xj(t) are conditionally independent if and only if

(

S(ω)−1
)

ij
= 0, (1.5)

for all ω, where S(ω) means the spectral density. Therefore, the structure of the

graph can be estimated by analyzing the zero pattern in the inverse spectral ma-

trix. Based on (1.5), nonparametric methods have been used to analyze Gaussian

graphical models for time series in [BJ04]. A more common approach is based

on parametric methods. Let us consider a Gaussian time series x(t) following the

autoregressive (AR) model,

x(t) = −
p
∑

k=1

Akx(t− k) + w(t), (1.6)

where x(t) ∈ Rn, w(t) ∼ N(0,Σ) is Gaussian white noise, and p is the order of

the autoregressive process. In [SDV10], it has been shown that (1.5) is equivalent
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to
(

p−k
∑

l=0

AT
l Σ

−1Al+k

)

ij

= 0, k = 0, . . . , p.

Thus, the conditional independence constraints can be expressed in terms of Σ and

Ak, k = 1, . . . , p. If we apply penalized conditional maximum likelihood estimation

to (1.6) [SDV10, SV10], we can obtain

minimize − 2 log detB0 + tr(CBTB) + h(BTB), (1.7)

where h is a penalty function for introducing sparsity for the conditional indepen-

dence structure and

B =
[

B0 B1 · · · Bp

]

=
[

Σ−1/2 Σ−1/2A1 · · · Σ−1/2Ap

]

.

If we substitute X = BTB, (1.7) becomes a convex problem. The relaxation

is exact if the empirical sample matrix C is block Toeplitz. In this thesis, we

consider two extensions of (1.7): joint graphical models for time series and latent

graphical models for time series. The details will be discussed in chapter 4 and

chapter 5.

1.3 Outline of the thesis and contributions

In chapter 2, we provide background on convex optimization algorithms that will

be used throughout the thesis. The basics of monotone operators, proximal oper-

ators, duality and optimality condition will be provided. We also describe first-

order splitting methods including Douglas-Rachford method applied to the primal

form, and primal-dual form.

In chapter 3, we consider the cases when the zero pattern is partially known.

We start the chapter by introducing Gaussian graphical models and extend the

model to the restricted covariance selection problem. Then, we provide back-

ground on chordal graphs, and reformulate the restricted covariance selection

9



problem via chordal extension. Then we describe the inexact proximal Newton

algorithm for self-concordant functions, and provide convergence analysis with

inexact proximal Newton steps. Lastly, we apply the inexact proximal Newton

algorithm to the restricted covariance selection problem.

In chapter 4, we extend the work of joint Gaussian graphical models to time

series, where a group penalty is utilized to force edge similarity among different

graphs. We apply Spingarn’s method to this model and analyze model selection

methods based on synthetic data. Experiments based on fMRI brain scanning

datasets and international stock markets datasets are provided to demonstrate

the performance of joint model.

In chapter 5, we consider the scenarios when latent variables exist in the time

series graphical model. We discuss the impact of latent variables on the connec-

tivity of the graph, and provide an extension from latent static graphical models

to time series graphical models. The Douglas-Rachford method is applied to this

model. Experiments based on synthetic data are provided to illustrate the effec-

tiveness of the model.
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CHAPTER 2

Optimization Algorithms

In this chapter, we review first-order splitting algorithms for solving general convex

optimization problems with the form:

minimize f(x) + g(Ax), (2.1)

where both f and g are closed convex functions. We focus on methods that are

suitable for problems of this form when f and g have inexpensive proximal opera-

tors (see section 2.2) and A is a structured matrix. We are interested in problems

in form (2.1) for two reasons. For one reason, all problems discussed in this the-

sis, and many problems in statistics, machine learning and signal processsing can

be formulated as in (2.1) with simple f , g and A. Another reason is that first-

order splitting methods for (2.1) have been extensively studied in recent years.

In most problems, f(x) is usually defined to introduce data fidelity such as the

mean squares error term in lasso type problems or the log-likelihood function in

maximum likelihood estimation problems [Tib96, FHT08, Tib96, Zou06]. g(x)

is usually a regularization term such as ℓ1, ℓ2, ℓ∞ norms or combinations. For

complicated problems where there is no direct inexpensive operator such as the

group lasso penalty [YL06, FHT10, MvdGB08] or the elastic net penalty [ZH05],

auxiliary variables can be introduced to transform the problems to (2.1).

We are interested in first-order splitting algorithms for several reasons. First,

the solution is not required to reach high accuracy for many large scale problems,

so the convergence rate of first-order algorithms is good enough. Second, the com-

putation cost of each iteration in first-order algorithms is cheap since it does not
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need to evaluate Hessians, which is expensive especially for large scale problems.

Most importantly, splitting methods can be applied to most problems since f and

g are not required to be differentiable. For the cases where f or g does not have

simple proximal operators, auxiliary variables can be introduced to split problems

into a sequence of sub-problems with simple proximal operators.

The rest of this chapter is organized as follows. In section 2.1, we review the

fundamentals of duality and optimality conditions. In section 2.2, we provide the

background of monotone operators and proximal operators. Then, in section 2.3,

we discuss first order splitting methods with emphasis on the Douglas-Rachford

splitting method. We also provide examples of proximal operators needed in the

thesis, and refer readers to [BPC+11, PB13] for more details.

2.1 Duality and optimality conditions

In general, splitting methods can be applied to the primal form, dual form, and

optimality conditions (primal-dual form) of (2.1). Therefore, in this section we

give a review of duality and optimality conditions.

Subgradient and subdifferential g is a subgradient of a convex function f at

x ∈ dom f if and only if

f(y) ≥ f(x) + gT (y − x), ∀y ∈ dom f.

The subdifferential ∂f(x) of f at x is defined as the set of all subgradients:

∂f(x) = {g|f(y) ≥ f(x) + gT (y − x), ∀y ∈ dom f}.

The set ∂f(x) is a closed convex set [Roc70], which can be verified directly based

on the definition of closed convex set.
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Conjugate function The conjugate of function f is defined as

f ∗(y) = sup
x∈dom f

(

yTx− f(x)
)

.

For a closed and convex function f , y ∈ ∂f(x) is equivalent to x ∈ ∂f ∗(y) [Roc70].

Duals and optimality conditions By taking the sub-differential, the optimal-

ity condition of (2.1) can be expressed as

0 ∈ ∂f(x) + AT∂g(Ax). (2.2)

In order to obtain the dual form and optimality condition, we first reformulate

(2.1) as

minimize f(x) + g(y)

subject to Ax = y.
(2.3)

The Lagrangian of (2.3) is

L (x, y, z) = f(x) + g(y) + zT (Ax− y).

By minimizing the Lagrangian over (x, y), we can obtain the dual function

inf
x,y
L (x, y, z) = − sup

x,y

(

(−AT z)Tx− f(x) + zT y − g(y)
)

= −f ∗(−AT z)− g∗(z),

(2.4)

where the infimum is achieved under the condition

−AT z ∈ ∂f(x)

z ∈ ∂g(y) ⇔ y ∈ g∗(z).
(2.5)

Thus the dual problem can be formulated as

maximize −f ∗(−AT z)− g∗(z), (2.6)

with the corresponding optimality condition as

0 ∈ −A∂f ∗(−AT z) + ∂g∗(z). (2.7)

The constraint Ax = y and (2.5) form the primal-dual optimality conditions:

0 ∈





0 AT

−A 0









x

z



+





∂f(x)

∂g∗(z)



 . (2.8)
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2.2 Monotone operators and proximal operators

In this section, we provide the background of monotone operators and proximal

operators. This is useful for introducing the Douglas-Rachford splitting algorithm

in section 2.3.

2.2.1 Monotone operators

For a multivalued operator F that maps x ∈ Rn to a set F (x) ⊆ Rn, the domain

is defined as domF = {x ∈ Rn|F (x) 6= ∅}, and the graph is defined as gr(F ) =

{(x, y) ∈ Rn × Rn|x ∈ domF, y ∈ F (x)}. The operator F is monotone if and

only if

(y − ŷ)T (x− x̂) ≥ 0, ∀x, y ∈ domF, y ∈ F (x), ŷ ∈ F (x̂).

F is a maximal monotone operator if and only if its graph is not a strict subset of

the graph of another monotone operator. One example of monotone operators is

the gradient ∇f for a differentiable convex function f . This can be easily verified

as follows. Based on the convexity of f ,

f(x) ≥ f(y) +∇f(y)T (x− y) and f(y) ≥ f(x) +∇f(x)T (y − x) .

Combining these two inequalities gives

(∇f(x)−∇f(y))T (x− y) ≥ 0, ∀x, y ∈ dom f.

Therefore, we can see ∇f(x) is a monotone operator.

Resolvent The resolvent of the operator F is defined as (I + λF )−1. If F is a

maximal monotone operator, the resolvent (I+ tF )−1(x) is single valued mapping

defined at all points.
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2.2.2 Proximal operators

The proximal operator of a convex function f is defined as

proxtf(x) = argmin
u

(

f(u) +
1

2t
‖u− x‖22

)

. (2.9)

proxtf (x) and the subdifferential operator ∂f are related as

proxtf = (I + t∂f)−1.

Thus, we can see that proximal operator proxtf(x) is the resolvent of the subdif-

ferential operator ∂f with parameter t > 0, and the resolvent is a single valued

mapping. Some properties of proximal operators are listed below.

Separable sum If f is separable across multiple variables,

f(x) =
n
∑

i=1

fi(xi),

where x = (x1, . . . , xn). Then

proxtf (x) =











proxtf1(x1)
...

proxtfn(xn)











.

Moreau decomposition For t > 0,

x = proxtf (x) + tproxt−1f∗(x/t).

This rule, known as the Moreau decomposition, shows that the proximal operator

of f ∗ can be computed as easily as the proximal operator of f [PB13]. This means

that, if one of the two proximal operators f ∗ and f is easy to evaluate, we can

always evaluate the other one efficiently.
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Some examples of f

• Indicator functions. Suppose f(x) is an indicator function of a closed set

C: f(x) = 0 if x ∈ C, infinity otherwise. Then proxtf (x) is the Euclidean

projection of x on C, which we denote as PC(x).

Euclidean ball C = {x | ‖x‖2 ≤ 1}:

PC(x) =











x/‖x‖2, ‖x‖2 > 1

x, ‖x‖2 ≤ 1.

ℓ1-norm ball C = {x | ‖x‖1 ≤ 1}:

PC(x)i =



























xi − t, xi > t

0, −t ≤ xi ≤ t

xi + t, xi < −t,

where t = 0 if ‖x‖1 ≤ 1; otherwise t is the solution of the equation
n
∑

i=1

max{|xi| − t, 0} = 1.

Positive semidefinite cone C = Sn
+ :

PC(X) =

n
∑

i=1

max{0, λi}qiqTi ,

where λi, i = 1, . . . , n, are the eigenvalues from the eigenvalue decom-

position X =
∑n

i=1 λiqiq
T
i .

Affine set Ax = y :

PC









x

y







 =





I

A



 (I + ATA)−1





I

A





T 



x

y





• ℓ1-norm. For the case f(x) = ‖x‖1, proxf is a soft-thresholding operator:

proxtf(x)i =



























xi − t, xi > t

0, −t ≤ xi ≤ t

xi + t, xi < −t.
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• General norms. For a general norm f = ‖x‖, the conjugate of f is an

indicator function of a unit dual norm ball:

f ∗(y) =











0, ‖y‖∗ ≤ 1

+∞, ‖y‖∗ > 1.

By applying Moreau decomposition,

proxtf (x) = x− tproxt−1f∗(x/t)

= x− tPC(x/t),

where PC(x) means projection onto the dual norm ball C = {x | ‖x‖∗ ≤ 1}.
If f(x) = ‖x‖2, C = {x | ‖x‖2 ≤ 1}. If f(x) = ‖x‖∞, C = {x | ‖x‖1 ≤ 1}.

• − log detX . The proximal operator aims to solve

minimize
X+

− log detX+ +
1

2t
‖X+ −X‖2F .

By taking the derivative over X+, it is equivalent to solving

−(X+)−1 +
1

t
(X+ −X) = 0. (2.10)

As we seeX can be decomposed asX = QΛQT by eigenvalue decomposition,

with Λ = diag(λ1, . . . , λn) and Q
TQ = QQT = I. Multiplying (2.10) by QT

on the left and by Q on the right gives

X̃+ − t(X̃+)−1 = Λ,

where X̃+ = QTX+Q. The corresponding solution can be constructed as

X̃+
ii =

λi +
√

λ2i + 4t

2
.

Thus the proximal operator can be formulated as proxtf(X) = QX̃+QT .
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2.3 First-order splitting methods

A closed convex function f is minimized by x∗ if x∗ ∈ ∂f . This is equivalent to

x∗ = (I + t∂f)−1 = proxtf (x
∗). If f has a simple proximal operator, the proximal

point method can be used for minimizing f ,

x+ = proxtf (x).

This method is of interest if the proximal operator evaluations are much easier

than minimizing f directly. For composite problems with the form f(x) + g(Ax),

the proximal operator for the full term is expensive, while each of f and g has an

inexpensive proximal operator. This type of problems can be solved by splitting

methods, where in each iteration, the proximal operators proxtf and proxtg can be

evaluated independently based on a splitting scheme. One well-known splitting

method is the Douglas-Rachford splitting method [EB92, CP07]. That is, if we

aim to obtain x satisfying 0 ∈ F (x) for an operator F , the Douglas-Rachford

splitting method first splits F (x) = A(x)+B(x), where A and B are two maximal

monotone operators with inexpensive resolvent evaluations, and then follows the

iterations:

x+ = (I + tB)−1(z)

y+ = (I + tA)−1(2x+ − z)

z+ = z + y+ − x+.

(2.11)

Based on the method of applying the Douglas-Rachford algorithm, we will dis-

cuss Spingarn’s method in section 2.13 and the primal-dual Douglas-Rachford

algorithm in section 2.3.2.

2.3.1 Spingarn’s method

Problem (2.1) can be formulated as

minimize f(x) + g(y) + δV(x, y), (2.12)
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where δV is an indicator function defined as

δV(x, y) =











0, (x, y) ∈ V

+∞, otherwise,

and V = {(x, y) | Ax = y}. By applying the Douglas-Rachford splitting scheme

(2.11) to (2.12), the algorithm can be formulated as

x = proxtf (u)

y = proxtg(v)




x̂

ŷ



 =





I

A



 (I + ATA)−1





I

A





T 



2x− u

2y − v





u+ = u+ x̂− x

v+ = v + ŷ − y.

(2.13)

The third equality in (2.13) is obtained by evaluating the proximal operator of

the indicator function δV(x, y), which can be characterized by PV(2x− u, 2y− v),

a projection of (2x − u, 2y − v) onto the subspace V. This update scheme is

also known as Spingarn’s method. This method is efficient if proxtf , proxtg, and

(I + ATA)−1 can be evaluated efficiently.

Residuals When the algorithm (2.13) converges, if we use the notations x =

proxtf (u), y = proxtg(v), x̃ = 1
t
(u − x) and ỹ = 1

t
(v − y), then they satisfy the

optimality conditions of (2.12),

(x, y) ∈ V, (x̃, ỹ) ∈ V⊥, and (x̃, ỹ) ∈ (∂f(x), ∂g(y)) ,

where V⊥ is the complement of subspace V. Therefore for iteration k, the primal

residual can be defined as

r(k)p = PV

(

x(k), y(k)
)

−
(

x(k), y(k)
)

and dual residual can be defined as

r
(k)
d = −PV

(

x̂(k), ŷ(k)
)

.
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With this definition of primal and dual residuals, for iteration k,

(

x(k), y(k)
)

+r(k)p ∈ V,
(

x̂(k), ŷ(k)
)

+r
(k)
d ∈ V⊥,

(

x̂(k), ŷ(k)
)

∈
(

∂f(x(k)), ∂g(y(k))
)

.

(2.14)

Moreover, we also define the primal relative residual as

‖r(k)p ‖2
max{1, ‖ (x(k), y(k)) ‖2}

,

and the dual relative residual as

‖r(k)d ‖2
max{1, ‖ (x̂(k), ŷ(k)) ‖2}

.

2.3.2 Primal-dual method

If we apply the Douglas-Rachford splitting scheme (2.11) to the optimality con-

dition (2.8), we can formulate the primal-dual Douglas-Rachford algorithm as:

x = proxtf (u)

z = proxtg∗(v)

= v − tproxg/t(v/t)




w

y



 =





I tAT

−tA I





−1 



2x− u

2z − v





u+ = u+ w − x

v+ = v + y − z.

The inverse in step 3 can be written as




I tAT

−tA I





−1

=





0 0

0 I



+





I

tA



 (I + t2ATA)−1





I

−tA





T

=





I 0

0 0



+





−tAT

I



 (I + t2AAT )−1





tAT

I





T

.

The primal-dual Douglas-Rachford algorithm is efficient if proxtf , proxg/t, and

(I + t2ATA)−1 (or (I + t2AAT )−1) can be evaluated efficiently.
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Residual The primal and dual residuals are defined as





rd

rp



 =
1

t





I tAT

−tA I









x− w

z − y



 .

To see this, we have





rd

rp



 =
1

t





I tAT

−tA I









x

z



− 1

t





2x− u

2z − v





=





0 AT

−A 0









x

z



− 1

t





x− u

z − v





∈





0 AT

−A 0









x

z



+





∂f(x)

∂g∗(z)



 .

Thus, if rd = 0 and rp = 0, the optimality condition is satisfied.
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CHAPTER 3

Gaussian Graphical Models

The Gaussian graphical model (GGM) [Lau96, Dar09, KF09], also referred to

as Gaussian Markov random field (GMRF), is a representation of conditional

independence relations of multivariate Gaussian random variables x ∼ N(0,Σ) as

an undirected graph. To be specific, in a Gaussian graphical model, nodes are

used to represent random variables, and edges are used to represent conditional

dependence between variables. There is no edge between vertices xi and xj if and

only if xi and xj are conditionally independent given the other variables. This can

be characterized by the inverse covariance matrix Σ−1: xi and xj are conditionally

independent if and only if (Σ−1)ij = 0. Therefore identifying the graph topology

is equivalent to identifying the sparsity pattern in Σ−1.

Gaussian graphical models have wide applications in various areas including

computer graphics, computer vision and machine learning [RH05]. They also serve

as a useful tool for analyzing complex biological systems, information extraction,

communication networks, among others [BB01, Bis06, FHT01]. As an important

statistical tool, Gaussian graphical models have been studied extensively over the

past decade, with focus on modeling methods and efficient algorithms [MB06,

FHT08, HDRB12b]. We will review them in detail in section 3.1.

In the existing literature about Gaussian graphical models, most research has

focused on estimating Gaussian graphical models with a given sparsity pattern

[Dem72], or with an ℓ1-norm penalty in the objective function [FHT01, MB06,

FHT08]. In this chapter, we focus on problems where the sparsity pattern is
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partially known, and we aim to estimate the sparse graphical model given this

prior knowledge. This special problem has been analyzed only in a few papers

[Lu10, WST10, LT10], and we refer to this problem as restricted Gaussian graph-

ical model throughout the thesis. The restricted Gaussian graphical model is

interesting for two reasons. First, given the partial knowledge of the sparsity pat-

tern, the number of parameters is reduced and therefore the estimation accuracy

is improved. Second, fast algorithms can be developed by taking advantage of the

graph structure. For example, if the nonzero pattern is close to a block-diagonal

pattern, a divide-and-conquer procedure can be applied to facilitate the estimation

[HDRB12b].

Among different types of sparsity patterns, we are particularly interested in

chordal structure. This is because chordal sparse matrix computation techniques

enable us to evaluate sparse Cholesky decomposition, projected matrix inverse

efficiently. For the log-determinant term log detX , the gradient, Hessian and

inverse Hessian can also be evaluated efficiently [ADV13]. Most importantly,

general patterns can also enjoy the fast computations of chordal sparse matrix via

chordal extension [DVR08].

The proximal Newton method [WST10, HSDR14] is attractive for estimating

restricted Gaussian graphical models. This is because the most expensive compu-

tations involved are the evaluations of projected gradient and Hessian, and they

can be computed efficiently with chordal sparse matrix techniques. More details

will be provided in section 3.3.

The rest of this chapter is organized as follows. In section 3.1, we review

the definition of conditional independence and estimation methods for Gaussian

graphical models. In section 3.2, we provide the background of chordal structure

and introduce a restricted Gaussian graphical model via chordal embedding. In

section 3.3, we introduce the proximal Newton algorithm [LSS12, LSS14, ST15],

extend the algorithm to self-concordant functions with inexact proximal Newton
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steps, and provide the corresponding convergence analysis. Finally, we provide

simulation results for the restricted Gaussian graphical model using the inexact

proximal Newton algorithm.

3.1 Gaussian graphical models

In this section, we will present the definition of conditional independence, and

introduce the restricted Gaussian graphical model.

3.1.1 Conditional independence

For an n-dimensional random variable x, the components xi and xj are condition-

ally independent if and only if

p(xi, xj |xk) = p(xi|xk)p(xj |xk), for k 6= i, j.

If x follows a Gaussian distribution N(0,Σ), the conditional independence relation

can be characterized by the inverse covariance matrix Σ−1 (also known as precision

matrix or concentration matrix) [Dem72]:

(

Σ−1
)

ij
= 0, iff xi and xj are conditionally independent. (3.1)

To see this, if we define the entry (i, j) of the precision matrix Σ−1 as σij , the

conditional probability follows

p(xi, xj |xk, k 6= i, j) ∝ 1

(2π)n/2(det Σ)1/2
exp{σiix2i + σjjx

2
j + 2σijxixj}. (3.2)

If σij = 0, we can derive p(xi, xj|xk) = p(xi|xk)p(xj |xk) from (3.2), and thus xi

and xj are conditionally independent.

The conditional independence property of Gaussian graphical models can also

be obtained from the perspective of Schur complement. First let y define (xi, xj),
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and z define the remaining components, then Σ can be expressed as

Σ = P





Σyy Σyz

ΣT
yz Σzz



P T ,

where P is a permutation matrix that shifts components xi and xj to the top-left

corner. The inverse of Σ can be written as

Σ−1 = P





(Σyy − ΣyzΣ
−1
zz Σ

T
yz)

−1 ∗
∗ ∗



P T = P





(Σy|z)
−1 ∗

∗ ∗



P T ,

where in the second equality we have used the covariance property of conditional

distribution for Gaussian random variables Σy|z = Σyy −ΣyzΣ
−1
zz Σ

T
yz . If xi and xj

are conditionally independent, Σy|z is diagonal. This result can be expressed as

in (3.1) in terms of Σ−1.

3.1.2 Covariance selection

Given N independent and identically distributed (i.i.d.) samples {x1, . . . , xN}
from an n-dimensional multivariate Gaussian distribution N(0,Σ), the likelihood

can be expressed as

p(x; Σ) =
1

((2π)n det Σ)N/2
exp

(

−1

2

N
∑

i=1

xTi Σ
−1xi

)

. (3.3)

In order to estimate the unknown variable Σ, we provide two approaches: max-

imum likelihood estimation (MLE) and minimization of Kullback-Leibler diver-

gence.

Maximum likelihood estimation The log-likelihood function of (3.3) is

log p(x; Σ) = −N
2
log det Σ− 1

2

N
∑

i=1

xTi Σ
−1xi −

N

2
n log(2π). (3.4)

The maximum likelihood estimation (MLE) problem is formulated as

maximize
N

2
log det Σ−1 − N

2
tr(CΣ−1), (3.5)
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where C = 1
N

∑N
i=1 xix

T
i is the sample covariance matrix. From (3.5), we can see

that if C is nonsingular, C−1 is the maximum likelihood estimate of the inverse

covariance matrix.

Kullback-Leibler divergence An alternative approach is by minimizing the

Kullback-Leibler divergence DKL(p ‖ q) of p(x) ∼ N(0, C) from q(x) ∼ N(0,Σ).

The Kullback-Leibler divergence can be formulated as

DKL(p ‖ q) =
∫

p(x) log
p(x)

q(x)
dx

=

∫

p(x)

[

1

2
log

(det Σ)

(detC)
− 1

2
xTC−1x+

1

2
xTΣ−1x

]

dx

=
1

2
log

(det Σ)

(detC)
− 1

2
tr{E[xxT ]C−1}+ 1

2
E[xxTΣ−1]

=
1

2

[

log
det Σ

detC
− n+ tr

(

CΣ−1
)

]

.

(3.6)

By minimizing (3.6), we can see the problem turns into (3.5).

In practice, one may not use C−1 as the estimate for Σ−1. For one reason, C is

required to be non-singular, and MLE is not a robust estimator of Σ−1. Another

reason is that one may want to impose some prior structural conditions on Σ−1

(3.1), and we only need to focus on structural nonzero entries. With the prior

knowledge of the sparsity pattern, the number of parameters to be estimated is

reduced, and thus the estimation accuracy can be improved. This problem is often

referred to as covariance selection [Dem72], which can be formulated as:

minimize tr(CΣ−1) + log det Σ

subject to (Σ−1)ij = 0, for (i, j) ∈ Ē,
(3.7)

where the sets

E ⊆ {(i, j) | i, j ∈ {1, 2, . . . , n}, i > j},

Ē = {(i, j) | i, j ∈ {1, 2, . . . , n}, i > j} \ E

are a subset of the off-diagonal index pairs and its complement. We refer to the

set E, which contains the positions of the possibly nonzero entries in Σ−1, as the
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sparsity pattern of Σ−1. Problem (3.7) includes an implicit constraint that the

variable Σ is positive definite. Dempster observed that the problem is convex if

X = Σ−1 is used as the optimization variable. After this change of variables, the

covariance selection problem can be written as a convex optimization problem

minimize tr(CX)− log detX + ψ(X), (3.8)

where ψ is the indicator function of the sparsity pattern:

ψ(X) =
∑

(i,j)∈Ē

δ(Xij), δ(u) =







0 u = 0

∞ u 6= 0.
(3.9)

With structurally restricted zeros, the number of free variables are reduced and

thus the estimation variance can be reduced.

3.1.3 ℓ1-norm penalized covariance selection

In most applications, the sparsity pattern is unknown. One approach is to enu-

merate all possible sparsity patterns, and use information-theoretic criteria such

as Akaike or Bayes information criteria (AIC or BIC) to select the model. Unfor-

tunately, this approach is computationally intractable for high-dimensional data.

To solve this issue, extensive research has been conducted over the past decade.

Meinshausen et al. [MB06] proposed the method of neighbor selection by fitting

a lasso model for each variable with other variables as predictors. A more popu-

lar approach is to add an ℓ1-norm penalty to the log-likelihood objective, i.e., to

solve (3.8) with

ψ(X) = λ
∑

i>j

|Xij |. (3.10)

Theoretically, this approach is reasonable since the graph structure Σ−1 is sparse

for most applications, especially for applications with high-dimensional data (n≫
N) where only a few components are conditionally independent.

Problem (3.7) with the penalty in (3.10) has received extensive interest in

recent years, and many optimization algorithms have been proposed. Among
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different approaches, one type of algorithms is based on block coordinate de-

scent (BCD) method. The main idea is to optimize one row or column of the

matrix sequentially while fixing the remaining entries for each iteration. For ex-

ample, Friedman et al. [FHT07] and Banerjee et al. [BGd08] applied the BCD

scheme to the dual problem of (3.7), and solved the subproblem by a coordinate

decent method (glasso) and an interior-point method (COVSEL) respectively.

Instead of working on the dual problem, Scheinberg and Rish [SR09] proposed

a greedy coordinate ascent method (SINCO) applied to the primal problem di-

rectly. In addition to BCD based approaches, another type of algorithms is based

on first-order methods. d’Aspremont [dBG08] applied Nesterov’s optimal first-

order method [Nes05]; Yuan [Yua09], Scheinberg et al. [SMG10] and Goldfarb et

al. [GMS13] applied the scheme of alternating direction method; all of these meth-

ods are applied to the primal problem. As an alternative, Duchi et al. [DGK08]

solved the dual problem using a projected gradient method, and Lu [Lu09, Lu10]

using Nesterov’s optimal first-order method [Nes05]. Another major type of ap-

proaches is based on interior point methods with fast computation of (inexact)

Newton steps [LT10, WST10, HDRS11, HSDR14]. Some other authors also seek

efficient methods by decomposing the problem based on the sparsity structure

[DVR08, MH12, HDRB12a].

3.1.4 Restricted sparse inverse covariance selection

For some applications, the structural pattern is partially given, and we aim to esti-

mate the sparse graph structure based on the given constraints. This is equivalent

to the combination of functions (3.9) and (3.10),

ψ(X) =
∑

(i,j)∈Ē

δ(Xij) + λ
∑

(i,j)∈E

|Xij |. (3.11)

With the choice of ψ in (3.8), the off-diagonal entries of X indexed by Ē are

constrained to be zero; the remaining entries are penalized by an ℓ1-norm penalty.
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The constraints on the entries in Ē then represent the prior information about

the sparsity pattern. For example, if the random variable contains consecutive

values of a vector autoregressive process with lag r, then the inverse covariance

matrix is block-banded with half-bandwidth r. Incorporating prior information

of this kind reduces the number of parameters to be estimated in the maximum-

likelihood problem, and hence the number of samples needed for a good estimate.

We will refer to problem (3.8) with the penalty function (3.11) as restricted sparse

inverse covariance selection. This problem has been analyzed in [Lu10, WST10,

LT10]. However, they did not exploit the fast computation feature of nonzero

structure, and their algorithms can not be applied for very large scale problems

(for synthetic examples with n = 1000, the simulation takes more than one hour

to converge). In the rest of this chapter, we will review background of chordal

graphs, provide the proximal Newton method for self-concordant functions with

time complexity analysis, and show that fast computation methods for chordal

structure can be applied to restricted sparse inverse covariance selection to improve

the time complexity.

3.2 Chordal sparsity patterns

In this section, we describe important properties about chordal structure. For

readers who wish to know more details about chordal structure, we refer to [BP93,

DVR08, ADV13, VA14].

3.2.1 Chordal graph

Let G = (V,E) be a connected undirected graph where V is the set of vertices

and E is the set of edges. A symmetric matrix X can be represented by a graph

G = (V,E), where an edge exists between two vertices vi and vj if and only if

{i, j} 6∈ E. A graph G is chordal if every cycle of four or more vertices has a
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Figure 3.1: The graph (a) is a chordal graph because all cycles of length four or

greater have a chord. The graph (b) is a nonchordal graph because there is a cycle

of length four (1-2-3-4) without a chord.

chord, where a chord means an edge that joins two nonconsecutive vertices of the

cycle (as shown in Fig. 3.1). We refer to the corresponding matrix as a chordal

matrix.

A perfect elimination ordering (PEO) [DR83] is an ordering v1, . . . , vn of the

vertices of the graph such that, if we eliminate the vertices in the order of PEO

and add edges to all following vertices that are adjacent to the current eliminated

vertex, and follow this procedure in the ordering at each elimination step, then a

PEO generates no extra edge in the process, a process called elimination game. If

a graph is chordal, it has a perfect elimination ordering, and it can be efficiently

computed by the maximum cardinality search (MCS) algorithm [TY84, BP93] in

linear time. For this reason, chordal graphs are also known as perfect elimination

graphs.

Cholesky factorization For a sparse positive definite matrix X , the Cholesky

factorization PXP T = LLT (P is a permutation matrix and L is lower triangu-

lar) can be implemented by screening the sparsity patterns of L + LT (symbolic

Cholesky factorization), and computing the corresponding nonzero entries of the

Cholesky factor L. In general, the process of Cholesky factorization of a sparse

positive definite matrix generates some fill-in (i.e., added edges) in the graph of
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X . However, if the matrix X has a chordal sparsity pattern, it can be factored

with zero fill-in following the perfect elimination ordering, i.e., L + LT has the

same sparsity pattern as PXP T . Therefore, we only need to screen the sparsity

pattern of PXP T instead of L + LT [BP93]. For the non-chordal case, we add

fill-in to the graph to make it chordal by computing a symbolic Cholesky factor-

ization (implicitly) following the order of elimination tree (a tree where the parent

of node k is the row index j of the first nonzero below the diagonal of column k

of X , if all nodes are labeled from 1 to n), a process called chordal embedding.

The amount of fill-in generally depends on the ordering of the nodes, and with

different orderings we can obtain different chordal embeddings.

One important algorithm to calculate the entry values in the Cholesky factor

L is the multifrontal method, which is a recursion on the elimination tree. The

performance of the multifrontal method can be improved by combining the vertices

into supernodes and applying block eliminations for the corresponding columns.

The supernodes are closely related to cliques in the graph, where a clique is a

subset of nodes in G such that all pairs of vertices are adjacent. A maximal clique

of G is a clique that cannot be extended by including one more adjacent vertex,

and thus it is not a subset of another larger clique. For the chordal matrix X , if

we use Ji to denote the union of index i and the row indices of the nonzero entries

below the diagonal in column i of L, then it is shown that Ji is a clique [BP93].

Based on the elimination tree, we can construct the supernodal elimination tree by

grouping together columns with the same nonzero structure into cliques Ji’s, and

each clique can be treated as a dense matrix for computation. The supernodal

elimination tree is also referred to as clique tree or junction tree [Dar09]. The

sparse matrix, elimination tree and clique for band matrix are shown in Fig. 3.2.

Similar to the multifrontal algorithm, the supernodal multifrontal algorithm is a

recursion on the clique tree. More details can be found in [DVR08].
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Figure 3.2: Left: Sparsity pattern of a 10 × 10 band matrix with bandwidth 5.

Middle: Elimination tree of the band matrix. Right: Clique tree of the band

matrix.

3.2.2 Computations of log-determinant function

For a matrix X ∈ Sn
E, where Sn

E denotes the space of n × n symmetric matrices

with sparsity pattern E, chordal sparse matrix computations can be applied to

evaluate log detX and its derivatives. To evaluate log detX at a given X ≻ 0, we

compute a sparse Cholesky factorization

X = P TLLTP.

Adding the logarithms of the diagonal elements of L gives φ(X) = −2
∑

i logLii.

Given the Cholesky factorization, the gradient and Hessian can also be computed

by algorithms that are closely related to the multifrontal algorithm for sparse

Cholesky factorization and use similar recursions on an elimination tree or su-

pernodal elimination tree [ADV13, VA14]. The gradient of φ, as a function from

Sn
E to R, is given by

∇φ(X) = PE(C −X−1),
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where PE denotes projection on Sn
E. Computing the gradient therefore requires

computing the entries of X−1 on the diagonal and in positions (i, j) ∈ E, but

not any of the other entries. For a chordal pattern, this projected inverse can

be computed by a recursion on the elimination tree. The Hessian HX of φ at

X ∈ domφ is a linear mapping from Sn
E to Sn

E defined by

HX(V ) = ∇2φ(X)[V ] =
d

dα
∇φ(X + αV )

∣

∣

∣

∣

α=0

= PE(X
−1V X−1V ).

For a chordal pattern E, the evaluations ofHX(V ) orH−1
X (V ) can be computed by

two recursions on the elimination tree. The complexity of each of these operations

is roughly the same as the cost of a sparse Cholesky factorization with sparsity

pattern E. We refer the interested reader to [VA14] for details and historical

background on these techniques.

3.2.3 Restricted inverse covariance selection via chordal extension

We now apply the technique of chordal sparse matrix computations to the re-

stricted covariance selection problem, and reformulate (3.8) with φ(X) defined in

(3.11) as follows. We first compute a triangulation or chordal extension E ′ of the

sparsity pattern E, i.e., a sparsity pattern E ′ that contains E and is also chordal

[VA14]. Instead of optimizing over X ∈ Sn
E, as in (3.8), we can then restrict X ,

without loss of generality, to Sn
E′. Thus the problem can be written equivalently

as

minimize φ(X) + ψ(X) (3.12)

with a sparse matrix variable X ∈ Sn
E′, and functions φ, ψ : Sn

E′ → R defined as

φ(X) = tr(CX)− log detX, ψ(X) =
∑

(i,j)∈E′\E

δ(Xij) + γ
∑

(i,j)∈E

|Xij|.

As mentioned we define domφ = {X ∈ Sn
E′ | X ≻ 0}. The second term ψ is

separable and its proximal operator reduces to simple component-wise operations

(soft-thresholding for entries in positions (i, j) ∈ E; substituting zero for entries
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in positions (i, j) ∈ E ′ \ E). The first term φ is self-concordant [NN94] with

X ∈ Sn
E′. This makes the proximal Newton method [OONR12, ST13, BNO15]

an attractive algorithm for (3.12), since the key computation in the algorithm is

involved with the evaluation of φ(X), ∇φ(X), and ∇2φ(X)[V ], which can be eval-

uated efficiently with specialized algorithms for chordal structure. In section 3.3,

we will present the proximal Newton method for self-concordant functions, and

provide the convergence analysis for inexact Newton steps.

3.3 Proximal Newton method1

The proximal Newton algorithm is a method for solving composite optimization

problems

minimize f(x) = g(x) + h(x) (3.13)

with g convex and twice continuously differentiable, and h convex and possibly

non-differentiable. Problem (3.12) is a composite convex optimization problem

that can be expressed as (3.13) if we represent the matrices X as vectors x of

length |E ′| + n. At each iteration of the proximal Newton algorithm, an update

x := x + αv(x) is made, where α is a positive step size and v(x) is the proximal

Newton step at x, defined as

v(x) = argmin
v

(

g(x) +∇g(x)Tv + 1

2
vT∇2g(x)v + h(x+ v)

)

. (3.14)

The vector x+ v(x) minimizes an approximation

f̂x(y) = g(x) +∇g(x)T (y − x) +
1

2
(y − x)T∇2g(x)(y − x) + h(y) (3.15)

of the cost function f , obtained by replacing g with a second-order approxima-

tion around x. For this reason the algorithm is also called a successive quadratic

approximation method [BNO15]. When h is zero, the proximal Newton step is

1This section is from our paper Inexact proximal Newton methods for self-concordant func-

tions by Jinchao Li, Martin S. Andersen, and Lieven Vandenberghe.
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v(x) = −∇2g(x)−1∇g(x) and the proximal Newton method reduces to the stan-

dard Newton method for minimizing g(x).

The proximal Newton method and some of its variants have recently been

studied for applications in statistics and machine learning, in which h(x) is an

ℓ1-norm penalty, added to a differentiable objective to promote sparsity in the

solution [HSDR11, OONR12, LSS14, BNO15, TDKC15]. This approach is mo-

tivated by the fact that the optimization problem in (3.14) is a lasso problem

(minimization of a convex quadratic function plus an ℓ1-norm) that can be solved

by efficient iterative algorithms. More generally, the proximal Newton method

is interesting when h has an inexpensive proximal operator, so the subproblem

in (3.14) can be solved by proximal gradient methods.

With exact steps v(x), the proximal Newton algorithm is known to have the

same excellent convergence properties as the Newton method for smooth uncon-

strained minimization: fast local convergence, and global convergence from any

starting point if a proper step size selection is used. These convergence properties

are discussed in [LSS14] under the assumptions that g is strongly convex with a

Lipschitz continuous gradient, and in [TDKC15] for self-concordant functions g.

In practice, it is expensive to compute the proximal Newton step accurately,

since v(x) is found by minimizing (3.15) numerically. This is a fundamental differ-

ence with the standard Newton method. It is therefore important to understand

the convergence of the proximal Newton method with inexact steps [OONR12,

ST13, BNO15]. Lee, Sun, and Saunders [LSS14, page 1428] propose the following

criterion for accepting an approximation v of (3.14). A vector v is accepted as an

approximate proximal Newton step at x if it satisfies

‖F̂x,t(x+ v)‖ ≤ ηf‖Ft(x)‖ (3.16)

where t ≤ 1/λmax(∇2g(x)), and Ft, F̂x,t are the gradient mappings [Nes04, section

2.2.3] of the cost function f and its local approximation f̂x, respectively. The
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forcing term ηf in (3.16) can be adjusted adaptively to obtain superlinear local

convergence. Byrd, Nocedal, and Oztoprak [BNO15] use a similar condition, but

also impose the condition

f̂x(x+ v)− f(x) ≤ β
(

∇g(x)Tv + h(x+ v)− h(x)
)

with β ∈ (0, 1/2) and show that this ensures global convergence when g is

strongly convex with a Lipschitz continuous gradient. The papers [BNO15, LSS14,

TDKC15] also analyze variable metric or quasi-Newton methods, in which approx-

imate Hessians are used in the approximation (3.15).

In this section, we extend the results of [TDKC15] for the (exact) proximal

Newton method for self-concordant functions g to the proximal Newton method

with inexact steps. In the algorithms we analyze, the condition (3.16) is replaced

by the following criterion: a step v is accepted as an approximation of v(x) if a

residual

r ∈ ∇g(x) +∇2g(x)v + ∂h(x + v),

in the optimality conditions for (3.14) is known that satisfies the inequality

‖∇2g(x)−1/2r‖ ≤ (1− θ)‖∇2g(x)1/2v‖.

We show that if g is self-concordant, then the inexact proximal Newton method

converges globally if a damped stepsize or backtracking line search is used. The

1 − θ plays a role similar to the forcing term ηf in (3.16). We show that the

local convergence is quadratic if θ = 1, linear if θ constant and less than one, and

superlinear if θ approaches one as the algorithm converges.

The composite optimization problem (3.13) with self-concordant functions g

has important applications in machine learning [TDKC15]. The proximal Newton

method that we develop in subsections 3.3.1–3.3.3 is motivated by the application

to sparse inverse covariance selection. In this problem, the smooth component g

is self-concordant, but it is not strongly convex and its gradient is not Lipschitz
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continuous on its entire domain. Moreover, in the large sparse setting for the

restricted sparse inverse covariance selection problem, matrix-vector products with

the Hessian ∇2g(x)v or the inverse Hessian ∇2g(x)−1w can be computed quite

efficiently, at roughly the same cost as the gradient ∇g(x). These properties

make it possible to compute a sufficiently accurate approximate Newton step by

applying a proximal gradient method to minimize (3.15).

In this section, we first review the definition and key properties of self-concordant

functions, and present a theorem that provides bounds on the optimum of (3.13)

in terms of the magnitude of inexact proximal Newton steps. Then we discuss

the proximal Newton method with a damped step size and a backtracking line

search, respectively, and give global and local convergence results that account for

inexactness of the search directions. In section 3.4 we discuss the application to

covariance selection and present some numerical results.

3.3.1 Proximal Newton step for self-concordant functions

We consider unconstrained optimization problems of the form (3.13) with g :

Rn → R self-concordant and h : Rn → R closed, convex, and possibly non-

differentiable. We assume the problem is feasible (dom f = dom g∩dom h 6= ∅).
This implies that the sum f = g+h is a closed function (see, for example, [HUL93,

page 158]).

3.3.1.1 Self-concordance

Specifically, we make the following assumptions about g.

• g is closed, convex, with open domain.

• g is three times continuously differentiable with ∇2g(x) positive definite on

dom g.

37



• The Hessian of g satisfies the matrix inequality

d

dα
∇2g(x+ αv)

∣

∣

∣

∣

α=0

� 2‖v‖x∇2g(x) (3.17)

for all x ∈ dom g and all v, where ‖v‖x = (vT∇2g(x)v)1/2. (The inequality

A � B means B − A is positive semidefinite.)

These properties characterize self-concordant functions as defined by Renegar

[Ren01] and Nesterov [Nes04]. They define a subclass of the self-concordant

functions introduced in [NN94]: in Nesterov and Nemirovski’s book, closed self-

concordant functions are called strongly self-concordant, self-concordant func-

tions with nonsingular Hessians are called nondegenerate, and the fundamental

inequality (3.17) includes a scaling parameter a that we take to be one. Nes-

terov [Nes04, page 181] refers to self-concordant functions with a = 1 as standard

self-concordant functions.

For future reference, we list the properties of self-concordant functions that

will be used in the thesis.

• Bounds on Hessian [NN94, theorem 2.1.1]. If x, y ∈ dom g and ‖y−x‖x < 1,

then

(1− ‖y − x‖x)2∇2g(x) � ∇2g(y) � 1

(1− ‖y − x‖x)2
∇2g(x). (3.18)

• Bounds on gradient [Nes12, lemma 1]. If x, y ∈ dom g and ‖y − x‖x < 1,

then

‖∇g(y)−∇g(x)−∇2g(x)(y − x)‖x∗ ≤
‖y − x‖2x

1− ‖y − x‖x
. (3.19)

Here ‖v‖x∗ = (vT∇2g(x)−1v)1/2 denotes the dual norm of ‖ · ‖x.

• Bounds on function value [Nes04, theorems 4.1.7 and 4.1.8]. If x, y ∈ dom g,

then

ω(‖y − x‖x) ≤ g(y)− g(x)−∇g(x)T (y − x) ≤ ω∗(‖y − x‖x), (3.20)
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Figure 3.3: Left. The functions ω(u) = u− log(1+u) and ω∗(u) = −u− log(1−u).
Right. The function ω∗(u) in solid line, with two upper bounds ω∗(u) ≤ u2 for

u ≤ 0.68 and ω∗(u) ≤ u2/2 + u3 for u ≤ 0.81.

where ω and ω∗ denote the functions

ω(u) = u− log(1 + u), ω∗(u) = −u− log(1− u).

The left-hand inequality in (3.20) holds for all x, y ∈ dom g. The right-hand

inequality holds for all x, y ∈ dom g with ‖y − x‖x < 1. Note that ω and

ω∗ are Fenchel conjugates (Legendre transforms). In particular, we will use

the fact that

inf
v
(ω(v)− uv) = −ω∗(u), inf

u
(ω∗(u)− uv) = −ω(v). (3.21)

Figure 3.3 shows the two functions and illustrates the inequalities ω(u) ≤
u2/2 ≤ ω∗(u) and

ω∗(u) ≤ u2/2+u3 for u ∈ [0, 0.81), ω∗(u) ≤ u2 for u ∈ [0, 0.68). (3.22)

A useful lower bound on ω(u) is

ω(u) ≥ u2

2(1 + u)
for u ≥ 0. (3.23)
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• Dikin ellipsoid theorem [NN94, theorem 2.1.1.b]. The (open) Dikin ellipsoid

at x ∈ dom g is defined as

Ex = {y | ‖y − x‖x < 1}.

The upper bound in (3.20) implies that Ex ⊂ dom g.

3.3.1.2 Scaled proximal operator

The proximal operator of a closed convex function h is defined as

proxh(y) = argmin
u

(

h(u) +
1

2
‖u− y‖2

)

,

where ‖·‖ denotes the Euclidean norm. It can be shown that the proximal operator

proxh(y) is uniquely defined for all y [Mor65].

With every x ∈ dom g we can associate a scaled proximal operator proxh,x,

defined in a similar way as the standard proximal operator, but using the local

quadratic norm ‖v‖x = (vT∇2g(x)v)1/2 instead of the Euclidean norm:

proxh,x(y) = argmin
u

(

h(u) +
1

2
‖u− y‖2x

)

. (3.24)

This scaled proximal operator can be expressed in terms of the standard (unscaled)

proximal operator of the function h̃(y) = h(∇2g(x)−1/2y):

proxh,x(y) = ∇2g(x)1/2proxh̃(∇2g(x)1/2y).

It can be shown (directly from the definition (3.24) or by reduction to the unscaled

proximal operator) that u = proxh,x(y) exists and is unique for all x ∈ dom g and

all y, and that it is the unique solution of the monotone inclusion problem

0 ∈ ∂h(u) +∇2g(x)(u− y). (3.25)

As an immediate consequence we note that if x⋆ minimizes f(x), i.e., 0 ∈ ∇g(x⋆)+
∂h(x⋆), then

x⋆ = proxh,x
(

x⋆ −∇2g(x)−1∇g(x⋆)
)

(3.26)
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for all x ∈ dom g. Conversely, if x⋆ satisfies (3.26) for some x ∈ dom g, then x⋆

minimizes f .

3.3.1.3 Proximal Newton step

The proximal Newton step v(x) at x is defined as

v(x) = proxh,x
(

x−∇2g(x)−1∇g(x)
)

− x

= argmin
u

(

g(x) +∇g(x)Tv + 1

2
vT∇2g(x)v + h(x+ v)

)

.

From the second expression, or from the first expression and (3.25), we see that

v(x) is characterized by the condition

0 ∈ ∇g(x) +∇2g(x)v(x) + ∂h(x + v(x)), (3.27)

and that x is optimal if and only if v(x) = 0.

The magnitude ‖v(x)‖x of the Newton step in the local norm ‖ · ‖x plays an

important role in the analysis of Newton’s method for minimizing self-concordant

functions (i.e., problem (3.13) with h(x) = 0) [NN94, Nes04]. In [NN94] ‖v(x)‖x
is called the Newton decrement of f at x.

When h(x) is nonzero, it is generally not possible to compute v(x) very ac-

curately, and it is important to allow for inexact proximal Newton steps. In the

algorithms discussed in the next subsections, the following criterion will be used

for accepting a vector v as an inexact proximal Newton step at x: there exists an

r such that

r ∈ ∇g(x) +∇2g(x)v + ∂h(x + v), ‖r‖x∗ ≤ (1− θ)‖v‖x, (3.28)

where θ ∈ (0, 1] is an algorithm parameter. We can interpret 1 − θ as a bound

on the relative error in the conditions (3.27) that characterize the exact proximal

Newton step. With θ = 1, the condition requires r = 0 and therefore v = v(x),

the exact proximal Newton step.
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The next theorem shows that if v satisfies (3.28) for some r, and ‖v‖x is

sufficiently small, then x is close to optimal for (3.13). The theorem is an extension

of theorem 4.1.11 in [Nes04], which characterizes the distance to the minimum of

a self-concordant function in terms of the norm ‖v(x)‖x of the Newton step when

‖v(x)‖x < 1.

Theorem 1. Suppose x ∈ dom g, x+v ∈ domh, and v and r satisfy (3.28) with

θ ∈ (0, 1]. If

‖v‖x <
1

2− θ
. (3.29)

then the following properties hold.

• f is bounded below and

inf
y
f(y) ≥ f(x+ v) + θ‖v‖2x − ω∗(‖v‖x)− ω∗((2− θ)‖v‖x). (3.30)

• The sublevel set Sx = {y | f(y) ≤ f(x+v)} is bounded: Sx ⊆ {y | ‖y−x‖x ≤
ρ̂} where ρ̂ is the positive root of the nonlinear equation

ω(ρ)− ρ(2− θ)‖v‖x = max{0, ω∗(‖v‖x)− θ‖v‖2x} (3.31)

if ‖v‖x > 0, and ρ̂ = 0 if ‖v‖x = 0.

• f has a unique minimizer x⋆ and ‖x− x⋆‖x ≤ ρ̂.

Proof. We first note that, by the Dikin ellipsoid theorem, x + v ∈ dom g, since

‖v‖x < 1. Therefore x + v ∈ dom f = dom g ∩ domh, and the right-hand side

of (3.30) and the sublevel set Sx are well defined.

To show (3.30) we consider an arbitrary y ∈ dom f . We combine the lower

bound on g(y) from (3.20) and the upper bound on g(x+ v) from (3.20), to get

g(y) ≥ g(x) +∇g(x)T (y − x) + ω(‖y − x‖x)

≥ g(x+ v) +∇g(x)T (y − x− v)− ω∗(‖v‖x) + ω(‖y − x‖x).
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A lower bound on h(y) follows from from the subgradient in (3.28):

h(y) ≥ h(x+ v) + (r −∇g(x)−∇2g(x)v)T (y − x− v).

Adding the lower bounds on g(y) and h(y) gives a lower bound on f(y):

f(y)− f(x+ v)

≥ (r −∇2g(x)v)T (y − x)− rTv + ‖v‖2x − ω∗(‖v‖x) + ω(‖y − x‖x)

≥ (r −∇2g(x)v)T (y − x)− ‖r‖x∗‖v‖x + ‖v‖2x − ω∗(‖v‖x) + ω(‖y − x‖x)

≥ (r −∇2g(x)v)T (y − x) + θ‖v‖2x − ω∗(‖v‖x) + ω(‖y − x‖x). (3.32)

Next, we find a lower bound for the right-hand side of (3.32). We express y as

y = x+ tw with ‖w‖x = 1 and t ≥ 0 and write (3.32) as

f(x+ tw) ≥ f(x+ v) + t(r −∇2g(x)v)Tw + θ‖v‖2x − ω∗(‖v‖x) + ω(t).

We first consider the minimum of the right-hand side over w. Using the Cauchy-

Schwarz inequality, the triangle inequality, and the condition (3.28) we get

f(x+ tw) ≥ f(x+ v)− t‖r −∇2g(x)v‖x∗ + θ‖v‖2x − ω∗(‖v‖x) + ω(t)

≥ f(x+ v)− t(‖r‖x∗ + ‖v‖x) + θ‖v‖2x − ω∗(‖v‖x) + ω(t)

≥ f(x+ v)− t(2− θ)‖v‖x + θ‖v‖2x − ω∗(‖v‖x) + ω(t). (3.33)

The lower bound (3.30) now follows if we use the conjugacy relation (3.21) to

minimize the right-hand side of (3.33) over t.

To show the bound on the sublevel set, we note that (3.33) implies that f(x+

tw) > f(x+ v) when

ω(t)− t(2− θ)‖v‖x > ω∗(‖v‖x)− θ‖v‖2x.

When v = 0, this holds for any t > 0. For nonzero v, it holds if t is greater than

the positive root of the nonlinear equation (3.31).
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Figure 3.4: Left. µ(θ) is the solution u of the nonlinear equation ω∗((2−θ)u) = θu2

for 3−
√
5 ≤ θ ≤ 1. We have µ(1) = 0.68 and µ(3−

√
5) = 0. Right. The function

ν(θ) defined in (3.36). We have ν(1) = 6.28 and ν(3 −
√
5) = 0.

Finally, since f is a closed function, it attains its minimum if the sublevel

sets are bounded (by the Weierstrass theorem [Ber09, page 119]). Since f is also

strictly convex (the sum of a strictly convex function g and a convex function h),

the minimizer is unique. ✷

The bounds on f(x⋆) and ‖x−x⋆‖x in theorem 1 can be simplified by restricting

‖v‖x to a smaller interval than allowed by (3.29). We mentioned in section 3.3.1.1,

that ω∗(u) ≈ u2/2 for small u and ω∗(u) ≤ u2 for u ∈ [0, 0.68]. More generally,

for each θ ∈ (3−
√
5, 1] = (0.764, 1] there exists a positive µ(θ) such that

ω∗((2− θ)u) ≤ θu2 for u ∈ [0, µ(θ)] (3.34)

(see figure 3.4). If θ ∈ (3−
√
5, 1], we can use the inequality (3.34) to simplify the

lower bound (3.30) as follows: if ‖v‖x ≤ µ(θ), then

inf
y
f(y) ≥ f(x+ v) + θ‖v‖2x − 2ω∗((2− θ)‖v‖x)

≥ f(x+ v)− θ‖v‖2x. (3.35)

Hence, for sufficiently small ‖v‖x, the quantity θ‖v‖2x gives an upper bound on
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f(x+ v)− infy f(y).

We can also derive a simple upper bound on ρ̂. For 0 < ‖v‖x ≤ µ(θ) and

θ ∈ (3−
√
5, 1], the right-hand side of (3.31) is zero because of (3.34), and ρ̂ is the

positive root of the equation

log(1 + ρ) = ρ(1− (2− θ)‖v‖x).

In other words, ρ̂ = φ−1(1− (2 − θ)‖v‖x) where φ(t) = log(1 + t)/t. Since φ−1 is

a convex function and φ−1(1) = 0, Jensen’s inequality gives

ρ̂ ≤
(

1− ‖v‖x
µ(θ)

)

φ−1(1) +
‖v‖x
µ(θ)

φ−1(1− (2− θ)µ(θ)) =
ν(θ)

µ(θ)
‖v‖x

where

ν(θ) = φ−1 (1− (2− θ)µ(θ)) . (3.36)

This function is shown in figure 3.4. It follows that when ‖v(x)‖x ≤ µ(θ), the

sublevel set Sx is bounded by a ball with radius (ν(θ)/µ(θ))‖v(x)‖x around x. In

particular,

‖x− x⋆‖x ≤ ν(θ)

µ(θ)
‖v‖x. (3.37)

For θ = 1 and v = v(x), the bounds (3.35) and (3.37) are

inf
y
f(y) ≥ f(x+ v(x))− ‖v(x)‖2x, ‖x− x⋆‖x ≤ 9.18 ‖v(x)‖x, (3.38)

and these are valid if ‖v(x)‖x ≤ 0.68. In the following subsection we will be

interested in values of θ close to one, and it will be useful to note that µ(θ) = 1/4

for θ = 0.84. In particular, if θ ≥ 0.84, then the bound (3.35) holds for ‖v‖x ≤ 1/4.

3.3.2 Damped proximal Newton method

Now we analyze the following version of the proximal Newton method with inexact

proximal Newton steps.

The exit condition guarantees that f(x+ v)− infy f(y) ≤ δ. This follows from

the fact that (3.35) holds if θ ≥ 0.84 and ‖v‖x ≤ 1/4, as we saw at the end of
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Algorithm 1 Proximal Newton algorithm with damped stepsize

Input: A starting point x ∈ dom g and three parameters θmin ∈ [0.9, 1], η ∈
(0, 1/4], and δ ∈ (0, 1).

Repeat:

1. Compute a step v that satisfies (3.28) for some r and θ ≥ θmin.

2. If ‖v‖x ≤ 0.25 and θ‖v‖2x ≤ δ, return x+ v.

3. Otherwise, set x := x+ αv with

α =
θ

1 + θ‖v‖x
if ‖v‖x ≥ η, α = 1 otherwise.

the previous section. The lower bound θmin ≥ 0.9 is imposed only to simplify this

stopping criterion. Alternatively, one can take any θmin ∈ (0, 1] and use (3.30) to

bound f(x+ v)− infy f(y).

Note that the starting point x is not required to be in domh. However, the

Dikin ellipsoid theorem guarantees that x ∈ dom f after the first iteration.

3.3.2.1 Local convergence

The following theorem extends a quadratic convergence result for Newton’s method

applied to a self-concordant function [Nes04, theorem 4.1.14]. A related result is

[TDKC15, theorem 7] on the local convergence of the exact proximal Newton

method with self-concordant g. For θ = 1, theorem 2 gives an improvement over

[TDKC15, theorem 7], which requires the condition ‖v(x)‖x < 1− 1/
√
2; see also

[TDKC15, remark 10]. Theorem 2 further generalizes these results by allowing

inexact proximal Newton steps.

Theorem 2 (Unit steps). Suppose x ∈ dom g, x + v ∈ dom h, ‖v‖x < 1,

and (3.28) is satisfied for some r and θ ∈ (0, 1]. Define x+ = x + v. Suppose
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x+ + v+ ∈ dom h and

r+ ∈ ∇g(x+) +∇2g(x+)v+ + ∂h(x+ + v+), ‖r+‖x+∗ ≤ (1− θ+)‖v+‖x+

holds for some r+ and θ+ ∈ (0, 1]. Then

‖v+‖x+ ≤ ‖v‖x
θ+(1− ‖v‖x)

(

1− θ +
‖v‖x

1− ‖v‖x

)

.

If ‖v‖x ≤ 1− 1/
√
2 = 0.293, we have the simpler bound

‖v+‖x+ ≤
√
2‖v‖x
θ+

(

1− θ +
√
2‖v‖x

)

. (3.39)

Proof. We first note that x+ = x + v ∈ dom g as a consequence of the Dikin

ellipsoid theorem. Define

w = r −∇g(x)−∇2g(x)v, w+ = r+ −∇g(x+)−∇2g(x+)v+.

We have w ∈ ∂h(x + v) and w+ ∈ ∂h(x+ + v+), by definition of r and r+.

Monotonicity of the subdifferential ∂h implies that

(w+ − w)Tv+ = (w+ − w)T (x+ + v+ − x− v) ≥ 0.

This observation is used in the first inequality of the following derivation:

‖v+‖x+ ≤ ‖v+ +∇2g(x+)−1(w+ − w)‖x+

≤ ‖∇2g(x+)−1(r+ −∇g(x+)− w)‖x+

= ‖r+ −∇g(x+)− w‖x+∗

≤ ‖r+‖x+∗ + ‖∇g(x+) + w‖x+∗

= ‖r+‖x+∗ + ‖r +∇g(x+)−∇g(x)−∇2g(x)v‖x+∗

≤ (1− θ+)‖v+‖x+ + ‖r‖x+∗ + ‖∇g(x+)−∇g(x)−∇2g(x)v‖x+∗

θ+‖v+‖x+ ≤ 1

1− ‖v‖x
(

‖r‖x∗ + ‖∇g(x+ v)−∇g(x)−∇2g(x)v‖x∗
)

≤ ‖v‖x
1− ‖v‖x

(

1− θ +
‖v‖x

1− ‖v‖x

)

.
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On the second line we use the definition of w+, and on the fifth line the definition

of w. Line 7 follows from (3.18), which implies that

‖z‖2x+v,∗ = zT∇2g(x+ v)−1z ≤ 1

(1− ‖v‖x)2
zT∇2g(x)−1z =

‖z‖2x∗
(1− ‖v‖x)2

.

The last step follows from (3.19). ✷

Theorem 2 can be used to establish local convergence of algorithm 1.

Exact proximal Newton method. Suppose the starting point x satisfies

‖v‖x < η and we take θmin = 1, so v = v(x). The inequality (3.39) reduces

to

‖v(x+)‖x+ ≤ 2‖v(x)‖2x (3.40)

and, since η ≤ 1/4, we have ‖v(x+)‖x+ < η. All subsequent iterates therefore

satisfy ‖v(x)‖x < η. It then follows from (3.40) that after k iterations

2‖v(x)‖x ≤ (2η)2
k ≤

(

1

2

)2k

.

This shows that algorithm 1 converges quadratically when started at a point with

‖v(x)‖x < η. Since ‖v(x)‖2x ≤ (1/2)2
k+1

, the exit condition ‖v‖2x ≤ δ is satisfied

after less than log2 log2(1/δ) iterations.

Inexact proximal Newton method. Suppose the starting point x satisfies

‖v‖x < η and we take θ constant. From (3.39),

‖v+‖x+ ≤
√
2

(

1 +
√
2η

θ
− 1

)

‖v‖x

≤
√
2

(

1 +
√
2/4

0.9
− 1

)

‖v‖x

= 0.713 ‖v‖x.

Therefore ‖v‖x converges to zero linearly. If we let θ → 1, then the inequal-

ity (3.39) shows superlinear convergence.
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3.3.2.2 Global convergence

The next theorem is an extension of a global convergence result for the standard

damped Newton method for self-concordant functions [Nes04, theorem 4.1.12].

When θ = 1, the result is identical to [TDKC15, theorem 6].

Theorem 3 (Damped steps). Suppose x ∈ dom f , x+ v ∈ dom h, and (3.28) is

satisfied for some r and θ ∈ (0, 1]. If α = θ/(1 + θ‖v‖x), then

f(x+ αv) ≤ f(x)− ω(θ‖v‖x).

Proof. First note that α‖v‖x < 1. Hence x + αv ∈ dom f as a consequence of

the Dikin ellipsoid theorem. To show the upper bound on f(x+αv) we apply the

upper bound (3.20) with y = x+ αv:

g(x+ αv) ≤ g(x) + α∇g(x)Tv + ω∗(α‖v‖x).

An upper bound on h(x+αv) follows from Jensen’s inequality and the subgradient

of h at x+ v from (3.28):

h(x+ αv) ≤ h(x) + α(h(x+ v)− h(x))

≤ h(x) + α(r −∇g(x)−∇2g(x)v)Tv

= h(x) + α(r −∇g(x))Tv − α‖v‖2x.

Adding the upper bounds on g and h gives

f(x+ αv) ≤ f(x) + α(rTv − ‖v‖2x) + ω∗(α‖v‖x)

≤ f(x) + α(‖r‖x∗‖v‖x − ‖v‖2x) + ω∗(α‖v‖x)

≤ f(x)− αθ‖v‖2x + ω∗(α‖v‖x). (3.41)

This bound holds when α‖v‖x < 1. The right-hand side is minimized at α =

θ/(1 + θ‖v‖x), with minimum value f(x)− ω(θ‖v‖x). ✷
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Theorem 3 implies that if ‖v‖x ≥ η in algorithm 1, then

f(x+ αv) ≤ f(x)− ω(θη),

so the cost function is decreased by at least a positive amount ω(θη). If the

function is bounded below, we must reach ‖v‖x < η after a finite number of

iterations. Hence algorithm 1 converges from any starting point if the problem is

bounded below.

3.3.3 Proximal Newton method with backtracking line search

As pointed out in [LSS14] the proximal Newton algorithm is readily modified to

include a backtracking line search of the type used in [BV04, chapter 9]. We will

analyze the following algorithm and use it in the experiments of section 3.4.

Algorithm 2 Proximal Newton algorithm with line search

Input: A starting point x ∈ dom f , and parameters θmin ∈ (0, 1], β ∈ (0, 1), and

γ ∈ (0, θmin/2).

Repeat:

1. Compute a step v that satisfies (3.28) for some r and θ ≥ θmin.

2. If ‖v‖x is sufficiently small, return x+ v.

3. Otherwise, set x := x + αv(x) where α is the largest number in

{1, β, β2, β3, . . .} for which

x+ αv ∈ dom f, f(x+ αv) ≤ f(x)− αγθ‖v‖2x. (3.42)

To formulate a rigorous stopping condition that guarantees a bound on f(x+

v) − infy f(y) one can use the inequality (3.30) in theorem 1, which is valid for

any θ ∈ (0, 1), or the simpler inequality (3.35), which assumes θ > 0.764.

We refer to the condition (3.42) as the condition of sufficient decrease. Note

that the starting point of algorithm 2 is required to be in dom f , so the right-
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hand side in the condition of sufficient decrease is well defined in the first iteration.

Alternatively, one can start at x ∈ dom g and use a damped Newton step in the

first iteration.

The following observation extends a result for the standard Newton method

with backtracking line search applied to self-concordant functions [BV04, section

9.6.4].

Theorem 4. The stepsize selected by the backtracking line search satisfies

βθ

1 + θ‖v‖x
< α ≤ 1.

A unit stepsize is selected if ‖v‖x ≤ θ(1− γ)− 1/2.

Proof. We first note that the step size α̂ = θ/(1 + θ‖v‖x) satisfies the condition

of sufficient decrease. This can be seen from the upper bound (3.41):

f(x+ α̂v) ≤ f(x)− α̂θ‖v‖2x + ω∗(α̂‖v‖x)

= f(x)− ω(θ‖v‖x)

≤ f(x)− θ2‖v‖2x
2(1 + θ‖v‖x)

= f(x)− α̂θ‖v‖2x/2

≤ f(x)− α̂γ‖v‖2x.

Line 3 follows from the inequality (3.23). The last step follows because γ ≤ θ/2.

Since α̂ satisfies the condition of sufficient decrease, the stepsize α selected by the

line search can not be less than or equal to

βα̂ =
βθ

1 + θ‖v‖x
.

For the second part of the theorem, note that if ‖v‖x ≤ θ(1 − γ)− 1/2 then,
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again using (3.41),

f(x+ v) ≤ f(x)− θ‖v‖2x + ω∗(‖v‖x)

≤ f(x)− θ‖v‖2x +
1

2
‖v‖2x + ‖v‖3x

= f(x)− (θ − 1/2− ‖v‖x)‖v‖2x
≤ f(x)− γθ‖v‖2x.

Line 2 follows from the first inequality in (3.22). ✷

Theorem 4 can be combined with the analysis of section 3.3.2 to show that

algorithm 2 has the same convergence properties as algorithm 1. Choose any

positive η. If ‖v‖x > η, the condition of sufficient decrease and the lower bound

on the stepsize from theorem 4 guarantees

f(x+ αv) ≤ f(x)− αγθ‖v‖2x
≤ f(x)− βγ

θ2‖v‖2x
1 + θ‖v‖x

≤ f(x)− βγ
θ2minη

2

1 + θminη
.

(The last step follows from monotonicity of the function t2/(1+t).) If the problem

is bounded below, the algorithm reaches a stopping condition ‖v‖x ≤ η, for any

positive η, after a finite number of iterations.

Moreover, if we choose θmin > 1/2 and γ < 1 − 1/(2θmin) then theorem 4

guarantees that for sufficiently small ‖v‖x, a unit stepsize is chosen and the local

convergence results of section 3.3.2.1 apply.

3.4 Numerical examples

In this section we present some results for the proximal Newton method applied

to (3.12). We use the Python packages CHOMPACK [AV15] and CVXOPT

[ADV15] for the sparse matrix computations (evaluation of φ and its gradient,
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Hessian, and inverse Hessian). The main purpose of the experiments is to compare

the convergence properties with the theoretical results in subsections 3.3.2–3.3.3.

Our implementation is not optimized, because it requires several conversions be-

tween different sparse matrix formats. Moreover the proximal Newton algorithm

itself, and some key functions of CHOMPACK (such as the symbolic factoriza-

tion), are implemented in Python and would be faster when implemented directly

in C. This must be kept in mind when comparing the computation times for

different parameter values in the experiments.

In section 3.4.1, we describe the FISTA algorithm for solving the subproblem

of computing the Newton step. In section 3.4.2, we demonstrate the conver-

gence rate of proximal Newton method via experiments using synthetic data with

band patterns. In section 3.4.3, we give the convergence rate of proximal Newton

method based on saprsity patterns from University of Florida matrix collections.

3.4.1 Subproblem

In the experiments a basic version of the FISTA algorithm [BT09] was used to

minimize the function (3.15) in the subproblems. At iteration k of FISTA, a new

estimate vk of the solution of the subproblem is computed, by making a proximal

gradient update

vk = proxth
(

x+ w − t(∇g(x) +∇2g(x)w)
)

− x

where w is the previous value vk−1 plus an an extrapolation term,

w = vk−1 +
k − 2

k + 1

(

vk−1 − vk−2
)

.

From the definition of the proximal operator proxth, the following relation between

these variables holds:

1

t
(w − vk) ∈ ∇g(x) +∇2g(x)w + ∂h(x + vk).
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This shows that the vector

r =
1

t
(w − vk) +∇2g(x)(vk − w) = (

1

t
I −∇2g(x))(w − vk)

satisfies r ∈ ∇g(x) +∇2g(x)vk + ∂h(x + vk). In our implementation, r was used

in the condition ‖r‖x∗ ≤ (1 − θ)‖vk‖x to determine whether to accept vk as an

inexact proximal Newton step v.

To select the FISTA stepsize t, we used the simple backtracking strategy sug-

gested in [BT09]. More sophisticated variants of FISTA, such as N83 in the

TFOCS package [BCG11], or methods that use different strategies for select-

ing t [SGB14], are likely to lead to substantial improvements over our results.

We also note that several first-order methods could be used as alternatives to

FISTA, including the coordinate descent method [HSDR11] and the orthant-based

method [BNO15].

3.4.2 Band patterns

In the first experiment we use a band pattern E of size n = 1000 with half-

bandwidth 20. Band patterns are chordal, so E ′ = E in this experiment. To

generate a sample covariance matrix C we first create a sparse matrix Σ−1 as

follows. We randomly select 80% of the entries within the band E, and set them

to zero. For the remaining entries in E, we randomly generate values following

a normal distribution N(0, 1). A multiple of the identity is added to the matrix

Σ−1 if it is not positive definite. We then generate N = 10n samples from the

distribution N(0,Σ) and form the sample covariance matrix C. The regularization

parameter in (3.12) was set to λ = 0.02.

Figure 3.5 shows the convergence of algorithm 2 with different, constant values

of the parameter θ, and backtracking parameters γ = 0.01, β = 1/2. The first

figure confirms the conclusions about the effect of θ in the theoretical analysis of

subsection 3.3.3. It also shows that the proximal Newton method can reach a high
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Figure 3.5: Convergence of the proximal Newton method in the first experiment,

for different values of θ.

accuracy, even with very inaccurate solutions of the subproblems (low values of θ).

The second figure shows the convergence versus elapsed time (on a machine with a

2.5GHz Intel Core i7 processor). The plots suggest there is a value of θ that gives

the fastest convergence. Although the best value of θ and the overall solution

times are likely to be quite different in a more optimized implementation of the

algorithm, the figure shows the benefits that can be expected from improvements

in the algorithm for the subproblem, and from strategies for adapting θ during the

algorithm, as suggested in [LSS14]. Compared with algorithms in [Lu10, WST10,

LT10], although they did not use band patterns for experiments, the results show

that our algorithm is at least one order faster than their algorithms for problems

at the same scale.

3.4.3 Sparsity patterns from University of Florida collection

In the second experiment we use three patterns from the UF collection [DH11].

Table 3.1 gives the dimension and the number of nonzeros 2|E|+n for each pattern,

and the number of nonzeros in a chordal extension (the second and third patterns

are chordal, so E = E ′). We generate a sample covariance matrix as in the first

experiment. We first generate a sparse matrix Σ−1 ∈ Sn
E. A randomly selected
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Name n nnz nnz after extension

1138 bus 1138 4054 5392

Chem97ZtZ 2541 7361 7361

mhd4800b 4800 27520 27520

Table 3.1: Three sparsity patterns from the University of Florida collection.
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Figure 3.6: Convergence of the proximal Newton method for the three test prob-

lems in the second experiment.

subset of 30% of the entries in E are set to zero. The values of the remaining

entries in E are chosen from N(0, 1). A multiple of the identity is added to make

the matrix positive definite. We then use Σ to generate N = 10n samples and

form the sample covariance C.

Figure 3.6 shows the convergence of algorithm 2 for the three problems. We

use θ = 0.5, γ = 0.01, and β = 1/2. Even though the dimensions of the three

problems are quite different, the method converges in roughly the same, small

number of iterations, as is typical for the standard Newton method.
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3.5 Conclusion

In this chapter, we presented the restricted sparse covariance selection problem, in

which we imposed prior constraints on the sparsity pattern of the inverse covari-

ance matrix. As a general sparsity pattern can be extended to chordal structure

by chordal embedding, the constraints on the extended nonzero chordal pattern

are imposed while penalizing the fill-in with an indicator function explicitly in the

objective function. The log-determinant term in the cost function of this problem

is self-concordant, and efficient methods exist for evaluating the matrix-vector

products with its Hessian and inverse Hessian needed in the proximal Newton

method.

We also presented an analysis of the proximal Newton method for minimizing

a sum of a self-concordant function and a function with an inexpensive proximal

mapping. The analysis extends results from [TDKC15] by taking into account

inexactness of the computation of the proximal Newton steps. The conclusions

are similar to the results reached in [LSS14, BNO15] under different assumptions

on the smooth component of the cost function.

In the numerical examples, we applied the proximal Newton method to the re-

stricted sparse covariance selection problem with inexact Newton steps calculated

by FISTA algorithm. Preliminary numerical results indicate that the method can

reach a high accuracy, even with inexact computation of the proximal Newton

steps. The most important questions for further research concern the choice of

algorithm for solving the subproblems, and the formulation of good strategies for

adaptive control of the accuracy with which the subproblems are solved.
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CHAPTER 4

Joint Graphical models of autoregressive time

series

In chapter 3, we have discussed algorithms for estimating a single Gaussian graph-

ical model. In many applications it is useful to estimate a collection of models,

since the data collected are often obtained from several categories with some sim-

ilarity across the categories, while each one has their uniqueness. For example,

in the estimation of brain connectivity network [Fri11, QHLC14], the newtorks

vary for different subjects due to individual differences, but are expected to be

more similar if the corresponding subjects share many common features. Another

example is gene expression measurements for lung cancer patients and brain can-

cer patients [MCH+12]. There are some substantial commonality shared between

these two groups such as the tumor-specific pathways, while the gene regulatory

networks differ from each other due to different etiologies of these two diseases.

For all these applications, estimating the models as one ignores the categorical

differences, while estimating them separately overlooks the similarity between dif-

ferent structures. Therefore, in recent years, there has been a line of research

[KSAX10, GLMZ11, ZW12, DWW14] focusing on estimating multiple Gaussian

graphical models simultaneously, and we refer to this problem as a joint Gaussian

graphical model throughout this chapter.

In this chapter, we analyze the joint Gaussian graphical model for autoregres-

sive time series (joint GGM-AR). Analogous to the extension from single Gaussian

graphical models to joint Gaussian graphical models, the joint Gaussian graphical
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model for autoregressive time series is directly extended from the Gaussian graph-

ical model for autoregressive time series (GGM-AR) analyzed in [SDV10, SV10].

This extension is crucial to analyze time series data with multiple categories,

e.g., to analyze stock markets relations using composite indexes in different time

periods, or to measure brain activity networks using fMRI scanning data from

different subjects.

This chapter is organized as follows. In section 4.1 we give a review of Gaussian

graphical models for time series. In section 4.2.2, based on joint static Gaussian

graphical models, we propose joint Gaussian graphical models for autoregressive

time series, and discuss two possible choices of cross graph penalties. In section 4.3,

we present the Douglas-Rachford algorithm used for solving joint Gaussian graph-

ical models for autoregressive time series. In section 4.4, we present our model

selection methods for choosing parameters in the model. Last, in section 4.5,

we present some experiment results based on synthetic data. We also discuss

its applications to international stock markets analysis and fMRI brain network

analysis.

4.1 Gaussian graphical models for time series

Gaussian graphical models for time series have been analyzed using both non-

parametric and parametric methods. An example of nonparametric methods is

the algorithm proposed by Bach and Jordan to forecast stationary Gaussian time

series based on the spectral density matrix [BJ04]. More literature focus on pa-

rameteric methods [Dah00, SDV10, SV10, ALW13], where autoregressive (AR)

graphical models or autoregressive moving-average (ARMA) models are used. In

this chapter we discuss parametric methods for AR models, extending the re-

sults in [SDV10, SV10]. For a p-order AR Gaussian process, the sequence can be
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formulated as

x(t) = −
p
∑

k=1

Akx(t− k) + w(t), (4.1)

where x(t) ∈ Rn and w(t) is Gaussian white noise with zero mean and covariance

Σ. Given N samples x(0), . . . , x(N − 1) from (4.1), our goal is to estimate Σ and

Ak, k = 0, . . . , p. By variable substitution, (4.1) can be reformulated as

B0x(t) = −
p
∑

k=1

Bkx(t− k) + v(t), (4.2)

with v(t) ∼ N(0, I), and B0 = Σ−1/2, Bk = Σ−1/2Ak for k = 1, . . . , p.

4.1.1 Conditional independence

In Gaussian graphical models, components xi and xj are conditionally indepen-

dent, given the other components of x(t), if and only if (Σ−1)ij = 0. A similar

property holds for Gaussian time series.

Let us first assume that x(t) is an n-dimensional Gaussian time series sequence.

We define xi(t), xj(t) as the i-th element and j-th element of x(t) respectively,

and xα(t) as the n− 2 dimensional vector excluding the elements xi(t) and xj(t).

Suppose the whole temporal sequence of xα(t) is used to predict xi(t) and xj(t),

then the linear estimation residuals for xi(t) and xj(t) can be defined as





ǫi(t)

ǫj(t)



 =





xi(t)

xj(t)



−
∞
∑

k=−∞

Aopt
k (t− k)xα(k),

where Aopt
k is the optimal 2 × (n − 2) coefficient matrix for optimal linear es-

timation. Then xi(t) and xj(t) are conditionally independent if and only if

cov (ǫi(t), ǫj(t)) = 0. In the frequency domain, this relation can be represented by

the power spectrum S(ω), which is defined as

S(ω) =
+∞
∑

k=−∞

Rke
−jkω, where Rk = Ex(t + k)x(t)T .
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It has been shown in [Bri01, Dah00] that xi(t) and xj(t) are conditionally inde-

pendent if and only if
(

S(ω)−1
)

ij
= 0, for all ω. (4.3)

For an autoregressive process (4.2), the inverse spectrum can be expressed as

S(ω)−1 = Y0 +

p
∑

k=1

(

Yke
−ikω + Y T

k e
ikω
)

, (4.4)

where

Yk =

p−k
∑

l=0

BT
l Bl+k, k = 0, . . . , p. (4.5)

Therefore, the conditional independence (4.3) can be written as
(

p−k
∑

l=0

BT
l Bl+k

)

ij

= 0, k = 0, . . . , p. (4.6)

4.1.2 Estimation for Gaussian autoregressive time series

We provide three approaches to estimate Σ and Ak, k = 1, . . . , p, in Gaussian

graphical models for time series [SDV10, BJR11].

Least square linear prediction Given a multivariate time series sequence

x(t), the optimal linear prediction problem can be written as

x̂(t) = −
p
∑

k=1

Akx(t− k),

where the prediction of x(t) is based on past values x(t − 1), . . . , x(t − p). The

prediction error is characterized by

ǫ(t) = x(t)− x̂(t) = x(t) +

p
∑

k=1

Akx(t− k).

The optimal linear prediction coefficients Ak can be obtained by minimizing

E‖ǫ(t)‖22, or equivalently

minimize tr
(

AT (R)AT
)

,

where the notations are defined as follows:
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• A =
[

I A1 · · · Ap

]

, R =
[

R0 R1 · · · Rp

]

.

• Mn,p representing sets of matrices X satisfying

X =
[

X0 X1 · · · Xp

]

,where X0 ∈ Sn, and Xk ∈ Rn×n for k = 1, . . . , p.

• T is a block-Toeplitz operator T :Mn,p → Sn(p+1) defined as

T (S0, S1, . . . , Sp) =

















S0 ST
1 · · · ST

p

S1 S0 · · · ST
p−1

...
...

. . .
...

Sp Sp−1 · · · S0

















. (4.7)

In practice, T (R) is replaced by the sample covariance C, which can be obtained

from the windowed estimate or the non-windowed estimate.

• For the non-windowed estimate, suppose we have observations x(1), . . . , x(N),

then

C =
1

N − p
HHT ,

where

H =

















x(p+ 1) x(p+ 2) · · · x(N)

x(p) x(p+ 1) · · · x(N − 1)
...

...
. . .

...

x(1) x(2) · · · x(N − p)

















.

• For the windowed estimate,

C =
1

N
HHT ,

where

H =

















x(1) x(2) · · · x(p + 1) · · · x(N) 0 · · · 0

0 x(1) · · · x(p) · · · x(N − 1) x(N) · · · 0
...

...
. . .

...
. . .

...
...

. . .
...

0 0 · · · x(1) · · · x(N − p) x(N − p+ 1) · · · x(N)

















.
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By replacing T (R) with C, the estimation problem reduces to

minimize tr
(

ACAT
)

. (4.8)

The optimality conditions of (4.8) can be expressed as

















C00 C01 · · · Cpp

C10 C11 · · · C1p

...
...

. . .
...

Cp0 Cp1 · · · Cpp

































I

AT
1

...

AT
p

















=

















Σ̂

0
...

0

















, (4.9)

where Σ̂ = ACAT . Comparing the non-windowed estimate and the windowed

estimate, the non-windowed estimate is slightly more accurate when N is small

[SM97]. On the other hand, the windowed estimate has important theoretical and

practical properties. If the windowed estimate is used, C is block-Toeplitz, and

the solution of (4.9) always provide a stable model. Furthermore, when C is block-

Toeplitz, the equations in (4.9) has the same form as Yule-Walker equations, and

can be solved efficiently using classical methods like Levinson-Durbin recursion

[SM97].

Conditional maximum likelihood Given the observations x(1), . . . , x(N),

the conditional likelihood of an autoregressive process (4.1) can be expressed as

1

((2π)n det Σ)(N−p)/2
exp

(

−1

2

N
∑

t=p+1

x(t)TATΣ−1Ax(t)

)

=

(

detB0

(2π)n/2

)N−p

exp

(

−1

2

N
∑

t=p+1

x(t)TBTBx(t)

)

,

(4.10)

where x(t) is a (p+ 1)n vector defined by

x(t) = (x(t), x(t− 1), . . . , x(t− p)) ,

and

A =
[

I A1 · · · Ap

]

, B =
[

B0 B1 · · · Bp

]

.
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Taking the logarithm of (4.10), we can obtain the log-likelihood function as

L(B) =
N − p

2

(

2 log detB0 − tr(CBTB)
)

. (4.11)

where C follows the non-windowed estimate. The conditional maximum likelihood

estimation can be formulated as

minimize − 2 log detB0 + tr(CBTB). (4.12)

The optimality conditions of (4.12) are the same as (4.9). Thus the conditional

maximum likelihood estimation is equivalent to least square estimation with non-

windowed estimate C.

Maximum entropy estimation The maximum entropy problem introduced

by [Bur75, ALW13] is formulated as:

maximize 1
2π

∫ π

−π
log det S(ω)dω

subject to 1
2π

∫ π

−π
S(ω)ejkωdω = R̄k, k = 0, . . . , p.

(4.13)

The matrices R̄k are given as the empirical covariance matrices following R̄k =

1
N

∑N−k
t=1 x(t+ k)x(t)T . If we change the sign of the objective, the Lagrangian can

be formulated as

− 1

2π

∫ π

−π

log detS(ω)dω + tr(Z0(R0 − R̄0)) + 2

p
∑

k=1

tr
(

ZT
k (Rk − R̄k)

)

.

Differentiating with respect to Rk gives

1

2π

∫ π

−π

S−1(ω)ejkωdω = Zk, k = 0, . . . , p. (4.14)

It is easy to see that (4.4) is the inverse transform of (4.14), and therefore Yk = Zk

for 0 ≤ k ≤ p. For the following part, notation Yk is used instead of Zk. Based

on (4.4), we denote Y (ω) = S(ω)−1, so the dual of (4.13) can be formulated as

minimize − 1

2π

∫ π

−π

log det Y (ω)dω + tr(Y T
0 R̄0) + 2

p
∑

k=1

tr(Y T
k R̄k)− n.
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By using Jensen’s formula [Ahl79, page 207], we have

1

2π

∫ π

−π

log det Y (ω)dω = log det(BT
0 B0).

Furthermore, by using the relation (4.5),

tr(Y T
0 R̄0) + 2

p
∑

k=1

tr(Y T
k R̄k) = tr(T (R̄)BTB) = tr(CBTB),

where C is the windowed estimate. Then the dual problem can be reduced to

minimize − 2 log detB0 + tr(CBTB). (4.15)

Problem (4.15) has the same optimality conditions as in (4.9). Therefore, all the

three estimation methods have the same form of optimality conditions, only with

slightly different definitions for C.

4.1.3 Penalized estimation for Gaussian time series graphical models

By combining the estimation problem (4.15) with the conditional independence

constraints (4.6), we can be formulate the constrained Gaussian time series graph-

ical models as

minimize −2 log detB0 + tr(CBTB)

subject to
(

Dk(B
TB)

)

ij
= 0, k = 0, . . . , p, (i, j) 6∈ E,

(4.16)

where D is the adjoint operator of T , and is defined as

D(X) = (D0(X),D1(X), . . . ,Dp(X)),

with










D0(X) = X00 +X1,1 + · · ·+Xp,p, k = 0

Dk(X) = 2(Xk0 +Xk+1,1 + · · ·+Xp,p−k), k = 1, . . . , p.

(4.17)

By introducing an indicator function h̃ : Sn ×Rn×n × · · · ×Rn×n → R,

h̃(Y )k,ij =











0, (i, j) 6∈ E, k = 0, . . . , p

+∞, otherwise,
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problem (4.16) can be written as

minimize −2 log detB0 + tr(CBTB) + h̃
(

D(BTB)
)

. (4.18)

The indicator function h̃ can be extended to other penalty functions. If h̃ is chosen

as a lasso penalty, h̃ serves to promote sparsity in the topology. For example, one

choice of h̃ is

h̃(Y ) = γ
∑

i>j

max
k=0,...,p

{|Yk,ij|, |Yk,ji|}. (4.19)

Problem (4.18) is non-convex because of the quadratic term BTB, even though

the penalty function h̃ is convex. If we replace BTB with a variable X ∈ Sn(p+1),

problem (4.18) is relaxed to a convex form:

minimize − log detX00 + tr(CX) + h̃ (D(X))

subject to X � 0,
(4.20)

where Xl,(l+k) denotes sub-block (l, l+ k) of X . It has been shown in [SV10] that

the relaxation is exact if C is block-Toeplitz (e.g., C is the windowed estimate).

We will show this result in section 4.1.4 using duality theory. Since C is a block-

Toeplitz matrix, tr(CX) can be expressed as

tr (CX) = tr(C̄TD(X)),

where C̄ =
[

C0 C1 · · · Cp

]

. To make the notations simple, we define

h(Y ) = tr(C̄TY ) + h̃ (Y ) , (4.21)

so h(D(X)) = tr(CX) + h̃ (D(X)). With this new notation, (4.20) can be formu-

lated as

minimize − log detX00 + h(D(X))

subject to X � 0.
(4.22)
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4.1.4 Optimality conditions

In this section we prove that the solution of (4.22) has rank n. Assume Slater’s

condition holds for (4.22). X is optimal if it is feasible, i.e.,

X � 0, X00 ≻ 0, D(X) ∈ domh,

and there exists a Z ∈ ∂h(D(X)) such that





X−1
00 0

0 0



 � T (Z),



T (Z)−





X−1
00 0

0 0







X = 0. (4.23)

The first condition implies T (Z) ≻ 0 [SDV10]. This can be verified by induction

on p. Firstly, if p = 0, it is trivial that T (Z) ≻ 0. Secondly, suppose this property

holds for p− 1, i.e., the leading np×np submatrix T (Z) is positive definite, then

by exploiting the Toeplitz structure, T (Z) can be partitioned as

T (Z) =





Z0 UT

U V



 ,

where V ≻ 0. The Schur complement of V in T (Z) is

Z0 − UTV −1U � X−1
00 ≻ 0. (4.24)

Given with the condition V ≻ 0, (4.24) shows T (Z) ≻ 0. Then, it is trivial to

see T (Z) −





X−1
00 0

0 0



 has rank np. Therefore the second condition of (4.23)

implies rank(X) = n since X is at least rank n. Given the optimal Z, we can

find X from
















Z0 ZT
1 · · · ZT

p

Z1 Z0 · · · ZT
p−1

...
...

. . .
...

Zp Zp−1 · · · Z0

































X00

X10

...

Xp0

















=

















I

0
...

0

















. (4.25)
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If we define Bk = −X−1
00 X0k and Σ = X−1

00 , then

















Z0 ZT
1 · · · ZT

p−1

Z1 Z0 · · · ZT
p−2

...
...

. . .
...

Zp−1 Zp−2 · · · Z0

































BT
1

BT
2

...

BT
p

















=

















Z1

Z2

...

Zp

















(4.26)

and

Σ = Z0 −
[

ZT
1 ZT

2 · · · ZT
p

]

















BT
1

BT
2

...

BT
p

















. (4.27)

We can obtain the analytical solution easily for Σ and Bk by solving (4.26) and

(4.27). Also, we can see (4.25) has the same form as the Yule-Walker equa-

tions. Classical methods like Levinson-Durbin recursion can be used to solve

(4.25) [SM97].

4.1.5 Dual problem

To derive the dual, first we rewrite problem (4.20) as

minimize − log detX00 + h(Y )

subject to D(X) = Y

X � 0.

(4.28)

Then the dual of (4.28) can be formulated as

maximize log detU − h∗(Z) + n

subject to





U 0

0 0



 � T (Z),

where h∗ is the conjugate of h,

h∗(y) = sup
x∈domh

(

yTx− f(x)
)

.
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4.2 Joint Gaussian graphical models

In this section, we first review the current work on joint static Gaussian graphical

models, and then provide the extensions to time series.

4.2.1 Joint static Gaussian graphical models

Joint static Gaussian graphical models are the methods to jointly estimate mul-

tiple graphical models of related but different distributions [KSAX10, GLMZ11,

ZW12, DWW14]. Assume there are K distinct Gaussian graphical models with

the distributions N(0,Σ(k)) for k = 1, . . . , K, and each model has similar struc-

tures or the same structure but different coefficients in (Σ(k))−1. N (k) observations

are obtained from each model. If we use X(k) to represent the precision matrix and

C(k) to represent the empirical covariance matrix for graph k, the log-likelihood

is

ℓ
(

X(1), . . . , X(K)
)

=
1

2

K
∑

k=1

N (k)
(

log detX(k) − tr(C(k)X(k))
)

. (4.29)

In order to estimate X(k) for different models, one approach is to estimate them

independently. However, this approach overlooks the structural similarity among

different models. Moreover, when the estimations are taken separately, the number

of data samples for each estimation is decreased, so that the estimation accuracy

is also decreased. If the data samples are limited, this approach is subject to be

over-fitting. A better approach is to estimate the collection of graphical models

simultaneously with a cross graph penalty used to promote the common structure

across graphs. This approach is referred to as a joint Gaussian graphical model

(Joint GGM)[MLF+14, DWW14, GLMZ11, QHLC14], which can be formulated

as:

minimize
X(1),...,X(K)

−ℓ
(

X(1), . . . , X(K)
)

+ γ

K
∑

k=1

∑

i 6=j

|X(k)
ij |+ h(X(1), . . . , X(K)), (4.30)
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where the first regularization term is taken to penalize off-diagonal elements of

the precision matrices, and the penalty function h(X(1), . . . , X(K)) is taken to

encourage shared characteristics among different models. Two classes of penalty

terms have been proposed, an edge based penalty [GLMZ11, DWW14] and a node

based penalty [TLM+14, MLF+14]. The node based penalty assumes that the

similarities and differences between graphical models are driven by individual

nodes, so the connectivity patterns of one node to all the other nodes are shared

among thoseK graphs. As for the edge based penalty [GLMZ11, ZW12, MCH+12,

DWW14], it assumes that the connectivity of each individual edge is shared among

all the graphs. In this thesis, we focus on the edge based penalty, for which two

different penalty functions are considered.

Fused graphical lasso (FGL) The fused lasso penalty [TSR+05] penalizes the

difference between all corresponding edges in the graphs. h can be formulated as

h(X(1), . . . , X(K)) = λ
∑

k 6=k′

∑

i,j

|X(k)
ij −X

(k′)
ij |,

where λ is a nonnegative tuning parameter. When λ is large, more elements will

be identical across graphs. This penalty penalizes the difference across graphs

aggressively, and it encourages not only the structural similarity, but also similar

edge values.

Group graphical lasso (GGL) The group lasso penalty [YL07] penalizes edges

in the same position for all K graphs using ℓ2-norm, and thus encourages a similar

sparsity pattern across graphs. The penalty term can be formulated as

h(X(1), . . . , X(K)) = λ
∑

i,j

√

√

√

√

K
∑

k=1

(X
(k)
ij )2.

Compared with FGL, GGL only encourages a shared sparsity pattern, while FGL

encourages shared edge values.
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4.2.2 Joint Gaussian graphical model for autoregressive time series

In this section, we extend joint Gaussian graphical models to autoregressive time

series. Suppose there are K similar Gaussian graphical models for autoregressive

time series, we extend (4.18) to multiple graphs with an additional term introduced

to promote a common structure across graphs. This estimation problem can be

formulated as

minimize
∑K

k=1

(

−2 log detB
(k)
0 + hi(Y

(k))
)

+ ho(Y
(1), . . . , Y (K))

subject to Y (k) = D
(

(B(k))TB(k)
)

, k = 1, . . . , K,
(4.31)

where hi(Y
(k)) is introduced to promote sparsity within the k-th graphical model,

and ho(Y
(1), ..., Y (K)) is introduced to promote a common structure across graphs.

As analogous to joint static Gaussian graphical models, we have two choices of

penalty function ho (Y ): the fused Graphical lasso for autoregressive time series

(FGL-AR) and the group Graphical lasso for autoregressive time series (GGL-

AR).

• FGL-AR:

ho(Y
(1), . . . , Y (K)) = λ

∑

k 6=k′

∑

l=0,...,p

∑

i,j

|Y (k)
l,ij − Y

(k′)
l,ij |.

• GGL-AR:

ho(Y
(1), . . . , Y (K)) = λ

∑

l=0,...,p

∑

i,j

√

√

√

√

K
∑

k=1

(

Y
(k)
l,ij

)2

.

In this chapter, we focus on problems where similarity of edge structures is of more

interest than edges values. Formulation (4.31) with the GGL-AR penalty is used

in the remaining part of this chapter. Formulation (4.31) is non-convex due to

the quadratic term (B(k))TB(k), even though hi(Y
(k)) and ho(Y

(1), . . . , Y (K)) are

convex. As a convex relaxation, we make a change of variables X(k) = (B(k))TB(k),

so

Y (k) = D(X(k)), k = 1, . . . , K. (4.32)
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Then (4.31) can be reformulated as:

minimize
∑K

k=1

(

− log detX
(k)
00 + hi(Y

(k))
)

+ ho(Y
(1), . . . , Y (K))

subject to Y (k) = D
(

X(k)
)

X(k) � 0, k = 1, . . . , K.

(4.33)

Assume Slater’s condition holds, X(k) is optimal if it is feasible, i.e.,

X(k) � 0, X
(k)
00 ≻ 0, D(X(k)) ∈ dom hi,

(

D(X(1)), . . . ,D(X(K))
)

∈ domho

and there exists Z = (Z(1), . . . , Z(K)), with

Z(k) ∈ ∂hi(D(X(k))) + ∂Y (k)ho
(

D(X(1)), · · · ,D(X(K))
)

,

where ∂Y (k) ho
(

Y (1), · · · , Y (K)
)

is the subdifferential of ho with respect to its k-th

argument, such that





(

X
(k)
00

)−1

0

0 0



 � T (Z(k)),



T (Z(k))−





(

X
(k)
00

)−1

0

0 0







X(k) = 0.

(4.34)

Analogous to the analysis of single Gaussian graphical models for autoregressive

time series (4.23), the first condition in (4.34) implies T (Z(k)) ≻ 0, and the second

condition implies rank(X(k)) = n. Thus, the relaxation X(k) = (B(k))TB(k) is

exact.

4.3 Algorithms

In this section, we apply the Douglas-Rachford method (Spingarn’s method) in-

troduced in chapter 2 section 2.3.1 to solve (4.31). First we reformulate (4.31)

as:

minimize
K
∑

k=1

f(X(k)) + g(A(X(1)),A(X(2)), · · · ,A(X(K))). (4.35)

• f is an indicator function of positive semidefinite cone S
(p+1)n
+ .
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• A : S(p+1)n → Sn
++ ×Mn,p ×Mn,p is a linear mapping:

A(X(k)) =
(

X
(k)
00 ,D(X(k)),D(X(k))

)

.

• g : (Sn ×Mn,p ×Mn,p)× · · · × (Sn ×Mn,p ×Mn,p) → R is defined as

g(U, Y, Z) =
K
∑

k=1

(

− log detU (k) + hi(Y
(k))
)

+ ho(Z
(1), . . . , Z(K)).

• hi(Y
(k)) = tr(C̄TY (k)) + γ

∑

i>j

max
l=0,...,p

{|Y (k)
l,ij |, |Y

(k)
l,ji |}.

• ho(Z
(1), . . . , Z(K)) = λ

∑

l=0,...,p

∑

i,j

√

K
∑

k=1

(

Z
(k)
l,ij

)2

.

The major operations involved with the Douglas-Rachford method are summa-

rized as follows:

Proximal operator of f This is a projection onto the positive semidefinite

cone of order (p+ 1)n.

Evaluation of
(

I + t2AadjA
)−1

The adjoint mapping of A is

Aadj(U, Y, Z) =





U 0

0 0



+ T (Y ) + T (Z).

To evaluate
(

I + t2AadjA
)−1

, we need to solve equations of the form (4.36),

X + t2Aadj (A (X)) = B, (4.36)

i.e.,

X + t2





X00 0

0 0



+ 2t2T (D(X)) = B. (4.37)

This is a linear equation problem, and the solution X can be computed by solving

Xkk +
2t2

1+t2
D0(X) = 1

1+t2
Bkk, k = 0,

Xkk + 2t2D0(X) = Bkk, k ≥ 1.
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Proximal operator of g The proximal operator of g can be evaluated sepa-

rately for −
K
∑

k=1

log detU (k),
K
∑

k=1

hi(Y
(k)), and ho(Z

(1), . . . , Z(K)).

• The proximal operator of − log detU (k) can be computed by eigenvalue de-

composition.

• The proximal operator of hi(Y
(k)) can be computed by projection onto an

ℓ1-norm ball plus Moreau decomposition.

• The proximal operator of ho(Z
(1), . . . , Z(K)) can be computed by projection

onto an ℓ2-norm ball plus Moreau decomposition.

The details of evaluating these proximal operators can be found in chapter 2

section 2.2.2.

4.4 Model selections

The graphical models we obtain from estimation are affected by the tuning param-

eters {λ1, λ2}. If the estimation is used to aid data analysis and hypothesis testing,

the choice of tuning parameters is usually guided by practical considerations such

as model stability and interpretability. For instance, when we iterate though a set

of tuning parameters, if some edge remains in the graph with increasing tuning

parameters, and this infers that the connectivity is strong. For applications where

there is no practical clue, we prefer using model selection methods to choose the

tuning parameters. Two model selection approaches are included in this chapter.

The first approach is based on information theoretical criteria such as Akaike In-

formation Criteria (AIC) and Bayes Information Criteria (BIC) [BA02], which

are defined as follows:

AIC = −2L+ 2ke,

BIC = −2L+ kelogN,
(4.38)
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where L is the log-likelihood of the ML estimate, N is the total number of samples
∑K

k=1N
(k), and ke is the effective number of parameters.

Analogous to (4.11), the log-likelihood L of K autoregressive processes is given

by

L =
K
∑

k=1

N (k) − p

2

(

log detX
(k)
00 − tr(C(k)X(k))

)

, (4.39)

where X(k) is the optimal solution for each graphical model, and

ke =
n(n + 1)K

2
−

K
∑

k=1

|V(k)|+ p
K
∑

k=1

(n2 − 2|V(k)|), (4.40)

where |V(k)| is the total number of conditionally independent pairs of variables for

graphical model k.

Another approach is using M-fold cross validation. We randomly split the

dataset into M equal sized subsets. Of those subsets, a single subset is used for

validation and the remaining subsets are used for training. The cross-validation

process is repeated so that each subset is used exactly once for validation. The

cross validation result is produced by averaging the results from all the repetitions.

In particular, first we select a validation subset, and use the remaining M − 1

subsets for training to obtain the estimation result X̂ . Then, we substitute X̂ to

the validation subset, and calculate the log-likelihood. This procedure repeats for

M times, and for each time a different subset is used for validation. Finally, we

sum up those K log-likelihood results and use this result as the cross validation

score for the current set of parameters. The set of parameters corresponding to

the minimum negative log-likelihood is chosen as the model selection result. The

formula for cross validation can be expressed as in (4.41):

CV(λ1, λ2) =

D
∑

d=1

K
∑

k=1

(

− log det X̂
(k,−d)
00 + tr(C(k,d)X̂(k,−d))

)

(4.41)

where C(k,d) is the empirical covariance matrix for graphical model k using data

subset d, X̂(k,−d) is the estimation result for graphical model k excluding data

subset d. An experiment of model selections will be provided in section 4.5.1.
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4.5 Numerical experiments

In this section, we compare model selection methods via synthetic experiments.

We also provide both synthetic data and real data examples to demonstrate the

performance of joint Gaussian graphical models for autoregressive time series.

4.5.1 Model selections

To test model selection methods, we set the testing environment as follows:

• Synthetic data generation. We set K = 3, n = 100, p = 1 and generate three

graphs with the same pattern but different coefficient values for each Ak. To

generate the data, we first create a sparse symmetric pattern matrix E. In

the lower triangular part of E, 99% entries are randomly selected to be zeros.

For the coefficients in the AR process, A0 is chosen to be the identity matrix,

and Ak is chosen to follow the sparsity pattern E for k = 1, . . . , p. For each

non-zero entry in Ak, we set the value as 0.5 or −0.5 with equal probability.

The covariance Σ is set as the identity matrix. This procedure is repeated

until we obtain a stable AR process. We then generate N (k) samples from

the AR process with N (k) = 0.5n, n, 2n, 4n, 8n, 12n, 16n, respectively.

• Model parameters. We test all different combinations of parameters from

γ = 0.005, 0.01 and λ = 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02.

• Number of folds in cross validation. M = 5.

• Measurement score. F1 score is used as a reference for the comparison of

model selection methods. It is defined as

F1 = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
,

where FP denotes False Positive, TP denotes True Positive, FN denotes

False Negative, recall is defined as TP/(TP+FN), and precision is defined
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as TP/(TP+FP). These values (TP, FP, FN) are calculated by comparing

the estimated topology with the true topology, where nonzero entries are

labeled as positive and zeros are labeled as negative. The graph topology

is obtained by comparing the ℓ∞-norms of the entries of partial coherence

R(ω) [Bri01, Dah00], ρij = supω |R(ω)ij|, with a given threshold (0.1 is used

in our experiment), where the partial coherence is defined as

R(ω) = diag(S(ω)−1)−1/2S(ω)−1 diag(S(ω)−1)−1/2.

The experimental results of model selection methods and F1 score are shown

in Fig. 4.5.1. It shows that BIC and cross validation are effective as both the

minimums of these two curves match the maximum of F1 score. BIC tends to

choose simpler models than AIC theoretically, and it also works better than AIC

in the experiment. Cross validation is the best one, but it is computationally

expensive. In practice, if the problem size is small, cross validation is preferred.

If computational time is a big concern, BIC can be used as an alternative.

4.5.2 Small examples of synthetic data

• Setting 1. We use the same setting (K = 3, n = 100, p = 1) and the same

Ak as in the model selection experiments.

• Setting 2. We set K = 3, n = 100, p = 1. In order to generate three

graphs with similar patterns, first we generate the shared pattern of Ak

using the same procedure as in setting 1 (or model selection experiments).

The nonzero density in the shared pattern is 1%. Then for each individual

graph, we randomly generate additional 0.2% nonzero entries, and each entry

value is set to be equal to 0.5 or −0.5 with the same probability.

Fig. 4.2, Fig. 4.3 and Fig. 4.4 demonstrate the estimation results with different

numbers of samples. For each estimate, the optimal parameters are chosen by
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Figure 4.1: Model Selection using synthetic data. The top figure shows the com-

parison among AIC,BIC, and negative log-likelihood for different γ and λ. The

middle figure shows the curve for cross validation. The bottom figure provide the

F1 score as a ground truth.
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scanning through different combinations of parameters and comparing the esti-

mation results with the true pattern. Also note that in this experiment, only edges

with the partial correlation value greater than 0.1 are considered as positive, while

the rest of them are considered as negative. In these figures, we can see that for

the same sample size, the group Gaussian graphical model for autoregressive time

series performs better than separate Gaussian graphical models for autoregressive

time series in terms of TPR, FPR and F1 score. When the sample size increases,

the difference of estimation accuracy decreases until the sample size is big enough

that all methods can reach perfect recovery. Fig. 4.2 also demonstrates the per-

formance of the non-regularized model in terms of F1 score. Compared with other

estimations, the non-regularized model has poor recovery.

Fig. 4.5 shows the convergence rate of the group Gaussian graphical model for

autoregressive time series using Spingarn’s method. The primal residual and dual

residual are defined in chapter 2 section 2.3.1. From Fig. 4.5, we can see that only

less than 100 iterations are needed for convergence to reach the relative residual

10−5.

4.5.3 International stock markets analysis

We consider a multivariate time series of international stock market indices: the

NYSE Composite Index (U.S.), the NASDAQ Composite Index (U.S.), the Frank-

furt DAX 30 Composite Stock Index (Germany), the CAC 40 Composite Stock

Index (France), the FTSE 100 Share Index (U.K.), the Nikkei 225 Stock index

(Japan), the Straits Times Index STI (Singapore), the Hang Seng Stock Com-

posite Index (Hong Kong), the SSE Composite Index (Shanghai, China), and

the SZSE Composite Index (Shenzhen, China). All stock index prices are re-

trieved from yahoo finance from Sep. 15th, 2014 to Dec. 31st, 2014. The vari-

able in the graph is defined to be the return between trading day t − 1 and t,

rt = 100 log(πt/πt−1), where πt is the closing price on day t. For the 75-day data,
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Figure 4.2: F1 scores for group AR Gaussian graphical models using synthetic data

in section 4.5.2. Parameter settings are K = 3, n = 100, p = 1. Left: structures

with the same pattern but different edge values. Right: structures with similar

patterns. The curves show the increment of F1 score with an increasing sample

size.
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Figure 4.3: True positive rate for group AR Gaussian graphical models using

synthetic data in section 4.5.2. Parameter settings are K = 3, n = 100, p = 1.

Left: structures with the same pattern but different edge values. Right: structures

with similar patterns.
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Figure 4.4: False positive rate for group AR Gaussian graphical models using

synthetic data in section 4.5.2. Parameter settings are K = 3, n = 100, p = 1.

Left: structures with the same pattern but different edge values. Right: structures

with similar patterns.

we consider day 1-30, day 16-45, day 31-60, day 46-75, as four groups. For each

group, half days are overlapping with the next group. We do this intentionally in

order to make the groups manifest the change of stock markets over time. The

results are shown in Fig. 4.6, Fig. 4.7, and Fig. 4.8.

In Fig. 4.6, Fig. 4.7 and Fig. 4.8, we use the thickness of edges to represent the

connectivity between nodes. The larger the partial correlation value is, the thicker

the edge is. From the figures, we can see that some pairs like (SSE,SZSE) and

(NSYE,NASDAQ) are strongly connected. They have large partial correlations

since the markets are within one country, and they highly interact with each other.

Other interesting pairs include the pair between CAC40 and DAX. We can see

that separate graphical models fail to recover this relation, but the group graphical

model is able to demonstrate the relation over different time period. The group

graphical model also maintains Nikkei 225’s connectivity to NYSE as in the single

graphical model, but it is absent in the separate graphical models.
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Figure 4.5: Convergence of Spingarn’s method for group AR Gaussian graph-

ical models using synthetic data in section 4.5.2. Parameter settings are

K = 3, n = 100, p = 1

.
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Figure 4.6: International stock market relations via a single Gaussian graphical

Model for autoregressive time series. It uses all the data in 75 days.

4.5.4 fMRI brain network

In the brain activity network, all subjects share certain commonality while each

individual has their uniqueness. The fMRI dataset we are analyzing is provided

by Professor Patrick Dupont at the University of Leuven [VWN+13]. The fMRI

experiment was conducted with 33 different subjects, and the reaction in 57 dif-

ferent brain regions were recorded. For each subject, there are 4-6 runs depending

on the subject, and for each run, there are 108 scans. For the purpose of demon-

stration, we only use 5 subjects and 10 regions. Each subject is treated as a group,

and the group Gaussian graphical model for autoregressive time series is applied

to analyze the data. Fig. 4.9 shows that for all the individuals, some edges like

(0,8), (7,9) are always strongly connected, and some edges like (0,1) and (2,3) are
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Figure 4.7: International stock market relations via separate Gaussian graphical

Models for autoregressive time series. Four graphs represent the graphs for day

1-30, day 16-45, day 31-60, and day 46-75 respectively. The graphs are estimated

separately as a single graph.

always disconnected. For different subjects, some edge connectivities are different,

such as (1,6) and (0,3). This graph can be used to assist the interpretation of the

brain network.

4.6 Conclusion

In this chapter, we have extended joint Gaussian graphical models to autoregres-

sive time series, and applied the Douglas-Rachford method to solve the estimation

problems. The model selection experiments have shown that cross validation and

BIC work well for group Gaussian graphical models for autoregressive time series.
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Figure 4.8: International stock market relations via group Gaussian graphical

Models for autoregressive time series. Four graphs represent the graphs for day

1-30, day 16-45, day 31-60, and day 46-75 respectively. The graphs are estimated

together using group Gaussian graphical Models for autoregressive time series.

The synthetic experiments have shown that the performance of the group Gaus-

sian graphical model for autoregressive time series is better than the performance

of estimating multiple graphical models separately. Lastly, the group model has

been applied to real applications including international stock markets analysis

and fMRI brain network analysis to increase the interpretability.
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Figure 4.9: fMRI brain network using group Gaussian graphical models for au-

toregressive time series
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CHAPTER 5

Time series with latent variables

The structure of a Gaussian graphical model is characterized by conditional inde-

pendence, and requires the information of all nodes when we evaluate the connec-

tivity between two nodes. This requirement is stringent, since some nodes may

be hidden or latent, and once they are considered in the model, the topology can

change significantly. In this chapter, we focus on graphical models with latent

variables. We first explain the effect of latent variables on Gaussian graphical

model (for time series), then we apply the Douglas-Rachford method to solve

Gaussian time series graphical models with latent variables. Last, we provide

some experiments to illustrate the effect of latent models and demonstrate the

performance of the algorithm.

5.1 Latent variables in Gaussian graphical models

In this section, we start with discussing the effect of latent variables on conditional

independence graphs. Then we review the existing work on Gaussian graphical

models with latent variables [CPW10], and provide some explanations about the

effect of latent variables on Gaussian graphical models.

5.1.1 Effect of latent variables

Based on the definition of conditional independence, whether two variables xi and

xj are conditionally independent depends on the entire vector. Adding or removing
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Figure 5.1: Effect of latent variables. Node 1,3,4,5 are observable variables, and

node 2 is a latent variable. Solid lines: true conditional dependence between

observable variables. Dotted lines: true conditional dependence between an ob-

servable variable and a latent variable. Dashed-dot lines: conditional dependence

result produced by lack of the information of node 2.

a third variable from the vector can change the topology. In some applications

this is no problem because one may have a good list of all the variables that are of

importance. But in applications where there may be important variables that are

hidden or latent, and observable variables do not include all important factors,

one may get misleading results. For one example, Fig. 5.1 shows a graphical model

with 4 observable variables and 1 latent variable. We can observe the set of nodes

{1, 3, 4, 5}, while node 2 is hidden. The solid lines and dotted lines represent the

true conditional dependence. However, if node 2 is hidden, the lack of information

from node 2 produces two extra edges ({1, 3} and {3, 5}) as shown in the dashed-

dot line segments), since these two sets of nodes are conditionally independent

only based on extra information from node 2.
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5.1.2 Estimation of Gaussian graphical models with latent variables

Given the effect of latent variables on the estimation of conditional independence

graph, it is important to extend Gaussian graphical models to latent variables.

Chandrasekharan et al. [CPW10] have developed a technique to deal with this

problem, based on the assumption that the number of latent variables is small.

They view a Gaussian graph model as a sparse matrix plus a low rank matrix.

To be specific, for a vector of variables x = (xo, xh), we use xo to represent a

vector of observable variables, and xh to represent a vector of latent variables.

The covariance matrix of joint Gaussian random variables can be written as

Σ =





Σoo Σoh

Σho Σhh



 ,

and the corresponding inverse covariance matrix (precision matrix) can be denoted

as

K = Σ−1 =





Koo Koh

Kho Khh



 .

By Schur complement,

Σ−1
oo = Koo −KohK

−1
hhKho. (5.1)

In (5.1), Koo characterizes the conditional independence of observable variables,

and is typically sparse. KohK
−1
hhKho summarizes the effect of marginalization over

the latent variables xh. This term has a small rank assuming that the number

of latent variables nh is small relative to the number of observed variables no.

Thus the decomposition (5.1) reveals that the estimated structure using observ-

able variables is a mixture of the true structure of observable variables plus the

marginalization effect of latent variables. The former is characterized by a sparse

matrix, while the latter is characterized by a low rank matrix. This means that

some otherwise conditionally independent elements becomes dependent with extra

edges added due to the effect of latent variables.
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If more latent variables are added to the graph, from (5.1) we can see that the

augmented edges are determined by Koh. If all the elements in row i of Koh are

zero, there will be no extra edges added to node i, and thus the marginalization of

the latent variables has no effect on node i. For rows with some non-zero entries

in Koh, K
−1
hh and the entry values in Koh determine the coefficients of added edges.

To be more specific, let us first assume that all latent variables are independent

of each other, i.e., Khh is a diagonal matrix, then the marginalization effect can

be written as

KohK
−1
hhKho =

nh
∑

i=1

(Khh)ii(Koh)i(Koh)
T
i , (5.2)

where (Koh)i denotes the i-th column of Koh. In this special case, each latent

variable serves as an independent factor and introduces a separate set of edges

(structure) to the graph. With nh latent variables, nh different sets of edges are

added, each of which defines a feature shared among all nodes involved in the

graph. For example, if the graph is used to model correlated purchase behavior

of the consumers in the social network, then the sparsity of the graph illustrates

that there is little unique common interest shared among individuals, and the

low rank matrix shows the presence of some common properties shared between

individuals.

Then let us consider the case when Khh is not a diagonal matrix, i.e., latent

variables are not conditionally independent. With eigenvalue decomposition on

Khh, we can obtain Khh = UDUT , where U is an orthogonal matrix, and D is a

diagonal matrix. U can be interpreted as a transformation matrix that is used to

extract orthogonal features from latent variables, and reorganize the information

of latent variables so that they become conditionally independent. By defining

K̃oh = KohU , this problem boils down to the special case of diagonal matrix Khh.

If some latent variables are similar with each other, then after applying the above

shown procedure, some eigenvalues approach zero, and thus the corresponding

effects on the graph become very weak and ignorable.
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For Gaussian graphical models, Chandrasekaran et al. [CPW10] have shown

that if we apply conditional maximum likelihood estimation with an ℓ1-norm pe-

nalization to the sparse matrix Koo and a nuclear norm penalization on the low

rank matrix KohK
−1
hhKho, the penalized estimation can be expressed as in (5.3):

minimize − log det(X − L) + tr(C(X − L)) + γ‖X‖1 + λ tr(L)

subject to X − L ≻ 0

L � 0,

(5.3)

where KohK
−1
hhKho is substituted with L, Koo is substituted with X , and γ, λ are

parameters used to control the sparsity of X and the rank of L respectively.

5.2 Latent variables for time series

In this section, we focus on the effect of latent variables on Gaussian time series

x(t). This has been analyzed by Zorzi and Sepulchre in [MS14], and we will review

the approach in this section.

Let us consider a zero-mean stationary Gaussian process x(t) with no observ-

able variables and nh latent variables with no ≫ nh. xi(t) and xj(t) are condition-

ally independent if (S(ω))−1
ij = 0. However, (S(ω))−1

ij cannot be obtained due to

the lack of data for latent variables. We assume x(t) = (xo(t), xh(t)) and that we

can only access observable variables xo(t), and the dimension of xh(t) is unknown.

The whole spectral density matrix can be written as

S(ω) =





Soo(ω) Soh(ω)

Sho(ω) Shh(ω)



 ,

and only the component Soo(ω) can be inferred from data. We also denote the

inverse spectrum S(ω)−1 as

S(ω)−1 = K(ω) =





Koo(ω) Koh(ω)

Kho(ω) Khh(ω)



 .
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With this notation, (xo(t))i and (xo(t))j are conditionally independent if and only

if (Koo(ω))ij = 0 for all ω. As analogous to static Gaussian graphical models, by

applying Schur complement, we can obtain

Soo(ω)
−1 = Koo(ω)−Koh(ω)Khh(ω)

−1Kho(ω). (5.4)

Suppose the observable data sequence follows p-lag AR model in (4.2), Soo(ω)
−1

can be represented as

Soo(ω)
−1 = Y0 +

p
∑

k=1

(

e−jkωYk + ejkωY T
k

)

, (5.5)

where Yk =
∑p−k

l=0 B
T
l Bl+k. We assume the low rank term Koh(ω)Khh(ω)

−1Kho(ω)

can be expanded as

Koh(ω)Khh(ω)
−1Kho(ω) = L0 +

∞
∑

k=1

(

e−jkωLk + ejkωLT
k

)

. (5.6)

We also define

S(ω)−1 = K(ω) = Z0 +

∞
∑

k=1

(

e−jkωZk + ejkωZT
k

)

,

then

Koo(ω) = (Zoo)0 +

∞
∑

k=1

(

e−jkω(Zoo)k + ejkω(Zoo)
T
k

)

, (5.7)

where (Zoo)k corresponds to the observable part of (Z)k. With these notations,

(xo(t))i and (xo(t))j are conditionally independent if

((Zoo)k)ij = 0, or equivalently











(Lk + Yk)ij = 0, k = 0, . . . , p.

(Lk)ij = 0, k ≥ p+ 1.

(5.8)

As a heuristic approximation, we only consider the constraints for k = 0, . . . , p.

Then the conditional independence condition (5.8) is equivalent to

(

Dk(B
TB + L)

)

ij
= 0, k = 0, . . . , p, (i, j) /∈ E,
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where B =
[

B0 B1 · · · Bp

]

, and L = T
([

L0 L1 · · · Lp

])

. Before deriving

the low rank constraints, we define ∆(ejω) as

∆(ejω) =
[

Im ejωIm · · · ejpωIm

]

. (5.9)

Then Koh(ω)Khh(ω)
−1Kho(ω) can be expressed as ∆(ejω)L∆(ejω)∗. Then the

corresponding nuclear norm can be expressed as

tr
(

∆(ejω)L∆(ejω)∗
)

= tr
(

L∆(ejω)∗∆(ejω)
)

= tr(L), ∀ω.

The constrained latent Gaussian graphical model for autoregressive time series

can be formulated as

minimize −2 log detB0 + tr(CBTB) + λ tr(L)

subject to Dk(B
TB + L)ij = 0, k = 0, . . . , p, (i, j) 6∈ E

L � 0.

(5.10)

If we define h̃ as the indicator function:

h̃(Y )k,ij =











0, (i, j) 6∈ E, k = 0, . . . , p

+∞, otherwise,

problem (5.10) can be written as

minimize −2 log detB0 + tr(CBTB) + λ tr(L) + h̃
(

D(BTB + L)
)

subject to L � 0.
(5.11)

The function h̃ can also be extended to other convex functions. For penalized

estimation, one choice of h̃ is

h̃(Y ) = γ
∑

i>j

max
k=0,...,p

{|Yk,ij|, |Yk,ji|}. (5.12)

Problem (5.11) is non-convex due to the quadratic term BTB. A convex relaxation

can be made by variable substitution X = BTB, i.e., to solve

minimize − log detX00 + tr(CX) + λ tr(L) + h̃ (D(X + L))

subject to L � 0

X � 0.

(5.13)
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5.3 Algorithms

Zorzi and Sepulchre in [MS14] did not discuss practical methods for solving (5.13).

As one contribution in this thesis, we apply the Douglas-Rachford method to solve

(5.13). First, we reformulate problem (5.13) as

minimize f(X,L) + g(U, Y )

subject to (U, Y ) = A(X,L).
(5.14)

• f(X,L) = δ(X)+ δ(L)+ tr(CX)+ γ tr(L), where δ is an indicator function

of positive semidefinite cone S
(p+1)no

+ .

• g(U, Y ) = − log detU + h̃(Y ).

• A(X,L) = (X00,D(X + L)).

If we apply Spingarn’s method or the primal-dual Douglas-Rachford method (see

chapter 2) to problem 5.14, we need to evaluate the proximal operator of f , (I +

t2AadjA)−1, and the proximal operator of g. The major operations are summarized

as follows.

Proximal operator of f This is involved with projections on the positive

semidefinite cone for X and L respectively.

Evaluation of (I + t2AadjA)−1 The adjoint operator of A is

Aadj(U, Y ) =









U 0

0 0



+ T (Y ), T (Y )



 .

Then the evaluation of (I+ t2AadjA)−1 is equivalent to solving the linear equation

(X,L) + t2Aadj(A(X,L))) =
(

B(1), B(2)
)

.

94



This is equivalent to solving

X + t2





X00 0

0 0



+ t2T (D(X + L)) = B(1),

L+ t2T (D(X + L)) = B(2),

(5.15)

(I + t2AadjA)−1 can be evaluated by solving the linear equations in (5.15). More

importantly an analytical solution can be obtained from (5.15), and the related

coefficients only need to be calculated for once.

Proximal operator of g The proximal operator of function g(U, Y ) can be

computed by evaluating two independent proximal operators:

• proximal operator of − log detU . It requires eigenvalue decomposition.

• proximal operator of h̃(Y ). If it is for constrained estimation, we need

to compute the projection onto the sparsity pattern; if it is for penalized

estimation, we need to compute the projection onto an ℓ1-norm ball and

Moreau decomposition.

The details of evaluating proximal operators can be found in chapter 2 sec-

tion 2.2.2.

5.4 Numerical examples

For the static model, it has been shown that with a proper choice of parameters

(λ and γ) that make the minimum nonzero singular value of the low-rank ma-

trix L and minimum nonzero entry of the matrix D(X + L) bounded away from

zero, the model provides estimates with the correct sparsity pattern and rank

[CPW10, Theorem 4.1]. However, this theoretical value is unknown beforehand.

As an alternative method, in this section, we demonstrate the performance of la-

tent Graphical models for autoregressive time series by iterating through different
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values of λ and γ using synthetic examples, and compare the ROC curve with the

corresponding non-latent model.

In the simulation, we consider a latent variable autoregressive graphical model

with no = 100 observational variables, and nh = 8 latent variables. The order

of the autoregressive model is set as p = 3. For the coefficients Ak in the full

autoregressive model, A0 is the identity matrix, and Ak, k = 1, . . . , p share the

same sparsity pattern, where 99% entries are selected to be zeros, and the values

for nonzero entries are set as 0.5 or −0.5 with equal probability. Then we generate

data samples with N = 10no. Spingarn’s method is applied to problem (5.13), and

the simulation results are shown in Fig. 5.2 and Fig. 5.3. The primal residual and

dual residual in Fig. 5.2 are defined in chapter 2 section 2.3.1. Fig. 5.2 shows that

Spingarn’s method converges within 200 iterations to reach the relative residual

10−5 where X,L are 400 × 400 positive semidefinite matrices in the experiment.

Fig. 5.3 presents the ROC curves for both the latent and non-latent Gaussian

graphical model for autoregressive time series. TPR and FPR are defined by

comparing the recovered partial correlation graph with the true one. Edges with

partial correlation greater than 0.1 are considered as positive, and the remaining

edges are considered negative. Fig. 5.3 shows that the latent model has a better

accuracy than the non-latent model. Therefore, the latent model recovers the

graph structure better than the non-latent model if latent variables exist in the

graph.
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Figure 5.2: Spingarn’s Method applied to the latent Gaussian graphical model for

autoregressive time series with size no = 100, p = 3.
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CHAPTER 6

Conclusions

We have looked at three extensions of Gaussian graphical models based on prior

structural information. The first model extends the ℓ1-norm penalized inverse

covariance selection problem. We assume that the zero pattern is partially known

and penalize the remaining entries using an ℓ1-norm penalty. We refer to this prob-

lem as restricted sparse inverse covariance selection. By taking advantage of the

knowledge of the partial zero pattern, the number of variables is largely decreased,

and thus the estimation variance is decreased. The nonzero pattern constraints

can be interpreted as a combination of an extended chordal pattern via chording

embedding plus a penalty on the extended entries using an indicator function.

With this reformulation, the estimation can be restricted to chordal structure. A

proximal Newton method with inexact proximal Newton steps has been proposed

to solve this problem. This method is attractive since the key computations in-

volved are gradient and Hessian evaluations of the log-determinant term, which

can be be computed efficiently with fast algorithms associated with choral sparse

matrices. A theoretical analysis of the convergence property of proximal Newton

methods with inexact proximal Newton steps for self-concordant functions has

been provided, and it has been shown that if the proximal Newton step is exact,

the algorithm is quadratic convergent; if the proximal Newton step approaches to

the exact value as the algorithm converges, it is super-linear convergent; if the

relative inexactness of the proximal Newton step is fixed, it is linearly convergent.

Experiments with synthetic data have been provided to show the performance
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of proximal Newton method with inexact proximal Newton steps calculated by

FISTA.

The second model extends the Gaussian graphical model for autoregressive

time series. It is extended to deal with applications where multiple graphical

models are of interest, with similar but not identical topologies or coefficients.

Estimating these models together as a joint graphical model is useful because

the joint model considers the shared feature among different models and each

model’s uniqueness simultaneously. This also increases the estimation accuracy

for applications where the number of samples is limited. The Douglas-Rachford

algorithm has been applied to solve the joint graphical model. Numerical exam-

ples have been provided to demonstrate the performance of joint graphical models.

The experiment with synthetic data has shown that BIC and cross validation are

good model selection methods, and that the joint graphical model outperforms

the method of estimating the models separately. The real data examples of in-

ternational stock markets and brain networks via fMRI data analysis have shown

that the joint graphical model can capture features that separate models cannot

detect, and make the estimation result easier to interpret.

The third extension is the latent Gaussian graphical model for autoregressive

time series. We have reviewed existing models, and applied Spingarn’s method to

solve the latent time series model. Synthetic experiments have been conducted to

compare the performance between the latent time series graphical model and the

original time series graphical model.

Several suggestions for future work are listed as follows:

• In chapter 3, we have used FISTA to calculate inexact proximal Newton

steps with a fixed θ. As we have seen, the evaluation of the inexact prox-

imal Newton step is a lasso problem, and can be solved by many different

iterative algorithms [Tib96, EHJT04, Zou06, FHHT07, WL08]. The choice
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of algorithm for the inexact proximal Newton steps is one of the most impor-

tant questions for further research. Also, the formulation of good strategies

for adaptive control of the accuracy θ is of great importance.

• In chapter 4 and chapter 5, we have discussed two extensions of Gaussian

graphical models for autoregressive time series. One future research can

focus on the statistical analysis of the asymptotic properties of these mod-

els [WJ08, CPW10], and provide theoretical methods for choosing tuning

parameters.
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