Lawrence Berkeley National Laboratory

LBL Publications

Title

OpenBuildingControl: Digitizing the control delivery from building energy modeling to

specification, implementation and formal verification

Permalink

|https://escholarship.or&c/item/(ﬁqB 1 485g

Authors

Wetter, Michael
Ehrlich, Paul

Gautier, Antoine

Publication Date
2022

DOI
10.1016/j.energy.2021.121501

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California

https://escholarship.org/uc/item/3q8148sb
https://escholarship.org/uc/item/3q8148sb#author
https://escholarship.org
http://www.cdlib.org/

Energy 238 (2022) 121501

Contents lists available at ScienceDirect -
Energy
journal homepage: www.elsevier.com/locate/energy o

Check for
updates

OpenBuildingControl: Digitizing the control delivery from building
energy modeling to specification, implementation and formal
verification

Michael Wetter **, Paul Ehrlich °, Antoine Gautier ¢, Milica Grahovac ¢, Philip Haves ?,
Jianjun Hu °, Anand Prakash ©, Dave Robin ¢, Kun Zhang
2 Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, USA

b Building Intelligence Group, Portland, OR, USA
€ BSC Softworks, Atlanta, GA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 25 February 2021
Received in revised form

27 June 2021

Accepted 13 July 2021
Available online 29 July 2021

The current process for specifying, installing and commissioning building control sequences is largely
manual and based on ambiguous natural language specifications. It lacks a formal end-to-end quality
control and it has been shown not to deliver high performance sequences at scale. While high-
performance HVAC control sequences enable significant reductions in energy consumption, errors in
implementing the control logic are common even for less advanced sequences. To improve this situation,
we present a digitized building control delivery workflow with formal end-to-end verification, a Control
Description Language for the digital specification of building control sequences within this workflow, and

Keywords: L . . .
Cojr/ltrol software tools that enable digitization of this process. Using the process and tools introduced here,
Building mechanical designers can customize, test and improve these sequences within annual energy simulation,

HVAC store them in a library for use in other projects, and export them for bidding. Control providers can
Simulation implement the sequences on existing control product lines through code generation. Commissioning
providers can formally verify whether as-installed sequences conform to the digital design specification
that was exported by the mechanical designer. Moreover, control product development teams can use
the reference implementations of these libraries within their product testing to ensure that their
products reproduce the behavior of the reference implementations. This paper presents this process, the
language and the supporting software, together with examples of all of the above steps. The presented
work has given rise to a new proposed standard, ASHRAE 231P, that will allow digitizing the building
control delivery process through the standardization of a control-vendor independent format for
exchanging control logic that we pioneered through the here presented work.
Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

1. Introduction

High performance building control sequences have been shown
to significantly reduce energy consumption, with savings in the
range of 23 %—30 % being common for most building types [11].
This requires control sequences to be properly designed and
implemented. However, it also has been shown that in large com-
mercial buildings with built-up HVAC systems, programming errors
are the leading cause of control related problems [4]. The fact that

* Corresponding author.
E-mail address: mwetter@lbl.gov (M. Wetter).

https://doi.org/10.1016/j.energy.2021.121501

control related problems are a key contributor to missed energy
savings has been confirmed by a subsequent study from different
authors, which identified in existing commercial buildings 481
operational issues. This study estimates the correction of control
related problems to account for more than 75 % of the potential
energy savings obtained in commissioning [9]. This energy savings
potential is not surprising as today's process to specify, implement
and verify control sequences is based on ambiguous and often
incomplete English language specification of the controls intent
that produces low quality implementations. Energy efficiency,
occupant- and grid-responsiveness of control sequences are diffi-
cult to quantify and realize. As a result, the expected energy per-
formance is often not achieved. This poses risks to building owners

0360-5442/Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:mwetter@lbl.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2021.121501&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2021.121501
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.energy.2021.121501

M. Wetter, P. Ehrlich, A. Gautier et al.

as the return of investment of energy saving measures may not be
achieved, the HVAC system may be oversized to compensate for
malfunctioning and occupant comfort may not be achieved. Missed
energy savings can be estimated as follows: An LBNL study iden-
tified 16 % median actual savings from retro-commissioning [24].
Therefore, if one assumes that around 75 % of the 16 % expected
energy savings associated with commissioning relate to controls,
then simply by ensuring that controls work as intended, about 12 %
energy can be saved. Assuming that the workflow described in this
paper is primarily applicable to built-up HVAC systems and these
are used in buildings larger than 50, 000 sf, which account in the US
for 50 % of the commercial floor area, the estimated savings average
6 % across all US commercial buildings.

The current controls design process is such that the mechanical
designer may at best specify building control sequences in an En-
glish language specification. However, such a specification cannot
be tested formally for correctness. It is also ambiguous, leaving
room for different implementations, including variants that were
not intended by the designer or may not work correctly. The
implementation of the sequences is often done by a controls
contractor who either attempts to implement the sequence as
specified, or use a sequence of a similar project that appears to have
the same control intent. During commissioning, the lack of an
executable specification of the control sequence against which the
implementation can be tested makes commissioning of the control
sequences expensive and limited [15].

To change this status quo, we are working on digitizing the
control delivery process. In support of this effort, we have been
developing tools and a process that allow for a digital control
specification, performance assessment using whole building en-
ergy simulation, and delivery and implementation on existing
building automation product lines. The technical environment for
such a digital control delivery starts to fall in place: For commu-
nication of control signals, standards such as BACnet, LonWorks
and EIB/KNX are widely used. For semantic modeling, Haystack and
Brick are increasingly used, and ASHRAE Standard 223P aims to
standardize semantic modeling, building on these previous efforts.
However, what is missing is a means to express control sequences
in a way that enables simulation during design, export of control
specification and documentation, translation to commercial prod-
uct lines through code generation and reuse for formal verification
of the correct implementation of the control sequences. This gap is
what the OpenBuildingControl project attempts to close. A key
element of OpenBuildingControl is the Control Description Lan-
guage (CDL) that has been developed in the project. CDL is a
declarative language for expressing control sequences through
block diagram modeling. To enable simulation of closed loop con-
trol as part of annual energy modeling during building design or
control research, we designed CDL to be a proper subset of the
Modelica language, an open standard for an equation-based object-
oriented modeling language [23,26]. As CDL is a declarative lan-
guage, the control specification can be exported in a vendor-
independent json format that serves as an intermediate format to
produce English language documentation including control point
lists, and that can serve as inputs to a code translator to a particular
control product line. The control specification can also be exported
for use in a formal workflow that verifies that the control signal of
the actual implementation is within a user-selected tolerance of the
simulated control signal. This provides a workflow with an end-to-
end verification as shown in Fig. 1. Therefore, CDL complements
communication (BACnet) and semantic modeling (ASHRAE 223P)
by expressing the control logic, with the goal of standardizing this
missing part of the control representation. To the best of our
knowledge, this is the first demonstration where the performance
of a building control sequence has been tested in annual simulation,

Energy 238 (2022) 121501

import sequence from a Commissioning agent

Designer Control provider
library, configure =
and test it, connected to =
an energy model] & e

— = . > —
“ ASHRAE — -
=+ G36_PR1 L dT

. A Y)

> | @ passed
submit and deliver dar
controls through
verify against
1 code generation
export ; design specification
specification & | -t

verification tests

Fig. 1. Overview of the workflow for control sequence design, export of a specification,
implementation on a control platform and verification against the specification.

the sequence has been translated through code generation to the
language used natively in a commercial control product line, and
the sequence computed by the controller has been formally verified
against its digital representation. Thereby, this demonstration
bridges the gap between energy modeling and control deployment
and controls commissioning.

We believe that the time for such an effort is ideal due to the
convergence of various technologies. These include the declarative
open standard Modelica that allows closed loop control modeling
and annual performance simulation, advances in code generation
that ease machine-to-machine translation of declarative languages,
and semantic modeling. The latter promises to enable the use of a
semantic model that was automatically generated from a declara-
tive Modelica model [13] for subsequent semi-automatic connec-
tion to an actual building in which a digital twin of the control and
of the building systems could be used to support building analytics,
for example using the MORTAR framework [12]. Due to the trend
towards all electric buildings, which, to increase 2nd law efficiency,
should no longer decouple subsystems through large temperature
lifts (as is customary in fossil-fuel based heating systems), and the
resulting need for more complex control which, in addition, also
need to provide grid flexibility, we believe such a convergence of
technology will help the industry achieving higher system-level
performance.

The paper is structured as follows: Section 2 discusses related
work. Section 3 describes the methodology, starting with the
workflow and then explaining the Control Description Language on
which the methodology is based on. This section also describes the
library of user-configurable control sequences, and our supporting
work on modeling and simulation environments to enable closed
loop performance evaluation. It also describes tools for translating
control sequences to control product lines and for formal verifica-
tion of control sequences that we have been developing. In Section
4, we present examples for closed-loop performance evaluation
using annual simulation, code generation of control sequences to a
commercial control product line, and formal verification of control
sequences implemented on a commercial controller. The paper
ends with a discussion in Section 5 and concluding remarks in
Section 6.

2. Related work

Related work includes the following:

ISO 16484—3 [20], Building automation and control systems
(BACS), specifies the characteristics of software and functions for
building automation systems, and a method for documentation of
the design. It defines function blocks with their inputs, outputs and
parameters, but is vague about the logic that is in these function
blocks.! ISO 16484-3 Annex A provides a building automation
control system function list (BACS FL), represented as a

! For example, there is no specification of the anti-windup of a PI controller.
Moreover, while it defines an optimum start up, it does not provide an imple-
mentation and is vague about some of its parameters.

M. Wetter, P. Ehrlich, A. Gautier et al.

spreadsheet. A BACS FL documents what equipment has what 1/0, is
controlled by what function and how it is monitored (e.g., a supply
air temperature has one analog input, is controlled by a P-controller
and is on a dynamic display). Such functionality is then added up in
the spreadsheet. However, BACS FL cannot fully describe the
required control methods, especially in case of sophisticated and
non-standard control functions. These will need to be documented
in additional documents. Thus, BACS FL are not meant to provide an
executable specification and they appear to be not suited as a basis
to provide a formal language that meets our needs. However, ele-
ments of ISO 16484-3 such as Function Blocks (FB) that are used to
describe the inputs, outputs and parameters of BACS functions are
also used in CDL. Moreover, it appears that BACS FL could be
generated from CDL.

In contrast to ISO 16484—1, CDL allows systems to be tested
during the design phase, while in the ISO project implementation
process, the design approval is done prior to any testing, as Fig. 1 in
ISO 16484—1 [19] shows.

IEC 611313 [18] has been developed for industrial process
control. It standardizes Programmable Organization Units (POU),
which can be extended for object oriented programming including
support for polymorphism. It also standardizes a Sequential Flow
Charts (SFC) model that can be used to implement state machines.
It standardizes the graphical languages Ladder Diagram (LD) and
Function Block Diagram (FBD). The sequential function chart (SFC)
elements can be used in conjunction with either of these languages.
IEC 61131—10 [17] standardizes an XML format for the textual
language, instruction list (IL), the textual language, structured text
(ST), the graphical language, ladder diagram (LD), the graphical
language, function block diagram (FBD), and sequential function
chart (SFC). As IEC 61131-3 defines executable languages with
complex objects and rules for composing control algorithms, it
appears difficult if not impossible to use IEC 61131—3 as a basic
format that is then translated to building automation systems, as
building automation systems often provide significantly fewer ca-
pabilities. We therefore designed CDL, which better matches the
programming tools and techniques in place in the buildings in-
dustry. It seems feasible to translate CDL to IEC 611313, but we
have not yet attempted to do so.

Donida and Leva [8] developed within the AutoEdit project a
graphical application that converts LD and SFC that adhere to the
IEC 61131-3 standard to Modelica. Their approach is to generate
algorithmic Modelica code, which can then be linked up to
equation-based Modelica models of the plant for closed loop
simulation.

Husaunndee et al. [16] developed a MATLAB/Simulink-based
toolbox of models of HVAC components and plants for the design
and test of control systems called SIMBAD. SIMBAD has been used
for testing and emulation of building control sequences, and is
commercially distributed by CSTB France. Bonvini and Leva [5]
developed an industrial control library in Modelica. Yang et al. [39]
developed a tool chain that maps Simulink and Modelica models
into an intermediate format, and then refined it for implementation
in distributed controllers. Our approach borrows ideas from their
methodology. Schneider et al. [30] implemented a Modelica library
with standardized control functions for building automation. They
use control functions from VDI 3813—2:2011 and state graph rep-
resentations from VDI 3814—6:2009, implemented by extending
the models from the wModelica.StateGraph package [28]. Our
approach differs from their work as they document the control
using Unified Modeling Language (UML) class and activity dia-
grams. Schneider et al. [29] formalized the approach through the
introduction of CTRLont, and ontology for modeling control logic in
building automation systems. Our approach differs in that our
representation uses block diagrams that can be composed

Energy 238 (2022) 121501

hierarchically using a predefined set of elementary blocks. These
are then mapped to implementations of commercial control
product lines. In our approach, a related project is working on
extracting ontological information from such models and exporting
it to Brick [3]. Thus, our approach has similarities to that of
Schneider et al. [29], but in our case, the English language
description of the sequences and the ontological information are
exported from CDL. The latter can be added to the CDL sequences,
or be autogenerated if the sequences are part of a model that also
contains the HVAC system, as shown in Fierro et al. [13]. Our
approach differs from Donida and Leva [8], Bonvini and Leva [5],
Yang et al. [39] and Schneider et al. [30] in that we use elementary
control blocks that form a basic library of control functions, and
simple composition rules that we believe suffice for composing
building control sequences. As we will see in Section 4.2, the con-
trol blocks are preserved in our translation from CDL to the input of
the code generator of a control product line. This decision was
made to enable the reuse of existing control product lines, possibly
with minor modifications, in our workflow.

3. Methodology
3.1. Workflow

Before discussing the main elements of the workflow, we first
provide in this section a high-level overview of the end-to-end
workflow. Given regulations and efficiency targets, labeled as (1)
in Fig. 2, a design engineer selects, configures, tests and evaluates
the performance of a control sequence using building energy
simulation (2), starting from a control sequence library that con-
tains ASHRAE Guideline 36 sequences, as well as any user-added
sequences (3), linked to a model of the mechanical system and
the building (4). If the sequences meet closed-loop performance
requirements, the designer exports a control specification,
including the sequences and functional verification tests expressed
in the Controls Description Language CDL (5). Optionally, for reuse
in similar projects, the sequences can be added to a user-library (6).
This specification is used by the control vendor to bid on the project
(7) and to implement the sequence (8) in product-specific code.
Prior to operation, a commissioning provider verifies the correct
functionality of these implemented sequences by running func-
tional tests against the electronic, executable specification in a
commissioning and functional verification tool (9). If the verifica-
tion tests fail, the implementation needs to be corrected and the
tests repeated until the tests pass.

For closed-loop performance assessment, step (2) in the figure,
Modelica models of the HVAC systems and controls [34] can be
linked to a Modelica envelope model [33] or to an EnergyPlus en-
velope model. This can currently be done through Spawn of Ener-
gyPlus [38]. Library of control sequences, step (3), have been
released with the Modelica Buildings Library 7.0.0 and more se-
quences are currently added to this library. To export control se-
quences in a vendor-neutral format, step (5), a translator from CDL
to a json intermediate format has been developed [22]. The json
intermediate format is to be used as input for cost estimation tools
and for translators to vendor-specific product lines. This translator
also outputs an English language description of the control
sequence, including its block diagram representation.

3.2. Control Description Language

This section describes the Control Description Language (CDL)
that we developed to support the OpenBuildingControl workflow
described in this paper.

The requirements of CDL include that it can be used within

M. Wetter, P. Ehrlich, A. Gautier et al.

Energy 238 (2022) 121501

DOE reference

buildings custom model

J requirements &
performance targets

energy code customer
regulations requirements

'

mechanical system &
building simulation model

I

- N

Y

[sequence selection, adaptation]

and optimization

mechanical & building system model

Y

test with energy

model

Yes requirements No

create component
or sequence for
reuse

design & specification

met?

export control specification and
executable sequence and
functional tests in CDL

B

h
)

library of control components,
control sequences and
functional test

control and functional test library

bidding and implementation

Y

control provider bids
for project

—
V;
control provider

translates CDL to its
product line

functional tests

functional
verification meets
specification

Yes

normal operation, possibly
with continuous verification

commissioning and operation

Fig. 2. Overview of the OpenBuildingControl control design, deployment and verification workflow. See text for explanation of the numbers in the grey boxes.

annual whole building energy simulations, and that it can be
executed on various building automation systems, either through
code generation that translates CDL into a representation needed
by the particular control system, or through translation to C code,
which may be encapsulated as a Functional Mockup Unit (FMU) in
order to use the open FMI standard [27] or the emerging eFMI
standard [10]. Therefore, the language needs to be declarative (in
order for it to be translated to other representations), simple (to
lower the barrier to develop translators) yet expressive enough to
be able to express control sequences and to be used as part of an
annual building energy simulation. Moreover, as we intend to
formally verify that the sequences installed in a building control

system meet the design specification, we require control sequences
that conform to CDL to allow a deterministic computation. By
deterministic computation we mean that control signals, computed
by implementations of the sequence in two different control sys-
tems or simulators, need to be identical as defined by Broman et al.
[6].

A key technical challenge that we encountered was that, due to a
lack of standards, existing building control product lines are het-
erogeneous. They differ in their functionality for expressing control
sequences, in their semantics of how control output gets updated,
and in their syntax, which ranges from graphical languages to
textual languages. Code generation for a variety of products is

M. Wetter, P. Ehrlich, A. Gautier et al.

common in the Electronic Design Automation industry, which de-
velops software tools for designing electronic systems such as in-
tegrated circuits and printed circuit boards. However, in the
Electronic Design Automation industry, engineers write models
and controllers are built to conform to the models. If this workflow
were to be applied to the buildings industry, then control providers
would need to update their product lines. We do not expect that
such costly product line reconfigurations can reasonably be ex-
pected in the next decade. Therefore, for the immediate future, the
CDL translation process will need to involve the building of models
of control sequences that can conform to their implementation on
target control product lines, while ensuring that, as new product
lines are being developed, they can invert the paradigm and build
controllers that conform to the models. The project team has,
therefore, selected the path of designing CDL in such a way that it
provides a minimum set of capabilities that can be expected to be
supported by control product lines, yet allows for use of recent
design automation workflows based on the FMI or eFMI standards.

We designed CDL as a declarative, modular language for
expressing block diagrams. CDL allows hierarchical modeling to
encapsulate and reuse through object instantiation preconfigured
control sequences. CDL also defines syntax for connecting inputs to
outputs, for propagating the values of parameters and for encap-
sulating composite blocks that can be stored in a library for reuse.
CDL also has annotations that declare how to graphically render the
block diagrams. It supports the provision of documentation in
HTML format. For simplicity and for compatibility with building
control platforms, CDL currently does not support object-
inheritance and use of state machines, although the former could
easily be added if objects are extended prior to translation.

For the implementation of CDL, we used a small subset of the
Modelica language that is needed for convenient declaration of
block diagrams. We selected Modelica as it is an open standard, as it
provides various open-source and commercial modeling and
simulation environments, as it allows to generate highly efficient
code for simulation, and because it is increasingly used to simulate
building energy and control systems. In particular, the US Depart-
ment of Energy has been funding the redesign of the EnergyPlus
simulation software so that it uses Modelica for the HVAC and
control simulation (see Section 3.4). As the model of computation,
CDL uses the synchronous data flow principle and single assign-
ment rule, which is consistent with the Modelica 3.4 Language
Specification [26, Sec. 8.4]. Therefore, all variables keep their value
until the value is explicitly changed, values are always present (and
hence can be accessed at any time instant), computation and
communication at an event instant do not take time, and every
input connector must be connected to exactly one output
connector.

Besides these rules, CDL also prescribes a library of elementary
building blocks that need to be supported by implementations that
support CDL. The functionality of elementary building blocks, but
not their implementation, is part of the CDL specification. Thus, in
the most general form, elementary building blocks can be consid-
ered as functions that for given parameters p, time t and internal
state x(t), map inputs u(t) to new values for the outputs y(t) and
states x'(t), e.g.,

(p. t.u(t), x(t)) = (y(£), X'(1)). (1)

Control providers who support CDL need to be able to implement
the same functionality as is provided by the elementary CDL blocks.
CDL implementations are allowed to use a different implementa-
tion of the elementary building blocks because the implementation
is language specific. However, implementations shall have the same
inputs, outputs and parameters, and they shall compute the same

Energy 238 (2022) 121501

response for the same value of inputs and state variables. Users are
not allowed to add new elementary building blocks. Rather, users
can use them to implement composite blocks. Fig. 3 shows an
actual implementation of an elementary building block. Such
elementary building blocks are organized into the packages shown
in Table 1. Using blocks from these packages and the CDL syntax for
connecting inputs to outputs and for propagating parameter values,
users and library developers can create composite blocks that
encapsulate more complex control sequences and store them in a
library for reuse. For example, if one would like to implement a
custom proportional controller with output limiter that computes
the output signal y = max(k e, ymax), Where k is a parameter, and e
and ymax are control inputs, one can implement the code shown in
Fig. 4 and store it in a file CustomPWithLimiter.mo. A visual editor
may render the block as shown in Fig. 5. The specification of the
CDL language was introduced by Wetter et al. [35].

3.3. Library of control sequences

Using the composition rules defined in the CDL language spec-
ification, library developers and end-users such as mechanical en-
gineers can compose control sequences for a given system, and
optionally store them in a library for use in other projects or to
share them with others.

In the Modelica Buildings library, we used CDL to implement a
subset of the sequences published in ASHRAE Guideline 36 [2].
Fig. 6 shows an overview of the implemented sequences. The
implementation is structured hierarchically into packages for air
handler units, into constants that indicate operation modes, into
generic sequences such as for a trim and respond logic, and into
sequences for terminal units. For every sequence, there is a vali-
dation package that illustrates the use of the sequence.

Using CDL, we also implemented sequences for outdoor lights
and for shading control, and implementations for primary plants
according to ASHRAE Research Project 1711 and for radiant systems
are in progress.

Our vision is that the simulation community will create and
share packages of ready-to-use control sequences. Similarly, if a
design firm uses their own, possibly proprietary sequences, they
can build a library and share them within their company. Hence, the
library will become a means to share expertise in building control
sequences, and also to continually improve the sequences from one
project to another.

3.4. Modeling and simulation environment

As CDL conforms to the Modelica Language Specification,
various Modelica modeling and simulation environments can be

1 block AddParameter

"Add a parameter to the input signal"
parameter Real p "Value to be added";
4 parameter Real k "Gain of input";

5 Interfaces.Reallnput u

6 "Connector of Real input signal";

7 Interfaces.RealOutput y

8 "Connector of Real output signal";
9 equation

10 y = k*u + p;

T annotation (Documentation (info (

12 "<html > [omitted] </html>"));

13 end AddParameter;

Fig. 3. Implementation of an elementary CDL block. (Graphical annotations are
omitted.)

M. Wetter, P. Ehrlich, A. Gautier et al.

Table 1
Structure of the CDL library.

Package name Description

Constants Package with constants, such as 7

Continuous Package with blocks for continuous variables, such as an
adder, gain, integrator with reset, etc.

Conversions Package with blocks for type conversion, such as for
Boolean to Integer conversion

Discrete Package with discrete blocks, such as a time-sampled
zero-order hold, or a sampler with a trigger input signal

Integers Package with blocks for Integer variables

Logical Package with logical blocks, such as an "and" block and a

delay of a Boolean signal

Package with psychrometric blocks

Package with blocks that combine scalar signals into
vectorized signals, and extract a scalar signal from a
vectorized signal

Package with utility functions, such as to report a
warning

Types Package with type definitions, such as used to configure
a controller as P, PI, PD or PID, or to declare whether a
controller allows reset of its integrator to an input
signal, to a parameter or to disable the reset option
Package with connectors for input and output signals

Psychrometrics
Routing

Utilities

Interfaces

used to model and simulate CDL conforming control sequences. The
CDL implementation has been tested with the OPTIMICA, Dymola,
OpenModelica and JModelica.org programs, which all provide a
modeling and simulation environment for Modelica. The US
Department of Energy is also funding a substantial redesign of the
EnergyPlus whole building energy simulation program called
Spawn of EnergyPlus [38]. In this redesign, the HVAC and control
models are implemented using the Modelica Buildings Library, and
the EnergyPlus envelope model is refactored to allow a tight
coupling with the HVAC, control and room air models. Spawn is
being developed in such a way that the co-simulation between the
Modelica HVAC and control simulation and the EnergyPlus enve-
lope simulation is set up automatically to allow an integrated
closed loop performance assessment. Spawn enables the user to

1 block CustomPWithLimiter

Energy 238 (2022) 121501

yMax

minValue

gain

k=k

Fig. 5. Graphical rendering of a the composite control block shown in Fig. 4.

use drag and drop modeling in any Modelica-compliant model
authoring tool.

For example, Fig. 7 shows a very simple configuration of a
thermal zone, linked to a simple HVAC model that recirculates
room air and heats it up, based on a CDL control sequence that
computes the supply air set point temperature. While this very
simple model illustrates the use for a building with one thermal
zone, Spawn supports modeling any number of thermal zones, and
also any number of buildings, thereby also supporting the devel-
opment of district energy systems. In Section 4.1, we show the
annual closed-loop performance assessment of a more detailed
HVAC system model with CDL control sequences.

3.5. Translation of control sequences

CDL is a language that is convenient for modeling of controls.
However, while Modelica environments can typically be used to
export CDL conforming control sequences as FMUs or as C code,
possibly using the emerging eFMI Standard [10], building auto-
mation systems have not been designed to execute FMUs or to
upload C code. Moreover, building operators, as well as service

2 "P controller with variable output limiter"
3 parameter Real k "Constant gain';
4 CDL.Interfaces.Reallnput yMax

s "Maximum output value";
RealInput e
RealOutput y "Control signal";

6 CDL.Interfaces.
7 CDL.Interfaces.

"Control error";

8 CDL.Continuous.Gain gain(final k=k) "Constant gain";
9 CDL.Continuous.Min minValue

10 "Outputs the minimum of its inputs";

n equation

12 connect (yMax, minValue.ul);

13 connect (e, gain.u);

14 connect (gain.y, minValue.u2);

15 connect (minValue.y, y);

6 annotation (Documentation(info="<html>
17 <p>

8 Block that outputs <code>y

where

= min (yMax,

k*xe)</code>,

v <code>yMax</code> and <code>e</code> are real-valued
» input signals and <code>k</code> is a parameter.

21 </p>
2 </html>"));
» end CustomPWithLimiter;

Fig. 4. Implementation of the composite control block that outputs y = max(k e, ymq) Where k is a parameter that is shown in Fig. 5. (Graphical annotations are omitted.)

M. Wetter, P. Ehrlich, A. Gautier et al.

v [5s] oBC
v (o] ASHRAE

» [0 AHUs
» [7] constants
» [] Generic

» Ba TerminalUnits
» s3] coL

» [] Multizone
» [SingleZone
» [] valves

P —

Constants
VT

| DemandLimitLevels

» [FreezeProtectionStages
» [] operationModes
» [] Zonestates

v [] setpoints
D OperationMode
_]- TrimAndRespond
> b Validation

3 Terminalunits

D ReheatController

D ZoneModeAndSetPoints
» Reheat
» [] setpoints

» [p] validation

Energy 238 (2022) 121501

D Controller
‘v '— Economizers l
@ Controller
v Subsequences
Enable
@ Limits
Modulation
> b Validation
») Validation
~ [] setpoints]
ExhaustDamper
D OutsideAirFlow
ReturnFanDirectPressure
D VAVSupplyFan
D VAVSupplyTemperature
» b Validation

» [p] validation ‘

DamperValve
D SystemRequests
"' SetPoints J
‘ D ActiveAirFlow
» [»] validation
» [»] validation

——

Fig. 6. Overview of the ASHRAE Guideline 36 package implemented in the Modelica Buildings library 7.0.0.

Building-level Internal load Gain for Thermal zone
configuration schedule internal loads
i,
—|_1 i >
period=1d
Building
Fan Heater

4

Maps control
signal to supply
Setpoint Pl controller air temperature

d=1d
pere I Controls

Fig. 7. Schematic view of a simple Spawn model with one thermal zone, an ideal
heating system that recirculates air, and a PI controller.

technicians, require implementation of the control sequences in a
particular product line, and building automation systems also
provide functionality that is generally handled differently among
the control providers, often using proprietary approaches, such as
distribution of the code to field devices, communication and access
control, trending, alarming, etc. In addition, for project submittals
and for control documentation for building operators, an English

language documentation needs to be provided.

Therefore, to support this workflow, we implemented the soft-
ware modelica-json that translates CDL to a JSON format [22]. This
JSON format can then be used as input to a code generator that
translates CDL to the syntax used by the particular control platform.
This is demonstrated in Section 4.2. The modelica-json translator
also uses this JSON intermediate format to test the conformance of
the control sequence specification with the CDL syntax definition,
and to generate the English language documentation of the control
sequence together with the corresponding point list, which may be
used for bidding, and the graphical representation of the block
diagram in HTML or Microsoft Word format. While the translation
via a JSON intermediate format has been developed to accommo-
date the use of CDL with legacy building control product lines, it
does not preclude companies that develop new control product
lines to directly generate code from CDL using the eFMI Standard
and through this support CDL natively.

3.6. Verification of installed sequences

The last step of the deployment is a formal verification that tests
whether the control sequences conform to the specifications that
were exported during the design phase. This step verifies whether
the sequences compute similar control actions and set points as the
specification, using trended data as input. Because proper func-
tioning mechanical equipment and communication is orthogonal to
the execution of the control logic, these aspects are not tested in
this step and need to be done separately as part of the commis-
sioning and are not discussed here.

Fig. 8 shows the verification flow diagram. The verification starts
with trending control inputs and outputs from the actual building
automation system, with an input excitation large enough to cover

M. Wetter, P. Ehrlich, A. Gautier et al.

the typical operation of the sequences. The trended inputs and
outputs are stored, for example, in a CSV file, at a frequency high
enough to resolve the dynamic transients of the input and outputs.
These trended data are then read into a model that conducts the
verification. This model can be constructed from components of the
Modelica Buildings Library. The block labeled input file reader reads
the archived data. The block labeled unit conversion converts the
units to be compatible with the units used in the CDL specification.
These signals are then fed into the CDL specification. Finally, the
outputs from the CDL specification and the control outputs with
units converted to be compatible with output signals of the CDL
specification are saved to a file.

To compare the trended and simulated control outputs, we
developed an open-source, cross-platform software called funnel
[21]. The software reads two CSV files, one containing the simulated
and the other the trended control signals. It then computes a
tolerance around each simulated control point, using the L;-norm,
e.g., a rectangle, with user-specified tolerances for time and the
control signal. Next, the software selects which corners of the
tolerance rectangles are to be used to build the envelope around all
these points. The comparison then consists of interpolating the
upper and lower envelopes at the trended control signals y : [to, t1]
— R, where [tg, t1] is the time range for which the data have been
trended. This yields an upper bound y,; : [to, t1] — % and lower
bound yjow : [to, t1] — R. Finally, the error is computed as

e(ty) = max(0,y(ty) — Yup(ty)) — min(0, y(tk) — Yiow(tk)): (2)

where t; € [to, t1] are the time instants of the reference trajectory.
These errors are then reported in a time plot and a file, and if all
e(ty) = 0, the sequences conform to the specification. In addition to
these time series comparison, the process shown in Fig. 8 also al-
lows creating sequence diagrams. These can further aid in under-
standing why a sequence failed the verification.

For an example of this verification, see Section 4.3, and for a
more in-depth discussion, see Wetter et al. [37].

3.7. Verification as part of product line development

Another important use case for OpenBuildingControl is to sup-
port verification as part of product line development by control
manufacturers. Control manufacturers who do not have a sequence
translation as described in Section 3.5 will manually program
control sequences. For this use case, we prototyped a sequence
verification tool that uses the steps shown in Fig. 9.

The input to this process are the CDL specifications of the control

disturbances

control

> signal + l*
controller B R e T L EE R >
P)

setpoint

Energy 238 (2022) 121501

sequences, together with test input trajectories, tolerances for
accepted deviations of output values, and indicator variables. In-
dicator variables can be used to suspend a test during certain
conditions. For example, when the fan is commanded off, the
verification of supply air temperature set points may be suspended,
and restarted when the fan switches on.

The workflow for the verification is as follows: Using the
modelica-json translator, the CDL sequence is converted from
Modelica to its JSON representation. From this translation, the
software extracts the names, units and values of the parameters,
along with the names and the units of the input and the output
points of the sequence. Next, the software uses the OpenModelica
simulator [14] to generate simulated reference output time-series
for the provided set of input time-series values. After the user
sets up a mapping from the point names and units of the inputs,
outputs and parameters in the CDL sequence to their corresponding
points on the real controller, the reference input time series are
converted to the units used by the controller. Next, the BACnet
writer sets these values to the corresponding points of the
controller. Periodically, the BACnet writer reads values from the
controller and trends them to a file. Finally, the trended values of
the output variables from the real controller are converted to the
same units as the CDL reference outputs. Now, the reference and
trended output time series are compared using the funnel software,
as described in Section 3.6. A chart detailing the comparison for
each output variable is also generated at the end of each test. This
verification can also be done for outputs of subsequences that are
used to compose the top-level control sequences, thereby
providing a means to debug where deviations first occur.

For an example of this verification, see Section 4.4.

4. Examples

We will now present three examples that illustrate the end-to-
end workflow. The example in Section 4.1 demonstrates how the
library of control sequences (Section 3.3) can be used within an
energy modeling environment (Section 3.4) to test the correctness
and performance of control sequences coupled to a building energy
model. This is step (2) in Fig. 2. Next, the example in Section 4.2
shows how sequences from such an energy model have been
translated to a commercial control product line, using the workflow
described in Section 3.5. This is step (8) in Fig. 2. Lastly, the ex-
amples in Section 4.3 and 4.4 demonstrate how a sequence
implemented in that commercial control product line can be
formally verified using the workflow described in Section 3.6 and

disturbances

:
*l
S

measurement |
signal

L= archive 7':7: input file
> | reader

unit escEmssenesmsecsson =R saquencs
SR X S (]
conversion i - chart

time series

>\ verification

Lo control
specification

Fig. 8. Overview of the verification that tests whether the installed control sequence meets the specification.

M. Wetter, P. Ehrlich, A. Gautier et al.

Control
sequence
in CDL
with test
definitions

e

Modelica

modelica X .
) Control simulation
g input (.csv) envi-
translator
l ronment
Point
list and
parameter
specifi-
cation
(.json)
_17
Point
mapping
Point map)
and con- BACnet
figuration writer
parameters _17
Control
sequence in
hardware
BACnet
reader
— T
Trended Simulated
control control
output output
(.csv) (.csv)

Sequence

verification

Pass or fail

Fig. 9. Different files (yellow) and processes (green) involved in the sequence verifi-
cation tool.

Energy 238 (2022) 121501
3.7. This is a part of step (9) in Fig. 2.
4.1. Performance comparison of control sequences

In this section, we compare the performance of two different
control sequences. The objectives are to demonstrate the setup for
closed loop performance assessment, to demonstrate how the
control performance can be benchmarked, and to assess the dif-
ference in annual energy consumption.

The two compared cases use the same building model. It con-
sists of a single floor with five thermal zones from the prototypical
medium office building described in the set of DOE Commercial
Building Benchmarks [7]. The two cases also use the same HVAC
system model, representing a variable air volume (VAV) system
with terminal reheat. The weather data corresponds to a typical
meteorological year (TMY3) in Chicago, IL.

The two cases only differ by the control sequence they use. For
the base case, we implemented a control sequence published in
ASHRAE's Sequences of Operation for Common HVAC Systems [1].
For the other case, we implemented the control sequence published
in ASHRAE Guideline 36 [2]. The main conceptual differences be-
tween the two control sequences are as follows:

@ Duct static pressure: The base case resets the supply air static
pressure set point based on the maximum VAV box damper
opening, using a PI control loop. The Guideline 36 sequence
uses a trim and respond reset logic based on the zone pres-
sure requests sent by the VAV terminal unit controllers.

@ Supply air temperature: The base case uses a constant supply
air temperature set point during occupied hours, whereas
the Guideline 36 sequence uses a trim and respond reset
logic based on the outdoor air temperature and the zone
cooling requests sent by the VAV terminal unit controllers.

In both cases, the set point is tracked with a control loop whose
output is mapped to sequence the heating coil, the economizer
dampers, and the cooling coil. In the base case, the outdoor air and
return air dampers are actuated in tandem (with complementary
positions) whereas Guideline 36 prescribes to actuate them in
sequence, with first opening the outdoor air damper and then
closing the return air damper as the control loop output increases.

@® Minimum outdoor air flow rate: The base case uses a fixed
minimum outdoor air flow set point, computed per ASHRAE
Standard 62.1. The Guideline 36 sequence solves dynamically
the equations from ASHRAE Standard 62.1 based on the
actual operating conditions. In our case, the option for room
occupancy sensors is disabled so the variable that drives the
set point variation is the zone air distribution effectiveness,
which switches from 1.0 to 0.8 when the discharge air tem-
perature becomes higher than the zone air temperature.

In the base case, the set point is tracked with a PI control loop
which directly modulates the position of the economizer dampers,
whereas the Guideline 36 sequence maps the loop output to the
minimum and maximum opening of the outdoor air and return air
damper, respectively.

@ Room air temperature: In heating demand, the base case uses
a constant air volume flow rate set point to modulate the
VAV box damper opening, whereas Guideline 36 uses a var-
iable set point modulated by the zone temperature control
loop output.

Fig. 10 shows the schematic diagram of the VAV system that is

M. Wetter, P. Ehrlich, A. Gautier et al.

Energy 238 (2022) 121501

I I

core zone south zone

ir

o I |
damper

heating cooling
coil coil

NS =S SN NN
+ | — |+ | — + | —/ I —

I I]

east zone north zone west zone

I I I

/10
T

Fig. 10. Schematic diagram of the VAV system used in both cases.

Fig. 11. Top level view of Modelica model for the Guideline 36 case.

used for both cases.

We will now summarize the modeling and simulation approach,
compare the annual performance of the two control sequences and
discuss the results. For a more detailed discussion, see Wetter et al.
[36].

4.1.1. Modeling and simulation

All models are implemented using the Modelica Buildings Li-
brary and are available in version 8.0.0 (commit 9c680a6) of the
library [34] as part of the package Buildings.Examples.VAVReheat.
Fig. 11 shows the Guideline 36 model. In these models, the fan air
flow rate is computed based on the fan speed input signal, the fan
curve and the pressure distribution in the duct network [32]. The
air flow rate in each leg of the flow network is computed based on
friction, which depends on air flow rate, damper positions and
wind pressure on the building. The air flow rate among the thermal
zones is computed based on the pressure difference caused by wind
pressure, HVAC operation and temperature differences in each of
the thermal zones, which can induce bi-directional air flow through
open doors [31]. This system of equations is coupled to the thermal
models of the building envelope and the HVAC equipment, and
solved at every time step. All simulations were run using OPTIMICA
Compiler Toolkit (release tag r19089) on Ubuntu 18.04 64 bit. We
used the CVode solver with a tolerance of 10~%. This solver adap-
tively changes the time step to control the integration error and to
properly simulate time events and state events.

Table 2 provides an overview of the model and simulation

10

statistics. The differences in the number of variables and in the
number of time varying variables indicate that the Guideline 36
control is significantly more detailed than the base case control
sequence. To illustrate the complexity of the two control sequences,
Fig. 12 shows the number of lines of the flat Modelica representa-
tion of Dymola 2021. The figure shows that the control sequence of
Guideline 36 required about 6—7 times more code than the base
case, and the size of the code required for the Guideline 36 controls
logic is larger than the code needed to implement the HVAC system.

To conduct the simulations, it was essential that models were
implemented carefully. Early model implementations experienced
chattering due to frequent control switches, causing slow progress
during part of the simulation, and large fan air flow rates and
temperature raise as we used an idealized fan model that main-
tained set points for flow rates or head. The first issue was corrected
through the use of hysteresis or timers for switches of continuous
time controllers as one would need to use in real controllers. The
second issue was corrected by using a fan model that uses speed as
an input and removing a return fan that was not needed in view of
the building static pressure and the low return duct friction. Robust
models that do not experience these issues have been implemented
in the library so they can be used in future experiments. For more
experiences regarding proper model configuration based on a
similar model, see Wetter et al. [36].

4.1.2. Results and discussions
Fig. 13 and Table 3 compare the annual site electricity use

M. Wetter, P. Ehrlich, A. Gautier et al.

Table 2
Model and simulation statistics.
Quantity Base case Guideline 36
Number of components 2929 5275
Number of variables (prior to translation) 34,129 44,026
Number of state variables 183 188
Number of continuous-time algebraic variables 3172 4008
Time for annual simulation in minutes 58 116
Base case
Guideline 36
0 0.5 1 1.5 2

I building M HVAC s controls 103
Fig. 12. Number of lines of code for building (including multi-zone air exchange and
infiltration), HVAC system, and controls.

between the annual simulations with the base case control and the
Guideline 36 control. To compute site electricity use, the heating
load and cooling load at the coil was converted to electricity using a
constant coefficient of performance of COP, = 4.0 and COP, = 3.2.

The simulations show a reduction in HVAC site electrical energy
of 14 % yielded by the Guideline 36 control sequence.” To under-
stand better where those savings stem from, Fig. 14 provides the
density heat map and marginal histograms of the outdoor air flow
rate and the supply air flow rate. The Guideline 36 sequence
manages to operate the system consistently with both a lower air
flow rate and a lower outdoor air fraction. The first effect is mainly
due to the terminal unit control sequence. The base case uses a
constant volume in heating demand, which is revealed on the heat
map by the dense area around (0.4, 0.15), whereas the Guideline 36
sequence modulates the discharge air flow set point based on the
actual heating demand. There are two reasons for the second effect
pertaining to the outdoor air flow. First, the Guideline 36 sequence
allows a lower minimum outdoor air flow rate when the terminal
units supply air at a temperature below the room temperature,

2 The results previously published in Wetter et al. [36] showed a significantly
higher reduction of 30 %. This is due to the following three main changes, listed
below by order of importance, that were applied to the models while investigating
the features explaining the energy savings. Minimum outdoor air flow control: In the
base case, the sizing of the minimum outdoor air flow rate set point was updated
according to ASHRAE Standard 62.1, which led to reducing the outdoor air intake by
more than 50 %. This had the highest impact on the savings. In the Guideline 36
case, the previous model had a high integral time of 1200 s in the PI loop that
controls the outdoor air flow rate. With this setting, the integral term nearly van-
ishes, which essentially renders the PI controller as a P controller that had a sig-
nificant steady-state error. For detailed closed loop models with complex control
sequences, this illustrates the need for systematic testing of each control function,
similar to the Functional Performance Testing performed on HVAC systems. The
development of a tool chain that automates this verification process will serve both
the simulation and the commissioning needs. Room air temperature control: In the
base case, the box control logic was modified with an air flow set point in heating
mode distinct from the minimum air flow set point. This is because the box control
logic is not specified in Ref. [1] and the newly implemented sequence allows a more
representative comparison with the Guideline 36 sequence. Supply air temperature
control: In the base case, the control function was implemented from the following
description: “The heating coil valve, mixed air dampers, and cooling coil valve shall
modulate in sequence to maintain the supply air temperature set point” [1]. To
represent this logic, the model had three different control loops, with distinct set
point values. This was refactored to use a single control loop, whose output signal is
mapped to sequence the three controlled devices, avoiding by principle, rather than
by parameter setting, any unwanted simultaneous operation of these devices. This
further illustrates the need for a formal description of the control logic in a way that
eliminates the risk of diverging implementations which can increase the energy
consumption if the building operator mistunes the parameter setting.

1

Energy 238 (2022) 121501

= EEm heating

Ei mmm sensible cooling
~ 20 Emm |atent cooling
\E . fan

&

215

=

Q

3

3‘10

S

g

o 5

[

2

70

Guideline 36

Base case

Fig. 13. Comparison of HVAC site energy use between the Guideline 36 and the base
case control sequence.

leveraging the better air distribution effectiveness. Secondly, the
supply air temperature reset prescribed by Guideline 36 triggers
the economizer cooling mode less often than in the base case
where the dense area around (0.2, 0.25) reveals an operating point
near 100 % outdoor air with no cooling demand from the terminal
units (that would result in an increased supply air flow rate). This
directly affects the heating energy since the base case frequently
supplies air at a cooler temperature than the one needed to balance
the space loads, requiring additional terminal reheat. Fig. 15 illus-
trates the positive effect of the alternate sequence on the fan
pressure head, which is reduced by both the modulation in
sequence of the economizer dampers (as opposed to a modulation
in tandem) and the trim and respond reset logic of the duct static
pressure, which allows the VAV dampers to be operated closer to
their full opening (as opposed to the most open damper being
controlled with a set point strictly lower than the full opening,
which is a requirement when using a PI control loop so that the sign
of the tracking error can vary and the integral term can decrease).

Regarding the implementation effort that the two sequences
require, the Guideline 36 stands out as challenging due to the
complexity caused by the various mode changes, interlocks, timers
and cascading control loops and large code size. This complexity
makes verification of the correctness through inspection of the
control signals difficult. As a consequence, various programming
errors and misinterpretations or ambiguities of the Guideline 36
were only discovered in closed loop simulations, despite of having
implemented open-loop test cases for each control block. We
therefore believe it is important to provide robust, validated
implementations and reference trajectories of the sequences pub-
lished in Guideline 36. Such implementations would encapsulate
the complexity of the sequences and provide assurances that en-
ergy modeler and control providers have correct implementations.
With the implementation in the package Buildings.Con-
trols.OBC.ASHRAE.G36_PR1, we made a start for such an imple-
mentation and laid out the structure and conventions, but have not
covered all of the Guideline yet.

A key shortcoming from an implementer point of view was that
the sequence was only available in English language, and as an
implementation in WebCTRL, a commercial control product line
from ALC (Automated Logic, a Carrier company), that was “close to
the currently used version of the Guideline”. Neither allowed a
validation of the CDL implementation because the English language
version leaves room for interpretation (and cannot be executed)
and because EIKON simulation lacks the ability to easily inject
externally generated input values that can be used for testing the
dynamic response of control sequences for different input trajec-
tories. Therefore, a benefit of the Modelica implementation is that
such reference trajectories can now easily be generated to validate
alternate implementations.

M. Wetter, P. Ehrlich, A. Gautier et al.

Table 3

Energy 238 (2022) 121501

Heating Ej, cooling E, fan Erand total E site energy, and savings of Guideline 36 case versus base case.

Ep [kWh/(m?a)] E. [kWh/(m?a)] Er [kWh/(m?a)] Ecor [kWh/(m?a)] %1
Base case 5.1 16.1 24 235 —
Guideline 36 3.7 14.7 1.8 20.2 14
Base case Guideline 36
norm. count
0.25
E i l ith
terminal cooing demand No terminal demand 0.2
— ! Economizer cooling with Economizer cooling with
TN terminal cooling demand 1er:m|nal cooling demand 0.15
§ i Economizer cooling
= with terminal reneat
g i 0.1
>
i
f 0.05
Terminal reheat - Terminal reheat 0
0 02 04 06 08 0 02 04 06 0.8
Vfrm /Vfun. nom ['] Vf{m /Vfun. nom ["]
Fig. 14. Density heat map and marginal histograms of the outdoor air flow rate and the supply air flow rate, normalized by the nominal supply air flow rate.
sequence for a VAV terminal unit controller of ASHRAE Guideline 36
800 : zilsjefiize% from CDL to WebCTRL, a commercial control product line from ALC,
200 wm= Constant flow resistance using code generation. WebCTRL is based on a block diagram lan-
guage called EIKON that has predefined elementary blocks, and a
600 § line programming language that can be used to add custom blocks.
E 500 / Translating from CDL to WebCTRL involves two steps. First, the
e JSON representation is generated from CDL using modelica-json as
,f described in Section 3.5. Next, the EIKON Add-on shown in Fig. 16
< 80 that we have been developing is used to translate the JSON repre-
200 sentation of the control sequence to EIKON code. As an input, the
100 EIKON Add-on uses the JSON representation of the control sequence
together with the Rules files. The Rules files specify the criteria for
¢ EIKON block selection, CDL to EIKON parameter mapping and
0 1 2 3 4 5 conversion, and the OCL (Operators’ Control Language) code for
V fan [m3/s] custom blocks. The Translator takes the JSON output of modelica-

Fig. 15. Fan pressure rise and volume flow rate compared to an ideal system curve
with constant flow resistance (VAV dampers fully open).

An additional benefit of the simulation based assessment was
that it allowed detecting potential issues such as a mixed air tem-
perature below the freezing point and chattering due to hard
switches, which both led to improvements to Guideline 36.

While higher efficiency of the baseline may be achieved through
supply air temperature reset or different economizer control, such
potential improvements were only recognized after seeing the re-
sults of the Guideline 36 sequence. Thus, regardless of whether a
building is using Guideline 36, having a baseline control against
which alternative implementations can be compared and bench-
marked is a valuable feature enabled by a library of standardized
control sequences. Without a benchmark, one can easily claim to
have a good control, while not recognizing what potential savings
one may miss.

4.2. Code generation

In this section, we show an example translation of a control

12

json together with the Rules files to create an Instructions JSON
file. The Instructions file specifies which EIKON blocks to instantiate.
It also specifies connection endpoints, and parameter override
values. Composite control blocks that include a hierarchical struc-
ture of lower level control blocks are translated recursively. Once
only elementary blocks are encountered, they are translated to
EIKON code. For some blocks, a one-to-one mapping to native

EIKON
Control
Program
EIKON Add-on
Top-level
Logic

JSON

Native
Blocks

Instructions ;
Builder

Translator —»

SON
) Custom
Graphical
Blocks

Rules
JSON

Custom
OoCL
Blocks

Fig. 16. Steps of translating JSON representation of the CDL sequence to EIKON
sequence.

M. Wetter, P. Ehrlich, A. Gautier et al.

EIKON objects is performed. For example, for a logical "or"-block, a
one-to-one mapping is possible. Other blocks require generation of
OCL line programming code that is used by EIKON. For example,
CDL has an adder that outputs y = kq uq + ky uy for gains kq and kq
and inputs u; and up, whereas in EIKON, the native add-block
outputs y = uq + uy. For such cases, OCL line programming code
is generated unless kj = kp = 1. Next, parameter values are assigned,
and in some cases evaluated because CDL allows statements for
parameter propagation that are not supported by EIKON. The
complete Instructions JSON file is then input to the Builder, which
creates the EIKON control program. In the Builder, components are
laid out graphically, and inputs and outputs are connected and laid
out graphically. While CDL declares the graphical layout, the posi-
tion of the I/O on the mapped EIKON blocks may be different.
Therefore the connections are rerouted in this step. All these op-
erations are specific to the control target platform, and some may
require proprietary knowledge of the control target platform.
Therefore, the Builder portion of the process is proprietary. For ease
of use, a single add-on to EIKON bundles together the Translator and
Builder portions into one action so that the instructions can remain
internal and are not written out as a file. Fig. 17 shows the block
diagram view of the VAV terminal unit in CDL at the top of the
figure and its generated EIKON control program below it. Once
translated, the EIKON implementation need not know anything
about CDL.

4.3. Verification of installed sequences

We will now demonstrate an example in which we verified
conformance to a CDL specification of an installed control sequence.
This uses the workflow described in Section 3.6. We used the
controller OptiFlex G5CE from Automated Logic, which has been
loaded with a set of control sequences programmed for a single
zone VAV system. The sequence controls the fan speed based on the
cooling control signal, heating control signal, zone temperature
setpoint, measured zone temperature, outdoor air temperature and
supply air fan status. The verification tool communicates with the
controller using the BACnet/IP protocol. For this benchtop test, we
allowed all BACnet points on the controller to be read/write over
the network.

In the Modelica Buildings Library, this sequence is implemented
in the model Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.
SingleZone.VAV.SetPoints.Supply, which we used as the reference
implementation. We created a 1 h validation test. Fig. 18 shows the
configuration file that specifies the validation test, the control
sequence, the output signals and their tolerances, and the control-
ler's communication settings. Fig. 19 shows a snippet of the point
and unit mapping between the CDL points and the corresponding
BACnet points on the controller. The verification tool takes these
input files and identifies the input and output BACnet points for the
sequence under test. Then, communicating with the controller via
the BACnet writer and reader, it saves the trended control points.
Next, the tool uses the trended input points from the controller and
runs the CDL simulation using OpenModelica to create the reference
trajectories. As the last step, it invokes the sequence verification,
which will produce the charts that compare reference and trended
outputs for each variable. Fig. 20 shows such a chart produced for the
fan speed set point of the verified sequence.

Fig. 20 shows that around ¢t = 250 s, the trended signal is outside
the tolerance of the reference signal. As this control sequence has
neither continuous nor discrete state variables, this suggests a
difference in the implementation of the sequence or its configu-
ration. As a next step, the control logic and its configuration pa-
rameters would need to be inspected to identify the root cause for
this difference. For this controller, part of the difference around

13

Energy 238 (2022) 121501

t = 250 may originate from fact that the implementation in the
Automated Logic controller computes internally a heating and
cooling control signal using a PI controller based on zone air tem-
perature set point and measurement, whereas in the CDL imple-
mentation, this control signal is an input to the sequence that is
computed in a different module. This difference in control input
and output variables shows that verifying control logic confor-
mance to ASHRAE Guideline 36 would be facilitated if the Guideline
were to be explicit about the input and output variables of the in-
dividual control sequences.

4.4. Verification as part of product line development

We will now demonstrate an example in which we verified a
control sequence that is installed on a controller using the process
described in Section 3.7. For this example, we used the controller
OptiFlex G5CE controller from Automated Logic. The controller has
a sequence loaded that computes the active set point temperature
of a VAV terminal unit from ASHRAE Guideline 36. We will verify
this sequence against the CDL specification Buildings.Con-
trols.OBC.ASHRAE.G36_PR1.TerminalUnits.SetPoints from the
Modelica Buildings Library. The configuration files for the test
configuration and the point mapping have the same structure as
shown in Figs. 18 and 19 and hence are not reproduced here for this
controller configuration. These two items are the inputs to the
BACnet writer, together with the CSV control input file, as shown in
the flow chart in Fig. 9. The verification tool takes these input files,
communicates with the controller via the BACnet writer and reader,
and outputs the trended control output file. As the last step, it in-
vokes the sequence verification, which will produce the charts that
compare reference and trended output for each variable. Fig. 21
shows a magnified section of such a chart for the verification of
the active heating set point that is output of the sequence. For this
illustration, we introduced an error near t = 60 s to illustrate how
the result of a failed test is displayed.

5. Discussion

To our best knowledge, this is the first implementation of a set of
modular, but interdependent, computing tools that pave the path
towards digitization of the controls development, specification,
delivery and verification, under the major technical constraint of
reusing existing building control product lines. This workflow is
possible because declarative modeling languages and system
simulation technologies sufficiently advanced over the past years.
They now allow representation of actual control sequences in a
declarative way, simulation-based assessment of their energy and
comfort performance using an energy model in the loop, and
translation of the control sequence to other computer languages
using machine-to-machine translation. The significance of such a
digitized workflow is that it allows performance assessment early
on during design to improve system-level performance, non-
ambiguous specification of the control sequence to avoid ambigu-
ity for the controls contractor, automated translation to control
product lines to reduce engineering time and avoid coding errors,
and formal verification relative to the specification from the design
phase to ensure correctness of the implementation. Moreover, best-
in-class control sequences can be shared through reusable libraries,
and these sequences can be continuously improved and deployed
through such libraries to industry.

While we demonstrated such a machine-to-machine translation
using one commercial control product line, the intermediate ex-
change format is vendor independent and has not been designed
specifically for this target platform. Translation of this intermediate
format to other control product lines is currently examined through

M. Wetter, P. Ehrlich, A. Gautier et al. Energy 238 (2022) 121501

yDam

>
>
>
>
>
> P/
>
>
>
>

VDis_f low

uDam_actual -~ T T r « uZonTemResRea RO

< uZonPreResRea RO

ulpellod

Fig. 17. VAV terminal unit controller that is part of the control sequence which has been translated from CDL (top) to EIKON (bottom) for use in ALC WebCTRL.

14

M. Wetter, P. Ehrlich, A. Gautier et al.

{

1
2 "references": [

4 "model" : "TestVAVSequence",

g "generateJson" : false,

6 "sequence" : "setPoiVAV",

7 "pointNameMapping”: "realControllerPointMapping.json",

8 "runController" : false,

9 “"controllerOutput": "test/real_outputs.csv',

10 ¥

n 1,

12 "modelJsonDirectory": "test",

13 "tolerances": { "rtolx": 0.002, "rtoly": 0.002, "atolx": 10, "atoly": O },

14 "sampling": 120,
15 "controller": {

16 "networkAddress": "192.168.0.115/24",
17 "deviceAddress": "192.168.0.227",

18 "deviceId": 240001

19}

20 }

Fig. 18. Configuration file used by the sequence verification tool.

"edl": {"name Hea", "type": "float"},
s "device": {"name t.1%; "type": "float"}
},
6 {
"cdl": {"name "type": "float"},
"device": {"name "type": "float"}
o},
0 o
" "cdl": {"name "unit": "K', "type": "float"},
12 "device": {"name nt_1", "unit": "degF", "type": "float"}

16 edlr:
17 "device":

0]

Fig. 19. Snippet of an example point and unit mapping file between the CDL variable
and the real controller point.

CDL Reference Output
Controller Output
Error

0.6 \

f
0.2 | \

2500

Fan Speed [0-1]
SN

1000 1500 2000 3000 3500

0 500
time [seconds]
0.2

/
0.1

0] \

0.3

error [y]

Fig. 20. Illustration of the output chart generated by the sequence verification tool for
a zone heating set point. The shaded region is the region of acceptance, and the blue
points show the error between reference and actual control output. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

an ongoing standardization process within ASHRAE Standard 231P
“CDL - A Control Description Language for Building Environmental
Control Sequences”, complementing BACnet for communication,
Guideline 36 for natural language documentation of control se-
quences, and ASHRAE Standard 223P for semantic modeling. To
facilitate adoption by the building controls industry who is not
expected to migrate any time soon to new product lines, the in-
termediate exchange format was designed to be a common de-
nominator across control product lines. This resulted in limited
functionality compared to what is available in products for model-
based design that include controller code generation, typically via C
code. For example, state machines that would be convenient to
express control sequences and that modern simulation

15

Energy 238 (2022) 121501

CDL Reference Output

20 +- Controller Output
—_ *-Error
(®)
o
2 195]
< .
::) -
S .
£ 19
n
o o
T 185
(3]
T
g .
g 18
<
0 50 100 150 200 250 300
time [s]
= 0.15 .
2 01
S 0.05
) 0

Fig. 21. Illustration of the output chart generated by the sequence verification tool for
a zone heating set point. The shaded region is the region of acceptance, and the blue
points show the error between reference and actual control output. (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

environments generally support are currently not allowed in our
control represenation because building control companies
expressed to the authors that they cannot support state machines
in their product lines.

6. Conclusion

Properly designed conventional building control sequences can
significantly reduce energy consumption. However, correct imple-
mentation of such sequences is difficult and time-consuming. To
digitize this process, we developed a Control Description Language
(CDL) that allows expressing building control sequences in a digital,
machine readable language. We showed that CDL is suitable for (i)
documentation of controls intent in English language and in
machine-readable digital format, (ii) closed loop simulation for
performance assessment, (iii) code generation to commercial con-
trol product lines, and (iv) formal verification of installed control
sequences.

By providing ready-to-use libraries of control sequences in CDL
that can be configured to a particular building, as demonstrated
with our implementation, the complexity of control implementa-
tion can be hidden from the end-user. Therefore, a library of care-
fully designed and implemented control sequences has the
potential to substantially reduce energy consumption. We
demonstrated that with CDL-conforming control sequences,
coupled to whole building energy models, these energy savings can
be quantified, allowing to compare different control strategies. In
our case study, annual simulations revealed the main underlying
reasons for the energy savings, and they revealed potential issues
which helped improving the sequence itself. However, for the nu-
merical simulations to be efficient and robust, the control se-
quences need to be properly implemented. For example, for
continuous time control, all switches need hysteresis or a time
delay, and the solver needs to be able to handle time and state
events.

We also showed that CDL control sequences can be translated to
a commercial control product line using code generation. This
promises to significantly reduce effort for programming of control
sequences, and it allows elimination of programming errors when
implementing the control specification. Finally, we introduced a
process and supporting tools for the formal verification of building
control sequences relative to their digital specification in CDL,
thereby providing an end-to-end quality control. To standardize
this process, the here presented work initiated the development of
ASHRAE Standard 231P, which aims to standardize the digital

M. Wetter, P. Ehrlich, A. Gautier et al.

representation of control logic, thereby complementing standards
for communication and for semantic modeling.

In future work, we will expand a library of control sequences.
We will also further develop a tool chain to

1. enable mechanical designers to create specifications based on
the simulation model,

2. allow control providers to translate CDL-conforming control
sequences to their product line, and

3. allow the commissioning provider to verify correct imple-
mentation by executing the control model with inputs and pa-
rameters obtained from the real implementation, and
comparing the simulated with the real actuator signals.

We also recommend implementing Guideline 36 using the CDL
language. This would allow a non-ambiguous, executable specifi-
cation against which vendor-specific implementations could be
tested and certified using free, open-source tools.

Credit author statement

Michael Wetter, Principal Investigator, Conceptualization, and
Software development. Paul Ehrlich, Conceptualization. Antoine
Gautier, Conceptualization, and Software development. Milica
Grahovac, Conceptualization, and Software development. Philip
Haves, Conceptualization. Jianjun Hu, Conceptualization and Soft-
ware development. Anand Prakash, Software. Dave Robin,
Conceptualization and Software development. Kun Zhang,
Software.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

This research was supported by the Assistant Secretary for En-
ergy Efficiency and Renewable Energy, Office of Building Technol-
ogies of the U.S. Department of Energy, under Contract No. DE-
AC02-05CH11231, and the California Energy Commission's Electric
Program Investment Charge (EPIC) Program.

We like to thank the following people and organization that
contributed through the OpenBuildingControl project to this work:
Troy R. Maeder (Automated Logic); Caleb Clough, David Pritchard,
Amy Shen, Paul Switenki (ARUP); Brent Eubanks (Carbon Light-
house); Brian Turner (ControlCo); Rick Stehmeyer (Cx Associates);
Jay Santos, Jamie Nickels (Facility Dynamics); Mark Hydeman
(Google); John Bruschi, Dave Guerrant, Andrea Traber, John Nelson,
Fiona Woods (Integral Group); Jonathan Schoenfeld (Kodaro); Jim
Kelsey (kW Engineering); David H. Blum, Janie Page, Mary Ann
Piette, Marco Pritoni, Lisa Rivalin (Lawrence Berkeley National
Laboratory); Francisco Ruiz, Rich Rockwood (Oracle); Yan Chen,
Karthikeya Devaprasad (Pacific Northwest National Laboratory);
Gerry Hamilton (Stanford Facilities Energy Management); and
Hwakong Cheng, Brandon Gill, Reece Kiriu, Steven T. Taylor (Taylor
Engineering).

References

[1] ASHRAE. Sequences of operation for common HVAC systems. Atlanta, GA:
ASHRAE; 2006.

[2] ASHRAE. Guideline 36-2018, high-performance sequences of operation for
HVAC systems. Atlanta, GA: ASHRAE; June 2018.

[3] Balaji B, Bhattacharya A, Fierro G, Gao J, Gluck], Hong D, Johansen A, Koh],

16

[4

[5

[6

(7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]

[24]

[26]

[27]

(28]

Energy 238 (2022) 121501

Ploennigs], Agarwal Y, Bergés M, Culler D, Gupta RK, Kjergaard MB,
Srivastava M, Whitehouse K. Brick: metadata schema for portable smart
building applications. Appl Energy 2018;226:1273-92. https://doi.org/
10.1016/j.apenergy.2018.02.091. ISSN 0306-2619, http://www.sciencedirect.
com/science/article/pii/S0306261918302162.

Barwig FE, House]JM, Klaassen CJ], Ardehali MM, Smith TF. The national
building controls information program. In: Summer study on energy effi-
ciency in buildings. In: Pacific Grove, CA; Aug. 2002. http://aceee.org/files/
proceedings/2002/data/papers/SS02_Panel3_Paper01.pdf.

Bonvini M, Leva A. A Modelica library for industrial control systems. In: Proc.
of the 9-th international modelica conference. Munich, Germany: Modelica
Association; Sep. 2012. p. 477—84. https://doi.org/10.3384/ecp12076477.
Broman D, Greenberg L, Lee EA, Massin M, Tripakis S, Wetter M. Requirements
for hybrid cosimulation standards. In: 18th international conference on
Hybrid systems: computation and control. ACM press; Apr. 2015. http://
simulationresearch.lbl.gov/wetter/download/2015-BromanEtAl_Hybrid-
Cosimulation_HSCC.pdf.

Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Liu B, Halverson M,
Winiarski D, Rosenberg M, Yazdanian M, Huang], Crawley D. U.S. Department
of Energy commercial reference building models of the national building
stock. Technical Report NREL/TP February 2011:5500—46861. National Re-
newables Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401.
Donida F, Leva A. Modelica as a host language for process/control
co—simulation and co—design. In: Bachmann B, editor. Proc. of the 6-th in-
ternational modelica conference. Bielefeld, Germany: Modelica Association
and University of Applied Sciences Bielefeld; Mar. 2008. p. 401-8.

Effinger], Friedman H, Morales C, Sibley E, Tingey S. A study on energy savings
and measure cost effectiveness of existing building commissioning. Technical
report, IEA Annex 2009;47.

Emphysis. Functional Mock-up Interface for Embedded systems (eFMI)
version 1.0.0-alpha.3 (draft)vol. 2021; January 27, 2021. https://emphysis.
github.io/pages/downloads/efmi_specification_1.0.0-alpha.3.html.

Fernandez N, Xie Y, Katipamula S, Zhao M, Wang W, Corbin C. Impacts of
commercial building controls on energy savings and peak load reduction.
Technical Report 25985, PNNL May 2017. https://buildingretuning.pnnl.gov/
publications/PNNL-25985.pdf.

Fierro G, Pritoni M, Abdelbaky M, Lengyel D, Leyden], Prakash AK, Gupta P,
Raftery P, Peffer T, Thomson G, Culler DE. Mortar: an open testbed for portable
building analytics. ACM Trans Sens Netw 2019;16(7):1—7. https://doi.org/
10.1145/3366375. 31.

Fierro G, Prakash AK, Mosiman C, Pritoni M, Raftery P, Wetter M, et al.
Shepherding metadata through the building lifecycle. In: Proceedings of the
7th ACM international conference on systems for energy-efficient buildings,
cities, and transportation, BuildSys '20, pages. New York, NY, USA: Association
for Computing Machinery; 2020. p. 70—9. ISBN 9781450380614, https://doi.
org/10.1145/3408308.3427627.

Fritzson P, Pop A, Abdelhak K, Ashgar A, Bachmann B, Braun W, et al. The
OpenModelica integrated environment for modeling, simulation, and model-
based development. Model Identif Control 2020;41(4):241—95. https://
doi.org/10.4173/mic.2020.4.1.

Gnerre B, Fuller K. When building controls veer off course. In Facility Executive,
volume 462707, page 32. Group C Media, Inc., Tinton Falls, NY Dec. 2017.
https://facilityexecutive.com/2017/12/building-automation-veers-off-course/.
Husaunndee A, Lahrech R, Vaezi-Nejad H, Visier]J. Simbad: a simulation
toolbox for the design and test of HVAC control systems. In: Roux]J,
Woloszyn M, editors. Proc. Of the 5-th IBPSA conference, pages 269—276; 1997.
www.ibpsa.org/proceedings/bs1997/bs97_p022.pdf.

IEC 61131-10. Programmable controllers — Part 10: PLC open XML exchange
format. Apr. 2019.

IEC 61131-3. Programmable controllers — Part 3: programming languages.
Feb. 2013.

ISO 16484-1. Building automation and control systems (BACS) — Part 1:
project specification and implementation. ISO 2010;16484—1 (E), Nov. 2010.
ISO 16484-3. Building automation and control systems (BACS) — Part 3:
Functions. ISO Nov. 2007;16484—3:2005.

LBNL. Funnel software to compare time series within user-specified toler-
ances. 2021. https://github.com/Ibl-srg/funnel.

LBNL. Modelica to JSON parser. https://github.com/Ibl-srg/modelica-json;
2021.

Mattsson SE, ElImqvist H. Modelica — an international effort to design the next
generation modeling language. In: Boullart L, Loccufier M, Mattsson SE, edi-
tors. 7th IFAC Symposium on computer aided control systems design, pages 1-5,
gent, Belgium; Apr. 1997. http://www.modelica.org/publications/papers/
CACSD97Modelica.pdf.

Mills E. Building commissioning: a golden opportunity for reducing energy
costs and greenhouse gas emissions in the United States. Energy Effic 2011;4:
145—73. https://doi.org/10.1007/s12053-011-9116-8.

Modelica. Modelica — a unified object-oriented language for systems
modeling, language specification, version 3.4. Modelica Association Apr. 2017.
https://www.modelica.org/documents/ModelicaSpec34.pdf.

MODELISAR Consortium. Functional Mock-up Interface for model-exchange
and Co-simulation version 2.0. 2014. https://www.fmi-standard.org/
downloads.

Otter M, Arzén K-E, Dressler 1. StateGraph — a modelica library for hierarchical
state machines. In: Schmitz G, editor. Proceedings of the 4th modelica

http://refhub.elsevier.com/S0360-5442(21)01749-7/sref1
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref1
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref2
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref2
https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/10.1016/j.apenergy.2018.02.091
http://www.sciencedirect.com/science/article/pii/S0306261918302162
http://www.sciencedirect.com/science/article/pii/S0306261918302162
http://aceee.org/files/proceedings/2002/data/papers/SS02_Panel3_Paper01.pdf
http://aceee.org/files/proceedings/2002/data/papers/SS02_Panel3_Paper01.pdf
https://doi.org/10.3384/ecp12076477
http://simulationresearch.lbl.gov/wetter/download/2015-BromanEtAl_HybridCosimulation_HSCC.pdf
http://simulationresearch.lbl.gov/wetter/download/2015-BromanEtAl_HybridCosimulation_HSCC.pdf
http://simulationresearch.lbl.gov/wetter/download/2015-BromanEtAl_HybridCosimulation_HSCC.pdf
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref7
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref7
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref7
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref7
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref7
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref7
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref8
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref9
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref9
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref9
https://emphysis.github.io/pages/downloads/efmi_specification_1.0.0-alpha.3.html
https://emphysis.github.io/pages/downloads/efmi_specification_1.0.0-alpha.3.html
https://buildingretuning.pnnl.gov/publications/PNNL-25985.pdf
https://buildingretuning.pnnl.gov/publications/PNNL-25985.pdf
https://doi.org/10.1145/3366375
https://doi.org/10.1145/3366375
https://doi.org/10.1145/3408308.3427627
https://doi.org/10.1145/3408308.3427627
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.4173/mic.2020.4.1
https://facilityexecutive.com/2017/12/building-automation-veers-off-course/
http://www.ibpsa.org/proceedings/bs1997/bs97_p022.pdf
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref17
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref17
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref17
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref18
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref18
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref18
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref19
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref19
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref19
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref19
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref20
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref20
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref20
http://refhub.elsevier.com/S0360-5442(21)01749-7/sref20
https://github.com/lbl-srg/funnel
https://github.com/lbl-srg/modelica-json
http://www.modelica.org/publications/papers/CACSD97Modelica.pdf
http://www.modelica.org/publications/papers/CACSD97Modelica.pdf
https://doi.org/10.1007/s12053-011-9116-8
https://www.modelica.org/documents/ModelicaSpec34.pdf
https://www.fmi-standard.org/downloads
https://www.fmi-standard.org/downloads

M. Wetter, P. Ehrlich, A. Gautier et al.

[29]

[30]

[31]

(32]

(33]

[34]

conference. Hamburg, Germany: Modelica Association and Hamburg Uni-
versity of Technology; Mar. 2005. http://www.modelica.org/events/
Conference2005.

Schneider GF, Pauwels P, Steiger S. Ontology-based modeling of control logic
in building automation systems. IEEE Trans Ind Inf 2017;13(6):3350—60.
https://doi.org/10.1109/TI.2017. 2743221.

Schneider GF, Pefller GA, Steiger S. Modelling and simulation of standardised
control functions from building automation. In: Schmitz G, editor. In Proc. of
the 12-th international modelica conference, pages 209—218, prague. Czech
republic: Modelica association; May 2017. https://doi.org/10.3384/
ecp17132209.

Wetter M. Multizone airflow model in Modelica. In: Kral C, Haumer A, editors.
Proc. Of the 5-th international modelica conference, volume 2, pages 431—440.
Vienna: Austria; 2006. Modelica Association and Arsenal Research, http://
www.modelica.org/events/modelica2006/Proceedings/sessions/Session413.
pdf.

Wetter M. Fan and pump model that has a unique solution for any pressure
boundary condition and control signal. In: Roux JJ, Woloszyn M, editors. Proc.
Of the 13-th IBPSA conference, pages 3505—3512; 2013. http://
simulationresearch.lbl.gov/wetter/download/2013-IBPSA-Wetter.pdf.

Wetter M, Zuo W, Nouidui TS. Modeling of heat transfer in rooms in the
Modelica "Buildings” library. In Proc. of the 12-th IBPSA Conference, pages
1096—1103. International Building Performance Simulation Association Nov.
2011. http://www.ibpsa.org/.

Wetter M, Zuo W, Nouidui TS, Pang X. Modelica buildings library. J Build

17

(35]

(36]

[37]

(38]

(39]

Energy 238 (2022) 121501

Perform Simulat
19401493.2013.765506.
Wetter M, Grahovac M, Hu]. Control Description Language. In: 1st American
modelica conference. MA, USA: Cambridge; Aug. 2018. https://doi.org/10.
3384/ecp.1815417.

Wetter M, Hu], Grahovac M, Eubanks B, Haves P. OpenBuildingControl:
modeling feedback control as a step towards formal design, specification,
deployment and verification of building control sequences. In: Proc. of
building performance modeling conference and SimBuild, pages. Chicago, IL,
USA: Sept; 2018. p. 775-—82. https://simulationresearch.lbl.gov/wetter/
download/2018-simBuild-OpenBuildingControl.pdf.

Wetter M, Gautier A, Grahovac M, Hu]. Verification of control sequences
within OpenBuildingControl. In: 16-th IBPSA conference. International
building performance simulation association, sept; 2019. http://
simulationresearch.lbl.gov/wetter/download/2019-ibpsa-Open-
BuildingControl.pdf.

Wetter M, Benne K, Gautier A, Nouidui TS, Ramle A, Roth A, Tummescheit H,
Mentzer S, Winther C. Lifting the garage door on Spawn, an open-source BEM-
controls engine. Proc. of Building Performance Modeling Conference and
SimBuild, Chicago, IL, USA 2020. https://simulationresearch.lbl.gov/wetter/
download/2020-simBuild-spawn.pdf.

Yang Y, Pinto A, Sangiovanni-Vincentelli A, Zhu Q. A design flow for building
automation and control systems. In: 2010 31st IEEE Real-Time Systems
Symposium, pages 105—116; Nov. 2010. p. 26. https://doi.org/10.1109/
RTSS.2010.26.

2014;7(4):253—70. https://doi.org/10.1080/

http://www.modelica.org/events/Conference2005
http://www.modelica.org/events/Conference2005
https://doi.org/10.1109/TII.2017
https://doi.org/10.3384/ecp17132209
https://doi.org/10.3384/ecp17132209
http://www.modelica.org/events/modelica2006/Proceedings/sessions/Session413.pdf
http://www.modelica.org/events/modelica2006/Proceedings/sessions/Session413.pdf
http://www.modelica.org/events/modelica2006/Proceedings/sessions/Session413.pdf
http://simulationresearch.lbl.gov/wetter/download/2013-IBPSA-Wetter.pdf
http://simulationresearch.lbl.gov/wetter/download/2013-IBPSA-Wetter.pdf
http://www.ibpsa.org/
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.3384/ecp.1815417
https://doi.org/10.3384/ecp.1815417
https://simulationresearch.lbl.gov/wetter/download/2018-simBuild-OpenBuildingControl.pdf
https://simulationresearch.lbl.gov/wetter/download/2018-simBuild-OpenBuildingControl.pdf
http://simulationresearch.lbl.gov/wetter/download/2019-ibpsa-OpenBuildingControl.pdf
http://simulationresearch.lbl.gov/wetter/download/2019-ibpsa-OpenBuildingControl.pdf
http://simulationresearch.lbl.gov/wetter/download/2019-ibpsa-OpenBuildingControl.pdf
https://simulationresearch.lbl.gov/wetter/download/2020-simBuild-spawn.pdf
https://simulationresearch.lbl.gov/wetter/download/2020-simBuild-spawn.pdf
https://doi.org/10.1109/RTSS.2010.26
https://doi.org/10.1109/RTSS.2010.26

	OpenBuildingControl: Digitizing the control delivery from building energy modeling to specification, implementation and for ...
	1. Introduction
	2. Related work
	3. Methodology
	3.1. Workflow
	3.2. Control Description Language
	3.3. Library of control sequences
	3.4. Modeling and simulation environment
	3.5. Translation of control sequences
	3.6. Verification of installed sequences
	3.7. Verification as part of product line development

	4. Examples
	4.1. Performance comparison of control sequences
	4.1.1. Modeling and simulation
	4.1.2. Results and discussions

	4.2. Code generation
	4.3. Verification of installed sequences
	4.4. Verification as part of product line development

	5. Discussion
	6. Conclusion
	Credit author statement
	Declaration of competing interest
	Acknowledgement
	References

