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transcription factor Nrf1 by modulating its stability in
response to toxic metal exposure
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Edited by George DeMartino
The nuclear factor E2-related factor 1 (Nrf1) transcription
factor performs a critical role in regulating cellular homeostasis
as part of the cellular stress response and drives the expression
of antioxidants and detoxification enzymes among many other
functions. Ubiquitination plays an important role in control-
ling the abundance and thus nuclear accumulation of Nrf1
proteins, but the regulatory enzymes that act on Nrf1 are not
fully defined. Here, we identified ubiquitin specific protease 7
(USP7), a deubiquitinating enzyme, as a novel regulator of Nrf1
activity. We found that USP7 interacts with Nrf1a and TCF11
—the two long protein isoforms of Nrf1. Expression of wildtype
USP7, but not its catalytically defective mutant, resulted in
decreased ubiquitination of TCF11 and Nrf1a, leading to their
increased stability and increased transactivation of reporter
gene expression by TCF11 and Nrf1a. In contrast, knockdown
or pharmacologic inhibition of USP7 dramatically increased
ubiquitination of TCF11 and Nrf1a and reduction of their
steady state levels. Loss of USP7 function attenuated the in-
duction of Nrf1 protein expression in response to treatment
with arsenic and other toxic metals, and inhibition of USP7
activity significantly sensitized cells to arsenic treatment.
Collectively, these findings suggest that USP7 may act to
modulate abundance of Nrf1 protein to induce gene expression
in response to toxic metal exposure.

Nuclear factor erythroid 2 (NF-E2)-related factor-1 (Nrf1),
also known as NFE2L1, is a transcription factor essential for
the maintenance of cellular homeostasis. Genetic ablation of
the Nrf1 gene in mice leads to embryonic lethality, and tissue-
specific inactivation of Nrf1 using mice bearing the Cre/LoxP
conditional nrf1 null allele indicates that Nrf1 protects against
neurodegeneration and development of steatohepatitis (1–4).
Nrf1 proteins form heterodimers with small MAF proteins and
bind to cis-active sequences known as the antioxidant response
element (5). Nrf1 has been shown to drive the expression of
antioxidants and phase II detoxification enzymes, and it also
plays an important role in controlling proteasome abundance
by regulating coordinate transcription of proteasome genes
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under basal and activated conditions (3, 6–10). Aside from its
role in the cellular stress response, Nrf1 also regulates osteo-
blast and odontoblast differentiation and hepatic lipid meta-
bolism, and loss of Nrf1 function leads to genetic instability
and promotes tumorigenesis (4, 11–14).

The Nrf1 gene encodes several protein isoforms. Long iso-
forms of Nrf1 are made up of TCF11 and Nrf1a (also been
designated previously as Nrf1). TCF11 consisting of 772 amino
acids is the longest protein, whereas Nrf1a, composed of 742
amino acids, is a spliceoform missing residues 242 to 271 of
TCF11 (15). Both TCF11 and Nrf1a share the same N-terminal
domain that targets them to the endoplasmic reticulum where
they are N-glycosylated. To gain entry into the nucleus, they
must undergo retrograde translocation into the cytoplasm,
where they are deglycosylated by NGLY1 (N-glycanase 1) and
cleaved by DDI2 (DNA damage inducible 1 homolog 2).
Normally, little Nrf1a and TCF11 accumulate because of
proteasome-mediated degradation. It is thought that protea-
some inhibition allows them to escape ubiquitination and
degradation leading to their accumulation and import into the
nucleus to mediate gene expression (16–20). Shorter protein
isoforms of Nrf1, such as LCRF1 and Nrf1b, have also been
described (21–24). These smaller proteins lack the ER mem-
brane targeting domain present in Nrf1a and TCF11. Although
they are capable of mediating gene activation, their physiologic
functions are currently unknown.

The ubiquitin-mediated protein degradation pathway plays
an important role in controlling the abundance of Nrf1 pro-
teins (18, 25, 26). Several E3 ubiquitin ligases have been
identified to regulate ubiquitination of TCF11 and Nrf1a.
Deubiquitinating enzymes work in opposition to protein
ubiquitination by catalyzing the deconjugation of ubiquitin
molecules from proteins, and they are an important regulatory
mechanism controlling the function and abundance of pro-
teins in a broad range of cellular processes (27). Currently,
there are more than a hundred deubiquitinating enzymes that
have been identified. Ubiquitin-specific protease 7 (USP7), also
known as herpesvirus associated USP, belongs to the largest
ubiquitin-specific protease subfamily (28–30). Although USP7
was originally identified through its interaction with ICP0
(infected cell polypeptide 0), a herpes viral protein, USP7 has
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USP7 regulates Nrf1
been shown to play a key role in regulating the stability of
tumor suppressor p53 and its E3 ubiquitin ligase, mouse
double minute 2 homolog (MDM2), as well as proteins
involved in multiple cellular pathways including various as-
pects of the cell cycle, immune response, cell survival, devel-
opment, tumorigenesis, and viral infection (31–36).

In this study, we found USP7 to copurify with Nrf1a, one of
the long isoforms, in a screen to identify Nrf1-interacting
proteins. We show here that USP7 counteracts ubiquitina-
tion and promotes stabilization of Nrf1a and TCF11. USP7
enhances TCF11- and Nrf1a-mediated transcriptional activa-
tion. Expression of TCF11 and Nrf1a by toxic heavy metal
exposure is blunted in USP7 knockout cells, and inhibition of
USP7 function blocked Nrf1a-mediated protection against
arsenic-induced cytotoxicity. This study demonstrates that
USP7 is a determinant of Nrf1 expression.

Results

TCF11 and Nrf1a interact with USP7

In an effort to elucidate molecular mechanisms involved in
regulating Nrf1 expression, we previously interrogated the
Nrf1 interactome in cells by affinity purification coupled to
mass spectrometry (37). USP7 was among the different pro-
teins identified that copurified with streptavidin-tagged Nrf1a.
To verify interaction with USP7, coimmunoprecipitation as-
says were done. We first examined whether endogenous Nrf1
proteins interact with USP7. HEK293 cells were transfected
with increasing amounts of Flag-tagged USP7 expression
plasmid, and lysates were immunoprecipitated with anti-Flag
antibody followed by immunoblotting with anti-TCF11 anti-
body that detects both TCF11 and Nrf1a, which are the long
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isoforms of Nrf1. As shown in Figure 1A, Western blotting of
immunoprecipitates prepared from USP7-Flag-transfected
cells showed prominent bands just above and below the 130-
kDa marker, which are the expected migration of the ER
membrane-associated (�120 kDa) and membrane-free
(�110 kDa) forms of TCF11 and Nrf1a (17, 18, 37). To
examine whether endogenous USP7 interacts with the two
different long isoforms of Nrf1, coimmunoprecipitations were
performed on cells expressing V5-tagged TCF11 or V5-tagged
Nrf1a. HEK293T cells were transfected with two different
concentrations of TCF11-V5 or Nrf1a-V5 expression plasmid,
and cell lysates were immunoprecipitated with anti-V5 anti-
body followed by immunoblotting with anti-USP7 antibody.
As shown in Figure 1, B and C, endogenous USP7 was coim-
munoprecipitated by TCF11-V5 and Nrf1a-V5 in a dose-
dependent manner. Together, these results indicate that
USP7 interacts with both long isoforms of Nrf1.

TCF11 and Nrf1a are stabilized by USP7

It is interesting to note that immunoblot analysis of cell
lysates from cells transfected with USP7-Flag before immu-
noprecipitation showed increased steady-state levels of
endogenous TCF11/Nrf1a in a dose-dependent manner
(Fig. 1A, input control panel). This finding suggests that USP7
upregulates Nrf1 expression. To confirm this observation, we
wish to determine if lowering endogenous USP7 level by RNA
interference (siRNA)-mediated depletion of USP7 would
reduce TCF11/Nrf1a expression. Two different siRNAs were
used to silence USP7, and as shown in Figure 2A, knockdown
of USP7 diminished endogenous TCF11/Nrf1a protein levels.
Treatment with the proteasome inhibitor MG132 mitigated
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Figure 2. TCF11 and Nrf1a are stabilized by USP7. A, HEK293 cells were transfected with 20 nM of two different siRNAs targeting USP7 (#1 or #2) or a
negative control siRNA (Scr). One of the USP7-silenced sample was treated with 10 μM of MG132. Cell lysates were analyzed by immunoblotting against
endogenous TCF11/Nrf1a and USP7. Lysates were also Western blotted with anti-MDM2 antibody as a control for USP7 activity and anti-alpha tubulin for
loading. Unprocessed and processed forms of TCF11/Nrf1a are indicated by open or filled arrowheads, respectively. B, HEK293 cells were incubated
overnight with 0, 20, or 40 μM of GNE-6776 and lysates prepared for Western blotting for endogenous TCF11/Nrf1a with anti-TCF11 antibody. Lysates were
also probed with anti-MDM2 antibody as a control for USP7 activity and anti-alpha tubulin for loading control. C, HEK293 cells were cultured with 40 μM
GNE-6776 for 0, 4, and 8 h and analyzed by RT-qPCR. Bar graph depicts relative expression of Nrf1 transcript normalized to untreated control (0 h), n = 3.
HEK293 cells were transfected with 1 μg TCF11-V5 (D) or Nrf1a-V5 (E) along with increasing amounts of USP7-Flag (0.5, 1 μg) or USP7-CS-Flag (0.5, 1 μg).
After 24 h, cell lysates were prepared for Western blotting with anti-V5 antibody. As input control, lysates were Western blotted with anti-Flag and anti-
alpha tubulin antibodies. Cell lysates were also immunoblotted with anti-MDM2 antibody as a control for USP7 activity. F, HEK293 cells were transfected
with 1 μg TCF11-V5 along with 1 μg vector control, USP7-Flag, or USP7-CS-Flag. After 24 h, cells were treated with cycloheximide (50 μg/ml), and lysates
were prepared at the indicated time points and Western blotted with anti-V5 and anti-Flag antibodies. Loading of the lanes was determined by immu-
noblotting against alpha-tubulin. G, graph shows quantitation of cycloheximide chase assay monitoring Nrf1a-V5 stability. Experiments were performed on
HEK293 cell lysates transfected with 1 μg Nrf1a-V5 along with 1 μg vector control, USP7-Flag, or USP7-CS-Flag followed by cycloheximide chase as described
above. Samples were collected and subjected to Western blotting and densitometric quantification of Nrf1a-V5 relative to alpha-tubulin at each time point;
time 0 was set to 100%. Statistical analysis was performed using Student’s t test. Each point represents the mean ± SEM of remaining protein for three
independent experiments, *p value <0.05.

USP7 regulates Nrf1
the effect of USP7 knockdown on TCF11/Nrf1a levels, sug-
gesting that the effects of USP7 on TCF11/Nrf1a were
dependent on the proteasome. As expected, MDM2, which is a
known USP7 substrate, was decreased by RNAi-mediated
knockdown of USP7 and this effect was also reversed by
MG132. To corroborate the siRNA findings, the effects of
GNE-6776, a small molecule compound known to selectively
inhibit catalytic activity of USP7 (38), was also examined.
Endogenous TCF11/Nrf1a levels, and MDM2 as control, were
reduced by GNE-6776 and blocked by MG132 treatment
(Fig. 2B). RT-qPCR shows that Nrf1 mRNA levels were not
altered by GNE-6776 (Fig. 2C), indicating that the effects of
USP7 on Nrf1 expression is at the protein level. To verify
independently the effects of USP7 on TCF11 and Nrf1a,
HEK293 cells were transfected with USP7-Flag along with
TCF11-V5 or Nrf1a-V5 and their expression analyzed by
J. Biol. Chem. (2021) 296 100732 3



USP7 regulates Nrf1
Western blotting. Steady-state levels of bands corresponding
to membrane-free (lower band) V5-tagged TCF11 and Nrf1a
were significantly increased by overexpression of USP7-Flag in
a dose-dependent manner (Fig. 2, D and E, left panels). As
expected, transfection of USP7-Flag increased expression of
endogenous MDM2. In contrast, steady-state levels of V5-
tagged-TCF11 and Nrf1a, as well as endogenous MDM2,
were unaffected by transfection of the catalytically inactive
USP7-CS-Flag (Fig. 2, D and E, right panels). To measure the
effects of USP7 on turnover of Nrf1 proteins, the stability of
TCF11-V5 and Nrf1a-V5 was assessed using cycloheximide
chase assay in cells cotransfected with USP7-Flag or USP7-CS-
Flag. In the absence of USP7-Flag, very little TCF11-V5
remained by 120 min after cycloheximide treatment (Fig. 2F).
In contrast, the half-life of TCF11-V5 was prolonged by USP7-
Flag, but not by the catalytically inactive form of USP7, sug-
gesting that deubiquitinating activity of USP7 is required to
stabilize Nrf1a (Fig. 2F). Similar results were obtained with
cycloheximide chase of Nrf1a-V5 (Fig. 2G). Based on these
results, we conclude that the stability of TCF11 and Nrf1a are
extended by USP7.

USP7 promotes deubiquitination of TCF11 and Nrf1a

Next, we examined the effects of USP7 on TCF11/Nrf1a
ubiquitination. Endogenous TCF11/Nrf1a were immunopre-
cipitated from cells expressing HA-Ubiquitin and immuno-
blotted against HA-tag. Treatment with the USP7 inhibitor,
GNE-6776, led to an increase in ubiquitination of endoge-
nous TCF11/Nrf1a, indicating that USP7 has deubiquitination
ability toward TCF11/Nrf1a (Fig. 3A). To confirm this finding,
USP7 siRNA was transfected into HEK293 cells to knock down
endogenous USP7 expression. Compared with control siRNA-
transfected cells, the level of endogenous TCF11/Nrf1a ubiq-
uitination was increased by knockdown of USP7 (Fig. 3B). To
verify that USP7 deubiquitinates TCF11 and Nrf1a specifically,
HEK293 cells were transfected with TCF11-V5 or Nrf1a-V5
and HA-tagged ubiquitin along with increasing amounts of
Flag-tagged USP7, or USP7-CS, a dominant negative catalyti-
cally inactive form of USP7. V5-tagged proteins were immu-
noprecipitated from cell lysates with anti-V5 antibody followed
by Western blotting with anti-HA antibody. Ubiquitinated
forms of TCF11-V5 and Nrf1a-V5 were markedly reduced by
overexpression of USP7 (Fig. 3, C and E). In contrast, levels of
ubiquitinated TCF11-V5 and Nrf1a-V5 were not affected by
expression of USP7-CS (Fig. 3, D and F). These results show
that USP7 is able to stimulate deubiquitination of TCF11 and
Nrf1a in cells and support the idea that USP7 regulates the
stability of Nrf1 proteins through USP7 deubiquitinase activity.

USP7 stabilizes Nrf1 in response to toxic metal exposure

Next, we sought to investigate whether USP7 plays a role in
regulating Nrf1 levels in response to cellular stress. Arsenic has
previously been shown to increase Nrf1 protein levels (39).
Although arsenic has been associated with induction of
oxidative stress in cells, treatment with menadione, tert-
butylhydroquinone or thapsigargin, which are agents known
4 J. Biol. Chem. (2021) 296 100732
to cause oxidative or ER stress did not lead to increased Nrf1
protein levels (Fig. 4A). Given that arsenic is a toxic metal, we
investigated the effects other metal compounds on TCF11 and
Nrf1a levels in HEK293 cells. Consistent with previous find-
ings, HEK293 cells treated with arsenic showed upregulation
of Nrf1 protein levels (Fig. 4B). In addition, endogenous Nrf1
levels were induced after a short exposure to cadmium and
mercury, as well as lead and chromium suggesting that TCF11
and Nrf1a are stabilized by heavy metals (Fig. 4B, left and right
panels). To examine the effects of arsenic on TCF11/Nrf1a
ubiquitination, cells expressing HA-Ub were treated with
menadione or arsenic, and endogenous TCF11/Nrf1a were
immunoprecipitated for immunoblotting against HA-Ub and
endogenous USP7. Compared with vehicle control and
menadione, ubiquitination of endogenous TCF11/Nrf1a was
decreased by arsenic (Fig. 4C). However, only a modest in-
crease in USP7-TCF11/Nrf1a was detected by coimmunopre-
cipitation after arsenic treatment. To rule out possible cell-
specific effects, expression of endogenous TCF11/Nrf1a in
response to toxic metal exposure was examined in
HCT116 cells, and similar results were obtained (Fig. 4D, left
panel). To determine whether USP7 plays a role in this
response, the effects of toxic metal exposure on endogenous
TCF11/Nrf1a expression was examined in USP7 knockout
HCT116 cells. Unlike wildtype cells, induction of TCF11/
Nrf1a by toxic metal exposure was blunted or not observed in
USP7 knockout cells (Fig. 4D, right panel). To confirm these
observations, the half-life of V5-tagged Nrf1a in response to
arsenic was evaluated by cycloheximide chase assays in USP7
wildtype and knockout cells. In USP7 wildtype cells, Nrf1a-V5
was stabilized by arsenic treatment (Fig. 4E, left panel and
Fig. 4F). In contrast, stabilization by arsenic was blunted in
USP7 knockout cells (Fig. 4E, right panel, and Fig. 4F). Similar
results were obtained for V5-tagged TCF11 (Fig. 4G). Based on
these results, we conclude that USP7 promotes stabilization of
Nrf1 proteins in response to toxic metals.

USP7 enhances transcriptional activation by Nrf1

To investigate the significance of the interaction between
USP7 and Nrf1, we used a transient reporter assay to examine
whether USP7 affects transcriptional activity of TCF11 and
Nrf1a. HEK293 cells were transfected with Nrf1a-V5 and a
Nrf1-responsive luciferase reporter plasmid along with USP7,
or USP7-CS expression plasmids. Luciferase reporter expres-
sion was enhanced by coexpression of USP7 in a dose-
dependent manner (Fig. 5A). In contrast, coexpression of the
catalytically inactive USP7-CS had no effect on reporter acti-
vation by Nrf1a (Fig. 5A). Similarly, coexpression of USP7, but
not USP7-CS, enhanced reporter expression by TCF11-V5
(Fig. 5B). To further confirm the role of USP7 on Nrf1-
mediated transcriptional activation, we examined the expres-
sion of known Nrf1-target genes in USP7 knockout cells.
Compared with wildtype cells, expression of various protea-
some genes that were examined was markedly reduced in
USP7 knockout cells (Fig. 5C), and transfection of Nrf1a
cDNA fully or partially restored their expression in knockout
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Figure 4. USP7 stabilizes Nrf1a/TCF11 in response to toxic metal exposure. A, HEK293 cells were treated with vehicle (Veh), menadione (Md, 2.5 μM),
thapsigargin (Tg, 1 μM), tertbutyl-hydroquinone (Tb, 10 μM) for 2 or 4 h. Cell lysates were then prepared and immunoblotted for endogenous TCF11/Nrf1a
using anti-TCF11 antibody. Western blotting against alpha-tubulin was used for protein loading control. B, HEK293 cells were treated with vehicle (Veh),
sodium arsenite (As, 25 μM), cadmium chloride (Cd, 100 μM), mercury chloride (Hg, 7.5 μM), lead acetate (Pb, 0.5 mM), or potassium dichromate (Cr, 10 μM)
for 2 or 4 h. Cell lysates were immunoblotted for endogenous TCF11/Nrf1a using anti-TCF11 antibody, and alpha-tubulin was used for protein loading
control. C, HEK293 cells transfected with 1 μg HA-Ub were treated with vehicle (Veh), menadione (Md, 2.5 μM), or sodium arsenite (As, 25 μM). Cell lysates
were prepared 24 h after and immunoprecipitated with anti-TCF11 to pull down endogenous TCF11/Nrf1a and immunoblotted for endogenous USP7, HA-
Ub. Lower panels show the input levels of TCF11/Nrf1a, USP7, HA-Ub, and alpha-tubulin. D, HCT116 USP7 wildtype cells or HCT116 USP7−/− cells were
treated with sodium arsenite (As, 25 μM), cadmium chloride (Cd, 100 μM), mercury chloride (Hg, 5 μM), lead acetate (Pb, 0.5 mM), or potassium dichromate
(Cr, 10 μM) for 2 h and immunoblotted for endogenous TCF11/Nrfa as described above. E, HCT116 USP7 wildtype cells or HCT116 USP7−/− cells were
transfected with 1 μg Nrf1a-V5. After 24 h, cells were treated with vehicle (-As) or sodium arsenite (+As, 25 μM) along with cycloheximide (50 μg/ml) and
were harvested at the indicated time points for Western blotting for the V5 tag using anti-V5 antibody, and alpha-tubulin was used as the loading control. F,
graph shows quantitation of Nrf1a-V5 stability shown in E. Densitometric quantification of Nrf1a-V5 relative to alpha-tubulin at each time point; time 0 was
set as 100%. Statistical analysis was performed using Student’s t test. Each point represents the mean ± SEM of remaining protein for three independent
experiments, *p value <0.05. G, graph showing cycloheximide chase assay monitoring TCF11-V5 stability in HCT116 USP7 wildtype cells or HCT116 USP7−/−
cells as described in E. Statistical analysis was performed using Student’s t test. Each point represents the mean ± SEM of remaining protein for three
independent experiments, *p value <0.05.
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cells. These results indicate that the transacting function of
TCF11 and Nrf1a is enhanced through increased protein levels
enabled by USP7.
Inhibition of USP7 impairs Nrf1a-mediated protection against
arsenic-induced cytotoxicity

To further determine the functional significance of Nrf1 as
a USP7 substrate, we sought to determine the influence of
USP7 on Nrf1-mediated cell survival in response to toxic
6 J. Biol. Chem. (2021) 296 100732
metal exposure. For this purpose, we measured the effects of
blocking USP7 function on the viability of wildtype and Nrf1
knockout cells in response to arsenic treatment for 24 h. We
used a pair of Nrf1 knockout mouse embryonic fibroblast
cells, one of which is reconstituted with wildtype Nrf1a
cDNA. As expected, Nrf1 knockout cells were more sensitive
to arsenic-induced toxicity compared with knockout cells
expressing Nrf1a (Fig. 6A). Next, we investigated the effects
of USP7 inhibition. Compared with Nrf1 knockout cells,
knockout cells expressing Nrf1a treated with vehicle-control
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were more resistant to the cytotoxic effects of arsenic.
However, pretreatment with GNE-6776 rendered Nrf1a-
expressing knockout cells sensitive to arsenic toxicity
(Fig. 6A). To substantiate these findings, we also examined
viability of USP7 knockout cells in response to arsenic. Cells
treated with increasing concentrations of arsenic were
monitored after 24 h. USP7 knockout cells were more sen-
sitive to arsenic than wildtype cells (Fig. 6B). To establish a
role for Nrf1 in arsenic sensitivity, USP7 knockout cells were
transfected with Nrf1a-V5, or empty vector as experimental
control. In comparison with control transfected cells,
Nrf1a-transfected cells exhibited significantly lower cyto-
toxicity to arsenic. These findings indicate that loss of USP7
function reduces Nrf1-mediated resistance to toxicity
induced by arsenic.
Discussion

USP7 is an abundant deubiquitinating enzyme originally
identified as a binding partner of ICP0, a transactivator protein
found in herpes virus (32). USP7 has subsequently been shown
to be involved in multiple cellular processes such as DNA
J. Biol. Chem. (2021) 296 100732 7
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Figure 6. Inhibition of USP7 impairs Nrf1a-mediated protection against
arsenic-induced cytotoxicity. A, Nrf1−/− MEF cells or Nrf1−/− expressing
Nrf1a were cultured with 0, 0.25, 2.5, or 25 μM sodium arsenite along with
vehicle or 20 μM GNE-6776. After 24 h, WST-1 was added, and absorbance
for formation of formazan product was measured at 450 nm (with reference
absorbance at 620 nm and corrections using blanks). Percent viability was
calculated as (sample absorbance/control absorbance) × 100%. Data
represent means ± SEM for three independent experiments each containing
three replicates. Statistical analysis between cell lines was carried out using
one-way ANOVA. (*) represents p < 0.05. B, USP7 wildtype or knockout
HCT116 cells transfected with control or Nrf1a expression vector were
cultured with 0, 30, or 60 μM sodium arsenite. After 24 h, trypan blue
exclusion assays were done. Percent dead cells was calculated as (dead
cells/dead cells + live cells) × 100%. Data represent means ± SEM for three
independent experiments each containing three replicates. Statistical
analysis was done using Student’s t test. (*) represents p < 0.05.
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damage and repair, epigenetic regulation, and immune re-
sponses. In addition to its well-characterized role in regulating
tumor protein p53 and MDM2 levels, USP7 has a broad range
of substrates, and it has also shown to modulate the stability of
various other proteins such as Phosphatase and tensin ho-
molog, Forkhead box 4, and Claspin (40–42). Here, we identify
USP7 as a novel regulator of Nrf1 protein stability. USP7 binds
TCF11 and Nrf1a and controls their stability by direct deubi-
quitination. These effects of USP7 on TCF11 and Nrf1a were
confirmed by expression of a dominant-negative catalytically
inactive mutant USP7 and by RNAi-mediated knockdown and
pharmacologic inhibition of endogenous USP7 function.
Overexpression of wildtype, but not mutant, USP7 enhanced
transactivation by TCF11 and Nrf1a in a luciferase reporter
assay. Together, these results support the idea that USP7 can
modulate Nrf1 function in cells.

Our results show that TCF11 and Nrf1a proteins are sta-
bilized by USP7 in response to arsenic and other heavy metals.
Although it was previously demonstrated that arsenic leads to
8 J. Biol. Chem. (2021) 296 100732
higher stability and transcriptional activity of Nrf1, the
mechanism underlying Nrf1-mediated responses to arsenic
exposure was not shown (39). Evidence indicates that multi-
factorial mechanism is involved in heavy metal–induced
cellular stress, and one of them involves generation of reac-
tive oxygen species through metal-induced reduction–
oxidation, reaction which leads to oxidative damage of
cellular components (43). However, the observation that
TCF11 and Nrf1a levels were not induced by reactive oxygen
species–generating agents, TBHQ and menadione, suggests
that USP7-mediated stabilization of Nrf1 by toxic metals is
triggered by a different mechanism. In addition to oxidative
stress, various heavy metals have electron-sharing affinity that
results in its covalent attachment to thiol residues of cellular
proteins (44). Such property disrupts structural and functional
integrity of substrate proteins that could lead to accumulation
of misfolded and nonfunctioning proteins (45–48). Cadmium,
lead, and mercury, for example, have been shown to form
complexes with thiol functional groups on proteins and inhibit
refolding of denatured protein, whereas arsenic and cadmium
are also known to interfere with chaperone-mediated refolding
of proteins (49, 50). It is also thought that arsenic and cad-
mium impede folding of nascent polypeptides causing accu-
mulation of misfolded proteins (51–54). Thus, it is possible
that USP7 may play a role in mitigating other types of cellular
stress through Nrf1 in response to toxic metal exposure.
Currently, however, the full spectrum of genes induced
through the USP7-Nrf1 pathway is not known and requires
further experimentation.

While the current study cannot rule out direct effects of toxic
metals on Nrf1-USP7 interaction, USP7 expression was not
upregulated by arsenic (data not shown). Thus, the mechanism
by which exposure to arsenic and other metals trigger USP7
regulation of Nrf1 is not known. One possibility is that USP7
associates with Nrf1 proteins under normal conditions, and its
deubiquitinating enzyme activity is turned on by post-
translational modification in response to stimuli induced by
toxic metal compounds. Alternatively, Nrf1 proteins themselves
undergo posttranslational modification as a result of toxic metal
exposure, which then signals the recruitment of USP7 binding
and subsequent deubiquitination. In this regard, it has been
reported that heavy metal exposure leads to rapid increase of O-
GlcNAcylation of numerous intracellular proteins, and O-
GlcNAc (O-linked β-N-acetylglucosamine) modifications are
found to serve as recruiting signals for deubiquitinase proteins
such as BRCA1 associated protein-1 (55, 56). It is interesting to
note that Nrf1a undergoes O-GlcNAcylation by O-GlcNAc
transferase in response to cellular stresses and the addition of O-
GlcNAc results in decreased ubiquitination and degradation of
Nrf1a (37). It remains to be shown whether O-GlcNAc-medi-
ated stabilization of TCF11 or Nrf1a involves USP7. In addition
to USP7, another USP-type deubiquitinase, USP15, was also
shown to stabilize Nrf1 (57). Thus, two different deubiquitinase
enzymes contribute to enhancing Nrf1a function. It would be of
interest to determine whether USP15-mediated stabilization of
Nrf1 is induced similarly as USP7, as well as determine whether
they represent discrete pathways that antagonizes the actions of
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ubiquitin ligases such as F-box/WD repeat-containing protein 7
and beta-transducin repeats-containing proteins that have been
shown to promote destabilization of Nrf1a (25, 26).

In summary, our findings identify USP7 as a positive regu-
lator of Nrf1 expression. This suggests a model where ubiq-
uitination and deubiquitination, regulated by E3 ligases and
deubiquitinating enzymes, controls the Nrf1 pathway and
suggests USP7 as a potential target to modulate Nrf1 function.
Although USP7 is recognized for its role in controlling various
aspects of cellular processes such cell survival, cell cycle, and
viral infection, our results here provide a new context in which
USP7 may play a role in signaling through Nrf1 in response to
toxic metals and metalloids common to the environment that
are associated with various health problems in humans.

Experimental procedures

Reagents

Dulbecco’s modified Eagle’s medium (DMEM), strepto-
mycin, penicillin, and fetal bovine serum (FBS) were purchased
from Invitrogen (Carlsbad). Bradford protein assay reagent was
from Bio-Rad (Hercules). BioT was purchased from Bioland
Scientific. Dual Reporter Assay Kit was from Promega.
ImmunoPure streptavidin and enhanced chemiluminescence
substrate kit were from Pierce Biotechnology. WST-1 reagent,
sodium arsenite, cadmium chloride, thapsigargin, mercury
chloride, and lead acetate were purchased from Sigma-Aldrich.
GNE-6776 (USP7 inhibitor) was from Aobious Inc, and USP7-
siRNA-27mer was purchased from Origene. All other general
chemicals for buffers and culture media were purchased from
Thermo Fisher Scientific and/or Sigma-Aldrich. Primary an-
tibodies against Tubulin-A (3873, mouse mAb), USP7 (3277,
Rabbit pAb), Flag-Tag (14793, Rabbit mAb), and HA-Tag
(2367, mAb) were purchased from Cell Signaling Technol-
ogy. Horseradish peroxidase–linked anti-rabbit IgG (7074) and
anti-mouse IgG (7076) antibodies were also from Cell
Signaling Technology. Mouse monoclonal anti-V5 tag (MA5-
15253) was from Thermo Fisher. Antibodies from Cell
Signaling Technology and Thermo Fisher have been tested and
validated on the lot level by manufacturer’s in-house scientists
for specificity, sensitivity, and reproducibility. Antibody against
TCF11 and Nrf1a is from Cell Signaling (D5B10), and it has
been validated for specificity using Nrf1 knockout cells or
mouse tissues (19). Human USP7 (−/−) knockout
HCT116 cells were obtained from Horizon Discovery.

Plasmids

ARE-Luciferase is from Promega. Flag-tagged and HA-
tagged USP7 and USP7-CS plasmids were obtained from
Addgene. The catalytically inactive mutant of USP7 was
generated by Maertens et al. (58). V5-tagged Nrf1 and Ub-HA
expression plasmids were described (37).

Western blotting

Cells were lysed in cold RIPA buffer (50 mM Tris-HCl pH
7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxy-
cholate, 0.1% SDS, 1X Protease Inhibitor). Lysates were
cleared by centrifugation for 15 min at 4 �C, and protein
concentrations were determined by Bradford assay. An equal
volume of 2× SDS sample buffer (100 mM Tris, pH 6.8, 25%
glycerol, 2% SDS, 0.01% bromophenol blue, 10% 2-
mercaptoethanol) was added to cell lysates, and the
mixture was boiled for 5 min. Proteins were electrophoresed
on SDS-PAGE gels and transferred onto nitrocellulose
membranes. Membranes were then blocked in 5% nonfat dry
milk in TBS-T (150 mM NaCl, 50 mM Tris-HCl pH 8.0, and
0.05% Tween 20) at room temperature for 1 h and then
incubated with the indicated primary antibodies at 1:1000
dilution (unless otherwise indicated) overnight at 4 �C fol-
lowed by incubation with 1:2000 dilution of horseradish
peroxidase–conjugated secondary anti-rabbit or anti-mouse
antibody. Antibody–antigen complexes on the blots were
detected using chemiluminescent detection system. Densi-
tometric analysis was performed using the Un-Scan-It Gel
Analysis software for normalization.

Transfection and luciferase assays

DNA transfections were done using BioT reagent from
Bioland Scientific for HEK293 cells and Lipofectamine 3000
from Thermo Fisher Scientific for HCT116 cells according to
the manufacturer’s protocol. For luciferase assays, HEK293T
cells were seeded onto a 24-well plate 24 h before trans-
fections. Cellular extracts were prepared 24 h after trans-
fection, and Firefly- and Renilla-luciferase activities were
measured using Dual Reporter Assay Kit.

Coimmunoprecipitation

Subconfluent HEK293T or HCT116 cells were transfected
with the indicated amount of expression vectors using BioT
according to manufacturer’s protocol. Cells were lysed in
buffer containing 2% SDS, 150 mM NaCl, 10 mM Tris-HCl
(pH 8.0), and 1 mM DTT. Lysates prepared in SDS-
containing buffer were diluted 5-fold with buffer lacking
SDS. Diluted lysates were subjected to preclearing with
protein-G Sepharose beads by incubation in the cold for 1 h.
The protein samples were incubated with 2 to 5 μg of primary
antibodies or IgG as a control overnight at 4 �C. After over-
night incubation, protein-G Sepharose beads were added and
incubated at 4 �C for 1 h. Beads were then collected by brief
centrifugation and washed extensively with RIPA buffer. Pro-
teins were eluted in 1× SDS sample buffer and heated at 95 �C
for 5 min. The samples were separated by SDS-PAGE and
transferred onto a nitrocellulose membrane, followed by
immunoblotting with indicated primary antibodies and
horseradish peroxidase–conjugated secondary antibodies.
Detection of peroxidase signal was performed using the
chemiluminescence method.

Cycloheximide chase assays

HEK293T or HCT116 cells expressing various constructs
indicated in the figures were incubated with 50 μg/ml cyclo-
heximide in DMEM at 37 �C. At the times indicated, cells were
harvested and lysates were prepared for immunoblotting.
J. Biol. Chem. (2021) 296 100732 9
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RNA isolation and RT-PCR

Total RNA was extracted with Zymo DirectZol RNA Min-
iprep (Zymo Research), and cDNA was synthesized using
iScript Advanced cDNA Synthesis Kit (Bio-Rad). Quantitative
RT-PCR was performed using Roche FastStart DNA Green
Master Mix (Roche LifeScience) with previously described
primers (37) or KiCqStart predesigned primers (Sigma-
Aldrich) in a QuantStudio 3 Real-Time PCR system running
QuantStudio Design and Analysis Software (v1.5.1, Applied
Biosystems). PCR cycling conditions consist of 95 �C for
10 min and 40 cycles of 95 �C for 10 s and 60 �C for 30 s.
Results were calculated using the ΔΔCT method with ALAS1
as reference gene.

Cell viability assay

Mouse embryonic fibroblast cells were seeded at a density
of 104 cells/well/100 μl media in 96-well plates. After over-
night growth, cells were incubated with sodium arsenite at
different concentrations for 24 h at 37 �C. At the end of
incubation, the water-soluble tetrazolium salts (WST-1)
conversion assay was done by adding 10 μl of WST-1 re-
agent. After incubation for 1 h at 37 �C, absorbance reading
at 450 nm (with correction using readings at 620 nm) was
measured using a multiwell plate reader (Molecular Devices
Corp). Wells containing media alone were used as blanks to
subtract absorption by media components. Triplicate values
were averaged, and SEM was calculated and graphed with
Prism software (GraphPad). Cell viability was determined as
follows: Viability (%) = (Absorbance of sample/Absorbance
of control) × 100%. HCT116 cells were seeded at a density of
0.75 × 106 cells/well in six-well plates and incubated with the
indicated concentrations of arsenic. Cells were harvested
after 24 h of incubation. Trypan blue solution was added to
the cell suspensions in a 1:1 ratio, and the percentage of
living cells and dead cells was analyzed on a DeNovix
automated cell counter.

Statistical analysis

Data are expressed as means ± SEM. Statistical analyses
using Student’s t test or one-way ANOVA were done with
Prism software (GraphPad). * indicates p values <0.05 and
considered significant.
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All data are contained within the figures.
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