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ABSTRACT This paper studies artistic expression in human movement by exploring the performance art
form salsa. The motions of a salsa performance are constructed as concatenations of motion primitives,
each of which specifies the movement of the dance pair over the course of eight musical beats. To analyze
the syntax of artistic expression, the choreography of dance performances are represented by a transition
model that is based on humanoid robot representations of the dancers. In order to assess the quality of a
performance, two distinct metrics are explored. By integrating the performance metrics into the proposed
transition system, it is possible to create an algorithm that is capable of autonomously recognizing the
dance moves and evaluating the quality of the performance with a score. To validate the model, a dance
pair performed four distinct salsa dance sequences observed by an artificially intelligent (AI) judge. The
video recordings of the performances are also shown to a dance audience for evaluation. By looking at the
correlation between the dance audience and the AI judge’s scores, we conclude that the proposed model
performs well in evaluating the artistic merit of the dance.

INDEX TERMS Artificial intelligence, Art, Non-verbal communication, Discrete-event systems

I. INTRODUCTION
How can we measure ‘success’ in human or animal group be-
havior? In team sports, such as basketball, American football
or soccer, ‘success’ can simply be defined as an execution of a
team strategy that results in a score on offense or prevents the
opponent team from scoring on defense. In animal group be-
havior, success can be defined as the protection of the group
members from predators or finding a food source. However, if
one considers performance art, such as dance, the definition
of success might not be that clear, since the overall goal in
art forms is not as explicit compared with those in sports
or animal behavior. Nevertheless, we observe that, in dance
competitions, such as the popular television show Dancing
with the Stars, the judges’ scores consistently agree with each
other, which means that they may use similar performance
metrics in judging the performances1. This brings up the

1It could also mean that the judges influence each other. An AI judge
would presumably be immune from such influence.

question of whether there exists a formal way of evaluat-
ing a dance performance. In what follows, this question is
examined by using a transition system model representation
of salsa dance and by incorporating performance metrics to
evaluate salsa performances.

A vast amount of work on understanding animal and
human collective behavior has been published, e.g. [1], [2],
[3], [4]–[8]. One subject that the researchers are interested in
is how each member within a group behaves individually to
accomplish a shared group objective. In study [1], the authors
show that a group of starling birds can maintain the cohesion
of the group by each individual only interacting with its
closest neighbors. The study [3] shows that a bee in a hive
can use dance-like motions to communicate the distance and
direction of a food source to other bees. The authors in [2]
discuss flock logic wherein a group of people is constrained to
nearest neighbor interactions based on simple rules assigned
to individuals. It is argued that constrained local interactions
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of the group drive the whole group to generate recognizable
motion patterns.

Lessons learned from animal and human collective motion
have inspired applications to build artificial multi-agent sys-
tems [9], [10], [11]. The study [9] shows how to generate a
trajectory that is synchronized with the musical beats for each
individual quadcopter so that the whole group can perform a
choreographed robotic dance. In [10] and [11] ballet is used
as an art form to study how to construct ballet movements
for humanoid robots. A state transition model is built with
each state representing a transition between two ballet poses.
The model is then used to generate ballet phrases. In order
to define success, the term ‘expressivity’ is introduced as a
figure of merit to convert the movement generation problem
into an optimization problem.

However, one interesting challenge that remains to be
addressed is understanding the interactions between humans
and artificially intelligent systems. There exist studies such
as [12], [13], [14] and [15] that investigate the social element
of human robot interactions in various settings such as com-
munication and artistic reflection. In line with these studies,
here we study a setting in which an artificially intelligent (AI)
observer is required to assess artistic merit in human dance
performances based on criteria learned from human judges.

In conducting a formal study of this particular human-
AI interaction, we investigate the dance form salsa. We
explore two performance metrics in salsa dance via formal
constructs. The first one is purely related to the skill level of
the performers. Different performance levels can be captured
by the number of moves a dancer can perform. In what
follows, we propose two different levels. They are beginner
level and intermediate level, each of which are represented
by a transition model. Different from the ballet as studied
in [10], a salsa performance involves a pair of dancers, a
leader and a follower. The leader is generally a male dancer
who is responsible for choosing the sequence to be performed
and for signaling his decisions by gestures and motions. The
follower is generally a female dancer who is responsible for
executing the corresponding moves that are communicated
by the leader. The second performance metric aims to quan-
tify the artistic appeal of an execution that is perceived by
the audiences. Here we introduce, two distinct components
of measured artistic appeal. The first component measures
the energy consumed by the dancers in an execution. It is
shown that more energetic performances are more likely to
be favored by audiences. The second component measures
the diversity of the moves in a performance. Audiences
generally prefer a performance that does not involve too
much repetition. Finally, the proposed metrics will be used to
construct an artificially intelligent (AI) judge that is capable
of recognizing the dance moves and evaluating the quality of
a dance performance.

Parts of the discussion that follow are based on our previ-
ously published work in the American Control Conference
(ACC) [17], IEEE Conference on Decision and Control
(CDC) [18] and in [19]. The performance metrics and the

transition system representation of salsa dancers have previ-
ously been used in the studies [17], [18] to investigate a for-
ward problem: generating choreographed automated dance
sequences by humanoid robots. In this study, we investigate
an inverse problem which involves the evaluation of a dance
execution.

A. WHY SALSA?
Salsa is a Latin dance form which is popular around the world
[20]. Different from other dances, which are generally the
result of years of practice, two dancers without any prior
practice can perform and enjoy salsa. This is achieved by a
universal set of moves and communication signals that can
be easily learned by both the leader and the follower dancers.
Hence, equipped with the prior knowledge of the moves,
the dancers can perform salsa as long as the leader as a
decision maker executes the correct gestures to communicate
and the follower correctly estimates the upcoming moves
during the dance. Salsa can be seen as a particular type of
collective motion in which the collective goal is to perform
an artistically appealing dance while each individual has to
fulfill his/her role as a leader or a follower.

In order to study salsa formally, in this paper we are
going to use two mathematical models that use two key
features of salsa. The first feature is that every distinct move
in salsa has to be performed in eight musical beats by the
dancers. This enables us to discretize a salsa performance
into moves of eight beat intervals and to assign a letter to
each move from a finite-sized alphabet M := {A,B, . . .}.
By this method, a salsa performance can be represented as
a concatenation of letters (one might think this as similar to
a DNA sequence in biology). The second feature of salsa is
the characteristics of leader-follower interaction. The leader
(generally a male dancer) is responsible to communicate
with the follower (generally a female dancer) by using ges-
tures in order to signal his move decisions. Here, we use
S := {SA, SB , SC , . . . } to represent the collection of the
signals communicated by the leader to the follower to signal
the corresponding moves from the set M. For instance, the
leader can push and pull the arms of the follower (SA) to
signal backward and forward steps (move A) [17].

II. SALSA WITH TOPOLOGICAL CONSTRAINTS
We define two different levels of salsa performances based on
the size of the move set. Beginner Level Salsa (BLS) is de-
fined as the performance with four fundamental moves which
are assumed to be the foundation of advanced level salsa
performances as well. In BLS every move starts and ends
with the same pose, the leader chooses the move sequence
from the set of four movesMBLS := {A,B,C,D} without
any constraints on the dance move transitions. Intermediate
Level Salsa (ILS) is defined as the performance extending
the alphabet of possible moves from four to eleven in order
to capture advanced level salsa performance (Fig.1).

MILS := {A,B,C,D, J,K,M,N,O, P, T}. (1)
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FIGURE 1. Initial (pi) and final (pf ) pose illustrations for the eleven moves in
Intermediate Level Salsa. The blue agent represents the leader and red agent
represents the follower. For instance, move K starts with the initial pose shown
on the figure and during the execution the follower rotates 2π in counter clock
wise direction without breaking the hand contact with the leader which results
as the corresponding final pose. More details about the moves and their
physical descriptions can be found in [19].

Notice that MBLS ⊂ MILS . The move set MILS is
illustrated in Fig. 1. Each move involves an initial (pi) and a
final (pf ) pose that occur in ILS. One key difference between
BLS and ILS is that in ILS the dancers are not allowed to
break hand contact through the performance. Hand constraint
plays a major role in investigating move transitions based on
simple rules expressed in the language of topological knot
theory [19], [21].

To study the leader-follower interactions in ILS, each pose
can be described by a link in the topological knot theory,
[22] (Fig. 2). The link diagram representation allows us
to understand how move transitions are restricted by arm
constraints in ILS. Since every move inMILS will end with
a corresponding final link, the next admissible move has to
have the same initial link for the transition to occur. This
defines the admissible move transitions which are depicted
in Fig. 3. Another problem is to investigate the transforma-
tion from an initial to final link diagram in a move. The
interconnection between the physical dance moves and link

FIGURE 2. An example illustration of the topological link representation of the
initial and final pose of move B in ILS. Dancers and their arms are represented
by a three component link with a fixed orientation. The link diagram
representation is used to represent the dancers’ arms by distinguishing the
arm overpasses and underpasses. Link invariants, such as linking number and
Alexander Polynomials are calculated by investigating each crossing and
assigning positive or negative signs with respect to the overpasses or
underpasses for each link diagram. More details about the topological features
of the link diagram representations for the dance poses can be found in [19],
[23].

transformations is studied by introducing a physical operator
∗(., .). In this operator, the first component represents the
follower’s rotation (in radians) and the second component
represents the direction of the rotation (CW for clockwise
and CCW for counterclockwise).

For instance, in move A, both the leader and the follower
dancer step forward and backward. Since move A does not
involve any follower rotation, it is represented by ∗(0, 0).
However, in move B, the follower rotates 2π in clockwise
direction which is represented by ∗(2π,CW ). The connec-
tion between the physical moves and the topological link
transformations are discussed in more details in [19]. In
salsa the leader is assumed to be the decision maker for
the sequence construction, and the allowable dance move
transitions decided by the leader are based on the syntactic
requirement of matching the topology of the initial pose of
a move with the topology of the final pose of the preceding
move.

One may observe from the Fig. 3 that there exist both
deterministic and nondeterministic transitions between the
moves in ILS. For instance, the moves T, J,K,B are fol-
lowed deterministically by the moves O,N,P,M , respec-
tively. On the other hand, the moves in the set {A,C,D} can
be followed by any move from the set {A,C,D, T, J,K,B}.
Differing from Beginner Level Salsa, arm constraints play
a major role for the leader’s decision making for move
transitions. Fig. 3 gives an insight on the dance move tran-
sitions that appear in a real performance. If we assume that
a dance pair starts a salsa performance with move A, which
has a final pose with the dance pair holding hands without
any arm crossings, then the leader has an admissible set
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FIGURE 3. The allowable transitions for each move in ILS based on the
physical/topological constraints. Admissible transitions are defined for the
equivalence of the final link of the move executed and the initial link of the
upcoming move. In the figure red arrows illustrate the admissible move
transitions including deterministic and nondeterministic transitions. The
admissible set is found by using the topological link diagram equivalences of
the poses of the moves in ILS. For an admissible transition, the final link of a
move and the initial link of the next must be equivalent. In the physical world,
this corresponds to the moves that can be executed by the dance pair despite
the arm constraints.

{A,C,D, T, J,K,B} of move transitions. Notice that all of
the moves in the set have the same initial pose coinciding
with move A’s final pose. On the other hand, move B involves
the follower dancer’s 2π rotation in the clockwise direction.
Thus, it has to be followed deterministically by move M
which is the follower’s 2π rotation in counter clockwise
direction. The deterministic transition is a result of the arm
constraint since arm crossings in the final pose of move
B make it physically unfeasible for the follower to rotate
more in the CW direction. More detail about the topological
constraints on dance move transitions can be found in [19].
The allowable transitions in BLS and ILS (Fig. 3) can be used
to build a state transition model representation of the dancers.

III. SALSA AS A TRANSITION SYSTEM MODEL
In this section, we introduce a finite state machine represen-
tation of a pair of salsa dancers. We first define two separate
transition system representations for the leader dancer, Bob,
and the follower dancer, Alice. Finally, we combine them into
a single model through interactions between the two, which
is realized through the signal sent from Bob to Alice.

In order to describe the dancers’ movement as well as
track their motions, we use a humanoid robot to represent
different parts of a dancer’s body as illustrated in Fig. 4.
It is assumed that there exist fiducial points (red circles in
Fig. 4) that represent tracked points on the humanoid robot
representation. The number and locations of the fiducial
points are chosen in order to be able to distinguish the moves
performed in BLS and ILS.

We define a state q to represent a pose in dance which
is a discretization of a move, and a salsa performance be-
comes a concatenation of such poses. Moreover, qAl and qBo
represent the discrete states of the leader and the follower

FIGURE 4. A humanoid robot that represents an actual dancer. The red
circles represent five fiducial points that are named as the Body, Left/Right arm
and Left/Right Leg. The number of fiducial points are chosen to distinguish the
moves in Beginner Level Salsa and Intermediate Level Salsa.

in a pose, respectively. This framework is similar to the
work presented in [10] which shows the construction of a
transition model for the poses that occur in a ballet warm
up routine. Our study differs from [10] in that we build a
model of a pair of dancers. Such a model requires modeling
the communication between the two dancers.
Definition 1: State transition model of a leader dancer and his
communication strategy is given as

GBo = (QBo, ActBo,→Bo, q
0
Bo, !). (2)

QBo is the set of all possible states representing the initial
pi and final pf dance poses (Fig.1). ActBo is the set of
all possible actions (set of physical moves represented by
the ∗(., .) operator). q0Bo ⊆ QBo is the set of initial states.
!(ActBo) is the formal representation of leader’s decided
action ActBo that is transmitted to the follower (using his
gestures and motions).→Bo: (q

′, a) 7→ q denotes a transition
relation (based on the topological constraints given in Sect.II.
In this expression, q′ ∈ QBo is the initial state, a ∈ ActBo is
the action that is executed by the leader and q ∈ QBo is the
next state.

Similarly we can represent the follower dancer (Alice) by
the transition system,

GAl = (QAl, ActAl,→Al, q
0
Al, ?), (3)

where definitions of the components QAl, ActAl, q0Al in Eqn.
(3) are identical to those of the Eqn. (2) but the subscripts
are replaced with Al to represent Alice. ?(ActBo) is the
representation of signal received by the follower such that she
can make the proper move based on the signal she receives
from the leader dancer. Further, her transition→Al is defined
as a mapping (q′, ?, a) 7→ q′′. Based on ?(ActBo), the signal
she receives from the leader, she can execute an action a to
move from state q′ to q′′.

4 VOLUME 4, 2016
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FIGURE 5. The transition system representation of BLS, [18]. All the moves in
BLS have the same initial and final pose. There exists only one state for the
state machine representation of the leader and follower. Blue arrows represent
the transitions between the states which correspond to the physical dance
moves that are defined by the ∗(., .) operator. Move A, C and D are
represented by *(0,0) since there is no rotation of the follower. However, move
B is represented by ∗(2π,CW ) which corresponds to the follower’s rotation of
2π in the clockwise direction.

FIGURE 6. Robotic representations of the leader (blue) and follower dancer
(red). The initial and final poses of move B in ILS are illustrated by the left and
right sub-figure, respectively. Initial pose occurs in the first beat and final pose
occurs in the last beat of a move performed in eight beats. The arm positions
in the final pose corresponds to the followers rotation without breaking the
hand contact.

Definition 2: The dance pair (Fig. 5) is represented by a single
transition system by composing the two transition systems
(2) and (3). The combined system is

G = (Q,Act,→, q0), (4)

where Q = QBo × QAl, Act ⊆ ActBo × ActAl, q0 ⊆
q0Al × q0Bo. The composition is achieved by synchronizing
information sent by the leader and received by the follower.
A detailed explanation of such composition can be found
in textbooks on discrete systems such as [24] and [25].
Notice that a perfect synchronization is assumed here, i.e.,
the follower has no difficulty in interpreting the intended next
move communicated by the leader.

It is assumed that there exists a synchronous message
passing between these two transition systems such that fol-
lower can estimate the upcoming move perfectly without an
error [18]. In this paper, we are going to use model (4) to
recognize the sequences of movements that are being taken
by a dancer pair (Fig. 6) from the recordings of the locations
of the fiducial points.

The transition system model for a BLS based on (4) is
shown in Fig. 5. In BLS all of the moves start and end with
same pose ( [17], [19]). Thus, in Fig. 5, q1Bo and q1Al represent
the states which correspond to the poses of Alice and Bob,
respectively. Blue arrows represent the state transitions based
on the physical motions (described by the ∗(., .) operator)
required to perform each move A,B,C and D. Since, the
follower does not initiate a rotation in the moves A,C and
D, the first and second components of the ∗(., .) operator are
zeros even though they are distinct dance moves. Distinctions
in these moves are represented by the subscripts ∗(0, 0)A,
∗(0, 0)C , ∗(0, 0)D. Bob sends his decision transition to Alice
through a signal !(ActBo) and Alice has the simultaneous
transition based in the signal ?(ActBo) she receives. For
instance, if the agents perform move A, the leader has a
transition q1Bo → q1Bo that is signaled to Alice. !(∗(0, 0)A)
is the formal representation of Bob pushing Alice’s hand
to make her move backward. Alice has the corresponding
transition q1Al → q1Al. Hence, the move A can be repre-
sented by a change of the state of the overall system (4) as
< q1Bo, q

1
Al >→< q1Bo, q

1
Al >.

The transition graph of the ILS is much more complex due
to the constraints that force the dancers to keep hand contact
through the dance. In Fig. 7, states of the leader and follower
including the transitions for ILS (blue arrows) are depicted.
The effect of the arm constraint can be observed from the
final poses of move B, which are represented by q1Bo in BLS
(in Fig. 5) and q2Bo (in Fig. 7) in ILS. In ILS, since the dancers
are not allowed to break their hand contact, rotation with arm
constraints will result in a different final pose in performing
move B in ILS than move B in BLS although the dancers
execute identical motions.

The associated dance poses in ILS shown in Fig. 1 are
decomposed into the poses for the leader and the follower in
Fig. 7. If one considers the initial and final poses illustrated
in Fig. 1, same poses occur when the agents are in the states
< q1Bo, q

1
Al > and < q5Bo, q

5
Al >, respectively.

Using the transition models defined for BLS and ILS, a
dance sequence can be observed by the following form,

[< qBo, qAl >ji, < qBo, qAl >jf ], (5)
[< qBo, qAl >ji, < qBo, qAl >jf ], ...

where i and f stand for the initial and final state (pose),
respectively, and j ∈ MBLS for BLS or j ∈ MILS for
ILS and each bracket represents a move.

We use this bracket representation to distinguish the moves
(letters) performed by the dancers. For such a purpose, the
initial and final states of the leader and follower dancers
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FIGURE 7. The transition system representation of ILS, [18]. Leader and
follower have five distinct states to represent the distinct poses in ILS. Blue
arrows represent the transitions between the states. Corresponding ∗(., .)
operators for each transition are illustrated which involve the follower’s 2π / π
rotations in clockwise/counter clockwise directions. The notation ∗(0, 0)A,C,D

is used to represent the moves A, C and D that are already defined in BLS and
that do not involve any follower rotation.

need to be observed. Moreover, observation of the transition
relations are needed in order to avoid ambiguities caused
by the moves that start and end with the same pose. The
recognized sequence of moves can be used to evaluate the
‘perceived success’ of the execution, which will be shown in
the next section, as well as to eventually build an artificially
intelligent (AI) judge, which can recognize the moves and
then give a score (Section V).

IV. METRICS TO EVALUATE SALSA
A formal model of a salsa dance performance enables us
to solve two problems, a forward problem and an inverse
problem. Based on the underlying structure of the leader-
follower interactions during dance sequence generation, the
forward problem aims at automatically generating chore-
ographed dance sequences for the two robotic agents as
well as a communication protocol to achieve a satisfactory
performance [18]. In what follows we focus on solving the

inverse problem, i.e., to understand the notion of ‘perceived
success’ and what constitutes ‘optimal dance’. We propose
two metrics for BLS: energy and phrase complexity metrics.
The energy metric is defined as the distance (in hectometers)
covered by the dancers in the execution of the moves in
MBLS . The total energy of a dance sequence is calculated
by finding the frequencies of the letters and multiplying those
with their energy values. Phrase complexity is computed by
finding the entropy of each 4-letter phrase in a sequence.
Entropy of a phrase, [26], generated by the moves in BLS
is

w = −
4∑
k=1

fk log2 fk, (6)

where fk is the frequency of each letter in a phrase. Then the
average phrase complexity (Wave) of a sequence is defined
as the fraction of the sum of phrase entropy values to the
number of phrases that appear in a sequence.

We further integrate these two metrics with the transition
model (4) for the evaluation of a salsa performance. If we
assume that a dance sequence is deconstructed as the bracket
representation given in (5), then the deconstructed sequence
can be evaluated based on the energy and phrase complexity
metrics. To give an an example, assume that the agents Alice
and Bob generate 20-letter long sequences. We partition a
20-letter sequence Seq into 4-letter phrases and assign a
complexity value for each phrase as in the following.

Seq =

20 letters︷ ︸︸ ︷
[

w1︷ ︸︸ ︷
−−−−][−−−−︸ ︷︷ ︸

4 letters

][−−−−][−−−−][−−−−]

(7)

For this particular case, we define the entropy vector W such
that W = (w1, . . . , wn) where wi ∈ {0, 0.811, 1, 1.5, 2},
i = 1, . . . , n where n is the number of 4-letter phrases
in a sequence (n = 5 in (7)). The possible values of wi
correspond to the entropy values calculated by the frequency
of each letter in a 4-letter phrase in (6), e.g. phrase (AAAA)
has phrase complexity w = 0 but (BACD) has phrase com-
plexity w = 2. Below, we illustrate two possible sequences
generated by dancers with the moves from BLS. The first
sequence is generated randomly and the second sequence is
generated such that the phrase complexity decreases through
the sequence with WSeq2 = (2, 1.5, 1, 0.811, 0).

Seq1 :(ABCA)(BCAD)(BBBC)(BCDA)(BBDA)

Seq2 :(ABDC)(BCAC)(CCBB)(DADD)(BBBB)

Similarly, an energy vector, E = (e1, . . . , en) can be intro-
duced for a sequence such that ei, where i = 1, 2, . . . , n, cor-
responds to the energy consumed by the agents in performing
the ith, 4-letter phrase in a sequence. The energy metric for a
sequence is defined as the total energy,Etotal = e1+. . .+en
consumed by the dancers to perform a dance sequence.

In order to compare the proposed metrics with humans’
perceptions of artistic value, the video recordings of ten
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FIGURE 8. An artificially intelligent (AI) judge scheme to evaluate salsa. The
AI judge involves two components: An observation component and an
evaluation component. The observation component consists of a visual sensor
to track the fiducial points on the humanoid representation of the human
dancers. The tracked values are compared with a library of poses and move
transitions. The sequence is deconstructed by recognizing the initial and final
pose in a move as well as the transition between them. The deconstructed
sequences are fed to a Score function in the evaluation component which
assigns a score based on the Energy and Phrase Complexity metric (Eqn. (8)).

salsa sequences (performed by using the letters from the
set MBSP ) are shown to a dance audience who is asked
to evaluate the performances. Strong correlations between
these metrics with the audience’s scores are reported and the
details of the performance metrics are presented in Section
V. High correlation between audience’s scores and the con-
sumed energy by the dancers (energy metric) implies that
the dance audience likes more energetic dance performances.
This phenomenon is used by the choreographers by placing
the most energetic dance sequence in the finale of a dance
show in that it is believed that the last section of a show
will be the most memorable by the audiences. However, if
an energetic move is repeated many times, it may become
boring for the audiences. Hence, a choreographer as well as
dancers need to balance between the energy and diversity of a
constructed dance sequence. Thus, the order of the moves in
a sequence is also relevant, and this is captured in our model
by the phrase complexity metric.

V. AN ARTIFICIALLY INTELLIGENT (AI) JUDGE
We are particularly interested in building an artificially in-
telligent (AI) judge that observes and evaluates the artistic
success of a dance performance. The idea is similar to the
judges that appear in the Olympic games or dance competi-
tions. The judges in these contests have criteria that measure
artistic reflection and also the complexity of the execution. It
would be difficult for an AI judge to evaluate the warmth of
a dancer’s smile but instead it can evaluate artistic appeal of
a performance by using the energy and complexity metrics.
The overall scheme of an AI judge evaluating performance
art is shown in Fig. 8.

Our AI judge has two components: an observation com-
ponent and an evaluation component. We use the abstract
model given in (4) to represent the leader and follower dancer
as humanoid robots with tracked fiducial points. The goal of
the observation component is then to estimate a sequence of
states and the transition (Qo,→o) that best fit the observed

sequence of tracked fiducial points and the model. Here, Qo
is the set of observed states including the initial and final
states (poses) of the leader and the follower in a move and→o

is the observed transition between the initial and final state
such that→o: (qi, a) 7→ qf where qi, qf ∈ Q and a ∈ Acto
represents the actions that are executed by the agents between
the initial pose and final pose.

The purpose of the observation component is to decon-
struct a salsa performance into a letter (move) sequence with
the bracket representation proposed in (5). This is achieved
by detecting the x-y-z coordinates of the fiducial points
defined in Section III. This is similar to the idea of template
matching which is widely studied in computer vision [27].
Simply, the tracked points’ coordinates are compared with
the values that are contained in a library of poses with an
allowed deviation δ. After detecting initial and final pose,
the algorithm resets and starts to track the new move. In the
previous sections, we have shown that there may be multi-
ple moves with equivalent initial and final poses. To avoid
ambiguities in dance move detection, we also include the
observation of the transition →o. This transition is captured
by tracking the velocities vx, vy and vz for each fiducial
point.

The evaluation component first decomposes the observed
sequence into 4-letter phrases. It then calculates observed
phrase complexity Wo and observed phrase energy Eo as
described in Section IV. It finally computes the score of the
observed sequence based on the following Score function,
Score = a.Etotal + b.Wave + c. This function is a linear
combination of Etotal and Wave where Etotal is the sum of
the energy values of the phrases and Wave is the average
phrase complexity that is calculated by dividing the total
phrase complexity value by the total number of phrases that
appear in a sequence.

The Score function is constructed as a linear function in
that it fits the evaluations collected from a previous study
which is reported in [17]. The study involved two dancers
who performed ten distinct salsa sequences by using the
moves in BLS. The dance sequences were recorded as video
and shown to a dance audience who was asked to evaluate
the videos with scores from 1 to 10. The scores of twenty
judges were collected and the averages were calculated for
each sequence. It is shown that the judges’ scores are highly
correlated to total energy Etotal (with a correlation coeffi-
cient R=0.8) and average phrase complexity Wave (R=0.75).
Thus, in this study we use previous data as a training set to
estimate the coefficients a, b and c in Score function (Fig. 9).
The Score function learned from the data has the form

Score = −17.94 + 16.Etotal + 0.833.Wave. (8)

In order to validate our AI judge, we asked our experienced
salsa dancers to perform four new dance sequences (each of
them having 20 letters) by using the moves in BLS. All of the
sequences are performed by the same two dancers in order to
exclude the effect of artistic reflection of a dancer’s personal

VOLUME 4, 2016 7



Kayhan Özcimder et al.: Perceiving Artistic Expression: A Formal Exploration of Performance Art Salsa

FIGURE 9. The least squares regression plane with coefficients estimated
from the previous data [17]. The x-coordinate is the average phrase complexity
of a dance sequence (bits), the y-coordinate is the total energy consumed by
the dancers (hectometers) and the z-coordinate is the associated score
assigned by the human judges.

demeanor. The sequences constructed by the dancers are
given below.

V 1 :(BDCB)(DBCB)(DDBB)(CCDB)(DDBB)

V 2 :(BBBB)(BBBA)(ACAA)(AAAD)(AAAB)

V 3 :(AAAA)(ABAA)(BABA)(DACA)(DABC)

V 4 :(ABDC)(DABC)(BBAB)(AABA)(BBBB)

The video recordings of the dance sequences are shown to a
dance audience with a random order. Average scores in 1-to-
10 scale that are collected from 15 judges are, ScoreV 1 =
9.1, ScoreV 2 = 3.09, ScoreV 3 = 3.7 and ScoreV 4 = 5.79.

The same video recordings are fed into the AI judge. For
the observation component, we use a Microsoft Kinect sensor
in order to track the x-y-z coordinates of the fiducial points.
Microsoft’s open source C++ algorithm is modified for the
purpose of our experiment such that two distinct libraries
are contained in a movement library and transition library.
The q vectors that represent the poses of the leader and the
follower are integrated to the Kinect algorithm as a library
so that the algorithm seeks to match the tracked coordinates
of the fiducial points to one of the possible poses from the
library with the maximum deviation δ. Moreover, a library
of move transitions is incorporated into the C++ code which
includes the deviations of the coordinates with respect to time
for distinct physical moves described by the ∗(., .) operator.
The initial pose shown in the upper-left corner of the Fig. 1 is
incorporated into the algorithm as a trigger to start tracking
fiducial points of the dancers (Fig. 4).

The timer starts and stops with the recognition of initial
pose and final pose respectively. In Fig. 10, a snapshot of the
algorithm is shown including the stick figure representation
of a dancer and the detected letter which is illustrated in
the right bottom corner. Finally, the algorithm computes the
Etotal and Wave values for a recognized sequence which
are then supplied to the Score function given in Eqn. (8).

FIGURE 10. A snapshot of the User Interface of the AI judge that uses Kinect
C++ algorithm to track the fiducial points on the stick figure representations of
the dancers. Recognized dance move is shown on the right bottom corner to
the user. Video of the constructed AI judge detecting a dance sequence is
available at https://www.youtube.com/watch?v=eHX26GGBB3A&edit=vd.

The dancers performed the sequences given as V 1, V 2, V 3
and V 4 in the view of the Microsoft Kinect sensor. Four
sequences are deconstructed by the AI judge and average
phrase complexity and energy values are computed for each
sequence which are then fed to the Score function. The
score values are calculated as 5.29, 2.88, 4.28, 3.69 for the
sequences V 1, V 2, V 3 and V 4 respectively. The correlation
coefficient between the audience’s scores and the scores
assigned by the AI judge is calculated asR = 0.81. Although
the range of the scores given by the audience are much higher
than the AI judge, the trend and the ranking of the scores
are very similar. The difference between the scales may be
a result of initial individual biases in the scale for the audi-
ence. Hence we conclude that the strong correlation implies
that our judge performs well enough in matching human’s
perceived relative artistic appeal for salsa performances.

VI. CONCLUSIONS
This study proposes a method to formally define artistic value
in human collective motion. A popular form of performance
art, salsa, is used as a prototype model for the analysis. The
state transition model of salsa is constructed by using the
states that correspond to the initial and final poses of the
abstract representations of the salsa dancers. We introduce
abstract representations of the dancers, and the transitions
between states are introduced as the physical dance motions
executed by the dancers. The model is then used as a base
for the recognition of the dance moves and the evaluation
of the detected sequences with respect to the metrics based
on the energy and entropy (diversity) of the dance phrases.
The general scheme of an artificially intelligent (AI) judge is
introduced along with its components that we refer to as the
observation and evaluation components. A score function is
proposed that assigns a score based on the metrics calculated
for the detected sequences. Finally, an implementation of
the AI judge to evaluate BLS is shown by using the Mi-
crosoft Kinect sensor for fiducial point tracking and the C++
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algorithm for the evaluation. Extending the applications to
ILS is still on progress in that it requires a modified Energy
metric since in ILS, arm and body movements have major
influence on dancers’ energy consumption and perceived
artistic success.

The idea of an AI judge can be extended to other fields
such as athletic competitions or other dance contests. One
may think of a diving competition in the Olympics as an
example. An AI judge can be constructed to capture the
acrobatic motion sequences performed by the divers and the
metrics can be modified to match the judging criteria for
this particular contest. In all such applications an appropriate
alphabet of motion primitives is needed to capture all of the
possible moves. Ideally, an AI judge with fixed evaluation
metrics can be potentially the most unbiased judge in any
competition.
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