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Estimation of the receptor-state affinity constants of ligands in 
functional studies using wild type and constitutively active 
mutant receptors: Implications for estimation of agonist bias

Frederick J. Ehlerta,b,* and Richard S.L. Steinb

aDepartment of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 
92697-4625, United States

bDepartment of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, 
Irvine, CA 92697-4625, United States

Abstract

We describe a method for estimating the affinities of ligands for active and inactive states of a G 

protein-coupled receptor (GPCR). Our protocol involves measuring agonist-induced signaling 

responses of a wild type GPCR and a constitutively active mutant of it under control conditions 

and after partial receptor inactivation or reduced receptor expression. Our subsequent analysis is 

based on the assumption that the activating mutation increases receptor isomerization into the 

active state without affecting the affinities of ligands for receptor states. A means of confirming 

this assumption is provided. Global nonlinear regression analysis yields estimates of 1) the active 

(Kact) and inactive (Kinact) receptor-state affinity constants, 2) the isomerization constant of the 

unoccupied receptor (Kq-obs), and 3) the sensitivity constant of the signaling pathway (KE-obs). 

The latter two parameters define the output response of the receptor, and hence, their ratio 

(Kq-obs/KE) is a useful measure of system bias. If the cellular system is reasonably stable and the 

Kq-obs and KE-obs values of the signaling pathway are known, the Kact and Kinact values of 

additional agonists can be estimated in subsequent experiments on cells expressing the wild type 

receptor. We validated our method through computer simulation, an analytical proof, and analysis 

of previously published data. Our approach provides 1) a more meaningful analysis of structure-

activity relationships, 2) a means of validating in silico docking experiments on active and inactive 

receptor structures and 3) an absolute, in contrast to relative, measure of agonist bias.
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1. Introduction

The high-resolution crystal structures of the β2-adrenergic receptor in a complex with 

inverse agonist and with both agonist and Gs provide some of the most striking evidence for 

functional states of a G protein-coupled receptor (GPCR) (Rasmussen et al., 2007, 2011). 

These advances raise the question of how can the functional responses of GPCRs be 

analyzed to determine the affinity of drugs for receptor states?

The conventional approach for quantifying drug-receptor interactions involves measuring the 

parameters, observed affinity and relative efficacy. Efficacy (ε) represents the fraction of the 

population of ligand-receptor complexes in the active state, and the observed affinity 

constant, Kobs, the reciprocal of the concentration of ligand required for half-maximal 

occupancy of the receptor population (Furchgott, 1966; Furchgott & Bursztyn, 1967). For 

agonists, Kobs represents a weighted average value of the active and inactive receptor-state 

affinities (Kact and Kinact) (Monod, Wyman, & Changeux, 1965; Staus et al., 2016), and 

hence, it does not represent a measure of affinity for either state.

The relationships between affinity and efficacy and the underlying state parameters 

demonstrate that the product of the efficacy and observed affinity of an agonist (εKobs) is 

proportional to the active state affinity constant (Kact) (Ehlert, 2015; Tran, Chang, Matsui, & 

Ehlert, 2009). Hence, if the εKobs product of one agonist is divided by that of another, a 

relative estimate of Kact is obtained. This value was initially termed relative intrinsic activity 
(RAi) (Ehlert, Griffin, Sawyer, & Bailon, 1999). Both null (RAi = εKobs/ε′Kobs′) and 

operational (RAi = τKobs/τ′Kobs′) methods of regression analysis have been developed to 

estimate RAi from agonist concentration-response curves (Ehlert, 2008; Ehlert et al., 1999; 

Figueroa, Griffin, & Ehlert, 2008; Griffin, Figueroa, Liller, & Ehlert, 2007).

Because biased signaling involves the induction of a unique active receptor state, the RAi 

value is useful for detecting agonist bias (Ehlert, 2008; Kenakin, Watson, Muniz-Medina, 

Christopoulos, & Novick, 2012; Tran et al., 2009). Its relative nature raises ambiguity as to 

which agonist is biased—the agonist of interest or the reference agonist to which the RAi 

value is normalized. Ideally, the RAi value of a test agonist is normalized relative to an 

agonist (e.g., natural ligand) that lacks selectivity, so that any difference in pathway RAi 

values can be attributed to bias of the test agonist. Nonetheless, methods for estimating Kact 

and Kinact in units of M−1 would provide a better approach for quantifying agonist action, 

particularly in cases where a receptor has more than one natural ligand.

To extract these estimates from the functional responses of agonists, two problems need to 

be solved. First, the response to an agonist is usually measured at a point downstream in the 

signaling pathway, and hence, the relationship between receptor activation and response is 

undefined. This transducer function can be deduced (operational model, (Black & Leff, 

1983; Black, Leff, Shankley, &Wood, 1985)) or eliminated from the analysis (null method, 

(Furchgott, 1966; Furchgott & Bursztyn, 1967)) by measuring agonist responses in the 

absence and presence of either partial receptor inactivation or reduced receptor expression.

The second problem is that to estimate receptor-state constants, the effect of perturbing the 

equilibrium between active and inactive states on the output response needs to be measured. 
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We recently described a protocol for estimating Kact and Kinact that relied on an allosteric 

agonist to push the equilibrium in the direction of the active state (Ehlert & Griffin, 2014). 

The approach involves measuring agonist responses under conditions of allosteric agonism 

and in the presence of partial receptor inactivation or reduced receptor expression. A related 

approach has been described for ligand-gated ion channels based on an analysis of agonist-

induced whole-cell current responses (Chang & Weiss, 1999).

The equilibrium between active and inactive states can also be altered to favor the active 

state by introducing a constitutively activating point mutation into a GPCR. This approach 

has also been used to estimate the Kact and Kinact values of agonists for ligand-gated ion 

channels (Auerbach, 2010; Jha & Auerbach, 2010).

In this report, we describe a protocol for estimating the Kact and Kinact values of orthosteric 

ligands from the functional responses of GPCRs heterologously expressed in cell lines. Our 

method involves measuring responses of a given GPCR and a constitutively active mutant of 

it. Agonist responses are measured in the absence and presence of either partial receptor 

inactivation or reduced receptor expression. Once this analysis has been completed for one 

agonist, the Kact and Kinact values of additional agonists can be estimated from their 

concentration-response curves measured using the wild type receptor. We validate our 

method analytically and with simulated data and apply our approach to the analysis of 

published data. We also describe an example of a scenario in drug discovery to illustrate how 

our approach can be used to discover biased agonists (see Discussion). Our method provides 

a powerful means of quantifying agonist bias, investigating structure-activity relationships, 

and validating in silico docking experiments on active and inactive receptor structures.

2. Methods

2.1. Simulation of agonist concentration-response curves

To validate and describe our method, we simulated agonist concentration-response curves 

and then analyzed the data to determine if we could estimate the receptor-state constants 

used to simulate the data. The simulations and analyses were done using Eqs. (4)–(6), and 

their derivation is described next.

We have previously shown that, with regard to G protein signaling, agonist-induced receptor 

activation is proportional to the formation of a quaternary complex consisting of the active 

state of the agonist-receptor complex (DR*) associated with exchange state of the G protein 

(G*) bound with GDP (DR*G*GDP) (Ehlert, 2008; Ehlert & Griffin, 2014; Stein & Ehlert, 

2015). We have also shown that the function describing agonist-induced formation of this 

complex is consistent with a Monod-Wyman-Changeux model (Ehlert & Griffin, 2014). 

Hence, we used the following simplified form of the Monod-Wyman-Changeux model (one 

orthosteric binding site and no allosteric site; (Monod et al., 1965)) to simulate agonist-

receptor activation:

(1)
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In this equation, Tf represents the total fractional stimulus (constitutive and ligand-induced 

receptor activation), D, the orthosteric ligand concentration, Kq-obs, the observed 

isomerization constant of the unoccupied receptor, and Kact and Kinact, the active and 

inactive receptor-state affinity constants (units of M−1). The isomerization constant (Kq = 

R*/R) is a property of the free receptor and defines the spontaneous isomerization of the 

unoccupied receptor into the active state in the absence of ligands or any allosteric 

modulators (e.g., G proteins), whereas the observed isomerization constant (Kq-obs) 

describes the equilibrium between the active and inactive states of the unoccupied receptor 

in the presence of G protein and guanine nucleotides (Ehlert & Griffin, 2014).

To simulate a response downstream from receptor activation, we substituted Eq. (1) into the 

transducer function of the operational model (Black & Leff, 1983; Black et al., 1985),

(2)

to yield an equation for the response to the agonist (Ehlert & Griffin, 2014):

(3)

In these equations, Msys represents the maximum response of the signaling pathway for an 

agonist with infinite selectivity for the active state, m, the transducer slope factor, and 

KE-obs, the observed sensitivity constant of the signaling pathway.

As described under “Results”, our protocol involves measuring the responses of both wild 

type and constitutively active mutant receptors under control conditions and those of reduced 

receptor expression or partial inactivation. Thus, Eq. (3) can be modified to account for these 

additional variables (Ehlert & Griffin, 2014):

(4)

In this equation, Bmax-rel represents the relative receptor density of the constitutively active 

receptor mutant, CM, the scalar by which the isomerization constant of the mutant receptor 

is increased relative to that of the wild type receptor, and q, the residual fraction of the 

receptor population after reduced receptor expression or partial receptor inactivation with an 

irreversible inverse agonist. The mutant receptor must have the same Kact and Kinact values 

as the wild type, and a means of validating this requirement is described under “Discussion”.

If an irreversible neutral antagonist is used to reduce the amount of orthosteric ligand 

binding sites, the receptor population behaves as two subpopulations – one unaffected by the 
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irreversible ligand and the other having its orthosteric binding pocket blocked but not its 

constitutive activity. For this situation, the following equation applies (Ehlert & Griffin, 

2014):

(5)

Finally, because the protocol involves measuring responses elicited in two populations of 

cells expressing either wild type or mutant receptors, an estimate of the level of receptor 

expression in the two cell populations is needed. The amount of receptor expression on the 

surface of intact cells can be estimated using a suitable radioligand. Consequently, we 

simulated specific binding data using the following equation:

(6)

In this equation, L denotes the concentration of radioligand, KD, the dissociation constant of 

the radioligand, Bmax-WT, the binding capacity of the wild type receptor and Bmax-rel, the 

binding capacity of the receptor population (wild type or constitutively active mutant) 

expressed relative to that of wild type.

The various parameters used in our nonlinear regression analysis and their definitions are 

listed in Table 1.

Eqs. (4) and (5) were used to simulate agonist concentration-response curves, whereas Eq. 

(6) was used to simulate binding data. A normally distributed random error was added to the 

simulated data. This was accomplished by first adding a constant background value 

equivalent to 0.2 Msys (Eqs. (4) and (5)) or 0.2 Bmax-WT (Eq. (6)) to the simulated data. Then 

a 10% random Gaussian error was added (i.e., two SD resent 20%). Finally, the background 

value was subtracted from the data. For each analysis, we usually simulated four replicates, 

which are illustrated in the figures as mean ± SEM.

2.2. Nonlinear regression analysis

We analyzed the simulated functional responses and binding data using global nonlinear 

regression analysis with Eqs. (4)–(6) as described under Results. For this analysis, some of 

the parameters (Kact, Kinact, Kq-obs, KE-obs and KD) were expressed in logarithmic form 

(e.g., Kact = 10log Kact). Each analysis was done on four simulated replicates of data. The 

theoretical curves in the figures represent the least-squares fit to all of the data, although the 

figures usually only show the mean data ± SEM. To estimate the SEM values of log Kact, log 

Kinact and other parameters, each replicate of simulated data was analyzed, and the mean ± 

SEM value was calculated for each parameter. We used both Prism (GraphPad Software) 

(Figs. 1–3, 9) and the solver function in Excel (Microsoft) (Figs. 4–8) for nonlinear 

regression analysis. The initial parameter estimates can be calculated from the empirical 
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parameters of the agonist concentration-response curves (Emax, EC50 and the constitutive 

response in the absence of agonist) using equations derived in Appendix A (Eqs. (19)–(29), 

(36), (37), (44)–(48), (54)). A detailed description of our methods of analysis is given in the 

online Supplement.

2.3. Monte Carlo analysis

We performed a Monte Carlo analysis of our regression technique (Eq. (4)) to examine how 

the distribution of parameter estimates for a single agonist is related to random error in the 

simulated data. This was accomplished using a script that took advantage of the automated 

simulation and nonlinear analysis functions of the Prism application (Fig. 2). For analyses 

involving more than one agonist with Eq. (4) or analyses with Eq. (5) (Figs. 5, 7 and 8), we 

manually performed simulations using Excel.

2.4. Analysis of published data

To illustrate the feasibility of our analysis technique we applied it to published agonist 

concentration-response curves of muscarinic agonist-induced responses on wild type and 

constitutively active mutant receptors. This was accomplished using the GraphClick 

application (Arizona Software) to estimate response values from electronic images of 

published data. The data were subsequently analyzed by global nonlinear regression analysis 

as described under “Results”.

3. Results

3.1. Analysis of simulated data, full agonist

The concentration-response curves of an agonist for eliciting a response through a wild type 

and constitutively active mutant receptor were simulated using Eq. (4), and the results are 

shown in Fig. 1. Data were simulated for the conditions of control and reduced receptor 

expression or partial receptor inactivation with an irreversible inverse agonist (panel a). The 

simulations were for a highly efficacious agonist having 104-fold higher affinity for the 

active state (log Kact, 8.0) relative to the inactive state (log Kinact, 4.0). The isomerization 

constant of the unoccupied wild type receptor was 10−4 (log Kq-obs, −4), whereas that of the 

constitutively active mutant was approximately fiftyfold greater (log CM, 1.7). We also 

simulated binding data using Eq. (6) to represent the results of saturation binding 

experiments on the cells expressing wild type and mutant receptors (panel b). The plots in 

Fig. 1 show the mean ± SEM values of four simulations.

The data for each simulation were analyzed by global nonlinear regression analysis using 

Eqs. (4) and (6), and the mean parameter estimates ± SEM values are listed in Table 2. 

During the analysis, the estimates of Msys, m, log Kact, log Kinact, log Kq-obs and log KE-obs 

were shared among the four concentration-response curves. The value of parameter Bmax-rel 

was constrained to 1.0 for the wild type receptor binding and functional data, and a shared 

value was estimated by regression analysis of the mutant receptor binding and functional 

data. A shared estimate of Bmax-WT was obtained from the simulated binding data. Finally, 

individual estimates of the fraction of the residual receptor population after reduced 

expression or partial receptor inactivation (q) were obtained for the appropriate wild type 
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and mutant receptor functional data. This latter parameter was constrained to 1.0 for the 

functional data lacking a depleted receptor population (control).

Table 2 lists the parameter estimates from regression analysis as well as the parameter values 

used to simulate the data. As shown in the table, accurate estimates with reasonable SEM 

values could be obtained for all of the parameters with four replicates, including the 

receptor-state parameters (log Kact, Kinact and Kq-obs). The parameters with the largest 

relative variance included the isomerization constant of the unoccupied receptor (log Kq-obs, 

SD, 0.13) and the inactive receptor-state affinity constant (log Kinact, SD, 0.26).

To determine the variation in parameter estimates more accurately, we simulated 1020 

experiments, each with a sample size of 4, and analyzed these by global nonlinear regression 

analysis. The mean parameter estimates ± standard deviation were: log Kact, 7.99 ± 0.10; log 

Kinact, 3.95 ± 0.22; log Kq-obs, −3.98 ± 0.26; log KE-obs, −1.99 ± 0.15; log CM, 1.70 ± 0.085; 

qWT, 0.021 ± 0.004; qM, 0.021 ± 0.006; Msys, 1.00 ± 0.022; m, 1.52 ± 0.17; log KD-WT, 

−10.00 ± 0.043; Bmax-WT, 1.00 ± 0.034 and Bmax-rel, 0.80 ± 0.032. Note that these standard 

deviations represent the variation in a parameter estimated from a sample size of four. 

Hence, they represent an average estimate of the expected SEM value for a sample size of 

four. Notwithstanding the small sample size, the SEM values in Table 2 are generally 

consistent with this prediction. The distributions (probability density functions) of the 

parameter estimates, Kact, Kinact, Kq-obs and KE-obs, are shown in Fig. 2.

In 1.3% of the cases, however, it was impossible to obtain an accurate estimate of log Kinact 

even though reliable estimates of the other parameters were obtained. To investigate this 

phenomenon, we analyzed individual simulations (i.e., N = 1) to determine how the residual 

sum of squared deviations of the data points from the regression equation (RSS) is affected 

by constraining the value of log Kinact to various values near the best fitting estimate. Fig. 3a 
shows an example of a simulation from which a reasonable estimate of log Kinact was 

obtained (log Kinact, 3.97; theoretical value, 4.0). The upper panel in Fig. 3d shows how RSS 

changes as the least-squares regression is done with Kinact constrained to various values 

indicated on the abscissa. The plot shows that RSS is at a minimum when log Kinact = 4.0. 

An increase in RSS occurs whenever log Kinact is constrained to values larger or smaller 

than the best fitting estimate although the increase in RSS is not much when Kinact < 4.0. 

The lower panel in Fig. 3d shows how the estimates of selected parameters change when the 

regression is done with Kinact constrained to various values. Small changes in these 

parameter estimates occur when the Kinact is constrained to values < 4.0 during the 

regression.

In contrast, Fig. 3b shows an example of a simulation for which a reliable estimate of log 

Kinact was impossible. In this case, RSS is at a constant minimum value whenever log Kinact 

is constrained to a value less than approximately 3.0 (upper panel, Fig. 3e). Over this range, 

the estimates of log Kact, log Kq and log KE are nearly constant at values (7.68, −3.52 and 

−1.83, respectively) that are reasonable (theoretical values, 8.0, −4.0 and −2.0) given the 

large error in the data (lower panel, Fig. 3e). Not surprisingly, we found that reducing the 

size of the random error or increasing the sample size or the number of agonist 
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concentrations in the simulation reduced the likelihood of obtaining a simulated data set for 

which Kinact was inestimable.

Finally, Fig. 3c shows an example of data with no error. When regression analysis is done 

with log Kinact constrained to values greater or less than that used to simulate the data (log 

Kinact, 4.0) an increase in RSS occurs (upper panel, Fig. 3f). Thus, like the simulated data 

shown in Fig. 3a and d, a least-squares fit is obtained when Kinact is equal to or 

approximately equal to 4.0, and the topography of the plot of RSS against log Kinact shows a 

clear minimum. The gradient of the plot in the direction Kinact < 4 is not substantial, 

however.

We also simulated functional data similar to that shown in Fig. 1, but for the case involving 

the use of an irreversible neutral antagonist to reduce the size of the receptor population 

(Fig. 4a). The mean ± SEM of four simulations are shown. These data together with the 

receptor binding data in Fig. 4b were analyzed simultaneously by global nonlinear 

regression analysis with Eqs. (5) and (6). The parameter estimates were shared as described 

above in connection with the simulated data in Fig. 1. Regression analysis yielded parameter 

estimates with reasonable SEM values that were nearly the same as the parameters used to 

simulate the data. Parameter estimates for this simulation are included in Table 2.

To investigate the variation in parameter estimates for the simulation shown in Fig. 4, we 

carried out 150 Monte Carlo simulations manually using Excel. Each simulation consisted of 

four replicates. The resulting probability density functions for log Kinact, log Kact, log Kq-obs 

and log KE-obs are shown in Fig. 5. Out of 150 simulations, there was only one case where it 

was impossible to estimate log Kinact. The average parameter estimates and their standard 

deviations for the 149 cases in which all of the parameters were estimable were: log Kact, 

8.01 ± 0.13; log Kinact, 3.96 ± 0.29; log Kq-obs, −4.05 ± 0.28; log KE-obs, −2.03 ± 0.15; log 

CM, 1.71± 0.11; qWT, 0.021 ± 0.005; qM, 0.020 ± 0.0046; Msys, 1.00 ± 0.021; m, 1.49 

± 0.22; log KD-WT, −9.99 ± 0.051; Bmax-WT, 1.01±0.034 and Bmax-rel, 0.80 ± 0.043. The 

standard deviations represent the expected SEM value for a sample size of four and are 

similar to the corresponding values given in Table 2 for the simulation shown in Fig. 4.

3.2. Analysis of a group of agonists

Once the large data set shown for the full agonist in Figs. 1 or 4 is obtained, all that is 

required to estimate the receptor-state constants of additional agonists are their 

concentration-response curves measured in experiments on the wild type receptor. For full 

agonists, experiments in the presence of partial receptor inactivation or reduced receptor 

expression are also needed.

Fig. 6 shows mean values ± SEM (N = 4) of simulated functional data for a full agonist (test 

agonist 1) and three partial agonists (test agonists 2–4). These data were analyzed 

simultaneously with those shown in Fig. 1 (reference agonist), and the resulting parameter 

estimates from global nonlinear regression analysis are listed in Table 3. These estimates 

were similar to the values used in the simulation, which are also listed in Table 3.
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To examine the distribution and variance of parameter estimates we carried out 128 

simulations manually using Excel and estimated the standard deviations of the parameter 

estimates obtained from samples consisting of four replicates. In one of these simulations, it 

was impossible to obtain an estimate of log Kinact for the reference agonist. For the 

remaining 127 simulations, the mean ± SD of the parameters for the reference agonist are: 

log Kact, 8.00 ± 0.090 and log Kinact, 3.99 ± 0.18. The parameters of the test agonists are: 

test agonist 1: log Kact, 7.50 ± 0.10 and log Kinact, 4.00 ± 0.11; test agonist 2; log Kact, 6.50 

± 0.10 and log Kinact, 4.00 ± 0.12; test agonist 3: log Kact, 6.00 ± 0.11 and log Kinact, 4.00 

± 0.075; test agonist 4, log Kact, 5.51 ± 0.14 and log Kinact, 4.01 ± 0.12. Finally, the 

parameters of the receptor and signaling pathway are:Msys, 1.00 ± 0.018, m, 1.51 ± 0.11; log 

Kq-obs, −4.01 ± 0.21, log KE-obs, −2.00 ± 0.12; log CM, 1.70 ± 0.078; qWT, 0.021 ± 0.0033; 

qMut, 0.020 ± 0.0046. These mean estimates are nearly the same as the values used to 

simulate the data (see Table 3). The standard deviations of the parameters of the test agonists 

are comparable to the SEM values of the corresponding parameter estimates in Table 3, 

which were calculated from a sample size of four.

The probability density functions for the log Kact values of the agonists are shown in Fig. 7. 

The values for log Kact used to generate the simulations were 7.5, 6.5, 6.0 and 5.5, for test 

agonists 1–4, respectively. The corresponding distributions for the estimates of log Kinact are 

shown in Fig. 8. The value of log Kinact used to generate the simulations was 4.0 for all of 

the agonists.

The data for the test agonists can also be analyzed simultaneously with the data in Fig. 4 for 

those situations in which an irreversible neutral antagonist is used to deplete the receptor 

populations. When this analysis was done, results similar to those described above were 

obtained (Table 3).

3.3. Analysis of data from the literature

Spalding, Burstein, Wells, and Brann (1997) investigated how a series of constitutively 

activating point mutations affected the concentration-response curves of carbachol for 

stimulating growth in HEK cells transiently expressing the M5 muscarinic receptor. We 

analyzed data presented in Fig. 7 of their manuscript to determine how accurately we could 

estimate the Kact and Kinact values of carbachol. These data are illustrated in Fig. 9a of the 

present manuscript. Shown are the mean response values for carbachol-stimulated growth by 

the wild type M5 receptor and six point mutants of serine 465 (glycine, proline, tryptophan, 

valine, arginine and lysine). Spalding et al. (1997) showed that there were no significant 

differences in the expression of wild type and mutant receptors. Hence, Eq. (4) was used in 

the analysis with the parameter Bmax-rel constrained to 1.0 for all data sets. Regression 

analysis of the mean data yielded parameter estimates ± asymptotic SE values of log Kinact, 

5.48 ± 0.13; log Kact, 8.54 ± 0.11; Msys, 218 ±29; and m, 0.55 ± 0.048. The log values for 

the scalar increases in Kq-obs (log CM) caused by the S465G, S465P, S465W, S465V, S465R 

and S465K point mutations were 0.49 ± 0.075; 0.73 ± 0.085, 1.25 ± 0.11, 2.11 ± 0.14, 2.41 

± 0.15 and 2.90 ± 0.19, respectively. It was impossible to obtain accurate estimates of log 

Kq-obs, and log KE-obs.
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To determine the variability in parameter estimates from data like those shown in Fig. 9a, we 

simulated analogous data using Eq. (4), with the parameters q and Bmax-rel assigned values 

of 1.0. The mean simulated response values of four replicates ± SEM are shown in Fig. 9b. 

We also carried out 151 simulations using Excel, with each simulation having four 

replicates. The mean parameters estimates ± SD for these simulations (Kinact, 4.00 ± 0.094; 

Kact, 6.99 ± 0.089; Msys, 1.04 ± 0.13; and m, 1.57 ± 0.15) were similar to values used to 

generate the data (4.0, 7.0, 1.0 and 1.5, respectively). The log values for the scalar increases 

in Kq-obs (log CM) caused by the CAM 1–5 mutations (0.60 ± 0.062; 1.20 ± 0.082, 1.80 

± 0.085, 2.39 ± 0.10 and 2.90 ± 0.19) were also similar to those used to simulate the data 

(0.6, 1.2, 1.8, 2.4 and 3.0, respectively). Again these SD values represent the average SEM 

value expected for a sample size of four. Although it was possible to estimate the composite 

parameter, log Kq-obs/[(1 + Kq-obs)KE-obs], accurately (−2.98 ± 0.16; value used in 

simulation, −2.803), mean estimates of the individual parameters, Kq-obs and KE-obs, were 

off by about one log unit and had SD values >1.6 log units. At the population level of 

analysis, the latter composite parameter is equivalent to the τ value for the unoccupied 

receptor (i.e., constitutive activity, τsys) (Ehlert, Suga, & Griffin, 2011).

4. Discussion

To apply our analysis, a constitutively active receptor mutant is needed that has Kact and 

Kinact values for ligands that are the same as those of the wild type receptor. Given our 

present state of knowledge of GPCR structure and activation (Manglik et al., 2015; Nygaard 

et al., 2013), it should be possible to identify residues sufficiently far from the orthosteric 

binding pocket that cause constitutive receptor activation when mutated. One approach for 

identifying an appropriate receptor mutant is to first analyze a number of potential mutants. 

If each mutant yields the same estimates of Kact and Kinact for a given agonist, then it would 

seem that the mutations only alter the isomerization constant (Kq-obs) without affecting 

ligand affinity for receptor states.

Two examples of such an analysis are illustrated in Fig. 9, which shows simulated data 

(panel b) and the experiments of Spalding et al. (1997) (panel a). The global regression 

analysis is based on the assumption that the values of Kact and Kinact for the wild type and 

mutant receptors are the same and that the mutations only affect Kq-obs. This mutation-

induced increase in Kq-obs causes predictable increases in agonist potency and the basal 

response in the absence of agonist. If there were changes in Kact and Kinact, then the best 

fitting curves would not align with the data points because changes in Kact and Kinact affect 

EC50 beyond that caused by changes in Kq-obs. The good agreement between the data points 

and the global best fitting curve shows that the mutations only affected Kq-obs and not Kact 

and Kinact. Hence, any one of the mutants that caused a measureable constitutive response 

(e.g., >10% Emax) would be useful for our analysis.

The forgoing results are consistent with the premise that ligands select for pre-existing states 

of the receptor depending on their differential affinity for each state (Monod-Wyman-

Changeux model; (Monod et al., 1965)). Agonists exhibit high affinity for the active state 

relative to the inactive, and consequently, shift the equilibrium in the direction of the active 

state. This change is accomplished by an agonist-induced increase in the isomerization 
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constant of the unoccupied receptor ([R]/[R*] = Kq-obs) by the factor, Kact/Kinact (i.e., 

[DR*]/[DR] = KqobsKact/Kinact). This mechanism implies that a constitutively activating 

point mutation should increase the observed affinity of an agonist (Kobs) by increasing the 

isomerization constant and not by altering the affinity of the agonist for active and inactive 

receptor states. The results in Fig. 9 are consistent with this postulate.

The response shown in Fig. 9a involves agonist-induced proliferation of new receptor-

expressing cells. The total receptor population increases in time and reaches a plateau as the 

response (proliferation) desensitizes throughout the lengthy five-day incubation with 

agonist. Though not often appreciated, these dynamics can be analyzed accurately using the 

reverse engineering approach inherent in the transducer function of the operational model. 

To validate this hypothesis, we used Gompertzian kinetics to simulate an agonist-induced 

exponential increase in cellular proliferation that slows down with time. We substituted this 

receptor activation function into the transducer function of the operational model and 

simulated data with a 10% Gaussian error. These data were analyzed by global nonlinear 

regression analysis with Eq. (4) (see Supplemental data). We were able to accurately 

estimate the log Kact and Kinact values used to simulate the data.

NMR studies of purified β2-adrenergic (Manglik et al., 2015; Nygaard et al., 2013) and A2A 

adenosine (Ye, Van Eps, Zimmer, Ernst, & Prosser, 2016) receptors reveal that the 

unoccupied receptor undergoes transitions between two inactive states. Similarly, the 

agonist-occupied receptor also interconverts between a transition state and a fully active 

state. Full activation of the β2-adrenergic receptor requires Gs or a G protein mimetic 

nanobody. The loci of conformational flexibility are the cytosolic ends of helices that 

interact with G protein (TM3, 5 and 6). These results imply that in the absence of G protein 

the binding pocket structures of the active and inactive states of the receptor are associated 

with more flexible conformations of the cytosolic ends of helices 3, 5 and 6 (Manglik et al., 

2015; Nygaard et al., 2013). These NMR studies are also consistent with the postulate that 

ligand binding mainly causes a change in the relative abundances of pre-existing receptor 

states and not the generation of new states.

Recent studies illustrate how stabilizing the β2-adrenergic receptor in the active or inactive 

state with nanobodies affects the binding of various ligands to the receptor (Staus et al., 

2016). The total change in the affinity of isoproterenol that occurred when the receptor was 

stabilized in the active state relative to inactive was 15,000-fold. Again these results are 

consistent with the consequences of the Monod Wyman Changeux model, although more 

than two states were needed to describe the data for all of the agonists investigated in this 

study.

For our pharmacological analysis, receptor states are defined in terms of their affinity for 

ligands (Kact and Kinact) and their corresponding ability to generate a response (active and 

inactive). This provision implies specific structural features of the ligand-binding pocket that 

are linked to complementary features of the cytosolic ends of the helices that interact with G 

protein. That is, the active state of the receptor has high affinity for its natural agonist ligand 

and the distal ends of helices 3, 5 and 6 form stable interactions with the guanine nucleotide-

free form of the holo G protein. In the inactive state, the receptor has low affinity for its 
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natural agonist, and the cytosolic ends of its helices are flexible as they catch GDP bound G 

proteins or perhaps are somewhat more stabilized when the latter are present. Of course, 

biased agonists may induce or stabilize unique active states that bias signaling.

If there is conformational variability in the binding pockets of the active and inactive states 

then our analysis would yield weighted ensemble average affinity estimates for the active 

(log Kact) and inactive (log Kinact) states.

We used simulation to validate our analysis and to show how to apply it to the analysis of 

data. A more direct way to achieve the former goal is to demonstrate that the receptor-state 

constants can be calculated from the empirical parameters of the concentration-response 

curves (EC50, Emax and constitutive response) of our assay protocol. In the Appendix A, we 

derive equations that express the EC50, Emax and constitutive response values in terms of the 

state parameters of Eqs. (4) and (5) for the case of a transducer slope factor of one (m = 1). 

We solved these equations for the receptor-state constants and verified that state parameters 

could be estimated from the EC50, Emax and constitutive response values of simulated data 

with substantial random error. These equations can also be used to generate initial parameter 

estimates for regression analysis of data having Hill slopes differing from one, such as those 

presented under “Results”. In a prior analysis, we published a set of equations that can be 

used to derive receptor-state and population constants from the graphical parameters of the 

concentration-response curves measured in experiments investigating allosteric interactions 

(Ehlert & Griffin, 2014).

Our approach can also be applied to data sets lacking the full complement of concentration-

response curves shown in Figs. 1a and 4a. If either one or both curves for the condition of a 

reduced receptor population are lacking, it may be impossible to estimate some or all of the 

three parameters, Kinact, Kq-obs or KE-obs, depending on whether a full or partial agonist is 

investigated (see Table 4).

Our experimental protocol and analysis involving wild type and mutant receptors (see Figs. 

1 and 4) provides estimates of two parameters (KE-obs and Kq-obs) that define the properties 

of the signaling pathway for a given output response. Hence, once the initial characterization 

is completed for a given full agonist, the receptor-state constants of additional agonists can 

be estimated using the cells expressing the wild type receptor provided that the signaling 

properties of the latter are reasonably stable. An analogous approach employing an allosteric 

agonist to increase constitutive receptor activity could be used to estimate the KE-obs and 

Kq-obs values of specific output responses in native cells and tissues (Ehlert & Griffin, 2014), 

which typically exhibit invariant EC50 and Emax values for a given response over time. 

Having accurate values of KE-obs and Kq-obs would enable investigators to estimate the 

receptor-state constants of additional ligands from an analysis of their concentration-

response curves in native preparations including those previously published.

As mentioned, the parameters KE-obs and Kq-obs define the sensitivity of the output response. 

Sensitivity increases with a decrease in KE-obs and an increase in Kq-obs. Hence, a useful 

measure of the sensitivity of the output response of a given signaling pathway is the ratio, 

Kq-obs/KE-obs. Since Kq-obs is a small number (Kq-obs < 1), a nearly equivalent expression is, 
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Kq-obs/((1 + Kq-obs)KE-obs). This latter expression is equivalent to the population parameter, 

τsys, which is a measure of constitutive activity (Ehlert, Suga, et al., 2011). Thus, the system 

bias of one pathway (τsys-1) relative to another (τsys-2) can be expressed as τsys-1/τsys-2 or 

log τsys-1/τsys-2 (log Δτsys). Alternatively, the ratio of the Kq-obs/KE-obs value of each 

pathway can be used to estimate system bias.

An advantage of estimating agonist Kact and Kinact values is that, for a given signaling 

pathway, these estimates do not change with variation in the expression of G proteins or the 

concentration of GTP (Ehlert, Griffin, & Suga, 2011). The latter allosteric modulators have 

effects that are indistinguishable from a change in the isomerization constant (Kq-obs). As 

shown from the analysis associated with Fig. 9, such a change does not influence the 

estimates of Kact and Kinact. Similarly, numerous receptor associated proteins have been 

described that influence receptor expression and the sensitivity of signaling pathways 

(Bruneau, Esteban, & Akaaboune, 2009; Guo, Sun, Hamet, & Inagami, 2001; Ruiz de Azua 

et al., 2012). Such proteins would be expected to alter the sensitivity constant of the 

signaling pathway (KE-obs) but not Kact and Kinact.

Whenever a ligand induces a conformational change in a receptor, the population parameter 

of observed affinity (reciprocal of the observed dissociation constant; i.e., Kobs = 1/KD) does 

not reflect agonist affinity for any stable receptor structure (Jencks, 1975; Monod et al., 

1965). Rather, observed affinity, or KD (1/Kobs), determines receptor occupancy of both 

active and inactive receptor states (occupancy = X/(X + KD), where X denotes the agonist 

concentration). Hence, receptor-state affinity constants are essential in understanding how 

drugs bind to receptor structures, particularly when drugs are docked onto active and 

inactive receptor structures, in silico. Consequently, the Kact and Kinact values of ligands 

provide more meaningful information in structure-activity relationships than estimates of 

EC50, Emax, Kobs and ε. It is, nonetheless, always possible to estimate the latter parameters 

once the receptor-state parameters are known (see Ehlert and Griffin (2014)).

Receptor-state affinity constants are useful for quantifying agonist bias because the 

associated mechanism involves agonist induction of a unique-active receptor state that 

selectively engages the transducer protein of one pathway (e.g., Gi) relative to that of 

another (e.g., GRK). To mediate this selective transduction, the agonist must have higher 

affinity for the receptor state that couples to Gi relative to that which interacts with GRK and 

recruits β-arrestin, or alternatively, the agonist induces a unique state that activates Gi but 

does not recruit GRK or β-arrestin effectively. Either mechanism would yield a difference in 

the estimates of Kact for the two responses. Thus, our approach provides a quantitative 

measure for calculating agonist bias.

For example, consider the hypothetical case of screening for agonists of the GPR109A 

receptor. Such agents are potentially useful in the treatment of dyslipidemias, but the 

receptor also mediates the unwanted side effect of cutaneous flushing (Guyton, 2004, 2007). 

This latter effect is contingent upon activation of both G protein (Gi/o) and β-arrestin 

signaling, whereas the beneficial responses of reducing triglycerides and increasing HDL 

levels are mediated through Gi/o signaling only (Richman et al., 2007; Walters et al., 2009). 
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Hence, a GRP109A agonist with a bias for G protein over β-arrestin signaling should be a 

useful therapeutic agent for treating dyslipidemias (Whalen, Rajagopal, & Lefkowitz, 2011).

To screen for such an agent, agonist-induced inhibition of cAMP accumulation (Gi/o 

signaling) and stimulation of arrestin recruitment could be measured in HEK293 cells as 

described by Walters and coworkers (Walters et al., 2009). Complete concentration-response 

curves could be measured for a known agonist, such as nicotinic acid, under control 

conditions and after reduced receptor expression using both wild type and constitutively 

active mutant receptors. Additional potentially biased agonists could be screened on the wild 

type receptor only, and the data analyzed as described above in connection with Figs. 1 and 

6 and Table 3.

Analysis of the in vitro screening data would yield estimates of the receptor-state affinity 

constants (Kact and Kinact) of the agonists. In the simplest case, the estimate of inactive-state 

affinity for a given agonist would be the same for both G protein and β-arrestin signaling. 

Under such conditions, an agonist biased for G protein signaling would have a higher active-

state affinity (larger log Kact value) for G protein signaling relative to that measured for β-

arrestin signaling. For agonists that exhibit changes in both Kact and Kinact across the two 

assays, a bias for G protein signaling is manifest as both a larger Kact value and a larger 

Kact/Kinact ratio. This latter ratio is equivalent to efficacy at the receptor-state level of 

analysis (Ehlert, 2000; Ehlert, 2015).

One could compare clinical effectiveness in vivo with the Kact/Kinact ratio estimated in vitro 

to glean what degree of receptor activation is useful therapeutically. Presumably, an increase 

in drug affinity (increase in the values of Kact and Kinact) while maintaining an ideal Kact/

Kinact ratio would yield an agent with higher potency and possibly fewer off-target effects. In 

this way, in vitro drug discovery can be facilitated by seeking drugs with optimum Kact and 

Kinact values.

While our analysis would provide estimates of the system bias of each pathway in vitro (i.e., 

log Δτsys, see above), these values may not reflect the corresponding values for the 

responses observed in patients in vivo because of potential differences in the expression of 

signaling proteins (e.g., G proteins) and the concentration of GTP. In addition, the measured 

step in the signaling pathway in the cell lines is often more proximal to receptor activation as 

compared to the final clinical response in vivo. This difference will also influence system 

bias. Finally, differences in the expression of receptors and G proteins and the concentration 

of GTP in the cell line compared to the corresponding conditions in native tissues in vivo 

can influence the population parameters of observed affinity and efficacy. By contrast, 

receptor-state affinity constants are unaffected by these factors.

Methods for deriving an estimate of bias based on the differential ability of an agonist to 

elicit responses through the different signaling pathways of a given receptor have been 

reviewed (Kelly, 2013; Kenakin & Christopoulos, 2013) and described (Zhang & Kavana, 

2015, 2016). Many of these protocols represent ingenious ways of analyzing the results of 

screening assays to deduce the efficacy of agonists at the receptor population level of 

analysis.
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To summarize, our approach provides a means of calculating an absolute measure of 1) 

system bias, based on pathway sensitivity and the isomerization constant of the unoccupied 

receptor (τsys or (Kq-obs/((1 + Kq-obs)KE-obs), and agonist bias, based on both 2) active state 

affinity (Kact) and 3) receptor activation (Kact/Kinact). These parameters should provide a 

more quantitative and standardized measure of drug action across different assays and a 

better means of relating activity to receptor structures and the final clinical outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix A

To prove that receptor-state constants can be estimated from the type of data analyzed in this 

report, we derived equations that express receptor-state parameters in terms of the graphical 

parameters of the agonist concentration-response curves (i.e., EC50, Emax and constitutive 

response in the absence of agonist) used in our analysis for the case of a transducer slope 

factor equivalent to one (m = 1). Note that these equations can also be used to derive initial 

parameter estimates for global nonlinear regression analysis with Eqs. (4) and (5) regardless 

of the value of the transducer slope factor.

The variables representing the graphical parameters are defined in Fig. 10 for cases 

involving reduced receptor expression or partial receptor inactivation with an irreversible 

inverse agonist (panel a) or an irreversible neutral antagonist (panel b). First, we derive 

equations for the graphical parameters, expressed in terms of receptor-state constants. Then 

we solve these equations to express receptor-state constants in terms of graphical 

parameters.

A.1. Reduced receptor expression or partial receptor inactivation with an 

irreversible inverse agonist

For the case illustrated in Fig. 10a, there are four conditions, 1) wild type, control; 2) wild 

type, reduced expression; 3) constitutively active mutant (CAM), control; and 4) CAM, 

reduced expression. The graphical parameters for these conditions (Emax, E; basal response, 

B and EC50, EC) are denoted with subscripts corresponding to conditions 1–4. The 

pharmacological responses for these four conditions are described by Eq. (4), but with 

constraints placed on variables q and CM to specify each condition: condition 1, q = 1, CM = 

1; condition 2, q = Q1, CM = 1; condition 3, q = 1; and condition 4, q = Q2. With these 

substitutions, equations for the Emax values (E1–E4) are derived by taking the limit of Eq. (4) 

as the agonist concentration (D) approaches infinity:

(7)
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(8)

(9)

(10)

In these equations, Q1 and Q2 denote the residual fraction of receptors after reduced receptor 

expression of wild type and mutant receptors, respectively, Bmax-rel, the receptor density of 

the mutant receptor expressed relative to wild type, and CM, the scalar increase in Kq in the 

constitutively active mutant receptor.

Equations for the basal response values in the absence of agonist (B1–B4) are derived by 

taking the limit of Eq. (4) as the agonist concentration (D) approaches zero:

(11)

(12)

(13)

(14)

It can be shown that when the agonist concentration is equal to EC50, the response is equal 

to the average of the maximal and basal responses (0.5(B1 + E1)) (Ehlert, Suga, et al., 2011). 

This relationship can be represented by substituting EC50 for D in Eq. (4) and setting the 

resulting equation equal to the EC50 response defined in the prior sentence. Solving this 

relationship for EC50 yields:
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(15)

(16)

(17)

(18)

The foregoing equations are solved to yield expressions for the various parameters of the 

receptor states and transducer function, expressed in terms of the graphical parameters of the 

concentration-response curves. We begin with the maximal response of the system (Msys), 

which can be estimated from the graphical parameters of the wild type receptor:

(19)

When the constitutive response of the wild type receptor is immeasurable (B1 = 0), Eq. (19) 

reduces to:

(20)

Msys can also be estimated from the graphical parameters of the constitutively active mutant 

receptor:

(21)

The fraction of the residual population of wild type receptors after reduced receptor 

expression or partial receptor inactivation with an irreversible inverse agonist (Q1) is given 

by:
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(22)

When the constitutive response of the wild type receptor is immeasurable (B1 = 0), Eq. (22) 

reduces to:

(23)

The fraction of the residual population of constitutively active mutant receptors after reduced 

receptor expression or partial receptor inactivation with an irreversible inverse agonist (Q2) 

is given by:

(24)

Several useful expressions can be derived for the scalar increase in the isomerization 

constant of the unoccupied receptor caused by the constitutively activating mutation (CM):

(25)

(26)

(27)

Eq. (29) and one of the three equations described above (i.e., 19–21) can be substituted for 

Q2 and Msys, respectively, in Eqs. (26) and (27).

The equation for the active state affinity constant (Kact) is given by:

(28)
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The equation for the inactive state affinity constant (Kinact) is complicated and is described 

in terms of three main variables (a, b and c) in addition to the previously defined parameters, 

CM, Kact, Msys and Q2:

(29)

in which,

(30)

(31)

(32)

Alternatively, Kinact can be determined using the following substitutions for a, b and c:

(33)

(34)

(35)

The equation for the observed isomerization constant of the unoccupied receptor is given by 

the following equation, which also incorporates previously derived constants:

(36)

Finally, the equation for the observed sensitivity constant of the signaling pathway is given 

by the following equation, which incorporates the previously derived constants, Kq and 

Msys:
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(37)

A.2. Partial receptor inactivation with an irreversible neutral agonist

The graphical parameters for the case involving partial receptor inactivation with an 

irreversible neutral antagonist (Fig. 10b) are the same as those described above for 

conditions 1 and 3, but differ for conditions 2 and 4. The graphical parameters for these 

latter conditions are determined using the strategy described above except that Eq. (5) is 

used. Again, we follow the same convention for using numerical subscripts (1–4) to identify 

the four conditions of the assay.

The equations for the Emax values for conditions 2 and 4 are given by:

(38)

(39)

The equations for the basal response values for conditions 2 and 4 are the same as those for 

conditions 1 and 3:

(40)

(41)

The equations for the EC50 values for conditions 2 and 4 are given by:
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(42)

(43)

As described in the prior section, these equations together with those for conditions 1 and 3 

are solved to yield expressions for the various parameters of the receptor states and 

transducer function, expressed in terms of the graphical parameters of the concentration-

response curves. We begin with the maximal response of the system (Msys), which can be 

estimated under conditions 1 and 2 or 3 and 4:

(44)

(45)

The fractions of the residual receptor populations of wild type (Q1) and mutant (Q2) 

receptors after partial inactivation with an irreversible neutral agonist are given by:

(46)

(47)

The scalar increase in the isomerization constant of the unoccupied receptor caused by the 

constitutively activating mutation (CM) is given by Eq. (25) above.

The equation for the active state affinity constant (Kact) is given by Eq. (28) above.

Ehlert and Stein Page 21

J Pharmacol Toxicol Methods. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The equation for the inactive state affinity constant (Kinact) is complicated and is described 

in terms of five main variables (a–e), the previously defined parameter, CM, and the 

graphical parameters, E3, B3 and EC3:

(48)

in which,

(49)

(50)

(51)

(52)

(53)

The equation for the isomerization constant of the unoccupied receptor is given by the 

following equation, which incorporates the previously derived inactive state affinity constant 

(Kinact):

(54)

Finally, the equation for the sensitivity constant of the signaling pathway is given by Eq. 

(37).

A.3. Validation of equations

To check the validity and robustness of Eqs. (19)–(37) and (44)–(54), we used Eqs. (4) and 

(5) to generate theoretical data, like those shown in Fig. 1, but having a transducer slope 
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factor of 1.0 and estimated graphical parameters from the musing a four parameter logistic 

equation (y = B + (E − B) / (1 + 10(log EC−log D))). We analyzed data with no error and also 

data with a 10% Gaussian error as described under Methods. In both cases we were able to 

estimate accurate receptor-state and system parameters using the equations above and the 

empirical parameters of the concentration-response curves (i.e., E, EC and B).

Appendix B. Supplementary methods

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.vascn.

2016.09.007.
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Fig. 1. 
Simulation of the agonist responses and ligand binding properties of a wild type receptor 

and a constitutively active mutant of it. a, Simulation of agonist concentration-response 

curves for a response mediated by wild type and constitutively receptors under conditions of 

control and reduced levels of receptor expression. b, Simulation of the binding of 

radioligand to the wild type and constitutively active receptor populations that elicited the 

responses shown in a. The curves represent the least-squares fit of Eqs. (4) and (6) to the 

simulated data shown in panels a and b, respectively. The data points represent the mean 

values ± SEM of four simulations. The parameter values used for the simulation are listed in 

Table 2.
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Fig. 2. 
Probability density functions for the mean log estimates of Kinact (a), Kact (b), Kq-obs (c) and 
KE-obs (d). A Monte Carlo analysis, consisting of 1020 simulations, was carried out for the 

parametric conditions illustrated in Fig. 1. The plots show the probability density functions 

for the 1007 simulations for which values of log Kinact > 0 were obtained.
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Fig. 3. 
Nonlinear regression analysis of simulated data with Gaussian error (a and b) and no error 

(c). The simulated data shown in panels a and b represent the results of a single simulation 

each. The simulated data in panels a, b and c were analyzed by nonlinear regression analysis 

(Eq. (4)) with the value of log Kinact constrained to various values indicated on the abscissas 

of the upper plots shown in panels d, e and f, respectively. These latter plots show the value 

of the residual sum of squares (RSS) plotted against the value to which log Kinact was 

constrained during the regression. Only in cases d and f was the least-squares fit associated 

with a unique estimate of log Kinact. The lower panels in in d, e and f show the 

corresponding values of the parameters, log Kact, log Kq-obs, log KE-obs and m.
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Fig. 4. 
Simulation of the agonist response and ligand binding properties of a wild type receptor and 

a constitutively active mutant of it. a, Simulation of agonist concentration-response curves 

for a response mediated by wild type and constitutively receptors under conditions of control 

and partial receptor inactivation with an irreversible neutral antagonist. b, Simulation of the 

binding of radioligand to the wild type and constitutively active receptor populations that 

elicited the responses shown in a. The curves represent the least-squares fit of Eqs. (5) and 

(6) to the simulated data shown in panels a and b, respectively. The data points represent the 

mean values ± SEM of four simulations. The parameter values used for the simulation are 

listed in Table 2.
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Fig. 5. 
Probability density functions for the mean log estimates of Kinact (a), Kact (b), Kq-obs (c) and 
KE-obs (d). A Monte Carlo analysis, consisting of 150 simulations, was carried out for the 

parametric conditions illustrated in Fig. 4. The plots show the probability density functions 

for the 149 simulations for which values of log Kinact > 0 were obtained.
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Fig. 6. 
Simulation of the response of a wild type receptor in the presence of various test agonists 

(1–4). Efficacious test agonist 1 was also simulated for the condition of partial receptor 

inactivation. The simulated data were analyzed simultaneously with those shown in Figs. 1 

and 4. The curves represent the least-squares fit of Eqs. (4) or (5) to the data depending, on 

whether the analysis included the data from Figs. 1 or 4, respectively. The data points 

represent the mean values ± SEM of four simulations. The parameter values used for the 

simulation are listed in Table 3.
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Fig. 7. 
Probability density functions for the mean log estimates of Kact for the test agonists 

illustrated in Fig. 6. A Monte Carlo analysis, consisting of 127 simulations, was carried out 

for the parametric conditions illustrated in Fig. 6. The plots shows the probability density 

functions for the estimates of log Kact for test agonists 1–4.
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Fig. 8. 
Probability density functions for the mean log estimates of Kinact for the test agonists 

illustrated in Fig. 6. A Monte Carlo analysis, consisting of 127 simulations, was carried out 

for the parametric conditions illustrated in Fig. 6. The plots shows the probability density 

functions for the estimates of log Kinact for test agonists 1–4.
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Fig. 9. 
Analysis of the responses of a wild type receptor and several constitutively active mutants of 

it. a, The published data of Spalding et al. (1997) from Fig. 7 of their manuscript. The data 

points represent mean values of 2–4 experiments. b, Simulated data. The plot shows means ± 

SEM from four simulations. The theoretical curves represents the least-squares fit of Eq. (4) 

to the data.
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Fig. 10. 
Graphical parameters of agonist concentration-response curves for protocols involving 

reduced-receptor expression (a) or partial receptor inactivation with an irreversible neutral 

antagonist (b). The protocol illustrated in panel a also applies to partial receptor inactivation 

with an irreversible inverse agonist. Abbreviations used: CAM, constitutively active receptor 

mutant; WT, wild type; Red. expr., reduced expression; E, maximal response; EC, EC50 and 

B, constitutive response in the absence of agonist. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Parameters used in nonlinear regression analysisa.

Parameter Definition

Receptor states

Kact Active state affinity constant (units, M−1)

Kinact Inactive state affinity constant (units, M−1)

Kq-obs Observed isomerization constant. Its value is perturbed from that of the isolated receptor (Kq) by G protein and guanine 
nucleotides.

Transducer function

Msys The maximum of the output response for an agonist with an infinite Kact/Kinact ratio

KE Sensitivity constant of the transducer function (units, receptor concentration, RT)

m Transducer slope factor

Composite

KE-obs

, Tmax denotes maximal efficacy of an agonist with an infinite Kact/Kinact ratio

RAi Estimate of Kact, expressed relative to that of a standard agonist (Kact′)

a
The relationship between the above receptor state parameters and the more conventional population parameters are described in Ehlert and Griffin 

(2014).
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Table 2

Summary of nonlinear regression analysis of the simulated data in Figs. 1 and 4.

Parameter Fig. 1 Fig. 4 Value used in simulation

log Kact 8.03 ± 0.058 8.04 ± 0.20 8.0

log Kinact 4.03 ± 0.15 3.87 ± 0.25 4.0

log Kq-obs −4.03 ± 0.055 −4.37 ± 0.36 −4.0

log KE-obs −1.97 ± 0.023 −2.23 ± 0.10 −2.0

log CM 1.73 ± 0.040 1.79 ± 0.14 1.70

qWT 0.025 ± 0.0025 0.018 ± 0.007 0.02

qM 0.020 ± 0.0017 0.015 ± 0.001 0.02

Msys 1.00 ± 0.016 1.065 ± 0.055 1.00

m 1.53 ± 0.050 1.52 ± 0.43 1.50

log KD-WT −10.04 ± 0.040 −10.04 ± 0.026 −10.0

log KD-M −9.80 ± 0.057 −10.00 ± 0.058 −10.0

Bmax-WT 1.01 ± 0.040 1.034 ± 0.030 1.0

Bmax-rel 0.84 ± 0.055 0.73 ± 0.016 0.80
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Table 3

Summary of nonlinear regression analysis of the simulated data in Figs. 1,4 and 6.

Parameter Figs. 1 & 6 Figs. 4 & 6
Value used in
simulation

Standard agonist

  log Kact 7.99 ± 0.056 8.05 ± 0.097 8.0

  log Kinact 4.06 ± 0.16 3.96 ± 0.14 4.0

Test agonist 1

  log Kact 7.55 ± 0.057 7.53 ± 0.12 7.5

  log Kinact 4.13 ± 0.10 3.91 ± 0.07 4.0

Test agonist 2

  log Kact 6.55 ± 0.046 6.55 ± 0.076 6.5

  log Kinact 4.06 ± 0.032 3.92 ± 0.13 4.0

Test agonist 3

  log Kact 6.05 ± 0.057 5.92 ± 0.05 6.0

  log Kinact 4.04 ± 0.021 3.83 ± 0.12 4.0

Test agonist 4

  log Kact 5.75 ± 0.14 5.33 ± 0.07 5.5

  log Kinact 4.21 ± 0.11 3.82 ± 0.07 4.0

Additional parameters

  log Kq-obs −3.95 ± 0.076 −4.39 ± 0.13 −4.0

  log KE-obs −1.94 ± 0.043 −2.29 ± 0.07 −2.0

  log CM 1.72 ± 0.049 1.78 ± 0.073 1.70

  qWT 0.027 ± 0.004 0.016 ± 0.0022 0.02

  qM 0.022 ± 0.002 0.014 ± 0.0017 0.02

  Msys 0.98 ± 0.009 1.05 ± 0.032 1.00

  m 1.64 ± 0.038 1.35 ± 0.12 1.50

  log KD-WT −9.97 ± 0.047 −10.04 ± 0.025 −10.0

  log KD-M −9.96 ± 0.079 −10.00 ± 0.053 −10.0

  Bmax-WT 1.01 ± 0.038 1.032 ± 0.029 1.0

  Bmax-rel 0.83 ± 0.054 0.73 ± 0.016 0.80
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