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ABSTRACT 

Digital twin-based approaches for structural health monitoring (SHM) and damage prognosis (DP) are emerging as a powerful 

framework for intelligent maintenance of civil structures and infrastructure systems. Model updating of nonlinear mechanics-

based Finite Element (FE) models using input and output measurement data with advanced Bayesian inference methods is an 

effective way of constructing a digital twin. In this regard, the nonlinear FE model updating of a full-scale reinforced-concrete 

bridge column subjected to seismic excitations applied by a large shake table is considered in this paper. This bridge column, 

designed according to US seismic design provisions, was tested on the NEES@UCSD Large High-Performance Outdoor Shake 

Table (LHPOST). The column was subjected to a sequence of ten recorded earthquake ground motions and was densely 

instrumented with an array of 278 sensors consisting of strain gauges, linear and string potentiometers, accelerometers and 

Global Positioning System (GPS) based displacement sensors to measure local and global responses during testing. This 

heterogeneous dataset is used to estimate/update the material and damping parameters of the developed mechanics-based 

distributed plasticity FE model of the bridge column. The sequential Monte Carlo (SMC) method (set of advanced simulation-

based Bayesian inference methods) is used herein for the model updating process. The inherent architecture of SMC methods 

allows for parallel model evaluations, which is ideal for updating computationally expensive models.  

Keywords:  Bayesian Inference, Digital Twin, Finite Element, Model Updating, Sequential Monte Carlo, Structural Health 

Monitoring, Full-Scale Structural Systems, Earthquake. 

1 INTRODUCTION 

Structural health monitoring (SHM) is the general process of making an assessment, utilizing measurement data, about the 

current ability of the system to perform its intended design functions. Damage prognosis or prognostics (DP) extends this 

process by combining it with a probabilistic description of future loading to estimate metrics such as remaining useful life 

(RUL) of the system [1]. With the tremendous increase in computational capabilities and with the advent of new algorithms to 

solve complex machine learning tasks, the statistical pattern recognition paradigm for SHM/DP of civil structures is gaining 

popularity among researchers. This paradigm is especially attractive because it offers the possibility of automating the SHM 

process, i.e., removing the need for interventions of human experts as far as possible. One main objective of the SHM system 

is to detect, localize, classify and quantify the damage on the structure of interest [2]. To achieve this, in a pattern recognition 

perspective, the data corresponding to all the conceivable damage states/mechanisms of the structure of interest are required 

[3]. One of the potential ways of obtaining this data for civil infrastructure systems is using digital twins/cyber models (hybrid 

data-physics models). A potential way of constructing digital twins for full-scale structural systems is by using the finite element 

(FE) model updating framework. 

The last few decades have witnessed tremendous progress in nonlinear modeling and analysis methods for civil engineering 

structural, geo-structural, and soil-foundation-structural systems subjected to static, quasi-static, and dynamic loading, 

particularly from natural hazards such as earthquakes. Mechanics-based nonlinear FE models (of various complexities) of civil 

engineering systems (e.g., buildings, bridges, dams, miter gates) are now able to capture the damage and failure mechanisms 



developing in such systems in critical loading environment. The current state-of-the-art nonlinear FE modeling techniques 

allow reasonably accurate predictions of the actual response of civil structural systems if realistic and “well-calibrated” values 

are used for the unknown parameters of the FE model. These parameters for civil systems generally include inertial, damping, 

hysteretic material law, loading, boundary conditions, and geometric parameters. When input-output measurement data are 

available, the FE model updating framework allows to estimate/update the unknown parameters of the FE model [4]–[7]. The 

Bayesian approach to model updating is attractive because it accounts for various sources of uncertainties observed in the real 

world (i.e., noisy output measurements, unknown/partially known/noisy input measurements, uncertainty in FE model 

parameters, FE model form uncertainty) during estimating/updating the unknown parameters and characterizes the remaining 

estimation uncertainty. This confidence level associated with the parameter estimates is extremely useful for SHM/DP as it 

supports rigorous decision-making. In Bayesian model updating, the modeler needs to specify the probabilistic description of 

unknown parameters (referred to as prior knowledge). The prior knowledge is then updated (referred to as posterior) accounting 

for the measurement data using Bayesian inference. The FE model characterized by the posterior probabilistic description of 

the unknown parameters is referred to as the updated FE model. This updated model, which is essentially a fusion of 

heterogeneous measurement data and a physics-based FE model, is the digital twin/cyber model and can be utilized for 

SHM/DP purposes. 

Bayesian Nonlinear FE Model updating of a full-scale reinforced-concrete bridge column tested on the large high-performance 

outdoor shake table (LHPOST) at UC San Diego (UCSD) [8] is considered in this paper. The bridge column was subjected to 

a sequence of ten recorded earthquake ground motions (uniaxial excitation) and was densely instrumented with an array of 278 

sensors consisting of strain gauges, linear and string potentiometers, accelerometers and Global Positioning System (GPS) 

based displacement sensors to measure local and global responses during testing. First, a frame-type FE model with distributed 

plasticity of the bridge column is developed. Then, the measurement data from the first earthquake excitation (EQ1) are used 

to update five key structural parameters (Young’s modulus of concrete cE  and steel sE ; Rayleigh damping model parameters 

1 2 and a a ; and tensile strength of concrete ctf ) of the nonlinear FE model using the sequential Monte Carlo (SMC) method 

[9], [10] – a class of Bayesian inference methods. The novelty of this study lies in the use of real-world input-output 

measurement data of a full-scale structural system to update a detailed mechanics-based nonlinear finite element model using 

a “fully” Bayesian inference technique (SMC). 

2 FINITE ELEMENT MODEL UPDATING USING BAYESIAN INFERENCE 

Let k
n

 uu  and k

n
 yy  denote the vector of measured input and output responses, respectively, of the structure of interest 

at the time kt  (or time step k ). These measurements are obtained from the heterogeneous sensor array mounted on the real 

structure. Assuming the measurement responses are obtained for N  time steps, the measured/observed input-output dataset is 
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At time step k , let ( )1: ;FE
k k k

n
=  yy h u θ  denote the response predicted by the FE model h  parameterized by the unknown 

parameter vector 
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 θθ  when subjected to the measured input time-history 
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methodology described in this paper, the parameter vector θ  can include any unknown time-invariant parameters such as 

inertial, damping, hysteretic material law, loading, boundary conditions and geometric parameters of the FE model. In practice, 

the measured response y  and the FE predicted response 
FE

y  do not match due to numerous sources of uncertainty [11]. These 

include 

a) Uncertainty in the measured output due to sensor noise 

b) Unmeasured/partially measured input and sensor noise associated with measured inputs 



c) Uncertainty about the structure/form of the model, i.e., the selected model class cannot represent the real system. This 

model form error, if not accounted for, can introduce bias in estimation and handicap the predictive utility of the 

model. 

d) Uncertainty about the parameters of the model, assuming the structure/form of the model is known. 

Put in simple terms, the goal of Bayesian model updating is to estimate/update the unknown parameter vector θ  accounting  

for all the pertinent sources of uncertainties and characterize the remaining estimation uncertainty. To achieve this, first, the 

likelihood function should be constructed using a measurement equation, i.e., a model of the measurement process. This is also 

referred to as a joint statistical-physical model that relates model parameters to measurements/observations. The following 

measurement equation is used in this paper 

 ( );1:

/

Measument equation at time step k k k k

measured output error noiseFE predicted response

k → = +y h u θ w   (1) 

where 1, 2, ,, ,...,
T

k k k n kw w w =
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w  is the measurement error/noise at time step k  and ,i kw  denotes the discrepancy between 

measured and FE predicted responses corresponding to the 
thi  output measurement channel at time step k . In the measurement 

equation, the noise term, lumping all the sources of uncertainties, is assumed additive to the FE predicted response. Therefore, 

the accurate statistical description model of the noise process 1 2, ,...,
T

T T T
N

 =
 

w w w w  is crucial in Bayesian inference. In this 

paper, the noise process w is assumed temporally white ( 1 2, ,...w w  are statistically independent) and random vector kw  is 

assumed to follow a zero-mean Gaussian probability density function (PDF) with independent components (i.e., noise/error 

terms across all measurement channels are assumed statistically independent). 
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where 
2
i  denote the variance of the discrepancy between measured and predicted responses of the 

thi  output measurement 

channel. These noise variances are also typically unknown in the real world. Therefore, in this paper, the unknown vector 

1 2, ,...,
T

n
 =   
 y

σ  is estimated/updated jointly with the unknown FE model parameter vector θ . With the measurement 

model described by Equations (1) and (2), the likelihood function for the unknown parameters  andθ σ  is given by 
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The modeler also needs to specify the prior PDF of the unknown parameter vector , ( ),p θ σ . The prior PDF is then updated to 

obtain the posterior PDF, which accounts for the prior knowledge and the observed data, using Bayes rule as 
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However, determining analytically the complete joint posterior is an intractable problem. Many numerical approximations 

methods such as Bayesian Kalman filters, particle filters, Markov chain Monte Carlo methods (MCMC), sequential Monte 

Carlo (SMC) methods (SMC), etc., have been developed to perform this computation and most of these methods rely on 

sampling the joint posterior. In this paper, SMC is used to sample the joint posterior PDF defined in Equation (4). 

2.1 SEQUENTIAL MONTE CARLO 

SMC methods are a class of Bayesian inference techniques that sample the joint posterior PDF of the unknown parameters. In 

the literature, there are several closely related algorithms that are referred to as transitional Markov chain Monte Carlo, particle 

filters, bootstrap filters, condensation algorithm, survival of the fittest and population Monte Carlo [12]. SMC methods do not 

require the Gaussian assumption about the prior and posterior PDFs of the unknown parameters, an inherent assumption in 

Bayesian Kalman filters (e.g., unscented Kalman filter, extended Kalman filter). Unlike standard MCMC methods, SMC 

methods are parallelizable, they can be used to perform model updating of high-fidelity large-scale nonlinear FE models using 

high-performance computing (HPC) resources.  

The idea of SMC is to sample from a series of simpler intermediate PDFs that converge to the target posterior PDF, thus 

circumventing the need to directly sample the target posterior. To achieve this, SMC samplers proceed through a series of 

stages, starting from the prior distribution until the posterior distribution. All these distributions (called tempered posterior 

distributions) are controlled by the tempering parameter   as 

 ( ) ( ) ( ), | , | , , ,p p p



 θ σ u y y u θ σ θ σ   (5) 

When 0 = , the tempered posterior is just the prior PDF and when 1 =  the tempered posterior is the true posterior PDF. The 

SMC sampler starts with 0 = and progresses by monotonically increasing the value of  , at each stage, until it reaches the 

value of 1. The tempered posterior distribution at every stage in SMC is represented by a set of weighted samples (also called 

particles). Also, at each stage, SMC uses independent Markov chains (which start at the samples of the current tempered 

posterior distribution) to reach the next tempered posterior distribution. Therefore, the SMC sampling algorithm can also be 

thought of as a parallel MCMC algorithm that can effectively sample high-dimensional parameter spaces [9]. Due to its inherent 

parallel nature, SMC can be used to efficiently perform model updating of high-fidelity large-scale nonlinear FE models using 

high-performance computing resources. In contrast to MCMC, SMC can effectively sample from posterior distributions with 

flat peaks and multiple peaks which arise in non-identifiable and locally-identifiable problems, respectively. SMC also 

computes the model evidence (denominator of Equation (4)) as a by-product, which can then be used for Bayesian model class 

selection and model averaging [10]. The SMC algorithm used in this paper to sample the joint posterior in Equation (4) is 

presented in Table 1. 

Table 1: Sequential Monte Carlo Algorithm 

Notation: : number of particlespN , : effective sample sizeESS , : tempering parameter , : stage numberj   

  , : unknown parameter vector to be updated
T

T T =
 

α θ σ , :  particle of  at stage ji th
j iα α  

Initialize: pN , 0j = , 0 pESS N= , 0 0 = ,  

  Generate pN  samples  0 ; 1,...,i
j pi N= =α  from the prior PDF ( )p α  

while 1j  : 

 stage number 1j j= +   

 choose j  such that 10.95j jESS ESS −=  , ( )min ,1j j =   

 weighting:  ( ) 1

1| ,
j ji i

j jw p
− −

−= y u α  for 1,..., pi N=   
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i l
j j−=α α  with probability l

jw  for 1,..., pi N=  



 perturbation:  start an MCMC chain at i
jα  and take MCMCN  steps with target distribution ( )| ,

j
p


α u y  for 

   each 1,..., pi N= . Gather last sample of each MCMC chain to obtain  ; 1,...,i
j pi N=α  

end  

save last stage m j=  

 ; 1,...,i
m pi N=α are the samples of the target posterior ( )| ,p α u y  

3 FULL-SCALE REINFORCED-CONCRETE BRIDGE COLUMN  

A full-scale reinforced-concrete bridge column was tested on the large high-performance outdoor shake table (LHPOST) at the 

University of California, San Diego (UCSD) from July through September 2010 [8] (see Figure 1). The 24ft high and 4ft 

diameter column was designed and detailed according to the California Department of Transportation (Caltrans) seismic design 

guidelines. The objective of the test was to validate the current seismic design guidelines in terms of the structural seismic 

response of bridge columns. For this purpose, the column was tested under dynamic loading conditions by subjecting it to a 

series of ten earthquake ground motion records (uniaxial excitation along the table’s longitudinal axis or east-west direction). 

A concrete superstructure block weighing 522 kips was cast on top of the column for mobilizing the inertial forces during the 

dynamic tests. This block was designed such that its center-of-mass coincided with the top of the column. This test specimen 

was densely instrumented with an array of 278 sensors consisting of strain gauges, linear and string potentiometers, 

accelerometers and Global Positioning System (GPS) based displacement sensors to measure local and global responses during 

testing [8].  

 

Figure 1: Full-scale reinforced-concrete bridge column tested on the LHPOST@UCSD 

3.1 FINITE ELEMENT MODEL OF THE COLUMN 

With a height-to-diameter ratio of 6, the test specimen was intended to respond in the nonlinear range with predominant flexural 

behavior. FE models using beam-column elements with distributed plasticity have been proven to capture the observed 

nonlinear behavior of such flexural dominated systems extremely well. Due to their accuracy in matching experimental results, 

formulation simplicity, and computation feasibility and efficiency, such FE model types are widely used in research and 

engineering practice [13]. In this paper, the 24ft long bridge column is modeled using two nonlinear fiber-section Euler-

Bernoulli force-based beam-column elements with three Gauss-Lobatto integration points (monitored cross-sections) along the 

length of each element (see Figure 2). Each element cross-section is discretized into longitudinal fibers as shown in Figure 2. 

The section nonlinear response behavior is simulated from the uniaxial material constitutive laws used for the fibers. Uniaxial 

Popovics material model [14] is used for modeling confined and unconfined concrete behavior at the fiber level and the 

reinforcing steel material model [15] is used for modeling longitudinal steel fibers as shown in Figure 2. The effects of nonlinear 



geometry are accounted for using the corotational formulation. The inherent damping properties representing sources of energy 

dissipation beyond the hysteretic energy dissipated through inelastic material behavior are modeled using Rayleigh damping 

(proportional to the mass matrix M and tangent stiffness matrix at the last converged step of analysis TK ). The footing is 

approximated as a fixed restraint and the inertial effect of the superstructure is lumped on the top node of the column.  

 

Figure 2: Finite Element Model Hierarchy of Bridge Column 

3.2 FE MODEL UPDATING SETUP 

In this paper, the measured input-output data corresponding to the first earthquake excitation (EQ1) are utilized to update the 

developed FE model of the column. During EQ1 excitation, it was observed that the column response was essentially linear 

elastic with no observable damage. Only hairline cracks (less than 0.1mm wide) were observed at the base of the column (above 

the footing) [8]. Therefore, only the parameters that govern the linear elastic behavior of the column (Young’s modulus of 

concrete cE  and steel sE ; Rayleigh damping parameters 1 2 and a a ) along with the tensile strength of concrete, parameter ctf

, are assumed unknown and estimated using the measured input-output data; thus,   5 1
1 2, , , ,

T

c s ctE E a a f = θ  (see Figure 

2).  

The parameters of concrete ( cE  and ctf ), steel ( sE ) and Rayleigh damping model ( 1 2 and a a ) were determined 

experimentally by testing 6 in x 12 in concrete cylinders, reinforcing steel bars and subjecting the column to white noise 

excitation, respectively. These experimentally determined parameter values (reported in [8]) are shown in Table 2 and will be 

referred to as parameter values reported in the PEER report or PEER parameters in brief. These reported values are utilized to 

construct the prior PDF. 

The accelerometers mounted at the footing of the column are used as the measured EQ1 input excitation to the column (see 

Figure 3). This measured column base acceleration is then used as input data u  in model updating. The accelerometers and 

displacement string potentiometers mounted on the superstructure mass are used to reconstruct the absolute acceleration 

response and relative (to the base of the column) displacement response at the top of the column along the direction of shaking. 

This reconstructed absolute acceleration and relative displacement responses are used as output data y  in model updating. 

Thus, 



 2 1Absolute Acceleration of the top of the column at time step 

Relative Displacement at the top of the column at time step 
k

k

k

 
=  
 

y   (6) 

The measurement equation described in Equation (1) is utilized for model updating. The noise/error term kw  is assumed to 

have Gaussian independent components white in time, i.e., w  is modeled as a vector Gaussian white noise, i.e.,  
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where 
2
a  and 

2
d  denote the variance of the discrepancy between measured and FE predicted responses for the acceleration 

and displacement response quantities, respectively.  

The five parameters of the FE model ( 1 2, , ,  and c s ctE E a a f ) together with the noise standard deviations a  and d  are 

estimated using the SMC algorithm described in Table 1. The prior PDF is constructed by assuming that the seven parameters 

are mutually statistically independent. Normal distributions with mean values taken as the parameter values reported in the 

PEER report are used to construct the prior PDF of the FE model parameters. The standard deviations of the priors are selected 

to obtain coefficients of variation of 0.30, 0.20, 0.60, 0.60 and 0.40 for 1 2, , ,  and c s ctE E a a f , respectively. Since all the FE 

parameters are positive, one-sided truncation at the lower tail is performed at zero. Half normal distributions of standard 

deviations 0.1 g  and 1.2 in  are used as priors for noise parameters a  and d , respectively. At each stage of SMC, the 

tempered posterior is represented using 1000pN =  particles and during the perturbation phase, the number of MCMC steps is 

set as 10MCMCN = . Parallel computing across 10 cores (20 threads) is used for evaluating the likelihood function at every step 

of  the perturbation phase of each SMC stage.  

 

Figure 3: Input (acceleration at top of footing) and output (absolute acceleration and relative displacement at the top of the column) 

measurement data for model updating 



3.3 RESULTS 

The pair plot of all seven unknown parameters constructed using the posterior samples obtained from SMC is shown in Figure 

4. The plots along the diagonal show the histogram and kernel density estimates of the marginal posterior PDF of each 

parameter. The marginal posterior PDFs are very sharp (conveyed by very small coefficients of variation, CV), implying that 

the remaining estimation uncertainty after model updating is very low. The plots above the diagonal show the posterior samples 

in the space of every parameter pair and the plots below the diagonal show the contour plots of the corresponding kernel density 

estimates where r  is the Pearson correlation coefficient. The sample mean values of the posterior SMC samples are compared 

in Table 2 with the corresponding parameter values reported in the PEER report.  

Table 2: Parameter values reported in PEER report vs the mean values of the posterior SMC samples 

Parameter Values from PEER report Sample mean of SMC posterior samples 

cE  3320.0 ksi   0.59 3320.0 ksi  

sE  28400.0 ksi  0.96 28400.0 ksi  

1a  0.737 -1sec   0.27 0.737 -1sec  

2a  0.0002016 sec  4.78 0.0002016 sec  

ctf  0.306 ksi   2.43 0.306 ksi  

a   ( )27.7 / 2.01% in s g  

d   ( )0.09 0.23 in cm  

 

 

Figure 4: Pair plot using posterior samples of all seven unknown parameters obtained using sequential Monte Carlo 

The FE predicted acceleration and relative displacement responses of the bridge column obtained using the parameter values 

reported in the PEER report (i.e., before FE model updating) and using the sample mean values of the posterior SMC samples 

(i.e., after FE model updating) are compared with the experimentally measured responses in Figure 5. The relative-root-mean-

square error (RRMSE) is used as a metric to measure the discrepancy between two time series. The FE responses predicted 



using the PEER parameters (i.e., before FE model updating) match poorly the corresponding experimental responses (high 

RRMSE), while the responses predicted using the sample mean of the posterior samples (i.e., after FE model updating) match 

the experimental responses extremely well (low RRMSE). This demonstrates that by fusing detailed mechanics-based FE 

modeling with input-output measurement data through Bayesian inference, one can capture the observed response of a full-

scale structural system extremely well. The predictive capabilities of the updated FE model when subjected to subsequent input 

excitations are yet to be studied, which is beyond the scope of this paper. 

 

Figure 5: Response prediction of the FE model vs experimentally measured response, before and after model updating 

4 CONCLUSIONS 

This paper focuses on model updating of civil structures using Bayesian inference. A full-scale reinforced-concrete bridge 

column tested on the LHPOST@UCSD is selected as the testbed structure. The parameters of the FE model are updated using 

the sequential Monte Carlo method, a fully Bayesian inference method, using measured input-output data corresponding to the 

earthquake excitation applied by the shake table. The framework shown here can be used to tune the unknown parameters of 

the FE model to match the measured response (model calibration). The updated nonlinear FE model acts as a digital twin of 

the structure of interest and can subsequently be interrogated for the presence, location, type, and extent of damage (i.e., losses 

in stiffness, strength, ductility capacity, …) in the structure. The updated FE model can also be used to better predict the future 

performance/functionality of the structure by using it in conjunction with probabilistic descriptions of future loading (damage 

prognosis).  
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