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 In order to support children’s learning of elementary mathematics meaningfully, 

elementary teachers need to understand that mathematics deeply and flexibly (Ball, 1990; 

Ma, 1999). In other words, they need good number sense (Reys & Yang, 1998). 

However, researchers have found that prospective elementary teachers tend to reason 

inflexibly, relying heavily on standard algorithms (e.g., Ma, 1999; Newton, 2008; Yang, 
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2007). Previous research has provided single snapshots or comparisons of pre/post 

snapshots of number sense. In this study, I analyzed prospective elementary teachers’ 

number sense development. 

 In earlier work, Nickerson and I created a local instruction theory (Gravemeijer, 

1999) for the development of number sense (Nickerson & Whitacre, 2010). In a previous 

classroom teaching experiment, we found that prospective elementary teachers enrolled 

in a mathematics content course informed by the local instruction theory developed 

improved number sense (Whitacre & Nickerson, 2006). They moved from being reliant 

on the mental analogues of the standard algorithms to reasoning more flexibly in mental 

computation. 

 In the present study, I duplicated analyses from the previous study and found 

similar results. I also moved beyond the previous study by investigating number sense 

development as a microgenetic, sociogenetic, and ontogenetic process (Saxe & Esmonde, 

2005). I asked the following research questions: As prospective elementary teachers 

participate in a mathematics content course designed to support their development of 

number sense, 

1. How does the number sense of individuals evolve? 

2. What ideas come to function as if shared? What classroom mathematical 

practices emerge and become established? 

I approached this study from a situated perspective (Cobb & Bowers, 1999). The 

emergent perspective informed my approach to the research in terms of taking both social 

and individual lenses to the analysis of number sense development (Cobb & Yackel, 

1996).  
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I made innovations in the analysis of number sense. I documented collective activity in 

the class in terms of progressions through classroom mathematical practices. I also 

analyzed two case studies of individuals’ number sense development. These analyses 

provide insights into the phenomenon of prospective elementary teachers’ number sense 

development, which will inform revisions and elaboration to the local instruction theory. 
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Chapter 1: Introduction 

 The focus of this dissertation study was number sense development. The setting 

was a mathematics content course for prospective elementary teachers, which was 

designed to support their development of number sense. I approached the investigation of 

this phenomenon through two lenses, social and psychological. I found that students’ 

number sense improved while they were involved in the content course. Thus, this setting 

afforded me the opportunity to study processes by which a group of prospective 

elementary teachers developed number sense. I investigated this phenomenon on the 

collective level, through an analysis of classroom mathematical practices. I also 

investigated number sense development on the individual level, primarily through 

analyses of interviews with a subset of the students. The findings provide new insights 

into the phenomenon of interest and have implications for both research and practice. 

What Is Number Sense and Why Do Teachers Need It? 

 I use the term number sense to describe “an acquired ‘conceptual sense-making’ 

of mathematics,” which is typical of the use of the term in the mathematics education 

literature. This is in contrast to the notion of number sense as “a biologically based 

‘perceptual’ sense of quantity” as the term is used in the mathematical cognition literature 

(Berch, 2005, p. 334). Howden (1989) describes number sense as “good intuition about 

numbers and their relationships” (p. 11). Reys and Yang (1998) define number sense as 

“a person's general understanding of number and operations,” and they include in their 

definition “the ability and inclination to use this understanding in flexible ways to make 

mathematical judgments and to develop useful strategies for handling numbers and



2 

 

 operations” (p. 225-226, emphasis added). Flexibility and the strategies people use are 

themes in the number sense literature that are especially relevant to this study. 

 Number sense is recognized as an important goal of mathematics instruction 

(National Council of Teachers of Mathematics [NCTM], 2000; National Research 

Council [NRC], 2001). For example, NCTM’s Principles and Standards for School 

Mathematics states: 

In grades 3-5, students’ development of number sense should continue, 
with a focus on multiplication and division. Their understanding of the 
meanings of these operations should grow deeper as they encounter a 
range of representations and problem situations, learn about the properties 
of these operations, and develop fluency in whole-number computation. 
(p. 149) 

Despite these recommendations, however, children both within the United States and 

internationally tend to learn mathematics in a way that emphasizes the use of standard 

algorithms and does not support their development of number sense (Reys et al., 1999). 

 A common theme in the literature on number sense is that it cannot be taught 

directly (e.g., Greeno, 1991; McIntosh, 1998). Rather, it “develops gradually as a result 

of exploring numbers, visualizing them in a variety of contexts, and relating them in ways 

that are not limited by traditional algorithms” (Howden, 1989, p. 11). Teaching in a 

manner that supports students’ number sense development puts added demands on 

teachers. It requires teachers to be sensitive to their students’ mathematical thinking and 

to make sense of that thinking, and this in turn requires deep understanding of the 

mathematics itself (Jacobs, Lamb, & Philipp, 2010). 

 In order to teach mathematics effectively, elementary teachers need to understand 

elementary mathematics deeply (Ball, 1990). However, prospective and practicing 
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elementary teachers alike often know the procedures of elementary mathematics, but do 

not understand the material conceptually (Ball, 1990; Ma, 1999; Zazkis & Campbell, 

1996). Preservice elementary teachers have been characterized as having poor number 

sense (Tsao, 2005; Yang, Reys, & Reys, 2009). In particular, they are reliant on precisely 

those standard algorithms that they do not understand (Ball, 1990; Newton, 2008; 

Thanheiser, 2010; Yang, 2007). 

 The terms prospective teachers and preservice teachers are not used consistently 

in the mathematics education literature. I use the term prospective teachers to refer to 

undergraduates who have expressed by their choice of major an interest in teaching but 

still have substantial undergraduate coursework ahead of them. I reserve the term 

preservice teachers for individuals who are currently enrolled in a credential program or 

have nearly completed their undergraduate coursework and plan to enter a teacher 

credential program. 

 If mathematics content courses for prospective elementary teachers typically 

resulted in substanial improvement in the number sense of those individuals, then 

prospective and preservice elementary teachers would be clearly distinct student 

populations, at least with regard to their mathematical reasoning. Unfortunately, however, 

this is not the case. I believe that the inconsistency in the field in the use of the terms 

prospective and preservice is symptomatic of a reality in which prospective elementary 

teachers tend to experience little growth in their mathematical reasoning during their 

undergraduate education. Even after having completed their college mathematics courses, 

preservice elementary teachers’ understanding of mathematics tends to be “rule-bound 

and compartmentalized” (Ball, 1990, p. 453). 
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 It follows that an important problem in mathematics teacher education is to design 

content courses for prospective elementary teachers that are effective in promoting 

number sense development. In previous research, Nickerson and I designed an 

instructional approach focused on number sense development, and we found that 

prospective elementary teachers involved in the course experienced substantial growth in 

their number sense (Nickerson & Whitacre, 2010; Whitacre, 2007; Whitacre & 

Nickerson, 2006). These were encouraging results. On the other hand, witnessing 

improvement in the number sense of prospective elementary teachers is a far cry from 

understanding how that change occurred. In the present study, I set out to investigate 

number sense development in the same course as both an individual and a collective 

phenomenon. 

Overview 

 The remainder of this chapter is organized in three major sections. In the first 

section, I review previous research concerning number sense; this includes pilot research 

that directly motivated the present study. In the second section, I discuss established 

research methods and frameworks that are relevant to the present study. This includes 

methods for analyzing change in individuals’ number sense, a methodology for analyzing 

learning as a collective phenomenon, and a framework for coordinating the individual 

and collective levels. In the third section, I highlight the particular phenomena that I am 

interested in studying. Finally, I formally state my research questions, and I discuss their 

significance. 
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Previous Research Concerning Number Sense 

 Previous studies concerning number sense help to lay the foundations for the 

proposed study. One finds in the literature two established approaches to the analysis of 

number sense: (1) students’ responses to particular sorts of tasks that are intended to 

require number sense, and (2) characterizations of strategies used by students to solve 

certain kinds of tasks. In the following paragraphs, I provide examples of each of these 

approaches. I also review the findings that these methods have produced. I then describe 

the results of my Master’s study, which built on these established methods. 

Correctness and Strategies as Indicators of Number Sense 

 Yang and colleagues developed a multiple-choice survey instrument called the 

Number Sense Rating Scale (NSRS) as a quantitative measure of students’ number sense 

(Hsu, Yang, & Li, 2001). The NSRS was originally created for use with fifth and sixth 

grade students. In a series of studies, Yang and colleagues have used the NSRS and 

similar instruments to assess the number sense of both middle school students and 

preservice elementary teachers (e.g., Reys & Yang, 1998; Tsao, 2005; Yang, 2003). The 

tasks on the NSRS and similar instruments are intended to be non-routine. For example, 

students are asked to estimate a sum or product, rather than to calculate it exactly. These 

tasks are to be performed mentally. Sample items from the NSRS appear in Figure 1. 

24. What is the sum of  and  approximately? 

a) 1 b) 2  c) 21 d) can’t tell without calculating 
25. Which answer is the product of 18 and 19 closest to? 

a) 250  b) 350  c) 450  d) 550 

Figure 1. Sample items from the NSRS (Hsu et al., 2001).1 

                                                
1 The original test instrument, obtained from its authors, was written in Chinese. The NSRS was  
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 Researchers have also analyzed students’ number sense on the basis of their 

strategies for solving interview tasks (Markovits & Sowder, 1994; Yang, 2003, 2005, 

2007; Yang et al., 2009). Often, in these reports, the term strategy is not explicitly 

defined. However, the way that the term is used seems to be consistent with Smith’s 

(1995) definition of strategies as “patterns of reasoning that provide solutions to classes 

of items within a particular task context” (p. 12). In practice, patterns of observable 

behavior, especially computational steps, stand in for patterns of reasoning. 

 There are various schemes for describing the strategies that individuals use within 

particular task contexts, such as mental computation (Heirdsfield & Cooper, 2004), 

computational estimation (Hanson & Hogan, 2000), and fraction comparisons (Smith, 

1995). Schemes such as these include standard procedures that are typically taught in 

schools, as well as nonstandard strategies. From mental computation to fraction 

comparisons, nonstandard strategies are generally associated with number sense, whereas 

standard, school-learned procedures are not (e.g., Heirdsfield & Cooper, 2004; Markovits 

& Sowder, 1994; Yang, 2007). 

 Yang and colleagues have assessed students’ number sense using tests like the 

NSRS, as well as related interview tasks. They have also analyzed students’ strategies for 

solving these tasks. Based on these methods, Yang and colleagues have found that 

Taiwanese middle school students generally exhibit poor number sense (Reys & Yang, 

1998; Yang, 2005; Yang & Huang, 2004; Yang, Li, & Lin, 2008). These students are able 

to perform familiar computations using school-learned procedures, but they perform 

                                                                                                                                            
translated to English for the purposes of my Master’s study by Yun-Chu “Yvonne” Lai, who at that time 
was a graduate student at San Diego State University. 
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poorly on non-routine tasks designed to tap their number sense (Reys & Yang, 1998; 

Yang, 2005; Yang & Huang, 2004). Similar findings have been reported for elementary 

and middle school students in various countries, including Australia, Korea, Sweden, and 

the United States (Reys et al., 1999). 

 Researchers have also found that preservice teachers exhibit poor number sense 

and rely heavily on standard written algorithms (Tsao, 2005; Yang, 2007; Yang et al., 

2009). Although preservice teachers tend to be more capable of correctly answering test 

items than their middle-school counterparts, Yang and colleagues found that the majority 

of their answers were also obtained by written computation using standard algorithms. 

Both middle school students2 and preservice teachers have tended to rely on standard 

written algorithms, despite the fact that the instructions for these assessments explicitly 

discouraged such approaches (Yang, 2005, 2007; Yang et al., 2009). 

 The two methods discussed above are prominent in number sense research. 

Students’ abilities to solve non-routine tasks, and the strategies they use for doing so, are 

established indicators of number sense. Both of these approaches informed the analysis of 

change in number sense in my Master’s study. 

A Study of Prospective Elementary Teachers’ Improved Number Sense 

 In Fall Semester 2005, Nickerson and I conducted a classroom teaching 

experiment (Cobb, 2000) in two sections of a mathematics content course for prospective 

elementary teachers. I was the instructor. My personal motivation for conducting the 

study was my previous experience teaching the course and my dissatisfaction with 

                                                
2 The number sense of middle school students is relevant to the proposed study since these students 

have recently completed elementary school. Thus, their performance indicates what they took away from 
their elementary mathematics education. 
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students’ learning. In particular, mental computation stood out as an elusive topic. 

Students were meant to develop number sense, but I had taught them problem-specific 

strategies. I saw evidence in final exam responses that students’ reasoning had not 

changed outside of their ability to solve problems that were tailor-made for those 

strategies. I was interested in designing instruction that would actually promote number 

sense development. 

 Based on a review of the literature, we developed a conjectured local instruction 

theory for the development of number sense3 (Gravemeijer, 1999, 2004). Over the course 

of the semester, that conjectured local instruction theory was fleshed out as it was enacted 

in two classrooms. Through subsequent analysis and conversations, as well as additional 

experience teaching the course, we refined it further. Our local instruction theory for the 

development of number sense is described in detail in Nickerson and Whitacre (2010).  

 In my Master’s study, I used two established means of analyzing students’ 

number sense: their scores on a multiple-choice instrument, the NSRS, and their mental 

computation strategies used in interviews. I compared pre/post results to assess change in 

students’ number sense. Both measures showed substantial improvement in the 

participants’ number sense. At the end of the semester, the study participants did not look 

like typical prospective elementary teachers. They were no longer overly reliant on the 

standard algorithms; rather, they used various nonstandard mental computation strategies 

(Whitacre, 2007). 

                                                
3 The construct of local instruction theory, as well our particular local instruction theory, will be 

discussed in detail in Chapter 2. 
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 In the following paragraphs, I describe the 2005 teaching experiment. I give two 

examples of classroom activity that point to phenomena that are of particular interest in 

the proposed study. I also present the findings from analyses of interview data. 

Classroom activity. We made the decision to modify the curriculum so that 

mental computation no longer appeared as an isolated unit to be studied. Rather, 

authentic mental computation activity4 was integrated throughout the course. We 

identified opportunities in the curriculum for mental computation in service of problem 

solving. As the instructor, I asked students to perform these mentally, and I led whole-

class discussions concerning students’ strategies. 

 Two aspects of the classroom activity concerning students’ strategies evolved that 

seemed crucial to the viability of this instructional approach. A routine developed of 

naming the strategies that had been discussed. Initially, a strategy was named according 

to the student who had nominated it, for example, “Karen’s strategy.” Over time, students 

gave more meaningful names to these strategies. For example, “Break Up, then Make 

Up” was the name that one class gave to a strategy that took advantage of the distributive 

property of multiplication over addition (e.g., 15 x 24 was solved 10 x 24 + 5 x 24). 

Naming made the strategies objects of discourse and appeared to facilitate reflective 

discourse and collective reflection (Cobb, Boufi, McClain, & Whitenack, 1997). It also 

facilitated comparisons of strategies across time. Instead of discussing how Karen’s 

strategy (presently under discussion) compared to the strategy that So-and-So had shared 

with us two weeks ago, the class discussed how Karen’s strategy compared to Break Up, 

                                                
4 The term authentic activity is used in the sense of Brown, Collins, and Duguid’s (1989) discussion 

of situated cognition. The authors define authentic activities as “the ordinary practices of the culture” (p. 
34). 
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then Make Up, which was a familiar strategy, having been named and referred to 

repeatedly. These comparisons led to negotiation concerning what constituted a different 

strategy, as well as what about the calculation at hand made one strategy more suitable 

than another. We kept an official list of the strategies that had been shared in class.  

 The other key aspect of class discussions of students’ strategies seemed to be the 

way that particular inscriptions were used. When strategies were discussed, the students’ 

mental calculative work was represented on the chalkboard in two ways: in number 

sentences and using drawings of some sort. The drawings were intended to capture the 

main idea of a student’s strategy and to help others make sense of it. Particular 

representational tools came to be used repeatedly and in increasingly sophisticated ways. 

Number line drawings came to be used to represent students’ addition and subtraction 

work, while rectangular area drawings came to be used to represent their multiplication 

and division work. These representational tools became sources of justification in 

students’ explanations. For example, the empty number line evolved as a tool for 

recording and making sense of addition and subtraction strategies involving “jumps” 

from one number to the next. As depicted in Figure 2, one student calculated 1000 - 729 

by adding on to 729 in successive jumps, while keeping a running subtotal. Anghileri 

(2000) discusses such uses of the number line in children’s development of number 

sense. We saw it used similarly by prospective elementary teachers. 

 

Figure 2. Empty number line drawing for 1000 - 729. 
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 Later in the course, the empty number line was used to justify a new strategy, 

which the class called “Shifting the Difference.” A student used this strategy to calculate 

142 - 57 by first subtracting 2 from both the minuend and the subtrahend. This made the 

calculation 140 - 55 instead, and the student was able to compute this difference readily. 

Strategies that involve altering the subtrahend tend to be difficult for students because 

they may be unsure of how to compensate for the adjustment.5 However, this strategy 

was justified not in terms of formal properties of subtraction but in terms of properties of 

the number line. This student interpreted the difference between the two numbers as the 

distance between their locations on the number line. Under this interpretation, subtracting 

2 from each number would not affect the difference because this would correspond to 

shifting both of the locations two units to the left, which would not affect the distance 

between them. 

 Shifting the Difference was a novel strategy for the class. This strategy was more 

sophisticated than those discussed earlier in the semester in the sense that it involved a 

reformulation of the given computation. It is an example of a nonstandard strategy that is 

considered to be indicative of number sense (Markovits & Sowder, 1994). Furthermore, 

the empty number line seemed to have served a new function. Rather than being used to 

represent a student’s mental calculative work after the fact, it came to be used as an 

important source of justification in a case in which a new strategy was nontrivial for 

students and in need of justification. In this way, we saw evidence that the empty number 

                                                
5 For example, a preservice teacher in a pilot interview that I conducted thought of rounding 49 to 50 

to solve 125 - 49 mentally. She knew that 125 - 50 was 75, but she was not sure how to compensate for her 
rounding. She decided that 74 should be the answer.  
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line shifted in function from a model of students’ informal activity to a model for more 

sophisticated mathematical reasoning (Gravemeijer, 1999). 

 The classroom activity during discussions of students’ strategies was an especially 

interesting aspect of the teaching experiment. However, the data collected did not afford 

detailed analyses of this activity. The analysis focused primarily on the mental 

computation strategies used by 13 of the students in pre/post interviews. 

Interview findings. The interviews consisted of whole-number mental 

computation tasks. Following precedents in the number sense literature, I coded 

participants’ responses according to the strategy that they employed. The codes were 

developed through constant comparative analysis of all students’ responses (Creswell, 

1998), as well as being informed by previously established schemes in the literature (e.g., 

Heirdsfield & Cooper, 2004). A scheme of Markovits and Sowder (1994) was used as an 

organizing framework to order strategies according to the degree to which they differed 

from the standard algorithms, an accepted criterion associated with number sense. 

 Students in the pre-instruction interview were very limited in their mental 

computation abilities. Numbers were selected deliberately to afford various strategies. 

For example, 24 and 15 afford various applications of the distributive or associative 

property to find their product, and numbers such as 99 afford compensation strategies that 

take advantage of their proximity to friendly, benchmark numbers (e.g., 100). Despite 

these affordances, most interview participants used only one or two different strategies 

for performing each of addition, subtraction, and multiplication mentally. When asked if 

they had other ways of performing the computations mentally, most students responded 

that they did not. Furthermore, the most common strategies used in the pre-instruction 
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interview were those least indicative of number sense, the mental analogues of the 

standard paper-and-pencil algorithms. Most of the interview participants came into the 

class with a go-to way of performing mental computation, which was to picture the work 

that they would do if using the standard written algorithm. This inflexible approach to 

mental computation is commonly associated with poor number sense (Heirdsfield & 

Cooper, 2004; Markovits & Sowder, 1994; Reys & Yang, 1998). 

 Analysis of the pre-instruction interviews indicated that the participants were 

generally inflexible mental calculators and that their understandings of the operations 

appeared to be bound to the standard algorithms. In the post-instruction interviews, by 

contrast, participants showed improved flexibility. Most used three or four different 

strategies for each of addition, subtraction, and multiplication. For each operation, 

participants were less likely to use any particular strategy for the majority of their 

computations. Furthermore, the strategies used most often were those strategies most 

indicative of number sense, nonstandard strategies that involved some reformulation of 

the computation (Markovits & Sowder, 1994). For example, the strategy named Shifting 

the Difference came to be used by 7 of the 13 interview participants, whereas none had 

used it in the first interview (Whitacre, 2006).  

 Data collection in the 2005 study included the use of the NSRS as a quantitative 

measure of students’ number sense. A total of 48 students took the test both pre- and 

post-instruction, 22 from one class and 26 from the other. In both classes, students’ 

scores increased, and the increases were statistically significant. Cohen’s d provides a 

measure of effect size. This is the ratio of the mean difference to the standard deviation of 
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the difference scores. In both classes, the effect size was greater than one standard 

deviation (Whitacre, 2006). 

 While these results were encouraging, this research raised new questions. The 

analyses presented in my Master’s thesis were limited in several ways. Strategies were 

coded in the tradition of research in number sense and mental computation. The grain 

size for these analyses leaves some relevant aspects of students’ reasoning unexamined. 

Furthermore, having only pre/post data allowed for a contrast between students’ 

responses in the two interviews but did not permit me access to the processes by which 

students’ reasoning had developed. As an instructor of the course, I was privy to various 

interesting phenomena, both in class and in individual students’ work. However, as a 

researcher, I lacked the data necessary to support more rigorous and in-depth 

investigations concerning these phenomena. 

Analyzing Development 

 The major phenomenon of interest is number sense development—in particular, 

the development of number sense for prospective elementary teachers during a first 

mathematics content course. By development here, I mean a gradual process of change 

that occurs in three strands – microgenesis, sociogenesis, and ontogenesis (Saxe & 

Esmonde, 2005). Saxe et al. (2009) describe these three strands of genetic analysis as 

follows: 

Ontogenesis focuses on shifts in patterns of thinking over the development 
of the individual; microgenesis involves the construction of meaningful 
representations in activity; and sociogenesis entails the reproduction and 
alteration of representational forms that enable communication among 
participants in a community. (p. 208) 
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These three strands frame the analysis of number sense development in this study. The 

microgenetic strand concerns instances of mathematical activity, both in class and in 

interviews. The sociogenetic strand concerns trends over time in the collective activity 

that occurs in the classroom. The ontogenetic strand concerns development over time in 

individual students’ reasoning. 

 I take a situated perspective on knowing and learning (Cobb & Bowers, 1999). 

The emergent perspective informs my approach to the research in terms of taking both 

social and individual lenses to the analysis of number sense development, as well as 

taking an interest in the relationship between these (Cobb & Yackel, 1996). 

Number Sense Development 

 The work of Yang and others has contributed to the research literature by 

producing a body of evidence that suggests that school children and preservice teachers 

alike tend to have poor number sense. In rare instances, researchers have reported on 

improvement in the number sense of middle school students involved in instructional 

interventions (Markovits & Sowder, 1994; Yang, 2003). These articles provide general 

descriptions of the teaching and then focus on pre/post assessment results. Researchers 

have also described activity in mathematics courses that purportedly had a positive effect 

on students’ number sense; however, evidence for improvement in students’ number 

sense is lacking (e.g., Yang, 2002, 2006). Kaminski (2002) describes activity in a 

mathematics content course for preservice elementary teachers in Australia. He offers 

anecdotal indications of improvement in students’ number sense. However, no systematic 

methods for analyzing collective activity are reported, and neither are measures of 

individuals’ number sense. My extensive review of the literature revealed no reports of 
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investigations of number sense development, in the sense of Saxe et al. (2009), for any 

population. 

 The analysis of number sense is a challenging endeavor. There are good reasons 

for associating nonstandard strategies with number sense. On the other hand, if the 

researcher is true to the meaning of the construct, such methods are insufficient. These 

strategies are taken as a proxy for the underlying reasoning. A more thorough 

investigation of number sense must delve into the reasoning behind students’ strategies. 

The Role of Strategies in Number Sense Development 

 We can gather from the mathematics education literature a picture of contrast 

between people with good number sense versus poor number sense in terms of their use 

of strategies. People with good number sense are flexible, which is to say that they 

employ a repertoire of different strategies. The choice of strategy depends on the details 

of the problem at hand, for example, the particular numbers involved in a computation. 

Individuals with poor number sense, by contrast, tend to exhibit limited flexibility. 

Furthermore, individuals with good number sense tend to use nonstandard strategies, 

whereas individuals with poor number sense tend to rely on the standard algorithms that 

they were taught in school (Greeno, 1991; Heirdsfield & Cooper, 2004; Markovits & 

Sowder, 1994; Reys & Yang, 1998). 

 Mathematics instructors are encouraged to engage students in solving problems 

and sharing and discussing strategies (NCTM, 2000). Mathematics education researchers 

value classroom discourse concerning students’ strategies (e.g., Schoenfeld, 1987). 

Furthermore, authors have made particular recommendations concerning the discussion 

of strategies as a means of supporting number sense development (Greeno, 1991; 
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Howden, 1989; McIntosh, 1998). However, the literature offers little in the way of 

answers to the question, “How does number sense develop?” except for the general 

axioms that it develops “gradually” (Howden, 1989) and that its development is 

supported by “process-oriented activities” (Yang, 2002). Given the prominence in the 

literature of strategies as an indicator of number sense, it seemed natural to look to class 

discussion of students’ strategies as a site for number sense development, as well as to 

study how individuals become more flexible in their reasoning about numbers and 

operations. 

 The study reported here extends previous research by looking deeper than the 

level of strategies to students’ justifications for their strategies, by developing analytic 

tools for analyzing change in individuals’ use of strategies, and by investigating how 

individuals come to use the strategies that they do. In the context of a mathematics class, 

I investigated how ideas related to mental computation emerged and became established 

in the classroom community. I did this through the lens of mathematical argumentation 

by identifying normative ways of reasoning of the classroom community. 

 On the individual level, I analyzed change in the reasoning of the interview 

participants. This involved methods similar to those used previously, as well as new 

analytic tools that I developed for the purpose. In selected case studies, I incoporated 

additional data into the analysis to analyze individuals’ mathematical reasoning in a more 

nuanced fashion and to shed light on developmental processes. I also examined 

relationships between individual participants’ conceptions and activity and the normative 

ways of reasoning that developed in the class. 
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Research Questions 

 Having described the phenomena of interest and their relations to the literature, I 

now state my research questions formally: 

As prospective elementary teachers participate in a mathematics content course designed 

to support their development of number sense, 

1. How does the number sense of individuals evolve over the course of the 

semester? 

2. What ideas come to function as if shared? What classroom mathematical practices 

emerge and become established? 

Significance 

 The study reported here represents a contribution to the mathematics education 

literature in the following ways: 

• By investigating the ontogenetic development of number sense, rather than being 

limited to pre/post snapshots. 

• By illuminating the number sense development of prospective elementary 

teachers, a group whose number sense is known to be poor and who have a 

particular need for good number sense. 

• By looking deeper than the levels of correctness or strategy selection to describe 

individuals’ number sense. 

• By investigating the sociogenesis of number sense in a mathematics content 

course. 

• By integrating and extending established frameworks for number sense and 

mental computation. 
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 The central purpose of this study was to investigate prospective elementary 

teachers’ number sense development by means of genetic analysis (Saxe & Esmonde, 

2005). I took a situated perspective to the investigation of number sense. My particular 

focus was on mental computation as a microcosm of number sense. I took an interest in 

the normative ways of reasoning related to nonstandard strategies that became established 

in the classroom community, as well as in how individual students’ reasoned in relation 

to these ideas. 

 In Chapter 2, I elaborate a theoretical framework, explore the literature related to 

number sense, and describe the general theory underlying the instructional design and 

analysis. In Chapter 3, I describe the research design, data corpus, and methods of 

analysis. Chapters 4, 5, and 6 presents study results. Chapter 4 presents results of 

analyses similar to those conducted previously. It also introduces some new innovations 

in number sense research. Chapter 5 presents results of the analysis of collective activity. 

Chapter 6 shifts back to analysis of individuals’ conceptions and activity and moves 

beyond previously established methods of analyzing number sense. Chapter 7 concludes 

the dissertation, summarizing and discussing results and implications.
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Chapter 2: Literature Review 

 This literature review is organized in five sections. The first briefly describes the 

general theoretical perspective that informs the present study. The second section 

concerns research on number sense in general. This includes characterizations of the 

number sense construct, as well as past studies concerning number sense. The third 

section is devoted to specific mathematical content. Number sense is broad. This study 

focuses on whole-number number sense, particularly whole-number mental computation 

and understanding of place value. The fourth section concerns instructional design. The 

fifth section concerns genetic analysis. Special attention is given to the analysis of 

collective activity. 

Theoretical Perspective 

 The emergent perspective (Cobb & Yackel, 1996) influences my approach to 

research concerning prospective elementary teachers’ number sense development, both in 

terms of this study and the larger research program to which it belongs. From the 

emergent perspective, learning is a complex process involving a reflexive relationship 

between individual and collective activity. The emergent perspective represents neither a 

purely social perspective nor an individual, psychological perspective, but rather an 

attempt to coordinate the two. The perspective on learning that informs this study can be 

broadly described as situated (Cobb & Bowers, 1999).  Learning occurs in the doing of 

activities within a culture. The nature of those activities and the culture in which they are 

situated profoundly shape what is learned. Knowledge becomes meaningful and useful in 

the practice of authentic activities, which “are most simply defined as the ordinary 

practices of the culture” (p. 34). 
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 This study involves analyses of learning through both the social and 

psychological lenses. Collective activity in a classroom setting is framed in terms of 

classroom mathematical practices (Cobb & Yackel, 1996; Rasmussen & Stephan, 2008). 

These ideas are discussed in some detail in the section titled Analysis of Collective 

Activity and Individual Learning. My perspective concerning learning on the individual 

level involves two more specific views: (1) that a learner’s prior conceptions serve as 

resources in the learning process, and (2) that learning involves activity in a zone of 

proximal development. A knowledge-as-resources view (Hammer, 1996; Smith, diSessa, 

& Roschelle, 1993) lends itself to an analysis of learning that values students’ prior 

conceptions and uses these to account for how learning proceeds.  

 Even when focusing on the learning of an individual, it is important to account for 

the social context in which this learning takes place. In classrooms and other social 

settings, learners often engage in activity that is supported by aspects of that setting. In 

particular, the assistance of more knowledgeable others make it possible for the learner to 

do something that she could not have done alone (Mercer, 1995; Vygotsky, 1978). This 

activity is possible within the zone of proximal development (ZPD), which Vygotsky 

(1978) defined as “the distance between the actual developmental level as determined by 

independent problem solving and the level of potential development as determined 

through problem solving under adult guidance, or in collaboration with more capable 

peers” (p. 86). From this perspective, learners first engage in problem solving activity in 

the ZPD before they become capable of performing that type of activity on their own.  
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Number Sense 

 At a conference in 1989 organized to discuss number sense research, the 

participants considered how to define number sense in a way that would distinguish it 

from related ideas, such as “higher order thinking” (Sowder & Schappelle, 1989). The 

participants also discussed the inherent difficulties in attempting to assess students’ 

number sense, as well as questions concerning pedagogy to foster students’ development 

of number sense (Sowder & Schappelle, 1989). Nearly a quarter of a century has passed 

since that number sense conference. In that time, some progress has been made toward 

answering these central questions (e.g., Greeno, 1991; Markovits & Sowder, 1994). 

However, there is considerably more work to be done. 

 This section reviews descriptions of number sense in the mathematics education 

literature, methods for analyzing number sense, findings concerning the number sense of 

particular populations, and findings concerning change in number sense for students 

involved in instructional interventions. 

Descriptions of Number Sense 

 Various definitions and characterizations of number sense can be found in the 

mathematics education literature. Greeno (1991) drew a dichotomy between viewing 

number sense as a set of skills to be learned, versus taking a “global view of number 

sense” (p. 173). There are examples of each of these views in the descriptions of number 

sense in the literature. One influential characterization is the decomposition of number 

sense into components (Reys et al., 1999). Also common are descriptions of number 

sense in more general terms, which include aspects of understanding, as well as 

metacognitive characteristics (e.g., Reys & Yang, 1998; Yang, 2007). Distinct from these 
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is Greeno’s (1991) theoretical treatment of number sense as situated knowing in a 

conceptual domain. Greeno’s account seems to be the only truly “global” view of number 

sense found in the literature. The paragraphs that follow elaborate on the different views 

of number sense. 

The Components View of Number Sense 

 Based on their review of previous literature, Reys et al. (1999) identified six 

components of number sense: 

1. Understanding of the meaning and size of numbers 

2. Understanding and use of equivalent representations of numbers 

3. Understanding the meaning and effect of operations 

4. Understanding and use of equivalent expressions 

5. Flexible computing and counting strategies for mental computation, written 

computation, and calculator use 

6. Measurement benchmarks (p. 62) 

It is not entirely clear what is meant by the term component here. The authors also use the 

term “content strand” (p. 62), and relate the above components to “‘indicators’ of number 

sense” (p. 61). Based on descriptions of these components, it is safe to say that they can 

generally be regarded as mathematical understandings. However, note also that the word 

use enters in to certain of these components, so that in that respect there is a sense that 

number sense is a matter not only of having knowledge but applying it. The notion of 

components of number sense has influenced empirical research concerning number sense. 

For example, Hsu et al.’s (2001) Number Sense Rating Scale is organized in five 

sections, which are meant to correspond to five components of number sense. The 
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decomposition of number sense into a finite set of components seems to be consistent 

with the kind of skill-set view of number sense that Greeno (1991) described. 

 In a more general description of number sense, Reys and Yang (1998) define the 

construct as follows: 

Number sense refers to a person's general understanding of number and 
operations. It also includes the ability and inclination to use this 
understanding in flexible ways to make mathematical judgments and to 
develop useful strategies for handling numbers and operations. It reflects 
an inclination and an ability to use numbers and quantitative methods as a 
means of communicating, processing, and interpreting information. It 
results in an expectation that numbers are useful and that mathematics has 
a certain regularity. (p. 225-226) 

In subsequent work, Yang and colleagues have given various similar descriptions of 

number sense (e.g., Yang, 2002, 2007; Yang et al., 2008; Yang et al., 2009). This kind of 

description seems to capture the gist of the term number sense, as it is commonly used in 

the mathematics education community, which is to say that the description paints a 

picture of a person who makes sense of mathematics and behaves mathematically in ways 

that are considered desirable. Note that the above definition contrasts considerably with 

the Reys et al.’s (1999) list of components in that it does not mention any particular 

mathematical understandings. Rather, it focuses on habits of mind and ways that a person 

behaves mathematically. 

 Given the obvious contrasts between the above definition and the six components 

of number sense, the former appears consistent with Greeno’s (1991) notion of a global 

view of number sense. However, in practice, this apparently global view has not been 

applied; when it comes to assessing number sense, the same authors cited above have 

operationalized number sense as a set of components. For example, particular instances 
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of problem solving have been coded as reflecting number sense or not, based on whether 

or not one or more components of number sense was evident in the person’s solution 

process (Yang, 2003, 2005, 2007; Yang et al., 2009). Thus, in practice, these researchers 

have tended to ignore the general, meta-cognitive aspects of their own definition of 

number sense, focusing primarily on mathematical understandings. In this way, although 

Yang and colleagues have proposed definitions of the construct of number sense that 

appear global (e.g., Reys & Yang, 1998), corresponding operational definitions have been 

based on a components (or skill-set) view. 

The Environment Metaphor 

 In contrast to a components view of number sense, Greeno (1991) characterized 

number sense as situated knowing in a conceptual domain—the domain of numbers and 

quantities. From this perspective, a person’s knowledge and activities are seen 

metaphorically as situated within a physical environment. Knowing in an environment 

consists of knowing how to get around, where to find things, and how to use them. In 

various conceptual domains, knowing one’s way around requires relating concepts and 

solving problems. Greeno’s metaphor relates mathematical properties, such as the 

distributive property of multiplication over addition, to features of a physical 

environment. The strategies that an individual uses, then, are ways of making use of those 

features in order to accomplish one’s goals (Greeno, 1991). 

 To clarify the meanings of the terminology, the domain of numbers and quantities 

is a conceptual domain with known properties that can be found in textbooks. An 

environment, by contrast, is a metaphorical characterization of an individual’s perception 

of that domain. In this dissertation, the term mathematical environment is used in the vein 
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of Bowers, Cobb, and McClain (1999), who used the environment metaphor to describe 

their instructional intent in a teaching experiment. The term environment is used in the 

sense of Greeno’s environment metaphor, and the word mathematical serves to highlight 

the fact that the corresponding conceptual domain is a mathematical domain. From the 

perspective of the environment metaphor, a person’s mathematical activity occurs not in 

the domain of numbers and quantities, but in a unique mathematical environment. 

 Objects in an environment have certain, inherent constraints and affordances. For 

example, composite numbers afford applications of the associative property of 

multiplication, whereas primes do not. According to Greeno, learning in a conceptual 

domain involves increasing attunement to the constraints and affordances of elements in 

that domain. The better a person knows the domain, the more attuned she will be to those 

constraints and affordances. In other words, learning looks like a process whereby the 

constraints and affordances that one perceives in the environment become increasingly 

aligned with the actual properties of the corresponding domain (Greeno, 1991). 

The environment metaphor represents an attempt to bridge a situated perspective with a 

cognitive account of number sense:  

The view of number sense presented in this paper is an attempt to 
characterize conceptual knowledge in the framework of situated cognition. 
The basic form of situated cognition is an interaction of an agent within a 
situation, with the agent participating along with objects and other people 
to co-constitute activity. The agent's connection with the situation includes 
direct local interaction with objects and other people in the immediate 
vicinity as well as knowing where he or she is in relation to more remote 
features of the environment. (Greeno, 1991, p. 200) 

The innovative aspect of this perspective was to view the individual’s mathematical 

activity as situated in an environment, as opposed to locating the mathematics in the mind 
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of the individual. In the environment metaphor, the learner acts within a mathematical 

environment. Teachers and more experienced peers, then, function as old-timers who are 

familiar with the domain. They can guide the newcomer to become better acquainted with 

it (Lave & Wenger, 1991). In this way, learning in a conceptual domain relates to 

cognitive apprenticeship: “knowing in a domain is an activity, and learning in the domain 

is acquiring the capabilities of understanding and reasoning that the domain affords, a 

kind of practice” (Greeno, 1991, p. 210).  

 Greeno’s (1991) article has been widely cited. A search on December 7, 2009 

showed that it was cited by 63 different articles listed at PsychINFO and by 79 at the 

Web of Science. However, few articles citing Greeno (1991) are reports of empirical 

studies concerning number sense. Even amongst those reports of number sense studies 

that do cite the article, the analytic methods employed do not seem to be informed by the 

environment metaphor in any substantive way. Evidently, Greeno’s theoretical analysis 

of number sense has had more influence on the thinking of researchers outside of number 

sense research. 

Analyses of Number Sense 

 Given the ways that number sense has been described in the literature, how has 

individuals’ number sense been analyzed? Researchers have used written test instruments 

(on paper or computer), as well as interviews to assess individuals’ number sense, and 

these have included both multiple-choice and open-ended items (Markovits & Sowder, 

1994; Reys et al., 1999; Reys & Yang, 1998; Yang, 2003, 2005, 2007; Yang & Huang, 

2004; Yang et al., 2008; Yang et al., 2009). These have largely been single-snapshot 

studies of particular populations. Relatively few studies have investigated change in 
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students’ number sense, and those that have done so have relied on comparisons of 

snapshots (Markovits & Sowder, 1994; Whitacre & Nickerson, 2006; Yang, 2002, 2003).  

 In several studies, Yang and colleagues have used multiple-choice test 

instruments (without written verbal elaboration of answers) to assess students’ number 

sense (Reys & Yang, 1998; Yang, 2003; Yang & Huang, 2004; Yang et al., 2008). 

Specifically, these and other authors have used a Number Sense Test (NST) (Reys & 

Yang, 1998), a Number Sense Rating Scale (NSRS) (Hsu et al., 2001), and a 

computerized number sense scale (Yang et al., 2008). These measures consist of similar 

items and have been designed on the basis of a components view. For example, the NSRS 

consists of five groups of questions, which correspond to the following five components 

of number sense: 

1.  Understanding number meanings and relationships 

2.  Recognizing the magnitude of numbers 

3.  Understanding the relative effect of operations on numbers 

4.  Developing computational strategies and being able to judge their reasonableness 

5.  Ability to represent numbers in multiple ways (Hsu et al., 2001) 

(The test instrument can be found in Appendix 1. Questions 1-5 correspond to 

Component 1, Questions 6-14 Component 2, Questions 15-24 Component 3, Questions 

25-31 Component 4, and Questions 32-37 Component 5.) 

 In terms of assessing number sense development, gain scores on these measures 

are the natural source of evidence. These may be broken down by number sense 

component, given the assumption that particular questions are assessing targeted 

components. This assumption reflects a broader limitation of multiple-choice 
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instruments. If only students’ answers are analyzed, researchers must infer that correct 

answers on test items designed to assess number sense are, in fact, indicative of number 

sense. Multiple-choice survey instruments have the advantages that they can be 

administered to large numbers of students and that they afford quantitative analyses. 

However, analyses based on the results of these tests require a high level of inference in 

linking subjects’ responses to their number sense. These instruments are limited in terms 

of their ability to capture those characteristics of number sense referred to in authors’ 

descriptions of the construct. Multiple-choice instruments are limited in their ability to 

assess computational flexibility, and they cannot possibly capture other purported 

characteristics of number sense, such as “an expectation that numbers are useful and that 

mathematics has a certain regularity” (Reys & Yang, 1998, p. 226). 

 In other studies, Yang and colleagues have examined subjects’ strategies for 

solving test and interview items designed to assess their number sense. In addition to 

coding responses for correctness, these authors have coded subjects’ strategies as Number 

sense-based and Rule-based (Yang, 2003, 2005, 2007; Yang et al., 2009). Yang’s stated 

criterion for a Number sense-based strategy is whether one or more components of 

number sense are evident in the person’s solution process (Yang, 2003, 2005, 2007). 

Conspicuously, there is no case in the studies cited above in which Yang coded an 

incorrect response as Number sense-based, although there is nothing in his stated 

operational definition that would preclude this possibility (Yang, 2003, 2005, 2007, 

2009). Recently, Partially Number-sense based has also been included as an intermediate 

category and has been applied to both correct and incorrect answers (Yang et al., 2009). 
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 Coding subjects’ strategies has clear advantages over assessing number sense on 

the basis of answers alone. The researcher is able to consider how the subject arrived at 

his or her answer, and these computational strategies come closer to reflecting 

components of number sense. For example, one component identified by Reys et al. 

(1999) is “Understanding and use of equivalent representations of numbers” (p. 62). At 

least the “use” part of this “understanding and use” would seem to be evident in a 

person’s solution strategy. 

 A potential disadvantage of coding strategies as Number sense-based versus Rule-

based is the attribution to the strategy itself of the quality of being reflective of number 

sense or a lack thereof. Consider, for example, the task of comparing the size of two 

given fractions. If a student compares two fractions by finding a common denominator, 

the student’s strategy would be coded as Rule-based, as opposed to Number sense-based, 

since the method of finding a common denominator is commonly taught in schools 

(Yang, 2003). However, a person with good number sense could certainly employ this 

strategy at times. As such, it seems misleading to attribute number sense (or the lack 

thereof) to particular instances of strategy use. The particular mathematical 

understandings behind the strategy are ignored, as is the broader picture of the person’s 

reasoning about relative size of fractions. This method discredits the value of school-

learned procedures, while affording privileged status to all other valid procedures, and 

does not delve into the understanding behind those procedures, as used by individuals. 

 The Number sense-based versus Rule-based scheme lacks an illuminative quality 

with regard to the nature of a person’s number sense. Coding strategies as Number sense-

based or not results in a picture of individuals as employing number sense or not, or 
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employing number sense with a certain frequency. By contrast, the descriptions of 

number sense cited earlier portray number sense as richer than an all or nothing matter or 

than an attribute that can be quantified. Suppose, for example, that a student uses Number 

sense-based strategies on 9 of 15 interview items, or 60% of the items. On its own, this 

statistic tells us very little about the person’s number sense. Two people who score 60% 

may have used different strategies. One may have used a wider variety of strategies than 

the other. One subject may understand her strategies conceptually, while the other only 

knows them as procedures. Reporting the results in a more detailed fashion, for example, 

by identifying the particular strategies used or assessing each component of number sense 

separately, is helpful but still has its limitations. It does not seem to capture “a person's 

general understanding of number and operations” or the “inclination and an ability to use 

numbers and quantitative methods as a means of communicating, processing, and 

interpreting information” (Reys & Yang, 1998, p. 225-226). 

 In a related but less inferential coding scheme, Markovits and Sowder (1994) 

coded subjects’ strategies as Standard, Transition, Nonstandard, and Nonstandard with 

Reformulation. The essential criterion in this scheme is the extent to which the person’s 

procedure is tied to (or departs from) the standard algorithm for the given operation. This 

scheme is less inferential than that of Yang in the sense that the coding of strategies as 

Standard, Transition, Nonstandard, or Nonstandard with Reformulation is relatively 

uncontroversial. Claims regarding subjects’ number sense become a separate inferential 

step, which may be situated in a broader context and take into account additional data. 

For example, Whitacre and Nickerson (2006) applied Markovits and Sowder’s (1994) 

scheme as an organizing framework for mental computation strategies that they had first 
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coded at a finer grain size. In a pre/post comparison of interview data, the use of this 

framework revealed a rather dramatic shift in the strategies used by the 13 interview 

subjects: In the first interview, Standard strategies were most common; in the second 

interview, the most common category was Nonstandard with Reformulation—the other 

extreme of the continuum. Along with additional evidence, this qualitative shift 

supported a claim about improved number sense on the level of overall mental 

computation performance across a group of 13 interview participants and hundreds of 

particular computations. Single computations were not coded as number sense-based or 

not number sense-based. 

 Beyond associating specific strategies themselves with number sense, coding of 

strategies had also been used to facilitate analyses of flexibility. Flexibility is considered 

to be an indicator of number sense (Greeno, 1991; Heirdsfield & Cooper, 2004; 

Markovits & Sowder, 1994; Reys & Yang, 1998). An individual’s flexibility can be 

observed in the number of different strategies that she uses for a given operation  

(Heirdsfield & Cooper, 2004). Change in flexibility may then be assessed on the basis of 

change in the number of strategies used. Coding of strategies à la Yang (2003) or 

Markovits and Sowder (1994) is not the ideal grain size for analyses of flexibility. Since 

there may be several different strategies within a single category, such as Nonstandard, a 

more fine-grained scheme is better suited to this kind of analysis. 

 As mentioned previously, there seems to have been no empirical study of number 

sense or its development that employed methods that were substantively informed by 
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Greeno’s (1991) environment metaphor.6 This being the case, it is interesting to consider 

what such a study might look like. In the environment metaphor, the development of 

number sense takes the form of increasing attunement to constraints and affordances in 

the domain of numbers and operations. To study an individual’s number sense in a 

manner informed by the environment metaphor would seem to entail a qualitative 

analysis involving thick description with a particular focus on attunement to constraints 

and affordances. Such an empirical study could lead to further elaboration of the 

environment metaphor, and could thereby extend existing theory concerning number 

sense and its development. 

Empirical Findings 

 Empirical findings concerning number sense may be grouped into two categories: 

(1) snapshot studies of number sense and (2) studies of change in number sense.  

Snapshot studies of number sense. In a series of studies, Yang and colleagues 

have found that Taiwanese fifth, sixth, and eighth graders generally exhibit poor number  

sense (Reys & Yang, 1998; Yang, 2005; Yang & Huang, 2004; Yang et al., 2008). These 

students are able to perform familiar computations using school-learned procedures, but 

they perform poorly on non-routine tasks designed to tap their number sense, unless they 

are able to solve the tasks by employing Rule-based methods (Reys & Yang, 1998; Yang 

& Huang, 2004; Yang, 2005). Yang and colleagues have also found that preservice 

teachers in Taiwan exhibit poor number sense, relying heavily on standard written 

algorithms (Yang, 2007; Yang et al., 2009). Although the preservice teachers were more 

                                                
6 Whitacre and Nickerson (2006) interpreted their results in terms of the metaphor, but their methods 

were similar to those used by researchers in other studies that made no mention of it (e.g., Heirdsfield & 
Cooper, 2002; 2004; Markovits & Sowder, 1994). 
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capable of correctly answering number sense test items than their middle-school 

counterparts, the majority of their answers were also obtained by written computation 

using standard algorithms. Both the middle school students and preservice teachers have 

tended to rely on standard written algorithms, despite the fact that the instructions for 

these assessments explicitly discouraged such approaches (Yang, 2005, 2007; Yang et al., 

2009). 

 Other snapshot studies of “number sense” involve young children or are 

concerned with the number sense construct that is discussed in the mathematical 

cognition literature, which is not the number sense of interest in the present study. 

Studies of number sense improvement. Against this background picture of the 

generally poor number sense of students and preservice teachers, there is some literature 

that suggests that number sense can be improved through instruction. Although there 

have not been many studies of change in number sense, the results of these are 

encouraging. Thus, two main points come from this part of the review: (1) number sense 

can be improved through instruction, and (2) there is more to be learned regarding how 

number sense improves with instruction. 

 Markovits and Sowder (1994) reported the results of an instructional intervention 

in a seventh grade mathematics class. Instruction consisted of units on number 

magnitude, mental computation, and computational estimation. In solving tasks, students 

were encouraged to invent their own strategies and to try strategies used by other 

students. In discussion, students were expected to provide informal mathematical 

justifications of the strategies they used. Students participated in pre, post, and retention 

written tests and interviews. The written tests emphasized tasks concerning number size, 
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while the interviews focused on mental computation. Students written test scores 

improved substantially, and these improvements were sustained on the retention test. The 

researchers coded students’ mental computation strategies as Standard, Transition, 

Nonstandard, and Nonstandard with Reformulation. They found that the frequency of less 

standard strategies increased from the pre to post interview, and this change was 

sustained in the retention interview. Markovits and Sowder (1994) argued that these 

results demonstrated improvement in the participants’ number sense. 

 Yang (2002) describes an activity within one day of class in a sixth-grade 

classroom in Taiwan. The activity concerned the problem of determining whether 3/8 or 

7/13 is closer to 1/2. This task was used by Markovits and Sowder (1994), and it is an 

item that is typical of number-sense assessment instruments (e.g., Yang, 2007). Students 

worked in groups on the task, and then presented their solutions to the class. The teacher 

facilitated a discussion that focused on sense making and mathematical justification. 

Students’ performance on a similar item was evaluated in written pre, post, and retention 

tests. The percentage of correct responses improved from 35% to 72%, pre to post, and 

decreased slightly to 66% on the retention test. Yang (2002) claims that these results 

indicate improvement in the students’ number sense, and that the “process-oriented 

activity” in the lesson was responsible for that improvement. 

 Yang (2003) reports on a semester-long quasi-experimental study of two fifth 

grade classes in Taiwan, consisting of 37 and 38 students. The experimental class was 

taught a special number sense curriculum, whereas the control class was taught the 

standard curriculum. Measures used were the 37-item NSRS pre/post/retention and a 

number sense interview with 6 students from each class, also pre/post/retention. Gains on 
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the NSRS were statistically significant for both groups, but gains for the experimental 

class were greater from pretest to posttest, at 44% versus 10%. Interview results showed 

students from the experimental class used a higher proportion of Number sense-based 

strategies in post-instruction and retention interviews. 

 Kaminski (2002) describes instructional activities that took place in a 

mathematics content course for preservice elementary teachers in Australia. These 

activities included performing mental computations and discussing their strategies, as 

well as reasoning about relative fraction size, as in finding a fraction between two given 

fractions. The author describes certain in-class phenomena that point to positive changes 

in students’ mathematical understandings or orientations. For example, he reports that 

students “preferred to gain understanding of mathematical procedures” and that they 

“frequently attempted to address their weaknesses in areas of mathematical 

understanding” (Kaminski, 2002, p. 135). It is difficult to distinguish examples of 

classroom activity from evidence for development (whether ontogenetic or sociogenetic) 

in Kaminski’s account. Furthermore, many of the findings reported appear to be only 

loosely related to number sense improvement. 

 Kaminski’s (2002) findings that appear most closely tied to number sense are that 

students “developed and utilized multiple relationships among number” and that students 

“had a strong preference for written computations but increasing use of mental 

computation was evidenced” (p. 135). No systematic methods for analyzing classroom 

activity are reported, and neither are measures of individuals’ number sense. The course 

that Kaminski describes bears considerable similarity to the mathematics content course 

of interest in the present study. It is evident that the instructor’s goals concerned 
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facilitating the development of number sense, and the activities reported appear to be 

consistent with those goals. However, the analytic methods are unclear and the findings 

are not closely related to number sense. 

 Whitacre and Nickerson (2006) described similar instructional activities in a 

mathematics content course for prospective elementary teachers, designed to support 

number sense development. These researchers assessed change in students’ number sense 

on the basis of three pre/post measures. They used Hsu et al.’s (2001) NSRS as a 

quantitative measure of number sense, finding that participants’ scores increased to a 

statistically significant extent (Whitacre, 2006). The researchers also conducted mental 

computation interviews and coded students’ responses based on the strategy used. They 

then applied Markovits and Sowder’s (1994) coding scheme as an organizing framework. 

They found a shift in the strategies used, from Standard to Nonstandard. They also found 

that participants’ flexibility increased, as seen in differences in the mean numbers of 

strategies used by each participant for each operation (Whitacre, 2007). Thus, the 

interview participants tended to use a wider variety of strategies at the end of the 

semester, and they tended to favor the least standard strategies, which are considered 

most sophisticated and are associated with number sense (Heirdsfield & Cooper, 2004; 

Markovits & Sowder, 1994). 

 The above articles are the only reports found in this literature review of studies of 

number sense improvement.7 These examples suggest that number sense can be improved 

through instruction. However, more research is needed that can help us to understand the 

                                                
7 Again, this review excludes studies involving young children and those in the mathematical 

cognition literature, which concern a different construct. 
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relationship between mathematics instruction and number sense improvement. In 

particular, evidence for improvement has been based on pre/post comparisons, rather than 

investigations of number sense development as a gradual process that occurs in relation 

to specific instructional activities. 

Other findings. Yang et al. (2008) found that number sense test scores were 

significantly related to mathematics achievement (grades in year 5). In particular, two 

components—recognizing relative number size and using multiple representations of 

numbers and operations—were moderately correlated with achievement. Yang and 

Huang (2004) found that the high written computation scores of Taiwanese sixth-graders 

differed significantly from their number sense test scores. Skill in written computation 

did not imply high scores in number sense. In a study of Taiwanese preservice teachers, 

Tsao (2004) reported that number sense test scores were correlated with both mental 

computation and written computation test scores. 

Summary of the Number Sense Literature 

 Number sense has been defined in different ways. Greeno’s (1991) environment 

metaphor offers a theoretical treatment of the construct that seems to have promise for 

empirical research from a situated perspective. The analytic methods that have been used 

previously have focused on coding students’ answers to tasks and on their strategies. 

These have produced some useful findings, but they have their limitations. Researchers 

have found that middle school students and preservice teachers generally exhibit poor 

number sense. However, number sense can be improved with instruction. There is more 

research to be done concerning number sense development, and the relationship between 

that development and students’ involvement in instructional activities. 
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Whole-number Sense in Mental Computation and Number Composition 

 This section presents a review literature at the intersection of whole-number 

mental computation and number sense. This includes literature that specifically connects 

mental computation with number sense, as well as literature in which mental computation 

is treated in a way that is consistent with the number sense literature. The most prominent 

characteristic that is common to the mental computation and number sense literatures is 

flexibility. Thus, literature concerning flexible mental computation is discussed. Mental 

calculative strategies are discussed, together with extant coding schemes for these. The 

general mathematical understandings that support flexible mental computation are also 

addressed. There is a brief review of recommendations concerning pedagogy to support 

number sensible mental computation. Finally, as a summary piece, the major points are 

framed in terms of the environment metaphor. 

 The present study focuses on mental computation as a microcosm of whole-

number sense. Mental computation relates to number sense in at least two important 

ways. First, mental computation contributes to number sense development (Anghileri, 

2000; Sowder, 1992). Second, mental computation performance reflects number sense 

(Markovits & Sowder, 1994; McIntosh, Nohda, Reys, & Reys, 1995). Therefore, 

students’ evolving mental computation reasoning can be studied as a window into their 

number sense development. 

Flexible Mental Computation 

 The most prominent characteristic associated with skilled mental computation is 

flexibility (Carraher, Carraher, & Schlieman, 1987; Heirdsfield & Cooper, 2004; Hope & 

Sherrill, 1987; Markovits & Sowder, 1994; Reys, Reys, Nohda, & Emori, 1995; Reys, 
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Rybolt, Bestgen, & Wyatt, 1982; Sowder, 1992). Flexibility is also central to descriptions 

of number sense (e.g., Greeno, 1991; Reys & Yang, 1998). Flexibility in mental 

computation refers to the ability and inclination to use a variety of mental calculative 

strategies (Heirdsfield & Cooper, 2004; Markovits & Sowder, 1994). 

 Standard written algorithms exist for addition, subtraction, multiplication, and 

division. Inflexible mental calculators are characterized by a tendency to perform mental 

computation by visualizing the written work that they would perform using these 

standard algorithms (Heirdsfield & Cooper, 2004). Such a mental procedure is known in 

the literature as the mental analogue of a standard algorithm (e.g., Markovits & Sowder, 

1994), which will be abbreviated MASA. When number sense manifests itself in mental 

computation, MASAs are rarely employed. Instead, flexible mental calculators exhibit 

facility with a variety of different strategies (Heirdsfield & Cooper, 2004; Hope & 

Sherrill, 1987; McIntosh, 1998; Reys et al., 1982; Sowder, 1992). 

 The types of strategies preferred by flexible mental calculators tend to be those 

that are divorced from the standard written algorithms (Heirdsfield & Cooper, 2004; 

Markovits & Sowder, 1994). For example, the standard addition algorithm involves 

adding column-wise from right to left and regrouping (“carrying”) as necessary. 

Markovits and Sowder (1994) describe some mental computation strategies as Transition 

strategies, which they define as being “somewhat bound to the standard algorithm” (p. 

14). In the case of addition, this would involve adding from right to left but without 

actually picturing the numbers aligned as in the standard algorithm or mentally 

performing the written work. A Nonstandard strategy, by contrast, is one that is not 

bound to the standard algorithm. In the case of addition, this could be a strategy that 
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involves adding while keeping a running subtotal, as in computing 124 + 59 by first 

adding 50 to 124 to obtain 174, and then adding 9 more for a total sum of 183. 

 In case studies of two Australian third graders, Heirdsfield and Cooper (2002) 

compared the characteristics of an accurate and flexible mental calculator with those of 

an accurate but inflexible mental calculator. They found that Clare, the flexible mental 

calculator, had strong numeration knowledge that supported her accuracy and flexibility. 

She also made use of knowledge of place value and properties of numbers and 

operations. She quickly recalled many number facts, and could derive others from 

recalled facts. Her computational estimation ability helped her to assess the 

reasonableness of her answers. Clare was also confident in her mental computation 

ability and in her strategy selection. According to the authors, these characteristics all 

contributed to her accurate and flexible mental computation performance (Heirdsfield & 

Cooper, 2002).  

 Heirdsfield and Cooper (2004) compared a group of accurate and flexible third 

graders with a group of accurate but inflexible third graders in mental addition and 

subtraction. The authors used a variety of tasks in multiple interviews in order to compare 

various aspects of the students’ mental computation activity. They identified two distinct 

general processes used by the two groups. 

 Given one-step story problems in context, both groups could identify the 

appropriate operation to perform. For example, students were given the task, “You start 

with $400 and spend $298 on the CD player. How much is left?” (Heirdsfield & Cooper, 

2004, p. 450). Each recognized that this task called for subtraction, or in other words that 

the solution would be given by the difference between 400 and 298. However, after that, 
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the processes of the two groups differed. For the inflexible calculators, the recognition of 

the operation to be performed led directly to the use of the MASA for that operation. For 

the flexible mental calculators, the next step after determining the operation to be 

performed was to choose an efficient strategy for performing it. After the strategy was 

selected, it was implemented. Finally, the flexible calculators checked their work or 

assessed the reasonableness of their answers in some way (Heirdsfield & Cooper, 2004). 

 Flexible mental calculators do not arbitrarily select a strategy, as if at random 

(Markovits & Sowder, 1994). On the contrary, the choice of strategy is influenced by the 

particulars of the computation, together with a combination of knowledge of number and 

operations and beliefs about mental computation strategies (Heirdsfield & Cooper, 2004). 

The operation and the numbers involved make certain strategies better suited than others. 

For example, composite numbers afford applications of the associative property of 

multiplication, as in reformulating 15 x 24 as 30 x 12, whereas primes do not. The 

MASA for subtraction is better suited to computations that do not require regrouping, as 

in 36 - 12, as opposed to 36 - 19. Relative ease and efficiency influence the strategies that 

skilled mental calculators tend to use (Hope & Sherrill, 1987). Furthermore, it is not 

uncommon that a skilled mental calculator may entertain a strategy that is relatively 

unfamiliar to her, even inventing an approach to a particular problem that she has never 

used or seen before (McIntosh, 1998). 

 The process of flexible mental calculators is characteristic of skilled problem 

solvers more generally. Schoenfeld (1992) described skilled problem solvers as 

employing the meta-cognitive habits of planning, monitoring, and control. Planning 

corresponds to strategy selection. Monitoring refers to keeping track of progress and 
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allowing for the possibility of changing strategies. Control processes involve decisions to 

change strategies, as well as checking the reasonableness of answers (Schoenfeld, 1992). 

According to Heirdsfield and Cooper (2004), knowledge of the effect of operation on 

number, numeration and number facts knowledge, strategies, and beliefs are all involved 

in the process of choosing a strategy, implementing that strategy, and checking one’s 

mental work. Knowledge of the effects of operations is crucial when rounding and 

compensation are used. For example, to compute 125 - 49 mentally, it is helpful to 

recognize that 49 is one less than 50. However, one must then know how to appropriately 

compensate for rounding 49 to 50. Many prospective and practicing elementary teachers 

have difficulty determining how to compensate for rounding of the subtrahend in 

subtraction (Kazemi et al., 2010). 

 Whitacre (2007) found that prospective elementary teachers beginning a first 

mathematics content course tended toward inflexibility in mental computation. Most used 

only one or two strategies for a given operation, with the MASA being most common for 

each of addition, subtraction, and multiplication. Tsao (2004) assessed preservice 

elementary teachers’ mental computation performance based on their ability to obtain 

correct answers to test items without the aid of written work. The mean score on this 

measure was less than 50%. These findings are consistent with reports that preservice 

elementary teachers generally exhibit poor number sense (Tsao, 2005; Yang, 2007; Yang 

et al., 2009). 

Mental Computation Strategies 

 Extant coding schemes exist for mental computation strategies. These differ in 

terms of grain size and are suited to different purposes. Heirdsfield and Cooper’s (2004) 
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scheme for mental addition and subtraction strategies is rather fine-grained and 

comprehensive. It was created on the basis of a literature review. Nunes, Schliemann, and 

Carraher’s (1993) scheme covers each of the basic operations, but the grain size is coarse. 

This scheme was grounded in a particular data set. Markovits and Sowder’s (1994) 

scheme covers addition, subtraction, and multiplication. Strategies as such are not coded 

in this scheme. Rather, the criterion of similarity to the MASA is used to categorize 

strategies. Whitacre’s (2007) coding of addition, subtraction, and multiplication strategies 

was grounded in data from interviews with prospective elementary teachers, while also 

being informed by extant coding schemes, especially those listed above. 

 Markovits and Sowder (1994) formulated an overarching framework for mental 

addition, subtraction, and multiplication strategies. They used the following coding 

scheme for the strategies used by students in their study: 

Standard: The student used a mental analogue of a standard paper-and-
pencil algorithm. 

Transition: The student continued to be somewhat bound to the standard 
algorithm. However, more attention was given to the numbers being 
computed and less to algorithmic procedures. 

Nonstandard with no reformulation: A left-to-right process was used. 

Nonstandard with reformulation: The numbers were reformulated to make 
the computation easier. (Markovits & Sowder, 1994, p. 14) 

According to Markovits and Sowder (1994), reliance on Standard strategies indicates 

poor number sense, while the use of Nonstandard strategies indicates good number sense. 

A student whose go-to strategy is the MASA lacks flexibility. Her understanding of the 

operation appears tied to the standard algorithm, and she is not making a choice based on 

the given numbers. By contrast, a student whose understanding of an operation is not 



45 

 

dependent upon any particular algorithm has good flexibility. She is free to choose a 

strategy that takes advantage of the affordances of the given numbers. In terms of a 

learning trajectory, a student who primarily uses Transition strategies may be regarded as 

being in transition from algorithm-bound to algorithm independent, thus from inflexible 

to flexible (Markovits & Sowder, 1994; Whitacre, 2007). 

 Heirdsfield and Cooper (2002, 2004) used a coding scheme for mental addition 

and subtraction strategies that they developed based on a review of previous literature. 

Their scheme consists of five broad categories of strategies: Counting, Separation, 

Aggregation, Wholistic, and Mental image of pen and paper algorithm. The categories of 

Counting and Mental image of pen and paper algorithm are, in fact, codes for particular 

strategies in this scheme, while the categories of Separation, Aggregation, and Wholistic 

consist of two to three particular strategy codes. Although this scheme is not explicitly 

hierarchical like that of Markovits and Sowder (1994), these categories more or less 

correspond to Transition, Nonstandard, and Nonstandard with Reformulation, 

respectively. Furthermore, Heirdsfield and Cooper (2004) have argued that Separation, 

Aggregation, and Wholistic (in that order) represent increasing levels of sophistication, 

which is in accord with Markovits and Sowder’s (1994) hierarchy. Thus, for coding of 

mental addition and subtraction strategies, these two schemes are quite compatible. 

 Nunes et al. (1993) distinguish “oral” versus “written” mental computation 

procedures. This is essentially the Nonstandard versus Standard distinction made by 

Markovits and Sowder (1994), or the Number sense-based versus Rule-based distinction 

made by Yang (2007). Nunes et al. (1993) found that oral computation procedures for 

addition and subtraction tended to involve a decomposing strategy, while oral 
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computation procedures for multiplication and division tended to involve repeated 

grouping. Decomposing refers to the additive decomposition of numbers, for example 

treating 35 as 30 and 5. Numbers are decomposed into round numbers that are convenient 

for the purposes of the computation. Carraher et al. (1987) described repeated grouping 

as “multiplying by means of successive additions or dividing by means of successive 

subtractions” (p. 93).  

 The categories of decomposition and repeated grouping are useful in that they 

emphasize the mathematical properties underlying various strategies. As Nunes et al. 

(1993) point out, implicit in decomposition is the associative property of addition. For 

example, it is often useful for the sake of mental addition to treat 137 as 100 + 30 + 7 

(where the 7, in turn, may be treated as 2 + 5 or 1 + 6). Similarly, implicit in repeated 

grouping is the distributive property of multiplication over addition. For example, for 

ease of mental multiplication, we may treat 13 x 25 as 10 x 25 + 3 x 25.  

 Note that there is at least one additional distinction that, even from a purely 

mathematical standpoint, seems necessary. Mental multiplication or division strategies 

that make use of the associative property of multiplication should be distinguished from 

those that do not. Nunes et al. (1993) give the example of a child who found 100/4 

mentally by two successive divisions by two. Such a strategy is distinct from repeated 

grouping strategies that consist of “multiplying by means of successive additions or 

dividing by means of successive subtractions” (p. 43). The authors acknowledged that 

this example did not fit their definition of repeated grouping, although it was coded as 

such. The authors suggested that this matter merited further study. 
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 In terms of Markovits and Sowder’s scheme, strategies involving the distributive 

property of multiplication over addition are more similar to the standard multiplication 

algorithm than are those involving the associative property of multiplication. Whitacre 

(2007) found that prospective elementary teachers in pre-instruction interviews rarely 

took advantage of the associative property in mental multiplication, whereas explicit 

applications of the distributive property were more common.  

 Whitacre (2007) coded prospective elementary teachers’ mental computation 

strategies using a scheme developed through constant comparative analysis of their 

particular data set. The coding scheme consists of six valid strategies for addition, eight 

for subtraction, and seven for multiplication. (There is also an invalid category for each 

operation.) For each operation, strategies are ordered along the spectrum from Standard 

to Nonstandard. In this way, Markovits and Sowder’s framework is fleshed out to include 

particular mental computation strategies. 

 Whitacre (2007) departs somewhat from Markovits and Sowder in defining 

Nonstandard with no reformulation. Whereas Markovits and Sowder defined this 

category as involving a “left-to-right process,” Whitacre found this definition too 

stringent. A nonstandard strategy without reformulation need not involve a left-to-right 

process. Right-to-left aggregation is one example (Heirdsfield & Cooper, 2004). On the 

other hand, the thinking of prospective elementary teachers who used left-to-right 

processes often seemed to be tied to the standard algorithms. When it came to addition 

and subtraction, for example, several participants worked from left to right when no 

regrouping was required, and right to left otherwise. Furthermore, some participants 

working left-to-right reported visualizing the numbers aligned vertically, as in the 
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standard algorithm. These instances seemed most appropriately categorized as Transition, 

rather than Nonstandard, strategies. 

 For reasons grounded in the particular data set, Whitacre (2007) revised the 

definition of Nonstandard with no reformulation, replacing it with the following: “The 

student was not bound to the standard algorithm, but did work with the given numbers.” 

This revised definition is in keeping with the spirit of Markovits and Sowder’s scheme in 

that the continuum from most standard to least standard is emphasized, as opposed to the 

particular process employed. Markovits and Sowder’s scheme is useful as a general 

framework that relates mental computation strategies to number sense, whereas a scheme 

like that of Whitacre (2007) is useful for making fine-grained distinctions between 

strategies for particular operations. 

Understanding Strategies and Algorithms 

 What sense do students make of the computational methods that they use? The 

literature provides partial answers to this question. These computational methods can be 

categorized by operation and/or by type (e.g., standard versus nonstandard). Thanheiser 

(2009) developed a framework for preservice teachers’ conceptions of multidigit whole 

numbers in the context of the standard addition and subtraction algorithms. The literature 

does not seem to contain a comparable framework for conceptions related to the 

multiplication and division algorithms. Children’s whole-number computational 

reasoning has been studied extensively. Carraher and colleagues (1987) emphasized 

understanding of additive and multiplicative composition of number in their discussion of 

nonstandard strategies. The literature on Cognitively Guided Instruction (CGI) maps out 

developmental trajectories of children’s computational strategies. These authors also 
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emphasize children’s understanding of place value and number composition and relate 

these to children’s strategies. This research helps to answer the question of how students 

understand their computational strategies. However, the CGI framework concerns less 

sophisticated strategies than many of those identified by Heirdsfield and Cooper (2004) 

and used by skilled mental calculators. When it comes to relatively sophisticated 

nonstandard strategies, it is difficult to identify in the literature direct answers concerning 

how these are understood. 

Addition and subtraction. Thanheiser (2009, 2010) has made an extensive study 

of the conceptions of multidigit whole numbers that preservice teachers bring to their use  

of standard written algorithms. Her framework categorizes conceptions of multidigit 

whole numbers and orders these in terms of levels of sophistication. The defining 

characteristic of this framework could be described as flexibility in reasoning about the 

amounts that digits in a number represent. At the lowest level of sophistication, each digit 

is conceived of as a number of ones, e.g., 529 represents 5 ones, 2 ones, and 9 ones, in 

their respective columns. The individual may be able to give appropriate names for place 

values, but she does not see the 2 as representing two tens or the 5 as five hundreds. At 

the highest level of sophistication, the individual has maximal flexibility in reasoning 

about reference units, e.g., she can view the 5 as representing 500 ones or 50 tens or 5 

hundreds. Thus, this framework describes preservice teachers’ understanding of the 

additive composition of number, especially the canonical composition in terms groups of 

ones, tens, and hundreds. 

 Thanheiser (2009) describes preservice teachers’ conceptions of multidigit whole 

numbers in terms of the following four categories: 
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Reference units. PSTs with this conception reliably conceive of the 
reference units for each digit in the number and can relate the reference 
units to one another; in 389, the 3 can be seen as 3 hundreds or 30 tens or 
300 ones, and the 8 can be seen as 8 tens or 80 ones. 

Groups of ones. PSTs with this conception reliably conceive of all digits 
in terms of groups of ones; 389 would be 300 ones, 80 ones, and 9 ones. 
PSTs holding this conception do not conceive of the digits in terms of 
reference units. 

Concatenated digits plus. PSTs with this conception conceive of at least 
one of the digits in the number in terms of an incorrect unit type at least 
some of the time. They therefore struggle when relating the values of the 
digits in a number to one another. A PST may correctly conceive of 
groups of 100 ones for a digit in the hundreds place but incorrectly 
conceive of ones for the tens place (e.g., 389 would be seen as 300 ones, 8 
ones, and 9 ones). 

Concatenated digits only. PSTs holding this conception conceive of all the 
digits in terms of only ones (e.g., 548 would be 5 ones, 4 ones, and 8 
ones). (p. 263) 

Thanheiser (2009) found that the less sophisticated conceptions of concatenated digits 

only and concatenated digits plus were common among preservice teachers, with 

concatenated digits plus being most common. In further research, Thanheiser (2010) 

found that preservice teachers often explained the meanings of digits inconsistently 

across tasks. She further refined the framework to account for consistency or 

inconsistency in these interpretations. For the present purposes, the original categories of 

Thanheiser (2009) suffice. 

 Thanheiser’s framework answers the question of how preservice teachers 

understand the standard addition and subtraction algorithms. It does not speak to 

understanding of nonstandard strategies. Little is known about prospective elementary 

teachers’ understanding of nonstandard strategies, perhaps because they rarely use these. 
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There is, however, research literature concerning children’s use of and reasoning about 

nonstandard strategies. 

 In their discussion of written versus oral arithmetic, Carraher et al. (1987) 

identified decomposition as the key heuristic employed in oral (nonstandard) addition and 

subtraction strategies. For example, a child named Lucia computed 200 – 35, saying, “If 

it were thirty, then the result would be seventy. But it is thirty-five. So it’s sixty-five; one 

hundred sixty-five” (p. 91). The authors explain that Lucia decomposed 35 into 30 and 5 

and decomposed 200 into 100 and 100 in order to accomplish her solution. 

 The notion of decomposition begins to answer the question of how nonstandard 

strategies are understood. However, there are a wide variety of strategies that make use of 

decomposition in some way. Furthermore, justifications for these strategies are generally 

left implicit, both in the subjects’ reported reasoning and in the authors’ analyses. We do 

not know how Lucia would have justified her strategy if asked to do so explicitly. 

 Suppose a different child reasons that 200 – 30 = 170, and so 200 – 35 = 175. 

This child likewise decomposed 35 into 30 and 5 and 200 into 100 and 100. However, 

she reasoned differently about how to compensate for the fact that she had subtracted 30, 

rather than 35. Perhaps Lucia did not think of her strategy in terms of compensation at all, 

but in terms of aggregation: I take away 30, and that leaves 170. Then I take away 5 more 

and end up with 165. Note that this is not clear from her explanation. She might have 

reasoned in some other way. When it comes to sophisticated strategies like these, the 

computational steps alone do not allow us sufficient access to the students’ reasoning. 

 The CGI literature also emphasizes understanding of number composition. As 

children develop an improved understanding of number composition, both canonical and 
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noncanonical, they can leverage this understanding to solve problems using invented 

strategies. A major contribution of the CGI research is a problem-specific developmental 

framework for students’ strategies. Carpenter, Fennema, Franke, Levi, and Empson 

(1999) describe story problem types and related trajectories of students’ strategies. 

Broadly, these proceed from Direct Modeling to Counting to Number Facts. Each of 

these categories includes several specific strategies. Number Facts strategies (which 

correlate with Transition and Nonstandard strategies) are those of interest to the present 

study. However, development toward using such strategies with understanding likely 

occurs differently for prospective elementary teachers than for children, being that the 

starting points for these two populations are quite different. In CGI, children invent their 

own strategies prior to learning the standard algorithms. Prospective elementary teachers, 

by contrast, know and are dependent upon the standard algorithms. 

 Since far more research has been done concerning the mathematical thinking of 

children versus prospective/preservice elementary teachers, there is the potential for work 

with prospective teachers to be informed by the literature on children’s thinking. 

However, particular distinctions of interest to this study are not well addressed in the 

children’s thinking literature. For example, in a synthesis piece, bringing together 

research from four extensive projects, Fuson et al. (1997) describe a common framework 

for children’s multidigit addition and subtraction strategies and supporting conceptions. 

In line with other research in this area, number composition is emphasized. In fact, 

compensation is scarcely mentioned in the report. The authors note a common error in 

subtrahend compensation, whereby students add when they should subtract, or vice versa. 

Regarding conceptions related to compensation, the authors state: 
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The methods can be easily confused if children do not understand what 
must remain the same in each method. In addition the total must stay the 
same; this method can be thought of as just moving some entities from one 
number to the other to make one number easy to add. In subtraction, the 
difference must be maintained, so the same number must be added to (or 
subtracted from) each number. (Fuson et al., 1997, p. 152) 

The above statement makes sense from an expert perspective, but its relationship to 

students’ mathematical thinking is unclear. As stated earlier, many prospective 

elementary are known to have difficulty determining how to compensate appropriately 

for rounding the subtrahend (Kazemi et al., 2010). Prospective teachers reasoning about a 

subtraction problem attempt to get the right answer. If they round one or both numbers, 

they attempt to compensate for doing so. In other words, they seem aware that “the 

difference must be maintained” and they try to maintain it; however, it is evidently 

unclear to many prospective teachers why maintaining the difference requires that “the 

same number must be added to (or subtracted from) each number” (Fuson et al., 1997, p. 

152). 

Multiplication.8 Multiplication and division have been less extensively 

researched than have addition and subtraction. Fuson (2003) described the standard  

multiplication and division algorithms as “complex embedded methods that are not easy 

to understand or to carry out” (p. 302). As with the standard addition and subtraction 

algorithms, numbers wise in the multiplication algorithm are aligned place-value wise. 

This conventional alignment, together with the rule of shifting to the left or placing a zero 

when moving to the next row in the procedure, enables the algorithm to work “without 

requiring any understanding of what is actually happening with the ones, tens, and 

                                                
8 I focus on multiplication, rather than division, in this section because it is more relevant to the results 

presented in Chapters 5 and 6. 
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hundreds” (Fuson, 2003, p. 302). Such algorithms are efficient and reliable but not very 

accessible to students. 

 Authors have identified invented strategies that children use for multiplication 

when given the opportunity to create their own methods. For example, Baek (1998) 

describes complete number strategies, partitioning number strategies, and compensating 

strategies. Complete number strategies refer to strategies in which multiplication is 

interpreted as repeated addition. For example, 6 x 23 represents six 23’s, and so we may 

find the product by adding six 23’s together. 

 Partitioning number strategies refer to strategies in which one or both factors are 

partitioned before multiplying. Within this category, there are different forms of 

partitioning. What Beak calls partitioning a number into nondecade numbers refers to 

making use of the associative property of multiplication. For example, 15 x 177 may be 

solved by computing 3 x 77 first, and then multiplying that result by 5. Formally, the 

principle at work can be illustrated as follows: 15 x 177 = (5 x 3) x 177 = 5 x (3 x 177). 

This kind of strategy involves a multiplicative partitioning, which is quite unlike additive 

partitioning. 

 Partitioning a number into decade numbers refers to partitioning one factor into 

tens and ones and computing partial products. For example, 43 x 61 = 40 x 61 + 3 x 61. 

Such a strategy may involve thinking in terms of repeated addition (i.e., adding up forty-

three 61’s) but partitioning by tens and ones makes the computation easier. One can 

compute the two partial products (40 x 61 and 3 x 61) separately and then added these 

together.  
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 Baek (1998) also identifies the strategy of partioning both numbers into decade 

numbers. He gives the example of a child computing 26 x 39 by partitioning 26 into 20 

and 6 and partitioning 39 into 30 and 9. She computed all four partial products explicitly 

(20 x 30, 20 x 9, 6 x 30, and 6 x 9) and added these together. Baek (1998) also gives the 

example of a child named James applying this strategy to a two-digit-by-three-digit 

product to compute 17 x 177. Absent in these descriptions are explanations of just how 

children are able to appropriately account for partial products. Baek (1998) claims, 

“James showed his good number sense and flexibility depending on the numbers in the 

problem as well as his understanding of base ten and multiplication” (p. 156). Certainly, 

not all invented strategies are valid ones. Vague descriptions of understanding are 

insufficient to distinguish the reasoning of individuals who correctly account for partial 

products from the reasoning of those who do not. 

 Compensating strategies are those in which one or both factors are changed prior 

to computing. An example of changing both factors is halving and doubling, as in 

multiplying 5 x 250 by changing the problem to 10 x 125. Like partitioning into 

nondecade numbers, this example makes use of the associative property. Compensating 

strategies also applications of the distributive property of multiplication over subtraction. 

For example, a child computes 17 x 70 by first finding 20 x 70 and then compensating for 

rounding. To do this, the child must have a way of reasoning that enables her to recognize 

how much she has to subtract to compensate. In Baek’s (1998) example, the child 

correctly subtracted 3 x 70 from 20 x 70 to get her answer by reasoning about 

multiplication in terms of repeated addition (i.e., thinking about how many 70’s she was 

supposed to add together). Whitacre (2006) reported instances of prospective elementary 
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teachers using invalid compensation strategies (e.g., subtracting 3, rather than 3 x 70 in 

the above example). Again, the literature concerning children’s invented strategies seems 

to devote little attention to invalid strategies or to particular ways of reasoning that 

support children’s invention of valid strategies. 

 There is little literature concerning prospective elementary teachers’ 

understanding of multiplication. Simon (1995) described a teaching experiment related 

rectangular area in a course for preservice teachers. He documents the teacher’s role in 

responding to students’ reasoning over the course of an 8-day instructional sequence in 

which the class worked to make sense of the relationship between multiplication and 

area. Zazkis and Campell (1996) investigated preservice teachers’ reasoning about 

multiplication in the context of elementary number theory. They documented preservice 

teachers’ dependence on standard algorithms, as opposed to reasoning about 

multiplicative composition of number, in tasks such as determining whether a number 

was divisible by a certain factor. These studies highlight difficulties that preservice 

teachers have in making sense of multiplication. 

Summary of Whole-number Sense in Mental Computation 

 In summary, good whole-number sense manifests in flexible mental computation. 

The process of flexible mental calculators is distinct from that of inflexible calculators in 

that the former make a choice of strategy for a given computation. This choice is guided 

by perceived constraints and affordances, which depend on the properties of numbers and 

operations. As a result, flexible mental calculators often employ nonstandard strategies. 

Inflexible mental calculators, by contrast, tend to rely on the mental analogues of the 
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standard algorithms. Previous research suggests that prospective elementary teachers tend 

toward inflexibility in mental computation. 

 Mental computation strategies can be characterized in various ways, which serve 

different analytic purposes. The schemes reviewed inform the analysis of prospective 

elementary teachers’ mental computation strategies in the present study. Thanheiser 

(2009) developed a framework to describe preservice teachers’ conceptions related to the 

standard addition and subtraction algorithms. My literature review did not reveal 

analogous findings concerning multiplication or division. The research literature 

describes children’s reasoning concerning invented strategies for each of the operations. 

However, less attention has been given to the conceptions supporting students’ reasoning 

when using nonstandard strategies. 

Design Research and Instructional Design Theory 

 This section describes design research and aspects of the instructional design 

theory of Realistic Mathematics Education. Recommendations for pedagogy to support 

number sense development are reviewed. The instructional goals for the mathematics 

content course are described. Then the local instruction theory that guided instruction in 

the course is presented. 

Design Research 

 Design research is characterized by a reflexive relationship between instructional 

design and classroom-based research (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; 

Gravemeijer, 1994, 2009). A distinguishing characteristic of this paradigm is that it is 

focused on producing theory, as opposed to curriculum materials. This includes local 

instruction theories, which will be discussed in detail in the next subsection. 
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Developmental research occurs in cycles of instructional design, classroom teaching 

experiments, and analysis of classroom events. These analyses feed back to inform the 

instructional design process, and so on. In this way, individual studies and analyses are 

seen as contributing to the broader enterprise of educational development. 

 Nickerson and Whitacre (2010) developed a local instruction theory, which was 

revised based on the results one iteration of a classroom teaching experiment. Our 

previous analysis focused on instructional design and on changes in individual students 

(shifts in their mental computation behavior, which suggested improved number sense). 

Analysis of classroom events was constrained due to the limits of the data corpus. The 

present study constituted a new design research cycle and had a different emphasis, 

focusing on genetic analysis of number sense development, including the sociogenetic 

and ontogenetic strands. These analyses contribute to the building of theory concerning 

prospective elementary teachers’ number sense development.  

Instructional Design Theory 

 This subsection focuses on the instructional design aspect of the research. The 

design of instruction in the course of interest was informed broadly by the instructional 

design theory of Realistic Mathematics Education (RME) (Freudenthal, 1991). Three 

instructional design heuristics are central tenets of RME: (1) sequences must be 

experientially real, (2) students should be guided to reinvent significant mathematics for 

themselves, wherein (3) students and the teacher develop models of informal activity, 

which become models for mathematical reasoning (Stephan, Bowers, Cobb, & 

Gravemeijer, 2003). 
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Emergent models. Gravemeijer, Bowers, and Stephan (2003) explain that the  

shift from model-of to model-for occurs when “[t]he process of acting with the model 

changes from one of constructing solutions situated in the context to one of using the 

model to communicate reasoning strategies” (p. 54). In RME, this process goes hand in 

hand with the move from informal mathematical activity to more formal mathematical 

reasoning. Thus, “[t]he shift from model of to model for can be seen as aligned with shifts 

in the collective mathematical practices” (p. 54).  

 In theoretical work building on the tenets of RME, Rasmussen and Marrongelle 

(2006) introduced the notion of a transformational record: 

Transformational records are defined as notations, diagrams, or other 
graphical representations that are initially used to record student thinking 
and that are later used by students to solve new problems. (p. 389) 

The authors offer transformational records as a pedagogical content tool that serves as 

the instructional counterpart of the emergent models heuristic. That is, on the micro-level 

of classroom interaction, teachers can record student reasoning in ways that afford the 

possibility that students will transform these records by later using them to solve new 

problems. Likewise, teachers may recognize this potential in students’ records of their 

own or each others’ thinking and make such records objects of classroom discourse. By 

facilitating the realization of transformational records, teachers can promote shifts from 

models-of to models-for (Rasmussen & Marrongelle, 2006). 

Hypothetical learning trajectories and local instruction theories. Instructional 

design involves the development of hypothetical learning trajectories. Simon (1995)  

introduced the construct of hypothetical learning trajectory, which refers to an 

anticipated learning route. This learning route is hypothetical, whereas actual learning 
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trajectory refers to the learning route that actually plays in a particular classroom. In a 

classroom teaching experiment, a hypothetical learning trajectory is developed and 

enacted in the classroom. The instructional activities and the HLT itself are later revised 

on the basis of actual learning trajectories. 

 In some cases, hypothetical learning trajectories are informed by local instruction 

theories, which guide instruction more broadly. A local instruction theory refers to “the 

description of, and rationale for, the envisioned learning route as it relates to a set of 

instructional activities for a specific topic” (Gravemeijer, 2004, p. 107). According to 

Gravemeijer, local instruction theories are distinguished from hypothetical learning 

trajectories in two major respects, grain size and situatedness: hypothetical learning 

trajectories have a finer grain size and are specific to a group of students, while local 

instruction theories have a coarser grain size and are designed for a particular student 

population (Gravemeijer, 1999, 2004). 

 In my ongoing work with Nickerson, we have come to conceptualize the 

distinctions between LIT and HLTs differently. As far as the LIT for number sense 

development is concerned, we would say that the LIT spans mathematical topics, whereas 

HLTs are topic-specific. Our LIT concerns number sense, whereas an HLT may concern 

a specific mathematical topic like reasoning about fraction magnitude (Whitacre & 

Nickerson, 2011a). For us, the LIT informs topic-specific HLTs. As a result of this more 

general nature, the duration of the LIT is greater. With regard to situatedness, we would 

say that HLTs are specific to a student population, while an LIT may be broader. If an 

HLT applied only to a particular set of students in a classroom, then design research 

would be quite limited in its application. The findings of a design cycle are valuable 



61 

 

because they inform instruction in future classes. Our LIT for number sense development 

is not specific to prospective elementary teachers. Rather, it applies to student 

populations that tend to be dependent on standard algorithms and to reason inflexibly 

about numbers and operations. This could be true of students at various levels. 

Pedagogy to Support Number Sense Development 

 Brown et al. (1989) emphasize the discontinuity between traditional schooling 

and cognitive apprenticeship. The behavior of just plain folks (JPFs) is not unlike that of 

practitioners, whereas the behavior of these groups differs markedly from the behavior 

typical of students in traditional classroom settings. The authors give examples of 

mathematics teaching that does have the characteristics of cognitive apprenticeship. In 

Schoenfeld’s problem-solving class, the students and the teacher engage with problems 

that are problematic in ways that traditional school exercises are not. Students’ in-class 

work is more like the work of mathematicians (Schoenfeld, 1987). 

 The notion of authentic activity aligns with recent recommendations for 

mathematics pedagogy in general (NRC, 2001) and for promoting number sense in 

particular (Greeno, 1991; Howden, 1989; Kaminski, 2002; McIntosh, 1998; Sowder & 

Schappelle, 1994; Yang, 2002). While symptoms of number sense can be identified, 

researchers generally recommend that instructors not attempt to teach to these directly. 

There is general theme in the literature that number sense is not amenable to direct 

instruction and must develop over time through certain kinds of activities (Howden, 

1989; Greeno, 1991; McIntosh, 1998; Sowder, 1992). 
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 McIntosh (1998) argues that mental computation should be given greater 

emphasis in elementary curricula. However, specific strategies should not be taught 

directly: 

Traditional pedagogical methods would suggest that we should look for 
the best mental-computation algorithms and teach them. I suggest, 
however, that doing so may be counterproductive. (p. 44) 

The key characteristic identified by Heirdsfield and Cooper (2004) in the process of 

flexible mental calculators was the habit of making a choice. Individuals who exhibit 

number sense do not tend use a single, go-to procedure. They decide what approach to 

take based on the relevant constraints and affordances that they perceive (Greeno, 1991). 

To be taught a particular algorithm is to be taught not to make such a choice. As 

Schoenfeld (1992) points out, when strategies are taught directly, “they are no longer 

heuristics in Pólya’s sense; they are mere algorithms” (p. 354). In their review of 

literature concerning the learning of mental computation strategies, Varol and Farran 

(2007) report on a study that found that students who had been taught a specific mental 

computation algorithm were less likely to invent novel computational strategies.  

 In terms of Greeno (1991)’s environment metaphor, direct instruction is 

analogous to giving a newcomer explicit directions for getting from one place to another. 

If these directions are any good, they should aid the newcomer in reaching the desired 

destination from a specified starting point. However, memorizing a potentially infinite 

number of specific routes is impractical and not conducive to coming to know the 

environment in the way that an experienced resident does. Ultimately, people need to 

establish their own sense of the lay of the land, to devise their own routes, and to spend 

time getting lost and finding their way back to their own personal landmarks. The 
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experienced resident may serve as a guide, who can facilitate this process by suggesting 

activities, devising practical problems, and giving general advice. However, there is no 

substitute for the person’s own goal-oriented exploration of the environment. 

 To support the gradual development of number sense, Sowder (1992) suggests 

that “number sense should permeate the curriculum… rather than being relegated to 

‘special lessons’ designed to ‘teach number sense’” (p. 386). McIntosh (1998) likewise 

warns against “restricting our mental-arithmetic sessions to bursts of short, unrelated 

calculations in which we emphasize accuracy and speed” (p. 47). He suggests instead 

that, if given time, students will invent novel strategies. After students have been asked to 

perform a mental calculation, strategies should be shared and discussed. The emphasis of 

these discussions should not be on whether the answers are correct but on understanding 

multiple, valid approaches. McIntosh (1998) suggests further than the instructor should 

take advantage of students’ spontaneous interest in each others’ strategies: 

Often you will notice a heightening of interest in a method described by a 
child, which indicates that the algorithm has been understood and 
appreciated by several children. At such times ‘teaching an algorithm’ is 
valid. You might say, ‘Let's see if we can all use Amanda's method to do 
these calculations.’ Making such a suggestion is quite different from 
imposing a single algorithm from outside. The situation is more like what 
happens when someone shows off a new toy. A child might ask, ‘Can I 
have a go with that?’ We all want to try it out a few times to see if we 
would like it for ourselves. (p. 47) 

Thus, there is room for an approach that is authentic and honors student’s choice making, 

while also allowing for opportunities to engage students in thinking about and trying on 

particular strategies. The recommendations of McIntosh (1998) are echoed repeatedly in 

the number sense literature (Anghileri, 2000; Greeno, 1991; Howden, 1989; Kaminski, 

2002; Sowder, 1992; Varol & Farran; Yang, 2002).  
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Instructional goals. Beyond general recommendations like those above, 

instructional design is necessarily informed by goals concerning students’ learning. In 

their developmental research, Cobb and Bowers (1999) state that they have found it 

useful to frame their instructional goals in terms of Greeno’s (1991) environment 

metaphor. In the case of the study reported by Bowers et al., (1999),  

[the researchers’] instructional intent was that students would eventually 
come to act in a mathematical environment in which quantities are 
invariant under certain mathematical transformations (e.g., regrouping 100 
as ten 10s). (p. 33) 

Such application of the environment metaphor seems to be a useful way of framing one’s 

broad instructional goals, particularly when these concern number sense development. 

Note the distinction that we can infer from the above quote between the domain of 

numbers and quantities and a particular mathematical environment: the domain of 

numbers and quantities is not the mathematical environment in which students act. 

Rather, the environment in which students act is influenced by their mathematical 

experiences in the classroom and their particular interpretations of these. 

 The broad instructional intent in the mathematics content course is for students to 

come to act in a mathematical environment in which the properties of numbers and 

operations afford various calculative strategies, as opposed to one in which mathematical 

operations map directly to particular algorithms (Nickerson & Whitacre, 2010). The 

instructional design theory of RME, especially the emergent models heuristic, along with 

recommendations from the literature, and the environment metaphor, informed the design 

of instruction in a course intended to promote the development of number sense. 
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A local instruction theory for the development of number sense. Beyond the 

broad instructional intent, articulated in terms of the environment metaphor, Nickerson 

and Whitacre’s (2010) local instruction theory is guided more specifically by three major 

goals. The statement of these goals involves a construct that must first be defined. A 

number-sensible strategy as an approach that an individual chooses from amongst a set of 

possible approaches, where the choice of approach is based on the constraints and 

affordances that she perceives. The construct of number-sensible strategy is intended to 

characterize the manner in which the student approaches the task from the perspective of 

the student. A number-sensible strategy is in contrast to an approach that is algorithmic or 

nonstrategic from the student’s perspective. As a construct, the notion of number-sensible 

strategy also contrasts with the way in which the term strategy is typically used in the 

mathematics education literature to describe how students solve problems. The latter is an 

observer-oriented construct; it characterizes students’ activity from the researcher’s 

perspective. In keeping with our actor-oriented perspective (Lobato, 2003), we would 

not, for example, label valid subtrahend compensation as number-sensible or not number-

sensible. To do so would be to disjoin the computational steps from the thinking of the 

individual who carried out the approach. 

 Nickerson and Whitacre’s (2010) local instruction theory includes three goals 

concerning student learning: (1) Students will capitalize on opportunities to use number-

sensible strategies for problem-solving situations both inside and outside the classroom; 

(2) Second, students will draw on deep, connected knowledge of number and operations 

to develop a repertoire of number-sensible strategies; (3) Students will reason with 

models to build on their understanding and flexibly use number-sensible strategies. Put 
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succinctly, our three major goals are that students come to recognize opportunities to use 

number-sensible strategies, develop many ways to think about number and operations, 

and flexibly draw on a repertoire of meaningful strategies (Nickerson & Whitacre, 2010).  

 With these goals in mind, the local instruction theory for the development of 

number sense can be briefly described. To reiterate, according to Gravemeijer (2004), a 

local instruction theory consists of “the description of, and rationale for, the envisioned 

learning route as it relates to a set of instructional activities for a specific topic” (p. 107). 

In this case, the topic is number sense. The local instruction theory is represented here in 

the form of three tables, one for each of the learning goals listed above. Each table 

depicts a progression, which weaves back and forth between the instructional activities 

and the envisioned learning route. Thus, to read each table, read it row by row, from left 

to right. Note, however, that this format is not meant to imply discrete chronological 

stages, wherein one stage must cease before the next begins. Rather, these are ongoing 

processes, which overlap chronologically. Tables 1, 2, and 3 depict the instructional 

activities and accompanying envisioned learning route for Goals 1, 2, and 3, respectively.  

 The rationales for the learning routes are rather involved. See Nickerson and 

Whitacre (2010) for more details. 

 This local instruction theory was developed in a previous classroom teaching 

experiment. The authors developed a conjectured local instruction theory, based on a 

review of the literature, together with previous experience teaching the mathematics 

content course. During the semester in which the teaching took place, and then in 

subsequent analysis, they revised and further elaborated the local instruction theory. 

Since then, the local instruction theory has been enacted informally in teaching but 
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Table 1. Route to Goal 1 (Table Adapted from Nickerson & Whitacre, 2010) 
Instructional Activities Envisioned Learning Route 

Instructor identifies and engineers 

opportunities for computational reasoning 

 

Students are invited to use computational 

reasoning and to reason quantitatively 

Many students initially rely on standard 

algorithms 

Students are invited to carry sense making 

to solutions with nonstandard strategies 

Students use their own nonstandard 

strategies 

Students solve problems mentally in a 

variety of contexts 

Students capitalize on opportunities to use 

number-sensible strategies 

 

Table 2. Route to Goal 2 (Table Adapted from Nickerson & Whitacre, 2010) 
Instructional Activities Envisioned Learning Route 

Instructor anticipates the nonstandard 

strategies that students might use 

 

Class negotiates records of strategies and 

initiates the practice of naming 

Students may initially name strategies in 

ways tied to specific examples 

Instructor and students negotiate 

differences and relative efficacy of 

strategies 

Students name strategies according to 

essential characteristics  

Instructor and students make strategies 

objects of discourse 

Students develop a repertoire of number 

sensible-strategies 
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Table 3. Route to Goal 3 (Table Adapted from Nickerson & Whitacre, 2010) 
Instructional Activities Envisioned Learning Route 

Instructor anticipates powerful models for 

reasoning 

 

Students are asked to explain why the 

strategies make sense 

Students begin to justify strategies 

meaningfully 

Instructor and students negotiate use of 

models-of shared strategies 

Students use models-of strategies to make 

sense of nonstandard strategies 

Students use familiar models-of as 

models-for reasoning 

Students develop the ability to reason with 

models 

 

formal data collection has not taken place. In this study, the local instruction theory 

guided instructional planning during the semester. Data were collected to afford detailed 

analyses of classroom events, as well the learning of particular students. Thus, the present 

study is not focused on instructional design, as was the previous one. Rather, the focus is 

on the genetic analysis of number sense development. 

 Having articulated a perspective regarding what it means to learn, and having 

designed an instructional approach with specific learning goals in mind, the next problem 

is that of analyzing the activity that takes place. 

Analysis of Collective Activity and Individual Learning 

 This section presents a review of literature involving the analysis of collective 

activity. Genetic analysis is described in greater detail, as is the interpretive framework of 

the emergent perspective. Special attention is given to the notions of emergent models 
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and classroom mathematical practices. Finally, two studies are discussed that attempted 

to account for the relationship between student learning and collective activity. 

Genetic Analysis 

 Saxe and colleagues have worked on the problem of analyzing the development of 

over time of meanings in relation to collective practices (Saxe, 1982, 2002; Saxe & 

Esmonde, 2005). These investigations involve three levels of analysis—ontogenesis, 

microgenesis, and sociogenesis. In order to elaborate on these three strands and to 

provide a paradigmatic case of genetic analysis, this subsections describes in some detail 

a set of studies conducted by Saxe and colleagues (Saxe, 1982; Saxe & Esmonde, 2005) 

concerning the mathematical practices of an isolated community in Papua New Guinea. 

 Saxe (1982) reported on the computational strategies of Oksapmin adults from 

remote villages in Papua New Guinea. The Oksapmin people used a numeration system 

in which parts of the body (and/or the words for those body parts) represented the 

numbers 1 to 27. Traditionally, these communities had no system of arithmetic. The 

numeration system had been used exclusively for counting. However, in recent years, 

currency had made its way into the community. Saxe examined the computational 

strategies that Oksapmin adults used for addition and subtraction tasks. He also compared 

the strategies used by different groups of adults, grouped according to the extent of their 

experience with exchanges involving currency (Saxe, 1982). 

 Saxe found that many of the interview subjects developed computational 

strategies analogous to those used by Western children. He also found that those adults 

who had more experience dealing with currency, particularly those who had opened trade 

stores, used more advanced computational strategies than other adults. These strategies, 
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too, were analogous to more advanced mental computation strategies used by (older) 

Western children and seemed to reflect a profound conceptual advance. For example, 

adults with less experience with currency performed addition by counting the first set of 

objects and then continuing the count for the second set. When physical objects were 

present to be counted, this procedure tended to be effective. However, without physical 

objects available, the subjects often arrived at incorrect answers due to difficulty in 

keeping track of when they should stop counting. The more advanced subjects were able 

to dissociate number words from body parts, as in counting on from one of the two given 

numbers. This process required referring to one body part by the name of another body 

part (Saxe, 1982).  

 In sum, Saxe (1982) found that the Oksapmin people used a numeration system 

very different from the base-ten system used in much of the world. Their capacity for 

arithmetic was quite limited. These limitations reflected a culture in which arithmetic had 

not been a traditional practice and a numeration system that had traditionally been used 

only for counting. At the same time, there was evidence that the advent of currency had 

created a need for arithmetic and had led certain members of the community to adapt the 

numeration system in novel ways in order to serve these purposes. 

 When Saxe and colleagues returned to Papua New Guinea in 2001, they found 

that the communities’ mathematical practices had changed. This change was signaled by 

a conspicuous difference in people’s use of a particular word: fu. As Saxe and Esmonde 

(2005) explain, two decades before, “fu with fists raised meant a completion of all 27 

body parts in a count” (p. 172). Now, the meaning of the word had changed so that “when 

preceded by a body part name, fu meant to double the value of the body part” (p. 172). 
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This development was surprising. Saxe (1982) had reported on a community in which 

arithmetic had not been a traditional practice and individuals’ facility with addition and 

subtraction tasks had been limited. At that time, arithmetic operations such as doubling 

were unheard of (Saxe & Esmonde, 2005). The change in the meaning of the word fu 

suggested that the mathematical practices of the Oksapmin community had changed 

dramatically in the past two decades. 

 Intrigued by their discovery, Saxe and colleagues sought to investigate the recent 

history of Oksapmin mathematics and, in particular, the process by which the meaning of 

the word fu had transformed. In examining the recent history of the Oksapmin people, the 

researchers partitioned the period 1940-2001 into three distinct subperiods of interest. 

This partitioning emphasized a transition from a subsistence economy to a cash economy. 

They examined records from each of these periods with a particular focus on the role of 

currency and other changes in the nature of the economy. Against the background of this 

general, historical record, the researchers sought to investigate the development of the 

usage of fu. 

 The investigation of the genetic roots of fu involved three major challenges: 

establishing (1) continuity of form, (2) transitional functions of the form, and (3) the 

organization of collective practices that support shifting relations between form and 

function (Saxe & Esmonde, 2005, pp. 188-189). That is, first, the researchers needed to 

establish that the word fu as used in the present day to indicate doubling was, in a genetic 

sense, the same word fu that had once been used to indicate completion of a count, as 

opposed to a sound-alike word of a different origin. Second, the researchers needed to 

identify distinct, transitional usages of the word fu that might represent landmarks in 
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developmental process. Finally, the researchers needed to identify cultural phenomena 

that would have supported the move from one of these landmarks to the next – that is, the 

transition from one meaning or function of fu to the next – in order to construct a viable 

account of the developmental process. 

 Saxe and Esmonde (2005) were able to address the above challenges and 

eventually to arrive at an evidence-based account of the development of fu. Evidence 

came from the coordination of the general economic/mathematical history of the 

Oksapmin with data from several sets of interviews involving stratified samples of the 

Oksapmin people. Comparisons of samples of individuals from different generations, as 

well as from more and less Westernized strata, revealed differences in the meaning(s) of 

fu across these groups. For example, for the elders, fu tended to denote the number 27 

(associated with the left pinky finger) and/or to have the general qualitative meaning of 

“plenty” or “complete.” For younger adults, by contrast, fu tended to mean 20, the 

number associated with the left elbow. How could the same word denote different 

numbers for these subgroups of the population? The researchers found that the influence 

of Australian currency in the economic history of the Oksapmin seemed to have 

introduced aspects of a base-ten numeration system, which became integrated with the 

native Oksapmin numeration system. In base ten, decade numbers represent complete 

sets of tens, and this may have led to the use of fu to denote the number twenty (Saxe & 

Esmonde, 2005). From there, fu may have taken on a more general meaning of two of 

something, and this meaning in turn may have led to the present-day doubling meaning. 

 The above is an extremely abbreviated version of the story of the development of 

fu, as described by Saxe and Esmonde (2005). The authors detail progressive shifts in the 
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usage of the term by painstakingly coordinating interview data and historical records. 

They create and revise hypotheses, performing additional interview studies in order to 

test or inform subsequent hypotheses. They arrive ultimately at an account of the 

development of fu that integrates microgenetic sociogenetic, and ontogenetic processes. 

On the level of microgensis, words such as fu are used in various cultural contexts on a 

day-to-day basis in interactions between Oksapmin people. On the sociogenetic level, 

patterns of usage of fu in particular types of social interactions, such as the exchange of 

money for goods, become collective practices. In terms of ontogenesis, differences in the 

meaning of fu across generations point to different developmental trajectories, whereby 

the initial meaning that the word has for a set of individuals inevitably informs their later 

interpretations or formulations of its use. 

 Although the story of the shift in the meaning of fu from a complete count to 

doubling can be extracted from the history, that story is not one of community-wide shifts 

from one homogeneous meaning to another. Rather, the authors found diversity in the 

meaning of the word throughout its history. In fact, this diversity seems to have been a 

powerful catalyst for the transitions in its usage, as individuals with different meanings 

for the word interacted in the context of everyday cultural practices, especially trade. 

Saxe and Esmonde (2005) note that no one person that they interviewed seemed to have 

access to the complete range of meanings of fu, let alone to the process by which its 

meanings had transformed over time. Rather, in going about their daily activities with 

their own meanings and intentions, each had contributed and continued to contribute to 

the simultaneous reproduction and transformation of cultural practices involving 
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occasions for the use of fu, and these had charted the course of the development of its 

meanings. 

 The work of Saxe and colleagues provides a paradigmatic example of genetic 

analysis. Saxe and Esmonde (2005) were able to account for the evolution of particular 

mathematical practices in the Oksapmin community. This example informs my thinking 

about the present study. At the same time, as discussed earlier, a classroom community is 

unique in many respects. As such, its analysis merits somewhat different methods and a 

particular interpretive framework. We now look to analyses of learning in mathematics 

classrooms. 

Individual and Social Lenses 

 The present study is informed by the perspective that learning is inherently 

situated in the social contexts in which it occurs (Cobb & Bowers, 1999). Furthermore, 

learning takes the form of increasing participation in a community of practice (Lave & 

Wenger, 1991). This perspective does not prohibit analyses of individual learning. On the 

contrary, the meanings that individual students develop relate to their ways of 

participating in the practices of the community (Bowers et al., 1999). 

 Cobb and Yackel (1996) offer both a perspective on learning and an interpretive 

framework for analyzing students’ learning in classroom settings. From the emergent 

perspective, learning is a complex process involving a reflexive relationship between 

individual and collective activity. The emergent perspective represents neither a purely 

social perspective nor an individual, psychological perspective, but rather an attempt to 

coordinate the two. This perspective is illustrated by the interpretive framework, which is 

depicted in Table 4.  
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Table 4. Cobb and Yackel’s (1996) interpretive framework (p. 177) 
Social Perspective Psychological Perspective 

Classroom social norms Beliefs about own role, others’ roles, and 

the general nature of mathematical activity 

in school 

Sociomathematical norms Mathematical beliefs and values 

Classroom mathematical practices Mathematical conceptions and activity 

 

 From the social perspective, the authors distinguish classroom social norms, 

sociomathematical norms, and classroom mathematical practices. Social norms for 

whole-class discussion include explaining and justifying solutions and indicating 

agreement or disagreement. Social norms are non-mathematical in the sense that the 

social norm that solutions should be justified does not entail specific criteria for 

mathematical justifications. Socio-mathematical norms, by contrast, refer to the 

normative aspects of whole-class discussions that are specific to students’ mathematical 

activity. Examples include “what counts as a different mathematical solution, a 

sophisticated mathematical solution, an efficient mathematical solution, and an 

acceptable mathematical explanation and justification” (Cobb, 2000, p. 323). Classroom 

mathematical practices refer to the accepted means of justification and explanation that 

develop within a classroom community (Cobb & Yackel, 1996). 

 Cobb and Yackel (1996) hypothesized correspondences between the social 

constructs in the left column of Table 4 and the psychological constructs in the right 

column. Each construct in the right column is posited to be the individual, psychological 
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correlate of the construct in the left cell of the same row. Thus, students’ beliefs about 

their role, others’ roles, and the general nature of mathematical activity in school are 

viewed as the psychological correlate of classroom social norms. Beliefs and values that 

are specifically mathematical are regarded as the psychological correlate of 

sociomathematical norms. Likewise, individual students’ mathematical conceptions and 

activity are seen as the psychological correlates of classroom mathematical practices.9 

Analysis of Collective Activity 

 This subsection concerns analysis of collective activity. This includes the 

constructs of as-if shared ideas and classroom mathematical practices, as well as two 

approaches to the analysis of these. Rasmussen and Stephan (2008) provide a useful 

definition of collective activity: 

We define collective activity as the normative ways of reasoning of a 
classroom community. We stress that collective activity is a social 
phenomenon in which mathematical or scientific ideas become established 
in the classroom community through patterns of interaction. (p. 195) 

The authors make an analogy to the behavior of a couple. A couple, such as a married 

couple, can be characterized as a unit. That is, the couple has certain characteristics that 

have to do with how the two individuals interact. The description of a couple in terms of 

the way that the pair interacts is distinct from descriptions of the individuals themselves 

or of their commonalities. It is a characterization of collective activity. 

                                                
9 Rasmussen and Stephan (2008) redefined classroom mathematical practices. Their definition, to 

which I subscribe, influences my thinking about this hypothesized correspondence. I would say that 
individual students’ conceptions correspond to as-if shared ideas. 
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Argumentation in analyses of classroom mathematical practices. Cobb and 

Yackel’s (1996) interpretive framework informs the present study. In particular, 

classroom mathematical practices and their hypothesized psychological correlate, 

students’ conceptions and activity, are of interest. This subsection presents a review of 

literature concerning classroom mathematical practices. To reiterate, the construct of 

classroom mathematical practices refers to the accepted means of justification and 

explanation that develop within a classroom community (Cobb & Yackel, 1996). 

 It is difficult to describe collective activity. In informal settings, people might 

freely attribute adjectives to couples or classroom communities. However, analyzing 

collective activity systematically presents challenges. In attributing a normative way of 

reasoning to a classroom community, a researcher is not making a claim about any one 

particular individual nor about all individuals that make up that community. Neither is the 

researcher making a claim about a certain proportion of the individuals that make up the 

community. Bowers and Nickerson (2001) address this issue in their discussion of a 

modal view of classroom research. A researcher taking a modal view might attribute ways 

of a reasoning to a community based on a quantitative criterion, say 80% of the class: If 

at least 80% of students behave in a particular way, then that way of reasoning is 

attributed to the class as a whole. The authors contrast this modal view with their own:  

we can distinguish between a process that identifies how the mode of the 
class is thinking or acting at any given time with our approach that 
involves creating a chronology of the interrelations among students’ views 
as they progress over time. In fact, those students who do not follow the 
developmental trajectory of the mode often add the spice and initiative 
needed to propel the evolution of new practices. (Bowers & Nickerson, 
2001, p. 3) 
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Thus, these authors make the point that a chronological characterization of the mode may 

not enable researchers to account for shifts in classroom mathematical practices. To 

second this point, Stephan, Cobb, and Gravemeijer (2003) highlighted the distinct ways 

in which particular students participated in emerging mathematical practices. Ultimately, 

one student’s interpretation, or way of participating in a practice, may become accepted, 

while another student’s interpretation is rejected. Nonetheless, each contributes to the 

negotiation of the classroom math practice. 

 Stephan et al. (2003) used Toulmin’s (1969) model of argumentation in their 

analysis of mathematical practices in a first-grade classroom. This model frames the 

anatomy of an argument as consisting of claim, evidence, warrant, and backing10. In a 

given argument, the claim is the assertion being made, or the conclusion that the person is 

drawing. The person provides evidence, or data, in support of that claim. The warrant of 

the argument explains how the evidence supports the claim. In the event that the warrant 

is questioned, backing is provided, which justifies the warrant. Not all of these elements 

need to be present in an argument. Claim, evidence, and warrant constitute the core of an 

argument, and are the three necessary components. Stephan et al. (2003) used Toulmin’s 

model to analyze students’ arguments and to provide operational criteria for the 

establishment of mathematical practices: 

As we see it, mathematical practices emerge during argumentations in 
which the participants provide new backings that shift the mathematical 
interpretations of the community to a new level. When backings for a 
particular interpretation drop out of the discussions or when alternative 

                                                
10 Toulmin (1969) also discussed rebuttal and qualification as elements of an argument, but these are 

not relevant to the present discussion since they do not tend to be used in analyses of classroom 
mathematical practices (e.g., Stephan & Rasmussen, 2002). 
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backings are contributed by a student and rejected by the community, we 
say that a mathematical practice has become established. (p. 73) 

By analyzing collective mathematical argumentation, Stephan et al. (2003) describe the 

process of negotiation by which each of several mathematical practices developed over 

the course of a teaching experiment. 

 A key construct in the analysis of mathematical practices is the notion of taken-

as-shared. According to Bowers et al. (1999), “taken-as-shared understandings refer to 

the collective knowing of the classroom community” (p. 44). We might think of these as 

the understandings behind, or connected to, classroom mathematical practices. Stephan 

and Rasmussen (2002) analyzed classroom mathematical practices in a different 

equations class. They articulated their operational definition for taken-as-shared as 

follows: 

We contend that mathematical ideas become taken-as-shared when either 
(1) the backings and/or warrants for an argumentation no longer appear in 
students’ explanations and therefore the mathematical idea expressed in 
the core of the argument stands as self-evident, or (2) any of the four parts 
of an argument (data, warrant, claim, backing) shift position (i.e., 
function) within subsequent arguments and are unchallenged. For 
example, when students used a previously justified claim as unchallenged 
justification (data, warrant or backing) for future arguments, we concluded 
that the mathematical idea expressed in the claim had become taken-as-
shared. When either of these instances occurred, no member of the 
community rejected the argumentation, and/or if the argumentation was 
rejected and the student’s rejection was rejected, we documented that the 
mathematical idea had become established. (p. 462) 

Stephan and Rasmussen (2002) documented the emergence and establishment of 

classroom mathematical practices in relation to particular mathematical ideas. They 

characterized classroom math practices in terms of sets of related ideas expressed and use 

in the context of certain mathematical activities. 
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 To clarify, for Stephan and Rasmussen (2002), a particular classroom math 

practice may involve several mathematical ideas. For example, in their analysis of a 

differential equations class, the authors identified the classroom mathematical practice of 

creating and structuring a slope field as it relates to predicting. This practice involved 

three distinct mathematical ideas concerning slopes and slope fields. One of these was 

invariance of slopes across time. This idea was introduced at one point during the 

semester and, as the authors document, later became taken-as-shared. Such ideas emerged 

as students participated in the activity of creating and structuring slope fields, and the 

ideas became taken-as-shared as the classroom mathematical practice became 

established. 

 In the analysis of classroom math practices described by Stephan et al. (2003), the 

authors found that “each practice grew out of practices previously established by the 

classroom community” (p. 100). That is, classroom mathematical practices developed 

sequentially, each building upon the previous. By contrast, Stephan and Rasmussen 

(2002) found that “[t]he emergence of classroom mathematical practices can be non-

sequential in both time and structure” (p. 486). Non-sequential in time means that 

classroom mathematical practices can emerge simultaneously. One classroom 

mathematical practice need not strictly succeed the previous practice. The emergence of 

classroom mathematical practices being non-sequential in structure means that taken-as-

shared mathematical ideas can contribute to more than one classroom mathematical 

practice. As the authors put it,  

taken-as-shared ideas do not have to always be viewed as an element of 
only one classroom mathematical practice—they may contribute to the 
emergence of other practices and form a network of practices instead of a 
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sequential chain of practices with distinct taken-as-shared ideas. (Stephan 
& Rasmussen, 2002, p. 487-488) 

 A final note concerning argumentation in analyses of classroom math practices: 

Although the reports cited have focused on the construct of classroom mathematical 

practices, social norms are nonetheless relevant. The inferences that researchers make in 

documenting the development of classroom math practices are dependent on 

characteristics of the classroom culture. In a class in which it is the norm for students to 

justify their statements mathematically, an inference can be made when a particular 

statement ceases to require justification; as in the examples cited above, the researchers 

could claim that a mathematical idea had become taken-as-shared. However, in a class in 

which mathematical justification occurs rarely or sporadically, such an inference would 

be unwarranted. Stephan and Rasmussen (2002) note that in classrooms in which students 

engage in mathematical argumentation, “the construct of a classroom mathematical 

practice is a way to document and characterize the learning of the classroom community” 

(p. 489). In classrooms with different norms, this may not be the case.11 

The transition from model-of to model-for. Although originally a design 

heuristic in RME, the model-of/model-for construct has also been used to describe  

collective activity after the fact. Researchers have used it describe shifts in activity that 

occurred as a classroom community transitioned from one mathematical practice to 

another. This subsection discusses how the model-of/model-for construct has been used 

                                                
11 Izsák et al. (2008) studied students’ learning in a rather traditional, teacher-centered classroom. For 

their purposes, they adapted the definition of classroom mathematical practice to account for the different 
set of norms that existed in the class. 



82 

 

to analyze collective activity. The particular meaning of the term model in these contexts 

is also addressed.  

 Bowers et al. (1999) describe the results of a teaching experiment concerning 

place value in a third-grade classroom. These results are presented in the form of five 

mathematical practices, which emerged in succession. The development of these 

practices is framed in terms of shifts in collective activity from model-of to model-for. 

These authors use particular models as their way of characterizing a mathematical 

practice. For example, they describe the second mathematical practice as follows: 

As [the students] participated in Mathematical Practice 2, they drew 
different arrangements that contained the same number of candies. These 
drawings constituted models of their informal activity. Although this 
modeling activity varied from student to student (i.e., separated 
arrangements, ordered arrangements, and charts containing numerals), it 
involved generating arrangements that the students could imagine packing 
up to the canonical form. (Bowers et al., 1999, p. 55) 

Thus, Mathematical Practice 2 is characterized on the basis of a common behavior, 

whereby drawings served as models-of students’ activity. The authors then use the shift 

from model-of to model-for as the defining characteristic of the transition to a new 

mathematical practice: 

The transition from Mathematical Practice 2 to Mathematical Practice 3 
involved a shift in the students’ ways of creating different arrangements 
from starting from scratch each time to starting by unpacking previous 
arrangements. In this transition, models of packing and unpacking became 
models for quantitative transformations. […] we believe that this indicates 
a critical reorganization in the classroom community’s collective activity. 
[…] although the instructional task of creating different arrangements was 
the same, the taken-as-shared way of creating and justifying solutions 
differed. (Bowers et al., 1999, p. 56) 
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Thus, the shift from model-of to model-for is the defining characteristic of the transition 

from Mathematical Practice 2 to Mathematical Practice 3. Students’ modeling behavior 

effectively defines these classroom mathematical practices. 

 Further discussion is called for concerning the meaning of the term model in the 

transition from model-of to model-for. Bowers et al. (1999) articulate an important 

distinction regarding the models that they discuss: 

it is important to stress that the microworlds themselves did not first serve 
as models of and then become models for. Instead, in the analysis we have 
presented, it was the students’ actions on boxes, rolls, and pieces as they 
used the microworlds that functioned as models. This distinction between 
the microworlds per se and the students’ activity with them differentiates 
the approach we have taken to instructional design from that involving 
what is sometimes called a modeling point of view. In this latter viewpoint, 
models are viewed as originating in initial, starting-point situations rather 
than in students’ ways of acting and reasoning with them. (p. 61) 

Thus, in Bowers et al.’s (1999) terms, tools such as a computer microworld or the empty 

number line are not themselves models. Rather, models are defined in terms of sets of 

actions. 

 In a recent paper, Zandieh and Rasmussen (2010) address the issue of how to 

define the model construct: 

we define models as student-generated ways of organizing their activity 
with observable and mental tools. By observable tools, we mean things in 
their environment, such as graphs, diagrams, explicitly stated definitions, 
physical objects, etc. By mental tools we mean the ways in which students 
think and reason as they solve problems – their mental organizing activity. 
We make no sharp distinction between the diversity of student reasoning 
and the things in their environment that afford and constrain their 
reasoning. (p. 58) 

The above definition further clarifies the use of the term model in the transition from 

model-of to model-for. Whereas, Bowers et al. (1999) defined models as sets of actions, 
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Zandieh and Rasmussen’s (2010) definition highlights the point that modeling is a 

meaning-making activity. This definition locates models not in the actions themselves but 

in students’ “ways of organizing their activity,” which include those actions. 

Furthermore, these actions involve tools that may be observable and/or mental. 

 The above definitions of Bowers et al. (1999) and Zandieh and Rasmussen (2010) 

are not mutually exclusive. On the contrary, the latter adds clarity to the former. The 

above perspective (which is to say the two definitions taken together) concerning models 

informs this study. Thus, throughout this document, language such as an “empty number 

line model,” does not refer to the empty number line, which is a familiar (observable) 

mathematical tool. Rather, it refers to student-generated ways of organizing their activity 

with that tool. Note that this definition allows for multiple, distinct empty number line 

models. 

 To make an analogy, a hammer is a tool. Combing one’s hair with a hammer 

would be an unconventional way of using that tool. There are various more appropriate 

ways of using hammers, such as for pounding nails into wood and for prying nails out of 

wood. The set of actions that a person performs with a hammer reflect a certain way of 

organizing his or her activity with that tool. That is, this set of actions reflects what we 

might call a hammer model. This model would include recognition of the hammer as a 

tool that has certain purposes, such as pounding nails into wood. It would also include 

details of how the tool is to be used. For example, when using it for pounding, one should 

be careful not to pound one’s fingers. Appropriate finger positioning and care, then, 

would be part of a typical hammer model. 
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 The shift from model-of to model-for has been described as issuing in a “new 

mathematical reality” (Gravemeijer, 1999; Zandieh & Rasmussen, 2010). The new model 

opens up new possibilities for action. This notion fits well with the environment 

metaphor. When one perceives new affordances, as in new possibilities for making use of 

resources in the environment, the environment itself has effectively been transformed. 

Accounting for gesturing in analyses of classroom mathematical practices. 

Beyond analyses using Toulmin’s model and those concerning models of and for, 

gesturing has also been considered in analyzing the evolution of classroom math 

practices. Rasmussen, Stephan, and Allen (2004) incorporated the analysis of gesturing 

into a previous analysis of classroom math practices in a differential equations course 

(Stephan & Rasmussen, 2002). This approach made a novel contribution to the study of 

classroom math practices by analyzing gesturing, and it made a contribution to the 

literature on gesture by examining it as a collective phenomenon. In taking their approach 

to the analysis of classroom math practices, the authors use the term gesturing, as 

opposed to gesture, in order to emphasize the fact that gesturing is a human activity. 

 Rasmussen et al.’s (2004) analysis led to the identification of gesturing/ 

argumentation dyads, which are “instance[s] of classroom talk in which a mathematical 

idea is expressed along with gesturing” (p. 311). The authors found that a 

gesturing/argumentation dyad can emerge during the establishment of one or more taken-

as-shared ideas within a given practice. Furthermore, a gesturing/argumentation dyad 

could shift function to support the establishment of ideas across other practices. The 

authors illustrate how the use of a particular way of gesturing, which they called “SLOPE 

SHIFTING,” evolved. This way of gesturing first appeared in a student group, then was 
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introduced into whole-class discussion and was adopted by the instructor. It was then was 

used by other students, eventually shifting its argumentative role from claim to data in the 

same way that mathematical ideas shift argumentative roles (Rasmussen et al., 2004). 

 Rasmussen et al. (2004) analyzed gesturing retrospectively and then integrated the 

results of the analysis with the results of a previous analysis of classroom math practices. 

The authors suggested that attention to gesturing could be incorporated into initial 

analyses of classroom math practices. 

Summary of analyses of classroom mathematical practices. In summary, 

researchers have used Toulmin’s (1969) model of argumentation in analyses of collective  

activity. Through the use of this model, researchers have operationalized the constructs of 

taken-as-shared and classroom mathematical practice. This method of analysis takes 

justification as the key criterion in establishing that a mathematical idea is taken-as-

shared status. Multiple taken-as-shared ideas may contribute to a single classroom math 

practice or to more than one classroom math practice. Classroom math practices may 

emerge sequentially or non-sequentially in both time and structure. In addition to taken-

as-shared mathematical ideas, the notion of model-of and model-for has framed analyses 

of the emergence of classroom mathematical practices. More recently, gesturing has also 

been integrated into these analyses. 

Coordinating Individual and Social Lenses 

 Cobb and Yackel (1996) suggested the coordination of the individual and social 

lenses of the interpretive framework and hypothesized correspondences between 

constructs. However, they did not articulate a methodology for coordinating analyses of 

individual students’ learning with analyses of collective activity. Exactly how such 
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coordination can be accomplished is an open question in educational research (and not a 

question that the present study is meant to answer). A few recent reports offer ways of 

approaching the task (Izsák, Tillema, & Tunç-Pekkan, 2008; Lobato, Ellis, & Muñoz, 

2003). The study Izsák et al. (2008), which was briefly described earlier, provides an 

example. 

 Recall that Izsák et al. (2008) present an account of a student named Sonya’s 

interpretations of number-line representations of fractions. Sonya’s teacher used a routine 

of making tick marks to draw number lines, consistently proceeding from left to right by 

eyeballing the size of the intervals. In those instances when her estimates were off, the 

teacher would erase the 1 and relocate it. The teacher also talked about numbers such as 1 

as “benchmarks” and used this language in the context of estimating locations of numbers 

on number lines. 

 Sonya interpreted fractions as pairs of whole numbers denoting “n out of m.” For 

example, she used two different-sized fraction strips to represent 1/2 (one out of two 

pieces) and 1/3 (one out of three pieces). She also came to interpret “benchmarks” such 

as 1 as “estimates,” rather than exact values or locations. This may have been due to an 

unintended interpretation of the language the teacher had used. In an interview, Sonya 

labeled 6/6 and 1 as distinct locations on a number-line drawing and did not find this 

unproblematic. The authors argue that Sonya’s n-out-of-m conception and her notion of 

benchmarks as estimates, together with the teacher’s routine of fudging the location of 1, 

enabled Sonya to treat 1 as though its location was not fixed (Izsák et al., 2008). 

 Thus, the authors’ account coordinates the conceptions that Sonya brought with 

her to instruction, together with routine and endorsed ways of using tools and language in 
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classroom activity, and Sonya’s subsequent interpretations of mathematical ideas and 

tool-use related to that classroom activity. This coordinated analysis enables the authors 

to describe how Sonya’s conceptions may have interacted with the classroom activities, 

thus producing a plausible account of the effects of the classroom instruction on Sonya’s 

understanding of fractions and number-line representations. This account amounts to a 

process explanation (Maxwell, 2005) for how Sonya came to behave mathematically in 

the way that she did (e.g., locating 6/6 and 1 separately). It bears similarities to Saxe and 

Esmonde’s (2005) account of the evolution of the meaning of fu in the Oksapmin 

community, except that Saxe and Esmonde sought an explanation for a community-level 

phenomenon, rather than the behavior of a particular individual. 

Summary of Analysis of Collective Activity and Individual Learning 

 Genetic analysis and the interpretive framework of the emergent perspective offer 

useful and compatible approaches for the study of collective activity and individual 

learning. Genetic analysis consists of microgenetic, sociogenetic, and ontogenetic 

strands, which together contribute to an account of development. The interpretive 

framework highlights classroom mathematical practices and individual students’ 

conceptions and activity and posits a correspondence between these. Classroom math 

practices describe sets of taken-as-shared ideas related to particular mathematical 

activities. These have been analyzed in terms of argumentation and models of and for. 

The work of Izsák et al. (2008) provides an example of the coordination of analyses of 

classroom activity and individual students’ conceptions and activity. 
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Summary of Literature Review 

 This study concerns the activity and learning of prospective elementary teachers 

in a mathematics content course that is designed to support their development of number 

sense. This phenomenon is viewed from a situated perspective. From this perspective, the 

nature of the classroom culture and activity profoundly influence students’ learning. The 

normative ways of reasoning that evolve in the classroom community characterize 

important aspects of the collective activity. These normative ways of reasoning can be 

described in terms of classroom mathematical practices that emerge and become 

established. Individual students participate in the classroom math practices in distinct 

ways, which relate to their mathematical conceptions and to their interpretations of 

classroom activity. 

 Prospective elementary teachers come to mathematics content courses with 

extensive familiarity with the numerical representations and operations involved in 

elementary mathematics. At the same time, their understanding of the domain tends to be 

bound to the standard algorithms, so that they behave inflexibly. Rather than perceive a 

bounty of affordances based on the properties of numbers and operations, these students 

tend to be constrained by the superficial characteristics of the numerals and algorithms 

themselves. The construct of number sense grasps at the contrast between procedural 

competence and flexibility that is grounded in the perception of a mathematical 

environment with features analogous to the properties of numbers and operations. 

 Whole-number sense manifests in flexible mental computation, which is 

distinguished by the tendency to make an informed, purposeful choice of strategy. The 

strategies used by skilled, flexible mental calculators depend on the particular numbers 
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and operation at hand, so that they tend not to resemble mental analogues of the standard 

algorithms. 

 Useful strategies and tools are employed in flexible computational reasoning. 

However, direct instruction in the use of these cannot equip students to navigate a 

mathematical environment in the manner of an experienced, knowledgeable resident. 

One’s own road map of the environment develops through exploration and 

experimentation in the service of authentic, goal-oriented activity. This learning process 

is facilitated by communication with peers and more knowledgeable others regarding 

both common and disparate experiences. 

 Accounting for number sense development involves microgenetic, sociogenetic, 

and ontogenetic strands of analysis. Microgenesis concerns instances of mathematical 

activity. Sociogenesis concerns the evolution over time of collective activity. Ontogenesis 

concerns the evolution over time of individual students’ conceptions as students engage 

in the practices of the classroom community and reflect individually on these activities.
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Chapter 3: Methods 

 In this chapter, I describe the design of the study. I discuss the data collection and 

analytic methods, as well as the relevance of these to the research questions. I also 

address issues of validity and reliability. 

Introduction 

 Saxe and colleagues found a striking contrast in the use of the word fu by the 

Oksapmin people from field studies done in 1978 and 1980 versus a return trip in 2001. 

Like detectives, they then sought to reconstruct the story of the developmental process by 

which that changed had occurred (Saxe & Esmonde, 2005). This investigation required 

the coordination of interview data, cultural artifacts, and various historical records. The 

evidence pointed researchers to the increasingly central role of currency in the 

community: Social interactions involving monetary exchange had necessitated new 

arithmetic practices. This fact helped researchers to knit together an account of a gradual 

and complex developmental process. 

 Evidence from a previous study with prospective elementary teachers enrolled in 

a specially designed mathematics content course suggested that their number sense 

improved significantly in the span of a single semester. There was a statistically 

significant increase in students’ scores on an established quantitative measure of number 

sense (Whitacre, 2006). Furthermore, interview participants shifted from inflexible to 

flexible in mental computation, and their preferred strategies shifted from standard to 

nonstandard (Whitacre, 2007; Whitacre & Nickerson, 2006). Each of these three changes 

indicated improved number sense (Heirdsfield & Cooper, 2004; Markovits & Sowder,
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1994; Yang, 2003). Having identified a setting in which prospective elementary teachers’ 

number sense improved, I set out to investigate number sense development. 

 In contrast to Saxe and Esmonde (2005), my interest did not lie in the particular 

group of people that was studied previously. On the contrary, I was interested in the 

phenomenon of prospective teachers’ number sense development. As such, I studied 

number sense development in the mathematics content course, as taught by an 

experienced instructor in Fall Semester 2010. The instructional approach was guided by 

the local instruction theory that Nickerson and I developed in our previous work 

(Nickerson & Whitacre, 2010). As such, I expected similar improvements in students’ 

number sense. The study was designed so that the data collected and the methods of 

analysis would afford genetic analysis of number sense development. 

Overview of Research Design 

 In this chapter, I describe the overall design of the study. In the sections that 

follow, I elaborate on the details of the design. 

Setting and Participants 

 The setting for this study was a naturalistic classroom: one section of a first 

mathematics content course for prospective elementary teachers at a large urban 

university in the southwestern United States. The instructor for the course was a 

mathematics educator. She was an experienced instructor of mathematics courses for 

prospective teachers. All 39 students enrolled in the course were invited to participate in 

the study. The vast majority of the students were female Liberal Studies majors in their 

freshman or sophomore year. A total of 34 students completed survey instruments both 
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pre and post. Seven of the students participated in interviews. The interview participants 

were all female undergraduates. 

Research Questions 

 Before discussing the data corpus and methods, I restate my research questions: 

As prospective elementary teachers participate in a mathematics content course designed 

to support their development of number sense, 

1. How does the number sense of individuals evolve? 

2. What ideas come to function as if shared? What classroom mathematical practices 

emerge and become established? 

Cobb and Yackel (1996) hypothesized correspondences between the social constructs and 

the psychological constructs of the interpretive framework. Given Rasmussen and 

Stephan’s (2008) redefinition of classroom mathematical practices as consisting of sets of 

as-if shared ideas, I view individual students’ mathematical conceptions as the 

psychological correlates of as-if shared ideas. The focus of the analysis was number sense 

development on these two levels, i.e., as both an ontogenetic and a sociogenetic 

phenomenon. 

 This study consisted of several phases of analysis: Assessing Change, 

Microgenetic Analysis, Sociogenetic Analysis, and Ontogenetic Analysis. I assessed 

change in the prospective teachers’ number sense using established pre/post measures, 

including interviews with seven of them. Pre/post results informed the selection of two 

case study students from amongst the interview participants. The microgenetic analysis 

involved classroom data and individual data. The products of this analysis became the 

data that was analyzed in the sociogenetic and ontogenetic phases. The products of the 



94 

 

sociogenetic phase informed the ontogenetic analysis in the sense of pointing to ideas of 

interest. The assessment of change also informed the ontogenetic analysis in that the 

pre/post snapshots were conceived as landmark points in developmental trajectories.  

 This study fit within the tradition of number sense research by employing 

established quantitative and qualitative methods for the analysis of number sense. It also 

extended previous research by analyzing the development of number sense through the 

lens of genetic analysis. 

Data Corpus and Data Reduction 

 The following data were collected for the purposes of the present study: 

• Audio/video recordings of whole-class discussions from 14 class sessions 

• Still images of selected class work 

• Field notes from all class sessions 

• Written notes from meetings with the instructor 

• Audio/video recordings and field notes from multiple interviews 7 of the students 

• Copies of students’ homework assignments and exam items related to mental 

computation 

• Students’ responses to a survey instrument, the Number Sense Rating Scale (Hsu 

et al., 2001), which was administered as a pre/post assessment of students’ 

number sense 

• Students’ responses to the Student Preference Survey (McIntosh, Bana, & Farrell, 

1995), which was modified to match the mental computation tasks used in 

interviews 

Below, I describe each data source. 
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Classroom data. The course can be described as consisting of two major parts. 

The first part focused on the whole-number domain, and the second on rational numbers. 

This study analyzed students’ number sense development with a whole-number focus. 

Within the whole-number portion of the course, the following major topics were 

addressed: quantitative reasoning, place value, meanings for operations, ways of 

performing operations, and children’s mathematical thinking. Video recording began on 

Day 2. A total of 14 class sessions were videorecorded for the purposes of this study.  

Interview data and written work. The Number Sense Rating Scale (NSRS) and 

Student Preference Survey (SPS) were administered as pre/post assessments of students’ 

number sense. Seven students agreed to participate in whole-number interviews. A total 

of three whole-number interviews were conducted with each student. The first was a pre-

assessment of the participants’ number sense, which focused on mental computation. The 

second was a post-assessment, which used the same tasks as the first. The third interview 

served to investigate participants’ interpretations of particular sets of ideas from class, as 

well as to invite participants to reflect on their experiences in the class. The data from 

these interviews was analyzed only for the case study students. The case study students 

were selected from amongst the interview participants after all data collection and some 

initial analyses had been completed. Copies of students’ written work were collected, but 

only the case study students’ work was analyzed. 

Preparation 

 This study was informed by previous research, notably research in a similar class 

for my Master’s thesis. In the previous study, I analyzed mental computation interviews 

similar to those used in the present study. The analysis focused on shifts in flexibility and 
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distribution of strategies. I also prepared for the present study by conducting pilot 

interviews. I interviewed six preservice elementary teachers12 and made revisions to the 

mental-computation interview protocol based on the results of the pilot interviews. 

 Also in preparation for the study, the instructor and I met to discuss instructional 

planning. The local instruction theory guided the instructional approach broadly. 

Thoughtful lesson planning in response to students’ thinking was, of course, still 

required. The instructor and I identified opportunities in the curriculum for authentic 

activity in service of our instructional goals. We engaged in thought experiments, 

informed by prior teaching, anticipating how the learning might progress, and discussing 

various contingencies. We met about the planning of each lesson. We also met after class 

to reflect on lessons and discuss possible next steps. This careful planning and reflection 

is essential to the design research process (Gravemeijer, 1994). 

Data Collection 

 In this section, I describe the data that was collected and the specific methods of 

its collection. I also relate each data source to the research question(s) that it addresses. I 

present these in more or less chronological order of data collection.  

 On the first day of class, I recruited students to participate in the study. Three 

levels of participation were offered: (1) consent for surveys and copies of other written 

work to be analyzed for research purposes, (2) consent to be videotaped while in class, 

and (3) participation in interviews, with consent that interview data can be analyzed for 

research purposes.  

                                                
12 For the pilot interviews, I used individuals who had completed their undergraduate mathematics 

courses and were entering or planning to enter a credential program. 
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Number Sense Rating Scale 

 I administered the NSRS to all students in attendance on the second day of class 

and on the second-to-last day of class. This was used as a pre/post measure of students’ 

number sense (Hsu et al., 2001). The NSRS is a multiple-choice test, which was 

originally designed to assess the number sense of middle school students. Participants 

were instructed to answer the test questions mentally. The NSRS is not intended to be a 

test of procedural knowledge, but of number sense. Disallowing written work is meant to 

force students to use approaches other than the standard written algorithms, and thus to 

tap their number sense. One student asked whether using her fingers counted as solving 

problems mentally. I answered that using fingers was okay, although there probably 

would not be much opportunity for it. Students were allowed approximately 20 minutes 

to complete the NSRS.  

 The results of the posttest, compared to those of the pretest, provided one way of 

analyzing students’ learning over the course of the semester. Gain scores on the NSRS 

are one way of assessing change in students’ number sense (Yang, 2003) and, therefore, 

contribute to answering Research Question 1. 

Student Preference Survey 

 A second pre/post survey was used as a supplementary data source. The Student 

Preference Survey (McIntosh et al., 1995) asks students to indicate whether or not they 

would perform a computation mentally, as opposed to with written work or calculator. I 

modified the set of computations on the survey to match those that participants were 

asked to perform in the mental-computation interviews. For purposes that extend beyond 

the present study, fraction comparison tasks were also added to the survey to assess 
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students’ preferences regarding performing those mentally. The modified instrument 

appears in Appendix 2. 

Interviews 

 I conducted three whole-number interviews with each of the seven interview 

participants. The first interviews were completed within the first three weeks of the 

semester. The second interviews took place at mid-semester, after the end of the whole-

number portion of the course. The third interviews took place approximately one week 

after the second interviews. 

 Two types of semi-structured (Rubin & Rubin, 1995) interviews were conducted. 

Mental Computation Interviews involved mental computation and other tasks designed to 

investigate the participants’ whole-number sense. Standout Strategies and Tools 

Interviews concerned students’ interpretations and understandings related to particular 

strategies and representational tools that were used in class. I describe each particular 

interview in what follows. 

Mental computation interviews. The first and second interviews included sets of 

whole-number mental computation tasks. Each of these tasks required one of the four  

basic operations. The tasks used were single-step story problems in a real-world context. 

These were preferred for the purposes of the study over naked-number arithmetic tasks 

since story problems are more likely to elicit nonstandard computational strategies 

(Carraher et al., 1987). For each story problem, participants were asked to solve it 

mentally and to describe their thinking. The specific set of tasks was a revised version of 

those that I used in my Master’s study (Whitacre, 2006). These appear in Appendix 3. 
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 For each of the four operations, participants were given four specific problems to 

be solved mentally. The same story was used for each problem, with different number 

substituted into it. The pairs of numbers were carefully selected for the protocol on the 

basis of their affordances. For example, numbers for addition were selected on the basis 

of whether or not regrouping was required and whether or not obvious benchmarks, like 

99, or possible benchmarks, like 96, were involved. The problems were ordered such that 

strategies specific to one problem would be least likely to influence approaches to 

subsequent problems. So, for example, problems involving obvious benchmarks were 

given last. The particular numbers used and ordering were piloted in interviews with 

preservice teachers. 

 The first and second interviews also included Numeration Tasks and Operations 

Tasks. The numeration tasks were designed to investigate the participants’ conceptions of 

number composition apart from the context of mental computation. The Operations tasks 

were designed to investigate how the participants understood the standard written 

algorithms for addition, subtraction, multiplication, and division. 

 In the Numeration tasks, participants were asked a set of questions that related to 

place value and number composition. For example, participants were asked to fill in the 

blanks in “The number 63 is made up of __ tens and __ ones.” After the first response, 

participants were asked for other possible answers to this question. The intention of the 

question was to investigate whether participants could see numbers as consisting of tens 

and ones in different ones. (Some answered 6 tens and 3 ones, then 5 tens and 13 ones, 4 

tens and 23 ones, etc.) This understanding was of interest primarily because of its 
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relationship to regrouping in the standard addition and subtraction algorithms. The 

complete protocol for the Numeration tasks appears in Appendix 4. 

 In the Operations tasks, participants were asked to enact the standard addition, 

subtraction, multiplication, and division algorithms and to justify the details of the 

algorithms. Addition and subtraction were paired, so that questions could be asked that 

compared the two algorithms, especially the meaning of carried and borrowed 1’s. These 

were adapted from the Ones Task used by Philipp, Schapelle, Siegfried, Jacobs, and 

Lamb (2008) and by Thanheiser (2009, 2010). The multiplication and division tasks were 

similar in nature, although they did not include a comparative element. The protocol for 

the Operations tasks appears in Appendix 5. 

Standout strategies and tools interviews. The third interviews provided 

opportunities to gather additional data concerning the interview participants’ reasoning 

about whole-number operations. By the time of the second interview, several different 

mental computation strategies had been shared, discussed, and named by the class. I 

identified strategies that had been justified on the basis of what seemed to be as-if shared 

ideas for the classroom community. By mid-semester, I had not yet had the opportunity to 

do the sort of rigorous analysis required to establish whether ideas functioned as-if 

shared. I identified standout strategies as a subset of the nonstandard strategies that had 

been shared and discussed in class and that were of particular interest in terms of 

students’ learning (especially strategies that prospective elementary teachers do not 

typically use and that require new understandings). 

 There were also particular tools that stood out by mid-semester as having been 

involved in students’ sense making relevant to mental computation. Specifically, use of 
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the empty number line seemed to be integral to advancement in students’ reasoning about 

subtraction. Similarly, rectangular area stood out as integral to the advancement of 

students’ reasoning about multiplication. The empty number line and rectangular area 

were regarded as standout tools. In the SST interviews, I investigated how participants 

used and interpreted these.  

 Prior to each SST interview, I reviewed the participant’s first and second 

interview responses to identify adopted strategies and other particular topics of interest. 

Thus, the content of these interviews varied somewhat by participant. They were 

effectively interviews concerning both strategies and tools that stood out from class (from 

my perspective) and strategies that seemed to stand out to the individual participant. 

 In the SST interviews, participants were posed tasks and questions concerning 

standout strategies and tools related to mental computation. Examples of standout 

strategies were presented to the interviewee verbally as another student’s work (e.g., 

“Jamie wanted to calculate 142 – 57. He subtracted 2 from both numbers to get 140 – 55. 

Then he was able to tell that the answer was 85.”). The interviewee was asked a set of 

questions concerning standout strategies. 

 I asked the following main questions concerning strategies: 

• Does this strategy make sense to you? Why or why not? 

• Is this a strategy that you use, yourself? If so, please say more. If not, any reason 

why? 

I asked follow-up questions aimed at better understanding the participants’ reasoning. 

 I also asked questions pertaining to the standout tools. These questions were 

designed to investigate how the interview participants interpreted the standout tools and 



102 

 

whether and how they would reason differently about the operations when using the 

tools. The particular kinds of questions asked were the following: 

• How would you record this student’s work? (e.g., Jamie’s strategy above) 

• Explain in detail how your drawing represents this person’s work. 

• In your opinion, does that drawing capture the idea behind the person’s strategy? 

• Are there other ways to model the student’s work? 

• Would it make sense to model her strategy this way instead? (Interviewer presents 

alternative drawing.) Why or why not? 

The intention of these tasks and questions was to investigate individual students’ 

conceptions related to what would likely by as-if shared ideas (Rasmussen & Stephan, 

2008). Different students reason with as-if shared ideas in different ways (Bowers et al., 

1999). These interviews were designed to provide evidence of individual students’ 

interpretations and conceptions that relate to classroom math practices. I viewed the SST 

interviews as analogous to the interviews described by Saxe and Esmonde (2005) in 

which Oksapmin people were asked about the meaning of the word fu. People from 

different cohorts had different meanings for the word, which the researchers could 

account for based on the people’s backgrounds and the ways in which they had 

encountered its use. At the same time, people from different cohorts could interact and 

understand one another, despite interpreting the word in distinct ways. 

Interview particulars. Interviews took place in private rooms on campus. Some 

were conducted in a conference room. Others were held in a faculty member’s office. All  

interviews were audio and video recorded. In the mental computation interviews, 

participants were presented with each task, one by one, verbally. The numbers involved 
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in the story problems were shown to the participant in written form so that the participant 

would not need to hold them in short-term memory during the computation (Hope & 

Sherrill, 1987). In the standout strategies and tools interviews, tasks were presented in 

written and/or verbal form, depending on the particular task. Strategies were always 

described verbally. If working at the chalkboard or whiteboard, the students would record 

details of the strategy on the board. If the participant was seated, I would repeat the 

information as needed. 

 In the mental-computation interviews, participants were asked questions of three 

types: main questions, probes, and follow-up questions (Rubin & Rubin, 1995). The main 

questions were the mental computation tasks described above. Interviewee’s responses to 

these consisted of the solution processes that they described. When it was necessary, I 

probed for clarification of the details of those processes. For example, “Which did you 

add first, 20 and 50, or 3 and 4?” Follow-up questions in the computational reasoning 

interviews took the form of requests for justification. For example, if an interviewee 

solved 142 - 57 by treating the computation as 140 - 55 instead, I asked why that 

computation would give the same results as the given one, e.g., “Why can you subtract 2 

from each number?” In my note taking, I thought in terms of the interviewee articulating 

an argument, and I looked for each component of the argument to be there. In these 

terms, the follow-up questions constituted requests for backing (Toulmin, 1969). 

 The intent of the probes and follow-up questions was to clarify the nature of the 

computational steps performed and to investigate whether and how the interviewees 

could justify their strategies mathematically. I refrained from asking questions 

concerning mental processes that might not be known to the interviewees. For example, I 
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did not ask questions like, “Why did you decide to do that one differently?” Such 

questions might have led subjects to invent answers, rather than give accurate reports 

(Ericsson & Simon, 1993). They might also have influenced interviewees’ strategy 

selection in subsequent tasks.  

 In the case of the Standout Strategies and Tools Interviews, the main questions 

were those provided in the bulleted lists above. Probes concerned the particular details of 

an interviewee’s interpretation of a standout strategy or way of using a standout tool. For 

example, “What does it mean when you draw that arrow from 37 to 100?” Follow-up 

questions typically took the form of why questions, such as “Why do you go to the left 

when you subtract?” 

Relevance of interviews to research questions. The mental computation 

interviews afforded analyses of change in participants’ computational reasoning. As 

discussed in the literature review, mental computation of whole numbers is seen as a 

microcosm of whole-number sense. In this way, changes in participants’ activity when 

solving these interview tasks speak to changes in their number sense. As such, these data 

help me to answer Research Question 1 by assessing change in students’ number sense. 

This data also contributed to the analysis of the ontogenetic strand of number sense 

development by providing the beginning and ending points of the case study students’ 

developmental trajectories. 

 The standout strategies and tools interviews provide data concerning students’ 

interpretations and understandings of particular strategies and ways of representing 

student reasoning that become normative in the classroom community. Based on the 

hypothesized correspondence between students’ conceptions and as-if shared ideas, I 
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expected that this data would be useful in the ontogenetic analyses of case study students’ 

number sense development. 

Classroom Data 

 The class took place in a technologically advanced classroom. The technology 

served both instruction and data collection purposes. In particular, the classroom was 

equipped with the following: two walls of whiteboards; a “smart station” including an 

instructor computer, a connection for a laptop computer, and an external document 

camera; a smart board; eight small whiteboards; and a collection of student laptops. The 

instructor’s computer and document camera were used to project images onto either of 

two projector screens. The classroom contained eight student tables, and four or five 

students were typically seated at each table. This seating arrangement facilitated 

communication within groups, which was conducive to the kind of classroom culture in 

which students developed solutions and explanations and often presented these to the 

class. Each group had a small whiteboard. These facilitated collaborative group work and 

were often used by students to prepare and present their group’s work to the whole class. 

The whiteboards also made it easy for me to capture still images of group work.  

 Classroom data included audio/video recordings, still photos taken with a digital 

camera, and hard copies of selected student work. Three video cameras were used to 

record classroom activity. There was a built-in video camera situated in a fixed location 

in the corner of the classroom. A graduate student operated this camera and was 

responsible for following the instructor throughout the class period. There was also a 

digital video camera, which was positioned on a tripod within the classroom. Another 

graduate student operated this camera and was responsible for filming students. During 
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group work, this camera focused on two groups. During whole-class discussion, it 

focused on the students participating in the discussion. The third camera was a Flip video 

camera, which was hand-held and portable. I operated the Flip camera. During group 

work, I used this camera to survey students’ work and conversations. During whole-class 

discussion, I used it to capture interactions from angles that were not available to the 

other cameras. 

 As Roschelle (2000) points out, “video is a constructed artifact,” as opposed to an 

objective record (p. 709). The choices that a researcher makes in collecting video have 

implications for the study. It was a priority in filming to capture a wide-framed restored 

view of classroom activity, as opposed to a narrow-framed deleted view (Hall, 2000). A 

restored view records people’s activity in the physical and social circumstances in which 

it occurs. It enables the research to see, for example, the activity of a person’s hands as 

part of the activity of her whole body, and the activity of her whole body in the context of 

interaction with materials and communication with other people. A deleted view, by 

contrast, isolates hands from whole bodies, heads from bodies, speakers from 

interlocutors, and so on (Hall, 2000). This focus was consistent with the situated 

perspective that I brought to the analysis of classroom activity (Cobb & Bowers, 1999). 

At the same time, close-up images of students’ written work were collected and proved 

valuable. These were obtained via digital photos, as well as from the video recordings. 

All such image files were named according to the day of class, activity, and students. 

 When I was not recording video with the Flip camera, I took field notes on my 

laptop computer. Bogdan and Biklen (2007) describe field notes as “the written account 

of what the researcher hears, sees, experiences, and thinks in the course of collecting and 
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reflecting on the data in a qualitative study” (p. 119). These are distinct from memos, 

which consists of more in-depth thoughts about an event, usually written after leaving the 

field (Corbin & Strauss, 2008). I used field notes to record my thoughts about events that 

stood out from each day of class. These were useful in conversations with the instructor 

after each class meeting. They also helped me to reorient to the classroom activity and 

phenomena of interest when it came to analyzing the data. 

 The classroom data afforded analyses of mathematical argumentation during 

whole-class discussion. The particular methodology that was used will be discussed in 

the next section. The classroom data was analyzed for the purposes of addressing 

Research Question 2. These data enabled me to analyze the microgenetic and 

sociogenetic strands of number sense development. 

Students’ Written Work 

 Students’ written work of interest will take a few different forms. I describe each 

of these in the subsections that follow. 

Strategy reflection assignments. The instructor and I collaborated on homework 

assignments that both served our instructional goals and provided useful data sources. A  

common type of assignment that was relevant to the analysis was strategy reflections. 

After a strategy had been discussed in class, students were often given a homework 

assignment that involved reflecting on the strategy. The details of these assignments 

varied. Students were sometimes asked to discuss their understanding of the strategy, to 

apply it to a new problem, to draw a picture to represent the strategy, or to suggest a 

name for the strategy and to provide a rationale for the suggested name.  
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 These assignments were useful to the instructor because they gave her additional 

access to students’ reasoning concerning strategies discussed in class. I made direct use 

of this data in the analyses of case studies. These assignments provided crucial 

information concerning case study students’ reasoning about standout strategies at points 

in between the interviews. As such, this data helped me to study the ontogenetic strand of 

number sense development in service of addressing Research Question 1. 

Computational reasoning journals. Students were periodically assigned to 

describe instances of their mental computation activity done outside of class. They 

described the setting in which the activity took place, the particular computation 

performed, and how it was performed. Students described their reasoning with number 

sentences, drawings, and written explanations. Students were occasionally asked whether 

the strategy described was on that they had used before, whether it related to a strategy 

from class, etc. 

 These journals provided additional data that was useful for the purposes of the 

case studies. They provide examples of strategies used by students on tasks that were 

very open. They chose which instance of mental computation activity to write about, so 

that these responses varied in terms of the operation, the strategy, the degree of difficulty, 

and so on. The disadvantage of this data was the openness. For example, my case study 

of Valerie is focused on multiplication. So, her responses concerning addition strategies 

are not useful data. On the other hand, the openness of these assignments also had 

advantages. Students’ responses seemed to ring true. That is, they gave the impression of 

true accounts of events in students’ lives in which mental computation strategies were 

actually used. By contrast, assignments that forced students to engage with a particular 
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strategy provided information about the student’s reasoning specific to that strategy, but 

the strategy may have been one that the student would not use independently. Both types 

of assignments were useful. 

 To clarify, the instructor and I both looked at all students’ written assignments 

during the semester. Their responses informed ongoing instructional design. These also 

helped me to select particular questions to include in the Standout Strategies and Tools 

Interviews. However, only the case study students’ written assignments were analyzed in 

detail for research purposes. These regular written assignments helped me to analyze 

ontogenesis, connecting the conceptual dots, so to speak, between the snapshots obtained 

in pre and post interviews. These data help me to answer Research Question 1.  

Exams. Quizzes, midterms, and a final exam were used to assess student learning 

and to assign grades. These exams also served as data sources for the purposes of the case  

studies. Like the computational reasoning journals, certain exam items asked targeted 

questions concerning particular strategies. For example, Item #12 on Midterm 2 asked 

students to evaluate a child’s subtraction strategy as “all right” or not. The item asked 

students to explain the child’s thinking. If they determined that the child’s strategy was 

valid, they were to apply it to another calculation. If they determined that it was not valid, 

they were asked to explain why. Such questions concerned standout strategies, as well as 

mathematical ideas of particular relevance to mental computation. As with the other 

written work described above, these data were used in the analysis of case studies for the 

purposes of answering Research Question 1. 
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Data Analysis 

 Having described the data to be collected and the procedures for its collection, I 

now turn to a description of how the data were analyzed. I conceived of the analytic 

process toward answering Research Question 1 as consisting of two pieces: assessing 

change in number sense by established methods to determine milestones in 

developmental trajectories, and then analyzing the ontogenesis of number sense in 

selected case studies to connect the dots between those milestones. The analytic process 

toward answering Research Question 2 consisted of microgenetic analysis of arguments 

made in whole-class discussion, followed by sociogenetic analysis to identify as-if shared 

ideas and describe classroom math practices. 

Assessing Change in Number Sense 

 I describe here the analytic methods involved in assessing change in students’ 

number sense, based on pre/post comparisons. This process involved both quantitative 

and qualitative methods of analysis for which there were precedents in the literature. 

Number Sense Rating Scale. Apart from the use of NSRS pretest scores to 

compare interview volunteers’ scores to those of the class as a whole, analysis of NSRS  

scores took place after semester’s end. I used difference scores (posttest - pretest) as one 

measure of change in students’ number sense. I used a Student’s t-test on the mean of the 

difference scores to test the hypothesis that the mean level of the attribute measured by 

the test improved (Kutner, Nachtsheim, Neter, & Li, 2005). I verified that the distribution 

of the data was reasonably normal, so that the test was appropriate. 



111 

 

Student Preference Survey. Descriptions of number sense go beyond 

understanding of mathematics. For example, Reys and Yang’s (1998) description refers 

to both “ability and inclination” for flexible computational reasoning (p. 225). The SPS 

addresses the inclination piece. Surveys will be scored 1 point for each Yes response and 

0 points for each No response. Class means will be compared pre/post, as described 

above for the NSRS. 

Mental computation interview data. For the purposes of establishing number 

sense improvement, the mental computation interview data were coded in a manner for 

which there was a precedent in the literature. Participants’ verbal responses to mental 

computation tasks were coded for strategies based on an extant scheme. I used the same 

coding scheme that I developed in my Master’s study (Whitacre, 2006), since that 

scheme was grounded in the data from a previous study of prospective elementary 

teachers. Slight modifications were made with sensitivity to the particular data set, as 

well as progress in my reasoning about distinctions between strategies. The changes 

involved collapsing codes, splitting codes, and changing the names of some codes. Three 

invalid strategies were also named, whereas previously all invalid strategies had simply 

been categorized as Invalid. The current coding scheme for mental computation strategies 

appears in the section titled Participants’ Mental Computation Strategies. 

 The extant scheme did not include division strategies, since these were not 

investigated in the previous study. I extended the scheme to include the strategies that the 

interview participants use for mental division of whole numbers. Creating strategy codes 

involved a process of constant comparative analysis (Creswell, 1998). The participants 
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did not use a wide variety of division strategies in either interview. Four valid strategies 

and one invalid strategy were identified. 

 Once participants’ responses were coded for the strategy used, I tabulated the 

coded data. I recorded the number of distinct strategies used by each participant for each 

arithmetic operation in each interview. I noted the particular strategies used and the 

number of times each was used. Particular statistics of interest were the mean difference 

in the numbers of different strategies used for each operation and overall for addition, 

subtraction, multiplication, and division. This is a measure of change in flexibility. 

Conceptually, what I by flexibility is a participant’s tendency to select a particular 

strategy that is suited to the given numbers and operation, rather than automatically 

performing the operation with a go-to procedure (Heirdsfield & Cooper, 2004). 

Operationally, what I mean by flexibility in terms of the analysis of interview data is 

simply the number of different strategies that a participant uses for a given operation. The 

interview tasks were designed to elicit these strategic choices by varying the affordances 

of the numbers involved. While it remains possible that a participant could arbitrarily 

choose to use one strategy or another for a particular computation (and, hence, potentially 

to use one strategy or many strategies across a set of computations), the literature 

suggests that this is unlikely. Flexible mental calculators do make choices on the basis of 

the given numbers, with ease of computation generally being a high priority (e.g., 

Heirdsfield & Cooper, 2004). Therefore, if an interview participant is flexible, it is 

unlikely that she would choose to use the same strategy repeatedly across varied pairs of 

numbers, some of which make the use of that strategy cumbersome. 
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 Flexibility was categorized using a scheme that developed in the course of the 

research. Heirdsfield and Cooper (2004) contrasted the processes of flexible and 

inflexible mental calculators: flexible mental calculators make a choice of strategy, 

whereas inflexible mental calculators do not. While this distinction is useful, I found that 

many participants were not strictly inflexible or fully flexible. They were semiflexible. 

They made choices based on the given numbers, but they did this in limited ways. 

Participants who chose between only two possible alternatives (typically the MASA and 

one nonstandard strategy) were considered semiflexible. 

 For each operation, each participant was classified as Inflexible, Semiflexible, or 

Flexible. Change from the first to second interview was assessed on the basis of whether 

a participant moved from one category to another. This scheme was preferred over using 

the number of strategies directly as a measure of flexibility due to an emphasis on the 

participants’ process. There is a noteworthy shift in process that occurs when someone 

moves from not making a choice of strategy to making one. It is also a noteworthy shift 

when someone moves from making a dichotomous choice to choosing from a repertoire 

of at least three strategies. However, whether someone uses three or four strategies seems 

far less significant. In both cases, I consider the person’s process to be essentially the 

same, and I categorize it as Flexible. 

 The strategies used by the interview participants were also categorized according 

to Markovits and Sowder’s (1994) framework. All strategies for a given operation were 

ordered based on the extent to which they departed from the standard algorithm. I pooled 

the data and counted all instances of Standard, Transition, Nonstandard, and Nonstandard 
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with reformulation that occurred in the pre and post in response to the basic Bobo tasks. I 

then compared the distribution of strategies across categories from pre to post. 

Summary of analytic methods for assessing change in number sense. In 

summary, change in students’ number sense was assessed by methods for which there 

were precedents in the literature. These consisted of gain scores on an established 

multiple-choice instrument, change in flexibility in mental computation, and shift in 

strategy preferences. By using these established methods, I situated the study within the 

tradition of research concerning number sense. In the remainder of the study, I extended 

previous research concerning number sense by investigating its development in terms of 

genetic analysis. 

Analyzing Development: Microgenesis 

 I describe here the methods involved in the microgenetic analysis of number sense 

development. This involved the analysis of classroom data, interview data, and students’ 

written work. However, a common analytic method was used across each of the types of 

data. This involved the construction of argumentation diagrams. 

Argumentation diagrams. In approaching this analysis, I took argumentation to 

be a useful lens through which to analyze mathematical activity. I begin with an example 

from whole-class discussion, for reasons that will become apparent. However, the 

arguments made by case study students in interviews were analyzed similarly. 

 On Day 12, students considered children’s subtraction strategies. Valerie made an 

argument for the validity of one of these. The child had computed 364 – 79 by adding 1 

to both numbers to get 365 – 80, and then adding 20 to both number to get 385 – 100. 

The child could then tell that the difference was 285. (This is an example of Shifting the 
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Difference.) Valerie’s argument related the subtraction strategy to distance and 

movement along a number line: 

Valerie: Okay, so we thought about it in terms of, when you’re 
subtracting, you’re trying to find the distance between two numbers. So, 
we thought of it kind of in terms of a number line. So, if you—uh, for the 
first one—when he, or whoever the student was, made it 365 and 80. So, 
you started off with 79 and 364. So, 364 moved up one to 365 and also, 
likewise the 79 moved up to 80. So, the distance didn’t change between 
the numbers. So, originally it was right here, and they both moved up one 
on a number line. So, the distance between them is the same. So, similarly 
when you have 385 and 100, you just added 21. So, if you took the 
numbers from their original position and moved them each up 21 spaces, 
the shift would be the same and the distance between both numbers is the 
same. 

 Figure 3 represents Valerie’s argument. Valerie claimed that the child’s strategy 

was valid, or legitimate. She did not make this statement explicitly, but it was the gist of 

her argument. As data, Valerie pointed out that the same amount had been added to both 

numbers. This was a factual statement concerning the steps that the child had performed, 

based on the information that students had been given in a handout. The warrant in 

Valerie’s argument was that, in general, adding the same amounts to both numbers would 

not affect the difference. With respect to the core of Valerie’s argument, it had a basic 

modus ponens structure. That is, given A, she claimed B, and her warrant was that A 

implied B. However, Valerie’s warrant had not been used previously in the class. It was a 

new and previously unjustified idea. The backing in Valerie’s argument was particularly 

of interest because it explained why she thought her warrant was true. This is where 

reasoning in terms of the number line came in. Valerie reasoned about the difference in 

subtraction as a distance between number-locations. In line with that interpretation, she 
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Claim: The child’s strategy is legitimate 
[Valerie’s argument supports the validity of the child’s 
strategy] 
Data: The child added the same amounts to the minuend and 
subtrahend 
(“you took the numbers from their original position and moved 
them each up 21 spaces”) 
Warrant: Adding the same amounts to the minuend and 
subtrahend does not change the difference 
(“So, if you took the numbers from their original position and 
moved them each up 21 spaces, the shift would be the same and 
the distance between both numbers is the same.”) 
Backing: Reasoning about difference as distance between 
number-locations; Reasoning about adding in terms of 
movement along a number line 
(“So, the distance didn’t change between the numbers. So, 
originally it was right here, and they both moved up one on a 
number line. So, the distance between them is the same.”) 

 

 
Valerie holds her 
hands approximately 
equi-distant. She 
moves both hands to 
her right as she talks 
about the numbers 
“moving up.” 

Figure 3. Argument A12.20: Valerie argues for the validity of 
Shifting the Difference. 

reasoned about adding as shifting those number-locations to the right. It was on this basis 

that she justified her warrant. 

 It was often the case in the class that students displayed their whiteboards when 

they presented arguments to the class. In this way, they shared inscriptions that supported 

their arguments. These typically included both records of computations and some manner 

of drawing. In the case of the example above, Valerie’s gesturing effectively took the 

place of such inscriptions. She explicitly stated that she was reasoning in terms of a 

number line, and she used her hands to designate number-locations and to illustrate the 

shifting actions that she described. 

 I include the still images in the right column of the argumentation diagram to 

identify gesturing that appears relevant to the ideas expressed in an argument. In the 

above example, Valerie’s verbal explanation was quite explicit, so that we need not refer 
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to her gesturing to understand how she was reasoning. I see the evidence in Valerie’s 

gesturing as corroborating my interpretation of her argument. In some cases, students 

were less clear with their words, and so gesturing provided important clues to how they 

were reasoning. In other cases, gesturing did not seem to convey relevant mathematical 

ideas and was not included in the argumentation diagrams. In general, my approach was 

not to separate out speech, gesture, and inscriptions. Rather, I took all of these as 

evidence of how the person was reasoning. The argumentation diagram is my best 

attempt to convey that reasoning by making the content and structure of the argument 

explicit. Toulmin’s model of argumentation has been used in previous analyses of 

classroom math practices (Stephan & Rasmussen, 2002), and gesturing has also been 

incorporated into these analyses (Rasmussen et al., 2004). 

Argumentation diagrams of interview responses. The interview participants’ 

responses to the mental computation tasks were coded according to the strategy used. The  

case study students’ responses were analyzed in a more fine-grained fashion, which 

included regarding their responses as instances of argumentation activity. I constructed 

argumentation diagrams to describe the case study students’ reasoning in response to the 

mental computation and Operations tasks, as well as to relevant tasks from the SST 

interview. 

Indentifying models involved in computational reasoning. Originally, I had 

planned to code classroom data in terms of both argumentation and models. In the  

tradition of earlier analyses of classroom math practices, I considered documenting these 

in terms of successive shifts from model-of to model-for. In the process of the 

sociogenetic analysis, I decided that this was impractical. I made this decision for a few 
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reasons: (1) The methodology of Rasmussen and Stephan (2008) proved to be robust. It 

incorporated gesturing and inscriptions, so that ideas that I might otherwise have 

characterized in terms of models were captured; (2) analysis in terms of models did not 

seem well suited to account for the complexity of students’ activity. I conceptualize 

classroom math practices as sets of as-if shared ideas, as opposed to single ideas. It did 

not seem plausible for a single model to characterize an entire classroom math practice. 

Summary of microgenetic analysis of number sense development. Data were 

analyzed by means of constructing argumentation diagrams. These products of the 

 microgenetic analyses then became data that was used in the sociogenetic and 

ontogenetic analyses of number sense development. 

Analyzing Development: Sociogenesis 

 I describe here the sociogenetic analysis of number sense development, which 

addressed Research Question 2. I looked at trends in the collective argumentation activity 

in order to analyze sociogenesis. In particular, I applied the criteria for identifying as-if 

shared ideas. These normative ways of reasoning then informed descriptions of general 

mathematical activity in terms of classroom math practices. 

Classroom mathematical practices. The methodology of Rasmussen and 

Stephan (2008) was used to analyze collective activity. This methodology involves  

coding arguments using Toulmin’s (1969) model, which describes the anatomy of an 

argument in terms of claim, data, warrant, and backing. The claim is the assertion being 

made. The data is evidence offered in support of the claim. The warrant explains how the 

data supports the claim. Backing serves to justify the validity of the warrant. 



119 

 

 The methodology is a three-phase process.13 The phases are as follows: (1) 

Whole-class discussions are transcribed. Researchers watch video of each discussion and 

identify any claims that are made. For each claim, an argumentation scheme is 

constructed, which explicitly identifies each of the components of the argument. This 

analysis yields a chronological argumentation log. (2) Researchers look across the 

argumentation log to identify ideas that functioned as if shared in whole-class discussion. 

Criteria for ideas functioning as if shared are (i) warrants or backings dropping off, (ii) an 

element of an argument shifting roles (e.g., from claim to warrant), and (iii) repeated use 

of data or warrants in support of different claims (Cole et al., 2011). (3) The as-if shared 

ideas are then organized according to related mathematical activities to describe 

classroom mathematical practices. 

 I followed the three-phase approach described above. I identified in the reduced 

data set a total of 208 mathematical claims for which some justification was given. For 

each of these claims, I constructed an argumentation diagram. More specifically, my 

analysis was initially done separately for three content-specific strands of activity: place 

value, addition and subtraction, and multiplication and division. I identified whole-class 

discussions as primarily related to activity in one of these three strands. I analyzed the 

addition and subtraction data first, coding all 48 arguments belonging to that set. Then I 

analyzed the place value data, which consisted of 70 arguments. I made multiple passes 

through the coding of each discussion and each particular argument, refining my coding 

                                                
13 I classify the first phase as microgenetic analysis, but for clarity of presentation, I include it in the 

description of the methodology here. 
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iteratively. Once I was satisfied that the arguments had been coded consistently, I 

proceeded to Phase 2. 

 In Phase 2, I applied the criteria for identifying ideas that functioned as if shared. 

I did this by creating tables of occurrences of ideas that had been used repeatedly in 

arguments. I tabulated occurrences of each idea as claim, data, warrant, or backing. I did 

this conscientiously, not blindly. In other words, I did not apply the criteria automatically 

or without question. Rather, if one or more of the criteria appeared to be satisfied, I 

examined the details of how that idea was used in each argument and took care to 

consider whether I believed that the idea in question did, in fact, function as if shared. (I 

discuss this process in more detail in the section titled Reliability and Validity.) 

 Together, the place value and addition/subtraction strands formed a coherent, 

larger strand. When it came to categorization of sets of as-if shared ideas into classroom 

mathematical practices, I integrated these two smaller strands of activity. In the strand of 

activity focused on place value, addition, and subtraction, I identified five classroom 

math practices. This phase of categorization is naturally theory-laded. It requires 

researchers to make distinctions, and researchers value certain kinds of distinctions over 

others. In my case, my interest in the sociogenesis of number sense informed the 

classification of ideas and activity. I was interested in the kinds of strategies that were 

being used by the class and on what basis these were justified. The classroom math 

practices that I identified and the names that I gave to these reflect that focus. 

 After the analysis of the addition and subtraction and place value data was 

complete, I proceeded to analyze the multiplication and division data. I followed the 

same three-phase process. I identified 90 claims in the multiplication and division strand. 
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I coded these arguments, again making multiple passes through the data until I was 

satisfied with all coding decisions. This data set consisted largely of arguments related to 

multiplication, as opposed to division. Of the five days in which multiplication and 

division ideas were the focus of classroom activity, only one was devoted to division. 

Furthermore, there was little coherence between the multiplication activity and the 

division activity. I did not see a unified story of development emerging. As a result, I 

made the decision to focus the analysis on multiplication activity. I identified as-if shared 

multiplication ideas and categorized these into classroom mathematical practices, as 

described above. One classroom math practice was conceived more generally because it 

did not seem to be operation-specific. Thus, I regard the first classroom math practice 

(which had been identified in the analysis of the addition and subtraction strand) as 

belonging to both strands of activity. Within the strand exclusively related to 

multiplication, I identified three additional classroom math practices. 

 Note that I had originally envisioned identifying as-if shared strategies and 

models. As discussed earlier, the models piece proved unnecessary and somewhat 

incongruent with the analysis. In lieu of as-if shared strategies per se, I identified as-if 

shared mathematical ideas. In many cases, these ideas were used to describe and to justify 

strategies. However, in my current conceptualization, strategies themselves do not 

function as-if shared. Students may refer to strategies by name, and these names may 

function as warrants in students’ arguments. This is essentially what I previously had in 

mind when I talked about “taken-as-shared strategies.” 
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Summary of methods for analyzing the sociogenesis of number sense. The 

analysis of the sociogenesis of number sense involved the products of the microgenetic 

analysis of classroom data. These were analyzed to identify trends that occurred over 

periods of time. I applied the criteria for to identify as-if shared ideas. I then grouped 

these ideas according to commonalities among them and to the nature of the general 

mathematical activity in which they were involved in order to describe classroom 

mathematical practices. The results of this analysis directly answer Research Question 2. 

Analyzing Development: Ontogenesis 

 I describe here the methods for analyzing the ontogenesis of number sense, in 

service of answering Research Question 1. I describe these methods after those for the 

analysis of microgenesis and sociogenesis since the former analyses support this analysis. 

The microgenetic analysis of participants’ mental computation strategies afforded basic 

descriptions of their reasoning during the interviews. When it came to the case studies, 

these responses and others were analyzed in greater detail in order to understand as best I 

could the case study students’ reasoning at these milestone points (essentially before and 

after instruction). 

 The products of the sociogenetic analysis pointed me to normative ways of 

reasoning from the classroom activity. Particular ideas from class and certain classroom 

events stood out as relevant to each case study. Detailed ontogenetic analysis was 

restricted to the two interview participants who are selected for case studies. I selected 

the case of Brandy’s developing reasoning about place value, addition, and subtraction 

and the case of Valerie’s developing reasoning about multiplication. These cases were 

selected for distinct reasons, which I elaborate on in Chapter 6. Brandy’s case was one of 
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exceptional improvement, as she changed from Inflexible to Flexible in both addition and 

subtraction. Valerie’s case afforded an illuminating, fine-grained analysis of her 

reasoning about multiplication with a particular focus on partial products. 

 For this analysis, I drew on the following data sources: case students’ pre/post 

respones to the basic Bobo mental computation tasks, case students’ pre/post responses to 

other pre/post interview tasks, case students’ responses to tasks and questions from the 

SST interview, case students’ homework and exam responses, and case students’ relevant 

contributions to whole-class discussion. The results of the sociogenetic analysis also 

helped me to situate case students’ reasoning in the chronology of the development of 

collective activity and to relate their reasoning to ideas expressed in class. 

 The ontogenetic analyses took the form of case study research (Yin, 1994). The 

analytic process consisted of the following phases: 

• Identifying and comparing the case students’ pre/post strategy ranges 

• Identifying the case students’ pre/post scaffolded strategy ranges 

• Identifying ways of reasoning evident in case students’ responses to other 

interview tasks, especially the Operations tasks 

• Documenting the case students’ reasoning about particular ideas via written 

responses and occasional contributions to whole-class discussion 

• Identifying themes in the case students’ reasoning over periods of time and 

identifying points at which the case students’ reasoning appeared to change 

• Relating changes in the case students’ reasoning to both classroom events and the 

students’ prior knowledge 
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• Developing plausible explanations of the case students’ trajectories of number 

sense development (in the vein of Izsák et al., 2008) 

In the following paragraphs, I describe the specifics of each of these phases of the 

ontogenetic analysis. 

Identifying and comparing the case students’ pre/post strategy ranges. This 

phase was accomplished in the analysis of microgenesis described earlier. I identified, for  

each of the interview participants, which particular strategies were used in the pre/post 

mental computation interviews. These were used to describe the participants’ strategy 

ranges pre/post. Comparing these ranges indicate which strategies the case student had 

adopted. This basic comparison also gave initial indications of ways in which the case 

students’ reasoning appeared to have changed. 

Identifying the case students’ pre/post scaffolded strategy ranges. Using  

participants’ responses to the Scaffolded Alternatives Tasks (for the operation(s) relevant 

to the case study), I identified the strategies that the case student used when asked for 

alternative ways of performing the same computation. These were used to describe the 

case students’ scaffolded strategy ranges pre/post. Those strategies belonging to the case 

students’ scaffolded range and not their proper range provided indications of additional 

knowledge that may have served as resources in the learning process. 

Identifying ways of reasoning evident in case students’ responses to other 

interview tasks, especially the Operations tasks. Using case students’ responses to the 

other interview tasks, I gathered further evidence of their ways of reasoning by analyzing  

these responses as arguments. For example, in the Operations tasks, students were asked 

to perform the standard algorithms and explain and justify the details of these. Brandy 
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made arguments concerning carrying in addition, borrowing in subtraction, and so on. 

Valerie made arguments concerning the details of the standard multiplication algorithm. 

The justifications that the case students offered for these details indicate ways of 

reasoning about the algorithms, and these ways of reasoning changed from pre to post. 

Documenting the case students’ reasoning about particular ideas via written 

responses and occasional contributions to whole-class discussion. I examined the case 

students’ homework responses concerning strategies from class to identify how they  

reasoned about these. I also analyzed journal responses in which students reported using 

mental computation outside of school. In addition, I identified instances from whole-class 

discussion in which case study students shared their reasoning. These data were used to 

describe the case students’ reasoning in each instance. In the next phase, I looked 

chronologically across these instances. 

Identifying themes in the case students’ reasoning over periods of time and 

identifying points at which the case students’ reasoning appeared to change. Taking 

students’ reasoning identified in the previous analyses as data, I identified common  

themes across those instances. I also identified contrasts in students’ reasoning, such as a 

change in interpretation of a strategy or a first instance of using an idea or strategy. I 

focused especially on adopted strategies because I would need to explain in the final 

phase how the student came to adopt the particular strategy. 

Relating changes in the case students’ reasoning to both classroom events 

and the students’ prior knowledge. Using all relevant data, I attempted to account for  

changes in students’ reasoning based on the interplay between students’ prior knowledge 

and classroom events. Essentially, for each instance in which the student expressed a new 
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or different idea, I asked the question, “Where did this idea come from?” and attempted 

to identify antecedents in the data. Particularly, in Valerie’s case, additional evidence of 

interest came from the SST interview since there was an aspect of her reasoning at the 

endpoint that was still somewhat puzzling. So, I drew comparisons and contrasts between 

her relevant responses from the second and third interviews. 

Developing plausible explanations of the case students’ trajectories of 

number sense development. In this phase, I took a step back from the previous to 

construct a chronological account that integrated the results of the previous phases. These 

 accounts were forward-looking, by which I mean that themes in students’ early 

reasoning were highlighted with an eye toward contrasting them with later themes, as 

well as explaining how the change came about. I view these accounts as similar to the 

analsysis presented by Izsák et al. (2008) of Sonya’s interpretations of her teacher’s 

solutions to fraction addition problems in terms of Sonya’s n-out-of-m conception of 

fractions. 

Summary of ontogenetic analysis of number sense development. The 

ontogenetic analysis of the case students’ number sense development will involve a  

variety of data sources, most of which derive from the previous microgenetic and 

sociogenetic analyses. This analysis will also incorporate data from the Standout 

Strategies and Tools Interviews, which are designed to directly investigate participants’ 

interpretations and understandings of the standout strategies and tools from class. This 

analysis will proceed from identifying the strategies and models that a case student used 

in pre/post computational reasoning interviews, to tracking trends in these over time, to 

determining whether or not established strategies and models from class were adopted by 
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the student, to attempting to account for this based on students’ interpretations and 

understandings, and finally to developing plausible explanations for the case students’ 

trajectories of number sense development. 

Reliability and Validity 

 In this section, I describe measures that I took in the interest of the validity and 

reliability of the results of the study. This study involved mixed methods. However, it is 

fundamentally a study that asks process questions, as opposed to variance questions 

(Maxwell, 2005). Therefore, I conceive of the study as a whole as qualitative, and I frame 

the discussion of reliability and validity in the tradition of qualitative research. 

Reliability 

 In qualitative analysis, internal reliability in the form of inter-rater reliability is a 

concern. Internal reliability refers to “the question of whether, within a single study, 

multiple observers would agree about what happened” (LeCompte & Preissle, 1993, p. 

337). According to LeCompte and Preissle (1993), the best way to guard against threats 

to internal reliability is to actually involve multiple researchers in the analysis process. In 

this study, I analyzed all of the data. During the analysis process, I met with several other 

researchers to discuss both general issues that arose in coding and particular 

interpretations of data. I met regularly with Dr. Nickerson about all aspects of the 

research. I had meetings with Dr. Chris Rasmussen to discuss issues that arose in the 

analysis of collective activity. I also had conversations with Dr. Megan Wawro and 

researcher George Sweeney about general issues involved in that analysis. I met with Dr. 

Randy Philipp and researchers Bonnie Schappelle and John Siegfried to discuss aspects 

of Brandy’s reasoning for the purposes of the first case study. 
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 After my analyses were completed, I enlisted two researchers to code subsets of 

the data in order to assess the reliability of the coding. George Sweeney, currently a 

doctoral candidate, assisted with the analysis of collective activity. He had extensive 

previous experience with the methodology of Rasmussen and Stephan (2008). Dr. Susan 

Nickerson assisted in the analysis of participants’ mental computation strategies. Dr. 

Nickerson and I had done previous research concerning prospective elementary teachers’ 

whole-number mental computation strategies. In the next few pages, I discuss the details 

and results of the reliability checks. 

Reliability of mental computation strategy coding. Interview participants’ 

mental computation strategies for the basic Bobo tasks were coding according to the 

 scheme that I developed for the purpose. There were seven interview participants, and 

each was interviewed pre and post. Thus, there were 14 mental computation interviews in 

the data set. These were numbered from 1 to 14 based on alphabetical order of pre and 

then post interview participants (see Figure 4). Four of these 14 interviews were 

randomly selected to be double-coded as a reliability check. 

 I designed a simple Geometer’s Sketchpad (GSP) sketch for the purpose of 

random selection of data. The sketch (Figure 4) represents a spinner. The user determines 

the number of possible outcomes of a spin. In this case, that number was 14. The red line 

segment represents the spinner needle. The segment is determined by the location of a 

point on the circle, which is connected to the point at the center of the circle. An 

animation button sends the point on the circle to a random location on the circle, using 

GSP’s built-in pseudo-random number generator. 
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1. Angela pre 
2. Brandy pre 
3. Maricela pre 
4. Natalie pre 
5. Trina pre 
6. Valerie pre 
7. Zelda pre 
8. Angela post 
9. Brandy post 
10. Maricela post 
11. Natalie post 
12. Trina post 
13. Valerie post 
14. Zelda post  

 
List of mental computation interview data Spinner.gsp 

Figure 4. Random selection of interview data. 

 Dr. Nickerson and I discussed the question of sampling and agreed that the 

random sample of four interviews should include two pre interviews and two post 

interviews. So, the sampling was performed with this constraint. It was done with 

replacement, so that renumbering of interviews was not required. As a result, several 

additional spins had to be made since they resulted in either a repeated outcome or an 

outcome belonging to the wrong interview (post, when pre was needed). 

 The outcomes of each spin were recorded and are shown in Table 5. The 

following four interviews were selected: Valerie pre, Trina post, Zelda post, and Brandy 

pre. Videos of each interview were given to Dr. Nickerson for coding, using the scheme 

that I had provided. There four interviews, four operations per interview, and four 

computations per operation. Thus, there were 4 x 4 x 4 = 64 responses to be coded for 

mental computation strategy. Dr. Nickerson coded these and then compared her coding to 

mine. We agreed on all 64 coding decisions. So, on a random sample of 4/14 (≈ 28.6%) 

of the data set, we agreed on 100% of coding decisions. 
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Table 5. Outcomes of Spins to Select a Random Subset of the Interview Data 

Trial Outcome Result 

1st 6: Valerie pre First pre seletion. 

2nd 12: Trina post First post selection. 

3rd 14: Zelda post Second post selection. 

4th 6: Valerie pre Duplicate. Spin again. 

5th 11: Natalie post Need pre. Spin again. 

6th  14: Zelda post Duplicate. Spin again. 

7th 9: Brandy post Need pre. Spin again. 

8th 2: Brandy pre Second pre selection. 

 

 I attribute this extraordinarily high degree of reliabilty to the appropriateness of 

the coding scheme to this particular data set, the relative ease of this type of coding, and 

the fact that Dr. Nickerson was close to the research and familiar with the strategy codes. 

Interview participants’ verbal responses typically ranged from 1 to 2 minutes, including 

the interviewer’s probes and follow-ups and the participant’s responses to these. (Some 

responses took several minutes, but the mean was between 1 and 2 minutes.) 

 The interviewer was specifically concerned with being able to accurately identify 

the participant’s strategy, and his probes were primarily concerned with clarifying details 

when necessary. Thus, participants’ descriptions of their strategies tended to be clear and 

detailed. Furthermore, the scheme was such that difficult coding decisions were rare 

because strategies were adequately distinguished operationally. Hence, the coder’s simple 

task was to take 1-2 minutes worth of good data and apply to it a single code. 
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Reliability of the analysis of collective activity. The reliability of the analysis of 

collective activity was assessed similarly. The methodology of Rasmussen and Stephan  

(2008) consists of three phases: (1) coding of arguments, (2) applying the criteria to 

identify as-if shared ideas, and (3) categorizing as-if shared ideas as belonging to 

classroom mathematical practices. The results of Phase 1 become the data that is 

analyzed in Phase 2, and the results of Phase 2 become the data that is analyzed in Phase 

3. For this reason, coding of arguments in Phase 1 was the focus of the reliability check. 

 George Sweeney was a qualified coder of arguments, having had extensive 

experience with the methodology. At the same time, he was an outside researcher whose 

research had been conducted in inquiry-oriented linear algebra. He was not intimately 

familiar with the mathematics or with students’ mathematical thinking in the mathematics 

content course, although he had taught the course once in Fall Semester 2007. (The 

reliability check was done in Spring 2012.) Thus, George received training to prepare 

him code data from a different sort of mathematics class.  

 I sent George a sample video clip and transcript excerpt, involving only a single 

argument, and asked him to code it. We then discussed the argument and compared our 

thinking about the coding. He also asked more general questions regarding how I thought 

about aspects of the coding process. A few days later, I sent George another sample of 

data, this one consisting of three arguments. We compared coding and had a similar 

conversation. Although not assessed formally, we agreed on most coding decisions 

pertaining to these arguments. At that point, we agreed that we were ready to do a 

reliability check. 
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 To select a suitable subset of the data, I first identified whole-class discussions 

consisting of substantial numbers of arguments within a particular content strand. By 

contrast, there were days in which content was touched on but only a small number of 

arguments relevant to that strand were made. (For example, there was one argument 

belonging to the multiplication/ division strand made on Day 4. By contrast, there were 

17 arguments belonging to that strand of activity made on Day 14.) This process resulted 

in a list of 10 days worth of content strand-specific discussions (see Figure 5). Five of 

these belonged to the place value, addition, and subtraction strand, and five belonged to 

the multiplication and division strand. Although not the entire data set, these days 

accounted for 191 of the 208 arguments that I had coded, or 92% of the data set. 

1. PV Day 6 
2. PV Day 7 
3. PV Day 8 
4. AS Day 11 
5. AS Day 12 
6. MD Day 13 
7. MD Day 14 
8. MD Day 15 
9. MD Day 16 
10. MD Day 17 

 
Days of focal class activity Spinner.gsp 

Figure 5. Random selection of classroom data. 

 Using the spinner, I randomly selected one of the ten days of class. The result was 

Day 16, which was focused on multiplication ideas. I sent George the video and transcript 

of Day 16. The video was edited to include only whole-class discussions. George coded 

the data, and then I sent him my coding of the same data. He compared how each 
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argument had been coded and assigned scores. He then tabulated these to get a total 

reliability score. Scoring was based on the number of components of an argument. For 

example, an argument consisting of claim, data, and warrant was worth 3 points, whereas 

an argument that also included backing was worth 4 points due to the additional 

component. 

 According to my coding, there were 18 arguments made on Day 16. Initially, 

George and I agreed on 39 of 52 components of these arguments, or 75% of coding 

decisions. We met via Skype to discuss the coding of each argument. In most cases in 

which our coding did not match exactly, the differences were matters of (a) coder 

discretion, i.e., there is not always one right way to code an argument, or (b) my coding 

being more fine-grained due to attunement to particular student ideas. As we discussed 

arguments, we either came to agreement or could not reach agreement. After discussion, 

we agreed on how to code 48 of 52 components (92%). 

 The frequency of initial inter-rater agreement achieved on Day 16 was not 

unreasonable. This type of coding is difficult. In contrast with the coding of mental 

computation interview data for strategies, coding of arguments was far more fine-grained 

and was not as simple as applying an established scheme. It required greater sensitivity to 

nuanced of students’ mathematical thinking. However, 75% agreement was less than the 

80% that was desired, and it seemed unsatisfactory. So, I asked George to code an 

additional day of class. I purposively selected Day 17 for the second reliability check 

because it involved similar content to Day 16, and I attributed many of our cases of initial 

disagreement to George’s lack of familiarity with the nuances of prospective elementary 

teachers’ mathematical thinking in the context of an elementary mathematics content 
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course. Having coded Day 16 and discussed these arguments, I expected that George 

would be well prepared to code another set of arguments involving multiplication ideas. 

 According to my coding, there were 14 arguments made on Day 16. George and I 

agreed on 32 of the 37 components (86.5%) of this set of arguments. We again met via 

Skype to discuss the coding of each argument. This time around, the cases in which our 

coding did not match exactly were mostly due to coder discretion. Of the 5 differences in 

coding of components, I believe that 2 could have been alleviated with further training. I 

attribute one instance to George inferring a warrant without sufficient evidence. Upon 

discussion, he agreed with me that this evidence was lacking. The other instance was one 

in which George’s coding emphasized a rational-number idea that was not of interest to 

the present analysis. The other 3 discrepancies were instances of coder discretion. For 

example, in one instances, George had coded as data in an argument the idea that I saw as 

the warrant, and vice versa. We both had sensible reasons for our coding. Upon 

discussion, he agreed with my version of the coding. 

 In the end, 2 of 10 days worth of content-specific discussion were subjected to a 

reliability check. In particular, a total of 32 arguments, or 15.4% of the total data set were 

double-coded. The level of initial agreement on the first round reliability check (Day 16) 

was 75%. In the second round (Day 17), 86.5% initial agreement was achieved. George 

and discussed why we thought the frequency of agreement had improved on Day 17. We 

agreed that it was due to two factors: (1) his improved understanding of my approach to 

the coding of arguments from this class generally, as a result of our discussion of coding 

decisions regarding the Day 16 data; and (2) his increased familiarity with content-
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specific ideas and subtleties of students’ reasoning, which also resulted from his coding 

of Day 16, together with our subsequent discussion. 

 If George were to code discussions of addition and subtraction ideas or of place 

value ideas, I would expect on the basis of the above results that our initial agreement 

would be somewhere in the neighborhood of 75–80%. As with the coding of 

multiplication discussions, if he was given a second day of discussion belonging to the 

same content strand, I would expect a similar jump in reliability to somewhere in the 80–

90% range.  

Validity 

 The validity of an account concerns its accuracy, or as Maxwell (2005) puts it, 

“How might you be wrong?” (p. 105). Thus, validity is tied to the kinds of claims that 

result from the study. In order to guard against validity threats in qualitative research, one 

first must identify potential threats. Below, I discuss issues of validity and the measures 

that I took generally. I then discuss validity threats with respect to the different analyses 

that I conducted and their respective findings. 

General discussion of validity. The three principal ways that my design guarded 

against threats to validity were by collecting rich data, by searching for discrepant  

evidence and negative cases, and via triangulation (Maxwell, 2005). The qualitative 

analogues to external validity are comparability and translatability. Other researchers 

should be able to compare the results of a study with the results of other studies, and 

other researchers should be able to make sense of the theoretical constructs, definitions, 

and methods used (LeCompte & Preissle, 1993). As discussed below, comparability and 

translatability are strengths of this study. 
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 The most inferential aspects of my methodological approach are also those for 

which I will have the richest data from the most sources. I searched for discrepant 

evidence to guard against making inferences that would have been contradicted by that 

evidence. In the analysis of collective activity, a large number of arguments were 

analyzed, and the coding in terms of argumentation diagrams included multiple passes in 

which coding decisions were refined and related arguments were compared for 

consistency of coding. In the ontogenetical analyses, a variety of data sources were used 

to piece together accounts of the case students’ developing reasoning. Much of this data 

is presented in these accounts, both in raw form (transcript or scan of student work) and 

in coded form (argumentation diagrams). 

 In the following subsections, I discuss validity issues specific to the various 

analyses. 

Analysis of interview data. It was clear from the reliability check that the  

analysis of mental computation interview data was reliable. Thus, I would say with 

confidence that the participants did, in fact, use the strategies that I claim they used in the 

interviews (where strategies here refers to codes belonging to the scheme that I devised). 

So, how might I be wrong? A potential threat arises in the broader conclusions that might 

be drawn from these results. I do not claim that the seven interview participants 

constituted a representative sample of the students in the class, let alone of the population 

of prospective elementary teachers. In fact, I would not apply a statistical sampling 

framing even to this part of the study.  

 We know that the interview volunteers represented a range of ability levels (as 

results presented in Chapter 4 indicate). At the same time, as a group, they tended to rely 
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on MASAs. In other words, in terms of the measures used, the interview participants 

looked the way the literature suggests a group of prospective elementary teachers would 

look. The participants also performed similarly to those who participated in the 2005 

study. This is all to say that, while I do not regard them as representative of the 

population, the data suggest that the interview participants were not misrepresentative of 

the population. That is, the set of volunteers offered me the potential to study prospective 

elementary teachers’ number sense development on the individual level. (By contrast, if 

the interview volunteers had turned out to be a group of skilled, flexible mental 

calculators at the beginning of the course, then there would have been serious concerns 

regarding that potential.) 

 The analysis of the mental computation interview data laid the foundations for the 

further analyses, which were of primary interest. This analysis was used to ask whether 

the number sense of at least some of the prospective elementary teachers improved 

substantially over the course of the semester. If so, then the class and the interview 

participants provided an appropriate setting for the further analyses. In addition, the 

analysis of the mental computation interview data aided in the selection of case studies. 

 What about specific claims that I make concerning the flexibility of the 

participants when performing each operation mentally? How could these claims be 

wrong? Since a small number of computations were used to investigate the range of 

strategies available to the participants, there is the potential that categorizing of 

participants as Inflexible or Semiflexible, as opposed to Flexible, could underrepresent 

their flexibility. In particular, it could be that a participant uses the MASA for all four 

addition computations in the interview, but she would have used some other strategy if 
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given just the right pair of numbers. Thus, if more computations had been used, her 

ability to use another strategy might have been uncovered. 

 The above threat was well addressed by the study design. The pairs of numbers 

given were chosen to represent a range of cases, which would lend themselves to 

different strategies. Benchmark numbers, like 99 and 25, were used in the later 

computations for each operation since these are most likely to elicit specialized strategies. 

(The data bore this out. In the first interview, it was often he case that participants used 

the MASAs, except for computations involving benchmark numbers.) Given the range of 

affordances of the given numbers, it becomes highly unlikely that a person making a 

choice of strategy based on the given numbers would end up using the same strategy for 

each computation. 

 If eight or ten computations had been given for each operation, it is possible that 

participants who I categorized as Inflexible would at some point have used a second 

strategy. It is also possible, and in fact more likely, that individuals who I categorized as 

Flexible would have used wider ranges of strategies if given the opportunity. (Clearly, if 

a person has five or more strategies that they use for a given operation, then observing 

four computations would not give the person the opportunity to display their full range of 

strategies.) A design involving more computations, then, would have lent itself to a more 

fine-grained scheme. Instead of categorizing participants’ operation-specific reasoning 

into one of three categories (Inflexible, Semiflexible, or Flexible) I might have used five 

or six categories instead. Given that prospective elementary teachers tend to reason 

inflexibly in mental computation, the scheme that was used seems appropriate. I was 

interested in distinguishing between people who would use one, two, or three different 
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strategies for the range of problems given for each operation. For the purposes of the 

study, there seemed to be little risk in grouping together students who were highly 

unlikely to make a choice of strategy with those who would never make a choice of 

strategy. Similarly, there was little risk in grouping together students who used three or 

four strategies with those who might have used five or more if given the opportunity. 

 Comparability and translatability are strengths of the assessment of change in 

number sense because the analysis involved established methods from the number sense 

literature. In particular, I coded participants’ strategies based on a scheme that is similar 

to other coding schemes for mental computation strategies. These results were then used 

to analyze change in the participants’ flexibility and in the group’s overall tendency to 

use nonstandard strategies. These measures are similar to those that have been used by 

other researchers. As more research is done concerning the number sense of prospective 

elementary teachers, as well as other populations, researchers will be able to use these or 

similar measures and to compare the results. 

Analysis of collective activity. In terms of the analysis of collective activity, the 

relevant threat would be the possibility of drawing erroneous conclusions in Phase 2  

(identifying as-if shared ideas) as a result of inconsistencies in Phase 1 coding (of 

arguments). Specifically, coding mistakes could result in false positives (Type 1 errors), 

i.e., mistakenly identifying ideas as functioning as if shared when they did not actually 

function as if shared. Coding mistakes could also result in false negatives, i.e., mistakenly 

concluding that an idea did not function as if shared when, in fact, it did function as if 

shared. These seem to be the greatest threats. 
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 In applying the methodology, I was acutely aware that I was using it in a different 

sort of mathematics class, and I was concerned with these threats. So, I made a concered 

effort to guard against them. I also made the choice to err on the side of false negatives, 

rather than false positives. I decided that mistakenly identifying an idea as functioning as 

if shared was worse than failing to identify an as-if shared idea as functioning as if 

shared. I attempted to guard against making either type of error by not trusting the criteria 

for as-if shared ideas. I was concerned that, given differences between the math content 

course and an inquiry-oriented differential equations or linear algebra course, false 

positives could result from superficial differences in arguments. Maybe an idea would 

occur as data in one argument and warrant in another due to some characteristic of the 

nature of the task or the structure of the argument that would not actually constitute 

evidence for an idea functioning as-if shared. I guarded against this threat in Phase 1 by 

making consistency of coding a priority. In refiningy my coding of arguments, I looked 

across arguments that were similar in content and/or structure and asked whether my 

coding was consistent with respect to those similarities. I also traced particular ideas that 

occurred repeatedly in arguments and asked whether the same idea was truly at work in 

each of them. In some cases, these tests of consistency led to new distinctions between 

ideas and revisions to the coding of sets of arguments. 

 In Phase 2, I guarded against making mistakes by applying a commonsense notion 

of functioning as-if shared and testing candidate ideas against it. After I had compiled the 

argumentation log for a given content strand, I created a table of occurrences of ideas. 

For each idea that occurred more than once in the argumentation log, I tabulated its 

occurrences as claim, data, warrant, or backing by listing the argument numbers under the 
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appropriate column. Once this table was filled in, I proceeded to consider whether each 

idea functioned as if shared. If the table showed that an idea had occurred as more than 

one type of component (e.g., as both data and warrant), then Criterion 2 (the shift 

criterion) was apparently satisfied. However, I did not conclude that the idea functioned 

as if shared. Rather, I marked it as a candidate for satisfying Criterion 2. I then went back 

to the details of each instance of that idea to ask myself whether a legitimate shift in the 

function of that idea had taken place. If I could describe in layman’s terms how the idea 

was used differently in a pair of arguments, and in the later instance the idea was used in 

service of more advanced mathematical activity, then I considered the idea as 

legitimately satisfying the criterion. Thus, by not applying the as-if shared criteria 

blindly, but instead being careful and conscientious in my approach, I strived to avoid 

errors. 

Case studies. Validity threats arising from the case studies take two forms: (1) the 

 validity of the accounts of the cases themselves, and (2) the validity of generalizations 

that might be made from those cases. In other words, these concern the qualitative 

analogues of internal validity and external validity (Merriam, 1998). The accounts of the 

two cases presented in Chapter 6 are sufficiently detailed and transparent, in terms of the 

evidence presented and the inferences made, that the reader should be able to judge their 

validity. My purpose in these analyses was to understand the processes by which the case 

students’ reasoning developed. The themes that I identified emerged from the analyses as 

I attempted to make sense of patterns and changes in Brandy and Valerie’s reasoning. 

These accounts are characterized by thick description, seeking out discrepant evidence, 

and triangulation (Maxwell, 2005). 
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 Yin (1994) distinguishes analytic generalization from statistical generalization. 

The former refers to generalization to theory, which is appropriate to case study research. 

The latter refers to generalization to a larger population, which is not appropriate to case 

study research. Qualitative researchers think differently about the notion of 

generalizability: “A single case or small, nonrandom purposeful sample is selected 

precisely because the researcher wishes to understand the particular in depth, not to find 

out what is generally true of the many” (Yin, 1994, p. 224). It is in the extent to which the 

details of the case overlap with others that understanding these becomes useful. 

Consumers of the research can judge for themselves the applicability of particular 

findings from a case study (Merriam, 1998; Yin, 1994). 

 From among the interview participants, and informed by the previous analyses, I 

selected two cases. These were not selected as typical cases of prospective elementary 

teachers developing number sense. Rather, they were selected as interesting cases with 

the potential to contribute to what is known about the phenomenon. In other words, they 

were selected for their potential to inform theory. The relevant external validity threat, 

then, lies in the possibility of making inappropriate generalizations to the local instruction 

theory. For the purposes of the dissertation study itself, I was careful not to make broad 

generalizations on the basis of characteristics of the case studies. For the most part, I 

limited my claims to the cases themselves. In terms of the larger research program, 

generalizing from cases to theory is certainly of interest, but this will be done cautiously.  

Summary of Reliability and Validity 

 In the interest of reliability and validity, I followed recommendations concerning 

the design and conduct of qualitative research. Other researchers were involved in 
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various stages of the process, including conversations concerning interpretations of data, 

discussions of methodological issues, and reliability checks. I collected rich data, 

searching for discrepant evidence and negative cases, and used triangulation when 

possible. I identified potential validity threats and took measures to address them. The 

kinds of conclusions that were drawn from the analyses were appropriate to the design of 

the study. 

Conclusion 

 I conceptualized the research design in terms of four broad analytic tasks: 

Assessing Change, Microgenetic Analysis, Sociogenetic Analysis, and Ontogenetic 

Analysis. Change in the prospective teachers’ number sense was assessed using 

established pre/post measures. These results informed the selection of case study 

students. The microgenetic analysis involved classroom data and individual data. The 

products of this analysis became the data to be analyzed in the sociogenetic and 

ontogenetic phases. The products of the sociogenetic phase informed the ontogenetic 

analysis in the sense of pointing to ideas of interest. The assessment of change also 

informed the ontogenetic analysis in that the pre/post snapshots were conceived as 

milestones in developmental trajectories. 

 Chapter 4 presents the results of pre/post analyses of survey data and mental 

computation interview data. The first section essentially duplicates previous study results, 

showing that the number sense of the participants improved. The second section 

introduces new innovations in the analysis of number sense development. Chapter 5 

presents the results of the sociogenetic analysis. I describe the progression through 

classroom mathematical practices in the two major content strands. Chapter 6 presents 
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the results of the two case study analyses. These ontogenetic analyses parallel the 

sociogenetic in terms of being organized around the same content strands. In Chapter 7, I 

summarize and discuss the study results. I also address implications for teaching and 

directions for future research. 
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Chapter 4: Results Part 1: Old and New Analyses 

Research Question 1 asks: As prospective elementary teachers participate in a 

mathematics content course designed to support their development of number sense, how 

does the number sense of individuals evolve? As a first step toward answering this 

question, I describe ways in which the number sense of the study participants changed, 

both qualitatively and quantitatively, based on pre/post comparisons. I also present a new 

analytic tool and the results of a microgenetic analysis that afford progress in the 

investigation of number sense development. 

 The section titled Participants’ Improved Number Sense presents results of the 

two survey instruments, the NSRS and SPS. These were both administered to 34 students 

pre- and post-instruction. I present results of quantitative analyses and interpret these 

with respect to the first research question. I also present results of the analysis of data 

from mental computation interviews with the seven interview participants as: (1) analysis 

of change in the participants’ flexibility and (2) analysis of the types of strategies 

(Standard, Transition, Nonstandard, or Nonstandard with Reformulation) used by the 

participants for each operation. 

 The section titled Mental Computation Interview Results presents a new analytic 

tool in the analysis of number sense development: strategy range profiles. I characterize 

various types of profiles that occurred and then report on the specific strategy ranges of 

each participant. This section also includes the results of the analysis of strategy-

arguments, including several examples of these. The strategy-arguments highlight 

mathematical ideas that are important for understanding how the participants thought 
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about their strategies. These ideas are of particular relevance to the sociogenetic and 

ontogenetic analyses to be presented in Chapters 5 and 6, respectively. 

Participants’ Improved Number Sense 

 This section presents results of pre/post analyses of the participants’ number 

sense. This includes results of surveys administered to the class. It also includes results of 

analyses of mental computation interviews conducted with seven participants. Most of 

these results constitute a duplication of results of the previous study. They provide 

evidence of the study participants’ improved number sense.  

Survey Results: Number Sense Rating Scale  

 A total of 34 students completed the NSRS both pre- and post-instruction. Of the 

37 points possible on the test, the mean score on the pretest was 24 pts (65%). The mean 

score on the posttest was 29.4 pts (79%). The difference between the mean scores was 

statistically significant (p < 0.0001), and the effect size was greater than one standard 

deviation (Cohen’s d = 1.27). The distribution of students’ gain scores appear in Figure 6, 

as do the details of the hypothesis test. 

 

Figure 6. Distribution of difference scores in Fall 2010. 
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 For the purposes of further analyses, it is useful to group the study participants 

based on their pretest scores. Pretest scores ranged from 11 to 35 points (30%–95%), with 

the majority of participants (25 of 34) scoring in the range from 20 to 29 points (54%–

78%). We partition these scores into three categories: below 22, from 22 to 27, and above 

27. Partitioning in this way yields approximately equal-sized groups, which we will refer 

to as low, middle, and high. The distribution of scores into the low, middle, and high 

groups is given in Table 6. 

Table 6. Low, Middle, and High NSRS Pretest Scores 

Group Range Count 

Low < 22 11 

Middle 22-27 11 

High > 27 12 

 

We will revisit the low, middle, and high groupings in Chapter 6 in the discussion of case 

studies. For the purposes of the present chapter, these groupings help in comparing the 

learning gains of students in the class involved in the study to those of students in 

previous classes. 

 As part of pilot data collection for the dissertation study, the NSRS was 

administered to students in all three sections of the same math content course that were 

offered during the semester preceding the study. In that semester, a total of 56 students 

took the NSRS both pre and post. For that group of students, the mean NSRS score also 

increased from pre to post to a statistically significant extent. However, the amount of 
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improvement was not as substantial, at less than one standard deviation (Cohen’s d = 

0.95). (See Figure 7). 

 

Figure 7. Distribution of difference scores in spring 2010. 

 In both groups of participants, gains were much greater for students with lower 

pretest scores. Thus, low-scoring students who improve substantially carry a lot of weight 

in the mean gain score. As it turns out, using the same cutoff scores for low, middle, and 

high as described above, there were approximately equal numbers of students in each 

group in spring. There were actually more students in the low group (21) than in the 

middle (17) or high groups (18). Nonetheless, as Table 7 shows, the mean gain score was 

greater for the fall study participants than for the spring participants in each group—low, 

middle, and high.  

Table 7. Comparison of Fall 2010 and Spring 2010 Gain Scores by Group 

Spring 2010 Fall 2010 Group 

Mean Std Dev Count Mean Std Dev Count 

Low 6.67 3.75 21 9.36 4.57 11 

Middle 3.24 3.33 17 4.27 2.87 11 

High 1.22 3.02 18 2.92 2.23 12 
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 The data in Table 7 show that students in all three groups improved more during 

the fall teaching experiment than did their counterparts in the spring classes. These results 

help to establish (a) that study participants’ number sense improved and (b) that their 

number sense improved to an extent that merits attention.  

 We now take a closer look at the NSRS results for the class that participated in the 

teaching experiment. 

NSRS Results by Number Domain. The NSRS consists of approximately equal 

numbers of questions focused on whole numbers, fractions, and decimals. For our 

purposes, we will simply distinguish whole-number items from rational-number items. Of 

the 37 test items, 12 were whole-number items and 25 were rational-number items. On 

the whole-number items, the mean gain was 4.33 correct responses. That is, on average, 

4.33 more students answered a given whole-number item correctly on the posttest. The 

mean gain on rational-number items was 5.32 correct responses. Thus, the class improved 

substantially on both sets of items. Improvement on rational-number items was greater. 

 I offer two examples of whole-number items. Item 9 asked students to reason 

about the difference between two products. (See Figure 8.) This was a relatively difficult 

item, which only 15 of 34 students (44%) answered correctly on the pretest. On the 

posttest, 26 of 34 students (76%) answered it correctly. This result suggests improvement 

in students’ reasoning about products of whole numbers, particularly their ability to 

account for the effect of changing one of the products. 

93 x 134 = 12462. How much greater than 12462 is the product of 93 and 135?  
a) 93   b) 134   c) 135   d) I can’t tell without calculating 

Figure 8. NSRS Item #9. 
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 Item 25 asked students to choose the closest estimate of the product of 18 and 19 

(see Figure 9). On the pretest, 16 of 34 students (47%) answered this item correctly. On 

the posttest, 23 of 34 students (68%) answered correctly. Given that this test was 

multiple-choice and that written work was not allowed, we can only conjecture as to how 

students’ reasoning changed. For example, students might have reasoned that this product 

was close to but less than 400 by comparing it to the product of 20 and 20. Alternatively, 

students may have developed the ability to perform mental multiplication easily enough 

that they computed the exact product of 18 and 19 and then answered on that basis. How 

students’ reasoning specifically changed will be addressed in detail later. 

25. Which answer is the product of 18 and 19 closest to? 
a) 250  b) 350  c) 450  d) 550 

Figure 9. NSRS Item #25. 

 Participants’ scores on the NSRS pretest results were on par with those previously 

seen. Posttest results revealed significant improvement in students’ scores. This test was 

not used to substantively investigate students’ reasoning. It was used as an independent, 

baseline measure that afforded comparisons to this class and previous ones, as well as 

comparison of the interview participants to the class at large. 

Results: Student Preference Survey 

 The same 34 students who took the NSRS pre and post also took the SPS (See 

Appendix 2) on both occasions. The SPS gave students a list of computations, four for 

each operation, (e.g., “78 – 34”) and asked whether the student would perform the given 

computation mentally. Students responded by circling either “Yes” or “No.” The “Yes” 

responses on the pre-survey varied according to the operation. Prior to instruction, 

students circled “Yes” for 93% of the addition computations and 90% of the subtraction 
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computations. By contrast, they circled “Yes” for only 15% of multiplication 

computations and 40% of division computations. These data are summarized in Table 8. 

The disparity between responses by operation suggests that students entering the course 

saw the mental division tasks as more difficult than the addition or subtraction tasks and 

that they saw the multiplication tasks as most difficult. 

Table 8. SPS Pre Survey “Yes” Counts by Operation 

Operation Yes mean pre Yes as % 

Addition 31.5 92.7% 

Subtraction 30.5 89.7% 

Multiplication 5 14.7% 

Division 13.5 39.7% 

 
 On the post survey, students circled “Yes” for more than 90% of the addition and 

subtraction computations. They circled “Yes” for slightly more than 50% of the 

multiplication and division computations. These results are summarized in Table 9. 

Students’ post responses indicate that they saw the addition and subtraction computations 

as being of comparable difficulty to one another, and the multiplication and division 

computations as also being of comparable difficulty to one another. They viewed the 

multiplication and division computations as much more difficult than the addition and 

subtraction computations but not as difficult as they had regarded them in the pre survey. 

 There was no change in the frequency of “Yes” responses for addition, and only a 

slight increase in the case of subtraction. The frequency of “Yes” responses to the 

division computations increased by 12.5% (of the 34 students). The frequency of “Yes” 
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Table 9. SPS Post Survey “Yes” Counts by Operation 

Operation Yes count post 

mean 

Yes count as % 

Addition 31.5 92.7% 

Subtraction 31.75 93.4% 

Multiplication 18 52.9% 

Division 17.75 52.2% 

 
responses to the multiplication computations increased by 38.2% (of the 34 students). 

These increases were statistically significant. The results of the pre/post comparison are 

summarized in Table 10. 

Table 10. Mean Change in “Yes” Responses by Operation 

Operation Yes Pre % Yes Post % Change 

(Post – Pre) 

Prob < |t| 

Addition 92.7% 92.7% 0% 1 

Subtraction 89.7% 93.4% 3.7% 0.49 

Multiplication 14.7% 52.9% 38.2% 0.0053* 

Division 39.7% 52.2% 12.5% 0.0313* 

 

 According to the SPS results, most students in the class reported that they were 

willing to perform addition and subtraction of two- and three-digit numbers mentally at 

the beginning of the course. Though students saw the multiplication and division 

computations as more difficult than addition and subtraction, both pre and post, they 
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more willing to mentally perform multiplication and division by the end of the course. 

The largest change came in students willing to perform multiplication. For example, only 

4 of the 34 students circled “Yes” for 15 x 24 on the pre survey. More than 4 times as 

many students (17) circled “Yes” on the post survey. 

 It would not be fair to assume that students would, in fact, perform about 90% of 

the addition and subtraction computations mentally if these arose in everyday life. 

However, the differences in responses by operation suggest that they came to view the 

multiplication and division computations as less difficult by the end of the course than 

they had at the beginning. 

 We saw statistically significant increases in scores on both the NSRS and SPS. 

Increases in NSRS scores point to improved number sense. In particular, the increase in 

scores on a subset of the problems provides evidence of improved whole-number sense. 

Furthermore, the NSRS gains were greater than in Spring 2010, which suggests that 

something special happened in the fall class in terms of students’ number sense 

improvement. The SPS results suggest that students came to see mental multiplication 

and division as more accessible than they did initially. 

 The advantage to the SPS and NSRS is that they easily generated pre/post data for 

34 students. The disadvantage to these instruments is that they provide limited insights 

into students’ reasoning. In what follows, we look at how a subset of the students 

performed mental computation and reasoned about those computations. 

Mental Computation Interview Results 

 Seven students participated in whole-number mental computation interviews. I list 

the participants’ NSRS scores in order to provide a rough picture of how these seven 
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students compared to the entire class, based on a common measure of their number sense. 

What follows are the results of analyses of the mental computation interview data, with 

the coding scheme strategies for the participants’ strategies. The section ends with results 

concerning change in interview participant flexibility and change in the distributions of 

utilized strategies along the spectrum from Standard to Nonstandard. 

Interview Participants’ NSRS Scores 

 Seven students participated in pre/post mental computation interviews: Angela, 

Brandy, Zelda, Natalie, Trina, Maricela, and Valerie.14 Table 11 presents the interview 

participants’ NSRS pretest scores, identified as belonging to the Low, Middle, or High 

group. The table also shows the participants’ gain score (post – pre), the mean gain score 

for the group, and the predicted gain score based on the participants’ pretest score. (The 

predicted gain score is based on a linear regression model.) 

 On the basis of their pretest scores on the NSRS, the interview participants appear 

to reasonably represent the larger population of students in the class. There were two 

from the Low group, three from the Middle group, and two from the High group. The 

interview participants tended to improve more on the NSRS than did the larger 

population of students in the class. One possible explanation for this would be that their 

participation in the interviews positively influenced students’ learning. 

Participants’ Mental Computation Strategies 

 For basic coding of addition, subtraction, and multiplication strategies, the 

previously developed scheme (Whitacre, 2006) was used and required only slight 

modifications. Codes for division strategies were developed through constant 
                                                

14 These names are pseudonyms. 
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Table 11. Interview Participants’ NSRS Scores and Gains 
Student Pre Score Group Actual Gain 

(Post – Pre) 

Mean Gain 

for Group 

Predicted 

Gain 

Angela 18 Low 13 9.36 9.00 

Brandy 21 Low 8 9.36 7.21 

Zelda 23 Middle 9 4.27 6.02 

Natalie 24 Middle 8 4.27 5.42 

Trina 26 Middle 4 4.27 4.23 

Maricela 28 High 5 2.92 3.04 

Valerie 29 High 3 2.92 2.45 

 
comparative analysis, and these were added to the scheme. Tables 12, 13, 14, and 15 

present names and descriptions of the mental addition, subtraction, multiplication, and 

division strategies (respectively) that were used by the interview participants during the 

main mental computation tasks. 

 With this scheme in place, I report on the strategies that the interview participants 

used for the particular mental computation tasks. 

Strategies Used Pre and Post 

 The mental addition strategies that participants used for the main Bobo tasks are 

presented in Tables 16 and 17. As Table 16 shows, the participants used the MASA for 

almost all mental addition computations in the first interview. Only three of the seven 

participants used any non-MASA strategy. By contrast, Table 17 shows that the 

participants used a wide variety of addition strategies for these same computations in the 
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Table 12. Participants’ Mental Addition Strategies 

Strategy Description 

MASA The student used the mental analogue of the standard (US) 

addition algorithm. Language such as “carry the one” often 

accompanied the use of this strategy. Students generally 

used non-place-value language. 

Right to Left 

(RtoL) 

The student added place-value wise from right to left but 

did not necessarily picture the digits aligned, as in the 

standard algorithm. In contrast to the MASA, the student 

used place-value language. 

Left to Right 

(LtoR) 

The student added place-value wise from left to right. 

Typically, she used place-value language. 

Aggregation 

(Agg) 

The student began with one of the two addends and added 

the other one on in convenient chunks, generally working 

from big to small and keeping a running subtotal. 

Giving 

 

The student altered the problem such that part of one 

addend (usually a small number of ones) was added 

(“given”) to the other prior to finding their sum. 

Single Compensation 

(SC) 

The student altered one of the two addends (usually 

rounding up or down to the nearest multiple of ten) prior to 

performing the addition. The student added the rounded  

(table continues) 
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Table 12. continued 

Strategy Description 

 numbers and then compensated for rounding. 

Double Compensation 

(DC) 

The student altered both addends (usually rounding them 

up or down to the nearest multiple of ten) prior to 

performing the addition. The student added the rounded 

numbers and then compensated for rounding. 

 

Table 13. Participants’ Mental Subtraction Strategies 

Strategy Description 

MASA The student used the mental analogue of the standard (US) 

subtraction algorithm. Language such as “borrowing” 

often accompanied the use of this strategy. 

Right to Left 

 

The student subtracted place-value-wise from right to left 

but without visualizing the numbers aligned as in the 

standard algorithm. 

Left to Right The student subtracted place-value-wise from left to right. 

Aggregation The student either (a) began with the subtrahend and added 

onto it in convenient chunks until the minuend was 

reached or (b) began with the minuend and subtracted off 

the subtrahend in convenient chunks. The student kept a 

cumulative mental record of the amount added or  

(table continues) 
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Table 13. continued 

Strategy Description 

 subtracted. In the case of adding on to the subtrahend, this 

amount gave the difference. In the case of subtracting from 

the minuend, the result gave the difference. 

Minuend Compensation 

(MC) 

The student altered the minuend (often rounding up or 

down to a multiple of ten) prior to performing the 

subtraction. The student found the difference between the 

subtrahend and rounded minuend and then compensated 

appropriately for rounding. 

Invalid Subtrahend 

Compensation 

(Invalid SC) 

The student altered the subtrahend (often rounding up or 

down to the nearest multiple of ten) prior to performing 

the subtraction. The student found the difference between 

the minuend and rounded subtrahend and then 

compensated for rounding. However, she compensated 

incorrectly: she subtracted from the difference to 

compensate for having added to the subtrahend, or she 

added to the difference to compensate for having 

subtracted from the subtrahend. 

Valid Subtrahend 

Compensation 

The student altered the subtrahend (often rounding up or 

down to the nearest multiple of ten) prior to performing  

(table continues) 
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Table 13. continued 

Strategy Description 

(Valid SC) the subtraction. The student found the difference between 

the minuend and rounded subtrahend and then 

compensated for rounding. Specifically, she compensated 

correctly: she added to the difference to compensate for 

having added to the subtrahend, or she subtracted from the 

difference to compensate for having subtracted from the 

subtrahend. 

Shifting the Difference The student added the same amount to, or subtracted the 

same amount from, both the minuend and subtrahend. She 

then found the difference between the rounded numbers. 

 

Table 14. Participants’ Mental Multiplication Strategies 

Strategy Description 

Invalid Partial Products 

(Invalid PP) 

The student computed partial products and 

then added these together, but the correct 

set of partial products was not used. 

Typically, the student computed only the 

ones x ones and tens x tens. 

MASA The student used the mental analogue of 

the standard (US) multiplication algorithm.  

(table continues) 
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Table 14. continued 

Strategy Description 

 Students spoke in terms of digits, rather 

than using place-value language, and often 

made reference to the details of the written 

algorithm. 

Partial Products 

(Valid PP) 

The student decomposed one or both 

factors place-value-wise and then applied 

the distributive property of multiplication 

over addition. Most students who 

employed Partial Products used place-value 

language. 

Nonstandard Additive Distribution 

(NAD) 

 

The student decomposed one of the factors 

non-place-value-wise, and then applied the 

distributive property of multiplication over 

addition. Thus, the partial products added 

were not those that one would add using 

the Partial Products strategy or the standard 

algorithm. 

Subtractive Distribution 

(SD) 

The student applied the distributive 

property of multiplication over subtraction.  

(table continues) 
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Table 14. continued 

Strategy Description 

 This strategy was often used when there 

was a benchmark number slightly greater 

than either of the factors. 

Quarters For multiplication of 25, the student 

grouped 25’s into 100’s. For example, she 

computed 25 x 16 by reasoning that four 

25’s make 100, and 16 is 4 x 4, so that 

makes 4 hundreds. 

Double Compensation 

(DC) 

The student rounded both factors and then 

multiplied. She then performed two distinct 

compensation steps to account for the 

effects of rounding. 

 

Table 15. Participants’ Mental Division Strategies 

Strategy Description 

Invalid Partial Quotients 

(Inv PQ) 

The student partitioned the divisor, 

computed partial quotients (dividend 

divided by part of the divisor) and then 

added these together. 

(table continues) 
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Table 15. continued 

Strategy Description 

MASA The student used the mental analogue of 

the standard (US) division algorithm. 

Students spoke in terms of digits, rather 

than using place-value language, and often 

made reference to the details of the written 

algorithm, e.g., “bringing down a zero.” 

Count by The student counted by multiples of the 

divisor, either down from the dividend to 

zero or up from zero to the dividend. 

Quarters The student used a special case of a 

factorization strategy involving 25’s. For 

example, to divide 600 by 25, she reasoned 

that there are four 25’s in 100, and six 

100’s in 600. Therefore, the number of 25’s 

is 4 x 6 = 24. 

Subtractive Distribution 

(SD) 

The student applied the multiplication 

strategy Subtractive Distribution, but 

worked backwards to determine the 

missing factor (the quotient). 
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Table 16. Participants’ Mental Addition Strategies by Item, First Interview 

Participant $37 & $52 $64 & $87 $96 & $157 $38 & $99 

Angela MASA MASA MASA DC 

Brandy MASA MASA MASA MASA 

Maricela MASA MASA MASA MASA 

Natalie MASA MASA MASA MASA 

Trina MASA MASA LtoR Giving 

Valerie MASA MASA MASA, (SC) MASA, (SC) 

Zelda MASA MASA MASA MASA 

 

Table 17. Participants’ Mental Addition Strategies by Item, Second Interview 

Participant $37 & $52 $64 & $87 $96 & $157 $38 & $99 

Angela MASA MASA Giving Giving 

Brandy RtoL LtoR LtoR SC 

Maricela MASA MASA MASA MASA 

Natalie MASA 

(Agg) 

MASA SC SC 

Trina RtoL LtoR LtoR Giving 

Valerie MASA MASA MASA SC 

Zelda DC DC SC SC 
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second interview. Recall that participants were not asked for alternative strategies during 

this part of the interview. Alternative strategies are regarded as Scaffolded Alternatives, 

considered differently, since having the answer likely supported other ways of reasoning 

aobut the problem. In the event of a spontaneous alternative, it appears in parentheses 

after the code for the first strategy used. 

 Similar results occurred in subtraction. As a group, the 7 interview participants 

used the MASA almost exclusively for their mental subtraction computations in the first 

interview. Only 3 of the 7 participants used a non-MASA subtraction strategy, and only 2 

of the 3 used a valid non-MASA subtraction strategy. In the second interview, by 

contrast, a wide variety of subtraction strategies were used. In fact, 6 of the 7 participants 

used at least one valid non-MASA subtraction strategy. These results are presented in 

Tables 18 and 19. 

Table 18. Participants’ Mental Subtraction Strategies by Item, First Interview 

Participant $34 & $78 $52 & $178 $45 & $82 $49 & $125 

Angela MASA MASA MASA Valid SC 

Brandy MASA MASA MASA MASA 

Maricela MASA MASA MASA MASA 

Natalie MASA MASA MASA Invalid SC 

Trina MASA MASA LtoR LtoR 

Valerie MASA MASA MASA MASA 

Zelda MASA MASA MASA MASA 
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Table 19. Participants’ Mental Subtraction Strategies by Item, Second Interview 

Participant $34 & $78 $52 & $178 $45 & $82 $49 & $125 

Angela MASA MASA Agg Valid SC 

Brandy MASA Agg 

(MASA) 

MC Valid SC 

Maricela MASA MASA Agg Agg 

Natalie MASA MASA MC Valid SC 

Trina LtoR LtoR MASA Valid SC 

Valerie MASA MASA Agg Agg 

Zelda MASA MASA MASA Invalid SC 

 

 In multiplication, unlike addition and subtraction, participants used a variety of 

strategies in the first interview. The change seen from pre to post has less to do with 

flexibility and more to do with which strategies participants used. The group of 

participants used a total of five distinct, valid strategies in the first interview. However, 

MASA and Invalid Partial Products together were used for 15 of the 28 computations 

performed. In the second interview, by contrast, these were used by only 1 of the 7 

participants. Instead, the valid Partial Products strategy became much more common (up 

from 2 to 12 instances), and Subtractive Distribution was used more often (up from 7 to 

10 instances). These results appear in Tables 20 and 21. 

 In mental division, participants were reliant on the MASA in the first interview, 

using it for 21 of the 28 quotients computed. Other valid strategies were rare. In the 

second interview, the MASA was used less frequently (down from 21 to 16 instances), 
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Table 20. Participants’ Mental Multiplication Strategies by Item, First Interview 

Participant 15 x 24 19 x 21 25 x 16 99 x 15 

Angela MASA SD MASA SD 

Brandy Invalid PP n/a Quarters SD 

Maricela MASA MASA MASA MASA 

Natalie MASA Valid PP NAD SD 

Trina Valid PP SD Quarters SD 

Valerie Invalid PP Invalid PP Invalid PP Invalid PP 

Zelda MASA MASA MASA SD 

 

Table 21. Participants’ Mental Multiplication Strategies by Item, Second Interview 

Participant 15 x 24 19 x 21 25 x 16 99 x 15 

Angela Valid PP PP Valid PP SD 

Brandy Valid PP SD Quarters SD 

Maricela Valid PP PP SD SD 

Natalie Valid PP Estimate Valid PP SD 

Trina DC SD Quarters SD 

Valerie Invalid PP MASA Valid PP 

(Quarters) 

SD 

Zelda Valid PP Valid PP Valid PP SD 
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and all 7 participants used the Quarters strategy to compute 275 ÷ 25 (up from 3 to 7). 

Overall, however, there was less change change seen in participants’ mental division than 

in the other operations. These results appear in Tables 22 and 23. 

Table 22. Participants’ Mental Division Strategies by Item, First Interview 

Participant 420 ÷  14 570 ÷  30 512 ÷  16 275 ÷  25 

Angela MASA MASA MASA MASA 

Brandy MASA Count by n/a Quarters 

Maricela MASA MASA MASA MASA 

Natalie Invalid MASA MASA Quarters 

Trina MASA MASA MASA Quarters 

Valerie MASA MASA MASA MASA 

Zelda MASA MASA MASA Invalid 

 

Table 23. Participants’ Mental Division Strategies by Item, Second Interview 

Participant 420 ÷  14 570 ÷  30 512 ÷  16 275 ÷  25 

Angela MASA MASA MASA Quarters 

Brandy Invalid PQ SD Estimate Quarters 

Maricela MASA MASA MASA Quarters 

Natalie MASA MASA MASA Quarters 

Trina MASA MASA MASA Quarters 

Valerie MASA MASA MASA Quarters 

Zelda MASA n/a Invalid PQ Quarters 
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 The results presented so far amount to a straightforward report of the strategies 

used by the interview participants, and these results begin to paint a picture of positive 

change. The upcoming sections present more detailed analyses focusing on two particular 

dimensions of the participants’ mental computation, flexibility and strategy ranges. 

Flexibility refers to the variety of distinct, valid strategies used by the participant for a 

given operation. This is a categorical measure based on quantitative data: participants are 

categorized as Inflexible, Semiflexible, or Flexible depending on the number of distinct, 

valid strategies that they used for a given operation. Strategy ranges are qualitative. 

These describe the set of strategies the participant used by illustrating the distribution of 

these stategies along the Standard-to-Nonstandard spectrum. 

Participant’s Improved Flexibility 

 Overall, the participants became more flexible from the first to the second 

interview. However, the amount of change varied both by individual and by operation. 

For the operation addition, 6 of the 7 participants were Inflexible or Semiflexible in the 

first interview. By the second interview, 6 of the 7 participants were Semiflexible or 

Flexible. For the subtraction operation, the change was similar. All participants were 

Inflexible or Semiflexible in the first interview. By the second interview, 6 of 7 were 

Semiflexible or Flexible. In multiplication, 3 of the 7 participants were Inflexible in the 

first interview. By the second interview, all 7 were either Semiflexible or Flexible. In 

division, 4 participants were Inflexible in the first interview, and 3 were Semiflexible. By 

the second interview, all were Semiflexible. Thus, there was improvement in flexibility 

for each of the operations. These results are summarized in Tables 24 and 25. 
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Table 24. Participants’ Flexibility by Operation in the First Interview 

Participant Addition Subtraction Multiplication Division 

Angela Semiflexible Semiflexible Semiflexible Inflexible 

Brandy Inflexible Inflexible Inflexible Semiflexible 

Maricela Inflexible Inflexible Inflexible Inflexible 

Natalie Inflexible Inflexible Flexible Semiflexible 

Trina Flexible Semiflexible Flexible Semiflexible 

Valerie Inflexible Inflexible Inflexible Inflexible 

Zelda Inflexible Inflexible Semiflexible Inflexible 

 

Table 25. Participants’ Flexibility by Operation in the Second Interview 

Participant Addition Subtraction Multiplication Division 

Angela Semiflexible Flexible Semiflexible Semiflexible 

Brandy Flexible Flexible Flexible Semiflexible 

Maricela Inflexible Semiflexible Semiflexible Semiflexible 

Natalie Semiflexible Semiflexible Flexible Semiflexible 

Trina Flexible Flexible Flexible Semiflexible 

Valerie Semiflexible Semiflexible Flexible Semiflexible 

Zelda Flexible Inflexible Semiflexible Semiflexible 
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 For the sake of succinctly representing changes in flexibility, the three levels—

Inflexible, Semiflexible, and Flexible—are assigned the values 0, 1, and 2, respectively. 

Shifts in flexibility from the first to the second interview are then described by the 

difference between the two scores (second – first). Thus, for each operation, each 

participant has a flexibility change score. These scores appear in Table 26. 

Table 26. Participants’ Flexibility Change Scores by Operation 

Student Addition Subtraction Multiplication Division 

Angela 0 +1 0 +1 

Brandy +2 +2 +2 0 

Maricela 0 +1 +1 +1 

Natalie +1 +1 0 0 

Trina 0 +1 0 0 

Valerie +1 +1 +2 +1 

Zelda +2 0 0 +1 

 

 These results demonstrate that the interview participants became more flexible in 

mental computation. Each participant became more flexible in at least one operation, and 

six of the seven participants became more flexible in two or three operations. 

Shift from Standard toward Nonstandard 

 Interview participants’ strategies were also coded as belonging to one of the four 

categories, Standard, Transition, Nonstandard, or Nonstandard with Reformulation. For 

each operation, the Standard strategy (the MASA) was the most common strategy used in 

the first interview. Participants were posed a total of 112 mental computations in the first 
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interview (7 participants, 4 operations, 4 problems per operation). In total, there were 102 

instances of valid strategy use. Participants used MASAs for 80 of these. Only in the case 

of multiplication were other strategies used with substantial frequency. Overall, the 

participants’ were reliant on the standard algorithms. These data appear in Table 27. 

Table 27. Strategy Use by Category in the First Interview 

Operation Standard Transition Nonstandard Nonstd w/Ref. 

Add. Pre 25 1 0 2 

Sub. Pre 24 2 0 1 

Mult. Pre 10 0 4 8 

Div. Pre 21 1 3 0 

Total Pre 80 4 7 11 

 
 In the second interview, there were 104 instances of valid strategy use. 

Participants used MASAs for 39 of these. Instances of Nonstandard strategy use (with 

and without reformulation) totaled 56. The MASA for multiplication was used only once. 

These data appear in Table 28. Figure 10 represents the total instances of strategies used 

in each category, pre and post. The light gray graph shows how common the MASAs 

were in the first interview. The blue (or darker gray) graph shows that the participants 

used a more balanced set of strategies in the second interview. 

 This shift from Standard toward Nonstandard is similar to that seen in the 2005 

study. As in the previous study, the picture that emerges from the second interview is a 

desirable one. In some cases, the mental analogues allow for quick and easy computation. 

However, the first interview results reflect over-reliance on these strategies. The 
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Table 28. Strategy Use by Category in the Second Interview 

Operation Standard Transition Nonstandard Nonstd w/Ref. 

Add. Post 11 6 0 11 

Sub. Post 12 2 6 6 

Mult. Post 1 0 14 11 

Div. Post 15 1 7 1 

Total Post 39 9 27 29 

 

 

Figure 10. Shift from standard toward nonstandard. 
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participants were posed problems with various affordances. In the first interview, they 

rarely capitalized on these affordances. In the second interview, they often did. 

Summary of Participants’ Improved Number Sense 

 The participant’s number sense was examined in several ways. All 34 participants 

took the Number Sense Rating Scale (NSRS) and Student Preference Survey (SPS) pre 

and post-instruction. Students’ mean score increased by more than one standard deviation 

and the mean gain score was greater than in nonintervention classes of a previous 

semester. Students in all the groups—Low, Middle, and High–showed improvement. The 

Student Preference Survey results indicate that students came to see multiplication and 

division as less difficult than they had at the beginning of the semester. Students reported 

increased willingness to perform computations mentally, especially in the case of 

multiplication. The inclination to actually apply one’s understanding of numbers and 

operations is an aspect of number sense. Thus, these results provide additional evidence 

of improved number sense.  

 Interview participants demonstrated increased flexibility in whole-number mental 

computation. (i.e., the interview participants came to use a wider variety of strategies for 

a given operation). In Chapter 6, we revisit the issue of flexibility and shift our attention 

to flexibility within problems, addressing participants’ abilities to use a variety of 

strategies for the same computation. 

 In addition to becoming more flexible, the interview participants came to use 

nonstandard strategies far more often. That is, the distribution of strategies used shifted 

decidedly towards the nonstandard end of the spectrum. Nonstandard strategies are 

associated with number sense because they require students to recruit their understanding 
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of numbers and operations in reasoning about how to perform the computation. In the 

next section, I present participants’ justifications for their nonstandard strategies. In this 

way, the study does not take the use of nonstandard strategies as a proxy for 

understanding. On the contrary, participants’ relevant mathematical understandings were 

directly investigated. 

 The results presented thus far provide evidence that the participants’ number 

sense improved in a second instantiation of a classroom teaching experiment. Five years 

after the previous study, with a new group of students and a different instructor teaching 

the course, prospective elementary teachers are developing improved number sense in a 

course informed by the local instruction theory for number sense development.  

 The results presented thus far raise the question. To begin to address the question 

of how the study participants’ number sense improved, the Chapter 5 presents an analysis 

of collective activity during the whole-number portion of the course. In order to integrate 

an analysis of collective activity and individual development, we revisit the pre/post 

mental computation activity of the seven interview participants through the lens of new 

analytic tools. 

New Analytic Tools 

 Analytic tools are introduced, which will be used extensively for an understanding 

of the development of number sense. I begin by characterizing the range of strategies that 

interview participants used for mental computation. Then, the construct of strategy-

arguments, a product of the microgenetic phase of analysis, is introduced. We identify the 

strategy-arguments that were articulated in interviews, focusing on the mathematical 

ideas that were used to justify participants’ nonstandard strategies. These new tools and 
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constructs afford more illuminating characterizations of change in the participants’ 

conceptions and activity. 

 The previous analysis of interview participant’s number sense was made in terms 

of two measures: (1) flexibility and (2) the distribution of strategies across the categories 

of Standard, Transition, Nonstandard, and Nonstandard with Reformulation. Flexibility 

was assessed at the individual level, and it was based on a count of distinct strategies 

available to the participant for a given operation. In the analysis of distribution of 

strategies, participants’ responses were pooled, so that the shift that we observed from 

Standard toward Nonstandard was a characterization of change in the group of seven 

interview participants, rather than at the individual level.  

 For the purposes of ontogenetic analysis, we require a new analytic tool that 

affords a finer-grained examination of individuals’ conceptions and activity. 

Participants’ Strategy Ranges 

 We describe the ranges of strategies that participants used for mental computation 

in terms of the spectrum from Standard to Nonstandard. For each characterization of a 

strategy distribution along that spectrum, we define a Strategy Range Profile. The 

strategy range profiles that arose in the data are described in Table 29. The figures 

accompanying each profile depict the participants’ strategy range pictorially along the 

Standard-to-Nonstandard spectrum. 

 All strategy range profiles are profiles of participants’ ranges of valid strategies. 

Invalid strategies are not profiled. For participants who used invalid strategies, I indicate 

parenthetically that their range is limited (i.e., the participant’s valid strategy range is a 

subset of her total strategy range). 
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Table 29. Strategy Range Profiles 

 

MASA-bound: The student uses the MASA for all computations for a given operation. 

 

Polarized (X/Y): The student uses two distinct, valid strategies, and these are at opposite 

ends of the spectrum. Specifically, the student uses the MASA for some computations 

and a Nonstandard stategy for others. The computations for which a Nonstandard strategy 

is used tend to involve an obvious benchmark number, like 99. (X and Y refer to the 

counts of instances of the MASA versus the Nonstandard strategy.) If the nonstandard 

strategy is used in the special case in which a benchmark number is involved in the 

computation, this is coded by the notation (benchmark) following Polarized (X/Y). 

(table continues) 
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Table 29. continued 

 

Transitional (X/Y): The student uses transition strategies. She may also use the MASA, 

but she does not use any nonstandard strategy. (X and Y refer to the counts of instances 

of the MASA versus Transition strategies.) 

 

Spread: Student student uses the MASA, along with at least two distinct non-MASA 

strategies. These may or may not include Transition strategies. 

 

Transition+ (X/Y): Student does not use the MASA. She uses all Transition and 

Nonstandard strategies. (X and Y refer to the counts of instances of Transition versus  

(table continues) 



178 

 

Table 29. continued 

Nonstandard strategies. Note: the student may use 2, 3, or 4 distinct strategies.) 

 

Independent (Z): Student uses Nonstandard strategies exclusively. (Z denotes the 

number of distinct nonstandard strategies that the student uses.) 

 
Shifts in participants’ strategy ranges. In this section, participants’ strategy 

ranges are contrasted pre/post in order to characterize how these changed. To illimunate 

these contrasts, we also describe the nature of the change. The codes below are used to 

explicitly identify new strategies that a participant used or conditions under which 

nonstandard strategies were used: 

Adopted [Strategy]. The student adopted [Strategy]. That is, she had not 
used [Strategy] in the first interview, but did use [Strategy] at least once in 
the second interview. Adopted strategies included Aggregation (Agg.), 
Compensation (Comp.), Partial Products (PP), and Subtractive 
Distribution (SD). 

Dropped Invalid. The student has used an invalid strategy for the given 
operation in her first interview, and she did not use this strategy in her 
second interview. A valid strategy was used in its place. 

Dropped MASA. The student has used the MASA for the given operation 
in her first interview, and she did not use the MASA in her second 
interview. A Transition or Nonstandard strategy was used in its place. 

Stable. The student used the same range of strategies for the given 
operation in both interviews. 
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Benchmark. The student applied a new strategy to a special case of a 
computation, one involving a benchmark. 

Benchmark sensitivity. The student expanded her benchmark tolerance. 
That is, she took a strategy that was previously only used in the case of an 
obvious benchmark (e.g., 99 in addition) and applied it to a less 
specialized case (e.g., 96 in addition). 

Place value (PV). The student shows greater awareness of place value in 
reasoning about the operation. Typically, this shift coincides with students 
moving from reliance on the MASA to wider use of Transition strategies.  

 With the above scheme in place, changes in participants’ strategy ranges can be 

described. Table 30 shows the specific strategy ranges used by each participant for 

addition computations in the first and second interview. In the first interview, 5 of the 7 

participants were MASA-bound. Only one of these participants remained MASA-bound 

in the second interview. 

Table 30. Shifts in Participants’ Addition Strategy Ranges 

Participant Range Pre Range Post Shift Description 

Angela Polarized (3/1) Polarized (2/2) Benchmark 

sensitivity 

Brandy MASA-bound Transition+(3/1) PV, Benchmark 

Maricela MASA-bound MASA-bound Stable 

Natalie MASA-bound Polarized (2/2) Adopted Comp., 

Benchmark 

Trina Spread Transition+(3/1) PV 

Valerie MASA-bound Polarized (3/1) Benchmark 

Zelda MASA-bound Independent (2) Adopted Comp. 
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 The shift descriptions shed some light on how the participants’ reasoning 

changed. The most common change involved participants’ recognition of benchmark 

numbers. They became more likely to recognize and take advantage of the affordances of 

numbers such as 99 that are close to benchmarks. There were also two participants whose 

improved strategy ranges reflect an improved understanding of place value, as well as 

two who adopted Compensation strategies. Brandy and Zelda stand out as compelling 

cases. Brandy moved from MASA-bound to Transition+. In the second interview, she 

used Transition strategies for 3 of the 4 addition computations, and she used Single 

Compensation to find the sum of 38 and 99. Brandy exhibited an improved understanding 

of place value, as well as the ability to recognize and take advantage of the affordances of 

benchmark numbers. Zelda moved from MASA-bound to Independent. She adopted 

Compensation as a way of reasoning in computing sums, and her approach to the mental 

addition tasks was transformed. In the second interview, she used Single and Double 

Compensation to solve each addition problem. She rounded, added, and then 

compensated appropriately for her rounding moves.  

 Table 31 describes the strategy ranges used by each participant for subtraction 

computations in the first and second interview. As with addition, 5 of the 7 participants 

were MASA-bound in the first interview, and all but one of these shifted to using a wider 

range of strategies. The improvement in participants’ subtraction strategy ranges seems to 

be accounted for mostly by adoption of new strategies. Four adopted Aggregation, and 

two adopted (valid) Compensation strategies. 

 Table 32 shows the specific strategy ranges used by each participant for 

multiplication computations in the first and second interview. In contrast to addition and 
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Table 31. Shifts in Participants’ Subtraction Strategy Ranges 

Participant Range Pre Range Post Shift Description 

Angela Polarized (3/1) Spread Adopted Agg. 

Brandy MASA-bound Transition+(1/3) Adopted Agg. And 

Comp., PV 

Maricela MASA-bound Polarized (2/2) Adopted Agg. 

Natalie MASA-bound Polarized (2/2) Adopted Comp. 

Trina Transitional Spread Adopted Comp. 

Valerie MASA-bound Polarized (2/2) Adopted Agg. 

Zelda MASA-bound MASA-bound Stable 

 

subtraction, students’ strategy ranges for multiplication in the first interview were more 

varied and less limited overall. At the same time, however, five of the seven participants 

were MASA-bound, Polarized, or Limited. By the second interview, five of seven 

participants were Independent and not Limited. Table 32 also provides descriptions of the 

shifts in participants’ multiplication strategy ranges. Five of the seven participants 

adopted the valid Partial Products strategy. Two of these five participants also adopted 

Subtractive Distribution. 

 Table 33 describes the strategy ranges used by each participant for division 

computations in the first and second interview. The table also characterizes the pre/post 

shifts in division strategy ranges. When it came to division, participants’ strategy ranges 

were especially weak in the first interview. Six of the seven participants were MASA- 

bound and/or Limited. The strongest strategy range was Trina’s, and even she used the 
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Table 32. Shifts in Participants’ Multiplication Strategy Ranges 

Participant Range Pre Range Post Shift Description 

Angela Polarized (2/2) 

(benchmark) 

Independent (2) Adopted PP 

Brandy Independent (2) – 

Limited 

Independent (3) Dropped Invalid, 

Adopted PP 

Maricela MASA-bound Independent (2) Adopted PP and SD 

Natalie Spread Independent (2) – 

Limited 

Adopted Estimation 

Trina Independent (3) Independent (3) Adopted Comp. 

Valerie Limited  

(no valid strategy) 

Spread – Limited Adopted PP, 

Quarters, SD 

Zelda Polarized (3/1) 

(benchmark) 

Independent (2) Adopted PP 

 

MASA for three of the four division computations. By the second interview, none of the 

participants were MASA-bound, only two were Limited. Five were Polarized and not 

Limited. This is modest improvement but improvement nonetheless. Moving from 

MASA-bound or Limited to Polarized is a step in the direction of reasoning flexibly 

about computing quotients. 

 Overall, these qualitative pre/post comparisons indicate that the participants 

adopted additional strategies, which facilitated their improved flexibility in mental 
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Table 33. Shifts in Participants’ Division Strategy Ranges 

Participant Range Pre Range Post Shift Description  

Angela MASA-bound Polarized (3/1) 

(benchmark) 

Adopted Quarters 

Brandy Spread – Limited Independent (2) – 

Limited 

Adopted SD, 

Estimation 

Maricela MASA-bound Polarized (3/1) Adopted Quarters 

Natalie Polarized (2/1) 

(benchmark) – 

Limited 

Polarized (3/1) Dropped Invalid 

Trina Polarized (3/1) Polarized (3/1) Stable 

Valerie MASA-bound Polarized (3/1) Adopted Quarters 

Zelda MASA-bound – 

Limited 

Polarized (1/1) 

(benchmark) – 

Limited 

Adopted Quarters 

 

computation. The comparison of strategy ranges helps to illuminate finer-grained 

distinctions in changes in flexibility. To illustrate this point, Table 34 categorizes the 14 

participant-operation pairs for addition and subtraction in terms of flexibility pre and 

post. This provides a quick and somewhat telling description of change but a blunt one. 

 Strategy range profiles provide a useful grain size at which to view these changes 

because these make qualitative distinctions concerning the nature of participants’ strategy 

ranges (Table 35). Number sense development, in the area of mental computation and 
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Table 34. Flexibility Change Counts for Mental Addition and Subtraction 

Flexibility Post Flexibility Pre 

Inflexible Semiflexible Flexible 

Inflexible 2 5 3 

Semiflexible  1 2 

Flexible   1 

 

Table 35. Strategy Range Shift Counts for Addition and Subtraction 

Post Range Pre Range 

MASA-

bound 

Polarized Transitional Spread Transition+ Independent 

MASA-

bound 

2 5   2 1 

Polarized  1  1   

Transitional    1   

Spread     1  

Transition+       

Independent       
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otherwise, is a complex phenomenon that proceeds differently for different people. 

Although most participants’ strategy ranges were MASA-bound at the beginning of the 

course, participants’ strategy ranges changed in different ways. 

 It was most common for students to move from MASA-bound to Polarized. This 

was the case for 5 of 10 instances of strategy ranges that were initially inflexible (in 

addition and subtraction). Participants changed from being dependent on the MASA—not 

making any choice based on the given numbers—to making a dichotomous choice 

between the MASA and a single alternative strategy. It may be that prospective 

elementary teachers’ strategy ranges tend to move from MASA-bound to Polarized on the 

way to becoming Flexible (especially Transition+ or Independent). 

 We know how participants’ strategy ranges changed, but how were their new 

strategies understood? What mathematical ideas provided the foundations for the 

participants’ enhanced flexibility in reasoning about numbers and operations? We now 

consider the justifications that the interview participants provided for their mental 

computation strategies in order to better understand participant’s understanding of the 

strategies they used. 

Strategies as Arguments 

 Participants’ responses to the mental computation interview tasks are now 

regarded as acts of argumentation. Through this lens, participants’ strategies as 

arguments are identified for each of addition, subtraction, multiplication, and division. 

The warrants and backings of these arguments involve mathematical ideas of particular 

interest to this study since these help to account for how the participants understood their 

strategies, especially their new and nonstandard strategies. 
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 Interview participants’ strategy-arguments were produced in both cases in which 

the interviewer asked the participant to justify her mental computation strategy and where 

justification was offered spontaneously. Justification for the standard algorithms was 

investigated separately, in tasks involving writing. Some Transition strategies (e.g., Right 

to Left addition and subtraction) are not included in the set of strategy-arguments since 

these are so similar to the MASA. 

 Across the four operations, a total of 17 strategy-arguments were identified. For 

reasons of length, these will not all be presented in detailed Toulmin-scheme form. I 

summarize the justifications that students made for their strategies and provide in a table 

one or two examples of strategy-arguments for each operation. The left column of each 

table describes the argument in general terms, while the right column offers a specific 

example from an interview. 

Participants’ addition strategy-arguments. The descriptions of participants’ 

addition strategy-arguments involve the following mathematical ideas: 

Reasoning in terms of canonical number composition. The student 
reasoned about the addends and sum as consisting of ones and tens (and 
hundreds, if applicable), which could be dealt with separately. 

Borrowing to Build. The student reasoned that she could obtain a sum by 
subtracting an amount from one added and adding that amount to the other 
addend. 

Reasoning about addition as an associative operation. The student 
expressed the idea (either formally or informally) that addition behaves 
associatively. 

Reasoning about compensation in terms of inverse operations. The student 
reasoned about compensation in terms of adding to undo subtraction or 
subtracting to undo addition. 
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Reasoning in terms of a balance of rounded amounts. The student 
expressed the idea that adding some amount and subtracting some amount 
from the given addends results in a net change to the sum. 

Four addition strategy-arguments were identified. The justifications that occurred in 

participants’ addition strategy-arguments are summarized in Table 36. If a single entry 

appears in the left column, the idea occurred as a warrant in students’ arguments. If two 

entries appear (separated by an ampersand), the first idea was used as warrant and the 

second as backing. 

Table 36. Participants’ Justifications for Mental Addition Strategies 

Strategy Ideas used in Justification 

Left to Right Reasoning in terms of canonical number 

composition 

Levelling (“Borrow to Build”) Borrowing to Build & Reasoning about 

addition as an associative operation 

Single Compensation Reasoning about compensation in terms of 

inverse operations 

Double Compensation Reasoning about compensation in terms of 

inverse operations & Reasoning in terms of 

a balance of rounded amounts 

 

 As an example of an addition strategy-argument, Figure 11 presents the Double 

Compensation argument from Zelda’s second interview. The transcript of her response 

follows: 
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Claim: Student asserts a sum 
Interviewer: So, what if Bobo sells two oboes, and he makes $37 on one sale and $52 on 

the other sale. How much would he make on those two sales put together? 
Zelda: … it’s $89. 
Data: Student describes computational steps consistent with Double Compensation 
Zelda: Okay. I would just add them up. Um, I would just do like forty plus fifty, is 

ninety. And then I had to, um, add three to get the forty and then subtract two. 
So, then I subtracted one from the final answer, so it’s $89. 

Warrant: Reasoning about compensation in terms of inverse operations 
Zelda: … that still leaves like one extra that I just like borrowed, or like added. So, then 

if I subtract at the end, then I get the right answer. 
Backing: Reasoning in terms of a balance of rounded amounts 
Zelda: Because since, because I added three and subtracted two, that still leaves like one 

extra that I just like borrowed, or like added. 

Figure 11. Example of the double compensation addition 
argument. 

Interviewer: So, what if Bobo sells two oboes, and he makes $37 on one 
sale and $52 on the other sale. How much would he make on those two 
sales put together? 

Zelda: Okay. I would just add them up. Um, I would just do like forty plus 
fifty, is ninety. And then I had to, um, add three to get the forty and then 
subtract two. So, then I subtracted one from the final answer, so it’s 
eighty-nine dollars. 

Interviewer: Okay. So, you said you added three and then subtracted two. 
So, why do you have to subtract one at the end? 

Zelda: Because since, because I added three and subtracted two, that still 
leaves like one extra that I just like borrowed, or like added. So, then if I 
subtract at the end, then I get the right answer. (Zelda, personal 
communication, November 3, 2010) 

Participants’ subtraction strategy-arguments. The descriptions of participants’ 

subtraction strategy-arguments involve the following additional mathematical ideas: 

Reasoning about subtraction as a cumulative process. The student reasons 
about the difference between numbers as an amount that can be partitioned 
and accounted for cumulatively. 

Reasoning about the difference as a distance between. The student treats 
the difference between the minuend and subtrahend as a distance between 
number-locations. 
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Reasoning about minuend compensation straightforwardly. The student 
reasons about minuend compensation as straightforward. 

Compensating for effect. The student reasons about compensation on the 
basis of the effect of a rounding step on the difference, rather than on the 
basis of the action itself. 

Reasoning about compensation straightforwardly. The student reasons as 
though compensation is straightforward, not distinguishing the effects of 
rounding the subtrahend versus minuend. 

Reasoning about subtrahend compensation as doing the opposite. The 
student reasons that increasing the subtrahend decreases the difference 
and/or that decreasing the subtrahend increases the difference.15 

There were four distinct subtraction strategy-arguments used by the participants. Of 

these, three were valid, and one was invalid. The justifications that occurred in 

participants’ subtraction strategy-arguments are summarized in Table 37.  

 I offer two detailed examples of subtraction-strategy arguments. Figure 12 

presents the Invalid Subtrahend Compensation Argument. Figure 13 presents its valid 

counterpart, the Valid Subtrahend Compensation Argument. 

 Natalie reasoned that she had added a 1 “to the problem” and so, to compensate, 

she subtracted 1 from the difference of the rounded amounts (Natalie, personal 

communication, September 14, 2010). She did not distinguish the role of minuend and 

subtrahend. This is contrast to Trina’s argument in Figure 13. 

 Whereas Natalie reasoned that she had added a 1 “to the problem,” Trina took 

into account that she had added 1 to the amount of money that Bobo spent on the oboe. 

She knew that this decreased the difference, or the amount of money that Bobo made by 

                                                
15 The phrasing “doing the opposite” is my attempt as a researcher to contrast this reasoning with that 

of students who treated subtrahend compensation straightforwardly. Students did not necessarily draw this 
contrast themselves. They reasoned about subtrahend compensation appropriately, and my shorthand 
description of that reasoning is “doing the opposite.” 
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Table 37. Participants’ Justifications for Mental Subtraction Strategies 

Strategy Ideas Used in Justification 

Missing Addend Reasoning about subtraction as a 

cumulative process & Reasoning about the 

difference as a distance between 

Minuend Compensation Reasoning about compensation in terms of 

inverse operations & Reasoning about 

minuend compensation straightforwardly 

Invalid Subtrahend Compensation Reasoning about compensation in terms of 

inverse operations & Reasoning about 

compensation straightforwardly 

Valid Subtrahend Compensation Compensating for effect & Reasoning 

about subtrahend compensation as doing 

the opposite 

 

Claim: Student asserts a difference 
Natalie asserted that $125 – $49 = $74 
Data: Student describes rounding subtrahend up and compensating by subtracting from 
difference 
Natalie reported the following computations: 49 + 1 = 50, 125 – 50 = 75, and 75 – 1 = 74 
Warrant: Reasoning about compensation in terms of inverse operations 
Natalie: I think I have to subtract 1. So, $74, actually. 
Backing: Reasoning about compensation straightforwardly 
Natalie: I’m technically adding a 1 to the problem. But then I have to subtract the 1 again 

in order to correct what I did originally. 

Figure 12. The invalid subtrahend compensation argument. 
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Claim: Student asserts a difference 
Trina asserted that $125 – $49 = $76 
Data: Student describes adding to the subtrahend, identify the difference, and then adding 
to the difference 
Trina reported the following computations: 49 + 1 = 50, 125 – 50 = 75, and 75 + 1 = 76 
Warrant: Reasoning about subtrahend compensation as doing the opposite 
Trina: He actually bought the oboe for $49 and not $50… So, I added 1 to the final 

answer of 75, which gave me 76. 
Backing: Compensating for effect 
Trina: By me changing it to 50, I like pretended he used more money than he did. 

Figure 13. Example of the valid subtrahend compensation 
argument. 

selling the oboe. So, she had to compensate for having added 1 to the subtrahend by 

adding 1 to the difference of the rounded amounts.  

Participants’ multiplication strategy-arguments. The following codes for 

mathematical ideas will be used to describe components of the participants’ 

multiplication strategy-arguments: 

Pairing tens and ones. The student reasons about partial products in terms 
of pairing up corresponding place values, i.e., multiplying tens by tens and 
ones by ones. 

Reasoning about multiplication in terms of repeated addition. The student 
reasons about the product of m and n in terms of counting m copies of n. 
This involves distinguishing the roles of multiplier and multiplicand 
(implicitly or explicitly). 

Reasoning about products in terms of partial products. The student 
reasons about products as consisting of partial products. This involves 
pairing parts of one factor (or rounded amounts) with the other factor (or 
parts of thereof). 

Grouping 25’s. The student uses the associative property of multiplication 
implicitly in the special case of multiplying by 25. (To compute 24 x 25, 
many students reasoned that 4 x 25 = 100, and there were 6 groups of 4 in 
24, so the product was 600.) 



192 

 

There were five distinct multiplication strategy-arguments identified in the participants’ 

responses. Of these, four were valid, and one was invalid. The justifications in 

participants’ multiplication strategy-arguments are summarized in Table 38.  

 I offer two detailed examples of multiplication-strategy arguments. Figure 14 

presents the Valid Partial Products Argument. Figure 15 presents the Subtractive 

Distribution Argument. 

Table 38. Participants’ Justifications for Mental Multiplication Strategies 

Strategy Ideas Used in Justification 

Invalid Partial Products Pairing tens and ones 

Valid Partial Products Reasoning about multiplication in terms of 

repeated addition 

Subtractive Distribution Reasoning about products in terms of 

partial products & Reasoning about 

multiplication in terms of repeated addition 

Double Compensation Reasoning about products in terms of 

partial products & Reasoning about 

multiplication in terms of repeated addition 

Quarters Grouping 25’s 

 
 Both of the above strategy-arguments were based on reasoning about 

multiplication in terms of repeated addition. Consistent with the story context, students 

treated the multiplier and multiplicand as having distinct roles. Angela thought of 21 x 19 

in terms of “adding 21 nineteen times” (Angela, personal communication, November 2,  
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Claim: Student asserts a product 
Angela asserted that 21 x 19 = 399 
Data: Student describes computational steps consistent with Valid Partial Products 
Angela reported the following computations: 21 x 10 = 210, 21 x 9 = 189, and 210 + 189 
= 399 
Warrant: Reasoning about multiplication in terms of repeated addition 
Angela: I like to think of it like you’re adding 21 nineteen times. So, like, for the first 

one, you’re doing 21 ten times… and then… for the second part of the problem… 
you’re doing 21 nine times… and then you’re adding them together. So, in total 
it’s the same. You’re still… adding 21 nineteen times. 

Figure 14. Example of the valid partial products argument. 

Claim: Student asserts a product 
Brandy asserted that 99 x 15 = 1485 
Data: Student describes computational steps consistent with Subtractive Distribution 
Brandy reported rounding 99 to 100. She knew that 100 x 15 = 1500. She said that the 
answer was “around 1500.” Then she subtracted 15 from 1500 to get an exact answer of 
1485. 
Warrant: Reasoning about products in terms of partial products 
Brandy: Oh, I would take 15 away from 1500 ‘cause… when you round 99 to 100, you’re 

multiplying 15 an additional time. So, 1500 minus 15 would equal 1485… since, 
when I’m rounding 99 to 100 to make it easier, I’m like adding an extra 15 that I 
didn’t have before. So, I’d have to subtract the 15 from the cost. 

Backing: Reasoning about multiplication in terms of repeated addition 
Brandy: When you do 99 times 15, you’re multiplying 15 ninety-nine times. 	
  

Figure 15. Example of the subtractive distribution argument. 

2010). Similarly, Brandy thought of 99 x 15 in terms of “multiplying 15 ninety-nine 

times” (Brandy, personal communication, November 4, 2010). In this way, she realized 

that rounding 99 to 100 increased the product by 15 because the 1 that was added to 99 

was being multiplied by 15 and, hence, represented one more 15. 

Participants’ division strategy-arguments. The following additional codes for 

mathematical ideas will be used to describe components of the participants’ division 

strategy-arguments: 

Separating the divisor into tens and ones. The student reasons that the 
divisor can be partitioned into tens and ones, and partial quotients can be 
computed by dividing the dividend by each part of the divisor. 
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Reasoning about division as a repeated-grouping process. The student 
reasons that the dividend consists of a number of copies of the divisor, and 
these can be counted in convenient groupings. 

 There were four distinct division strategy-arguments identified in the participants’ 

responses. Of these, three were valid, and one was invalid. The justifications that 

occurred in participants’ division strategy-arguments are summarized in Table 39. 

 The only prevalent division strategies were MASA and Quarters. Figure 16 

presents the Quarters Argument, which became prevalent in the second interview. 

Angela reasoned about 275 ÷ 25 as asking the question, “How many 25’s are in 225?” 

She knew that there were four 25’s in 100 and three 25’s in 75, and she used these facts 

to count the number of 25’s in 275. 

Table 39. Participants’ Justifications for Mental Division Strategies 

Strategy Ideas Used in Justification 

Invalid Partial Quotients Separating divisor into tens and ones 

Count by Reasoning about division as a repeated-

grouping process 

Quarters Reasoning about division as a repeated-

grouping process 

Subtractive Distribution Reasoning about products in terms of 

partial products & Reasoning about 

division as a repeated-grouping process 

 

 

 



195 

 

Claim: Student asserts a quotient 
Angela asserted that 275 ÷ 25 = 11 
Data: Student describes computational steps consistent with the Quarters division 
strategy 
Angela: I know that there are four 25’s in 100. Then how many are in 200? There’s 

eight. And in 75 there’s three. 
Warrant: Reasoning about division as a repeated-grouping process 
Angela treats 275 ÷ 25 as asking the question, “How many 25’s are in 225?” 

Figure 16. Example of the quarters argument. 

Summary of participants’ strategy-arguments. For each operation, there were 

a small number of strategy-arguments identified. The mathematical ideas that occurred as 

warrants and backings in these arguments stand out as keys to understanding the 

participants’ number sense development. In the next chapter, we will examine the 

collective activity that occurred around mental computation and place value in the whole-

number portion of the course. There are connections between the ideas that came to 

function as if shared for the class and the ideas that the interview participants used in 

their new and nonstandard strategy-arguments. 

Conclusion 

 In this chapter, I presented results of “old and new” analyses related to 

prospective elementary teachers’ number sense. I presented results of two survey 

instruments, the NSRS and the SPS, which were administered pre/post to 34 of the 39 

students in the class. These results indicate improvement in the number sense of the study 

participants. Students were more able to correctly answer mathematical questions 

designed to tap their number sense. They also came to view mental multiplication and 

division as less difficult than they had initially. 

 I also presented results of analyses of mental computation interview data. As 

expected, the seven study participants tended to be reliant on the MASAs in the first 
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interview. Some made choices of strategy depending on the particular numbers given, but 

participants tended to be limited in their flexibility. Across all four operations, most 

participants were inflexible, some were semiflexible, and few were flexible. From the 

first to the second interview, participants became more flexible. Furthermore, the 

distribution of strategies used by participants shifted toward the Nonstandard end of the 

spectrum, so that those strategies that are associated with good number sense were used 

more often. 

 In the second section, I presented new tools and results, concerning strategy 

ranges and strategy-arguments. Both of these analyses were grounded in data from the 

particular interview participants but also represent contributions to the field more 

broadly. 

 I introduced the construct of a strategy range, as well as six particular strategy 

range profiles that I identified. I also described change in the participants’ strategy ranges 

from pre to post. This analysis represents progress over previous analyses of change in 

flexibility by making qualitative distinctions between the ranges of strategies used and 

coordinating these with the categories of Inflexible, Semiflexible, and Flexible.  

 Finally, I reported on participants’ strategy arguments. These resulted from an 

analysis in which I viewed interview participants’ descriptions of their strategies as 

instances mathematical argumentation. In the interview setting, participants performed 

mental computations and described their computational steps. They were also asked to 

justify the nonstandard strategies that they used. The warrants and backings that students 

offered provide insight into how they understood their valid and invalid nonstandard 
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strategies. Many of these ideas figure prominently in the sociogenetic and ontogenetic 

analyses to be presented in Chapters 5 and 6.
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Chapter 5: Results Part 2: Sociogenesis of Number Sense 

 The results presented in Chapter 4 provide evidence that the study participants 

changed in an interesting way: their number sense improved. On the basis of data 

collection early in the semester, the students in the course looked like prospective 

elementary teachers, as described in the literature. In particular, they were reliant on the 

standard algorithms. On the basis of data collection after the whole-number portion of the 

course, the students looked different. They no longer resembled typical prospective 

elementary teachers. Instead, the participants exhibited flexibility in reasoning about 

numbers and operations. 

 In the vein of Saxe and colleagues’ investigation of the evolution of the meaning 

of fu for the Oksapmin people, I sought to make sense of the pre/post contrast in students’ 

number sense by means of genetic analysis. This chapter focuses on collective activity 

related to place value, number composition, and whole-number operations. The analysis 

presented is sociogenetic, as it concerns a chronological progression through normative 

ways of reasoning in the classroom community. This sociogenetic analysis is made 

possible by the microgenetic analyses of individual instances of argumentation. The story 

presented carries the broader sociogenetic framing. Within that story, instances of 

argumentation are presented in order to provide examples of meaning making at the 

micro level and to demonstrate the normative nature of particular ways of reasoning. 

Because of the large number of as-if shared ideas, not all of these can be traced. I attempt 

to tell a coherent story by focusing on a subset of the ideas.
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 The social lens of the emergent perspective consists of three layers: social norms, 

sociomathemetical norms, and classroom mathematical practices. Although the focus of 

this chapter is on classroom mathematical practices, I first briefly address social norms. 

Social Norms 

 Before presenting the analysis of normative ways of reasoning, some attention to 

social norms is required. As discussed in Chapter 3, the methodology of Rasmussen and 

Stephan (2008) assumes a classroom environment in which students engage in 

mathematical argumentation. In such an environment, mathematical arguments are 

evaluated on the basis of their merit, according to a set of sociomathematical norms that 

are negotiated by members of the classroom community. The criteria for evaluating 

whether ideas function as if shared assume such an environment. 

 The design of the study did not include a rigorous investigation of the social 

norms that developed in the class. So, this chapter does include comprehensive reporting 

on those norms. However, the data do provide indications of social norms that are in 

keeping with the assumptions of the methodology. A large number of student arguments 

were made during whole-class discussion, which suggests a classroom environment 

characterized by mathematical argumentation. Furthermore, these arguments tended to 

include warrants or backings, so that the classroom culture was such that students 

provided justifications for their mathematical ideas. In addition, some of these arguments 

were sufficiently complex that I had to use expanded argumentation schemes to describe 

them adequately. This fact shows that students engaged with the mathematics in 

sophisticated ways that sometimes involved different layers of justification or different 

types of justifications. 
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Indications of the Social Norms in the Class 

 Table 40 presents counts of argument characteristics. The argument count is the 

total number of arguments (claims for which some manner of justification was provided) 

belonging to each strand of activity. The column labeled “Class member(s)” refers to who 

made the arguments: Instructor alone (I), one or more students (S), or co-constructed by 

Instructor and one or more students (C). “Justification” refers to which components of 

arguments were present. In order to be counted, arguments had to include both claim and 

data. The table shows the numbers of arguments that also included a warrant (Warr.) and 

those that included warrant and backing (Back.). “Structure” refers to whether or not 

arguments had Expanded (Exp.) structures, i.e., they included subarguments. Arguments 

that did not include subarguments are called Basic. 

Table 40. Counts of Argument Characteristics 

Class member(s) Justification Structure Content 

Strand 

Arg. 

Count I S Co Warr. Back. Basic Exp. 

PV 70 10 19 41 48 8 60 10 

AS 48 16 29 3 27 21 36 12 

MD 90 6 73 11 65 14 79 11 

Totals 208 32 

(15%) 

121 

(58%) 

55 

(26%) 

140 

(67%) 

43 

(21%) 

175 

(84%) 

33 

(16%) 

 
 As Table 40 shows, students made the majority of the arguments (58%) in the 

class. Also, many arguments (26%) were co-constructed. Only 15% of the arguments 

made in whole-class discussion were made by the Instructor alone. To be clear, my 
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definition of whole-class discussion includes lecture. Thus, the data indicate that very 

little lecturing occurred in the class. Far more often, students presented arguments.  

 The majority of arguments (67%) included warrants, and many (21%) also 

included backing. The large number of warranted and backed arguments indicates 

discussions in which class members accompanied their claims with reasons why. By 

contrast, in a traditional mathematics class, students might be called upon to give answers 

and possibly to explain the work that they had performed to obtain answers but would not 

often be asked to justify their solutions. This would correspond to students often 

providing claims or data but not warrants or, especially, backings. 

 Of the 208 total arguments, 33 of them (16%) had expanded structures. This 

indicates class members making complex arguments, consisting of one or more 

subarguments. In particular, students were the ones making these complex arguments. Of 

the 33 expanded arguments, 22 of them (2/3) were made by students, and 10 were co-

constructed (i.e., the instructor made a substantive contribution to the argument). Only 

one expanded argument was made by the Instructor alone. Slicing this data differently, of 

the total 121 student arguments, 22 of these had expanded structures. Wawro (2012) 

reports that she needed to use expanded argumentation schemes to document collective 

activity in inquiry-oriented linear algebra. In her data set, 22 of 118 arguments had 

expanded structures. Wawro attributes the need for these expanded structures to the 

complexity of students’ arguments in a class in which students are transitioning to formal 

proof. I saw a similar frequency of these more complex arguments in an elementary 

mathematics content course. Even though the mathematics was elementary, the level of 

students’ engagement with that mathematics was rather advanced. 
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Summary of Social Norms 

 Without formally analyzing social norms, which would have been an ambitious 

undertaking and beyond the scope of this dissertation, I do see compelling evidence for 

social norms consistent with the assumptions of the methodology of Rasmussen and 

Stephan (2008). The mathematics content course studied was a class in which students 

engaged in mathematical argumentation, the vast majority of their arguments included 

warrants and/or backings, and the percentage of student arguments involving expanded 

structures was on par with an inquiry-oriented linear algebra course. 

Classroom Mathematical Practices: Place Value, Addition, and Subtraction 

 I identified the following five classroom mathematical practices in the strand of 

activity around place value, addition, and subtraction: 

CMP1. Assuming the authority of the standard algorithms 

CMP2. Making Sense of Place Value 

CMP3. Making Sense of Standard Algorithms and Transition Strategies 

CMP4. Reasoning Flexibly about Addition 

CMP5. Reasoning Flexibly about Subtraction 

This section presents the progression through these five CMPs. For each CMP, I describe 

the mathematical activities in which students engaged. I describe the as-if shared ideas 

belonging to the CMP and explain the FAIS criteria satisfied by each. I also present 

selected classroom vignettes, which serve as examples of collective activity and also 

illustrate shifts over time in the roles of particular ideas in argumentation. 
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CMP1: Assuming the Authority of the Standard Algorithms 

 The first CMP that emerged and became established was unexpected. It involved 

assuming the authority of the standard algorithms. Early instances of students’ mental 

computations that were shared with the class included usage of the mental analogues of 

the standard algorithms. When nonstandard strategies were discussed, these were often 

represented using notation that followed the conventions of the standard algorithms. 

Furthermore, when students shared nonstandard strategies early in the semester, these 

required justification, whereas usage of the standard algorithms was accepted without 

justification. During place value activity involving adding and subtracting in base three 

using multilink cubes, the class followed the standard convention of proceeding place-

value wise from right to left. Overall, in CMP1, the standard algorithms and conventions 

associated with these functioned authoritatively. 

 CMP1 was unique among the group of CMPs identified. It included only one as-if 

shared idea: Reasoning about the operations in terms of the standard algorithms. Early on 

in the course, the legitimacy of these algorithms went unquestioned. The nature of this as-

if shared idea is also rather unique. Typically, in an inquiry-oriented course, ideas come 

to function as if shared by first being justified and later not requiring justification. 

However, in previous studies of classroom mathematical practices, the mathematical 

ideas of interest to researchers have been new ideas for students. In a course for 

prospective elementary teachers, the students come in with a lot of familiarity with the 

mathematics. In this case, they already knew the standard algorithms. Every student 

likely assumed legitimacy of these algorithms before the class began. Still, it does not 

necessarily follow that these would function as-if shared. Functioning as-if shared is a 
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characterization of the role that the algorithms played in mathematical discussions early 

in the course. 

Assuming the authority of the standard algorithms: FAIS Criteria. The 

authoritative function of the standard algorithms spanned content strands.16 It was not 

limited to addition and subtraction. Within the place value strand, multiplication and 

division computations also arose. For example, in discussions of problems in the 

Andrew’s Apple Farm context, division was repeatedly used. In one instance, a student 

described dividing 1705 apples by 8 to find the number of baskets that 1705 apples would 

fill (given that 8 apples filled on basket). For this and other division computations in 

service of solving these problems, the standard division algorithm was used, and its 

validity went unquestioned. The focus of the discussion was on interpreting quotients and 

remainders in terms of the context. 

 Reasoning about the operations in terms of the standard algorithms satisfied 

Criterion 3. That is, it was used repeatedly across multiple days and in service of different 

claims. On Days 2, 3, and 7, a total of 8 arguments were made that assumed the authority 

of a standard arithmetic algorithm.17 Criterion 3 is especially appropriate to the nature of 

this idea. Criteria 1 and 2 concern changes in the function of an idea. When an idea shifts 

from requiring justification to not requiring justification, or to being used to justify a new 

claim, its function has changed. Criterion 3, by contrast, concerns the status quo. An idea 

functions in a certain way, and continues to function in that same way over a period of 

                                                
16 I include CMP1 as part of the place value, addition, and subtraction strand. However, in contrast to 

the other CMPs in this strand, I am including in it activity related to multiplication and division. 
17 Day 5 was not included in the analysis because the activity that day focused on decimal, rather than 

whole-number, ideas. There were additional instances on Day 5 of procedures functioning authoritatively. 
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time. It was not the case that the standard algorithms shifted from requiring justification 

to not requiring it. Rather, they were used without justification from the start. In fact, 

later in the semester, the class discussed why the algorithms worked, and students arrived 

at justifications for these. 

Assuming the authority of the standard algorithms: Vignettes. I present two 

consecutive vignettes from early in the course. Because the relevant FAIS criterion was 

Criterion 3, it would require many arguments to demonstrate that relying on the standard 

algorithms functioned as if shared. I include the following vignettes not to provide that 

evidence but to illustrate how the authoritative nature of the standard algorithms was 

leveraged productively to motivate the need for justification of nonstandard strategies. 

This involves a move that the instructor made early in the course, and it is noteworthy in 

terms of the instructor’s role in influencing the direction of the collective activity related 

to mental computation. 

 Vignette 1.1. On Day 3, students were given a story problem that involved 

comparing the heights of two pairs of siblings. In the course of solving the problem, 

computations arose, and the instructor had asked students to attempt these mentally. 

Students recorded mental computations on the whiteboards at their tables. In the whole-

class discussion, the quantitative relationships involved in the height problem and the 

need to perform certain computations were discussed first. Then the details of those 

computations were discussed. 

 Aaron shared his group’s methods for performing two subtraction computations, 

64 – 43 and 70 – 19. For the first computation, he used the standard subtraction 

algorithm. This computation was discussed briefly, and the validity of Aaron’s approach 
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went unquestioned. Aaron and the Instructor co-constructed Argument A3.1 since she 

verbalized part of the data in the argument (albeit simply by reading off what he had 

written). Figure 17 describes the argument. The following is the transcript of the 

exchange. 

Claim: 64 – 43 = 21 
[Answer written on screen] 
Data: 4 – 3 = 1; 6 – 4 = 2 
[Evidence from written record, gesturing, and utterances] 
Warrant: (Implicit) Using the standard subtraction algorithm 
[Aaron’s speech, writing, and gesturing reflected the 
conventions of the standard subtraction algorithm. Instructor 
participated in the reenactment of the algorithm by gesturing 
down the tens column and reciting the second step (“six minus 
four is two”).] 

 
Aaron and Instructor 
both gesturing down 
the tens column 

Figure 17. Argument that 64 – 32 = 21 using the standard 
algorithm. 

[Aaron writes at the board: 64 – 43 = 21 (aligned, standard notation)] 

Aaron: Uhhh, I don’t really get how you, like, want me to explain it. 

Instructor [laughs]: Because I did it in my head, he says. 

Aaron: Yeah. 

Instructor: So, how did you think about this? You have recorded on your 
board, 

Aaron: Just basically subtracted from four, or the three from the four 
[gesturing down ones column] 

Instructor: And then there’s six minus four is two? [Both gesturing down 
tens column] Okay. 

 Vignette 1.2. Aaron then presented his group’s method for computing 70 – 19. He 

reported that they subtracted 10 from 70, obtaining 60. Then they subtracted 9 from 60, 

for an answer of 51. Aaron’s written work is depicted in Figure 18. In the exchange, the 

Instructor challenged the legitimacy of Aaron’s approach, and he offered backing for it. 
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Claim: 70 – 19 = 51 
[Answer on screen and utterances: “and we got fifty-one”] 
Data: 70 – 10 = 60; 60 – 9 = 51 
[Evidence from written work and utterances] 
Warrant: Reasoning about subtraction as a cumulative process 
(“subtracted ten first, and got sixty… And then we subtracted 
nine from that”) 
Backing: Reasoning about subtraction as a take-away process 
(“Just because you’re still subtracting the whole nineteen. It’s 
just you’re taking the ten out first.”) 
[Phrasing equates subtraction and “taking out”] 

 
“and we got fifty-one” 

 
“you’re taking the ten 
out first” 

Figure 18. Arg. 3.2a: Aaron describes and justifies his group’s 
subtraction aggregation strategy. 

Aaron: Well, we, um, trying to find the difference between Olivia and 
Oscar, we took seventy 

Instructor: Alright, let’s move on to that one 

Aaron: and subtracted ten first, and got sixty [writing on screen] 

Instructor:  Could you write the problem up here and remind us what that 

computation was? 70 minus 19 

[Aaron writes 70 – 19 on screen] 

Aaron: And then we subtracted nine from that, and we got fifty-one 

[Instructor made comments about computational approaches that other 
groups had used. Then she asked Aaron to justify his group’s method.] 

Instructor: Now, this second computation, some of you did it as you 
would do the long-division [sic] algorithm, and Aaron is talking about 
doing it this way. So, one question is, how come—how do you know it 
works like this? You took seventy minus ten. That’s not the same thing as 
you would do if you were, you know [Instructor enacts standard 
subtraction algorithm on screen] taking this, and borrowing like this, 
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and—this isn’t exactly the same algorithm. How come this one gives the 
same answer, and why are you confident that that works? Can you 

Aaron: Just because you’re still subtracting the whole nineteen. It’s just 
you’re taking the ten out first. 

Instructor: Taking the ten out first, and then the nine? Does anybody have 
any questions for Aaron about that? No? Okay. 

 The above exchange was coded as a two-part argument. In A3.2a, Aaron 

describes and justifies his group’s method. In A3.2b, Instructor argues that Aaron’s 

strategy requires justification.18 With respect to A3.2a, the Instructor made a request for 

backing, which Aaron provided. However, in A3.2b, the instructor’s request for backing 

is framed as the claim, and it was accompanied with an explicit justification. 

 Aaron’s argument made use of a take-away meaning for subtraction as backing 

for subtraction aggregation. He argued that subtracting ten and then subtracting nine was 

equivalent to subtracting nineteen because a total of nineteen was subtracted. He took 

subtraction to mean “taking out,” and this idea justified the cumulative nature of his 

subtraction strategy: By taking out ten and then taking out nine, he had taken out 

nineteen. In this way, the take-away meaning was essential to justifying his group’s 

method. Interestingly, in the problem context, subtraction did not appear as a take-away 

process. It was being used to compare heights. In fact, students made arguments that 

reflected this comparison meaning. (Those arguments do not belong to the reduced data 

set because they concern the quantitative reasoning involved in solving the problem, 

rather than reasoning specifically about the computations.) 
                                                

18 This numbering convention serves two purposes: (1) it signifies that the arguments were related, 
and (2) in terms of the argumentation log, it reminds me that these two arguments should be regarded as 
having occurred at the same time. Thus, no criterion for an idea functioning as if shared could be satisfied 
by looking chronologically at part a and then part b. In terms of the development of collective activity over 
days of class, these arguments are considered to have occurred at the same moment.   
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 Figure 19 represents the Instructor’s argument. In this exchange, the Instructor 

explicitly justified her request for backing by contrasting Aaron’s strategy with an 

accepted way of performing subtraction. There was a clear contrast in status between his 

two approaches, as far as she was concerned. The first, using the standard subtraction 

algorithm, was readily accepted. The second, a nonstandard strategy, required 

justification. This precedent was established early, and led to discourse concerning 

nonstandard mental computation strategies that consistently included mathematical 

justification. 

Claim: Aaron’s strategy requires justification 
Data: Aaron’s strategy differs from the standard algorithm 
(“You took seventy minus ten. That’s not the same thing as you 
would do if you were, you know [Instructor enacts standard 
subtraction algorithm on screen] taking this, and borrowing like 
this, and—this isn’t exactly the same algorithm.”) 
Warrant: Nonstandard strategies require justification 
(“this isn’t exactly the same algorithm. How come this one 
gives the same answer, and why are you confident that that 
works?”) 

 
“and borrowing like 
this” 

Figure 19. Arg. 3.2b: Instructor argues that Aaron’s strategy 
requires justification. 

Assuming the authority of the standard algorithms: Conclusion.In CMP1, the 

standard arithmetic algorithms functioned authoritatively. Their use went unquestioned,  

whereas nonstandard strategies required justification. Also, the class tended to follow the 

notational conventions of the standard algorithms, even when recording nonstandard 

computational work. The authoritative nature of the standard algorithms was unexpected. 

However, it was leveraged productively as students worked to make sense of and justify 

nonstandard strategies. 
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CMP2: Making Sense of Place Value 

 CMP2 consisted of the following set of as-if shared ideas, all of which fit into the 

general theme of making sense of place value: 

PV1. Packing baskets, bushels, and trucks Andrew’s way: 

a. 8 apples fill a basket 

b. 64 apples fill a bushel 

c. 512 apples fill a truck 

PV2. Reasoning in terms of canonical number composition 

PV3. Forming groups (and groups of groups) of eight items 

PV4. Using and interpreting Andrew’s bookkeeping notation 

PV5. Using and interpreting place-value notation in base ten 

PV6. Forming groups (and groups of groups) of three items  

PV7. Using and interpreting place-value notation in base three  

These ideas emerged and became established between Days 6 and 8. They were focused 

around activity in the Andrew’s Apple Farm context and activity in base three using 

multilink cubes. Below, I describe the activities in which students engaged. I present 

evidence for the as-if shared nature of a subset of these ideas. I also present two 

illustrative vignettes. 

Making sense of place value: Activity.On Days 6 and 7, students solved a 

variety of tasks in the Andrew’s Apple Farm context. They were told that on Andrew’s  

farm, he had a specific way of packing apples: eight apples filled one basket, eight 

baskets filled one bushel, and eight bushels filled one truck. Students solved problems of 

two main forms: (1) Given some number of trucks, bushels, baskets, and loose apples, 
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find the total number of apples that Andrew picked, and (2) Given that Andrew picked a 

certain number of apples, find the number of trucks, bushels, and baskets that would be 

filled, and the number of loose apples that would remain. Students figured out the 

numbers of apples per bushel and per truck, based on what they knew about Andrew’s 

way of grouping items. They used this information to solve tasks of both types. Many 

groups drew pictures of apples, baskets, bushels, and trucks, which served to support 

their arguments (e.g., Figure 20). 

 The activity related to the Andrew’s Apple Farm tasks involved working 

informally in base eight and relating bases eight and ten. All of this was grounded in the 

apple farm context, and it was not apparent in the discussion of these tasks that students 

were aware that they were dealing with base eight. This activity spanned Day 6 and part 

of Day 7. Students were also introduced to Andrew’s special way of recording the 

 

Figure 20. Trina presents her group’s solution to an Andrew’s 
Apple Farm problem. 

numbers of apples that he had picked, and they made conversions between Andrew’s 

notation (which was in base eight) and base ten. 

 Later on Day 7, the class began to talk explicitly about different bases and to 

count and represent numbers in base three. Activity in base three was not related to a 
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story-problem context but instead involved multilink cubes. The Instructor and three 

students stood in front of the board and physically grouped cubes by threes to count and 

represent numbers. Students then performed similar activity within their groups, with 

each student playing the role of one of the four relevant place values (ones, threes, nines, 

or twenty-sevens). Students converted from base-ten to base-three numerals, using 

grouping of cubes to help them. Students also counted from zero to twenty-seven with the 

cubes, grouping them appropriately in base three and recording each number with a base-

three numeral. 

Making sense of place value: FAIS Criteria.In this section, I describe the FAIS 

criteria satisfied by each the ideas belonging to CMP2. Packing baskets, bushels, and  

trucks Andrew’s way came to function as-if shared on Day 7. Specifically, PV1a, PV1b, 

and PV1c each satisfied Criterion 2 by shifting the roles that they played in 

argumentation. The number of apples per basket was given in the description of the 

Andrew’s Apple Farm context. Andrew’s convention of packing eight apples per basket 

was used as data in arguments on Days 6 and 7 but also occurred as backing in an 

argument on Day 7. The numbers of apples per bushel and per truck were not given in the 

description of the context. Students solved for these based on what they knew about 

Andrew’s method of packing apples. Thus, initially, the ideas that Andrew packed 64 

apples per bushel and 512 apples per truck occurred as claims. Subsequently, these were 

used as data in arguments concerning the total numbers of apples that Andrew had picked 

on a particular day.19 

                                                
19 The numbers of apples that Andrew packed in each basket, bushel, and truck may seem like 

somewhat trivial ideas. I include them in CMP2 because they satisfied FAIS criteria and because these 
ideas were important to students’ sense making activity as they worked informally in base eight. In base  
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 Reasoning in terms of canonical number composition came to function as-if 

shared on Day 7. PV2 satisfied Criterion 2. It occurred as a warrant in five arguments and 

as data in one. By reasoning in terms of canonical number composition, I mean reasoning 

about a number as a linear combination of powers of the base. For example, in base ten, 

the number 235 can be decomposed as 200 + 30 + 5, and more explicitly as 2(100) + 

3(10) + 5(1). Students reasoned about numbers in this way in their arguments on Days 6 

and 7 concerning both the Andrew’s Apple Farm tasks and their work in base three. 

 The as-if shared ideas PV3 and PV6 were related. The class reasoned about 

forming groups (and groups of groups) of eight items in activity related to Andrew’s 

Apple Farm tasks. The class reasoned about forming groups (and groups of groups) of 

three items in activity in base three. Both of these ideas occurred many times and could 

be regarded as satisfying Criterion 2 or Criterion 3. PV3 occurred on Days 6 and 7 as data 

in five arguments, as warrant in one argument, and as backing in one argument. PV6 

occurred a total 19 times between Days 7 and 8. It was used both as data and as warrant. 

These ideas were integral to students’ activity in bases eight and three as they grouped 

and regrouped place-value-wise. 

 The as-if shared ideas PV4, PV5, and PV7 were also related. These involved 

using and interpreting place-value notation. The class did this informally in base eight 

with Andrew’s bookkeeping notation, as well as formally in bases ten and three. PV4 and 

PV5 satisfied Criterion 2, having been used as both data and warrant in argumentats. PV7 

satisfied Criterion 3, occuring 20 times in arguments on Days 7 and 8. 

                                                                                                                                            
ten, it is fundamental to understanding place value to know that the places to the left of the ones are the 
tens, hundreds, thousands, and so on. Analogously, in base eight, students needed to know that the places to 
the left of the ones were the eights, sixty-fours, and five hundred-twelves. 
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Making sense of place value: Vignettes.I present three vignettes that illustrate 

activity that involved students making sense of place value. The first involves 

 base-ten activity from Day 6. The second involves activity from the latter portion of Day 

6 involving the Andrew’s Apple Farm context. The third involves base-three activity on 

Day 7. 

 Vignette 2.1. Day 6 began with a continued discussion of base ten and a set of 

tasks related to base-ten place value. In one of these, students were asked how many 

hundreds were in 53,908. Two different arguments were made for the same claim, that 

there were 539 hundreds. Muriel’s argument was the following: 

Muriel: I thought about how many hundreds go into nine hundred, and I 
got nine. And I thought about how many hundreds go into three thousand, 
and I got three hundred. Or what—got thirty. I got thirty. And then how 
many hundreds went into fifty thousand, and I got five hundred. 

Instructor: And then added them together? 

[Muriel nods] 

 Muriel’s argument (Figure 21) involved reasoning about numbers as being 

composed of powers of ten. In particular, her approach to the task was to decompose 

53,908 into 50,000 and 3,000 and 900. She considered the numbers of hundreds in each 

of these, and then added all the hundreds together to get her solution. 

 Vignette 2.2. In initial activity in the Andrew’s Apple Farm context, students 

worked in their groups to find the total number of apples that Andrew picked, given that 

those apples filled one truck, six bushels, and three baskets. Trina presented her group’s 

solution. Figure 22 represents Trina’s argument. 
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Claim: There are 539 hundreds in 53,908 
Data: Reasoning with hundreds as the reference unit 
(Muriel: I thought about how many hundreds go into nine hundred, and I got nine. And I 
thought about how many hundreds go into three thousand, and… I got thirty. And then 
how many hundreds went into fifty thousand, and I got five hundred.) 
Warrant: Reasoning in terms of canonical number composition 
53,900 = 50,000 + 3,000 + 90 
500 + 30 + 9 = 539 
(Instructor: And then added them together?) 

Figure 21. Co-constructed argument that there are 539 
hundreds in 53,908. 

Claim: 1 truck, 6 bushels, and 3 baskets adds up to 912 apples 
[Written work on whiteboard] 
Data: 512 apples fill a truck; 64 apples fill a bushel; 8 apples 
fill a basket; 6 bushels = 6 x 64 apples = 384 apples; 3 baskets 
= 3 x 8 apples = 24 apples 
[Written work and utterances] 
Warrant: Reasoning about the total number of apples as a 
linear combination of trucks, bushels, and baskets 
[Written work shows 512 + 384 + 24 = 920] 
(Trina: And then we added up those three numbers) 

 
“enough apples to 
load one truck…” 

Figure 22. Trina’s argument that Andrew picked 912 apples 

Trina: Okay. So, in number one, they said that there’s—Andrew picked 
enough apples to load one truck, six bushels, and three baskets. And so we 
drew out what he had. And then we looked up here. And this says each 
truck had five hundred twelve apples. We said he has five hundred twelve 
apples in the truck. And since we know that, in each bushel, there’s sixty-
four apples, and Andrew picked six bushels, we just did sixty-four times 
six and got three eighty-four. And then he picked three baskets, and we 
know that there are eight apples in each basket. So, we did eight times 
three and got twenty-four. And we added up those three numbers. 

 Trina solved for the total number of apples as a linear combination of trucks, 

bushels, and baskets that Andrew had filled. Informally, her solution was a conversion 

from base eight to base ten. Andrew had grouped the apples by eights, and Trina and her 

group found out what that same number of apples would look like if grouped by tens 

instead. However, at this point in the activity, students were not aware that they were 
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converting from one base to another. They were simply trying to count the total number 

of apples. Thus, the linear combination idea that Trina used was distinct from the idea 

that Muriel used in her argument, the difference being that, at this point, students were 

not yet using base-eight notation explicitly. 

 In later activity in the Andrew’s Apple Farm context, the class did use Andrew’s 

bookkeeping notation, which was essentially a base eight notation. For example, if 

Andrew picked enough apples to fill 1 truck, 6 bushels, and 3 baskets, with 0 apples 

remaining, he would record the apples he had picked that day as 1truck6bushels3baskets0apples 

or just 1630, for short. Students solved problems by converting numbers of apples from 

Andrew’s notation to base ten, and vice versa.  

 Vignette 2.3. On Day 7, students counted and represented numbers in base three. 

After students had worked on counting up to 27 in their small groups, they counted 

together as a class and discussed some of the reasoning involved. The following 

exchange occurred at the end of the counting discussion and regarded the transition from 

26 (which is written as 222_three) to 27 (which is written as 1000_three): 

Instructor: First, two two two base three. What number does that 
represent?  

Molly: Two ones, two groups of three, and two groups of nine. 

Instructor: Two ones, two groups of three, two groups of nine. Okay, so 
that’s twenty-six in base ten. And what happened here? [Instructor points 
to “1000” written on board.] 

Molly: You add a one to the two ones, and that makes a group of three. 
And then you have three groups of three. 

Instructor: Then you have three groups of three. 



217 

 

Molly: Yeah, and that’s nine. So, then you take that and the other two 
groups of nine, and that makes three groups of nine. So, that equals one 
twenty-seven. 

In the above exchange, Molly justified the transition from 222_three to 1000_three in 

terms of a succession of regrouping actions that occurred as a result of adding one to 

222_three: Adding one created a group of three ones, which was passed on the threes 

place. Then there were three threes, which formed a group of nine, and it was passed on 

to the nines place. Then there were three nines, which formed a group of twenty-seven, 

and it was passed on to the twenty-sevens place. Molly effectively made an argument that 

the numeral after 222 in base three was 1000. (See Figure 23.) 

Claim: Counting in base three, the numeral that comes after 222 is 1000 
[Claim was made by the class and recorded by the Instructor. Then Molly made her 
argument.] 
Data: Using and interpreting place-value notation in base-three 
(222 represents “Two ones, two groups of three, and two groups of nine,” and 1000 
represents “one twenty-seven,” zero nines, zero threes, and zero ones.) 
Warrant: Forming groups (and groups of groups) of three items  
(“You add a one to the two ones, and that makes a group of three. And then you have 
three groups of three… and that’s nine. So, then you take that and the other two groups 
of nine, and that makes three groups of nine. So, that equals one twenty-seven.”) 

Figure 23. Arg. P7.38: Molly argues that 1000 comes after 222 
in base three. 

Making sense of place value: Conclusion.  In CMP2, students engaged in sense 

making activity related to place-value ideas. This activity involved grouping by eights  

and by threes, reasoning in terms of canonical number composition, and using and 

interpreting place-value notation, informally in base eight and formally in bases ten and 

three.  
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CMP3: Making Sense of Standard Algorithms and Transition Strategies 

 CMP3 involved making sense of standard algorithms and Transition strategies for 

addition and subtraction. It consisted of the following six as-if shared ideas: 

PV5. Using and interpreting place-value notation in base ten 

PV7. Using and interpreting place-value notation in base three 

PV8. Regrouping from right to left 

PV9. Regrouping in order to subtract 

AS1. Separating numbers canonically in order to add 

AS6. Reasoning about subtraction as a take-away process 

Two of these as-if shared ideas, PV5 and PV7, overlapped with CMP2. The set of ideas 

belonging to CMP3 spanned addition and subtraction activity in bases three and ten. This 

CMP groups together those aspects of students’ activity that involved performing and 

recording addition and subtraction computations when standard algorithms and 

Transition strategies were used. 

Making sense of standard algorithms and transition strategies: Activity. On 

Day 8, students built on their counting and grouping activities in base three and advanced 

to performing addition and subtraction and producing written records of these operations. 

They used base-three notation to record problems and solutions, but answers were 

obtained by working with the cubes. As the activity progressed, students eventually 

solved problems without using the cubes. By the end of class, they solved addition and 

subtraction problems in bases four and five, as well. Written records of students worked 

involved the standard notation for addition and subtraction. However, discussions of 

solutions referred to numbers of cubes, the geometry of groups of cubes, and regrouping 
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actions, rather than to procedural moves, like carrying or borrowing. The class discussed 

how regrouping moves should be recorded. Regrouping in subtraction was recording in 

two different ways. 

 On Day 9, various mental computation strategies were shared and discussed. 

Muriel used a Separation (Left to Right) strategy. On Day 11, students engaged in 

activities related to children’s thinking about subtraction computations. 

Making sense of standard algorithms and transition strategies: FAIS 

Criteria. The evidence that PV5 and PV7 functioned as-if shared was presented in the 

description of CMP2 and will not be repeated here. 

 PV8 and PV9 were related. Both involved regrouping. Regrouping from right to 

left occurred in packing apples, counting and representing numbers in base three, and in 

performing and reasoning about addition. Regrouping from right to left satisfied Criteria 

2 and 3. It occurred 3 times as data and 12 times as warrant. Regrouping in order to 

subtract satisfied Criterion 2. It was used as both data and warrants. 

 AS1, separating numbers in order to add, occurred in arguments related to mental 

addition. This idea satisfied Criterion 1. It occurred on Day 8 with backing. When it was 

used again on Day 9, it went without backing and this usage was unquestioned. In fact, 

the Instructor explicitly acknowledged that the strategy had been used before. 

 AS6, reasoning about subtraction as a take-away process, occurred in mental 

subtraction arguments on Days 3, 11, and 12. This idea satisfied Criterion 2 since it was 

used as both data and backing in students’ arguments. It was also repeatedly used to 

justify Subtraction Aggregation strategies (as in Aaron’s argument from Day 3). 
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Making sense of standard algorithms and transition strategies: Vignettes. I 

present three vignettes related to students making sense of the standard algorithms and  

Transition strategies for addition and subtraction. The first vignette involves adding in 

base three. The second involves applying grouping ideas to solve an addition problem in 

base five. The third vignette is an example of a student using a Transition strategy for 

addition in base ten. 

 Vignette 3.1. On Day 8, the class added and subtracted in base three, using the 

multilink cubes. In the vignette below, they solve the problem 101_three + 122_three. As 

the transcript begins, the class members standing in front of the board are already holding 

101_three. They talk through and act out the addition and regrouping process: 

Instructor: Let’s say we’re going to add 112 base three. Help me. How do 
I proceed? What would you do? 

Students: Take two. 

Instructor: I’m going to take two more? [Instructor takes two cubes from 
the table.] 

Student: You’ve gotta pass them. 

Instructor: Oh, but somebody says I have to pass them on? Ok, there you 
go. [Instructor passes a group of three cubes to the threes place.] 

Instructor: So, what would you do next? 

Aaron: She gets the other one. 

Instructor: She gets one more? We’re adding to that. [The person in the 
threes place receives on more cube.] 

Instructor: Anything for her to do more? 

Students: No. 

Instructor: Alright. How about you, Aaron? 

Aaron: I get another one. 
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Instructor: You get another one. 

Instructor: So, anything, we have a way to represent this sum? 

Students: Two two zero. 

Instructor: Two two zero base three? Can I record that like this? 
[Instructor writes “220three” on board] 

In the above vignette, the as-if shared nature of certain ideas is apparent. The attention of 

the whole class is on the class members acting out the addition up at the board. Students 

are calling out instructions regarding next steps, and there seems to be agreement on each 

of these. Furthermore, justification for these instructions is generally left implicit. For 

example, the Instructor starts out holding one little cube, and she receives two more. A 

student calls out, “You’ve gotta pass them,” and the Instructor groups and passes her 

three cubes. No justification was provided for the claim that she has to pass them.20 

Regrouping from right to left, according to a particular group size, functioned as-if shared 

at this point. 

 As the above vignette illustrates, on Day 8, in the context of physically counting, 

adding together, and grouping multilink cubes, certain justifications dropped out of 

students’ arguments. However, when it came to no longer using the cubes to solve 

problems and instead working problems out in writing, including in different bases, these 

justifications resurfaced. 

 Vignette 3.2. In the following vignette, the class discussed the solution to an 

addition problem in base five. Students had solved a base-five addition problem in their 

groups. The class discussed the problem:  
                                                

20 In a sense, the justification is evident. The Instructor is holding three cubes, and three cubes form a 
group of three. However, in earlier activity, class members made explicit the ideas that three ones form one 
three and that threes belong in the threes place. 
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Instructor: Three, four, one, base five [writes on screen]. Now we’re in a 
new special group, right? Five. Okay. You ready? So, here’s the issue that 
I heard as I came around. Everybody said, great, one plus zero: one. 
[Instructor writes 1 in the ones place.] Four plus two: six. How am I going 
to record that? 

Students: Write a 1 and carry a 1. 

Instructor [writes 1 in the fives place and carries 1 to the twenty-fives 
place]: Why would you write a 1 and record a 1 in the column to the left?  

Students: You have five. 

Students: That’s a group of five. 

Instructor: I hear lots of great voices. Only one person, that’s good 
though. It sounded like you’re all saying the same thing, but. Yeah? Go 
ahead, I’m sorry. Now nobody’s talking. Go ahead. 

Student: Because you have to move a group of five because you can’t have 
five groups. So you have to move it over.  

Instructor: So, you imagine that if you had six, you said you can’t—once 
you have a group of five, it moves over here. Right? 

Student: And then you have one left over. 

Instructor: So, these are our ones, our strips, it’s a square now and it 
moves over here now, right? And then you had five here. 

Student: So, then you have to move that one over. 

Instructor: Now you don’t get to hold onto it, you hand it to the person 
who holds the cubes, right? 

 In Vignette 3.2, class members co-constructed an expanded argument concerning 

the solution to an addition problem in base five. Base five had not been discussed 

previously, but students generalized from their work in other bases. Significantly, 

justifications that had previously dropped off when working in base three and using the 

cubes resurfaced in the context of doing written addition work and dealing with an 

unfamiliar base. Every step that the class described in the solution to the base-five 
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addition problem made reference to regrouping actions involving people as place values 

and physical objects. In this way, place-value notation and the standard algorithms took 

on these meanings for the class. 

 Vignette 3.3. In the following vignette from Day 9, Muriel used a Transition 

strategy for addition. Specifically, she used Left to Right Separation. Muriel wrote her 

work on the screen, showing her data (the steps she performed) and her claim that 88 + 

47 = 135. (See Figure 24). Nancy and another student contributed the warrant of the 

argument. 

Claim: 88 + 47 = 135 
[Written work on screen] 
Data: 8 + 7 = 15; 80 + 40 = 120; 15 + 120 = 135 
[Written work on screen] 
Warrant: Separating numbers into tens and ones in order to add 
(“She broke it into ones and tens… and then combined it”)  

Written record of 
Muriel’s addition work 

Figure 24. Arg. 9.6: Muriel’s Separation strategy is accepted 
without backing. 

Muriel: [Writes on board: 8 + 7 = 15 / 80 + 40 = 120 / 15 + 120 = 135] 

Instructor: [pointing to board] Okay, and so, what did she do here? What 
do you see her doing? 

Student: She broke it into ones and tens. 

Nancy: and then combined it. 

Student: added the tens, added the ones, and then combined it. 

Instructor: She broke it into ones and tens? And added the tens up, added 
the ones up and combined. We've done that before in here, yeah? We've 
had people share this. 

 In Vignette 3.3, the Instructor asserted that Muriel’s strategy had been previously 

established (“We've done that before in here, yeah? We've had people share this.”). I 
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interpret her assertion as making explicit the acceptability of the warrant that the students 

had provided. The idea of separating numbers into tens and ones and then combining 

them did not require backing at this point. It was true that Muriel’s strategy had been 

previously established. Amelia had used Left to Right Separation on Day 8 to add 95 and 

27. However, I would conjecture that the as-if shared quality of Muriel’s strategy was 

less specific. The class had engaged in a great deal of activity during Days 6–8 that 

involved grouping numbers by ones and tens (or ones and threes, or ones and eights) and 

collecting up and counting items. At this broader grain size, Muriel’s strategy fit right in 

with the activity in which students had engaged over the past three days of class. I would 

expect that any Standard or Transition strategy for addition or subtraction would have 

been accepted without backing on Day 9. 

Making Sense of Standard Algorithms and Transition Strategies: 

Conclusion. CMP3 involved making sense of standard algorithms and Transition 

strategies for addition and subtraction. In the interest of brevity and coherence, the 

examples presented involved addition, but the relevant ideas were similar for subtraction. 

In both addition and subtraction, the class used and interpreted place-value notation and 

performed regrouping operations. Students separated numbers canonically in order to 

add. In subtraction, reasoning in terms of take-away was an important idea. (See CMP5 

more about this.) 

CMP4: Reasoning Flexibly about Addition 

 CMP4 involved the following three as-if shared ideas that were used in 

argumentation concerning mental addition: 

AS3. “Borrowing to Build” 
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AS4. Reasoning about numbers in terms of noncanonical composition 

AS5. Reasoning about addition as a cumulative process of increase 

These ideas occurred in arguments that related to using, justifying, representing, and 

comparing nonstandard addition strategies. Previously established ideas, such as 

canonical number composition, did not tend to be explicit in these arguments. The 

mathematical ideas that were foregrounded in students’ arguments specifically concerned 

the nonstandard aspects of the mental addition strategies that students discussed.  

Reasoning Flexibly about Addition: Activity. Addition computations arose in 

the course of place value activity, as well as in activities concerning children’s  

mathematical thinking. On Day 8, Trina introduced and justified a Levelling strategy 

(Heirdsfield & Cooper, 2004) to solve the computation 95 + 27 in the context of place-

value activity. On Day 9, Trina’s strategy was discussed further, and students suggested 

names for it. The name that became official for the class was Borrow to Build. (See 

Vignette 4.1.) On Day 11, students watched a video of a child named Connor solving a 

subtraction problem. As part of the discussion, students discussed how Connor might 

solve a related addition problem, based on what they knew about his mathematical 

thinking. 

 Activity relevant to CMP4 included discussions focused on introducing, 

justifying, naming, comparing, and representing mental addition strategies. Aggregation, 

Levelling, and Compensation strategies were used and discussed. Number composition 

was often a central aspect of these discussions. However, the strategies discussed did not 

involve decomposing numbers in the conventional fashion into tens and ones. Rather, 

addends were decomposed conveniently in order to form friendly numbers. 
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Reasoning Flexibly about Addition: FAIS Criteria. AS3, Borrowing to Build, 

satisfied Criterion 2. This idea shifted from being used as a warrant in Trina’s argument  

on Day 8 to being used as data in later arguments after Borrow to Build had become an 

established addition strategy. AS4, reasoning about numbers in terms of noncanonical 

composition, satisfied Criterion 2. Its role shifted from warrant to data on Day 11. AS5, 

reasoning about addition as a cumulative process of increase, satisfied Criterion 2. Its 

role shifted from claim on Day 9 to warrant on Day 11. 

Reasoning flexibly about addition: Vignettes. I present four vignettes related to 

students’ reasoning flexibly about addition. In Vignette 4.1, Trina introduced a  

nonstandard addition strategy, which class members may have interpreted in terms of 

aggregation or compensation. In Vignette 4.2, Valerie introduced a compensation 

strategy. In Vignette 4.3, students compared these two addition strategies. In Vignette 

4.4, students reasoned about a child’s mathematical thinking and constructed a 

mathematically valid justification for an aggregation strategy. 

 Vignette 4.1. On Day 8, students solved addition and subtraction problems in a 

variety of bases, including base ten. Before discussing the algorithmic work for 

computing 95 + 27, the Instructor asked the students to perform this computation 

mentally. A few strategies were discussed. In Vignette 4.1, Trina shared her Levelling 

strategy. Aaron and another student contributed to the justification of Trina’s strategy: 

Trina: You take—you want to make 95 into 100. So, you just take away 5 
from 27, making the 95 a hundred. And then you’ll have 22 left from the 
27. And then you’ll add 100 and 22. 

Instructor: What do you think? Is this strategy something that’s going to 
work for whatever addition problem she picks? Or, is it just peculiar to 
this problem? Go ahead. 
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Trina: Because 95 is really close to 100, and 100’s an easy number to 
work with. 

Instructor: So, it occurred to you because 95 is very close to 100, and 100 
is a really easy number to add onto. Yeah? So there might be other kinds, 
other numbers like this that you’d use this with, right? So it sounds like 
Trina can see usefulness there. 

Instructor: Um, why does this work? Somebody besides Trina, anybody 
else use this strategy? Somebody else here? Eric used this strategy? Eric, 
why does this work?  

Aaron: You’re just taking 5 from 27 and giving it to 95. So, you still—
you’re just moving the 5. 

Instructor: Okay, so you’re saying you moved the 5. 

Instructor: You were raising your hand. Did you want to add something?  

Student: It’s kind of like taking a part and putting it in a different place. 

Instructor: What are you taking apart here? 

Student: From 27, you’re taking a part and giving it to the 95. You’re still 
adding all the same numbers, just in different places. 

 From my perspective, the above discussion of Trina’s strategy involved two 

aspects: Justification and strategy selection. Class members discussed why the strategy 

worked, in terms of its mathematical validity. They also discussed characteristics of the 

problem that made the strategy a nice choice—in particular, the proximity of 95 to 100. I 

coded these as two related arguments, A8.1a and A8.1b. Part a, which involves the 

description and justification of Trina’s strategy, appears in Figure 25. 

 Based on observations of the class, as well as interviews with students, it seems to 

me that students may interpret Levelling strategies in terms of either Aggregation or 

Compensation. Under the Aggregation interpretation, students reason that a total of 27 

needs to be added to 95. Trina added 5 from the 27 first, which resulted in a subtotal of 



228 

 

Claim: 95 + 27 = 122 
[Trina’s description and Instructor’s written record on screen] 
Data: 27 – 5 = 22; 95 + 5 = 100; 
100 + 22 = 122 
(“So, you just take away 5 from 27, making the 95 a hundred. 
And then you’ll have 22 left from the 27. And then you’ll add 
100 and 22.”) 
Warrant: Moving/giving part of one addend to the other addend 
(“You’re just moving the 5”) 
Backing: Reasoning about addition as an associative operation 
(“You’re still adding all the same numbers, just in different 
places.”) 

 
Instructor’s written 
record of Trina’s 
strategy 

Figure 25. Arg. A8.1a: Describing and justifying Trina’s 
strategy. 

100, and then she added the remaining 22, so her final answer was 122. Under the 

Compensation interpretation, Trina changed the numbers prior to performing addition. 

She changed the problem from 95 + 27 to 100 + 22, and then she added. Since the 

addends were changed in a way that did not affect the sum, no end compensation was 

necessary. 

 The inscription that the Instructor produced to record Trina’s reasoning (right 

column of Figure 26) suggested an Aggregation interpretation. Using a pre-ENL drawing, 

she recorded Trina’s work as beginning with 95 and adding on 27 by first adding 5 and 

then adding 22 more. It is not entirely clear how Trina or the other students thought about 

this strategy on Day 8. The justifications offered appeared to be more along the lines of 

the Compensation interpretation.  

 Between Days 8 and 9, students were given a follow-up homework assignment 

that involved trying to make sense of Trina’s strategy, applying it to a different problem, 

and suggesting a name for the strategy. On Day 9, these ideas were discussed. Trina’s 

strategy was named Borrow to Build. 
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Claim: 88 + 47 = 135 
(“the answer is 135”) 
Data: 88 + 2 = 90; 47 + 3 = 50; 90 + 50 = 140; 2 + 3 = 5; 
140 – 5 = 135 
[Written work and utterances matching each sub-computation] 
Warrant: Rounding and then compensating 
(“I added 2 and 3, so I made both of them whole numbers… And 
then… I need to take 5 away”) 
Backing: Reasoning about the balance of two rounding moves; 
reasoning about compensation as requiring the inverse operation 
(“Since I added a 3 and a 2, 2 plus 3 is 5, so I need to take 5 
away from 140.”) 

 
Valerie’s record of her 
strategy, on screen 

Figure 26. Arg. 9.2a: Valerie describes and justifies her double 
compensation strategy. 

 Vignette 4.2. In the moments before Vignette 4.2, the class was discussing how 

Trina’s strategy would apply to another computation. Valerie volunteered a contribution 

of a different sort. She said that she had thought about the task differently, and she 

offered to share her own strategy for computing 88 + 47: 

Valerie: When I read the strategy, I took it a different way. 

Instructor: Oh, good. Tell us about that. 

Valerie: I solved the problem a different way than what you just described. 

… [Valerie explains that she did not understand the homework 
instructions. She did something different than what was asked]… 

Instructor: Can you put it on the board up here? 

Valerie: Sure. So, for example, I used [writes “88 + 47” on screen]. So, 
that was my example. 

Instructor: Could you hold on a second? Hey you guys, this is a new 
problem. Can you do this mentally? And just make a note about how you 
thought about it, before you listen to her. Okay? 88 plus 47 is what she has 
written up here. Do it mentally yourselves before you hear about Valerie’s 
explanation. Think about how you’d do that problem. 

[Pause while students think] 
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Instructor: Okay, alright. Go ahead, Valerie. Did you have time? 
Everybody had a chance? Great.  

Valerie: [standing at screen] So, I know in the first problem, Trina, she 
made the numbers whole, I mean, one of the numbers whole, so it would 
be easier to deal with [writes “88 + 2 = 90”], but I made both of them that 
way [writes “47 + 3 = 50”]. So, I added 2 and 3 [draws a rectangle around 
the “+2” and “+3”], so I made both of them whole numbers, so I didn't 
have to go through addition. And so I added 90 and 50 and got 140. And 
then, because I added a 3 and a 2, 2 plus 3 is 5, so I needed to take 5 away 
from 140, and the answer is 135. 

 In Arg. 9.2a, Valerie introduced and justified a Double Compensation strategy for 

addition. It was evident that Valerie saw her strategy as distinct from Borrow to Build (“I 

solved the problem a different way”). In particular, she made a distinction regarding 

forming friendly numbers: “Trina, she made the numbers whole, I mean, one of the 

numbers whole, so it would be easier to deal with, but I made both of them that way.” 

Valerie’s use of the word whole seemed to indicate round numbers, particularly decades. 

In Valerie’s view, Trina (solving 95 + 27) had made one of the numbers whole by 

making 95 into 100. Valerie, by contrast, made both of the given numbers whole. She 

made 88 into 90, and she made 47 into 50. So, Valerie saw her strategy as distinct from 

Trina’s, but it was not clear whether the rest of the class saw it that way. The focus of the 

initial discussion of Valerie’s strategy concerned its validity. 

 Vignette 4.3. The Instructor then directed the class to consider the issue of 

whether Valerie’s strategy was the same as Borrow to Build or different. Zelda made an 

argument that Valerie’s strategy was different. However, she saw the distinction 

differently than Valerie had: 

Instructor: Is it the same as Trina’s method or is it a different method? 

Students: Different method. 
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Instructor: Different method. What’s different about this? Can somebody 
say how they see this as different from Trina’s method? Aaron and Trina 
have their hands up, both of them. Oh, okay. Sorry. Thanks. 

Zelda: You’re not borrowing from one of the numbers. You’re kind of 
adding two different numbers to both of them. So, it’s not really like the 
Borrow and the Build method. 

Instructor: Maybe this isn’t Borrow to Build, because what would you be 
borrowing from? Is that what you’re saying? You're not borrowing from 
one of the numbers. 

Zelda: Right. 

Instructor: Yeah? Anybody have a different way they thought about that? 

[No other arguments were voiced. There was apparent agreement that 
Valerie’s strategy was different from Borrow to Build. The discussion 
moved forward.] 

 Zelda argued (Figure 27) that Valerie’s strategy was different from Borrow to 

Build. Like Valerie, she mentioned that both numbers were rounded, rather than just one. 

However, for Zelda, the key distinction between the two strategies seemed to be the 

origins of the amounts added. In Borrow to Build, part of one of the addends was taken 

and given to the other addend. So, the amount addend came from one of the given 

numbers. In Valerie’s strategy, by contrast, amounts were added to the given numbers 

that came from elsewhere. (In other words, by adding 2 and 3 to the given addends, 

Valerie temporarily changed the sum. As a result, she had to compensate in the end. In 

Trina’s strategy, end compensation was unnecessary because the sum was unchanged.) 

 Vignette 4.4. On Day 11, the class watched a video of a child named Connor 

solving the subtraction problem 25 – 8. Connor used an Aggregation strategy. He said, 

“Well, I knew that 5 plus 3 was 8, and it was 25. So, minus 5 is 20, and then minus 3 

more is 17.” After extensive discussion of Connor’s thinking (which will be described  
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Claim: Valerie’s strategy is different from Borrow to Build 
(“Different method.”) 
Data: Valerie added to both addends without borrowing from 
either of them 
(“You’re not borrowing from one of the numbers. You’re kind 
of adding two different numbers to both of them.”) 
Warrant: Borrow to Build involves borrowing from one of the 
addends 
(“You’re not borrowing from one of the numbers… So, it’s not 
really like the Borrow and the Build method.”) 
Backing: (Implicit criterion) It matters where the amounts 
added originate. This is a relevant characteristic in 
distinguishing strategies. 

 
 Zelda brings up both 
hands and makes a 
two-fisted tossing 
gesture as she says, 
“adding two different 
numbers…” 

Figure 27. Arg. 9.4: Zelda argues that Valerie’s strategy is 
different from Borrow to Build 

further in CMP5), the Instructor asked the class how they thought Connor would solve 

the addition problem 25 + 8. 

Instructor: How do you think Connor would solve, um, a problem 
liiiike—let’s take a minute and think about this. How would Connor solve 
a problem like 25 plus 8 mentally? Can I write this down here? [writes on 
screen “25 + 8”] 25 plus 8. Just take a minute and think about that. How 
might Connor solve that? 25 plus 8 mentally. 

[Ss work quietly] 

Instructor: What do you think about how Connor might solve that 
mentally? Yes? 

Natalie: I think it’s very similar to the subtraction problem [Multiple Ss 
talking] 

Instructor: Wait, um. Sorry, I want to make sure everybody’s listening to 
you, okay? Everybody ready? 

Natalie: I think it’s similar to the subtraction problem. I think he would 
write down the 8 and the 5 plus 3. And then he would put 25 plus 5 is 30, 
and then 30 plus 3 is 33. 

Instructor: Okay. Is that similar to—can somebody say what she said? 
Very quickly. Is that similar to how you thought about it? 
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Students: Yeah. 

Instructor: Somebody else say what she said. Well, what—go ahead. 

Mandy: Well, you add 5 to 25, and you get 30. And then you add an 
additional 3, for, and you get 33. And that’s calculating a total 8 to 25. 

Instructor: So, both of those strategies relied on him being able to see that 
8 was—that you could decompose 8 into 5 and 3. Right? 

 Like many arguments that occurred in these discussions, this one had two aspects. 

In my view, Argument 11.7a concerned how Connor would solve the addition problem. 

The ideas relevant to that argument concerned what was known about Connor’s thinking 

and concerned similarities between the given addition problem and the subtraction 

problem that Connor had solved in the video. Argument 11.7b concerned the details of 

and justification for Connor’s hypothetical addition strategy itself. In other words, 

viewing that strategy in a vacuum, how does it work and why is it legitimate? I focus here 

on part b of the argument, in which the mathematical ideas are foregrounded (Figure 28). 

Claim: 25 + 8 = 33 
Data: 25 + 5 = 30; 30 + 3 = 33 
(“I think he would write down the 8 and the 5 plus 3. And then he would put 25 plus 5 is 
30, and then 30 plus 3 is 33.”) 
Warrant: Reasoning about addition as a cumulative process of increase 
(“Well, you add 5 to 25, and you get 30. And then you add an additional 3”) 
Backing: Reasoning about 8 as being composed of 5 and 3 
(“Well, you add 5 to 25, and you get 30. And then you add an additional 3, for, and you 
get 33. And that’s calculating a total 8 to 25.” “So, both of those strategies relied on him 
being able to see that 8 was—that you could decompose 8 into 5 and 3.”) 

Figure 28. Arg. 11.7b: Argument that 25 + 8 = 33 by 
aggregation. 

 Class members co-constructed an argument to the effect that 25 + 8 = 33 on the 

basis of Addition Aggregation. They argued that it was legitimate to start with 25 and add 

on to it in convenient chunks. Specifically, they decomposed 8 into 5 and 3, and added 5 
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to 25 first. This gave a subtotal of 30. Then adding the additional 3 gave a total of 33. In 

many arguments related to both Aggregation and Compensation, students took advantage 

of number composition in convenient ways like this, rather than decomposing numbers 

canonically, into tens and ones. Whereas Borrow to Build may have been interpreted by 

students in terms of Aggregation or Compensation, the strategy discussed in Arg. 11.7 

was clearly an Aggregation strategy. Class constructed a mathematically valid Addition 

Aggregation argument, which involved as-if shared ideas belonging to CMP4. 

Reasoning flexibly about addition: Conclusion. In CMP4, students reasoned 

flexibly about computing sums. Activity involved a popular nonstandard strategy that the 

class named “Borrow to Build.” Students reasoning about numbers in terms of 

noncanonical composition characterized use of this strategy. Aggregation strategies were 

also used and discussed, and arguments related to these were grounded in reasoning about 

addition as a cumulative process of increase. Students engaged in using, justifying, 

representing, and comparing nonstandard addition strategies. Previously established 

ideas, such as canonical number composition, did not tend to be explicit in these 

arguments. Rather, students’ arguments featured mathematical ideas that were specific to 

the nonstandard aspects of aggregation and compensation strategies. 

CMP5: Reasoning Flexibly about Subtraction 

 CMP5 involved activity around nonstandard subtraction strategies and a set of 

normative ways of reasoning related to these. The following ideas made up that set: 

AS2. Reasoning about subtraction as a cumulative process of decrease 

AS6. Reasoning about subtraction as a take-away process 



235 

 

AS7. Reasoning about adding and subtracting in terms of movement along 
a number line 

AS8. Reasoning about difference as distance between 

Reasoning about subtraction as a take-away process had come to function as-if shared 

earlier and was part of CMP3. Subtraction Aggregation strategies had been used and 

discussed beginning on Day 3. But the idea of subtraction as a cumulative process of 

decrease did not come to function as-if shared until Day 9. AS7 and AS8 were related to 

activity with the empty number line. These came to function as if shared on Day 12. All 

of these ideas were integral to the development of the more general activity of reasoning 

flexibily about subtraction. 

Reasoning Flexibly about Subtraction: Activity. Activity related to CMP5 

involved using, justifying, naming, comparing, and representing nonstandard subtraction  

strategies. Students performed subtraction mentally, reasoned about each other’s 

strategies, interpreted children’s thinking, and created and discussed drawings that 

conveyed the mathematics behind particular strategies. The empty number line was used 

extensively on Day 12, and reasoning in terms of number-line motion and differences as 

distances between figured heavily in students’ subtraction arguments. 

Reasoning Flexibly about Subtraction: FAIS Criteria. AS2, reasoning about 

subtraction as a cumulative process of decrease, satisfied Criterion 1. In fact, it satisfied  

Criterion 2 as well, but Criterion 1 seems most appropriate to the way that the idea 

functioned. Aaron had introduced this idea in his Subtraction Aggregation argument on 

Day 3 (Vignette 1.1). On Day 9, another student presented a more sophisticated 

subtraction strategy, which used Subtraction Aggregation as ancillary and without 
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justification. This idea was also used in arguments on Day 11 concerning Connor’s 

subtraction strategy. 

 When students provided explicit backing for Subtraction Aggregation, it was 

justified on the basis of AS6, reasoning about subtraction as a take-away process. This 

idea could be regarded as satisfying Criterion 2 or Criterion 3. There seemed to be a 

legitimate shift in its function from backing to data on Day 11, and so the shift criterion 

seems appropriate. On the other hand, reasoning about subtraction as a take-away process 

was used as backing in a total of five arguments on three different days of class, and so it 

could qualify for the repeated-use criterion. There is an argument for this since it is 

typical for students to think about subtraction in terms of taking away, and this is likely 

an idea that every student brought to the class. In any case, AS6 functioned as-if shared. 

 AS7 and AS8 evolved in function similarly. Both came to function as-if shared on 

Day 12, satisying Criterion 2. Both shifted from being used as rather commonplace data 

(not requiring justification) to being used as warrant or backing in arguments for which 

these ideas were fundamental to the justification of a novel strategy. 

Reasoning Flexibly about Subtraction: Vignettes. I focus the examples related 

to CMP5 on activity from Day 12 because it was rich with discussion of subtraction 

ideas. I present three vignettes. These involve students making sense of and representing 

children’s nonstandard subtraction strategies.  

 Vignette 5.1. The Operation Meanings, Strategies, and Algorithms unit included 

several tasks related to children’s mathematical thinking. On Day 12, students were given 

three examples of children’s reasoning about the computation 364 – 79. The first child’s 

strategy was described as follows: 
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364 – 100 = 264 

100 – 79 = 21 

264 + 21 = 285 

In Arg A12.12, two students justified this strategy. In Arg A12.13, Maybee present her 

illustration of the strategy, using the ENL. In Arg A12.14 and A12.15, the class discussed 

ways of modifying the illustration and offered justifications for their suggestions. In 

Arguments A12.16 and A12.17, the child’s strategy was compared to another strategy, 

the resolution being that it was different. In Arg A12.18, the name “Back and Forth 

Subtraction” was suggested and accepted as a name for the strategy. 

Instructor: Okay, you had a chance to look at these and I heard some 
excellent discussion as I went around. The first one, people made some 
sense of. Why doesn’t somebody take an opportunity to see if they can 
talk about what the child did, and let’s see if we can make sense of the 
mathematics underlying that approach. And then make an argument if the 
method always works. 

Instructor: So, anybody? Thoughts on the first one? First of all, somebody 
tell me the steps the child did. In number one, the steps in number one? 
What did the child do in number one? 

Betty: From what it looks like, they subtracted 100, just thinking, you 
know, that’s really easy to do, to get 264. But then because they had 
subtracted 100, they found the difference between 100 and 79, and that’s 
21. So, then they added that in at the end. 

Instructor: So then they added that back in? What do you think? Is that 
mathematically valid? Why did she add instead of subtracting that? Why 
add 21 at the end? She’s subtracting, then you’re adding.  

Torrin: She subtracted more than she needed.  

Instructor: She subtracted more than she needed. 

Torrin: To make it like easier to do mentally, to like visually see. And then 
she had to add back the 21 because she took away an extra 21 that wasn’t 
necessary. 
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Instructor: So, she took away an extra 21 that wasn’t necessary and she 
had to add it back? Anybody have, does that sound like the way to think 
about it? Did anybody have anything to add to that? 

 Figure 29 represents Betty’s argument. 

Claim: The first child’s strategy is legitimate 
[Torrin’s justification supported the conclusion that the strategy 
was “mathematically valid”] 
Data: 364 – 100 = 264; 100 – 79 = 21; 264 + 21 = 285 
[Computational steps given and Betty’s verbal description] 
Warrant: Compensating for rounding 
(“they subtracted 100, just thinking, you know, that’s really 
easy to do, to get 264. But then because they had subtracted 
100, they found the difference between 100 and 79, and that’s 
21. So, then they added that in at the end.”) 
Backing: Reasoning about subtraction as a take-away process; 
Reasoning about compensation based on the effects of rounding 
(“She subtracted more than she needed… And then she had to 
add back the 21 because she took away an extra 21 that wasn’t 
necessary.”) 

 
[Betty gestures like 
she’s putting 
something into a 
container as she says, 
“then they added that 
in at the end.”] 

Figure 29. Argument A12.12. 

 Vignette 5.2. Following Argument A12.12, Maybee presented her ENL 

illustration for the child’s strategy (Figure 30). The class discussed Maybee’s illustration 

and suggested some modifications to it. In Arg A12.14a, Melinda argued that Maybee’s 

illustration would be improved if it showed the difference explicitly as the distance 

between 285 and 364. 

 
Figure 30. Maybee’s initial illustration. 
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Melinda: Um, I think it would be—I really like that one, but I think that it 
would be even better if, like, somewhere the 79 was shown, or like, the 
difference between 285 and 364. Because otherwise it kinda looks a little 
bit more random. But, so maybe somewhere show the distance to show 
that it’s 79. 

 In her argument (Figure 31), Melinda equated difference and distance between in 

her argument. She did not justify this meaning for the difference but rather took it as a 

given. Melinda’s argument was accepted. In subsequent discussion of Maybee’s 

illustration, a line segment was added that spanned the distance from 285 to 364. In 

response to another student’s argument, an arrow was added to this segment to show that 

the net change depicted in the diagram was decrease, or movement to the left. Figure 32 

depicts the final version of Maybee’s illustration. The class then discussed names for this 

strategy, and “Back and Forth Subtraction” became the official name. Instructor made an 

argument for the appropriateness of this name, using gesturing to highlight the back-and-

forth nature of the strategy as depicted on the ENL. 

Instructor: Can I make a suggestion? How about something like Back and 
Forth Subtraction? Does that kind of convey, you know, the fact that you 
add on and then take away. Something like that? … Because there’s 
something about that illustration, especially when I see that empty number 
line. Back and Forth Subtraction… I think this number line illustrates this 
pretty nicely, the back and forth part. 

 Vignette 5.3. The second child’s strategy for computing 364 – 79 was presented as 

depicted in Figure 33. In Arg A12.19, Trina offered a justification for this strategy. In 

Arg A12.20, Valerie presented her group’s justification for the strategy. In Arg A12.21, 

Amelia presented her drawing, which was related to Valerie’s justification. 

Instructor: So, I heard some discussion that this method might always 
work or it might not always work. That was one key discussion as I went 
around. And some people thought that maybe this method didn’t always 
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Claim: Maybee’s diagram could be improved by showing the 
difference of 79. 
(“I really like that one, but I think that it would be even better 
if, like, somewhere the 79 was shown”) 
Data: The diagram does not make the difference obvious; the 
difference between 285 and 364 is the distance between them, 
which is 79. 
(“…if, like, somewhere the 79 was shown, or like, the 
difference between 285 and 364… so maybe somewhere show 
the distance to show that it’s 79.”) 
Warrant: (Implicit criterion) Diagrams should make details like 
the difference explicit 
(“I think that it would be even better if, like, somewhere the 79 
was shown, or like, the difference between 285 and 364. 
Because otherwise it kinda looks a little bit more random.”) 

 

 
M’s gesturing 
highlights the 
difference of 79 as the 
distance between the 
number-locations 364 
and 285 in the 
diagram 

Figure 31. Argument A12.14a: Melinda argues that Maybee’s 
diagram would be improved by making the difference of 79 

explicit. 

  

Figure 32. Back and Forth Subtraction: (left) The final version 
of Maybee’s illustration; (right) Instructor gesturing movement 

on the number line reminiscent of the illustration. 

 
Figure 33. Second child’s strategy for 364 – 79. 
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work or that it worked better with some number than others. Those are two 
different questions aren’t they? Does this method always work? 

Trina: I was going to say, when I first thought about it, I didn’t understand 
how, by making both the numbers like one bigger would make it equal out 
in the end. But as I drew out my diagram, I noticed that by making the 
number you’re subtracting from one bigger and making the number you 
are subtracting one bigger, you’re really like adding one and then 
subtracting one more, so it like evens out. 

 Figure 34 represents Trina’s argument. Valerie also argued for the validity of the 

second child’s strategy. However, her argument was different than Trina’s. Trina 

reasoned in terms of Compensation and argued that the two rounding moves, adding to 

the minuend and adding to the subtrahend, evened out. Valerie’s group thought in terms 

of a number line instead. They interpreted adding to the minuend and subtrahend as 

shifting number-locations to the right, while mainting the distance between them. 

Claim: The second child’s strategy is legitimate 
[Trina’s argument supports the conclusion that the child’s 
strategy “always works”] 
Data: Making equal additions to the minuend and subtrahend 
(“making both the numbers like one bigger”) 
Warrant: Reasoning about the net effect of two rounding 
moves 
(“so it like evens out.”) 
Backing: Adding one to the minuend increases the difference; 
Adding one to the subtrahend decreases the difference. 
(“by making the number you’re subtracting from one bigger 
and making the number you are subtracting one bigger, you’re 
really like adding one and then subtracting one more”) 

 
Trina turns her hands 
palm-up and performs 
a balancing action, 
raising one hand while 
lower the other as she 
says,“evens out” 

Figure 34. Argument A12.19. 

Valerie: Okay, so we thought about it in terms of, when you’re 
subtracting, you’re trying to find the distance between two numbers. So, 
we thought of it kind of in terms of a number line. So, if you—uh, for the 
first one—when he, or whoever the student was, made it 365 and 80. So, 
you started off with 79 and 364. So, 364 moved up one to 365 and also, 
likewise the 79 moved up to 80. So, the distance didn’t change between 
the numbers. So, originally it was right here, and they both moved up one 
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on a number line. So, the distance between them is the same. So, similarly 
when you have 385 and 100, you just added 21. So, if you took the 
numbers from their original position and moved them each up 21 spaces, 
the shift would be the same and the distance between both numbers is the 
same.  

Nancy: And the numbers would be easier. 

Valerie: Yeah. 

 The backing in Valerie’s argument (Figure 35) brought together two ideas. 

Reasoning about adding and subtracting in terms of movement along a number line had 

been used previously in arguments concerning Back and Forth Subtraction. Reasoning 

about the difference in subtraction in terms of a distance between number-locations had 

also been used previously, as in Melinda’s argument. Although both of these ideas 

occurred in arguments concerning Back and Forth Subtraction, they were used 

independently. Valerie used both ideas in conjunction to support her warrant that adding 

the same amounts to the minuend and subtrahend did not change the difference. She 

reasoned that adding to the minuend and to the subtrahend shifted both of them to the 

right. Since the amounts added were the same, the shift was the same. Therefore, the 

distance between the number-locations did not change. 

 Amelia’s argument (Figure 36) was similar. In fact, she cited Valerie’s argument 

and provided much less explicit detail herself. Her contribution was a drawing that 

illustrated the fact that the difference remained constant when the same amount was 

added to the minuend and subtrahend: 

Amelia: It’s basically what she said, just illustrated. Like, they’re the same 
distance apart. Like you just add twenty to each. So, it just shows that 
they’re exactly the same. 
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Claim: The second child’s strategy is legitimate 
[Valerie’s argument supports the validity of the child’s 
strategy] 
Data: The child added the same amounts to the minuend and 
subtrahend 
(“you took the numbers from their original position and moved 
them each up 21 spaces”) 
Warrant: Adding the same amounts to the minuend and 
subtrahend does not change the difference 
(“So, if you took the numbers from their original position and 
moved them each up 21 spaces, the shift would be the same and 
the distance between both numbers is the same.”) 
Backing: Reasoning about difference as distance between 
number-locations; Reasoning about adding in terms of 
movement along a number line 
(“So, the distance didn’t change between the numbers. So, 
originally it was right here, and they both moved up one on a 
number line. So, the distance between them is the same.”) 

 

 
Valerie holds her 
hands approximately 
equi-distant. She 
moves both hands to 
her right as she talks 
about the numbers 
“moving up.” 

Figure 35. Argument A12.20. 

  

Figure 36. (left) Amelia’s drawing showing that 365 – 80 is 
equal to 385 – 100; (right) Amelia gestures a shifting action as 

she says, “they’re the same distance apart.” 

 As Vignette 5.4 illustrates, on Day 12, the idea of Difference as Distance Between 

came to function as if shared. This idea had been used as data in Melinda’s argument 

(A12.14a). In Valerie’s argument, this idea functioned in a new way as it was used to 

justify a novel subtraction strategy. This shift in the way that the idea functioned is 

reflected in the contrast between Maybee’s illustration and Amelia’s (see Figure 37). In 

Maybee’s illustration, the difference of 79 had the meaning of a net action of moving to 

the left 79 units. It was included to show the distance of 79 between the number-locations  
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Figure 37. (left) Maybee’s final illustration: 364 and 285 are 
locations, and 79 is represented as the directed distance 

between them; (right) Amelia’s illustration: 80 and 365 are 
locations, as are the pair 100 and 385. The distance between 

each pair is 285. 

285 and 364. In Amelia’s illustration, by contrast, 285 had the meaning of the distance 

between number-locations. The action involved was not an action of subtracting by 

moving left. Rather, it was a shifting action, whereby both number-locations were moved 

until they reached a place that made the distance between them was readily apparent. 

(Amelia did not explicitly illustrate the original locations of 79 and 364. Her illustration 

focused on the bigger shift from 80 and 365 to 100 and 385.) 

Reasoning flexibly about subtraction: Conclusion. In CMP5, students used and 

reasoned about nonstandard subtraction strategies. Reasoning about subtraction as a take- 

away process had come to function as-if shared earlier. In CMP5, it was integral to 

students’ making sense of subtraction aggregation and compensation strategies. 

Reasoning about subtraction as a cumulative process of decrease also played a key role in 

students’ sense making. Also, the empty number line was used productively as students 

justified subtraction compensation strategies based on reasoning about adding and 

subtracting in terms of movement along a number line and reasoning about differences as 

distances between. 
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Summary of Development from CMP1 to CMP5 

 The progression from CMP1 to CMP5 represents a case of number sense 

development, in the sense of sociogenesis. In terms of collective activity, the class 

progressed from (CMP1) relying on the standard algorithms to (CMP2) making sense of 

place value to (CMP3) using an understanding of place value to make sense of the 

standard addition and subtraction algorithms, as well as Transition strategies, to (CMP4) 

reasoning flexibly about addition and (CMP5) reasoning flexibly about subtraction. As 

Figure 38 illustrates, this progression through classroom mathematical practices 

constitutes an actual learning route, which parallels the envisioned learning route 

described by Nickerson and Whitacre (2010). 

Actual learning 
route 

CMP1 CMP2 & 
CMP3 

CMP4 & CMP5 

Envisioned learning 
route 

Standard Transition Nonstandard Nonstandard 
w/Reformulation 

Figure 38. Correspondence between CMPs and envisioned 
learning route. 

 Viewing the progression through CMPs in terms of the Standard-to-Nonstandard 

framework, CMP1 corresponded to the Standard category. In this initial stage of 

collective activity, the class relied on standard algorithms. CMP2 and CMP3 correspond 

to the Transition category. By making sense of place value and relating that 

understanding to the standard algorithms, the class transitioned from using the MASAs 

for addition and subtraction to using Right to Left and Left to Right strategies. CMP4 and 

CMP5 correspond to the Nonstandard categories (with and without reformulation). The 

class reasoned flexibly about addition and subtraction by making sense of and using 

various nonstandard strategies. 
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 The details that the analysis revealed serve to flesh out number sense development 

as a sociogenetic process. These details include the particular ideas that functioned as-if 

shared for the classroom community, as well as how those ideas were used in arguments 

that were integral to advancing the mathematical activity (Rasmussen, Zandieh, King, & 

Teppo, 2005) of the class. In further research that is beyond the scope of this dissertation, 

the results of this analysis will feed back to inform revisions and elaboration to Nickerson 

and Whitacre’s (2010) local instruction theory for the development of number sense. 

Classroom Mathematical Practices: Multiplication 

 In this section, I describe activity related to multiplication that took place during 

the multiplication and division strand of the course. Students performed multiplication 

and division computations in the service of problem solving during Days 2–8 prior to the 

lessons focused on multiplication and division ideas, which occurred during Days 13–17. 

The totality of activity related to multiplication and division constitutes the multiplication 

and division strand. 

 In the section titled Classroom Mathematical Practices: Place Value, Addition, & 

Subtraction, CMP1, CMP2, and CMP3 were related to both addition and subtraction. 

CMPs 4 and 5 involved students reasoning flexibly about addition and subtraction, 

respectively. The analysis revealed a progression in students’ activity related to both 

operations. This section, by contrast, will focus exclusively on multiplication. This is 

because the vast majority of students’ activity during Days 13–17 concerned 

multiplication, rather than division. There were as-if shared ideas related to division, and 

students justified the standard division algorithm and a Transition strategy for division. 

However, there was insufficient division-focused activity and insufficient advancement in 
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reasoning about division in order to tell a story of sociogenesis involving division ideas. 

Therefore, in this section, I present a story of the sociogenesis of number sense that is 

specific to multiplication. 

 I identified the following four classroom mathematical practices in the strand of 

activity related to multiplication: 

CMP1. Assuming the authority of the standard algorithms 

CMP6. Separating, multiplying, and adding with single-digit multipliers 

CMP7. Making sense of separating, multiplying, and adding with double-
digit multipliers 

CMP8. Reasoning flexibly in computing and estimating products 

This section presents the progression through these four CMPs. For each CMP, I describe 

the mathematical activities in which students engaged. I describe the as-if shared ideas 

belonging to the CMP and explain the FAIS criteria satisfied by each. I also present 

selected classroom vignettes, which serve as examples of collective activity and illustrate 

shifts over time in the roles of particular ideas in argumentation. 

CMP1: Assuming the Authority of the Standard Algorithms 

 In the activity involving addition and subtraction, the first classroom 

mathematical practice involved computing with the standard algorithms, assuming the 

authority of these algorithms, and following the conventions of the algorithms. Since this 

CMP has been described in some detail, I include a single vignette related to 

multiplication. The multiplication strand spanned a longer time frame than addition and 

subtraction. Multiplication was used during Days 6–8, but multiplication ideas did not 

become the focus until Day 13. The standard multiplication algorithm functioned with 

authority, despite not having been justified mathematically, through the early part of Day 
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14. Vignette 1.3 represents the last case of the standard multiplication algorithm 

functioning in this way. Later, students justified the algorithm. (See Vignette 7.4.) 

 Vignette 1.3. On Day 14, students worked on a problem concerning rectangular 

area in the context of carpeting a room: 

A sorority needs to buy new carpet for the floor of their meeting room. 
The room measures 23 feet by 23 feet. They need to know how much 
carpet to buy. What is the area of the room? 

The Instructor first asked student to mentally compute the area of the room. Initially, the 

class agreed on an incorrect answer of 409 square feet. After a few minutes discussing the 

problem in their groups, many students had changed their answers. In the subsequent 

whole-class discussion, a student reported a revised answer of 529 square feet. Kim made 

an argument for this answer simply by stating that she had used the standard algorithm. 

(Many other students had done the same.) There was no disagreement, and 529 became 

the new consensus answer. Figure 39 represents Kim’s argument. 

Claim: A room measuring 23ft by 23ft has an area of 529 square feet 
Data: 23 x 23 = 529 
(Instructor: …when you multiplied it out, you got 529) 
Warrant: Reasoning about operations in terms of the standard algorithms 
(Kim: Standard algorithm.) 

Figure 39. Arg M14.2: Kim’s argument concerning the 
product of 23 and 23. 

Instructor: Now, all I want right now is an argument for the answer being 
529. How many people think it’s 409? How many people think the answer 
is 409? We changed our minds, oh. And what changed your mind? Does 
everybody else say 529? How many people think 529? Now the class says 
529. What changed your minds? Why isn’t it 409? 

Kim: Standard algorithm. 

Instructor: Because you did the standard algorithm and when you 
multiplied it out, you got 529. Alright we’ve got something important to 
talk about here. How come the answer isn’t 409? 
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Subsequently, a great deal of productive activity occurred around the Carpet 

Problem. (That activity will be described in some detail in the description of CMP7.) In 

the prelude to Vignette 1.3, students attempted to solve the problem by mental 

multiplication. However, when the answer obtained by a nonstandard strategy did not 

agree with the answer obtained by the standard algorithm, the alternative was 

immediately dismissed. The activity shifted to making sense of why the nonstandard 

strategy that many students had used did not work. At this point, the standard 

multiplication algorithm had not been justified mathematically, yet it functioned 

authoritatively. As in the addition and subtraction strand, the authority of this algorithm 

would be leveraged productively to motivate the need to make sense of the reasoning 

behind nonstandard strategies. (See Vignette 7.2.) 

CMP6: Separating, Multiplying, and Adding with Single-Digit Multipliers 

 CMP6 involved a relatively simple case of mental multiplication that seemed 

readily accessible to students. This classroom math practice consisted of the following set 

of as-if shared ideas: 

M1. Separating, multiplying, and adding 

M2. Reasoning about products in terms of partial products 

M3. Reasoning about multiplication in terms of repeated addition 

M4. Recognizing a groups-of structure 

M1–M4 represent a core set of as-if shared ideas that supported students’ initial mental 

multiplication activity. These ideas were also used in more sophisticated ways as 

students’ activity advanced from CMP6 to CMPs 7 and 8. 
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Separating, multiplying, and adding with single-digit multipliers: Activity. 

Mental multiplication activity first occurred during the place value unit. Students 

multiplied mentally in the Andrew’s Apple Farm context on Day 6. They also used 

mental multiplication in arithmetic involving different bases on Days 7 and 8. 

 The central mathematical activity belonging to CMP6 was mentally multiplying 

using a strategy that the class called “Separate, Multiply, Add” (SMA). Students did this 

readily and correctly in cases of a one-digit number multiplied by a two-digit number. 

They would separate the two-digit factor into tens and ones, multiply the one-digit factor 

by those numbers of tens and ones to compute two partial products, and then add the 

partial products (M1). Reasoning about products in terms of partial products (M2) 

supported students’ sense making in this initial mental multiplication activity. Students 

used SMA mentally in many cases. It was also used in written form, and computations 

performed mentally were often recorded in writing. Numerical records involved notation 

similar to the standard algorithm, except that the partial products were called out 

explicitly. 

 Multiplication became a focus in the course on Day 13. Students discussed ideas 

related to multiplication in the context of classifying and solving story problems. 

Students argued for why multiplication was the appropriate operation to use to solve 

various story problems. They did this on the basis of recognizing a groups-of structure 

(M4) in those problems and applying a meaning for multiplication as repeated addition 

(M3). Students also continued to multiply mentally using SMA. 
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Separating, multiplying, and adding with single-digit multipliers: FAIS 

Criteria. M1, separating, multiplying, and adding, came to function as-if shared on Day 

8. It satisfied Criterion 2 by shifting from warrant to data. It was then used extensively as 

data in students’ arguments. The class named this strategy “Separate, Multiply, Add” on 

Day 8. Students used the abbreviation SMA for this strategy, and this was an acronym for 

the class (i.e., they often pronounced SMA as a word: smô). 

 M2, reasoning about products in terms of partial products, was integral to 

students’ advancing mathematical activity during CMPs 6–8. M2 actually had several 

different applications. The specific as-if shared idea belonging to CMP6 was M2a: 

reasoning about products in terms of partial products in the case of a single-digit 

multiplier. In later activity, this idea was extended to other cases, which will be addressed 

in the discussion of CMPs 7 and 8. M2a came to function as-if shared on Day 13. It 

satisfied Criterion 2. 

 M3, reasoning about multiplication in terms of repeated addition, is a fundamental 

idea that students likely brought with them to the course. This idea came to function as-if 

shared on Day 13. It also satisfied Criterion 2. M3 occurred as backing on Day 4. It 

shifted to being used as a warrant in two arguments that occurred early on Day 13. Its 

function then shifted again, and it was used as data in later arguments on Days 13, 16, 

and 17. 

 M4, recognizing a groups-of structure, refers specifically to students recognizing 

a quantitative structure involving a number of groups and a number of items per group—

in connection to multiplication. There were many instances of references to groups of 

items during the place value unit. However, in arguments involving M4, students 
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explicitly used the presence of this structure as justification for the idea that multiplying 

the number of groups by the number of items per group would give the total number of 

items. M4 came to function as-if shared on Day 13, satisfying Criterion 1. The warrant 

for it dropped off. 

Separating, multiplying, and adding with single-digit multipliers: Vignettes. I 

present three vignettes related to CMP6. The first vignette illustrates students’ using  

separate, multiply, and add with single-digit multipliers and reasoning in terms of partial 

products during the place-value unit. The second vignette illustrates students’ 

conceptions of the separating, multiplying, and adding strategy as they participate in a 

strategy-naming discussion. The third vignette shows how students argued for the 

appropriateness of multiplication on the basis of recognizing groups-of structure and 

reasoning in terms of repeated addition.  

 Vignette 6.1. On Day 6, students computed 64 x 8 (i.e., computing 83) to find the 

number of apples per truck on Andrew’s Apple Farm. Jenny presented on behalf of her 

group (Figures 40 and 41), explaining the strategy that they had used: 

 

Figure 40. Jenny makes separating and combining gestures as 
she says, “we just broke down sixty-four and then put it back 

together again,” 
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Claim: 64 x 8 = 512 
Data: 60 x 8 = 480; 4 x 8 = 32; 480 + 32 = 512 
Reasoning about digits in multiplication in terms of their place 
values: 6 in 64 represents 60 
[Utterances and written work on screen] 
Warrant: Reasoning about products in terms of partial 
products—single digit multiplier 
(Jenny: So, we just broke down sixty-four and then put it back 
together again to get five-hundred-and-twelve.) 

 
Jenny’s recreated 
record of her strategy 
on the screen 

Figure 41. Arg M6.1: Jenny describes her group’s strategy for 
computing the product of 64 and 8. 

Jenny: So, first we kinda separated sixty-four into two parts, the sixty and 
the four, kinda like we were talking about earlier, like sixty [sic] tens and 
four ones. And then we timesed it by eight and then added those two 
numbers together. So, we just broke down sixty-four and then put it back 
together again to get five-hundred-and-twelve. [Jenny repeatedly makes 
gestures that suggest separating and combining.] 

 On Day 7, students computed 49 x 7 to determine the size of the cubes place in 

base seven. As part of a homework assignment prior to class on Day 8, students were 

asked to reflect on the strategy that Zelda had used to compute 49 x 7 on Day 7 (and that 

other students had used previously).  

 Vignette 6.2. On Day 8, the class discussed possible names for the strategy. Eight 

possible names came out in whole-class discussion: (See Figure 42.) 

 

1. Split-gether 
2. Split, then combine 
3. Break-down multiplication 
4. Cookie dough method 
5. Puzzle 
6. Part-part-whole 
7. Peanut butter and jelly sandwich 
8. SMA (separate, mult, add) 

Figure 42. Suggested names for a popular multiplication 
strategy: (left) Instructor listed students’ suggestions on the 

whiteboard; (right) A typed list of the suggested names. 
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 The first suggestion was split-gether, which the student explained as a 

combination of the words splitting and together. Students suggested Split, then combine 

and Break-down multiplication, but their arguments were not made explicit. Amelia 

suggested the named Cookie dough method. She explained: 

Amelia: I have one that is like, totally different from these. I didn't have 
like, split or anything. I called it the cookie dough method. Because, when 
you make cookie dough, you split the flour and salt and the baking soda 
into one, like, bowl and then you put the sugar and everything else in a 
different bowl, and then you combine them. 

 Maricela suggested Peanut butter and jelly sandwich, “Because on the bread, on 

one side you put peanut butter and on the other side you put jelly and then you put them 

together.” Another student suggested Puzzle, “Because you're taking it apart like a puzzle 

and you have to figure out how it goes together.” Torrin suggested Separate, Multiply, 

Add. 

 Instructor pointed out that all the names suggested conveyed what she called the 

“split-then-combine idea.” The suggested names seemed to fall into two categories: (1) 

those that rather straightforwardly described splitting, then combining, and (2) those that 

metaphorically described splitting, then combining. The class eventually settled on a 

literal name and one that made the process between the splitting and combining explicit: 

Separate, Multiply, Add. A student argued that this name was fitting because it clearly 

described the process involved in the strategy. 

 Vignette 6.3. On Day 13, students discussed different types of multiplication story 

problems. Groups wrote and presented story problems, and the class discussed how these 

were related to multiplication. One story problem discussed was the following: My 

backyard garden is 3 feet by 5 feet. How big is my garden? Natalie solved this problem 
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by drawing a 3-by-5 grid. She said that she had gotten her answer of 15 square feet by 

counting the squares. The Instructor asked the class how multiplication was related to this 

problem. Three arguments were offered. Libby said that you could solve by multiplying 

because length times width would give area, referencing a formula. The Instructor 

pressed further. Melinda argued that you multiply to find area because adding the side 

lengths would give perimeter instead. The Instructor pressed further. Finally, Trina 

argued that multiplication was the appropriate operation by viewing the rows and 

columns in terms of groups and reasoning about multiplication in terms of repeated 

addition. Trina’s argument appears in Figure 43.  

Claim: You multiply to find area 
Data: Recognizing a groups-of structure 
(Instructor: There’s three rows with five in each row.) 
Warrant: Reasoning about multiplication in terms of repeated 
addition 
(Trina: Doesn’t 3 times 5 really mean like you’re adding 3 five 

times?) 

 
“It’s multiplication 
because you’re adding 
how many in each 
row?” 

Figure 43. Arg M13.10: Trina argues as to why you multiply 
to compute area. 

Trina: Doesn’t 3 times 5 really mean like you’re adding 3 five times?  

Instructor: Okay, so some of you are thinking about this as not that 
different in some ways from a repeated addition problem. It’s 
multiplication because you’re adding how many in each row? There’s 
three rows with five in each row. 

 Subsequently, students made similar arguments for multiplication concerning a 

variety of story problems. Two pairs of ideas characterized CMP6: (1) Students reasoned 

about multiplication in terms of partial products and computed products by separating, 

multiplying, and adding; (2) Students reasoned about multiplication in terms of repeated 

addition, and students viewed multiplication as the appropriate operation to use to find 
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the total number of items in quantitative structures that consisted of a number of groups 

and a number of items per group. 

Separating, multiplying, and adding with single-digit multipliers: 

Conclusion. In CMP6, students separated, multiplied, and added with single-digit 

multipliers. This activity involved reasoning about products in terms of partial products 

in a relatively simple case. Students also made arguments concerning situations in which 

it made sense to multiply. They did this by recognizing in those situations a groups-of 

structure and reasoning about multiplication in terms of repeated addition. 

CMP7: Separating, Multiplying, and Adding with Double-Digit Multipliers 

 In moving from CMP6 to CMP7, the class transitioned from the case of a single-

digit multiplier to a double-digit multiplier. CMP7 involved the following set of as-if 

shared ideas related to separating, multiplying, and adding with double-digit multipliers: 

M1. Separating, multiplying, and adding 

M2. Reasoning about products in terms of partial products 

M3. Reasoning about multiplication in terms of repeated addition  

M5. Reasoning about products in terms of rectangular area  

M6. Reasoning about digits in multiplication in terms of their place values 

M7. Removing and replacing zeroes 

As-if shared ideas M1–M3 overlap with CMP6. However, as will be illustrated, these 

ideas were applied in more advanced ways in the activity belonging to CMP7. As-if 

shared ideas M5–M7 were new. M5 was particularly important to the advancement of 

students’ mathematical activity. 
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Separating, multiplying, and adding with double-digit multipliers: Activity.  

Moving from mentally computing with single-digit multipliers to double-digit multipliers 

constituted a very significant transition in activity. Initially, students attempted to 

compute two-digit-by-two-digit products in an invalid way. Making sense of the 

appropriate partial products in the two-by-two case involved the application of previously 

established ideas in new ways, as well as the incorporation of a new way of thinking 

about products: in terms of rectangular area. On Day 13, multiplying to find area was 

justified on the basis of groups-of structure and repeated addition. On Day 14, students 

reasoned in depth about a rectangular area context, carpeting a room. They made 

drawings relating partial rectangles to partial products, and these connections supported 

their ability to evaluate the validity of multiplication strategies. 

Separating, multiplying, and adding with double-digit multipliers: FAIS 

Criteria. M1–M3 FAIS criteria were discussed in the description of CMP6. 

 M5, reasoning about products in terms of rectangular area, satisfied Criterion 2. 

Rectangular area shifted from being a context in which multiplication was applied to 

being used as a tool for making sense of multiplication strategies. In this shift, the role of 

M5 moved from warrant to backing. In further activity, it was integral to the development 

of more sophisticated ways of reasoning about products. (See CMP8.) 

 M6 refers to reasoning about digits in multiplication in terms of their place values. 

As described in the first part, students often reasoned about digits in addition and 

subtraction in terms of place values. Doing so was part of the story of the class making 

sense of standard algorithms and Transition strategies. I regard M6 as a distinct idea 

because it was not trivial for students to bring their place value knowledge to bear on 
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reasoning about multiplication in the 2-digit-by-2-digit case. In fact, it was in a student’s 

argument on Day 14, which related the four partial products in the standard multiplication 

algorithm to partial rectangles, that idea M6 came to function as-if shared. It had occurred 

as data when students used SMA with single-digit multipliers, but its function shifted to 

warrant when it was used to make sense of the standard algorithm. 

Separating, multiplying, and adding with double-digit multipliers: Vignettes. 

All of the following vignettes relate to separating, multiplying, and adding with double-

digit multipliers and are from Day 14. On Day 14, the Instructor posed the Carpet 

Problem, which asked students to find the area of a room measuring 23 feet by 23 feet. 

She directed students to solve the problem mentally. One student offered an (incorrect) 

answer of 409 square feet, and initially there was no disagreement amongst students. 

 In the first vignette, Valerie argues for the validity of her (invalid) multiplication 

strategy. In the process, she makes a valid subargument, using the as-if shared idea of 

removing and replacing zeros (M7). The second vignette illustrates how students began 

to reason about multiplication in terms of rectangular area as a way of making sense of 

partial products in the case of a double-digit multiplier. The third vignette represents a 

transitional point at which students were able to construct a valid strategy in the case of a 

double-digit multiplier by decomposing only factor. They treated the product as 

consisting of two partial products in a valid way, but they incorrectly argued that it was 

not possible to decompose both factors. Finally, in the fourth and fifth vignettes, students 

made sense of all four partial products reason in the case of a double-digit multiplier by 

reasoning about products in terms of partial products (M2), reasoning about products in 
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terms of rectangular area (M5), and reasoning about digits in multiplication in terms of 

their place values (M6). 

 Vignette 7.1. At the beginning of Day 14, the Instructor posed the following 

problem: 

A sorority had to buy carpet for the floor of their meeting room. The room 
measures 23 feet by 23 feet. They need to know how much carpet to buy. 
What’s the area of the room? Actually your computation in terms of how 
you thought about it and then I’ll take some answers and see what we get. 
Yeah. You should be doing it mentally, guys. Think about how we could 
capture it, individually and mentally. Then you must be finished. Ready? 
What answer?  

One or more students called out 409 square feet as the answer. No other answers were 

offered. By a show of hands, it appeared that every student agreed with this answer. 

Rather than raise any issue concerning the consensus answer of 409, the Instructor simply 

asked students to come up with a justification for it. In the course of their group activity, 

many students changed their minds about the area of the room. In the next whole-class 

discussion, students explained how they had obtained their initial answer of 409 and also 

agreed on the correct answer of 529: 

Instructor: Are you ready to talk about it? Ready to talk about it. Okay 
when we started, several of you suggested 409 square feet as the answer 
and there wasn’t any disagreement, but as I walk around, I’ve heard other 
suggestions. So now I’m going to add to this. What do you think? 

Student: 529.  

Instructor: 529. Anything else come up as you started to think about your 
justification for this? All right, I want to hear an argument. Tell me how 
you came up with 409, those of you who did and many of you did. Yes, 
ma’am. 

Valerie: So you want me to talk about how it got it.  

Instructor: I do.  
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Valerie: Okay, so I made both 23’s into 20 and I took off the zeros and I 
made it 2 times 2, which is 4, and then I added back all the zeros so it’s 
400. And then I did 3 times 3 is 9 and so I added 400 and 9 and got 409.  

Instructor: Okay, can somebody summarize their argument for how they 
came up with 409 or say that it’s the same or phrased a little bit 
differently? An argument for 409? So it sounds like you had, I’m going to 
go to the smart board here. Let’s see if we can capture this, okay? 23 times 
23, I need some help. Okay, she said—Valerie, I’m just trying to recreate 
what you said okay? So you talked about taking 2 times 2, but then 
recognizing that they were 10’s and so it was actually 20 times 20 and 
400?  

Valerie: Yeah.  

Instructor: And then you did what?  

Valerie: And then I did 3 times 3.  

Instructor: 3 times 3, 9. Those of you who got 409, is that similar to how 
you thought about it? Yeah. 

 Valerie’s argument involved reasoning about partial products in terms of pairing 

up tens and ones. Figure 44 describes her argument. Evidently, the same strategy was 

used by most (and possibly even all) of the students initially since no other answers were 

suggested. 

Claim: A room measuring 23ft by 23ft has an area of 409 
square feet 
(Valerie: [I] got 409.) 
Data: 20 x 20 = 400*; 3 x 3 = 9; 400 + 9 = 409 
(Valerie: Okay, so I made both 23’s into 20… so it’s 400. And 
then I did 3 times 3 is 9 and so I added 400 and 9 and got 409.) 
Warrant: (Implicit) Reasoning about partial products in terms 
of pairing up tens and ones 

 

Figure 44. Arg M14.1a: Valerie’s primary argument 
concerning the product of 23 and 23. 

 Initially, the class agreed with Valerie’s solution. However, Kim’s argument 

(Figure 45), based on the FAIS idea assuming the authority of the standard algorithm  
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Claim: 20 x 20 = 400 
Data: 2 x 2 = 4; (Implicit: there were 2 zeroes), so 400 (4, followed by 2 zeroes) 
(I made it 2 times 2, which is 4… so it’s 400.) 
Warrant: Removing and replacing zeroes 
(Valerie: I took off the zeroes… and then I added back all the zeroes) 
Backing: Reasoning about removing and replacing zeroes in terms of multiplying by 
10 and dividing by 10 
(Instructor: So you talked about taking 2 times 2, but then recognizing that they were 
10’s and so it was actually 20 times 20 and 400?) 

Figure 45. Arg M14.1b: Co-constructed ancillary argument 
concerning annexing zeroes. 

(M1), trumped it (Vignette 6.1). The initial consensus answer of 409 square feet was 

rejected, and the correct answer of 529 square feet was accepted. 

 Vignette 7.2. Instructor asked students to think about why Valerie’s strategy had 

not worked: “Alright, we’ve got something important to talk about here. How come the 

answer isn’t 409? This sounds like she had a pretty good strategy here.” After a few 

minutes of group work, whole-class discussion reconvened. Aaron’s group presented a 

drawing and made an argument concerning missing area. Libby and the Instructor 

contributed to the argument: 

Aaron: Okay. So, we drew the box, 

Instructor: Can everybody see that, Aaron, or do you need to step back a 
little bit? 

Aaron: which is 23—so the whole box is 23 by 23. And she only did 20 by 
20, so we drew 20 by 20 and we colored it in because that’s what she did. 
Then she did 3 by 3 so that would be that down there, but she’s missing 20 
feet of the 3 on both sides. 

Instructor: So, I see some heads nodding. Can somebody else say in their 
own words, maybe more than one of you, but somebody say in your own 
words, again, an answer to that question why 409 isn’t going to be enough 
carpeting; 409 square feet isn’t enough carpeting here. Why is this not 
enough carpeting to cover the sorority floor? Somebody else try. This is a 
really good opportunity. Try saying the explanation in your words. You 
can do it. Go ahead.  
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Libby: Okay. So, it was the 20 by 20 that’s that whole area and then the 3 
by 3, but then you’re missing a whole chunk on both sides, which is the 
area of 20 by 3 so you have to multiply those and then add those to it as 
well because you have to cover those spaces. 

Instructor: So these spaces aren’t covered. 

Libby: Yeah, and those are 20 by 3. 

Instructor: Let’s hold this up a little bit more. And this is 3 feet along here 
because remember this entire thing was 23. This is 3 feet, and if this entire 
space is 23, think of this chunk as 20 and 3. So, what they’re saying is 
there’s an area of carpet here that’s 20 feet long and 3 feet wide that isn’t 
accounted for in that, right? And, likewise, up here only it’s 3 feet wide 
and 20 feet long there. Does that make sense? 

Students: Yes. 

 Figure 46 represents Aaron and Libby’s argument. Aaron’s group’s drawing 

represented the 23-by-23 foot floor partitioned into 4 smaller rectangular areas. They 

related the dimensions and areas of the two shaded rectangles to the two partial products 

that Valerie had computed. In this way, class members argued that Valerie’s strategy did 

not account for the whole area of the room. Two partial products had been ignored.  

 Vignette 7.3. In Vignette 7.2, students justified why Valerie’s strategy did not give 

the whole area of the floor. The Instructor then asked students to figure out how to 

modify her strategy so that it would account for the whole area. Samantha’s group 

conjectured that separating both factors was invalid. Instead, only one 23 should be 

broken apart. 

Samantha: Like, we know you have to figure it out. You can’t, you have 
to times it by 23 still, instead of splitting up both numbers. So, we just 
split up one 23. So, 23 times 20 is 460, and then 23 by 3 is 69, and we 
added those two together to get 529. 

Instructor: So, can I just write this down over here? You thought about 23 
times 23 as 23 times 20 and 23 times 3? 
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Claim: 409 square feet is not enough carpet to cover the floor 
(Instructor: 409 square feet isn’t enough carpeting here.) 
Data: Valerie counted the 20 x 20 square and the 3 x 3 square. 
But there’s also a 20 x 3 rectangle and a 3 x 20 rectangle. 
(Libby: Okay. So, it was the 20 by 20 that’s that whole area and 
then the 3 by 3, but then you’re missing a whole chunk on both 
sides, which is the area of 20 by 3 so you have to multiply those 
and then add those to it as well because you have to cover those 
spaces.) 
[Libby spans two approximately equal distances with her 
hands, the first vertical and the second horizontal, as she says, 
“missing a whole chunk on both sides.”] 
Warrant: Reasoning about rectangular area as consisting of 
partial rectangles 
(Aaron: Okay. So, we drew the box, which is 23—so the whole 
box is 23 by 23. And she only did 20 by 20, so we drew 20 by 
20 and we colored it in because that’s what she did. Then she 
did 3 by 3 so that would be that down there, but she’s missing 
20 feet of the 3 on both sides.) 

 
“whole box is 23 by 
23.” 
 

 

 
“missing a whole 
chunk on both sides” 

Figure 46. Arg M14.4: Co-constructed argument that 409 
square feet is not enough carpet to cover the floor. 

Samantha: Yes. 

Instructor asked the class to think about this new strategy. She suggested that they sketch 

out the carpet that Samantha’s strategy would account for. Many groups made similar 

drawings. Michaela and Torrin presented their group’s solution and explain why this 

works. 

Torrin: So, we broke it up. We broke up one side to have 20 feet and 3 
feet so you can see the two different areas, and we multiplied 23 and 20 
and got 460 for the first big area, and we multiplied 23 and 3 and got 69, 
and we added them and got 529. 

Michaela: So, you can see the 23 times 20 and the 23 times 3.  



264 

 

Instructor: You can see each of those.  

Michaela: And it makes a whole, so you needed to add. 

Instructor: Okay, so these two pieces of carpet we agree would cover a 
square that’s 23 by 23, yeah? Everybody agree with that? Terrific. Thank 
you. 

 Figure 47 represents Michaela and Torrin’s argument. 

Claim: 23 by 20 and 23 by 3 areas of carpet are the right 
amount to cover the whole floor 
(Instructor: Okay, so these two pieces of carpet we agree would 
cover a square that’s 23 by 23) 
Data: A whole 23 by 23 foot square can be split into two 
smaller rectangles that measure 23 by 20 and 23 by 3 
(Torrin: So, we broke it up. We broke up one side to have 20 
feet and 3 feet so you can see the two different areas, and we 
multiplied 23 and 20 and got 460 for the first big area, and we 
multiplied 23 and 3 and got 69, and we added them and got 
529.) 
Warrant: Reasoning about rectangular area as consisting of 
partial areas 
(Michaela: So, you can see the 23 times 20 and the 23 times 
3… And it makes a whole) 

 

Figure 47. Arg M14.7: Michaela and Torrin present a 
justification for Samantha’s strategy. 

 Samantha’s strategy was identified as an example of SMA. 

Instructor: So, why is this SMA? What makes this this strategy? What 
makes it this strategy? 

Student: By breaking 23 into 20 and 3.  

Instructor: You separate 23 into 20 and 3 and then.  

Student: You multiply them both by 23.  

Instructor: You multiply them both by 23.  

Student: And you add them.  

Instructor: And you add the products together. 
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Thus, Samantha’s strategy was related to previous instances of SMA. In the past, SMA 

had only been used in cases of a single-digit multiplier. Now, it was being used with a 

double-digit multiplier. In each case, only one factor was separated, so that there were 

two partial products to compute and add together. 

 Vignette 7.4. Meanwhile, another group had made a discovery as they were 

thinking about 23 times 23. They presented a way of thinking about this product as 

involving four partial products (Figure 48), by relating it to the standard algorithm. 

  

Figure 48. Gwen describes the standard multiplication 
algorithm in terms of partial products. 

Instructor: Now, are you guys ready back here? Alright, now they made 
an interesting connection, didn’t they? Can somebody from your group 
walk us through this?  

Student: So we thought about it, 20 times 23 we thought that we would 
have to do four different multiplications in total because there’s four 
digits. And we thought about like the standard algorithm of it. We split it 
up into what you’re actually doing, and you’re multiplying like the 3 times 
the 3 and then the 3 times the 2 and the 20—the 2—times the 3 and then 
the 20 times the 20. So, we wrote it down here: 20 times 20 is 400, 20 
times 3 is 60, 20 times 3 is 60, and 3 times 3 is 9. You add them all 
together, and it’s 529. 

 The Instructor then added to Gwen’s argument (Figure 49) by pointing out a 

connection to the diagram that Samantha’s group had presented earlier. 
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Figure 49. Instructor compares Gwen’s group’s numerical 
representation with Samantha’s group’s rectangular area 

drawing. 

Instructor: So, you remember our picture. And if we look at these two 
things side by side, where do you see there 3 times 3 in the standard 
algorithm? We said in the area of this corner here, right? How about, she 
has two different multiplications here, the 20 times 3. Sorry, I guess the 
next thing, yeah, you have 20 times 3 next, and we have a piece of carpet 
that corresponds to that, right, the same area. And then she has 3 times 20 
and then this group has 20 times 20. 

 Samantha’s group had represented the partial products pictorially, in terms of 

partial rectangles. Gwen’s group had represented them numerically. There was a 

correspondence between the two representations based on reasoning about products in 

terms of rectangular area (Figure 50). 

 Gwen’s group’s spontaneous discovery related the standard double-digit 

multiplication algorithm to partial products for the first time in the class. In this way, they 

were able to sensibly account for all four partial products. The class first considered these 

ideas in the context of area. In the following vignette, later on Day 14, as-if shared ideas 

M2, M5, and M6 were used as students considered children’s multiplication work.  

 Vignette 7.5. One child solved 62 x 54 by explicitly computing all four partial 
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Claim: In the standard algorithm, you’re actually computing four partial products and 
adding them together 
(Student: And we thought about like the standard algorithm of it. We split it up into 
what you’re actually doing…) 
Data: Using the standard algorithm, you do bottom 3 times top 3, bottom 3 times top 
2, bottom 2 times top 3, and bottom 2 times top 2 
[Drawing highlights the four multiplication steps in the standard algorithm] 
Reasoning about products in terms of partial products: The steps in the standard 
algorithm correspond to computing the products 20 x 20, 20 x 3, 3 x 20, and 3 x 3 
(Student: you’re multiplying like the 3 times the 3 and then the 3 times the 2 and the 
20—the 2—times the 3 and then the 20 times the 20.) 
Warrant: Reasoning about digits in multiplication terms of their place values: The 2 
in each 23 is interpreted as representing 20 
Backing: Reasoning about products in terms of rectangular area—specifically, 
reasoning about partial products in terms of partial rectangles 
(Instructor: So, you remember our picture. And if we look at these two things side by 
side, where do you see there 3 times 3 in the standard algorithm? We said in the area 
of this corner here, right? How about, she has two different multiplications here, the 
20 times 3. Sorry, I guess the next thing, yeah, you have 20 times 3 next, and we have 
a piece of carpet that corresponds to that, right, the same area. And then she has 3 
times 20 and then this group has 20 times 20.) 

Figure 50. Arg M14.9: Co-constructed argument concerning 
partial products in the standard multiplication algorithm. 

products and adding them together. Students justified this strategy by relating it to partial 

rectangles. 

Instructor: So, there’s some very similar things here. Several of you drew 
a nice diagram and you have some numerical sentences to accompany that. 
And I’m looking at this table maybe. Would you be willing to give an 
explanation? Because an explanation accompanies these. Remember 
diagrams aren’t self-evident, so we need a justification. Is this child’s 
strategy correct?  

Students: Yeah.  

Instructor: Yes? Does everybody think so? Anybody think this child’s 
strategy is not correct? I seem to see all around the room that we believe 
this. Alright, would you guys share this?  

[Students get situated to present.] 

Torrin: Okay, so, the problem was 62 times 54. So, we drew a box and 
broke it up into 60 and 2 like he did and 50 and 4, and then we multiplied 
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each piece. So, we started with 60 and 50 and got 3,000. And then we 
multiplied 50 and 2 and got 100 and then 60 times 4 and that’s 240 and 2 
times 4 is 8. So those are all the different areas and we add them to get the 
total, which is 3,348, which is what he got.  

Instructor: So I see a couple things here. I see that you bring down 
numerically basically the steps that he did. He said 50 times 60 or he or 
she did, we’ll say he. 50 times 60 is 3,000. 60 times 4, and you see all 
those pieces add up. Tell me how the diagram helped you think about this.  

Torrin: Because you can see it as a whole. You can see all the different 
parts and how they add together, like the portions.  

Michaela: It’s all one. It’s all one big box. It’s kind of like the area 
problem even though there’s no specific area mentioned in that problem. 

 In their argument (Figure 51), Michaela and Torrin made sense of the child’s 

strategy by reasoning about the total product in terms of rectangular area. They drew a 

“box” and related each of the partial products in the child’s work to partial rectangles in 

their picture. 

Claim: The child’s strategy is legitimate 
Data: Computing all four partial products/areas explicitly 
60 x 50 = 3000, 50 x 2 = 100, 60 x 4 = 240, 2 x 4 = 8, and then 
added them up to get 3348. 
[Child’s work, Torrin and Instructor’s utterances, diagram] 
Warrant: Reasoning about partial products in terms of partial 
rectangles 
The partial products that the child found correspond to partial 
areas of a 62 by 54 rectangle 
(Torrin: Because you can see it as a whole. You can see all the 
different parts and how they add together, like the portions.) 
Backing: Reasoning about products in terms of rectangular area 
(Michaela: It’s kind of like the area problem even though 
there’s no specific area mentioned in that problem.) 

 
“we multiplied each 
piece” 

 
“It’s all one bix box.” 

Figure 51. Arg M14.14: Michaela and Torrin relate 
rectangular area to partial products. 
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Separating, multiplying, and adding with double-digit multipliers: 

Conclusion. In CMP7, students made sense of partial products in the case of a double-

digit multiplier. Activity involved bringing together the previously established as-if 

shared ideas of reasoning about multiplication in terms of repeated addition, separating, 

multiplying, and adding, and reasoning about products in terms of partial products. These 

were coordinated with new as-if shared ideas of reasoning about products in terms of 

rectangular area and reasoning about digits in multiplication in terms of their place 

values. These ideas were essential to students’ ability to solve the puzzle of separating, 

multiplying, and adding with double-digit multipliers. 

CMP8: Reasoning Flexibly in Computing and Estimating Products 

 CMP8, reasoning flexibly in computing and estimating products, involved the 

following set of as-if shared ideas: 

M2. Reasoning about products in terms of partial products 

M5. Reasoning about products in terms of rectangular area 

M8. Comparing weights 

M9. Halving and doubling 

M2 and M5 overlapped with previous CMPs. They belong to CMP8 because they were 

integral to the development of the mathematical activity that characterized CMP8. As-if 

shared ideas M8 and M9 were unique to CMP8. Therefore, they will be the focus of 

discussion here. 

Reasoning flexibly in computing and estimating products: Activity. On Days  

16 and 17, students reasoned about estimation of products. They evaluated children’s 

estimation strategies. They also compared possible estimates of products and argued over 
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which would give the closer estimate. CMP8 involved the most sophisticated 

mathematical activity in the multiplication strand. It was focused on the idea of weight. 

This is not a commonly known mathematical topic, so I include a brief explanation 

below. 

 The mathematics. The term weight was used in the class to describe the amount 

that part of a factor contributes to a product. For example, in the product 32 x 83, the 2 in 

32 “weighs more” than the 3 in 83, meaning that it contributes more to the product. If we 

compare two possible estimates of this product (as students did in a task on Day 16), 32 x 

80 versus 30 x 83, we find that 32 x 80 is the closer estimate. We can see this by thinking 

in terms of partial products. If we take 32 x 80 as the estimate, we have lost the partial 

product 32 x 3. If we take the 30 x 83 as our estimate, we have lost 2 x 83. Clearly, then, 

32 x 80 is the closer estimate because 3 x 32 is less than 2 x 83. 

 Reasoning about products in terms of partial products (M2) was integral to 

activity concerning weight. Reasoning about products in terms of rectangular area (M5) 

often supported students’ partial-products arguments. These ideas also contributed to 

students’ making a new observation about relationships between products, which led to a 

specialized strategy for computing products (M9). 

Reasoning flexibly in computing and estimating products: FAIS Criteria. M2 

and M5 were discussed earlier. 

 M8, comparing weights, is shorthand for coordinating the comparison of parts of 

a factor (including amounts added in rounding) with the comparison of corresponding 

multiplicands. In other words, M8 is specific to comparing weights in terms of partial 

products. This idea became as-if shared on Day 16. As discussed in Chapter 3 in the 
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section concerning reliability, comparing weights can be seen as satisfying Criterion 1, 2, 

or 3. Comparing weights was used as data in students’ arguments 12 times, spanning 

Days 16 and 17. In one instance on Day 16, the warrant for this idea dropped off. Also, in 

the last argument made on Day 16, M8 shifted from data to warrant. Thus, comparing 

weights can be seen as satisfying Criterion 1, 2, and 3. 

Reasoning flexibly in computing and estimating products: Vignettes. The 

three vignettes that follow are focused around the idea of comparing weights. In Vignette 

8.1, students consider an estimation task and begin to reason in terms of weight. In 

Vignette 8.2, students apply this reasoning to other tasks and the class explicitly discusses 

weight in reference to several examples. In Vignette 8.3, an idea that arose in the context 

of discussing weight becomes the focus and evolves into a new, nonstandard 

multiplication strategy. 

 Vignette 8.1. Day 16 began with students evaluating the estimation strategies of 

several children for the product 36 x 55. The class discussed Maria’s strategy in detail. 

Students were told that Maria reasoned about the estimation as follows: “Rounding both 

up would make it a little too big, so I’ll round 36 to 40 and 55 to 50. 40 x 50 = 2000.” 

Katelyn argued that Maria’s estimate was a good one because her rounding moves more 

or less cancelled each other out. Students were asked which of Maria’s rounding moves 

had more effect. Several students made arguments. 

 Melinda argued that rounding 55 down to 50 had more effect than rounding 36 up 

to 40 because the difference of 5 was greater than a difference of 4, “so you’re changing 

the number by more.” Amelia argued for the opposite claim, that rounding 36 to 40 had 

more effect: 
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Amelia: This might be like a far stretch, but when you do 55 times 36, 
that’s fifty-five 36’s. So when you take away 5, you’re taking away five 
36’s, whereas when you’re adding 4 to 36, you’re adding four 55’s. And 
four 55’s is larger than five 36’s. 

Instructor: What do you think about what Amelia says? 

Students: Yayyy! 

Instructor: Heads nodding. Yay? You like that logic? 

Amelia’s argument (Figures 52 and 53) was accepted over Melinda’s argument. Amelia’s 

argument was supported by two as-if shared ideas: Reasoning about products in terms of 

partial products (M2) and reasoning about multiplication in terms of repeated addition 

(M3). I would conjecture that the immediate and enthusiastic acceptance of her argument 

was owing to the fact that it was supported by normative ways of reasoning. Figure 52 

represents Amelia’s argument. 

Claim: Rounding 36 to 40 has more effect than rounding 55 to 
50 
Data: Comparing weights 
4 x 55 > 5 x 36* 
Warrant: Reasoning about products in terms of partial products 
(applied to rounded amounts) 
[Amelia views the rounded amounts, 4 and 5, as representing 
partial products.] 

 

Figure 52. Arg M16.4a: Amelia’s argument about the 
differential effects of rounding moves. 

Claim: 4 x 55 > 5 x 36 
Data: Reasoning about multiplication in terms of repeated 
addition 
(Amelia: …when you do 55 times 36, that’s fifty-five 36’s…) 

 
Figure 53. Arg M16.4b: Amelia’s subargument that 4 x 55 was 

greater than 5 x 36. 
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 Students spent time in groups reflecting on Amelia’s argument and coming up 

with their own justifications for the agreed-upon conclusion that rounding 36 to 40 had 

more effect. Two groups presented drawings and made arguments. The first, like 

Amelia’s argument, involved reasoning about multiplication in terms of repeated 

addition. The second involved reasoning about products in terms of rectangular area. 

 Vignette 8.2. The Instructor asked the class to mentally determine which estimate 

of 32 x 83 would be closer to the exact answer, 32 x 80 or 30 x 83. Initially, many 

students raised their hands in support of each option. Initial arguments were made in 

support of each conclusion. Gwen had originally said that 30 x 83 would be the better 

estimate. Her reasoning was, “Because you’re taking away less… you’re taking, for the 

32 times 80, you’re taking away three extra numbers whatever and then for 30 times 83, 

you’re only taking away two.” Amelia made an argument that involved reasoning in 

terms of partial products. Students took a few minutes to discuss this question in their 

groups. When whole-class discussion reconvened, Gwen had changed her mind, and she 

made a new argument: 

Instructor: Yeah, would you mind? You don’t need the whiteboard. Why 
don’t you just kind of verbally share out what your thinking was.  

Gwen: Okay. Well for the 32 times 80, there are three more 80’s that 
you’re not accounting for in the problem so you have to multiply 3 times 
the 32 and then for the 30 times 83, there’s two 30’s that you’re not 
accounting for so you have to multiply those 2 times the 83 and since you 
would think that 2 is less than 3, so 30 times 83 might work, but 83 is a lot 
greater than 32, so two, 83’s is still a lot larger than three, 32’s. 

Although they concerned somewhat different questions, Gwen’s argument (Figures 54 

and 55) about estimates of the product of 32 and 83 was very similar to Amelia’s  
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Claim: Reasoning about rounded amounts additively is invalid 
Data: Comparing weights 
It’s true that 3 > 2, but we’re comparing 3 x 32 and 2 x 83. 
3 x 32 < 2 x 83* 
Warrant: Reasoning about products in terms of partial products 

 
Figure 54. Arg M16.10a: Gwen’s argument about the closer 

estimate of 32 x 83. 

Claim: 3 x 32 < 2 x 83 
Data: Reasoning about multiplication in terms of repeated 
addition 
(Gwen: Okay. Well for the 32 times 80, there are three more 
80’s that you’re not accounting… and then for the 30 times 83, 
there’s two 30’s that you’re not accounting for… 83 is a lot 
greater than 32, so two 83’s is still a lot larger than three, 32’s.) 

 
Figure 55. Arg M16.10b: Gwen’s subargument that 3 x 32 was 

less than 2 x 83. 

argument about the effects of Maria’s rounding moves. The class had yet to give a name 

to this idea, but both Amelia and Gwen’s arguments involved comparing weights. 

 The Instructor introduced the term weight, making reference to Gwen’s argument 

as an example. She also introduced a Geometer’s Sketchpad sketch, which was used by 

the class in a discussion of the weights of numbers of units in various products. Students 

argued that in 13 x 12, the 3 weighed more; in 44 x 66, the 4 and the 6 weighed the same; 

in 25 x 35, the 5 in 25 weighed more; and in 13 x 26, the 3 and the 6 weighed the same. 

For the most part, these arguments were similar in form to Gwen’s argument. Students 

compared weights by comparing the appropriate partial products. Many arguments made 

reference to the sketch and described partial products in terms of areas. Toward the end 

of class, students made more general claims about cases of products (e.g., when the 
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numbers of units are the same) and how the weights of the numbers of units compared in 

each case. 

 Vignette 8.3. Halving and doubling. Although mental multiplication activity in the 

class mostly involved applications of the distributive property of multiplication over 

addition (as in SMA), the associative property of multiplication was also arose in 

strategies and discussions. To trace the idea of halving and doubling, we briefly step back 

to Day 14. This story then intertwines with weight beginning on Day 16. 

 On Day 14, students considered children’s multiplication work. Activity included 

watching a video clip from an interview with a child named Javier and discussing his 

thinking about multiplication computations. In the video, Javier computes 6 x 12 to find 

the number of eggs in 6 cartons (6 dozen). His primary strategy involves the distributive 

property. He says that 5 x 12 is 60, and then he adds 12 more to get an answer of 72. The 

class discussed this strategy, identifying it as an example of SMA. In the next segment of 

the video, the interviewer asks Javier how he knew that 5 x 12 was 60. Javier explains 

that he knows 12 x 10 is 120, and half of 120 is 60. The class discussed this piece of 

Javier’s reasoning: 

Instructor: Wow, what’d he do, you guys? 

Trina: He doubled the 5 to 10, and after he finished 

Instructor: He doubled the 5 to 10, and after he got the—after he finished, 
Tricia says 

Trina: He split it in half. 

Student: Divided by 2 

Instructor: He split it in half or divided by 2, yeah? So he doubles the 5 
and when he’s finished he divides by 2. 
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Javier used a strategy that involved doubling one factor while then halving the second 

factor. The discussion of this idea on Day 14 was brief. However, related ideas arose on 

Days 16 and 17. 

 In the discussion of weight on Day 16, students tended to compute partial 

products in order to compare them (e.g., 4 x 55 = 220, 36 x 5 = 180, and 180 < 220). 

However, Muriel suggested a different way of comparing partial products to assess 

weight. The class considered the product 13 x 26 and discussed how the weights of the 3 

in 13 and the 6 in 26 compared. Muriel noticed that in 13 x 26, “13 is half of 26, and 3 is 

half of 6.” She asserted that this meant the 3 and 6 were of equal weight. However, 

Muriel was not able to articulate a clear mathematical justification. She offered as a 

warrant, “Knowing what’s half of what.” Her observation was confirmed with the 

rectangular-area sketch. 

 On Day 17, the class revisited weight and particularly Muriel’s observation. The 

Instructor asked students how they could tell without calculating that 3 x 26 was equal to 

6 x 13. Melinda made an argument (Figure 56) that leveraged reasoning about products in 

terms of rectangular area. The Instructor contributed by revoicing Melinda’s argument 

and illustrating it concretely (Figure 57). The transcript follows: 

Melinda: So I started by drawing like an area box thing for 3 by 26. So 
that’s the 3; this is the 26. Can I make it bigger?  

Instructor: Yeah, if you use the eraser, it will. Go ahead. I don’t know. 

Melinda: Yeah, that’s a really bad rectangle. And then to like kind of 
compare it to this box, I kind of drew them together. I don’t know, I’ll 
show you right now. So to make 6, I added 3 with 3 and then for 13, I did 
half of 26. So this altogether would be 6, and this part is 13 because it’s 
half, obviously. And so to show which areas were which, I shaded this one 
this way and then I shaded this 3 by 26 this way and then you see that  
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Claim: 3 x 26 = 6 x 13 
Data: Both products consist of two 3-by-13 rectangles 
(Melinda: So to make 6, I added 3 with 3 and then for 13, I did 
half of 26. So this altogether would be 6, and this part is 13 
because it’s half, obviously. And so to show which areas were 
which, I shaded this one this way and then I shaded this 3 by 26 
this way and then you see that they’re all like equal.) 
Warrant: Rearranging partial rectangles 
(Melinda: So then since they’re equal, no matter which way 
you like kind of arrange them, they’ll be in the same area like 
groups of two.) 

 

Figure 56. Arg M17.3: Melinda argues that 3 x 26 is equal to 6 
x 13. 

 

Figure 57. Instructor revoiced Melinda’s argument, using two 
equal-sized pieces of paper to illustrate how they could be 

rearranged, as in Melinda’s drawing. 

they’re all like equal. So then since they’re equal, no matter which way 
you like kind of arrange them, they’ll be in the same area like groups of 
two.  

Instructor: Do you have any questions for her? Does everybody 
understand that idea?  

Students: Yes. 

Instructor: I heard her say something like this. She’s got something; you 
can pretend that’s like 3 by 26, and then she’s looking at essentially these 
3 by 13 inch rectangles and saying I can do 6 by 13 or I can do, right? 
You’re kind of talking about how that area is conserved even though it’s 
rearranged like this. It’s a nice way to look at it, huh? Okay. Great. Thank 
you.  
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Subsequently, halving one factor and doubling the other was discussed as a strategy for 

mental multiplication. A student suggested that it would be useful to apply it to 4 x 16. 

One could transform 4 x 16 into 8 x 8, which is a known product. She explained, “Well, 4 

times 16 isn’t a very easy thing to do, but if you times 4 by 2. If you times 4 by 2, then 

you get 8 and if you divide 16 by 2, you get 8.” The class went on to name this strategy. 

Double, then Split was suggested as a name, but it was rejected when Jenny argued that 

the strategy did not have to involve doubling: “The only thing about doubled then split is 

that sometimes it won’t always be two, right? Like you could split up, like say you have 

15, you could do 5 and 3; that’s technically not doubled.” Equal Area Shifting was 

adopted as the official name based on arguments that it did not have the limitation of 

being too specific and it made reference to the area picture. 

Reasoning flexibly in computing and estimating products: Conclusion. In 

 CMP8, students reasoned flexibly about computing and estimating products. They  

continued to reason about products in terms of partial products and in terms of 

rectangular area, and these ideas supported a new way of reasoning, comparing weights. 

Discussions of weight, in turn, led to the articulation and justification of a new as-if 

shared multiplication strategy that involved the associative property. 

Summary of Development of Multiplication Activity 

 The progression through multiplication CMPs represents a second case of 

sociogenesis of number sense. In terms of collective activity around multiplication, the 

class progressed from (CMP1) assuming the authority of the standard algorithm to 

(CMP6) separating, multiplying, and adding with single-digit multipliers to (CMP7) 
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separating, multiplying, and adding with double-digit multipliers to (CMP8) reasoning 

flexibly in computing and estimating products. 

 Figure 58 describes the actual learning route traversed by the class with regard to 

reasoning about computing and estimating products. Viewing the progression through 

CMPs in terms of the Standard-to-Nonstandard framework, CMP1 corresponds to the 

Standard category. In this initial stage of collective activity, the class assumed the 

authority of the standard multiplication algorithm. 

Actual learning 
route 

CMP1 CMP6 CMP7 CMP8 

Envisioned learning 
route 

Standard Transition Nonstandard Nonstandard 
w/Reformulation 

Figure 58. Correspondence between CMPs and envisioned 
learning route. 

 In CMP6, students used SMA in the case of single-digit multipliers and reasoned 

about multiplication in terms of repeated addition. Having reflected on the actual learning 

route, I view CMP6 as corresponding to the Transition category. I had not previously 

thought about single-digit SMA as a Transition strategy for multiplication. The interview 

tasks in this study and the previous study all involved 2-by-2-digit products. However, it 

was evident from the class activity that single-digit SMA was readily accessible to 

students. It followed easily from reasoning about multiplication in terms of repeated 

addition, which is a commonplace mathematical idea that students bring with them to the 

course. Single-digit SMA served as a Transition strategy in students’ progression from 

dependence on the standard algorithm to reasoning flexibly about multiplication. 

Through separating, multiplying, and adding, students came to reason about 
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multiplication in terms of partial products, which helped to lay the groundwork for 

making sense of multiplication in the 2-by-2 case. 

 I view CMP7 as corresponding to the category Nonstandard without 

Reformulation. Double-digit SMA is a Nonstandard multiplication strategy. In CMP7, 

students used previously established ideas concerning partial products, together with 

reasoning about products in terms of rectangular area, to make sense of 2-by-2-digit 

multiplication as involving four partial products. This enabled them to both justify the 

standard algorithm and move beyond it by correctly applying SMA to the case of a 

double-digit multiplier. 

 CMP8 corresponds to the category Nonstandard with Reformulation. Students 

carried their reasoning in terms of partial products and rectangular area further in 

reasoning about estimates of products by comparing weights. Students also used and 

justified halving and doubling, which is a Nonstandard strategy with reformulation. 

Semi-sequential Nature of Multiplication CMPs 

 The CMPs presented in Part 1 had minimal overlap in terms of time and structure. 

They occurred in chronlogical order, and only a small minority of the as-if shared ideas 

belonged to more than one CMP. In the multiplication strand, by contrast, there was 

substantial temporal and structural overlap between CMPs. This was due, in part, to the 

order of topics in the curriculum. Whereas the class made sense of the standard addition 

and subtraction algorithms on Days 7 and 8, the class did not make sense of the standard 

multiplication algorithm until Day 14 (and the standard division algorithm on Day 15). 

Thus, viewed as inclusive of each operation, CMP1 spanned much of the whole-number 

portion of the course. At the same time, students were encouraged to perform mental 
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multiplication beginning on Day 6, and they used single-digit SMA beginning on that 

day. So, with respect to multiplication, in particular, CMP1 and CMP6 ran in parallel, 

both of them spanning Days 6, 7, 8, 13, and part of 14. Figure 59 illustrates the 

chronological relationship between the multiplication CMPs. 

Days CMP 
2 3 4 6 7 8 9 11 12 13 14 15 16 17 

1         
6             
7             
8              

Figure 59. Chronological relationship between CMPs 1, 6, 7, 
and 8.21 

 CMP7 began when CMP6 ended on Day 14, as students made sense of partial 

products in the 2-by-2-digit case. On the other hand, these CMPs overlapped structurally, 

as described in this section. CMP7 preceded CMP8 chronologically. However, these co-

existed on Days 16 and 17.  

Conclusion 

 The methodology of Rasmussen and Stephan (2008) afforded a rigorous analysis 

of collective activity in the mathematics content course: (Phase 1) coding of 208 

individual arguments, using Toulmin’s model, led to (Phase 2) the identification of as-if 

shared ideas, based on the three criteria, and this, in turn, led to (Phase 3) the 

categorization of these ideas as belonging to more general mathematical activity, i.e., the 

identification of classroom mathematical practices. In this chapter, I presented two 

                                                
21 CMP1 is operation-inclusive. The darkest cells correspond to the period in which the class assumed 

the authority of all four standard algorithms. The medium-gray cells are specific to multiplication and 
division. The light gray is limited to the division algorithm. 
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progressions through CMPs, the first involving a strand of activity related to place value, 

addition, and subtraction, and the second focused on multiplication. I conceptualize these 

as two cases of sociogenesis of number sense.  

 Each sociogenetic case study represents an actual learning route of number sense 

development on the collective level. I found that these paralleled the envisioned learning 

route in terms of the progression along the spectrum from Standard to Nonstandard. At 

the same time, the analyses fleshed out the developmental process for both of the content 

strands. The analyses reported in this chapter thus addressed prospective elementary 

teachers’ number sense development from the social lens. On the microgenetic level, 

particular class members made mathematical arguments. However, in looking 

chronologically across the set of arguments made in whole-class discussion, and 

considering whether or not these were accepted, the unit of analysis was not a single 

individual or many individuals; rather, it was the classroom community, taken as one 

entity. As a result, the analyses with respect to each content strand led to single, coherent 

accounts of number sense development, specific to that strand. 

 Taking into account the psychological lens, I recognize that individual students 

reasoned in different ways. Through the establishment of normative ways of reasoning, a 

foundation was laid for the class to make sense of novel arguments regarding 

nonstandard strategies, such as Valerie’s argument concerning Shifting the Difference or 

Amelia’s weight argument. The evolution of classroom mathematical practices up to 

those points set the stage for these arguments, which were founded on previous 

established as-if shared ideas. 
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 Individual students made crucial contributions in the process of advancing the 

mathematical activity of the class. Each argument made in whole-class discussion was 

constructed by an individual or co-constructed by a few individuals. In this sense, the 

reasoning of those individuals served as a resource for the class in the process of number 

sense development. In the case of Valerie’s argument, reasoning about the difference as a 

distance between number-locations had previously been established. However, it took an 

argument such as Valerie’s to apply that way of reasoning in the justification of a new 

and more sophisticated subtraction strategy. Her argument put together pieces of a puzzle 

in a way that had not occurred before in whole-class discussion. 

 In fact, there are different stories of number sense development on the individual 

level. These vary in the extent of improvement. They vary in starting and ending points. 

But they also vary qualitatively in terms of how individual students reasoned and how 

their reasoning developed over time. In the next chapter, I shift from the social to the 

psychological lens and report two cases of ontogenesis of number sense, which 

correspond to the two content strands according to which this chapter was organized. In 

Chapter 6, I focus on accounting for change on the individual level in ways that capture 

the nuances of students’ reasoning.
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Chapter 6: Results Part 3: Ontogenesis of Number Sense 

 Chapters 4 and 5 addressed microgenesis and sociogenesis of number sense. This 

chapter addresses the ontogenesis of number sense. I present two case studies. In the 

section titled Brandy’s Developing Understanding of Addition and Subtraction concerns 

Brandy’s developing understanding of addition and subtraction as she moved from 

inflexible to flexible. . In the section titled Valerie’s Developing Understanding of 

Multiplication describes Valerie’s developing understanding of multiplication. Each case 

study begins with a detailed description of the participants’ initial mathematical 

reasoning. I account for the development of the participants’ reasoning over time by 

drawing on the participants’ written work and coordinating changes in her reasoning with 

the emergence and establishment of as-if shared ideas. I then present a detailed account 

of the participants’ reasoning in the second interview. I also include additional insights 

into each case that came from the SST interviews. 

 In the Conclusion section, I take a step back from these two case studies and 

consider what they suggest about the ontogenesis of number sense in prospective 

elementary teachers. I consider how insights gained from these cases may be useful 

beyond the cases themselves. I also relate these to the local instruction theory. Both cases 

contribute to my understanding the phenomenon of prospective elementary teachers’ 

number sense development and include findings that represent contributions to the field. 

In the third section, I summarize and discuss these points. 

Brandy’s Developing Understanding of Addition and Subtraction 

 Brandy represents a story of number sense development in the area of whole-

number addition and subtraction. She grew from being MASA-bound in mental addition
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and subtraction to reasoning flexibly about both operations. Her improved flexibility can 

be accounted for in terms of the interaction between knowledge that she brought with her 

to the course and ideas that she was exposed to in class. Brandy was able to make sense 

of Standard and Transition strategies with the help of an enhanced understanding and 

awareness of place value. She made sense of Nonstandard strategies from class on the 

basis of ways of reasoning that were familiar to her but applied in new ways. Brandy was 

aware of changes in her reasoning, and the pre/post contrasts that she reported were 

corroborated by my analyses. 

 This section describes how Brandy’s reasoning developed over a period of about 

two months. The richest descriptions come from her interviews. The first interview 

provides detailed evidence of her initial reasoning about addition and subtraction, as well 

as some evidence of her relevant understanding of place value. The second interview 

involved the same tasks, and so it affords a contrast with her first interview responses. In 

between these, her written responses to homework and test questions provide evidence of 

her reasoning, especially with regard to particular strategies. The results of the 

sociogenetic analysis presented in Chapter 5 allow for the coordination of Brandy’s 

developing reasoning with particular classroom events and with the establishment of 

normative ways of reasoning. Following the second interview, additional homework and 

exam responses provide additional evidence of how Brandy’s reasoning changed. Finally, 

her SST interview responses provide evidence of Brandy’s own reflections on her 

experience in the course. 
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Brandy’s Initial Reasoning about Addition and Subtraction 

 This subsection describes Brandy’s initial reasoning about addition, subtraction, 

and place value, on the basis of first interview and NSRS pretest data. Brandy was an 18-

year-old freshman Liberal Studies major. She reported having taken algebra, algebra 2, 

geometry, and math analysis in high school. Brandy scored 21 of 37 on the NSRS pretest, 

which placed her in the Low group, relative to the class. Brandy performed mental 

addition and subtraction inflexibly. When invited to perform mental computation in 

different ways, she entertained Compensation strategies. Brandy was capable of 

computing sums with Double Compensation and producing valid arguments. This was 

not the case for subtraction. She considered no alternative strategies. In discussing the 

standard algorithms, Brandy displayed an unsophisticated understanding of place value, 

essentially reasoning about numbers as being composed of digits with no place-value 

meaning. At the same time, outside of the context of the standard algorithms, she was 

capable of viewing multidigit numbers as being composed of tens and ones.  

Brandy’s addition and subtraction strategy ranges. In her first interview, 

Brandy reasoned inflexibly about addition and subtraction. For her, addition and  

subtraction mapped to the MASA, regardless of the given numbers. Even the 

computations 38 + 99 and 125 – 49 she solved with the MASAs. She made no apparent 

choice of strategy, despite the proximity of 99 to 100 and of 49 to 50. As far as her 

responses to the basic mental computation tasks indicated, Brandy’s was blind to any 

affordances of particular numbers. Only the operation was a consideration. Once she 

determined that she was going to add or subtract, these operations were simply performed 

using the MASAs. Figure 60 depicts Brandy’s initial strategy ranges for addition and  
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Figure 60. Brandy’s initial range of subtraction strategies. 

subtraction. Of the seven distinct, valid mental addition strategies that prospective 

elementary teachers in our research have used, Brandy used one—the MASA. Similarly, 

of the seven distinct, valid mental subtraction strategies that our research participants 

have used, Brandy used only the MASA. 

Brandy’s scaffolded alternatives. In the pre interview, I also investigated 

Scaffolded Alternatives. As a reminder, after the basic Bobo tasks, participants were  

given an additional computation for each operation. This time, they were asked to 

perform the given computations in multiple ways. After one explanation had been 

completed, the participant was asked if she had another way of solving the problem. 

Participants were asked this until they said that had no other way or until they had used 

five different strategies. In attempting to account for Brandy’s number sense 

development, her Scaffolded Alternatives from the pre interview are viewed as resources 
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that she brought with her to the course. These did not belong to her strategy ranges proper 

because they only arose in the context of the scaffolded tasks. However, these do provide 

additional evidence concerning Brandy’s initial reasoning about addition and subtraction. 

 In the basic Bobo tasks for addition and subtraction, Brandy used the MASAs 

exclusively. However, in the Scaffolded Alternatives tasks, she did entertain the 

possibility of non-MASA approaches. In the case of both addition and subtraction, she 

perceived the possibility of rounding both numbers to decades before computing. This 

rounding did not need to be conventional. The numbers could be rounded up or down. 

She also recognized the need to compensate for these rounding moves. She reasoned 

about compensation straightforwardly, applying the same reasoning to both addition and 

subtraction: If she rounded a number up, she had effectively added, and she would need 

to subtract the same amount to compensate. Likewise, if she rounded a number down, she 

had effectively subtracted, and she would need had to add the same amount to 

compensate. This reasoning is valid for addition, and so Brandy had a valid Scaffolded 

Alternative for mental addition. When it came to subtraction, however, Brandy did not 

distinguish the role of subtrahend versus minuend in reasoning about compensation. Her 

Scaffolded Alternative for subtraction was an invalid compensation strategy. 

 Beyond compensation, Brandy considered no other possibilities for mental 

addition and subtraction. She said she could not think of any other way of performing the 

given computations. In terms of Brandy’s development from inflexible to flexible, I view 

her compensation reasoning as belonging to her ZPD with respect to mental addition and 

subtraction. Although her strategy ranges proper were MASA-bound, her scaffolded 

strategy ranges were Polarized. She could choose between the MASA and Double 
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Compensation. (She used essentially the same Double Compensation strategy for both 

operations. With respect to rounding and compensating, her reasoning was identical.) 

 Brandy’s Scaffolded Strategy Range for addition is represented in Figure 61. In 

the ZPD, Brandy’s addition reasoning was Polarized. She could imagine using either the 

MASA or her Double Compensation strategy. Her alternative strategy was a legitimate 

one, and she was able to provide a mathematically valid justification for it. Brandy’s 

subtraction reasoning in the ZPD was also Polarized. However, in this case, the 

alternative that she considered was not legitimate. She entertained rounding both the 

minuend and subtrahend and compensating for the balance of the rounding moves. Her 

reasoning with regard to minuend compensation was correct, but she did not reason any 

differently about subtrahend compensation. (Because I do not include invalid strategies in 

participants’ strategy ranges, I do not include here a figure depicting Brandy’s scaffolded 

strategy range for subtraction.) 

 

Figure 61. Brandy’s scaffolded strategy range for addition in 
the pre interview. 

Brandy’s understanding of the standard algorithms. The Operations Tasks 

from her pre interview provide evidence of how Brandy understood the standard addition  

and subtraction algorithms at the beginning of the course. Essentially, she thought about 

the algorithms in terms of digits that inhabited columns. The behavior of these digits in 
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the algorithms was governed by rules, (e.g., “you have to borrow one”), conventions 

(e.g., where and how to write the borrowed 1), and dogmatic justifications (e.g., “you 

can’t subtract a bigger number from a smaller number”). 

 In the Standard Addition Task, Brandy added 9 and 8 in the ones place and 

obtained a sum of 17. She wrote 7 in the ones place for the sum and carried 1 to the tens 

place. Her justification for the carrying move was that a two-digit number could not be 

written in a single column. It was not clear that she saw the carried 1 as representing ten. 

In fact, she was given so much opportunity to express that idea during the task that the 

absence of such a statement suggests she did not see the 1 as representing ten. As far as 

her actions and utterances indiciate, in the context of the algorithm, 17 meant a 1 and a 7 

next to each other. Figure 62 depicts Brandy’s argument concerning carrying the 1 in 

addition. The following is the complete transcript of Brandy’s response to the Standard 

Addition Task:  

Interviewer: I’d like you do to 259 plus 38 in just the normal written way 
that you would do it. 

Brandy [writing as she speaks]: So, 9 plus 8 is 17. So, I put the 7 here 
[pointing] and bring up the 1. So, 5 plus 3 is 8, plus 1 is 9. And bring 
down the 2. So, the answer is two hundred and 97. 

Interviewer: Okay. Can you tell me about the little 1 that you put up there? 

Brandy: Oh, yeah. ‘cause so, 9 plus 18 is 17 [writes 9 + 18 = 17]. So, you 
– if you could see it [gesturing frantically] it would be like 17 still 
[pointing at the 1 and the 7] but like if you put the 7 here and bring up the 
1, to make it look like that [points at the 17 that she wrote to the side]. 
And then I would add it [gestures completing the algorithmic work]. Does 
that make- or? 

Interviewer: Yeah. Why do you put the 7 down there and the 1 up there? 

Brandy: Well, because if you were gonna put the 7 up here and the 1 right 
there, it would look like it’s 71 when it’s not? I guess. 
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Claim: You have to carry a 1 
(“I put the 7 here [pointing] and bring up the 1.”) 

Data: 17 is a two-digit number 
(“Yeah, or ‘cause like, you couldn’t do 9 plus 8. You couldn’t do that 
[writes 1 next to 7 in the answer so that it reads 2917 instead of 297].”) 
Warrant: Only one-digit numbers can be written in a single column 
(“Yeah, or ‘cause like, you couldn’t do 9 plus 8. You couldn’t do that 
[writes 1 next to 7 in the answer so that it reads 2917 instead of 297].”) 
Backing: Rules/conventions that must be followed 
(“I just know you just do.”) 

 
“I put the 7 
here and bring 
up the 1.” 

 
“You couldn’t 
do that” 

Figure 62. Brandy’s argument about carrying the 1 in the pre 
interview. 

Interviewer: Okay. 

Brandy: Yeah, or ‘cause like, you couldn’t do 9 plus 8. You couldn’t do 
that [writes 1 next to 7 in the algorithmic answer so that is reads 2917 
instead of 297]. You’d have to – I’m not sure why you bring it up [erases 
the 1 next to the 7]. I just know you just do. And, um, yeah ‘cause it still 
looks like 17 [pointing]: 1 and 7. You’re yeah, bringing it up. (Brandy, 
personal communication, September 13, 2010) 

 In the Standard Subtraction Task, Brandy borrowed in the typical fashion. She 

said that she needed to borrow to make the minuend larger in order to subtract (“you 

can’t subtract 3 from 2”). In circular fashion, Brandy argued that borrowing 1 turned the 

2 into twelve because of the fact that the 2 needed be made larger, and 12 satisfied that 

requirement. She also emphasizes the placement of the “little imaginary one”—that it 

was written to the left of the 2, as opposed to above the 2 or to its right. Brandy talked as 

if writing the 1 elsewhere might change its value. Brandy’s arguments are depicted in 

Figures 63a and 63b. 
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Claim: You have to borrow 1 
(“you have to borrow from the next number. So, what you would 
do is, you’d cross out 4 and put 3 right there. And put this like 
little imaginary 1 right there.”) 
Data: 2 is less than 3; 12 is more than 3 
(“ ‘cause 2 is smaller than 3, you have to make it bigger. So, by 
putting 1 on the left side, makes it 12, which is bigger than 3.”) 
Warrant: You can’t subtract a larger number from a smaller 
number (within a given column); The little 1 together with the 2 
becomes 12* 
(“since 2 is smaller than 3, you have to borrow from the next 
number”; “you have to make it bigger.”) 

 

Figure 63a. Brandy’s argument that you have to borrow 1. 

Claim*: The little 1 together with the 2 becomes 12 
(“So, by putting 1 on the left side, makes it 12”) 
Data: The little 1 is written to the left of the 2; 12 is bigger than 2 
(“So, by putting 1 on the left side, makes it 12, which is bigger 
than 3.”) 
Warrant: You need to make the 2 bigger, and turning it into 12 
makes it bigger 
(“have to make it bigger than this one [points to the 3 in the 
subtrahend]”) 

 

Figure 63b. Brandy’s sub-argument concerning borrowing 
the 1. 

Interviewer: I’d like you to do a subtraction one on either side of that 
[your addition work], whatever you prefer. But go ahead and leave it up 
for now. 

Brandy: Oh. Okay. 

Interviewer: And I’d like you to do 429 minus 34. 

Brandy: [writing] So, 9 minus 4 is 5. Two minus 3, since 2 is smaller than 
3, you have to borrow from the next number. So, what you would do is, 
you’d cross out 4 and put 3 right there. And put this like little imaginary 1 
right there. Because that little imaginary 1 makes it look like – makes it 12 
[writes 12 over to the side]. So, 12 minus 3 is 9. Since you borrowed from 
4, it makes it 3. So, you just bring down the 3, and the answer would be 3 
hundred and 95. 

Interviewer: Okay. Um, so, tell me about the little one in this one. 
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Brandy: Oh, well, ‘cause like, since like you’re borrowing—you’re 
borrowing 1—just one number—just one from this one [points to the 4]. 
So, you [slashing gesture]—it’s kind of like 4 minus 1 equals 3. You have 
that one left over, so you have to bring it to this 2 to make it 12. Well, you 
have to make it—you just have—you have to put it on the left side to 
make it the bigger—‘cause you have to make it bigger than this one 
[points to the 3 in the subtrahend] ‘cause 2 is smaller than 3, you have to 
make it bigger. So, by putting 1 on the left side, makes it 12, which is 
bigger than 3. So, 12 minus 3 would equal 9. (Brandy, personal 
communication, September 13, 2010) 

 Finally, Brandy argued that the little 1 carried to the tens place in addition meant 

the same thing as the little 1 borrowed into the tens place in subtraction. The similarity 

that she pointed to was that, in both cases, the regrouping move did not change the given 

numbers: In addition, 1 (in the tens place) and 7 (in the ones place) is still 17. In 

subtraction, when she borrows 1 from the 4 to make the 2 into 12, Brandy then subtracts 

3 from 12 to get 9. The 4 that she borrowed from became a 3, which she brought down, 

obtaining 39. Brandy noted that 42 – 3 = 39 as well, so that borrowing did not affect the 

answer. Working columnwise, she “had to borrow.” However, she was capable of 

viewing the adjacent 4 and 2 as 42. At the same time, there is no evidence that she saw 

this 42 as representing 42 tens. She referred simply to “numbers” when speaking about 

borrowing, saying, “you’re borrowing one—just one number.” 

Interviewer: Um… [Int. approaches the whiteboard] how come—so, with 
this one [pointing to the carried 1 in the addition problem] you have a 1 
and a 5 and you did, like, 1 plus 5. Here [pointing to the borrowed 1 in the 
subtraction problem] you have a 1 and a 2, and you don’t read it as 1 plus 
2, you read it as 12. 

Brandy: Yeah. 

Interviewer: Why is that? 

Brandy: Um, I’m not really sure. It’s just how they taught me in math. 
But, like, ‘cause, well, they’re, they’re, they’re different. They call it 
different things. For instance, when you subtract, you have to borrow so 
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you can make this one bigger to subtract it from the smaller one. But then, 
like, when you add, if like – if these two [pointing to the digits in the ones 
place] are too big, like they exceed more than two – a two-digit number – 
you have to like put, um, the rest of the number up there. Like, even if it 
was like 20, you’d put the 0 here and the 2 there ‘cause it’s more than a 
one-digit number. ‘Cause you could only like – you only like, like one-
digit numbers. ‘Cause it’s like in – it’s kind of like in columns like this 
[draws vertical segments to indicate columns]. So, 17, like 17 [pointing at 
the separate 1 and 7], then you would add it. You wouldn’t borrow 
because that’s what you would do in subtraction. You’re just bringing it 
up to add it together. 

Interviewer: Okay. So, would you say that the little 1’s, uh, here and here 
[pointing at the board] mean the same thing or different things? 

Brandy: Um, different things. Because this little 1 here [pointing to the 
subtraction problem] makes this like a really big number compared to this 
[point to the addition problem]. It’s just like one out of – it’s like basically 
12 versus 1. You just need uh – oh, actually, hold on [steps back from 
board]… Um, yeah, actually, I think, um, well yeah, liiike, I guess they 
kinda do mean the same thing because they are both [points to separate 
digits in each problem] big numbers, except that you’re just—oh, yeah, 
they are the same thing because it’s like you’re not – you’re not losing 
anything from this because you’re – it’s still basically 17 still being added 
into it. Just you wouldn’t put it there [pointing to ones place of sum]. You 
would just add it onto here [pointing to tens place] on the second row – 
row. While here, you’re not losing that extra one unit. You’re just adding 
it onto here to equal – to make it 9. Does that make sense? I don’t know. 

Interviewer: Okay. Yeah. Can you explain why when you read this one, 
it’s like a one – like one plus five – whereas when you read this one, it 
makes it into twelve? Instead of being like one plus two? 

Brandy: Oh, um. 

Interviewer: Does that question make sense? 

Brandy: Yeah, it makes sense. It’s just hard to explain. Well, ‘cause you’re 
– since you’re borrowing from this one, making it 3. It’s like, uhhh… 
well, I, uh, it’s like, I guess ‘cause like there would be really no wayyy. 
Oh, basically, it’s like saying 42 minus - it’s like 42 minus 3 is basically 
39. It’s just a different way of figuring that out. Because you can’t subtract 
a small number from a bigger number. You’d have to make it bigger, of 
course, by borrowing that one unit, while this one you’re just adding it on? 
Um. It’s hard to explain. I don’t- 



295 

 

Interviewer: Okay. (Brandy, personal communication, September 13, 
2010) 

 Figure 64 represents Brandy’s argument that the little 1’s meant the same thing. 

Brandy’s arguments concerning the meanings of the little 1 in addition and subtraction 

were characterized by interpreting numerals as consisting of concatendated digits, rather 

than as representing numbers composed of ones, tens, and hundreds (Thanheiser, 2009). 

She assered the rules and attempted to justify these. Her justifications were grounded in 

the behavior of digits in columns, following the conventions and dogmatic justifications 

associated with the standard algorithms. Her argument that the little 1’s in addition and 

subtraction meant “the same thing” was not a particularly clear one. She seemed to argue 

that in both carrying and borrowing, the numbers were unchanged. For her, it followed 

that the 1’s meant “the same thing.” However, she never explicitly stated what the 1’s 

meant to her, i.e., what that “same thing” was. It might be fair to rephrase her claim as 

something like “the little 1’s function similarly.” 

Brandy’s understanding of number composition. In the context of the standard 

algorithms, Brandy reasoned in terms of digits. It was not evident from her explanations  

that she viewed the digits in different places as having different values. However, in the 

numeration tasks, she did display evidence of some understanding place value. Brandy 

was capable of viewing two-digit numbers as being composed of ones and tens. She 

recognized that 63 consisted of 6 tens and 3 ones. She was also capable of viewing 63 as 

composed of 5 tens and 13 ones, 4 tens and 23 ones, and so on. Thus, she could conceive 

of one ten as being equivalent to ten ones, which is precisely the understanding necessary 

to make sense of regrouping between the ones and tens places. Note that this is not 
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Claim: The little 1’s mean the same thing 
(“I guess they kinda do mean the same thing because they are 
both [points to separate digits in each problem] big numbers, 
except that you’re just—oh, yeah, they are the same thing”) 
Data: 1 and 7 is still 17; 42 – 3 = 39, (and that’s the same as what 
you get when you using the borrowing procedure) 
(“it’s still basically 17 still being added into it. Just you wouldn’t 
put it there [pointing to ones place of sum]. You would just add it 
onto here [pointing to tens place] on the second row – row. While 
here, you’re not losing that extra one unit. You’re just adding it 
onto here to equal – to make it 9”) 
(“it’s like saying 42 minus - it’s like 42 minus 3 is basically 39. 
It’s just a different way of figuring that out.”) 
Warrant: In both addition and subtraction, you can still read off 
the original numbers; regrouping didn’t really change anything 
(“they are both [points to separate digits in each problem] big 
numbers”; “you’re not losing anything from this because you’re 
– it’s still basically 17 still being added into it. Just you wouldn’t 
put it there [pointing to ones place of sum]. You would just add it 
onto here [pointing to tens place] on the second row – row. While 
here, you’re not losing that extra one unit”) 

 
“it’s still basically 
17 still being added 
into it. Just you 
wouldn’t put it there. 
You would just add 
it onto here.” 

Figure 64. Brandy’s argument that the little 1’s mean the same 
thing. 

sufficient to make sense of regrouping between the tens and hundreds places, and 

prospective elementary teachers may be able to meaningfully account for regrouping in 

the ones/tens but not the tens/hundreds (Thanheiser, 2009). Nonetheless, Brandy had 

some productive understanding of place value. However, when she operated with and 

talked about the standard algorithms, whether mentally or in writing, no sense of the 

value of digits was apparent. 

Summary of Brandy’s initial reasoning. Brandy came to the course with 

knowledge of addition, subtraction, and place value that is relevant to the story of her  

development. In this analysis, Brandy’s initial ways of reasoning are viewed as resources 

that (a) enabled her to make sense of new ideas and (b) from which her number sense 

developed. I summarize those resources here. Brandy knew the standard addition and 
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subtraction algorithms. When it came to reasoning about these algorithms, she displayed 

a concatenated digits conception of multidigit numbers. However, multidigit numbers 

meant more to her than just concatenated digits. She was capable of viewing a two-digit 

numbers as being composed of tens and ones in multiple ways. In her reasoning about the 

standard subtraction algorithm, she conveyed a meaningful view of subtraction as a take-

away process. Finally, when asked to perform the same addition and subtraction 

computations in multiple ways, Brandy entertained rounding and compensating, and she 

reasoned straightforwardly about compensation. These aspects of Brandy’s reasoning are 

all relevant to her development from inflexible to flexible in mental addition and 

subtraction. 

Brandy’s Development from Inflexible to Flexible 

 This section describes the development of Brandy’s reasoning related to addition 

and subtraction between the first and second interviews. The presentation is 

chronological, drawing on homework and test responses. Along the way, I highlight 

connections to Brandy’s initial reasoning. I also point out the timing of Brandy’s 

reasoning with classroom activity and normative ways of reasoning. 

Brandy’s developing reasoning between the first and second interviews. 

Brandy participated in classroom activities during the Quantitative Reasoning and Place  

Value units. On Days 7 and 8, several ideas related to place-value notation and canonical 

and noncanonical number composition became normative. On Day 8, Trina’s addition 

(Levelling) strategy was introduced. Trina added 95 and 27 by changing the addends to 

100 and 22, which made it easy for her to see that the sum was 122. Two other students 

co-constructed a justification for Trina’s strategy. They argued that her strategy involved 
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“just taking 5 from 27 and giving it to 95” and that doing this was valid because “You’re 

still adding all the same numbers, just in different places.” 

 On Day 9, the idea of taking part of one addend and giving it to the other to form 

a nice number came to function as if shared. The class decided to name Trina’s strategy 

“Borrow to Build.” Borrow to Build had a strong influence on Brandy’s reasoning. In her 

initial reflection on Trina’s strategy (in a homework assignment that she completed 

between Days 8 and 9) Brandy made sense of the strategy in terms of number 

composition and straightforward compensation. She viewed the strategy in terms of 

forming a nice number and then compensating for doing so: “if you borrow a number of 

units on one side that you did not have to begin with, you have to take away the same 

amount of units to the other side so you can have an equal number.” Brandy suggested 

calling Trina’s strategy “the equalizer.” 

 In her reflection on Trina’s strategy, Brandy used her compensation reasoning to 

make sense of Levelling. The Double Compensation addition strategy that Brandy had 

entertained as a Scaffolded Alternative was different from Trina’s strategy. Brandy had 

rounded both of the given numbers independently, added the rounded numbers, and then 

compensated for her rounding moves. Trina’s strategy, by contrast, involved rounding 

one of the given numbers and compensating immediately by changing the other number 

in the opposite fashion (she added 5 to 95, so she subtracted 5 from 27). Despite these 

differences, Brandy interpreted Trina’s strategy in terms of compensation and was able to 

make sense of it on the basis of her straightforward compensation reasoning. 

 Subtraction Aggregation was introduced to the class on Day 3 when Aaron used it 

to compute a difference in the Sisters and Brothers Problem. On Day 9, reasoning about 
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subtraction as a cumulative process of decrease came to function as if shared. On Day 11, 

the class watched a video clip of Connor using a Subtraction Aggregation strategy and 

discussed his reasoning. Also on Day 11, reasoning about subtraction as a take-away 

process became normative. 

 In Journal #5, Brandy compared Connor’s subtraction strategy to the standard 

algorithm, arguing that both involved a take-away view of subtraction. She described the 

numbers in Connor’s subtraction strategy in terms of tens and ones, and she argued that 

his strategy was legitimate because the same amount was taken away as in the standard 

algorithm: “We are taking one whole 10 & 7 ones away from 2 whole tens and five ones. 

Connor’s strategy takes away the same amount but breaks it down into 2 different parts.” 

This response also shows Brandy taking place value into account in reasoning about both 

the standard subtraction algorithm and a nonstandard subtraction strategy. 

 On Day 11, the class also speculated about how Connor would solve a particular 

addition problem, given what they knew about his approach to a related subtraction 

computation. As a result, there was a discussion of Addition Aggregation. As part of 

Journal #5, Brandy made a drawing to illlustrate Connor’s hypothetical addition strategy. 

Her drawing emphasized number composition in terms of ones, fives, and tens. She 

suggested the name “Break it add add it” for this strategy. Brandy also related Connor’s 

addition strategy to Borrow to Build. In her view, both of these strategies made use of 

decomposition of number to make the computation easier. 

 Brandy also drew a distinction between Connor’s addition strategy and Borrow to 

Build. She said that both strategies involved “breaking numbers into 2 separate parts.” 

However, Connor’s strategy involved breaking up one of the numbers, whereas Borrow 
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to Build “breaks 2 numbers into 1 different part.” The latter phrase sounds a bit puzzling. 

My interpretation of Brandy’s meaning is that in Borrow to Build, both numbers get 

changed, and that change involves the same amount. It is noteworthy that Brandy was 

attending to these kinds of distinctions because her initial Scaffolded Strategy Ranges 

were Polarized. She had considered only one alternative way of performing addition or 

subtraction. Now she was attending to different ways of making use of decomposition. At 

the same time, it is not clear that Brandy interpreted Connor’s strategy in terms of 

aggregation. She seemed to view it as compensation of a different sort than Borrow to 

Build. Thus, compensation seemed to be the basic lens through which she makes sense of 

nonstandard strategies. 

 In Journal #6, Brandy reported on a mental computation that she had performed 

outside of school. Brandy solved a problem concerning how much money she owed in 

dues to her sorority. She owed $200 for the semester, and she had paid $94 thus far. 

Brandy rounded $94 to $100. She knew that $200 minus $100 was $100. Then she 

recognized that she had “borrowed an extra 6” which she had to compensate for by 

adding $6 to her estimate of $100. So, she found that she owed $106. Brandy related her 

strategy to Borrow to Build. Although hers was a subtraction strategy and “Borrow to 

Build” named an addition strategy, she saw a connection in the sense of adding to 94 to 

form 100 “in order to solve this equation in an easy manner.” So, when she referred to 

borrowing to build in this context, I think she had in mind rounding to a nice number. 

 In fact, Brandy used Subtrahend Compensation here, which is a sophisticated 

subtraction strategy that many prospective elementary teachers have difficulty making 

sense of. In her Scaffolded Alternatives, Brandy had attempted to solve a subtraction 
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problem by rounding the subtrahend and compensating, and she had done so in an invalid 

way. Both problems had involved money. However, in this case, thinking meaningfully 

about the context helped her to draw the correct conclusion about how to compensate. 

Her ten-structured drawing likely supported her reasoning (see Figure 65). Brandy’s 

drawing represented $200 as composed of $100 and $100. She represented each $100, in 

turn, as composed of ten $10’s. Finally, a single $10 was explicitly decomposed into ten 

ones, grouped as 6 ones and 4 ones. 

 
Figure 65. Brandy’s drawing related to her subtrahend 

compensation strategy. 

 In a homework assignment in Section 3.3, Brandy used Subtrahend Compensation 

appropriately, this time in a naked-number context. She solved 340 – 49 (numbers of her 

choosing) by adding 1 to the subtrahend and the compensating appropriately: “First I take 

the 50 from 340 and that’s 290. Then I put the 1 back and it’s 291.” Her reasoning about 

compensation was not made explicit here. However, her language, “put the 1 back,” 

suggests reasoning about compensation differently than she had initially. Brandy added 1 

to 49 before computing. Following her straightforward compensation reasoning from the 

first interview, it would follow that she should compensate by subtracting 1. She might 

instead have said, “I put an extra 1 into the problem, so now I have to take it out.” She 
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reasoned differently about compensation here. Her wording implies that she saw adding 

one to the subtrahend as taking one more away from the minuend, and so this extra one 

that had been taken away had to be put back. 

 Homework in Section 3.3 came after class on Day 12, when reasoning about 

differences as distances between number-locations came to function as if shared. (Recall 

Valerie’s argument that 364 – 79 = 365 – 80 = 385 – 100 = 285, based on viewing the 

minuend and subtrahend as locations on a number line and shifting those locations 

equally.) In the homework from 3.3, Brandy first used Shifting the Difference, following 

an example of a child’s reasoning. However, she used this strategy in a way that was 

valid but not especially helpful. To solve her subtraction computation, 340 – 49, she 

added 1 to both numbers to get 341 – 50. Then she added 10 to both numbers to get 361 – 

70, and she concluded that the difference was 291. The first shift—adding 1 to both—

clearly made for nicer numbers. However, the second shift—adding 10 to both—did not 

seem to serve that purpose. I find it hard to believe that Brandy could readily see a 

difference of 291 in 361 – 70 and not in 341 – 50. I think this was a case in which she 

followed an example of a child’s reasoning without understanding the goal of the 

strategy: making the difference apparent. (For example, shifting to 391 – 100 would have 

made the difference readily apparent.) It is not clear how Brandy understood Shifting the 

Difference at this point. She may have understood why the strategy was legitimate (along 

the lines of Valerie’s argument) but not recognized the other important aspect of the 

strategy, which was to make the difference apparent.  

 Homework in Section 3.3 also included solving addition and subtraction problems 

using an empty number line. When working with the empty number line, Brandy 
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exclusively used aggregation strategies. That is, she worked cumulatively from left to 

right or from right to left. The number-jumps that she made were nicely chosen to take 

advantage of number composition. For example, she solved 72 – 38 by starting at 72, 

subtracting 2 to get to 70, then subtracting 30, which landed her at 40, and finally 

subtracting 6 to end up at 34. (See problem (c) Figure 66). 

 
Figure 66. Two of Brandy’s empty-number-line solutions. 

 For the first time, Brandy seemed to be using aggregation strategies, and as best I 

can tell from her written work, she used this in sensible ways. At the same time, the fact 

that her solutions were all left-to-right or right-to-left aggregation strategies may indicate 

that she used the empty number line in a somewhat procedural fashion. That is, she made 

choices, but these choices were rather constrained. For example, to solve 304 – 284, she 

might instead have opted to use Shifting the Difference. Since 304 and 284 are very close 

to one another, viewing both the minuend and subtrahend as number-locations and 

thinking about the difference as the distance between them would have been more 

convenient than starting with the minuend and subtracting off the subtrahend, as Brandy 

did. In each instance of subtraction using the empty number line, Brandy started with the 

minuend and subtracted in chunks according the subtrahend. She did likewise in addition, 
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solving 62 + 49 by starting with 62, adding 40, and then adding 9. Likely, if she had not 

been using the empty number line, she would have solved this problem by taking 

advantage of the proximity of 49 to 50.  

 In a homework assignment in Section 3.7, Brandy used Single Compensation to 

solve both 135 + 98 and 114 + 92 in order to detemine which sum was larger. Single 

Compensation is distinct from Borrow to Build, in that the compensation move is made 

after computing the sum, rather than before. Single Compensation follows easily from 

Brandy’s ability to perform Double Compensation initially. However, it has the 

advantage of being simpler and more efficient. Brandy did not use Single Compensation 

in her first interview, so this specific variant of compensation may have been new to her. 

 In the same assignment, Brandy correctly compared 46 – 19 with 46 – 17 on the 

basis of the amount being subtracted (i.e., she appropriately accounted for the effect of 

changing the subtrahend). Brandy said, “By looking at this equation, we would already 

know that 46 – 17 would result in a bigger number since we are subtracting less from 

46.” Again, she distinguished the effect of the subtrahend and accounted for it in her 

reasoning about differences. 

 As part of a review assignment for Midterm 1, students reviewed the named 

strategies from class and generated examples and illustrations for each of these. Brandy 

wrote appropriate examples of the aggregation strategies Separate-Add-Add and 

Separate-Subtract-Subtract and created fitting ENL illustrations. For Borrow to Build, she 

made an illustration involving ten-strips and little squares for ones. Her example for 

back-and-forth subtraction did not fit the meaning from class. Her example was valid, but 

it was not a back-and-forth (Compensation) strategy. It was Subtraction Aggregation by 
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tens (400 – 40 as 400 – 10 – 10 – 10 – 10 = 360). Brandy gave a valid example of 

Shifting the Difference, but the choice of numbers and the choice of shift were not clearly 

suited to the strategy (500 – 35 = 505 – 40 = 465). She made an ENL illustration that 

showed that both differences were equal. However, it was again unclear whether she 

thought in terms of shifting to locations that made the difference easy to recognize. 

 On Midterm 1, one of the items described someone attempting Subtrahend 

Compensation but being unsure whether to add or subtract to compensate. Brandy 

answered correctly and gave a take-away/excess justification. The language of 

“borrowing” entered in to her explanation: “She subtracted an additional 5 units that was 

not in the first equation. She needs to add the 5 units to get the correct answer. She 

borrowed too much.” 

Summary of Brandy’s developing reasoning between the interviews. Making 

use of number composition and reasoning in terms of compensation were prominent  

themes in Brandy’s written responses. Borrow to Build—both the strategy itself and its 

name—seemed to profoundly influence Brandy’s reasoning. The meaning that she 

associated with this strategy may have morphed somewhat over time. Initially, it was an 

addition strategy that she understood in terms of straightforward compensation. However, 

she later related to a subtraction strategy (for $200 – $94) for which the compensation 

was not straightforward. In that case, the connection seemed to be in terms of rounding to 

form a nice number (and compensating in some way). This connection surfaced again in 

her midterm response, in which she used the term borrow rather loosely to refer to 

rounding the subtrahend up. As best I can tell, Brandy’s personal meaning for Borrow to 

Build included the as-if shared meaning for the classroom community but was broader 
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than that. For her, Borrow to Build referred to a class of addition and subtraction 

strategies. From my perspective, these are the Compensation strategies. However, Brandy 

understood Aggregation strategies, at least initially, in terms of compensation. 

 Brandy’s take-away meaning for subtraction helped her to make sense of 

Subtrahend Compensation and Subtraction Aggregation and to relate the latter to the 

standard subtraction algorithm. She used the idea of subtraction as a take-away process 

repeatedly and productively. Brandy also became far more aware of number composition 

in her reasoning about addition and subtraction. She took advantage of proximity to 

decade numbers, and her illustrations associated with compensation strategies 

emphasized ones, tens, and hundreds. Brandy was able to make sense of the 

compensation aspect of Shifting the Difference but may not have connected that strategy 

with the general heuristic of making a computation easier. Finally, Brandy was able to 

use the number line to represent Aggregation strategies, but these did not seem to figure 

prominently in her reasoning. 

Brandy’s Reasoning in the Second Interview 

 In the second interview, Brandy reasoned about addition and subtraction more 

meaningfully and flexibly than in the first. She could justify the standard algorithms by 

reasoning in terms of place value. She used multiple mental computation strategies for 

both operations. These included compensation strategies, for which the antecedents can 

be identified in her Scaffolded Alternatives from the first interview. She also used 

strategies that did not appear in her initial Scaffolded Strategy Ranges. 
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Brandy’s reasoning about the standard algorithms. In contrast to her 

reasoning about the standard algorithms in terms of concatenated digits in the first 

interview, in the second she reasoned in terms of groups of ones (Thanheiser, 2009). That 

is, she thought in terms of place value and took account of the amounts represented by 

digits. For example, she reasoned about the number 259 as consisting of 2 hundreds, 5 

tens, and 9 ones. In this way, she was able to justify regrouping in the standard addition 

algorithm. 

Interviewer: Okay. I’d like you to solve an addition problem: 259 plus 38. 

[Brandy writes on board] 

Brandy: Okay, so I add the ones place first. And I have 17. So, um, that’s, 
like—that’s too many ones, because I can’t have—I can’t put 17 down [B 
temporarily writes 17 in the ones place and then erases it] So, I’d have to 
add one ten here, to the tens place [writes carried 1] and then keep the 
remaining 7 ones [points to the 7] in the ones place. So, now I have 5 tens, 
3 tens, and 1 ten [points at digits in tens column] and I have to equal it 
together. And that’s 9. So, I have 9 tens here [writes 9 in tens place of 
answer]. And now I’m in the hundreds place, so I have to drop it down – I 
have 2 hundreds, so I can put the 2 down here [writes 2 in hundreds place 
of answer] ‘cause I don’t add it with anything here. So, the answer is 2 
hundred and 97. (Brandy, personal communication, November 4, 2010) 

 As the interviewer, I did not feel the need to ask follow-up questions regarding 

regrouping the addition algorithm because I thought that Brandy’s argument was clear 

from her explanation.  

 Figure 67 represents Brandy’s adding regrouping argument. Brandy’s subtraction 

regrouping arguments also took place value into account: 

Interviewer: Could you leave that up? 

Brandy: Oh, yeah. 

Interviewer: and also do a subtraction problem. 
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Brandy: Okay. 

Claim: You have to carry the 1 
(“I’d have to add one ten here, to the tens place [writes carried 1]”) 
Data: 8 + 9 = 17; 17 is too many to have in the ones place 
(“that’s too many ones, because I can’t have—I can’t put 17 down [B temporarily 
writes 17 in the ones place and then erases it] So, I’d have to add one ten here”) 
Warrant: When ten or more ones are in the ones place, a group of ten must be formed 
and moved to the tens place; The little 1 represents ten 
(“that’s too many ones… So, I’d have to add one ten here, to the tens place [writes 
carried 1] and then keep the remaining 7 ones [points to the 7] in the ones place.”) 

Figure 67. Brandy’s addition regrouping argument. 

Interviewer: on either side, uh, 429 minus 34. 

[Brandy writes problem on board and begins] 

Brandy: So, yeah, so then I, um, I subtract the ones place first. So, 9 minus 
4 is 5 [writes 5 in ones place of answer] So, I have 5 ones. I have 2 tens 
and 3 tens [pointing], and I can’t sub – since 2 is smaller than 3, I can’t 
subtract that. So – I only have 2 tens and 3 tens – you can’t do that. So, I 
have to, um, borrow from the hundreds place [crosses out the 4 in 429]. 
So, I have to borrow one hundred [raises one finger] – or just, yeah – one 
hundred. So, I’m adding – so this one I’m gonna be adding next to it 
[writes borrowed 1] represents one hundred. So, then this goes back 
[writes 3 next to the crossed out 4 in hundreds place of minuend]. Since I 
borrowed, now I have 3 hundreds. So, one hundred plus 2 tens is, um, one 
twenty? I’m sorry, yeah. One. One hundred, and then I have 2 tens. So – 
but this [gestures over the 1 and 2 in the tens place of minuend] will look 
like it’s 12. So, 12 minus 3 is 9 [writes 9 in tens place of answer]. So, I 
have 9 tens. And then I would drop down the 3 in the hundreds place 
[points to 3 in hundreds place of minuend and writes 3 in hundreds place 
of answer]. So, it’s 395. 

Interviewer: Okay. Um, when you were talking about the little 1 just now, 
you said that the 1 and the 2 would look like 12. 

Brandy: Yeah, it looks like 12. Like when people add – when people 
subtract – we’re just – well – people – like people – I mean, it doesn’t 
really mean 12. It means a hundred and twenty. Because this is 2 tens 
[points to the 2 and then writes 20 above her work] so that’s 20, and 
you’re adding the hundred [writes 100 + to the left of the 20]. So, it’s 120. 
Minusss, wait, yeah. One hundred and twenty minus – oh, yeah – one 
hundred and twenty minus 30 ‘cause you have three tens – that’s what 
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you’re mult – or, subtracting – so that’d be 90, which is 9 tens. (Brandy, 
personal communication, November 4, 2010) 

 Brandy made two related arguments concerning the borrowed 1 in subtraction, the 

first concerning the need to borrow and the second concerning the resulting amount in the 

tens place. Her argument concerning the need to borrow was similar to that made in the 

first interview (“since 2 is smaller than 3, I can’t subtract that”). However, in her second 

interview response, she took into account the meanings of the digits, viewing them as 

numbers of tens, rather than ones (“I have 2 tens and 3 tens”). 

 Brandy’s argument concerning the meaning of the borrowed amount contrasts 

starkly with the argument that she made in the first interview. She had previously argued 

that the little 1 made the 2 into 12 because it had to do: She needed to borrow to make 2 

into a number bigger than 3, and 12 was bigger was bigger than 3, so the little 1 made the 

2 into 12. In the second interview, she made a clear and valid argument (Figure 68) based 

on the meanings of the digits. Brandy talked about the digits 1 and 2 in the tens place as 

both “twelve” and “one hundred twenty” and she effectively argued that these digits 

could be treated as 12 because they represented 120. 

Claim: The little 1 together with the 2 can be treated as 12 in the tens place 
(“this [gestures over the 1 and 2 in the tens place of minuend] will look like it’s 12. So, 
12 minus 3 is 9”) 
Data: The 1 represents one hundred; The 2 represents two tens; 100 + 20 = 120 
(“it doesn’t really mean 12. It means a hundred and twenty. Because this is 2 tens 
[points to the 2 and then writes 20 above her work] so that’s 20, and you’re adding the 
hundred [writes 100 + to the left of the 20]. So, it’s 120.”) 
Warrant: 120 – 30 = 90; 12 – 3 = 9 
(“one hundred and twenty minus 30 ‘cause you have three tens… so that’d be 90, which 
is 9 tens.”) 

Figure 68. Brandy’s argument concerning the meaning of the 
little 1 together with the 2. 
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 Brandy also compared the meanings of the little 1’s. In contrast to her first 

interview response, she argued that the 1’s meant different things. Also in contrast to that 

response, she was explicitly about the amounts that the little 1’s represented. (See Figure 

69.) She also substantiated her claims about the amounts represented by each little 1 on 

the basis of their origins: The one in the tens place in the addition problem came from ten 

ones in the ones place, whereas the one in the tens place of the subtraction problem came 

from the hundreds place. (This piece is a sub-argument for which I do not include an 

argumentation diagram here.): 

Interviewer: Okay. Um, so, in the addition problem and the subtraction 
problem, you ended up writing a little 1. 

Brandy: Yeah, which would – yeah, mm-hmm. 

Interviewer: Do those little 1’s mean the same thing or different things? 

Brandy: Um, different things. The 1 here [pointing to the 1 in the 
subtraction problem] represents a hundred since I borrowed from the 
hundreds place beforehand to make it bigger – ‘cause you can’t subtract a 
smaller number by a bigger number. And then this one [pointing to the 
addition problem] I had too many ones, so I had to give my ten to this – to 
the tens place. Just one ten. And then this represents 9 tens, 7 ones, and 2 
hundreds. 

Interviewer: Okay. (Brandy, personal communication, November 4, 2010) 

Claim: The little 1’s mean different things 
(“Um, different things.”) 

Data: The little 1 in the addition problem represents ten; The little 1 in the subtraction 
problem represents one hundred 

(“The 1 here [pointing to the 1 in the subtraction problem] represents a hundred… And 
then this one [pointing to the addition problem]… Just one ten.”) 

Warrant (implicit): Ten and one hundred are different 

Figure 69. Brandy’s argument comparing the meanings of the 
little 1’s. 
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 Brandy’s second-interview arguments related to the standard addition and 

subtraction algorithms were consistent with what Thanheiser (2009) calls the Groups of 

Ones conception of multidigit numbers. She saw digits in the ones place as numbers of 

ones, digits in the tens place as numbers of groups of ten ones, and digits in the hundreds 

place as numbers of groups of one hundred ones. The only relevant way of viewing 

reference units in the context of these tasks that did not arise in Brandy’s responses was 

viewing one hundred as ten tens. She talked about the 12 in the tens place in the 

subtraction problem as one hundred twenty based on distinct values for the two digits (1 

hundred plus 2 tens). She did not seem to view it as 12 tens. The Groups of Ones 

conception is the second most sophisticated in Thanheiser’s framework. The most 

sophisticated is Reference Units. The essential difference between these categories of 

reasoning is the ability to shift reference units by viewing the 1 in 12 (in the tens place) as 

both one hundred and as ten tens. Brandy did not make that way of reasoning explicit. 

Brandy’s addition and subtraction strategy ranges. Brandy moved from 

Inflexible to Flexible in both addition and subtraction from the first to the second mental  

computation interview. In terms of her specific strategy ranges, she went from MASA-

bound to Transition+ in addition. In the second interview, she used both Transition 

strategies for addition—Right to Left and Left to Right—as well as one nonstandard 

strategy—Single Compensation. In subtraction, she moved from MASA-bound to 

Spread. She did not drop the MASA, but she added Aggregation, Minuend 

Compensation, and Subtrahend Compensation. Brandy’s addition and subtraction 

strategy ranges are illustrated in Figure 70. 
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 The addition and subtraction strategies that Brandy used in the post interview 

were all valid mental computation strategies. Furthermore, she was able to produce 

mathematically valid justifications for each of the non-MASA strategies that she used. As  

 

 

Figure 70. Brandy’s second-interview strategy ranges for 
addition and subtraction. 

such, these strategies are regarded as legitimately belonging to her strategy ranges for 

addition and subtraction.  

 In both cases, Brandy adopted two ways of reasoning that she used readily in the 

Bobo tasks. For both addition and subtraction, Compensation was one of these. So, we 

can partially account for the change in Brandy’s mental computation activity based on the 

antecedents seen in her Scaffolded Alternatives. Specifically, valid addition 

compensation was a possibility for her coming into the class. We know that she gained 

additional experience using various strategies, and she reported becoming more confident 
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in her mathematical abilities. This alone may account for her adoption of addition 

compensation. It does not account for her adoption of Transition strategies. 

 In terms of subtraction, Brandy perceived rounding as a possibility in the pre 

interview, but she did not understand how to compensate appropriately. In the post 

interview, Brandy used valid minuend and subtrahend compensation. She did not round 

both the minuend and subtrahend within a given problem. She was able to provide a 

mathematically valid justification for compensation in both cases. So, with respect to 

subtraction compensation, it seems that Brandy learned to distinguish the effects of 

rounding the subtrahend versus the minuend. She gained this understanding during her 

experience in the course, and it enabled her to use subtraction compensation strategies. 

As with addition, Brandy adopted another way of reasoning that is not accounted for by 

her Scaffolded Alternatives, namely Aggregation. 

Brandy’s scaffolded alternatives. I also investigated scaffolded alternatives in  

the second interview. For a single addition computation, Brandy considered using the 

MASA and variants of both Compensation and Aggregation. To compute 47 + 88, she 

found the sum of 135 in several different ways. She used Double Compensation by 

rounding both numbers up and then compensating for the net effect of rounding. She also 

used Double Compensation by rounding both numbers down and then compensation for 

the net effect of rounding. The latter strategy could be considered Left to Right 

Separation. However, Brandy described it in terms of Compensation (subtracting from 

the addends, finding the sum of the rounded numbers, then adding to compensate). 

 Brandy also used versions of Aggregation as Scaffolded Alternatives. She started 

with 88 and added 40 to get 128, and then added 7 more to get 135. She also described 
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counting up from 88 by tens, rather than making a single jump of 40. She also used this 

strategy starting from 47 instead and counting by tens all the way to 127, then adding the 

remaining 8 to get 135. Although these latter strategies were less efficient, they were 

distinct, and they involved reasoning about addition in a way that did not show up in 

Brandy’s addition strategy range for the basic Bobo tasks. 

 To solve a subtraction computation, 153 – 78, Brandy also used a variety of 

strategies. She performed the MASA, correctly obtaining a difference of 75. She also 

used a rare Compensation strategy that involved doubling. She knew that 78 plus 78 

equaled 156, which was only 3 more than 153. So, she subtracted 3 from 78 to get an 

answer of 75. When using this strategy, Brandy seemed to be thinking in terms of how 

much she needed to add to 78 to get 153. Her initial estimate of 78 was too high, so she 

corrected for it. Doubling 78 to get 156 was evidently an easy computation for her.22 

 Brandy made an attempt at Double Compensation. She rounded 153 and 78 to 10 

and 80, respectively. Rather than reasoning separately about her two rounding moves 

(which we know from the basic Bobo tasks she could have done), she wanted to make a 

single compensation move to account for both. She knew that adding 3 and 8 together 

would give her 11, and this would not be helpful, and she got stuck at that point. Because 

she seemed a little frustrated, I gave her the option of letting that strategy go and moving 

on, which she did. As a result, it is not clear whether she could have sorted out Double 

Compensation for subtraction. We know that she had valid arguments for both Minuend 

Compensation and Subtrahend Compensation, but coordinating the two still presented a 

                                                
22 Children in the United States often use known doubles to derive less familiar arithmetic facts 

(Fuson et al., 1997). Brandy’s strategy seems to be a more sophisticated version of this approach. I expect 
that 78 + 78 = 156 was not a known fact for her, but was one that she was able to compute readily. 
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challenge. In contrast to her first interview response, Brandy recognized that her attempt 

at Double Compensation was flawed. 

 Brandy also used an Aggregation strategy that involved counting up from 78 to 

153. She counted by tens from 78 to 148. The she knew she would have to add 5 more to 

get from 148 to 153. She reported that she had added a total of 75. 

Summary of Brandy’s reasoning in the second interview. In the second 

interview, Brandy was able to justify the standard algorithms by reasoning in terms of  

place value. She displayed a more sophisticated conception of multidigit numbers in the 

context of reasoning about the algorithms. Brandy used Transition and Nonstandard 

strategies as part of her strategy ranges proper. The new strategies that she adopted 

(relative to her first interview ranges) included both strategies similar to those that arose 

in her first-interview Scaffolded Alternatives and strategies that she had not entertained in 

the first interview but had come up in class. 

 Brandy’s Scaffolded Strategy Ranges in the second interview also included 

strategies that went beyond her second-interview strategy ranges proper. She used 

variants of addition aggregation. She also used a Subtrahend Compensation strategy of a 

different sort than she had used previously, by beginning with an estimate of the amount 

she would have to add to the subtahend to reach the minuend. Although Brandy had been 

able to make sense of Shifting the Difference when presented with it in homework and 

test items, she did not use this strategy spontaneously. When she considered rounding 

both minuend and subtrahend and compensating simultaneously, she did not think in 

terms of a distance between number-locations but fell back on her straightforward 

compensation reasoning. Brandy’s Scaffolded Strategy Ranges in the second interview 
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went beyond their analogoues in the first interview. She exhibited growth, and at the 

same time her reasoning in the ZPD showed room for further development. 

Brandy’s Reflections on Her Experience in the Course 

 In the SST interview, I had the opportunity to ask participants about their 

experience in the course. Brandy’s reflections on her experience are the focus of this 

piece of her case study.23 When asked about her mathematical background, Brandy 

described her high school math classes as having been procedurally focused. She gave the 

example of learning a song to memorize the quadratic formula in an algebra class. 

Brandy contrasted her previous experiences in math classes with her experience in the 

content course in terms of the emphasis on understanding why procedures worked and 

the emphasis on become familiar with different strategies. 

 Brandy reported not having done much mental computation before she took the 

content course: “I never really thought about using mental math before. I always just 

relied on a calculator.” She also reported noticing that her reasoning had changed: 

Like, before I would—it took—like, I felt like it took a longer time trying 
to think about it, and I could only think about it like standard algorithm 
way. So, in my head, I tried to like cross everything out, and it would just, 
in my head it got kind of like—I wasn’t sure, really. And then when I—the 
second interview—I used some of the strategies I learned from class to 
like figure out the problems, the answers. 

She also said that she was using mental computation more outside of school: “Whenever 

I go shopping too, I just, when something’s 30% off, I just calculate it in my head and 

                                                
23 I also asked targeted questions concerning particular standout strategies and tools from class. In 

Brandy’s case, the data that add most to this account of her development are simply her reflections on her 
experience in the course. Because the empty number line was not very influential in Brandy’s reasoning, 
the tasks and questions related to it do not connect well with the themes in the story of her development. In 
terms of standout strategies from class, Brandy’s responses in the SST interview were as expected based on 
her reasoning in the second interview. 
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subtract by that. I never—usually, I would just use my calculator, but then I can do it in 

my head now” (Brandy, personal communication, November 9, 2010). 

 Brandy reported valuing the use of different strategies, “Because it can help you, 

like out in the world. You can’t always rely on a calculator.” Brandy associated using 

mental computation strategies other than the MASA with thinking meaningfully about 

mathematics, and she expressed valuing that meaningful thinking. In talking about using 

different strategies, she said, “It’s a different way of thinking, basically. It makes you 

think, like, more logically and everything. So then, instead of like crossing it all out 

‘cause when you use paper and pencil, you don’t really think about it. You’re just writing 

it down” (Brandy, personal communication, November 9, 2010). Brandy gave the 

example of computing 1000 – 3, pointing out how much “crossing it out” would be 

required to perform that computation with the standard algorithm, whereas she could just 

think about it and determine that the answer was 997. 

 She described valuing understanding of the standard algorithms: “I think that 

teachers should like focus on teaching students why we do things the way we do, like 

why we carry, why we borrow when we add—I mean, subtract—and stuff like that. We 

should focus on that so kids can apply it to, like, to higher level math.” She also noted 

that children can come up with their own strategies, and that this had been a revelation 

for her: “Children come up with their own strategies, and I never really thought—I 

always thought like teachers would teach them a certain way, and kids would go by that. 

But kids can also form their own like ways of thinking in how they solve their problems” 

(Brandy, personal communication, November 9, 2010). 



318 

 

 Brandy’s reflections on her experience suggested that there had been positive 

changes in her beliefs about mathematics, teaching, and learning.24 Not all of these 

changes are owing to Brandy’s experience in the content course alone. She was 

concurrently enrolled in a 1-unit children’s mathematical thinking (CMT) course, which 

was designed to be a companion to the content course. Some of the statements that 

Brandy made about children’s mathematical thinking seemed to be related to her 

experiences in the CMT course. Philipp et al. (2007) studied the experiences of 

prospective elementary teachers in the same mathematics content course that was the 

setting for this research. They found that students who concurrently studied children’s 

mathematical thinking while taking the content course developed more sophisticated 

beliefs about mathematics, teaching, and learning, and improved their mathematics 

content knowledge more than those who did not. Based on my study of Brandy, it seems 

to me that the development of her mathematical reasoning can be accounted for on the 

basis of her experience in the course, in terms of the interaction between the knowledge 

that she brought with her and ideas encountered in class. However, her experience in the 

CMT course likely had a powerful influence on her beliefs. This, in turn, may have led to 

greater motivation to learn the content. 

                                                
24 As beliefs were not a focus of this study, I did not use a pre-instruction measure of the interview 

participants’ beliefs. However, in her reflections on her experience in the course, Brandy drew contrasts 
with her previous mathematical experiences and she repeatedly referenced what she had learned and how 
she had changed during the course thus far.  
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Brandy’s Continued Development after the Interviews25 

 There is not much data concerning Brandy’s reasoning about whole-number 

addition and subtraction after the SST interview. However, there is evidence worthy of 

mention. This comes from the second midterm, an additional homework assignment, and 

the NSRS posttest. 

Brandy’s additional exam and homework responses. On Midterm 2, Brandy 

made sense of a hypothetical student’s subtraction aggregation strategy. She illustrated it  

with an ENL diagram. Her explanation emphasized number composition and the idea of 

cumulative increase. Brandy also evaluated an example of Shifting the Difference 

(presented numerically with numbers aligned) as legitimate. She said, “Adding each 

number by the same amount of units will result in the same answer.” She generated an 

example of this strategy. This time, her choice of numbers and shift size was fitting (762 

– 295, then add 5 to each). She seleced a subtrahend of 295, which is close to the 

benchmark number 300, and she chose to shift minuend and subtrahend such that the 

subtrahend would become 300. Thus, for the first time, Brandy showed evidence of both 

understanding why Shifting the Difference worked and understanding the goal of making 

the difference readily recognizable. Given additional occasions for mental subtraction, 

Brandy may have adopted this strategy at some point. 

 In Journal #11, Brandy gave an example of a mental subtraction strategy that she 

had performed in the context of buying a movie ticket. She gave her cousin $20 to pay for 

                                                
25 The second mental computation interview took place at the end of the whole-number portion of the 

course. The SST interview took place the following week. Several weeks of instruction focused on rational 
number remained. During this portion of the course, there were a few tasks related to mental computation 
that provided additional data for this analysis.  
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a $9.50 movie ticket. Brandy reasoned that $9.50 + $0.50 equaled $10, and that $10 + 

$10 equaled $20, so her cousin owed for $10.50. She again saw her strategy as an 

example of Borrow to Build, saying, “I borrowed the 50 cents to build $10 and added 

from there to reach $20. I then knew my cousin owed me $10.50.” She illustrated her 

reasoning in aggregation-fashion in an ENL diagram. In this instance, Brandy’s reasoning 

was similar to that in computations she had performed in the past. However, here, she 

used this way of reasoning in a rational-number context. This may have been related to 

her experience in the rational-number portion of the content course.  

Change in Brandy’s NSRS responses. Brandy scored 29 of 37 on the NSRS 

posttest, which was a substantial improvement over her pretest score of 21. Few  

questions on the NSRS relate directly to whole-number addition and subtraction. 

However, one does stand out as relevant to this analysis. Item #16 asked about the 

number of digits in the sum of two 3-digit numbers (Figure 71). On the pretest, Brandy 

incorrectly answered (d), that the sum could have three, four, or five digits. On the 

posttest, she correctly answered (c), that the sum could have three or four digits. On its 

own, this item does not provide much insight into Brandy’s reasoning. However, the 

result is consistent with other changes in her reasoning about place value and addition. I 

would conjecture that the change in Brandy’s response to this item was either related to 

the meaning that she associated with regrouping in the standard addition algorithm or that 

she shifted from thinking about this item in terms of the standard algorithm to thinking 

about it in terms of a nonstandard strategy like Borrow to Build. In any case, this item 

provides evidence from a very different sort of task than those used in the interviews that  
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16. The sum of a 3-digit number and a 3-digit number: 
a) must be three digits 

b) must be four digits 
c) can be three digits or four digits 

d) can be three digits, four digits, or five digits 

Figure 71. NSRS Item #16. 

Brandy grew to make more sense of the relationship between place-value notation, 

number magnitude, and the addition operation. 

Summary of Brandy’s Number Sense Development 

 Brandy developed from inflexible to flexible in mental addition and subtraction. 

Specifically, she represents a case of change from MASA-bound to Transition+ in 

addition and from MASA-bound to Spread in subtraction. In the first interview, Brandy 

was dependent on the standard addition and subtraction algorithms. She did not 

understand why these algorithms worked, but she knew that they did. This situation used 

to puzzle me. I thought of inflexible prospective elementary teachers being dependent on 

the standard algorithms despite not understanding them. Cases like Brandy’s have led me 

to think differently: she was dependent on the standard algorithms because she did not 

understand them. 

 At the beginning of the course, Brandy had knowledge of place value that she 

could have used to make sense of the standard algorithms. However, when performing 

and reasoning about those algorithms, she did not draw upon that knowledge. In using the 

algorithms, she reasoned about numerals as consisting of digits. In the course of her 

experience in the place value unit, she came to reasoning about the amounts represented 

by digits according to their place values and to think of the carrying and borrowing 
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procedures in terms of regrouping. As a result, she became able to make sense of the 

values of the little 1’s and, hence, to understand the details of the algorithms. 

 The reasoning involved in making sense of the standard addition and subtraction 

algorithms overlaps with the reasoning involved in making sense of Transition strategies. 

In fact, there is in some cases a fine line between Right to Left Addition and the MASA. 

The distinction is precisely thinking about the numbers in place-value terms, especially 

concerning regrouping. Brandy reasoned in terms of groups of ones, tens, and hundreds 

in some of her written homework responses. She also used this reasoning in second-

interview tasks concerning the standard algorithms, as well as the Transition strategies 

that she used in mental computation. In the basic mental computation tasks in the second 

interview, Brandy’s addition strategy range did not include the MASA. Instead, she used 

Transition for 3 of 4 addition computations. Thus, the fact that she made sense of both the 

standard addition algorithm and Transition strategies for addition led to her no longer 

using the MASAs and using Transition strategies instead. 

 Brandy also came to the course with the idea of rounding, computing, and 

compensating as an alternative to the MASAs. Compensation strategies were not part of 

her strategy ranges proper, but they arose in her Scaffolded Alternatives. Brandy’s 

straightforward compensation reasoning was sufficient to support valid Addition 

Compensation. It is no great surprise then that she adopted Compensation strategies, 

being that reasoning in terms of compensation occurred in her Scaffolded Alternatives. 

However, Brandy’s case suggests that Scaffolded Alternatives may provide valuable 

insights into students’ reasoning. Not only did Compensation move from Brandy’s 

scaffolded strategy ranges to her strategy ranges proper, but Compensation was the lens 
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through which Brandy interpreted many non-MASA strategies, including some that I 

would categorize as Transition and Aggregation strategies. 

 Borrow to Build (Levelling) was especially influential in Brandy’s story of 

number sense development. She understood this strategy in terms of straightforward 

compensation and in terms of forming nice numbers for ease of computation. Brandy 

carried these ideas further, seeing “borrowing to build” in many strategies that I would 

categorize differently. The fact that the Levelling strategy was given the name Borrow to 

Build in the class seemed to be significant for Brandy. She used the language repeatedly 

in her written responses. She also mentioned the strategy by name in her second 

interview and in her SST interview. 

 Brandy also came to the course with the idea of subtraction as a take-away 

process. This is an idea that probably every prospective elementary teacher brought to the 

course, and it is one that I never saw as particularly desirable or productive. However, 

Brandy used this idea, together with what for her was the essence of Borrow to Build—

rounding to form a nice number and then compensating appropriately—to construct valid 

Subtrahend Compensation on her own, before this strategy had been introduced in class. 

It may be that Brandy never explicitly recognized that the minuend and subtrahend in 

subtraction play distinct roles and affect the difference in opposite ways. This would 

explain why she was still unable to coordinate minuend and subtrahend compensation in 

a single computation when she attempted to do so in the second interview. However, she 

did construct valid Minuend Compensation and Subtrahend Compensation arguments for 

separate computations by reasoning appropriately about how to compensate on the basis 

of the effects of her rounding moves. 
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 Brandy did not adopt Shifting the Difference, at least not in the span of the first 

and second interviews. This may have been due to the fact that she was late to recognize 

a key aspect of that strategy. She made sense of the legitimacy of shifting the minuend 

and subtrahend, but she was late to catch on the idea of shifting these to nice locations 

that would make the difference readily apparent. 

 Brandy adopted Aggregation strategies to some extent. Addition Aggregation did 

not show up in her proper addition strategy range in the second interview, but it did show 

up in her Scaffolded Alternatives. She did use a Subtraction Aggregation strategy in the 

second interview, and she used another variant as a Scaffolded Alternative. Aggregation 

was not part of Brandy’s Scaffolded Strategy Range in the first interview, for either 

addition or subtraction. So, as best I can tell, it was a new idea for her, and she was in the 

process of incorporating it into her repertoire at the time of the second interview. I 

interpret her use of the less sophisticated Aggregation by Tens as an indicator of the 

newness of this kind of strategy for her. Even though counting by tens was cumbersome, 

Brandy may have been more comfortable doing so because she felt more sure of her the 

validity of her approach when computing that way. 

 Finally, Brandy was congizant of a contrast between her previous experiences in 

mathematics classes and her experience in the content course. She expressed that she 

valued making sense in mathematics and that she saw various strategies as sensible and 

useful. Brandy also developed ideas about children’s mathematical thinking and about 

how she thought children should be taught. Some of these changes are likely attributable 

to her experience in the children’s mathematical thinking course. I conjecture that taking 

that course concurrently positively influenced Brandy’s beliefs, and her beliefs about 
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mathematics, teaching, and learning may have motivated her to learn and thus contributed 

to the improvement in her number sense. 

Valerie’s Developing Understanding of Multiplication 

 Valerie’s case represents a story of number sense development in whole-number 

multiplication. She grew from being reliant on an invalid mental multiplication strategy 

to being able to make sense of partial products and using a variety of strategies. As in the 

case of Brandy, Valerie’s development can be accounted for in terms of the interaction 

between knowledge that she brought with her to the course and ideas that she was 

exposed to in class. On the other hand, this story proceeds differently. It is specific to one 

operation, multiplication, and it is focused even more specifically on Valerie’s reasoning 

about partial products. Her reasoning about these changes from the first to the second 

interview, and this change is related to a poignant classroom event. At the same time, 

when it comes to the second and third interviews, Valerie is not entirely clear and 

consistent in her reasoning about partial products. Her ability to account for these 

depends on the task at hand and on the tools that she uses to help organize her thinking. 

 This section describes how Valerie’s reasoning developed over a period of about 

two months. The richest descriptions come from her interviews. Data from the first 

interview affords a detailed description of her initial reasoning about multiplication. 

Valerie’s second-interview responses afford a similarly detailed description and contrasts 

with her first interview responses. In between the interviews, Valerie’s written responses 

to homework and test questions provide important evidence of her reasoning. She also 

made a notable contribution to whole-class discussion that figures into her story. 

Valerie’s SST interview responses not only provide evidence of Valerie’s reflections on 
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her experience in the course, they provide additional valuable data concerning her 

reasoning about multiplication. 

Valerie’s Initial Reasoning about Multiplication 

 This subsection describes Valerie’s initial reasoning about multiplication on the 

basis of first interview and NSRS pretest data. Valerie was an 18-year-old freshman 

Liberal Studies major. She reported having taken a remedial algebra class in her freshman 

year of high school, geometry as a sophomore, algebra 2 as a junior, and precalculus as a 

senior. Valerie scored 29 of 37 on the NSRS pretest, which placed her in the High group, 

relative to the class. 

 Valerie performed mental multiplication using a go-to strategy that was invalid. 

When invited to perform mental multiplication in different ways, she considered only the 

MASA. Valerie’s understanding of the standard multiplication algorithm could be 

characterized as procedural in nature. Much like Brandy’s initial reasoning about the 

addition and subtraction algorithms, Valerie reasoned in terms of the behavior of digits in 

columns. Valerie’s reasoning about partial products in mental multiplication seemed to be 

unrelated to her procedural knowledge of the standard algorithm. 

Valerie’s mental multiplication strategy.26 In her first interview, Valerie used  

only one strategy for each of the basic Bobo multiplication tasks. She multiplied tens by 

tens and ones by ones, and then added these two partial products together. For example, 

she reasoned as follows about multiplying 24 and 15: 

                                                
26 Valerie did not have a multiplication strategy range to speak of. She made no choices based on the 

given numbers. Valerie used only one strategy, and it was invalid. 
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Interviewer: Bobo’s offering a package of 15 oboes for 24 dollars per 
oboe, but you have to buy the whole package. So, what would the whole 
package cost? 

Valerie: [pause] Two hundred and twenty. 

Interviewer: And how did you get that? 

Valerie: Well, I broke it up, into segments. So, I took—I made it 20 times 
5 [sic], or 20 times 10, rather. 

Interviewer: Okay. 

Valerie: And 20 times 10 is 200. 

Interviewer: Uh-huh. 

Valerie: And then I took 5 and 4 and multiplied it, and that’s 20. And I 
added those two together to get 220.  

Interviewer: Gotcha. Um, so kind of a similar question to one I asked 
before: how do you know that that’s it—that that’s gonna give you the 
right answer? 

Valerie: Because, as long—so, if you add, if you take it away [positions 
her hands apart from one another and perched on the table] so that it’s 20 
and 10, you’re still left with 5 and 4. So, you need to multiply those 
together to get how much those would equal. And if you add both of them 
together, you’ll get the answer of what it would be if you combined them 
all together [brings her hands together and clasps them]. It’s just breaking 
them into smaller parts, but as long as they all come together after you’ve 
multiplied both sets and add ‘em together, it’s the right answer. 

Interviewer: Okay. (Valerie, personal communication, September 14, 
2010) 

Valerie went on to use the same strategy for each multiplication task. To find the cost of a 

package of 19 oboes at $21 per oboe, she computed 10 x 20 = 200, 1 x 9 = 9, and 200 + 9 

= 209. This time, she gave a shorthand explanation, “I broke it up again,” acknowledging 

that she used the same strategy and referencing her previous justification. Proceeding 

similarly, she reasoned that 25 x 16 equaled 230 and that 99 x 15 equaled 945 (Valerie, 

personal communication, September 14, 2010). 
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 Valerie confirmed that this strategy of multiplying the tens by the tens and the 

ones by the ones was her go-to strategy for mental multiplication. Her response also 

provides some insight into why she used this strategy: 

Interviewer: So, I noticed that for each of these last four questions that you 
did it the same way. Do you agree? 

Valerie: Mm-hm [nods] 

Interviewer: Is that like your normal way of doing multiplication? 

Valerie: Well, if I don’t have a calculator, yeah [laughs] 

Interviewer: Okay. 

Valerie: Sometimes, like if I have it in front of me and I have to write it 
down, I’ll actually like go through each of the numbers and, like, make the 
two columns, 

Interviewer: Uh-huh 

Valerie: but if I can do it in my head, I can’t do that [the standard 
algorithm] without mixing the numbers up. So, I have to make it simpler, 
and that’s the simplest way I know how to do it. 

Interviewer: Okay. (Valerie, personal communication, September 14, 
2010) 

Valerie reported that the strategy she had used for the basic Bobo multiplication tasks 

was the go-to mental multiplication strategy that she normally used. She also explained 

that doing the MASA for multipication was difficult. She preferred her strategy because 

of its simplicity. 

 Valerie reported doing mental multiplication, and she was aware of the particular 

strategy that she used. Because two of the four partial products were ignored, Valerie’s 

answers were consistently less than the correct answer. Some answers were so far off that 

one would have an expectation that they did not seem reasonable. For example, for 21 



329 

 

times 19, Valerie got an answer of 209. If asked to estimate this product, people typically 

say that it is close to 20 x 20, which is 400. Valerie’s answer was about half that, and yet 

she did not question it. Alternatively, one might notice that 21 x 10 = 210, which is 

greater than 209. It seemed that Valerie was not in the habit of assessing the 

reasonableness of her answers and/or she was so confident in her multiplication strategy 

that she saw no reason to question her answers. 

Valerie’s (lack of) scaffolded alternatives. Solving a set of multiplication 

problems, using a single strategy for each, made it possible for Valerie to solve each  

problem incorrectly and not notice that anything was wrong. When it came to her 

Scaffolded Alternatives for multiplication, Valerie was asked to perform one computation 

in multiple ways. I expected that Valerie would obtain inconsistent answers, and I was 

curious how she would react to that. 

 To perform the computation 45 x 12, Valerie first used her go-to strategy. She 

multiplied 40 by 10 and 5 by 2, and added these results together to get an answer of 410. 

When asked for an alternative, Valerie performed the MASA. This led to a different 

answer than 410.  

Interviewer: Do you have a different way of doing this? 

Valerie: Um. [pause] Well, the way I would do it sometimes is that I’ll do 
it in my head but like I was doing it on paper. So, I would line them up. 
And 2 times 5 is 10, so you leave the 0 and carry the 1. So, 2 times 4 is 8, 
plus 1 is 9. So, you have 9 on the first column—or the first row. 

Interviewer: Okay. 

Valerie: And then in multiplication you have to bring down the zero. So, 
it’s 0 underneath the other 0. And 1 times 5 is 5, and 1 times 4 is 4. [finger 
arithmetic] So, you’re left with [pause, voice goes soft] 450? Yeah, 450 
plus—that’s not right. [pause] Hm. I did that wrong. [laughs] It’s harder to 
do it unless I have paper in front of me. 
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Interviewer: Yeah. 

Valerie: But I know the answer’s 410. It’s just, I did it wrong. 

Interviewer: Okay. 

Valerie: That’s all. I don’t have any other ways! [laughs] 

Interviewer: Alright. 

Valerie: I would have to write it out, or I would have to do that [I think 
“that” refers to her go-to strategy] in my head. (Valerie, personal 
communication, September 14, 2010) 

Valerie did arrive at inconsistent answers. However, rather than question her strategy, she 

concluded that she must have made a mistake when performing the MASA. Due to the 

relative complexity of the MASA, Valerie was comfortable assuming she had made a 

mistake when using it—that she had somehow mixed the numbers up. She was sure that 

her first answer was correct. She considered no other way of performing the computation, 

nor did she attempt to assess which answer was more reasonable. It seemed that cases of 

disagreement only reinforced her faith in her strategy and her aversion to the MASA. 

Valerie’s understanding of partial products. To better understand how Valerie 

thought about partial products in double-digit multiplication, consider the details of her 

argument (Figure 72). She claimed that 24 times 15 equaled to 220. As data, she 

described her computational steps. She computed the products of 20 and 10 and of 4 and 

5, obtaining 200 and 20, respectively. Then she added those together to get her answer of 

220. The warrant in her argument was the idea of breaking the numbers up into smaller 

parts, multiplying those smaller parts, and then adding the results together. 

 I describe the backing that Valerie offered as accounting for all of each factor. 

My understanding of her reasoning is as follows: By multiplying 20 by 10, she had  



331 

 

Claim: 24 x 15 = 220 
(Valerie: Two hundred and twenty.) 
Data: 20 x 10 = 200, 4 x 5 = 20, 200 + 20 = 220 
(Valerie: 20 times 10 is 200… And then I took 5 and 4 and 
multiplied it, and that’s 20. And I added those two together to 
get 220.) 
Warrant: Breaking it up, multiplying, and adding it back 
together27 
(“I broke it up, into segments.”) 
(“It’s just breaking them into smaller parts, but as long as they 
all come together after you’ve multiplied both sets and add ‘em 
together, it’s the right answer.”) 
Backing: Accounting for all of each factor 
(“Because, as long—so, if you add, if you take it away so that 
it’s 20 and 10, you’re still left with 5 and 4. So, you need to 
multiply those together to get how much those would equal. 
And if you add both of them together, you’ll get the answer of 
what it would be if you combined them all together.”) 

 
“take it away” 

 
“combined them all 
together” 

Figure 72. Valerie’s invalid partial products argument. 

accounted for most of what needed to be multiplied. Rather than dealing with the whole 

24 and the whole 15, she had dealt first with 20 of the 24 and with 10 of the 15. Once she 

multiplied the 20 and 10 together, she was finished with those parts. That left only the 4 

and 5. She accounted for the 4 and 5 by multiplying those together. At that point, there 

was no multiplication left to do because she had dealt with the entirety of both factors. 

She had accounted for the 20 and the 10, obtaining 200, and she accounted for the 4 and 

the 5, obtaining 20. She added 200 and 20 together for her final answer of 220. She 

asserted that she would have obtained the same answer if she had not broken up the 24 

and 15 but had dealt with the whole amounts at once. 

                                                
27 This idea is similar to separating, multiplying, and adding (albeit applied in an invalid way). In this 

analysis, I am focused on Valerie’s particular reasoning at the beginning of the course. As such, I view the 
idea at a finer grain size, and I use language that matches hers. 
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 No meaning for the multiplication operation itself was apparent in her reasoning. 

Reasoning about multiplication in terms of repeated addition did not arise in Valerie’s 

argument. Valerie’s strategy enabled her to simplify double-digit multiplication by 

reducing it to computing decades times decades (e.g., 20 x 10) and units times units (e.g., 

4 x 5). Even though the context for these problems had a repeated-addition structure 

(finding the total cost of a package of oboes, given the number of oboes and the price per 

oboe), Valerie’s reasoning about partial products did not seem to be informed by this 

structure. She recognized the story problems as calling for multiplication, and then she 

reasoned in naked-number terms. In reasoning about 24 and 15 as naked numbers, she did 

not distinguish the roles of multiplier and multiplicand. The numbers seemed to have 

equal status and to function in the same way in the computation: they consisted of two 

parts, the tens and the ones, and these were to be multiplied. Multiplication itself (when it 

came to partial products) seemed to be a black-box process, involving recalled facts. I 

would conjecture that single-digit products were all recalled facts for Valerie and that she 

multiplied decades by a combination of recall and annexing zeroes. This conjecture is 

supported in part by Valerie’s reasoning about the standard multiplication algorithm. 

Valerie’s understanding of the standard multiplication algorithm. Valerie 

preferred not to use the MASA for multiplication. However, she was familiar with the  

standard algorithm, and she reported that she sometimes used it when performing 

multiplication on paper. The multiplication Operations Task from her pre interview 

provides evidence of how Valerie understood the standard multiplication algorithm at the 

beginning of the course. Valerie solved 27 x 13 by the standard algorithm. She described 

her steps, and she made arguments concerning three nontrivial aspects of the algorithm. 
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Figure 73 shows Valerie’s primary written work. She did additional written work in 

support of her arguments. The full transcript of her response is included below. Figure 74 

shows Valerie’s supporting written work. 

 
Figure 73. Valerie’s primary written work for 27 x 13. 

  

Figure 74. Valerie’s supporting written work: (left) Valerie’s 
work to justify writing a 0 in the second row; (right) Valerie’s 

work to justify carrying the 2. 

Valerie: K. So, 7 times 3 is 21. So, you put the 1 down here and take up 
the 2. So, when you do multiplication, this number is being added. So, it’s 
like addition, where you’re adding this number. It doesn’t change the 
place of this number [pointing to the 2 in 27]. So, 3 times 2—so, you 
multiply the same. You multiply these two. So, 3 times 2 is 6. You add 2 
to 6 to get 8.  

Interviewer: Okay. 

Valerie: K. Then when you go on to the next column, you’re not 
multiplying by this number anymore [underlines the 3 in 13]. You’ve 
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moved over to this number [draws an arrow from 3 to 1], which means 
that this number got multiplied by an increment of ten [writes “x 10” off to 
the side]. So, that means you move the answer over to write here [points to 
7 in second row of her work]. So, imagine that this isn’t even here [erases 
the 0 from the second row]. So, you would move the answer from right 
here [underlines ones place in second row] to over here [underlines tens 
place] because it’s moving up. So, if you had that [writes 0.3] and you 
multiplied by ten, you take the zero and you count one [draws an arc from 
the right of the 3 to the left of the three]—or. One. [draws an arc from the 
decimal point to the left of the zero]. Multiply by ten. So, it would be 
[traces over the 0 and 3]. Anyway. 

[She demonstrated that incorrectly. She showed 0.3 x 10 = 0.03.] 

Valerie: so, you have the zero here [rewrites 0 in second row]. So, you 
bring down the zero. And I always just thinking of it as, because you’re 
multiplying by ten, you just put the zero from the ten. 

Interviewer: Okay. 

Valerie: Then you start with this. So, you multiply 1 and 7, which is 7, and 
1 and 2, which is 2. And then, from here, you add that together [writes +]. 
1 and 0 is 1. 8 and 7 is 15. Carry the 1, which is being added to write here 
[draws an arrow from the carried 1 to the 2 below it] and that’s 3. So, 351. 

Interviewer: Okay. You made a point about this [points to the “+2” written 
to the left of the 2 in 27] being added, like in addition. How come it’s 
added? 

Valerie: Because you’re not taking anything away from another number to 
add on to this number. This is simply being carried over from an—think of 
this as—so, if you have [writes standard algorithm setup for 27 x 3 off to 
the side], this is a 1 [writes 1 in ones place]. Think of it as like 21. Think 
of the 2 as like overflow. You can’t fit the overflow in the answer because 
it’ll change. A way to think about it is, if you have three numbers you’re 
multiplying with [points to the three digits 2, 7, and 3] most likely your 
answer is gonna be three numbers. So, you can’t add this one [referring to 
just writing down 21 in the answer space] because you’ll have four 
numbers rather than three. 

Interviewer: Okay. 

Valerie: So, you take—you have 21. You have an overflow. When you 
have an overflow in addition, you take the overflow number [circles the 2 
in 21, written off to the side] and put it toward the other side. So, that’s 
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why you put the 2 up there, and add that to whatever’s being multiplied, 
which will be 8. (Valerie, personal communication, September 14, 2010) 

 In her response to the task, Valerie made three arguments of interest: 

1. You have to carry the 2 

2. You have to add the carried 2 

3. You have to write a 0 in the ones place of the second row 

The details of each of her arguments are described below. 

 In Arg VM1.1 (Figure 75), Valerie argued that the 2 had to be carried based on 

the idea of “overflow.” This argument was similar to the one that Brandy made about 

carrying in the addition algorithm in her first interview. She reasoned about 21 as 

consisting of two digits and argued that only one of those digits could be placed in the 

righthand column of the answer. Otherwise, the number of digits in the answer would 

increase, and it would be incorrect as a result. Valerie made an interesting generalization 

regarding numbers of digits when she inserted that having three digits in the problem 

would likely result in three digits in the answer. This is not true in general. In fact, it was 

not true in her example of 27 x 3 = 81. Moreover, in lieu of some meaningful 

justification, it suggests reason about the multiplication algorithm in terms of patterns of 

behavior of digits, rather than in terms of place value and partial products. 

 In Arg VM1.2 (Figure 76), Valerie argued that the carried 2 (discussed in VM1.1) 

should be added. That is, once she multiplied 3 by 2, obtaining 6, she argued it was 

appropriate to add the carried 2 to 6 and obtain 8, which should be written below. She 

gave less attention to the addition step than to the carrying step. Nonetheless, she did 

make an identifiable argument. 
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Claim: You have to carry the 2 
Data: “You have an overflow.” 
7 x 3 = 21, and 21 will not fit in the ones column of the answer.  
Warrant: When you have an overflow, you have to carry the 
overflow digit 
When you have an overflow in addition, you take the overflow 
number [circles the 2 in 21, written off to the side] and put it 
toward the other side. 
Backing: If you don’t carry the overflow digit, you’ll get the 
wrong answer 
You can’t fit the overflow in the answer because it’ll change. A 
way to think about it is, if you have three numbers you’re 
multiplying with [points to the three digits 2, 7, and 3] most 
likely your answer is gonna be three numbers. So, you can’t 
add this one [referring to just writing down 21 in the answer 
space] because you’ll have four numbers rather than three. 

 

Figure 75. Arg VM1.1: Valerie’s argument concerning 
carrying in multiplication. 

Claim: You have to add the carried 2 
Data: The 2 was carried, not borrowed 
(“Because you’re not taking anything away from another 
number to add on to this number. This is simply being carried 
over…”) 
Warrant: Carried numbers get added in multiplication, as in 
addition 
(“it’s like addition, where you’re adding this number.”) 

 

Figure 76. Arg VM1.2: Valerie’s argument concerning adding 
the carried digit in multiplication. 

 Figure 77 represents Valerie’s argument concerning writing the zero. Valerie 

demonstrated moving the decimal point incorrectly. According to her work, 0.3 x 10 = 

0.03. However, the focus of our discussion is on her reasoning about multiplication. 

Whether she moved the decimal point in the appropriate direction or not, she was 

attempting to justify the need to write a 0 in the second row by appealing to a rule for 

multiplying by ten. Even though she identified the 1 in 13 as representing ten, she did not  
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Claim: You have to write a 0 in the ones place of the second 
row 
Data: When you multiply by the 1 in 13, you’re really 
multiplying by 10 
(“when you go on to the next column, you’re not multiplying 
by this number anymore [underlines the 3 in 13]. You’ve 
moved over to this number [draws an arrow from 3 to 1], which 
means that this number got multiplied by an increment of ten”) 
Warrant: When you multiply by 10, you move the decimal 
point 
(“So, if you had that [writes 0.3] and you multiplied by ten, you 
take the zero and you count one [draws an arc from the right of 
the 3 to the left of the three]—or. One. [draws an arc from the 
decimal point to the left of the zero]. Multiply by ten. So, it 
would be [traces over the 0 and 3].”) 

 
“Multiply by ten.” 

Figure 77. Arg VM1.3. Valerie’s argument concerning writing 
a 0 in the second row in multiplication. 

talk about the associated partial products as numbers of tens (7 tens and 20 tens). Rather, 

she used one procedure to justify another. 

 It may be difficult to see in Valerie’s initial reasoning much in the way of 

productive resources. However, Valerie’s knowledge of the standard algorithm turns out 

to be an important resource that supported her ability to make sense of partial products. 

Valerie’s Developing Reasoning between the First and Second Interviews 

 This section describes the development of Valerie’s reasoning related to 

multiplication between the first and second interviews. The presentation is chronological, 

drawing on homework and test responses, as well as a significant contribution that 

Valerie made to whole-class discussion on Day 14. Valerie attended class faithfully and 

was an active participant in classroom activities, including whole-class discussions. It 

appears there was little development to speak of prior to Day 14. However, Valerie’s 

written responses provide additional information concerning her reasoning about 

multiplication and, in particular, her interpretations of strategies discussed in class. The 
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analysis of the time between interviews is separated into the following landmarks: prior 

to Day 14, Day 14 and Valerie’s subsequent reflections, and reasoning about weights 

(Days 16 and 17). 

Valerie’s reasoning before Day 14. On Day 4, Aaron presented the strategy that 

he had used to compute 600 ÷ 25 mentally. Aaron thought in terms of finding out how  

many 25’s there were in 600. He knew that there were four 25’s in 100 and six 100’s in 

600, so he multiplied 4 by 6 to get his answer of 24. In Journal #2, students were asked to 

reflect on Aaron’s strategy. Valerie described his strategy as follows: 

[Aaron] broke down the problem, much like could be done in addition or 
subtraction. For example, if asked to add 88 and 22, you could add 80 +20 
= 100. Then with the remaining 8 and 2 omitted in the first equation, you 
are left with 10. In order to get the correct answer, you need to add the 
parts, being 100 and 10, to get the whole/total answer of 110. [Aaron]  

started with an equation he knew, 25 x 4 = 100 (like 4 quarters = 1 dollar). 
Now he needed to get that 100 to 600, by multiplying by 6. Because he 
used multiplication, the 4 and 6 need to be multiplied rather than added to 
reach the final answer. 6 x 4 = 24 

The addition example that Valerie gave was a Left-to-Right Separation strategy, which 

bears little resemblance to Aaron’s division strategy. However, the comparison that she 

drew to an addition problem is reminiscent of her argument for her invalid multiplication 

strategy. She referred to breaking the problem down into tens and ones, computing, and 

then combining. The latter leveraged the associative property of multiplication, and this 

aspect was not apparent in Valerie’s explanation. Also, with respect to Aaron’s argument, 

she argued that Aaron needed to multiply 4 by 6 “because he used multiplication.” It is 

not clear that Valerie could have provided any valid backing for this vague warrant. I 
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imagine that she could have made sense of this strategy by reasoning about quarters and 

dollars. Instead, she reasoned vaguely that Aaron “broke down the problem.” 

 In the second part of Journal #2, students were asked to apply Aaron’s strategy to 

another division problem, 1200 ÷ 50. These numbers were chosen because they lent 

themselves to Aaron’s strategy. However, Valerie’s written work was strikingly out of 

sync with the example of Aaron’s strategy from class. She computed 1000 ÷ 50 and 200÷ 

50 separately, which was not consistent with using associativity. Neither did she use 

Aaron’s strategy to compute the partial quotients. She focused on the number of zeroes in 

the dividends and divisors. (See Figure 78.) 

 
Figure 78. Valerie’s attempt to apply Aaron’s strategy. 

 Valerie’s computation for 1000 ÷ 50 could have been an instance of Aaron’s 

strategy (e.g., by recognizing that there were two 50’s in 100 and reasoning that there 

would be ten times as many 50’s in 1000). However, her explanation suggests thinking in 

terms of annexing zeroes. Valerie’s observation that 200 ÷ 50 = 20 ÷ 5 = 4 is true, but 

hernjustification reads as an attempt to appeal to a procedure, and that procedure has 

nothing to do with Aaron’s strategy. She seemed to view the strategy vaguely as 

involving breaking numbers down, computing, and putting them back together. This 

enabled her to see his strategy as similar to Addition Separation, to offer an explanation 

that sounded much like her argument for her invalid multiplication strategy, and to 
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misapply his strategy, treating it as involving distributivity and annexing zeroes, rather 

than associativity. 

 As described in Chapter 5, multiplication computations arose during the place 

value unit. On Day 6, two students presented their strategy for computing the product of 

64 and 8: 60 x 8 = 480, 4 x 8 = 32, and 480 + 32 = 512. This was an instance of 

separating, multiplying, and adding with a single-digit multiplier. In Journal #3, students 

were asked to reflect on this strategy and to consider how it related to the standard 

algorithm. They were asked how the ones and tens were recorded in the standard 

algorithm. They were also asked how many whole tens were in the answer of 512 and 

where those tens came from. In Journal #3, Valerie’s response had no relationship to the 

standard algorithm. She said that 512 would need 8 more ones in order to make 52 tens. 

 In class on Day 7, Zelda separated, multiplied, and added to compute the product 

of 49 and 7 as 40 x 7 + 9 x 7. In a follow-up homework assignment, students were asked 

to suggest a name for this strategy and to make a diagram that would capture the “key 

idea” of the strategy. Valerie suggested the name “Break-and-Bake cookie” strategy. She 

explained the metaphorical relationship that she saw between cookie baking and this 

multiplication strategy: 

First you are presented with a big slab of cookie dough (or a large 
multiplication problem). You break the cookie dough down into individual 
cookies (break down numbers). You arrange the cookies on a tray to bake 
(solve the respective sets of problems) and finally count the finished 
cookies that were once connected (add solutions together to find total) 

Valerie’s explanation related separating, multiplying, and adding to the process of baking 

cookies in a very explicit way. Valerie also drew a picture (Figure 79) to depict the 

cookie-baking process in relation to the multiplication strategy. 
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Figure 79. Valerie’s cookie-baking drawing. 

 Unlike many other students, Valerie was specific about how each step in the 

cookie-baking process might relate to the steps in the strategy. While the strategy 

involved breaking numbers up and putting them back together, the nature of the entities 

that were broken apart was different than those put together. In this case, the number 49 

was broken into 40 and 9. It was not then added back together as 40 + 9. Rather, each part 

was multiplied by 7, and then the partial products were added together. The only meaning 

that I can see for multiplying by 7 in Valerie’s analogy is putting the cookies in the oven 

and baking them. She ignored the significance of tens and ones, and her drawing in no 

way took dimension into account. 

 I interpret Valerie’s characterization of Zelda’s strategy as related to her 

interpretation of Aaron’s strategy, as well as to her reasoning about 24 x 15 in her first 

interview. Although the details of these strategies were different, they involved breaking 

numbers up, computing, and putting them back together. Thinking about nonstandard 

strategies in these general terms would not enable Valerie to make necessary distinctions 

between valid and invalid strategies. Through the lens of Valerie’s reasoning, it seems 
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like a wide range of strategies, both valid and invalid, would have appeared equally 

reasonable. 

Change in Valerie’s reasoning about partial products. On Day 14, students  

worked on the Carpet Problem. Initially, all students agreed that the area of the 23-by-23-

foot room was 409 square feet. Valerie explained how she had arrived at that answer. 

Valerie’s primary argument (Figure 80) involved reasoning about partial products in 

terms of pairing up tens and ones. (Her ancillary argument involved annexing zeroes and 

is omitted here.) 

Claim: A room measuring 23ft by 23ft has an area of 409 
square feet 
(Valerie: [I] got 409.) 
Data: 20 x 20 = 400; 3 x 3 = 9; 400 + 9 = 409 
(Valerie: Okay, so I made both 23’s into 20… so it’s 400. And 
then I did 3 times 3 is 9 and so I added 400 and 9 and got 409.) 
Warrant: (Implicit) Reasoning about partial products in terms 
of pairing up tens and ones 

 

Figure 80. Valerie’s primary argument concerning the product 
of 23 and 23. 

 Initially, the class agreed with Valerie’s solution. However, students found that 

the standard multiplication algorithm gave a different answer, of 529, so Valerie’s 

solution was rejected. Students went on to make sense of why Valerie’s strategy was 

invalid, to construct a valid strategy involving two partial products, and finally to account 

for all four partial products by relating them to steps in the standard algorithm. 

 In a journal assigned after Day 14, students were asked to reflect on the invalid 

strategy that they had agreed with initially. Students were asked whether they were 

surprised that computing 20 x 20 + 3 x 3 turned out to be wrong and to describe why it 

had seemed to make sense. In her response, Valerie said, 
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This kind of strategy only works with addition. If you were to add 23 and 
23, separating the numbers into 20 + 20 and 3 + 3 would make sense 
(separate-add-add). When I first saw the problem, I thought of it in terms 
of separate-add-add. I did not take into consideration that multiplication 
would be different, seeing that the addition strategy was so fresh in my 
mind. (recency effect in psychology) 

Valerie attributed her use of an invalid multiplication strategy to the application of an 

idea that was true for addition, and she claimed that this was the result of the fact that she 

had been thinking about addition recently (“recency effect in psychology”). However, we 

know from Valerie’s first interview that the invalid multiplication strategy that she 

described in class was actually her go-to strategy.  

 Prior to day 14, Valerie seemed to have reasoned similarly about all strategies that 

involved breaking numbers down. In the above response, she again gave an addition 

example, but she contrasted it with multiplication. She was now asserting that what 

worked for one operation would not necessarily work for another. 

 In the second part of the same journal assignment, students were asked whether 

they could identify a particular realization that they had concerning this strategy. They 

were asked how they now understood the fact that 20 x 20 + 3 x 3 was not equal to 23 x 

23. In her response, Valerie addressed the role of partial products. She said, 

When you make 23 into 20, you do not simply take away 3 in a singular 
sense. You take away 3 groups of 23. If you just multiplied 3 x 3, you 
have 9, whereas 23 x 3 = 69. That accounts for the 3 groups of 23 taken 
away to make 20. 

This response is important and provides some insight into Valerie’s reasoning. As in her 

first interview responses, Valerie had reasoned in class that the contribution of the 3’s to 

the product was just 3 x 3 = 9. She now articulated a view of the 3 in 23 as being 

multiplied by the other factor of 23, so that its contribution to the product was 3 x 23 = 69 
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while recognizing it as a “key realization.” She had not expressed this idea in any of the 

data up to this point. 

 It is not clear from the above response whether Valerie could have accounted for 

the contributions of both 3’s. Her explanation was in line with that of students in Vignette 

7.3, who described the product of 23 and 23 as consisting of 23 x 20 and 23 x 3. Given 

the data, it appears that Valerie’s thinking progressed to the point where she could 

appropriately treat double-digit multiplication as involving two partial products, but it is 

unclear whether she could account for all four partial products separately. 

Valerie’s reasoning about Equal Area Shifting and weight. On Day 17, the 

strategy that involved halving one factor and doubling the other was discussed and was  

given the name “Equal Area Shifting.” In Journal #8, students were asked to apply this 

strategy to a novel computation in a story problem context: 

In an attempt to save some money, Julie decided not to buy a parking 
permit for fall semester. Julie got 5 parking tickets over the course of the 
semester, each for $36. How much money did she end up spending on 
parking? 

Valerie correctly applied Equal Area Shifting. She explained her reasoning with a 

drawing, number sentences, and in words. (See Figure 81.) 

 Unlike when she attempted to apply Aaron’s strategy, Valerie’s drawing and 

explanation were closely related. She used rectangular area and explicitly addressed 

halving and doubling the dimensions of a 5-by-36 rectangle to create a 10-by-18 

rectangle. This response was correct and her explanation was clear. It is possible that her  
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Julie spent $180 on parking in the fall 
semester. Equal area shifting involves 
taking half of the larger number and 
doubling the smaller number. If you 
were to cut off half of 36  the 
longest part, you attach it to the 5, 
which would make the dimensions 10 
x 18  180     36 x 5 = 180 

Figure 81. Valerie’s application of Equal Area Shifting: (left) 
Valerie’s drawing and number sentences; (right) her written 

explanation. 

response involved following an example from class rather closely (albeit applied to 

different numbers). On the other hand, all of the details seemed to make sense and were 

consistent with the strategy, which was not the case when Valerie attempted to apply 

Aaron’s strategy to a different problem. 

 Valerie’s invented notation was interesting. Although she performed the 

computations correctly, she used an additive notation to record the reformulation of 5 x 

36 into 10 x 18. Just above the two-way diagonal arrow in the middle of her diagram, 

Valerie wrote 5 and 36, then +5 and -18 beneath these, a horizontal bar, and finally 10 x 

18. Thus, she recorded the reformulation as if 5 was added to the factor of 5 and 18 was 

subtracted from the factor of 36. On the other hand, in her explanation, she described 

these steps in terms of halving and doubling the numbers and related these to the 

dimensions of the rectangles. Thus, she seemed to sensibly coordinate the additive idea of 

increasing one factor by 5 and decreasing the other by 18 with the multiplicative ideas of 

doubling and halving to appropriately account for the weight of the refomulation steps. 

As Valerie had said in her journal after Day 14, these additive steps did not affect the 
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product “in a singular sense.” A change to a factor had a certain weight, which derived 

from the corresponding partial product.  

 As part of a homework assignment following Day 17, students solved problems 

that involved computing and estimating products. One problem asked students to estimate 

0.76 x 62. Valerie rounded 0.76 to 0.75 and then computed 0.75 x 62 by halving and 

doubling. She reformulated the computation to 1.50 x 31, estimated this as 30 x 1.50, and 

arrived at an estimate of 45.0. In this response, Valerie spontaneously applied the halving 

and doubling strategy in a problem involving a decimal number and in the context of 

estimating a product. The context in which this strategy had been introduced was quite 

different, and this suggests that Valerie was not merely following an example from class. 

She seemed to recognize an affordance in the given numbers. In her explanation, Valerie 

said that she knew 0.75 x 2 was 1.50, and there were 31 “groups of 2” in 62. In this way, 

she made the associative aspect of halving and doubling explicit. This explanation 

contrasts markedly with Valerie’s interpretation of Aaron’s strategy from Day 4, in which 

she seemed oblivious to the associative aspect of his approach. 

 Another problem in the same homework assignment was a repeat of a task from 

class that had to do with weight. It asked the following: 

Consider 150.68 x 5.34. In estimating the product by calculating 150 x 5, 
one has ignored the decimal part of each number. In refining the estimate, 
which decimal part (0.68 or 0.34) should be the focus? Explain. 

 In her response (Figure 82), Valerie drew on ideas from class, which may have 

been in her notes or simply remembered. Trina had argued for that the 0.34 in 5.34 

weighed more that the 0.68 in 150.68 by estimating the decimal parts as the fractions 1/3  
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Figure 82. Valerie’s response to a homework task concerning 
weight. 

and 2/3 and reasoning in terms of partial products. The Instructor had shared a 

rectangular area diagram and used it to argue that the 0.34 weighed more. Valerie’s 

written response included elements of both of these arguments. However, Valerie did not 

explicitly answer the question. 

 Valerie’s area drawing seems appropriate, but there is no evidence that she made 

any substantive use of it. Her use of the fractions 2/3 and 1/3 appears incorrect. She wrote 

“2/3 of 150” and “1/3 of 5.” If by this she meant to refer to partial products 2/3 x 150 and 

1/3 x 5, then her response suggests either thoughtlessness or a misundertanding of the 

relationship between parts of a factor and partial products. It could also be that she meant 

the word of in an informal, colloquial sense, so that she was referring to the 2/3 belonging 

to the 150 and the 1/3 belonging to the 5. However, in that case, she would not have 

presented sufficient data to answer the question. (Also, in light of Valerie’s second and 

third interview responses, this seems unlikely.)  

 Valerie had become aware that her old go-to strategy was invalid, and she had 

begun to attempt to account for partial products correctly. However, she was inconsistent 
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in her ability to do this. I believe that this inconsistency was not a fluke but was due to 

how she organized her thinking in attempting to account for partial products. This theme 

will be explored further in the subsections that follow.  

Summary of Valerie’s developing reasoning between the interviews. In the 

period prior to Day 14, Valerie’s reasoned vaguely about nonstandard as involving  

breaking numbers down, computing, and putting numbers back together. Reasoning at 

this grain size, nonstandard strategies made the same kind of sense, both within 

operations and across operations, and whether those strategies were valid or invalid. On 

Day 14, Valerie used her go-to multiplication strategy in class and explained her 

reasoning. Although the other students agreed with her initially, it turned out that 

Valerie’s strategy was invalid. The focus of activity on Day 14 was making sense of why 

that strategy was invalid, how it could be modified to create a valid strategy, and how it 

related to the standard algorithm. 

 I believe that Valerie understood some of the arguments that were made on Day 

14. It is safe to say that she came away from class knowing that her strategy was not 

right. Following Day 14, there is evidence that she began to make distinctions between 

nonstandard strategies and consider more carefully why they would work or not work. In 

her response concerning her invalid strategy, she first expressed reasoning about partial 

products in terms of part of one factor being multiplied by all of the other factor.  

 Whereas Valerie had not understood the associative aspect of Aaron’s strategy 

from Day 4, she did make sense of Equal Area Shifting after it was introduced in class on 

Day 17. She even spontaneously applied the idea of halving and doubling to estimate the 

product of decimal numbers. In these responses, Valerie appropriately accounted for the 



349 

 

weights of parts of factors in terms of partial products. However, when it came to a direct 

question concerning weight in estimating products—the very same question that had been 

discussed in class—Valerie gave a sloppy response in which she did not coordinate 

partial products correctly. 

Valerie’s Reasoning in the Second and Third Interviews 

 Valerie’s second (post) and third (SST) interviews took place only one week 

apart. I see no evidence of development in Valerie’s reasoning in between these two 

interviews, and data from both contribute to my understanding of her reasoning after the 

end of the whole-number unit. So, I include data from both interviews in the description 

of her reasoning in this section. Consistent with the chronological presentation, though, 

the second-interview data is presented before the third-interview data. 

Overview. In the second interview, Valerie reasoned about multiplication more 

meaningfully and flexibly than in the first. She could justify the details of the standard  

algorithm by reasoning about digits in terms of their place values. For the basic Bobo 

tasks, she used three valid strategies. Her scaffolded alternatives included additional, 

valid strategies. 

 Despite all of this evidence of improvement, Valerie continued to have difficulty 

accounting for partial products. For the first product that she computed mentally, she 

started to use her old invalid strategy, but she quickly recognized that it was wrong. She 

corrected herself to a degree by identifying one additional partial product. However, she 

was unable to account for all four partial products. She went on to solve the other basic 

Bobo multiplication tasks correctly, using valid strategies, but she avoided accounting for 

all four partial products explicitly. 
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 In the Jessica Task, Valerie was asked directly to reason about the invalid strategy 

that she had relied on in the first interview. In this context, she argued that the strategy 

was not right, and she was eventually able to construct a coherent argument to that effect. 

This was not without difficulty, however. She was not readily able to account for all 

partial products appropriately. It was only when she used the standard algorithm to help 

organize her thinking that she was able to sort these out. 

 In the third interview, Valerie reasoned about weight in the context of estimating 

a product. She did this quickly and correctly without any difficulty. She drew sensible 

pictures and clearly explained the relationship between partial products and partial 

rectangles. In this context, rectangular area clearly seemed to support her reasoning about 

partial products. Valerie was also able to justify the relationship between multiplication 

and rectangular area. Valerie also reflected on her experience in the course in the third 

interview, and she talked about how her thinking about mental computation had changed. 

Valerie’s multiplication strategies. In her second interview, Valerie reasoned  

differently about computing products than she had two months before in three important 

ways. First, she thought in different ways about partial products and how to account for 

them. Second, she distinguished between the roles of multiplier and multiplicand using 

the language of “groups of.” Third, she recognized affordances in some numbers. Her 

responses to the four basic Bobo multiplication tasks are each of interest because her 

reasoning varied across the set of tasks and illustrated aspects of this developing 

understanding. 
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 Recall that in the first interview, Valerie computed 24 x 15 by multiplying the 

tens by the tens and the ones by the ones, obtaining an answer of 220. In the second 

interview, she started off similarly but soon questioned her approach. 

Interviewer: So, if you recall, Bobo started selling oboes in packages. So, 
he’s offering a package of 15 oboes for 24 dollars per oboe. What would 
that whole package cost? 

Valerie: Um, [pause] twooo-twenty? That’s not right. [pause] I get 220, 
but I don’t think that’s right. 

Interviewer: How did you get 220? 

Valerie: Well, I just did [shakes her head] but that’s not right. It’s more 
than that. Well, what I did is I did, like, 20 times 10 is 200, and then I did 
4 times 5. But that’s not right. 

[Valerie thinks longer and briefly considers whether her answer could be 
right, but she decides that it is not. She says she would have to write this 
down to solve it.] 

Valerie: I would have to write it down. I can’t do it in my head. 

Interviewer: K. So, you said 220 

Valerie [interrupting]: But I don’t think that’s right 

Interviewer: and then you said it’s not right. Why do you say it’s not 
right? 

Valerie: Because it’s not—it would be a different story if, like, if it was 
like 24 times five. Because then it would make sense to do 20 times 5 and 
then 4 times 5, because it’s only one place. But now that it’s 15, I would 
have to multiply [positions her hand out in front of her and points down at 
the table] like, I can’t just multiply, um, 10 by 20 and then just 4 and 5 
[seems to trace out the corresponding digits in the standard algorithm, 
tapping her finger as she says each number, and moving vertically 
(relative to a view looking down on the table) from 10 to 20 and from 4 to 
5]. I have to do, like, 24 times 10 [moves her finger horizontally and then 
vertically] and then like 4 times 5 [moves her finger diagonally] and like, I 
have to write it [makes a sweeping gesture, as if to erase her imaginary 
written work]—write it down. It doesn’t—it’s like too much multiplication 
for me to do in my head without writing it down [laughs] 
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Interviewer: K. Is there any way you can figure it out without writing it 
down? 

Valerie: [pause] Okay, well, if I did 20 times 10, is 200. So, that takes care 
of these two places. So then 20 times 5 [pause] is another hundred. So, 
that’s 300. And then 4 times 5 is 20. So, that’s 320 [shakes her head]. 
Well, I guess that makes more sense, actually, so it’d be 320. Because if 
you take and you make it 24—no, 15 times 20 [pauses, mumbles, long 
pause]. Okay, well, 15 times 2 is 30. So, if you made it 15 times 20, that’s 
300. And then you would make it 5 times 4, and that’s 20, so 320. 

Interviewer: So, you’re doing [gestures with pen in the air, similarly to 
what Valerie was doing earlier with her finger in the table] 

Valerie: [laughs] 

Interviewer: a few different multiplications 

Valerie: yeah 

Interviewer: depending on how you’re doing it 

Valerie: mm-hm 

Interviewer: How do you know, like, which ones to do? 

Valerie: Well, you have to, like, make sure that all of the places are 
accounted for. So, like I said, if it was like 24 times 5, then it would make 
sense to do, like, 20 times 5 and 4 times 5. Like, that makes more sense. 
But because there’s an extra tens place in there, you have to account for all 
the places. So, you can’t just be like oh, it’s 24 times 10 [repeats gesturing 
on table but with her whole hand] and then whatever, whatever. You have 
to, like, account for all of them, if that makes sense.  

Interviewer: Okay. 

Valerie: I don’t [shakes her head] I still don’t even know if that’s right 
[laughs] 

[I interpret “that” here as referring to her revised answer of 320.] (Valerie, 
personal communication, November 11, 2010) 

 In this response, Valerie clearly conveyed that she knew her old go-to strategy 

was invalid. She articulated an understanding of appropriate partial products in the 1-

digit-times-2-digit case. She knew that the 2-by-2 case was more complicated, and she 
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expressed a concern for accounting for all of the partial products. In some obvious ways, 

this response contrasts with her first interview response: she knew that just multiplying 

20 by 10 and 4 by 5 was incorrect; she ended up computing three partial products, rather 

than two; as a result, she arrived at a different answer, 320 rather than 220; although this 

answer was still incorrect, it was closer to correct; she accounted for three of the four 

partial products, and her answer of 320 was not far off from the correct answer of 360. 

 Valerie’s reasoning in this case is also similar to her reasoning in the first 

interview in the sense that she was again playing a kind of digit-matching game. The 

differences were in the details of her approach. Whereas in the first interview she thought 

in terms of accounting for all of each factor, in this response she thought in terms of 

accounting for all partial products. Yet it was not clear to her exactly how to do that. 

There was not an evident principle guiding her matching decisions. She stopped at three 

partial products and a total of 320 not because she could justify that she had exhausted all 

pairings but, as far as I can tell, simply because she did not see or could not think of 

another pairing. When reasoning in terms of accounting for all of each factor in the first 

interview, it had been easy for Valerie to know when she was finished. She used the 20 

and the 10, then she used the 4 and the 5, and there was nothing left, so she was done. 

However, accounting for all partial products was more complicated. Parts of factors 

needed to be used more than once and paired up in just the right ways. 

 The story of Valerie’s second-interview responses does not end there. She solved 

each problem differently, and her reasoning changed as she moved through the problems. 

Valerie solved the next problem (19 x 21) by using the MASA. She solved the problem 

correctly and without any apparent difficulty. To solve 25 x 16, Valerie dealt again with 
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partial products and again experienced some difficulty. However, her reasoning about 

this problem was quite different than her reasoning about the first. It involved 

distinguishing between the role of multiplier and multiplicand: 

Interviewer: What if Bobo offers a package of 25 oboes for 16 dollars per 
oboe? What would that whole package cost? 

Valerie: Ummm [pause] 250  

Interviewer: How did you get 250? 

Valerie: Wait [pause] yeah. Because I did 10 times 25—oh—which is 
250. Okay, so it’s three hundred [cringes]. Because I did 10 times 25, 
which is 250. And then I thought of the 25’s in terms of like quarters. So, 
there’s four quarters in a dollar. So, it’d be 250, and then another four 
quarters is a dollar, so that’s 350. So, it’s 400 because then you have two 
extra quarters left over, which is 50 cents. So, it’s not 250 [shakes her 
head and waves], I 

Interviewer: Okay. So, how did you get from 250 to 400? 

Valerie: Okay. So, I did 10 times 25, which is 250. And then you have to 
do 6 times 25. 

Interviewer: Oh, okay. 

Valerie: and so, if you do four of ‘em, it’s a hundred, and then you have 
two left over, which is 50 cents. So, it comes out to be 400. 

Interviewer: Gotcha. (Valerie, personal communication, November 11, 
2010) 

 Valerie reasoned about 16 times 25 in terms of finding the sum of sixteen 25’s. 

She computed ten 25’s, which gave her 250. Then four more 25’s gave her another 100, 

for a subtotal of 350. Finally, the remaining two 25’s brought the total product to 400. 

Valerie’s strategy could be represented as 16 x 25 = (10 + 6) x 25 = 10 x 25 + 6 x 25 = 

250 + (4 + 2) x 25 = 250 + 4 x 25 + 2 x 25 = 250 + 100 + 2 x 25 = 350 + 50 = 400. 
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 After she had computed the product that way, Valerie realized that she could have 

made it simpler by reasoning in terms of quarters all along. As I was making my notes 

about her strategy above, she spontaneously suggested another way: 

Valerie: Or I guess you could just do four groups of 25. Ha [laughs] 
Because if you have 16 quarters, it’s four dollars. So, 400. 

Interviewer: Okay. (Valerie, personal communication, November 11, 
2010) 

I did not follow up on this spontaneous alternative because the interview protocol did not 

include discussion of alternative strategies during the basic Bobo tasks. I view Valerie’s 

Quarters strategy as belonging to her Scaffolded Strategy Range since it only occurred to 

her after she had solved the problem by distributivity. Nonetheless, this strategy is 

noteworthy since it is distinct from the first. Valerie recognized that four 25’s made 100, 

and there were four such groups that could be formed from sixteen 25’s. Formally, this 

strategy involves the associative property of multiplication: 16 x 25 = (4 x 4) x 25 = 4 x 

(4 x 25) = 4 x 100 = 400. This approach is related to Aaron’s division strategy from Day 

4, which Valerie did not understand at the time that it was introduced. 

 To compute the cost of 99 oboes at $15 per oboe, Valerie used a different 

strategy, which took advantage of the proximity of 99 to 100: 

Interviewer: What if Bobo offers a package of 99 oboes for 15 dollars per 
oboe. What would that whole package cost? 

Valerie: Oh, okay. So, if you made it a hundred oboes, um, a hundred 
times 15 is 1500. So, you would subtract 15 because we need to subtract 
one group of 15, which is 1485. 

Interviewer: Why do you subtract one group of 15? 

Valerie: Because, when you make 99 into 100, you’re not adding just one; 
you’re adding a group of 15. So, because you’re adding, like, one group of 
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15, you have to subtract 15—like, the actual number 15—from your final 
answer. 

Interviewer: K. Why is it that you’re not adding one, you’re adding a 
group of 15? 

Valerie: Um, because it’s [pause, mumbles] So, each group—so, like 99 
represents the number of groups of 15 that you have [both hands out and 
perched on table]. So, like when you multiply—so, like one times 15, 
which would be one group times 15 units per group is equal to 15, like 
that’s how much is in each group [brings hands together with fingertips 
touching]. So, if you have 99 groups of 15, when you add a group [holds 
left hand in fixed position, makes fist with right hand and jumps fist 
horizontally in an iterative manner], you have to add the entire 15 to make 
it a solid group. 

Interviewer: Thank you. (Valerie, personal communication, November 11, 
2010) 

Valerie computed the product of 99 and 15 by rounding 99 to 100, multiplying, and then 

compensating appropriately for rounding. Her argument hinged on reasoning about 

multiplication in terms of repeated addition. She explicitly distinguished the roles of 

multiplier (99) and multiplicand (15) as a number of groups and a number of units per 

group, respectively. Valerie’s argument is represented by Figure 83. 

 In her first-interview response, Valerie had reasoned about 99 and 15 (and factors 

in general) as being of equal status. In this response, by contrast, she clearly distinguished 

their roles as a number of groups and a number per group, and doing so was fundamental 

to her justification for her compensation strategy.  

 Valerie’s set of second-interview responses to the basic Bobo multiplication tasks 

was unusual among the interview participants in the sense that her thinking seemed to 

evolve from one problem to the next. In her response to the first problem, she did not 

seem to reason meaningfully about multiplication, and she had difficulty accounting for 

partial products. In the third problem, she was able to account for partial products 
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Claim: 99 x 15 = 1485 
Data: 99 + 1 = 100, 100 x 15 = 1500, 1500 – 15 = 1485 
“So, if you made it a hundred oboes, um, a hundred times 15 is 
1500. So, you would subract 15 because we need to subtract 
one group of 15, which is 1485.” 
“when you make 99 into 100, you’re not adding just one” 
 
Warrant: Compensating for rounding: You added a group of 
15, so you have to subtract 15 
“Because, when you make 99 into 100, you’re not adding just 
one; you’re adding a group of 15. So, because you’re adding, 
like, one group of 15, you have to subtract 15—like, the actual 
number 15—from your final answer.” 
Backing: Reasoning about multiplication in terms of repeated 
addition (a number of groups times a number per group) 
“So, each group—so, like 99 represents the number of groups 
of 15 that you have. So, like when you multiply—so, like one 
times 15, which would be one group times 15 units per group is 
equal to 15, like that’s how much is in each group. So, if you 
have 99 groups of 15, you have to add the entire 15 to make it a 
solid group.” 

 

 
“when you add a 
group” [holds left 
hand in fixed position, 
makes fist with right 
hand and jumps fist 
horizontally in an 
iterative manner] 

Figure 83.Valerie’s second interview argument concerning 99 
x 15. 

appropriately by treating 16 as a double-digit multiplier and 25 as a multiplicand that was 

to be iterated without decomposition. By the fourth problem, reasoning about 

multiplication in terms of repeated addition fundamentally informed her approach. She 

answered quickly and confidently, and she provided a detailed and valid mathematical 

justification for a sophisticated nonstandard strategy. 

 As discussed in Chapter 3, the pairs of numbers used for the basic Bobo tasks 

were ordered so as not to scaffold students’ reasoning. Essentially, the problems were 

ordered from most to least difficult, as best I could anticipate how students might reason. 

That way, strategies participants used that might have been unique to benchmark 

numbers would not inform their thinking about problems that were less special. Due to 
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the ordering of problems, it may be that Valerie’s reasoning did not progress as she 

moved from one problem to the next, but rather her approaches were problem-specific.  

 Valerie’s reasoning about 16 x 25 and about 99 x 15 involved reasoning about 

multiplication in terms of repeated addition, which she also used in her journal 

assignment after Day 14. I would attribute the trend in her responses, in part, to the 

special affordances of the numbers 25 and 99, which enabled Valerie to reason 

appropriately about partial products on the basis of repeated addition. In neither case did 

she explicitly account for four partial products. In the cases represented by 24 x 15 and 

19 x 21, Valerie did not perceive any special affordances. She thought that she needed to 

account for all partial products separately (in the digit-pairing sense). She was unsure 

whether she did this successfully in the first problem. She abandoned that approach and 

solved the second problem by falling back on the MASA, which she knew would enable 

her to account for partial products correctly. 

 It seems apparent from her responses that, at the time of the second interview, 

Valerie’s reasoning about partial products in multiplication was still developing. She was 

using new ideas that were less comfortable and about which she had less confidence. This 

uncertainty made sense. Valerie had previously been confident of a familiar strategy that 

had turned out to be invalid. She seemed to proceed more cautiously in the second 

interview. Nonetheless, the contrast between the two interviews is drastic. In the first, she 

used the same invalid strategy for each computation, and the only alternative she 

considered was the MASA. In the second interview, she used different strategies for each 

problem, and three of these were valid. She knew that her old strategy was invalid, she 
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could explain why this was the case, and she was trying to find a way to reliably account 

for partial products. 

Valerie’s scaffolded alternatives. I also investigated scaffolded alternatives in 

the second interview. These provide further evidence of Valerie taking advantage of (1)  

number affordances, (2) meanings for multiplication, and (3) awareness of the need to 

account for partial products. Valerie’s responses to those tasks contrasted with her first-

interview responses more so than in any other part of the interview. She articulated four 

distinct, valid mental multiplication strategies, not including the MASA, and produced 

clear mathematical arguments for each of them. Valerie had also come up with the 

Quarters strategy as a spontaneous alternative in her reasoning about 16 x 25, and that too 

is considered to be part of her scaffolded strategy range. 

 To compute 45 x 12, Valerie first took a valid approach involving two partial 

products. She decomposed 12 into 10 and 2. She computed 10 x 45 = 450 and 2 x 45 = 

90. Then she added 450 and 90 to get her answer of 540. She explained her strategy: 

“because 10 times 45 accounts for the tens place. So, it accounts for that whole ten, so ten 

groups of 45. And then I still need to fulfill the two groups of 45. So, that’s why I did 2 

times 45.” For her first strategy, Valerie used a valid partial products approach that 

involved decomposing one of the two factors. She justified her approach by reasoning 

about multiplication in terms of repeated addition. Specifically, she thought in terms of 

45 x 12 in terms of twelve groups of 45. 

 As an alternative strategy, Valerie used doubling and halving. She explained: 

Valerie: Well, I know that 2 times 45 is 90. So, that means that I could do 
90 times 6. And 9 times 6 is 54, so that means that 90 times 6 would be 
540. 
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Interviewer: Okay. Um, so you did 2 times 45 is 90, and then 90 times 6 is 
540. So, how come you can do it that way? 

Valerie: Because I’m doubling what, how many groups there are, which 
means that I’d have to compensate by taking half of how much it costs, 
because there’s more groups, so I’m like splitting it. 

Interviewer: Oh, okay [writing notes]. Say that again. You’re doubling 
what? 

Valerie: So, it’d be kind of the same thing, like, I have like, for every 45 
oboes, there’s gonna be 12 dollars. So, if I doubled the amount of how 
many oboes, I would have to like decrease the price by half to keep the 
proportion the same. (Valerie, personal communication, November 11, 
2010) 

Valerie took advantage of the affordances of 45 and 12 by doubling 45 and halving 12. 

By doubling 45, she got 90, which is an easy number to work with. Specifically, it is a 

decade number that affords annexing zeroes, which she used as an ancillary strategy. The 

number 12 is even, and so it afforded halving. Valerie reduced the problem to 9 x 6, 

which was a known multiplication fact for her. She was able to justify her doubling and 

halving strategy. She also used annexing zeroes appropriately. She went on to describe it 

in terms of multiplying 6 by 90, rather than just 9, so that the answer was 540, not 54, 

because she was “taking groups of ten.”  

 As a third strategy for computing 45 x 12, Valerie used Subtractive Distribution. 

She rounded 45 to 50, computed 12 x 50, and then compensating correctly for her 

rounding move:  

Interviewer: What about a different way of doing this one? 

Valerie: Okay, well, let’s see. Fiftyyy. Yeah, this makes sense. So, I’m 
gonna do it like in terms of 50 cents. So, if I made 45 into 50, so I would 
have 12 times 50, which if I did that in terms of like cents, it’d be 6 dollars 

Interviewer: Okay. 
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Valerie: because half of 12 is 6, so it would be 6 dollars. So, it’s 600. Um, 
so, because I made 45 into 50, that’s 5 away. So, that means I added on 12 
groups of 5. So, I would have to subtract those 12 groups of 5 to get the 
answer, and 12 times 5 is 60. So, 600 minus 60 is 540. (Valerie, personal 
communication, November 11, 2010) 

Valerie’s primary strategy in this case was Subtractive Distribution. She had also used 

this strategy to compute 99 x 15 in the basic Bobo tasks. She used it here in a less 

specialized case. The proximity of 45 to 50 afforded the strategy, but 45 is not as close to 

50 as 99 is to 100. In selecting numbers for these tasks, I considered 45 to be in the 

possible benchmark category, whereas 99 is in the obvious benchmark category. 

 In the above response, Valerie also used doubling and halving as an ancillary 

strategy. Thinking in terms of money, she reasoned that 12 times 50 cents would be 6 

dollars because “half of 12 is 6.” My educated guess would be that she thought: 50 cents 

times 2 is $1, and then $1 times 6 is $6 (similar to her previous strategy). Another 

possibility is that she thought: 50 cents is half of a dollar, so 12 times 50 cents is half of 

$12. Either way, she again used the associative property with a factor of 2. The fact that 

she thought in terms of dollars and cents also lends credence to considering Quarters to 

be legimitately in her scaffolded strategy range. 

 As her final strategy28 for computing this product, Valerie computed all four 

partial products explicitly. Specifically, she first split the product into three partial 

products in an appropriate way. Then she clarified that she could split it further into four: 

Interviewer: Can you think of a different way of doing this one? 

                                                
28 According to the interview protocol, since Valerie had described four strategies for solving 45 x 12, 

I should have asked for one more. I did not, and I do not recall a reason why. Perhaps I thought Valerie had 
already described five strategies for computing that product. It is possible that she could have come up with 
one more strategy if asked to do so. 
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Valerie: [pause] Yeah. So, if I did 40 times 10, is 400, and then [pause] 
that means that [whispers  ‘Oh, this is gonna be complicated’] Okay, so 40 
times 10 is 400. And then you would have to do 2 times 40 is 80. And then 
[pause] and then 12 times 5 is 60. So, that’s where, and then if you add all 
those together, it’s 540. 

Interviewer: Okay. So, you did 40 times 10, 2 times 40, and 12 times 5. Is 
that right?  

Valerie: Right. 

Interviewer: and I kind of want to ask about this again: How do you know 
that that’s accounting for everything? 

Valerie: Because when I do [Valerie positions her hands on the slip of 
paper] 40 times 10, that’s accounting for both of the tens places [points to 
digits 4 and 1 on the paper] like 40 times 10. And then if I did—I would 
have to multiply this ones place [pointing to the 2 in 12] by the entirety of 
this [runs her finger back and forth over the 45]. So, this ones place times 
40, that’s 80 [points to the 2 and then the 4]. And then if I switch it [pulls 
her hand to the side of the paper touching all of her fingertips together], I 
would have to account for this [points to the 5 in 45] with the entirety of 
this [runs her finger back and forth across the 12]. And then you could 
break the—you could break this up into 10 times 5, which is 50, and then 
2 times 5, which is 10, and it would still be 60. I just kinda like cut the 
corner on that one ‘cause I knew what the answer was. So, that accounts 
for every single place value. (Valerie, personal communication, November 
11, 2010) 

Valerie correctly accounted for partial products throughout her explanation. Initially, she 

had computed the products as 40 x 10 + 2 x 40 = 80 + 12 x 5 = 60. Then she pointed out 

that she could decompose 12 x 5 further into 10 x 5 + 2 x 5. 

 As Valerie carefully accounted for all partial products, the way that she used her 

fingers was interesting. (See Figure 84.) She took advantage of the fact that the numerals 

were printed on the paper in front of her. Although these appeared within a sentence, they 

happened to be more or less aligned vertically. When referring to one-digit-by-two-digit 

partial products, Valerie positioned her finger on a single digit in one factor and then ran 

her finger back and forth across the other factor. She did this first to indicate 2 x 45,  
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“both of the tens places” 
[points to digits 4 and 1] 

 
“this ones place” 

[points to the 2 in 12] 

 
“the entirety of this” 

[runs her finger back and 
forth over the 45] 

 
“switch it” 

[pulls her hand to the side of 
the paper, touching all of 
her fingertips together] 

 
“this” 

[points to the 5 in 45] 

 
“the entirety of this” 

[runs her finger back and 
forth across the 12] 

Figure 84. Valerie’s finger accounting. 

taking the 2 in 12 as the single-digit multiplier. Then she pulled her hand away from the 

paper as she said, “switch it,” and proceeded to refer to 5 x 12, taking the 5 from 45 as 

the single-digit multiplier. Thus, “switch it” coincided with switching the roles of 

multiplier and multiplicand. 

 Although Valerie’s finger accounting took place in response to my request for 

justification (“How do you know that that’s accounting for everything?”), she did not 

seem to use this gesturing in a way that was intended for me to follow. She was not 

presenting this digit-pairing approach to me as a form of justification. (She was looking 

down at the paper, which was oriented for her to read, not for me.) Rather, holding her 
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fingers on digits and acting out the correspondences seemed to help her to organize her 

thinking. This activity seemed to lead Valerie to the realization that she could split up 12 

x 5 into 10 x 5 and 2 x 5, thereby explicitly accounting for all four partial products. 

 Valerie’s answer did not change when she decomposed 12 x 5 into the canonical 

partial products. There was nothing whatsoever incorrect about the explanation that she 

had given. Nevertheless, she seemed to feel it important to point out that she could 

decompose 12 x 5 into 10 x 5 and 2 x 5, so much so that she did something very unusual 

in the social context of the interview. She reached all the way across the table to point to 

a specific detail in my notes (Figure 85). Rather than just saying that she could break up 

the 12, she said, “you could break this up” while pointing to a 12 that I had written down. 

 
“you could break the” 

 
“you could break this up” 

Figure 85. Valerie reaches across the table. 

 I learned a lot about Valerie’s multiplication reasoning from her responses to the 

Scaffolded Alternatives tasks. I regard this reasoning as occurring in the ZPD. Valerie 

had solved four different multiplication problems prior to 45 x 12, and this had given her 

the opportunity to reason about partial products prior to this task. She first solved 45 x 12 

by using a strategy with which she was comfortable. She had used the same primary 
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strategy to solve 16 x 25 by reasoning about it as 10 x 25 + 6 x 25 (although there were 

differences in the details). Then she had an answer, 540. 

 When asked for an alternative strategy, Valerie quickly recognized that she could 

also solve this problem by doubling and halving, which was a strategy she had not used 

in the basic Bobo tasks but had used sensibly in homework responses. She used 

Subtractive Distribution to compute 45 x 12 by taking advantage of the proximity of 45 

to 50. Finally, she accounted explicitly for all four partial products. She did this by 

computing the tens-by-tens partial product. Then she accounted for the contributions of 

the ones by applying reasoning about multiplication in terms of repeated addition from 

two different perspectives, switching the roles of multiplier and multiplicand to see the 

partial products 2 times 45 and 5 times 12. Finally, Valerie took her accounting for 

partial products all the way and dealt with the ones-times-ones product separately. She 

had computed 2 x 40 (ones-by-tens), not 2 x 45. So, she had correctly used the 2 x 5 

product just once. She decomposed 12 x 5 into 10 x 5 and 2 x 5, accounting for the tens-

by-ones and the ones-by-ones. 

 Valerie’s scaffolded strategy range for double-digit multiplication included the 

MASA, Valid Partial Products, Subtractive Distribution, Halving and Doubling, and 

Quarters. Actually, given the triumph represented by Valerie’s last strategy above, her 

case brings to light a grain size issue concerning Valid Partial Products. It was far more 

challenging for her to account for all four partial products separately than it was to 

correctly treat a product as consisting of two partial products. A finger-grained scheme 

would distinguish these strategies. In any event, the pre/post contrast between Valerie’s 

scaffolded strategy ranges is compelling. She moved from having only the MASA and 
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Invalid Partial Products to being able to use five distinct, valid strategies (at the grain size 

of my coding scheme). 

Valerie’s reasoning about the standard algorithm. Valerie’s first-interview 

arguments concerning the standard multiplication algorithm were procedural in nature. In  

the second interview, she explained the same details of the algorithm, but she did so by 

reasoning about digits in terms of their place values. Figure 86 shows Valerie’s primary 

written work. The transcript follows: 

  
Figure 86. Valerie’s algorithmic work. 

Interviewer: I’m gonna ask you to do a multiplication problem now: 27 
times 13. 

[Valerie performs the algorithm quickly and correctly, obtaining the 
answer of 351] 

Interviewer: Alright. Could you walk me through what you did? 

Valerie: Yeah. So, 7 times 3 is 21. So, you keep the, uh [writes over the 1 
in the first row of work]—so, you have twenty-one [writes 21 off to the 
side] which is two tens and one one. So, you leave the 1 here, and you take 
the group of two tens up here [pointing to the carried 2]. So, you do 3 
times 2, which is 6, and then you add the 2. So, 6, 7, 8. So, it’s 8 [writes 
over the 8 in the first row of work]. And then you need to put a 0 right 
here [writes over the 0 in the second row of work] to indicate that you’re 
no longer in the ones place. You’ve moved to the tens place. So, there’s 
that 0. So, 7 times 1 is 7, and 1 times 2 is 2. And then you add these 
together and get 351. 
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Interviewer: Okay. How come you add the 2 that you carried? 

Valerie: [pause] Okay. So, this is the ones. You’re multiplying the ones 
place and the tens place [points at the 3 in 13 and then the 2 in 27]. So, it’s 
like saying 20—so, if you had this be a 0 [pointing at the 7 in 27]—so, it’s 
like 20 times 3. You’re doing like the whole value [underlines the 2 and 7] 
by 3. So, because you’re adding essentially, you’re adding 7 groups of 3 to 
your 20 times 3, you need to—it’d be like saying, okay, well, 20 times 3 is 
60, but you have to add—account—for these groups of 3, which would be 
21. So, that’s why you’d have to add the 20 because you’re not just 
accounting for a 2; you’re accounting for the group of 21. So, you have 
to—you already dealt with the 1, so you have to add a group of 20 [circles 
the carried 2 with her finger]. So, by adding the 2, it’s increasing this 
number [points to the 2 in 27], which is increasing the tens place; it’s not 
just increasing the ones place. 

Interviewer: Okay. And what about the 0 that you put down on the second 
row? 

Valerie: So, that’s there because—so, if I just did like 7 times 3 [writes 
standard algorithm setup for 7 x 3 off to the side] or even 7 times 
whatever, what is it? 27 [writes 2 next to 7, making her example 27 x 3]. 
Okay, so, I’m only dealing with the ones place right here [circles the 3]. 
So, that would a 1 [writes 1 in ones place of answer] and I’d carry the 2, 
and it’d be 81 [writes 8 in tens place of answer]. There’s no need for me to 
worry about the tens place. But because there’s a 1 here [points to the 1 in 
13 in the original problem] that means that I’m multiplying this 27 by 10 
[circles the 13 with her finger] rather than just 1. So, because I’m 
multiplying it by 10, I have to make it—make the ones say, okay, there’s 
no ones because it’s has enough to make a group of 10. (Valerie, personal 
communication, November 11, 2010) 

Valerie was asked to do a multiplication problem: 27 times 13. As in her first-interview 

response, Valerie made three arguments of interest. The claims are the same as in the first 

interview. : 

1. You have to carry the 2 

2. You have to add the carried 2 

3. You have to write a 0 in the ones place of the second row 
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However, Valerie justified these claims differently than she had in the first interview. I 

detail each of her arguments below. 

 Figure 87 represents Valerie’s argument that you have to carry the 2 from 7 x 3 = 

21. Essentially, Valerie argued that the partial product 21 consisted of tens and ones, and 

the ones belonged in the ones place and the tens belonged in the tens place. This 

argument contrasts with Valerie’s first-interview argument, in which she talked about 

two-digit numbers not being able to fit in the ones place and said that the 2 was the 

“overflow.” 

Claim: You have to carry the 2 
Data: 7 x 3 = 21, which consists of two tens and one one 
(So, 7 times 3 is 21… so, you have twenty-one, which is two 
tens and one one.) 
Warrant: (Implicit) You write the ones in the ones place and the 
tens in the tens place 
(So, you leave the 1 here, and you take the group of two tens up 
here [pointing to the carried 2].) 

 
“the group of two 
tens” 

Figure 87. Valerie’s argument that you have to carry the 2. 

 Figure 88 represents Valerie’s argument that you have to add the 2 that was 

carried. Valerie argued that the 2 represented a number of tens. Specifically, it 

represented 20. It was carried into the tens place and then added to the partial product 60, 

which was also a number of tens. The addition step of 6 + 2 = 8 actually represented 60 + 

20. By contrast, in the first interview, Valerie had argued that the 2 needed to be added 

because it had been carried, and carried numbers should be added, as in addition. 

 Figure 89 represents Valerie’s argument that you have to write a 0 in the ones 

place when you move down to the second row. Valerie argued that this was because you 

were multiplying by ten, and therefore the partial product would be at least ten. This 

argument was less clear than the others. Valerie did not explicitly state that the result of  
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Claim: You have to add the carried 2 
Data: You’re really adding 20 to 60 
(“it’d be like saying, okay, well, 20 times 3 is 60, but you have 
to add—account—for these groups of 3, which would be 21. 
So, that’s why you’d have to add the 20”) 
Warrant: Reasoning about digits in multiplication in terms of 
their place values 
(“So, by adding the 2, it’s increasing this number [points to the 
2 in 27], which is increasing the tens place; it’s not just 
increasing the ones place.”) 

  
“You’re multiplying 
the ones place and the 
tens place” 

Figure 88. Valerie’s argument that you have to add carried 
the 2. 

Claim: You have to write a 0 in the ones place of the second 
row 
Data: Multiplying by ten 
(I’m multiplying this 27 by 10 [circles the 13 with her finger] 
rather than just 1.) 
Warrant: The partial product will be at least 10 
(So, because I’m multiplying it by 10, I have to make it—make 
the ones say, okay, there’s no ones because it’s has enough to 
make a group of 10.) 

 
“okay, there’s no 
ones” 

Figure 89. Valerie’s argument that you have to write 0 in the 
ones place of the second row. 

multiplying by ten would be a number of tens. She only said that it would have enough 

ones to make ten. This seems like a case of a less than ideal choice of words on Valerie’s 

part. In any event, the argument as stated contrasts with her first-interview argument, 

which appealed to a procedure for moving the decimal point when multiplying by ten. 

 Each of Valerie’s second-interview arguments concerning the details of the 

standard multiplication algorithm contrasted with the analogous arguments from her first 

interview. These contrasts were all of a similar nature. In the first interview, Valerie 

reasoned in terms of digits, columns, and rules. In the second interview, she reasoned in 

terms of place value, i.e., the amounts that those digits represented. 
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Valerie’s reasoning about invalid partial products. In the second interview, 

following the task concerning the standard algorithm, Valerie was posed the Jessica Task: 

My friend Jessica wanted to do 37 times 58 mentally. And, to make it 
easier, she said that she would do 30 times 50 and 7 times 8 and add them 
together. Does Jessica’s strategy make sense? Why or why not? 

Valerie started to respond to this question by comparing answers. She found that Jessica 

would get an answer of 1500 + 56 = 1556. She was going to perform the standard 

algorithm, but I stopped her and asked whether she could answer the question without 

checking Jessica’s answer. Valerie immediately responded that Jessica’s strategy was 

“wrong.” She wrote the setup for the standard algorithm and said: 

She basically just separated it in half like this [draws a line segment 
between the tens and ones place]. So, she said, ‘Okay, well, I’ll make this 
thirty and this fifty, and that’s 1500. Then if I just add these [sic] or 
multiply these [pointing to 7 and 8] and add them, I’ll have the answer. 
But that’s not right. (Valerie, personal communication, November 11, 
2010) 

 In further discussion, Valerie seemed to interpret Jessica’s strategy as a 

compensation strategy: Jessica rounded 37 and 58 down to 30 and 50. She found the 

product of those, and then she compensated for rounding by adding in the product of 7 

and 8. Valerie explained that this was not right because the 7 and 8 actually represented 

“groups.” Initially, Valerie represented these groups incorrectly as “7 groups 30” and “8 

groups 50” (written on the board). She knew that the 7 and 8 represented groups, but in 

this context she initially seemed to have difficulty figuring out what they were groups of. 

She asked herself, “Would it be 7 groups of 30 or would it be 7 groups of 58?” 

 Valerie progressed in her thinking about these groups. She said, “Well, maybe if I 

talk about it’ll make more sense.” She erased what she had written and proceeded to think 
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in terms of partial products. She said, “To do this [pointing to the standard algorithm 

setup] you need to multiply—so, she made it 30 and 50, but that means I’d still need to 

do 8 times 37 and 5 times [sic] um, and 7 times 58.” Valerie tapped the digits and made 

jumps from one to another as she reasoned about pairing them up in partial products. 

After doing this, she had answered her own question. She concluded, “It would be 7 

groups of 58 and 8 groups of 37, is what she still needs to add to it.” 

 Valerie wrote 37 x 8 + 58 x 7 on the board. Taken separately, both of these partial 

products were sensible. However, taken together, the 7 x 8 product was being double-

counted, and I wondered whether Valerie was attuned to this point. I asked how the 37 x 

8 and 58 x 7 related to the 7 times 8 that Jessica had done. I said, “She did 30 times 50 

and 7 times 8. Does she also need to do those two that you wrote down?” Valerie 

responded, “If she did these [pointing to 37 x 8 + 58 x 7] this [pointing to 7 x 8] wouldn’t 

matter.” She continued thinking and said: 

So, I mean, essentially, she could use it. So, it would have to be [writing 
on board] like 30 times 8, 50 times 7, and then it would have to be 8 times 
7. So, like, if you break it down. So, this [points to the 3 and 8 in 37 x 8] 
would be 30 times 8. This [points to 7 and 5 in 58 x 7] would be 7 times 
50. And you’d still have to do 7 times 8, or 8 times 7, to get the 7 groups 
of 8 that you took away. (Valerie, personal communication, November 11, 
2010) 

 Figure 90 represents Valerie’s written work on the Jessica Task. In Valerie’s case, 

the Jessica Task was not merely a hypothetical situation. This had been Valerie’s go-to 

strategy for multiplication in the first interview and up until Day 14 of class. I took the 

Jessica task as an opportunity to ask Valerie about that directly. I said, “So, I remember 

that in your first interview, you used this strategy a few times. You multiplied the tens by  
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Figure 90. The final record of Valerie’s thinking about the 

Jessica Task. 

the tens and the ones by the ones…” Valerie responded, “Yeah, well, I thought it was 

right, but it’s not.” I asked her to say more about that. 

 Valerie used the example of 37 times 8, She said, 

Okay, say that was what you were asking me to solve [writes 37 x 8 on 
board]. I would just go about it, I’d say, okay, I can just do 30 times 8 and 
then 7 times 8, and that’ll give me the answer, which it will. Because 
that’s 240, 56, so the answer is 296. That works. That’s what I was going 
for last time. Because in this problem, you’re only asking me to account 
for the ones place. So, you’re saying you need 37 groups of 8. Like how 
many do you have? So, that’s fine. I can do 30 times 8 is 240, and then I 
can do these places [points to 7 and 8] and then I just add ‘em together. 
That works. But if you add another place right here [writes 1 in front of 
the 8, making it 18] then I have to be, okay, I need 10 groups of 37 plus 8 
groups of 37. So, because it’s like this [steps to the side and points back at 
the original problem of 37 x 58] I can’t just say that, okay, I’ll make it 30 
and 50 because that takes care of the tens place, and then this [taps the 7 x 
8] takes care of the ones place. Because it doesn’t account for all the 
groups. (Valerie, personal communication, November 11, 2010) 

Here, by building up from the one-by-two digit case to the two-by-two digit case, Valerie 

very clearly explained the appropriate partial products as “groups of” and justified why 

Jessica’s strategy was invalid. When I asked Valerie how her thinking about this had 

changed, 

Interviewer: So, what changed? How did you figure this out? 
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Valerie: [laughs] Well, ‘cause in class, I did the wrong thing and got the 
wrong answer. (Valerie, personal communication, November 11, 2010) 

Valerie did not remember the particular instance from class, but she remembered that she 

had used this strategy and gotten the wrong answer.  

Interviewer: So, you did this in class, and you got it wrong, and you 
remember getting it wrong. Is there a difference in something that you 
understand? 

Valerie: Yeah. I think before, I was just like, because we had learned like 
this [pointing to her 37 x 8 example] like, ‘oh, break it up,’ I was like, I 
didn’t think about [pointing to 37 x 18] ‘oh, well, now there’s a different 
place value.’ I didn’t think about that. I just thought about, ‘oh, well, I can 
just break it up and add it together. It’s easy.’ But it doesn’t work that way 
because once you move to a different, um, place value, instead of, if 
you’re—because essentially if you’re in the ones place, you think about it 
like everything is multiplied by one. So, it doesn’t change, like, it’s value; 
it just stays the same. So, that means, I can, you know, do [taps back and 
forth from 8 to the 3 in 37 and from 8 to the 7 in 37] just break it up, and 
it’s the same. But once you move into the tens place, I have to say, ‘well, 
the value of one is no longer one. It’s a value of ten. So, every time I think 
that I’m just multiplying by one, I’m really multiplying by ten. So, that’s 
why there’s more groups. (Valerie, personal communication, November 
11, 2010) 

I understand Valerie’s explanation in terms of relating place value, partial products, and 

groups of. The fact that a digit in the tens place represented a number of tens, not ones, 

was not in itself a new idea for Valerie. However, in the above explanation, she related 

this idea to the number of groups of the multiplicand that were represented by a product. 

In other words, when she talked about the 1 in 18 x 37 as representing ten, I do not think 

she meant that in the sense that, when she multiplied, she would have to put a zero at the 

end of a numeral. Rather, she was articulating an interpretation of that ten as representing 

ten groups of 37. She was explaining that the product consisted of 10 groups of 37 and 8 

groups of 37, and that this was “more groups” than the invalid strategy could account for. 
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Valerie’s reasoning about weight. The SST interview provided the opportunity 

to explore Valerie’s multiplication reasoning further. I posed a task that involved 

comparing estimates and that was similar to tasks discussed in class on Days 16 and 17: 

Interviewer: Let’s say that you want to estimate the product of 21 and 73. 

[Valerie writes standard algorithm setup for 21 x 73 on board] 

Interviewer: The question is: which would give the closer estimate 

Valerie: [whispers] Oh, no! 

Interviewer: [laughs] 20 times 73 or 21 times 70? 

[Valerie writes down standard algorithm setups for 20 x 73 and 21 x 70] 

Interviewer: Which would give the closer estimate? 

Valerie: Okay, let’s see if I remember how to draw this 

[Valerie draws a rectangle with dimensions labeled 20 and 73. She then 
adds a skinny rectangle to it, by increasing the side labeled 20 by 1 unit] 

Valerie: [mumbling] so, that’s 1 times 73 [writes 1 x 73 below her 
drawing and then writes 73 inside the skinny rectangle] 

Valerie: and then 

[Valerie draws another rectangle, which she partitions into two smaller 
rectangles. She labels the unpartitioned side 21 and the two parts of the 
partitioned side 70 and 3. She writes 63 inside the smaller partial 
rectangle.] 

Valerie: so this would give you [writes “closer estimate” next to the 
drawing corresponding to 21 x 70] 

Interviewer: Okay. Can you explain what you drew? 

Valerie: This took me a really long time to get, by the way [laughs] 

Interviewer: [laughs] 

Valerie: In class, I didn’t understand how to do it. Um, okay, so this is 
what you have [circles 21 x 73] and a lot of times you think, okay, I can 
just estimate, like when you add. So, you’re saying, okay, I estimated, say, 
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20 to 73. That’s easier ‘cause there’s a zero, so it won’t take as long. And 
this one’s the same thing [pointing at 21 x 70] I could estimate it, and 
there’d still be a zero. So, you need to look at it in terms of this [points to 
drawings]. You draw, if you draw a picture, and say you have 20 and 73 
[underlines dimension labels on her first drawing]. So, the original length 
of this would be 21, but you’re taking away one unit. So, it’s gonna be a 
unit that’s 1 by 73 ‘cause this hasn’t changed [points to 73 label on top of 
rectangle]. So, you do 1 times 73, which is 73. And then this one [points to 
her second drawing] you’re taking, going from 73 to 70. So, you’re taking 
off 3, which still has a height, or width or whatever, of 21. So, you need to 
do 21 times 3, which is 63. So, that’s less. [steps to the side] So, if you do 
this [points to 21 x 70] it’s gonna have, it’s gonna be 63 away from the 
actual answer. So, it’s gonna be closer [points to partial rectangles in each 
drawing] because there’s a smaller gap. (Valerie, personal communication, 
December 1, 2010) 

In the above response, Valerie’s use of rectangular area (Figure 91) seemed to help her 

organize her thinking about partial products in the context of comparing weights to 

determine the closer estimate. I used probes and follow-up questions to find out more 

about the difficulties that she had alluded to with understanding “this” as well as her 

understanding of the relationship between multiplication and rectangular area and the role 

of her rectangular area drawings in her reasoning. 

Interviewer: Okay. You said that it took you a long time to get this in 
class. Could you say more about that? Like what was difficult about it? 

Valerie: I just didn’t understand it ‘cause I, like I—I don’t know, like I’d 
never thought about it. ‘Cause whenever I was asked to estimate, it was 
never ‘which one is closer?’ It was always just ‘estimate the answer.’ So, I 
mean, I would just do 20 times 70, and get however much that is, right 
now, I think it’s 1400. Like that’s what I was always asked to do. I was 
never asked which one’s closer. So, when they asked, ‘well, which ones 
closer,’ I always just thought, well, this one’s obviously closer [points to 
20 x 73] because 73, and then you’re adding like a smaller one [points at 
20]. So, this one’s obviously bigger because it looks bigger, you know? 

Interviewer: Because 3 is more than 1? 

Valerie: Yeah, 73 looks bigger, so it looks like there’s gonna be a bigger 
answer. 
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Figure 91. Valerie’s work to compare estimates of 21 x 73. 

Interviewer: Okay. 

Valerie: when it turns out that it’s not. And then when she introduced the 
drawing, I did not understand the drawings ‘cause I didn’t understand this, 
so how was I gonna understand this and understand the drawings? It just 
didn’t make sense. 

Interviewer: [laughs] 

Valerie: So, but now that I like know how to do it, it makes sense because 
[leans into first drawing] if you’re taking away one unit, you’re taking 
away 1 unit by 73, and then [points to second drawing] 3 units by 21. So, 
it would make sense to multiply them together. 

Interviewer: Okay. So, what does it mean when you write 73 inside of that 
skinny rectangle there? 

Valerie: It just means that you’re taking away 73 pieces of this whole. 

Interviewer: So, you wrote 1 times 73 underneath. Could you just explain 
that to me, like why is it 1 times 73? 

Valerie: [draws a new rectangle off to the side] Because you’re finding the 
area. (Valerie, personal communication, December 1, 2010) 

 Valerie gave the example of finding the area of a 5-foot-by-5-foot lawn (Figure 

92). She divided the rectangle into rows and columns and explained that you multiply 5 

and 5 to get the number of “pieces” because there were 5 groups of 5: “If I have 5 groups 

of 5 pieces, that means that I’m gonna have to multiply the number pieces in a group by  
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Figure 92. Valerie’s drawing to explain the connection 

between multiplication and area. 

the number of groups to get how many single pieces there are” (Valerie, personal 

communication, December 1, 2010). 

Interviewer: Okay. So, for this estimation question, you went right away to 
making these drawings. Um, is that part of your thinking about this 
question or is it just like something you’re supposed to do ‘cause it’s what 
you did in class? 

Valerie: No, ‘cause like, if you just told me this [circles 21 x 70 and 20 x 
73] I couldn’t figure out what the answer was. I mean, for me, personally. 
Like if I draw it out, it makes more sense. I mean, I’m sure that I could 
look at this and say, ‘okay, well, I took away one group of 73 [circles the 0 
in 20 x 73] and in this one I took away three groups of 21 [circles the 0 in 
21 x 70]. I mean, it’s the same thing. But if I draw it out, I know I’m right. 
(Valerie, personal communication, December 1, 2010) 

 Valerie’s responses indicated to me that the initial difficulty she had mentioned 

concerning closer-estimate questions had to do with the novelty of the idea of accounting 

for the error in estimates (as opposed to the more familiar task of making rough estimates 

and not considering how far off they might be). I was also convinced by her responses 

that she had a sensible understanding of the relationship between multiplication and 

rectangular area. I believe that Valerie used rectangular area drawings in her work on the 

estimation task because the form of the task was familiar and she associated such 

drawings with this type of task. I am also convinced that these drawings made sense to 
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her and helped her to organize her thinking in accounting for the removed amounts by 

reasoning about partial products in term of partial rectangles. 

Valerie’s reflections on her experience in the course. At the beginning of the 

SST interview, I asked Valerie about her previous experiences with math in general and 

mental math in particular. I then asked about the content course and how her experience 

in that class compared to her previous mathematical experiences. When asked to talk 

about her mathematical experiences, Valerie said bluntly, “I don’t like math.” She 

described difficulty and confusion in her geometry and precalculus courses in high 

school. Of her experience with mental math prior to the course, she said, “I’d use it all the 

time, I guess, if I ever have to do something that’s easy. I always used to do it with 

change when I was little” (Valerie, personal communication, December 1, 2010). 

 Valerie described how the content course compared to her high school math 

classes: 

Well, I mean, in this class I’m learn how—it’s more of like, normally you 
don’t think about like adding fractions, or you don’t think about like how 
you get to an answer because you just punch it into a calculator. ‘Cause 
like my calculator was my best friend in high school, like I used it all the 
time. So, I mean, you don’t really think about like how do you multiply 
two-digit numbers, or how do you know like which parts are being added 
or how you can add them. You don’t think about that because you just add 
it and the calculator does it for you. (Valerie, personal communication, 
December 1, 2010) 

She mentioned multiplication again when talking about what the course was like and that 

it was challenging: 

I like it because it’s not just like a conventional math class, where in 
calculus or statistics, like people are taking now, that’s pretty much the 
same stuff we went over in high school, just continued. This kind of gives 
you a new, like, outlook on math, I guess. And it makes it that you think 
you knew everything there was to do in math, but you can’t figure out how 
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to multiply two-digit numbers or, like, use different strategies. (Valerie, 
personal communication, December 1, 2010) 

Clearly, double-digit multiplication was a topic that stood out to Valerie when she 

thought about her experience in the course. 

 I also asked Valerie whether her use of mental math outside of class hand 

changed: 

Interviewer: So, you said that you did quite a bit of mental math before, 
since you were a kid. Would you say that your thinking or your habits in 
mental math have changed over the course of the semester? 

Valerie: Um [smiles] I, like, find myself thinking about which strategies I 
use now [laughs]. Like, my friend and I, whenever we like figure 
something out, or if we ask like a question, like ‘oh, there’s ten of them’ or 
whatever, whatever. We’ll be like, well, what did you use to solve it? Like 
in all seriousness, we’ll be like, well, what did you do? (Valerie, personal 
communication, December 1, 2010) 

She gave an example of adding up the number of remaining meals on her meal plan and 

explaining her strategy to a friend. As a final reflection, Valerie said, “I guess I still do 

the same amount of mental math that I did before. It’s just that now I realize that I’m 

doing it, and I realize how I got the answer, and how like it makes sense” (Valerie, 

personal communication, December 1, 2010). 

Change in Valerie’s NSRS responses. Valerie scored 32 of 37 possible points 

(86%) on the NSRS posttest, compared to 29 of 32 points (78%) on the pretest. This was  

modest improvement overall, and it was on par with the mean gain of 2.92 for students in 

the High-scoring pretest group. Surprisingly, though, Valerie’s responses changed from 

incorrect to correct on four items related to multiplication.29 Below, I describe each of 

                                                
29 This is surprising since Valerie’s score only increased by three points. Yet she gained four points on 

these four multiplication items. It follows that at least one of Valerie’s other responses changed from 
correct to incorrect. My analysis focused only on Valerie’s multiplication reasoning.  
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these items and Valerie’s pre/post responses. Since the NSRS is a multiple-choice 

measure with no written work, these responses do not afford access to how Valerie 

reasoned in selecting them. I offer some conjectures that relate these items to Valerie’s 

reasoning in her homework and interview responses. However, these are only 

conjectures. I do not claim to know how Valerie arrived at any of her NSRS responses. I 

include the data here because there was a conspicuous improvement in Valerie’s answers 

to multiplication items. This provides corroborating evidence that Valerie’s reasoning 

about multiplication changed over the course of the semester. 

 Item #9 asked the following: “93 x 134 = 12462. How much greater than 12462 is 

the product of 93 and 135?” On the pretest, Valerie selected (d) I can’t tell without 

calculating, which counted as incorrect. On the posttest, she correctly selected (a) 93. 

This item relates directly to partial products. It seems plausible that Valerie was able to 

correctly answer it in the posttest by reasoning about multiplication in terms of repeated 

addition, i.e., thinking of 93 x 134 as 134 groups of 93, and comparing that to 135 groups 

of 93. That would have been consistent with reasoning that she displayed in the second 

and third interviews. 

 Item #17 asked students to select the greatest product from amongst the options 

(a) 18 x 17, (b) 16 x 18,  (c) 17 x 19, and (d) 19 x 15. On the pretest, Valerie incorrectly 

answered (a). On the posttest, she correctly answered (c). It is difficult to say how Valerie 

might have arrived at her pretest answer of 18 x 17. In the posttest, she might have 

compared 18 x 17 with 17 x 19 by reasoning about multiplication in terms of repeated 

addition (i.e., 19 groups of 17 is more than 18 groups of 17). 
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 Item #3 asked students to select the answer that was “the same as 0.5 x 840.” On 

the pretest, Valerie incorrectly answered (c) 840 ÷ 5. On the posttest, she correctly 

answered (a) 840 ÷ 2. This item related multiplication by 0.5 to division by 2. The 

improvement in Valerie’s answer may have been related to her understanding of doubling 

and halving. It may also have been related to her understanding of decimal numbers. 

 Item #15 asked, “How many digits are in the product of a 2-digit number and a 2-

digit number?” On the pretest, Valerie incorrect answered (a) must be three digits. On the 

posttest, she correctly answered (c) can be three digits or four digits. It is difficult to say 

how exactly Valerie’s reasoning about this item might have changed. Based on the 

pre/post contrast in her reasoning about the standard algorithm, I would conjecture that 

the changed involved thinking in terms of place value, rather than in terms of the rule-

based behavior of digits. 

 Valerie’s answer to Item #23 did not change from correct tocounted as incorrect 

both on the pre and the post. However, her specific response did change, so I include the 

data here for completeness. Item #23 asked, “Compare 521 x 5 and 520 + 521 + 522 + 

523 + 524. Which is greater?” On the pretest, Valerie incorrectly answered (b) the result 

of 520 + 521 + 522 + 523 + 524 is greater. On the posttest, she left the item blank, 

which counted as incorrect.  

 The changes in Valerie’s NSRS responses to multiplication items provide 

corroborating evidence to the analysis presented here. These results indicate that 

Valerie’s reasoning about multiplication changed in significant ways during the semester. 
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Summary of Valerie’s reasoning in the second and third interviews. After the 

end of the whole-number portion of the course, Valerie was interviewed twice about  

whole-number ideas and about her experience in the course. In these interviews, Valerie 

reasoned about multiplication more meaningfully and flexibly than in the first interview. 

She used a variety of valid mental multiplication strategies, and she could meaningfully 

justify why her old go-to strategy was invalid. Her justifications for the details of the 

standard algorithm changed from being procedural and digit-focused to involving 

reasoning about the amounts represented by those digits.  

 At the same time, Valerie still found reasoning about partial products to be 

challenging. On several occasions, she struggled to correctly account for partial products. 

In the Jessica task, Valerie successfully accounted for all partial products by using the 

pairing of digits in the standard algorithm to help organize her thinking. When she 

reasoned about weight in the third interview, Valerie used rectangular area in a similar 

manner, creating drawings that helped her to organize her thinking about partial products 

and to pair them up appropriately. 

Conclusions from the Case of Valerie’s Number Sense Development 

 In this section, I conclude the presentation of this case study. I summarize the 

development of Valerie’s multiplication reasoning. I also discuss the role of particular 

tools in Valerie’s accounting for partial products. 

Summary.In her first interview, Valerie was dependent on an invalid mental  

multiplication strategy.30 She was confident with this strategy and trusted it more than the 

                                                
30 She might have been able to compute one-by-two digit products correctly. I cannot say this for sure 

because there was no such task in the interview. We know that Valerie’s go-to strategy for computing two-
by-two digit products was invalid. 
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MASA. She preferred her strategy due to its simplicity. She found it easy to manage 

mentally, whereas the MASA seemed too complicated. Valerie could come up with no 

other mental multiplication strategies. Valerie reasoned about the standard written 

multiplication algorithm in terms of the rule-based behavior of digits in columns. Her 

reasoning with her go-to strategy was not connected to her procedural knowledge of the 

algorithm. 

 During the semester, Valerie started out reasoning vaguely about nonstandard 

strategies as involving breaking numbers down, computing, and putting numbers back 

together. Reasoning at this grain size, it seemed that she was blind to important 

distinctions between strategies. On Day 14, Valerie used her go-to multiplication strategy 

in class and learned that it was invalid. From that point on, she was more attuned to 

distinctions between strategies. In her homework reflection on Day 14, Valerie was able 

to argue that her old go-to strategy was invalid by reasoning about partial products in 

terms of part of one factor being multiplied by all of the other factor, using the idea of 

multiplication as repeated addition. 

 Valerie also encountered strategies that leveraged the associative property of 

multiplication. When she first saw an example of this, in Aaron’s division strategy from 

Day 4, she did not recognize the associative aspect of it, probably because she simply 

saw it as another nonstandard strategy that involved breaking numbers down. However, 

on Day 17, Valerie did make sense of Equal Area Shifting, and in her homework she 

spontaneously applied the idea of halving and doubling to estimate the product of 

decimal numbers. Weight was discussed on Day 16 and 17. Valerie gave an unclear 
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homework response that suggested she did not understand how to coordinate partial 

products correctly. 

 In her second interview, Valerie reasoned flexibly about computing products, 

exhibiting the ability to use a variety of valid strategies. Her scaffolded strategy range 

included halving and doubling, which seemed to be a new strategy for her. Valerie knew 

that her old strategy was invalid and could justify this fact meaningfully. She could also 

justify the standard algorithm by reasoning about digits in terms of their place values. 

Valerie knew that she needed to account for partial products, and she thought carefully 

about how to do this, but she still found it difficult.  Both the standard algorithm and 

rectangular area served as tool that helped her to organize her thinking. 

 Valerie reported that she had become more aware of her mental computation 

activity outside of school and of the strategies that she used. The fact that her old go-to 

had turned out to be invalid made an impression on Valerie, and she thought more 

carefully about whether her strategies made sense. 

The role of tools and models. Zandieh and Rasmussen (2010) define models as 

“student-generated ways of organizing their activity with observable and mental tools”  

(p. 58). In this sense, I view rectangular area drawings and the standard multiplication 

algorithm as observable tools that Valerie used to organize her activity when reasoning 

about partial products. Specifically, Valerie’s rectangular area drawings enabled her to 

account for the contribution of units digits removed from a product in rounding by 

relating the given factors to the dimensions of a rectangle and relating the dimensions of 

the removed part of that rectangle to a partial product. Similarly, Valerie’s reenactments 

of the setup and digit-pairing in the standard written multiplication algorithm enabled her 
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to correctly account for partial products in two-by-two-digit multiplication. Without this 

aid (as in her response to 15 x 24 in the second interview) she was unable to exhaust all 

pairings and account for the whole product. With the setup of the algorithm as a guide, 

she was able to successfully and sensibly account for partial products by relating them to 

“groups of.” 

 In designing instruction for this course, the instructor and I had anticipated the 

importance of rectangular area. Indeed, we have previously written about how we saw it 

supporting the development of more sophisticated reasoning about products. The role of 

the standard algorithm, on the other hand, was unanticipated. Valerie came to the content 

course with this piece of procedural knowledge. She knew the standard multiplication 

algorithm. When it came to mental multiplication, she preferred her strategy over the 

MASA. However, in the class, she became aware that her strategy was invalid and she 

came to understand why. Valerie’s previous knowledge of the standard multiplication 

algorithm was integral to the reasoning that enabled her to understand that her old 

strategy was invalid and enabled her to appropriately account for partial products.  

Conclusion 

 I conclude this chapter by summarizing the results in terms of themes that 

emerged from the two case studies. I also discuss the issue of comparability of case 

studies, and I describe specific ways in which the cases of Brandy and Valerie may 

inform the work of other researchers. 

Summary of Insights Gained from the Case Studies 

 In the paragraphs below, I briefly describe insights into prospective elementary 

teachers’ number sense development that I gained from each case study.  
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Insights gained from the study of Brandy. At the beginning of the course, 

Brandy was dependent on the standard addition and subtraction algorithms. It was not the 

case that Brandy was dependent on these algorithms despite not understanding them. 

Rather, she was dependent on the standard algorithms because she did not understand 

them. 

 Brandy had knowledge of place value that she could have used to make sense of 

the standard algorithms. However, when performing and reasoning about those 

algorithms, she thought in terms of the rule-based behavior of digits in columns, rather 

than reasoning about digits in terms of their place values.  

 The reasoning that enabled Brandy to make sense of the standard addition and 

subtraction algorithms overlapped with the reasoning involved in making sense of 

Transition strategies. As a result of using her knowledge of place value to understand the 

standard algorithms and Transition strategies, Brandy came to use the MASAs less often 

and Transition strategies more often. Essentially, there is a fine line between using 

Transition strategies and reasoning meaningfully about the standard algorithms. 

 Compensation was part of Brandy’s initial scaffolded strategy range. In the story 

of her developing reasoning, Compensation strategies not only became part of her 

strategy ranges proper. Rather, compensation was the lens through which Brandy 

interpreted many nonstandard strategies. The strategies that occur in prospective 

elementary teachers’ scaffolded strategy ranges reflect particular ways of reasoning. 

These ways of reasoning may influence how prospective elementary teachers interpret 

the nonstandard strategies that they encounter. 
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 Brandy latched on to a particular nonstandard strategy from class, Borrow to 

Build. She seemed to overgeneralize the meaning of this strategy, seeing it in instances 

that I would categorize as distinct strategies. Yet, even when doing this, she reasoned 

sensibly and produced valid mathematical arguments. She overgeneralized the 

application of a strategy name, but she did not overgeneralize mathematical ideas. 

 Reasoning about subtraction as a take-away process was a commonplace idea that 

Brandy brought with her to the content course. This idea and others served as productive 

resources for her learning. For example, Brandy used the idea of subtraction as a take-

away process to construct valid Subtrahend Compensation on her own. 

 My analysis emphasized the purely mathematical ideas in students’ arguments. 

However, Brandy’s reasoning about Shifting the Difference suggests that ideas such as 

making a computation easier (in a particular way) can also be important factors in 

prospective elementary teachers’ understanding and adoption of nonstandard strategies.  

Insights gained from the study of Valerie. At the beginning of the course, 

Valerie was dependent on an invalid strategy. This was possible because she prioritized 

simplicity when it came to mental computation. Her strategy was easy to manage 

mentally, whereas the MASA seemed too complicated. Thus, Valerie trusted answers 

obtained by her strategy. In a case of discrepant answers, she imagined that she must 

have made an error using the MASA. 

 Valerie initially reasoned about the standard written multiplication algorithm in 

terms of the rule-based behavior of digits in columns. Her reasoning with her invalid 

strategy was not related to her procedural knowledge of the algorithm. Rather, she 
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thought in terms of accounting for all of each factor. In this way, her invalid strategy 

made sense to her. 

 Valerie was initially insensitive to distinctions between nonstandard strategies. 

They all seemed to involve breaking numbers down, computing, and adding things 

together. As a result, both valid and invalid strategies seemed equally sensible. It was 

only when Valerie became aware that her go-to strategy was invalid that she began to 

make more careful distinctions between nonstandard strategies. 

 Valerie’s reasoning about partial products changed, and she became more able to 

account for them correctly. Reasoning about multiplication in terms of repeated addition 

was a productive idea in this process. Viewing one factor or the other as the multiplier 

and appropriately treating double-digit products as consisting of two partial products was 

more accessible for Valerie than accounting for all four partial products explicitly. She 

was able to do this by switching repeated-addition perspectives, viewing one factor as the 

multiplier and then the other. Valerie’s ability to account for partial products was also 

supported by the standard algorithm and rectangular area, which served as tools that 

helped her to organize her thinking.  

How the Case Studies Inform Theory 

 This chapter has presented two case studies of prospective elementary teachers 

developing improved number sense. In case study research, it is important to consider 

how insights gained from individual cases might contribute to an understanding of the 

phenomenon of interest. In other words, in what can be learned from these analyses? 

 I would remind the reader that this is fundamentally qualitative research, and the 

questions of interest are process, rather than variance questions (Maxwell, 2005). The 
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class was selected as a setting for the research because evidence suggested that it was not 

a typical mathematics content course. The prospective elementary teachers enrolled in 

this course experience improved number sense, and the literature suggests that this kind 

of change does not typically occur. In cases in which prospective elementary teachers do 

develop improved number sense, we are seeking to better understand what supported that 

development. 

 Within the setting of this special content course, two participants were selected 

for case studies from among the seven students who voluntarily participated in 

interviews. Brandy was selected as a case of number sense development with a specific 

focus on her reasoning about place value, addition, and subtraction. Valerie was selected 

as a case of number sense development with a focus on multiplication. I do not claim that 

these two individuals may be regarded as representative of the set of interview 

participants, let alone the entire class. Rather, the cases were selected on the basis of their 

potential to illuminate our understanding of certain aspects of the phenomenon of 

prospective elementary teachers’ number sense development. 

 The cases of Brandy and Valerie contribute to the understanding prospective 

elementary teachers’ number sense development by informing revisions and elaboration 

to the local instruction theory. This process involves a reflexive relationship between 

actual learning trajectories and hypothetical learning trajectories, and between 

hypothetical learning trajectories and the local instruction theory. For example, both case 

studies led to insights relating to the roles of the standard algorithms in the prospective 

elementary teachers’ number sense development. 
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 We have conceptualized the LIT in terms of prospective elementary teachers 

moving from dependence on the standard algorithms to reasoning flexibly about the 

operations. Insights gained from the case studies inform our thinking about these standard 

algorithms. In both cases, knowledge of the standard algorithm played an important role 

in the case students’ developing reasoning. For Brandy, coming to understand the 

standard algorithms helped her to move away from dependence on them. In Valerie’s 

case, her knowledge of the standard multiplication algorithm helped her to account for 

partial products. 

 These case studies not only inform the research of Nickerson and myself. The rich 

descriptions also afford their comparability by enabling other researchers to judge for 

themselves how the findings apply based on the ways in which they overlap with other 

cases. It is the more general theory not the details of the case that may be applied to 

future work involving number sense development and prospective elementary teachers.
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Chapter 7: Conclusion 

 In order to support children’s learning of elementary mathematics meaningfully, 

elementary teachers need to understand elementary mathematics meaningfully and 

flexibly (Ball, 1990; Ma, 1999). However, researchers have found that prospective 

elementary teachers tend to be reliant on standard algorithms, rather than reasoning 

meaningfully and flexibly about numbers and operations (Ma, 1999; Newton, 2008; 

Yang, 2007). Previous research had focused on single or pre/post snapshots of 

prospective teachers’ number sense, as opposed to analyzing the development of number 

sense. In this study, I set about to analyze the ways in which prospective elementary 

teachers’ number sense develops. 

 In previous research, we found that prospective elementary teachers enrolled in a 

mathematics content course informed by a local instruction theory developed improved 

number sense over the course of a semester-long teaching experiment (Whitacre & 

Nickerson, 2006). Similarly, in this study, students scored higher on measures of number 

sense. A subset of the students were interviewed pre and post. They transitioned from 

being generally dependent on standard algorithms to reasoning more flexibly in mental 

computation by using more nonstandard strategies. 

 In this study, I investigated prospective elementary teachers’ number sense 

development during a first mathematics content course that was designed with number 

sense development as a goal. I duplicated analyses from a previous study and found 

similar results. I also moved beyond the previous study in several ways, investigating 

number sense development as a microgenetic, sociogenetic, and ontogenetic process 

(Saxe & Esmonde, 2005). I asked the following research questions: As prospective 
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elementary teachers participate in a mathematics content course designed to support their 

development of number sense, 

1. How does the number sense of individuals evolve? 

2. What ideas come to function as if shared? What classroom mathematical practices 

emerge and become established? 

The ontogenetic strand concerned development over time in individual students’ 

reasoning. This analysis addressed Research Question 1. The sociogenetic strand 

concerned development over time in the collective activity that occurred in the 

classroom. This analysis addressed Research Question 2. The microgenetic strand 

concerned instances of mathematical activity, both in class and in interviews. These 

analyses contributed to both the ontogenetic and sociogenetic analyses, and thus helped 

to answer both research questions. 

 I approached this study from a situated perspective (Cobb & Bowers, 1999). The 

emergent perspective informed my approach to the research in terms of taking both social 

and individual lenses to the analysis of number sense development, as well as taking an 

interest in the relationship between these (Cobb & Yackel, 1996). 

 I used a variety of methods to perform analyses of the three strands of 

development. The primary means of assessing change in students’ reasoning was via 

pre/post interviews with seven participants. These microgenetic analyses of participants’ 

strategies and arguments enabled me to make pre/post comparisons of characteristics of 

their reasoning. I focused especially on flexibility and the distribution of strategies along 

the spectrum from Standard to Nonstandard. 
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 I analyzed sociogenesis of number sense by using the methodology of Rasmussen 

and Stephan (2008). I coded arguments made in whole-class discussion using Toulmin’s 

(1969) model. I applied established criteria for identifying ideas that functioned as if 

shared (Cole, et al., 2011; Rasmussen & Stephan, 2008). I then organized these as-if 

shared ideas according to more general mathematical activities. 

 I analyzed ontogenesis of number sense by means of two detailed qualitative case 

studies (Yin, 1994) of individual participants’ reasoning. I analyzed Brandy’s developing 

reasoning about place value, addition, and subtraction, as well Valerie’s developing 

reasoning about multiplication with a particular focus on partial products. I did this 

through fine-grained analysis and thick description of their reasoning in the interviews, 

together with analysis of written work, and coordinated with classroom events. 

 The results of the analyses of the microgenetic, sociogenetic, and ontogenetic 

strands all contribute to answering my research questions. In the remainder of this 

chapter, I summarize the study results. I discuss analytic and theoretical contributions of 

the research. I discuss implications for teaching. Finally, I describe likely directions for 

future research. 

Summary of Results 

 In this section, I summarize the results presented in Chapters 4, 5, and 6. I frame 

these results in terms of how they speak to the research questions. 

Improvement in Participants’ Number Sense 

 Several types of evidence point to improvement in the study participants’ number 

sense. An established instrument, the Number Sense Rating Scale, was used as a 

quantitative measure of number sense. This test was administered to 34 students pre and 
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post, and the mean score increased by more than one standard deviation, from 65% to 

79%. Furthermore, the mean gain score was greater than that seen in the previous 

semester for students in all the groups—low, middle, and high. The same 34 students 

took the Student Preference Survey pre and post. These results indicate that students 

came to see multiplication and division as less difficult than they had at the beginning of 

the semester. Students reported increased willingness to perform computations mentally, 

especially in the case of multiplication. The inclination to actually apply one’s 

understanding of numbers and operations is an aspect of number sense. Thus, these 

results provide additional evidence of improved number sense.  

 We have seen that the interview participants became more flexible in whole-

number mental computation. The interview participants came to use a wider variety of 

strategies for a given operation. In addition to becoming more flexible, the interview 

participants came to use nonstandard strategies far more often. That is, the distribution of 

strategies used shifted decidedly towards the nonstandard end of the spectrum. 

Nonstandard strategies are associated with number sense because they are often 

performed ad-hoc, rather than algorthmically, and thus require students to recruit their 

understanding of numbers and operations in reasoning about how to perform the 

computation. 

 The above results provided evidence that the participants’ number sense 

improved. These results amount to a duplication of those of the previous study. Repeating 

studies is worthwhile, and it is not often done in mathematics education research. Five 

years after the previous study, with a new group of students and a different instructor 

teaching the course, comparable results were obtained in a course in which instruction 
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was informed by the local instruction theory. Prospective elementary teachers are 

developing improved number sense in the course, especially when the teaching is 

informed by the local instruction theory for number sense development. This noteworthy 

improvement in the number sense of prospective elementary teachers merits further 

investigation since the literature suggests that it does not typically occur. 

 The results presented in Chapter 4 established the premises of the research 

questions. The prospective elementary teachers’ number sense improved during the 

course. Thus, the classroom teaching experiment provided an appropriate setting to ask 

how study participants’ number sense improved. The research questions were directly 

addressed by the results presented in Chapters 5 and 6. 

Sociogenesis of Number Sense 

 The results presented in Chapter 5 concerned the sociogenetic strand of 

prospective elementary teachers’ number sense development. I presented evidence that 

indicated social norms such that the methodology of Rasmussen and Stephan (2008) was 

appropriate to the analysis of collective activity in the content course. I then told the 

stories of the classroom math practices that emerged and became established in two 

whole-number content strands. 

 The methodology of Rasmussen and Stephan (2008) assumes classroom social 

norms involving argumentation that are characteristic of inquiry-oriented instruction. The 

section titled Social Norms presented evidence that the mathematics content course as 

enacted was characterized by students’ inquiry into elementary mathematics. Most of the 

arguments were made by students, many were co-constructed by the Instructor and one or 

more students, and few were made by the Instructor alone. Also, expanded arguments 
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occurred approximately as frequently in the content course as they did in an inquiry-

oriented linear algebra course (Wawro, 2011). 

 In the section titled Classroom Mathematical Practices: Place Value, Addition, & 

Subtraction, I documented a case of sociogenesis of number sense. In the strand of 

activity involving ideas of place value, addition, and subtraction, I categorized sets of as-

if shared ideas into five classroom mathematical practices. In terms of collective activity, 

the class progressed from (CMP1) assuming the authority of the standard algorithms to 

(CMP2) making sense of place value to (CMP3) using an understanding of place value to 

make sense of the standard addition and subtraction algorithms, as well as Transition 

strategies, to (CMP4) reasoning flexibly about addition and (CMP5) reasoning flexibly 

about subtraction. 

 Viewing the progression through CMPs in terms of the Standard-to-Nonstandard 

framework, CMP1 corresponded to the Standard category (Figure 93). In this initial stage 

of collective activity, the class relied on standard algorithms. CMP2 and CMP3 

correspond to the Transition category. By making sense of place value and relating that 

understanding to the standard algorithms, the class transitioned from using the MASAs 

for addition and subtraction to using Right to Left and Left to Right strategies. CMP4 and 

CMP5 correspond to the Nonstandard categories (with and without reformulation). The 

class reasoned flexibly about addition and subtraction by making sense of and using 

various nonstandard strategies. 

 In the section titled Classroom Mathematical Practices: Multiplication, I 

documented a second case of sociogenesis of number sense. In the strand of activity 

related to multiplication, I identified three additional classroom mathematical practices. 
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Actual learning 
route 

CMP1 CMP2 & 
CMP3 

CMP4 & CMP5 

Envisioned learning 
route 

Standard Transition Nonstandard Nonstandard 
w/Reformulation 

Figure 93. Correspondence between CMPs and envisioned 
learning route. 

The class progressed from (CMP1) assuming the authority of the standard algorithm to 

(CMP6) separating, multiplying, and adding with single-digit multipliers to (CMP7) 

separating, multiplying, and adding with double-digit multipliers to (CMP8) reasoning 

flexibly in computing and estimating products. 

 In the multiplication strand, we again see a correspondence between CMPs and 

the Standard-to-Nonstandard framework (Figure 94). In the initial stage of collective 

activity, the class assumed the authority of the standard multiplication algorithm. Single-

digit SMA served as a Transition strategy in students’ progression from dependence on 

the standard algorithm to reasoning flexibly about multiplication. Through separating, 

multiplying, and adding, students came to reason about multiplication in terms of partial 

products, which helped to lay the groundwork for making sense of multidigit 

multiplication. Students used previously established ideas concerning partial products, 

together with reasoning about products in terms of rectangular area, to make sense of 

multidigit multiplication as involving four partial products. This enabled them to both 

justify the standard algorithm and move beyond it by correctly applying SMA to the case 

of a double-digit multiplier. In the last CMP, students reasoned flexibly about computing 

products by using multiple nonstandard strategies. 

 Looking more broadly at the results of both strands of analysis of collective 

activity, a few points stand out as surprising and noteworthy. The standard algorithms for 
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Actual learning 
route 

CMP1 CMP6 CMP7 CMP8 

Envisioned learning 
route 

Standard Transition Nonstandard Nonstandard 
w/Reformulation 

Figure 94. Correspondence between CMPs and envisioned 
learning route. 

whole-number arithmetic initially functioned authoritatively, and their authoritative status 

was leveraged productively. It led to a classroom culture in which students made 

mathematical arguments for the validity of nonstandard strategies. Eventually, students 

were also able to justify the validity of the standard algorithms. 

 Once the standard algorithms had been justified, a variety of ideas related to 

nonstandard strategies came to function as-if shared. Also, established as-if shared ideas 

came to be used in more sophisticated ways as students reasoned about nonstandard 

strategies. Even commonplace ideas such as reasoning about subtraction as a take-away 

process were used productively in students’ arguments for the validity of nonstandard 

strategies. Students’ reasoning flexibly about operations did not occur haphazardly. It 

was the culmination of a set of foundational as-if shared ideas, together with the freedom 

from the standard algorithms that seemed to result from making sense of them. 

Ontogenesis of Number Sense 

 I presented two case studies of ontogenesis of number sense, which corresponded 

to the content strands that were studied in the sociogenetic analysis. I described Brandy’s 

developing reasoning about place value, addition, and subtraction in the first section, and 

I described Valerie’s developing reasoning about multiplication in second section. In the 

Conclusion section, I identified insights gained from the case studies and discussed the 

issue of generalizing from the case studies to the broader phenomenon of interest. 
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Brandy’s developing reasoning about place value, addition, and subtraction. 

Brandy developed from Inflexible to Flexible in her reasoning about computing both 

sums and differences. She did this by applying her understanding of place value to make 

sense of both standard algorithms and Transition strategies. Knowledge that she brought 

with her to the course served as a resource in her learning. Her scaffolded alternatives, 

particularly Compensation strategies influenced how she interpreted the nonstandard 

strategies that she encountered in class. A particular addition strategy from class, Borrow 

to Build, was influential in Brandy’s developing reasoning about both addition and 

subtraction. Brandy used the commonplace idea of subtraction as a take-away process to 

construct valid Subtrahend Compensation, a nonstandard strategy that is counterintuitive 

for many prospective elementary teachers. Finally, although Brandy could justify the 

validity of Shifting the Difference, she did not seem to understand how to apply it to 

make computations easier, and this may explain why she did not adopt the strategy. 

 Viewing Brandy’s developing number sense through the lens of the environment 

metaphor, she developed increased attunement to constraints and affordances in the 

domain of numbers and quantities. Specifically, she recognized the affordances of 

benchmark numbers, such as 49, and selected special strategies on the basis of the given 

numbers. She also came to distinguish between the minuend and subtrahend in 

subtraction, which enabled her to makes sense of how to compensate for rounding the 

subtrahend. Brandy developed a broad heuristic, which she identified as borrowing to 

build, in which she sought to form nice numbers and compensate appropriately for doing 

so. She identified analogous ways of rounding, computing, and compensating across 

different operations and with regard for the particular properties of those operations. 
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 At the beginning of the course, Valerie was dependent on an invalid strategy, 

which she preferred over the MASA due to its simplicity. Her reasoning with her invalid 

strategy was not related to her procedural knowledge of the algorithm. Rather, she 

thought in terms of accounting for all of each factor. Valerie was initially insensitive to 

distinctions between nonstandard strategies. It was only when Valerie became aware that 

her go-to strategy was invalid that she began to make more careful distinctions between 

nonstandard strategies. 

 She was able to make sense of the standard multiplication algorithm by reasoning 

the digits in terms of their place values. Valerie’s reasoning about partial products 

changed, and she became more able to account for them correctly. The commonplace 

idea of reasoning about multiplication in terms of repeated addition was a productive idea 

in this process. Viewing one factor or the other as the multiplier and appropriately 

treating double-digit products as consisting of two partial products was more accessible 

for Valerie than accounting for all four partial products explicitly. She was able to do this 

by switching repeated-addition perspectives, viewing one factor as the multiplier and then 

the other. Valerie’s ability to account for partial products was also supported by the 

standard algorithm and rectangular area, which served as tools that helped her to organize 

her thinking.  

 Viewing Valerie’s case through the lens of the environment metaphor, she 

became increasingly attuned to distinctions between nonstandard strategies. In so doing, 

she became aware of constraints that made certain strategies invalid. Initially all 

nonstandard strategies seemed to involve breaking numbers up, computing, and then 

putting numbers back together. She came to view operations as having particular 
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constraints and affordances. For example, a strategy that worked for addition would not 

work for multiplication. Once Valerie became aware of the need to account for partial 

products, she also needed to find useful tools for the purpose. Rectangular area and the 

standard multiplication algorithm both enabled her to organize her accounting activities. 

 It was not the case that Brandy was dependent on the standard algorithms despite 

not understanding them. Rather, she was dependent on the standard algorithms because 

she did not understand them. Essentially, there is a fine line between using Transition 

strategies and reasoning meaningfully about the standard algorithms. The strategies that 

occur in prospective elementary teachers’ scaffolded strategy ranges reflect particular 

ways of reasoning. These ways of reasoning may influence how prospective elementary 

teachers interpret the nonstandard strategies that they encounter. Reasoning about 

subtraction as a take-away process was a commonplace idea that Brandy brought with her 

to the content course. This idea and others served as productive resources for her 

learning. In addition to mathematical justification, understanding practical aspects of 

strategy application, such as making a computation easier in a particular way can also be 

important factors in prospective elementary teachers’ understanding and adoption of 

nonstandard strategies. 

Conclusion 

 Chapters 4–6 presented results of analyses of the microgenesis, sociogenesis, and 

ontogenesis of number sense. The results presented in the first section of Chapter 4 

provided evidence of substantial improvement in the number sense of the study 

participants. These results established that the setting was appropriate to investigate 

number sense development. The second section of Chapter 4 presented results of two new 
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analyses, introducing the constructs of strategy ranges and strategy-arguments. These 

afforded more fine-grained descriptions of the interview participants’ mental computation 

activity. Chapter 4 began to address Research Question 1 and set the stage for the rest of 

the study results. 

 Chapter 5 told the story of sociogenesis of number sense in two distinct content 

strands. These accounts spanned grain sizes, from specific vignettes, to as-if shared ideas, 

to classroom mathematical practices. The fine-grained descriptions elucidated the details 

of collective activity and the nuances of students’ reasoning. The coarse grain size of 

progressions through CMPs conveyed a big picture and enabled these results to be related 

to the local instruction theory. The results presented in Chapter 5 answered Research 

Question 2. 

 Chapter 6 presented two case studies of the ontogenesis of number sense. 

Brandy’s case was one of exceptional number sense improvement that spanned two 

operations. Valerie’s case was specific to multiplication and afforded a more fine-grained 

analysis of her developing reasoning about partial products. Both analyses led to insights 

concerning the cases of number sense development. The results presented in Chapter 6 

answered Research Question 1. 

Discussion of Analytic and Theoretical Contributions 

 In this section, I highlight the innovative aspects of the study. These represent 

both methodological and empirical contributions to the field.  

Categories of Flexibility and Strategy Ranges 

 My analysis of interview participants’ mental computation activity benefited from 

two extant frameworks. Markovits and Sowder’s (1994) framework describes the extent 
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to which mental computation strategies depart from the standard algorithms and, hence, 

are associated with number sense. Heirdsfield and Cooper’s (2004) framework 

characterizes accurate mental calculators as either inflexible or flexible and describes the 

distinct mental processes corresponding to these two categories. My analysis of 

participants’ strategy ranges and flexibility built upon and integrated these two 

frameworks. 

 The analysis of flexibility made use of the categories Inflexible and Flexible. I 

also found it useful to introduce an in-between category called Semiflexible in order to 

distinguish individuals who choose between only two possible strategies from those who 

select from a repertoire of three or more strategies. In the analysis presented earlier, the 

connection between these categories and strategy ranges was left implicit. Here, I lay out 

that relationship explicitly. 

 An individual’s strategy range for mental computation was defined in terms of a 

specific operation as the set of valid strategies that the person used to perform that 

operation mentally. I conceptualize this set of strategies as ordered along the spectrum 

from Standard to Nonstandard. There are various ways in which participants’ strategies 

were distributed along that spectrum, and these gave rise to the categories MASA-bound, 

Polarized, Transitional, Spread, Transition+, and Independent. These strategy ranges 

relate naturally to the categories of flexibility. For example, an individual whose strategy 

range is Polarized is necessarily Semiflexible, and an individual who is MASA-bound is 
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necessarily Inflexible.31 Table 41 illustrates the coordination of the categories of 

flexibility and strategy ranges. 

Table 41. Coordination of Strategy Ranges and Flexibility 
Inflexible Semiflexible Flexible 

MASA-bound 

 

Polarized 

Transitional 

Spread 

Transition+ 

Independent 

 

 In this coordinated framework, the two dimensions describe distinct aspects of 

participants’ mental computation activity. Flexibility refers to a process related to making 

choices. Inflexible participants do not make a choice of strategy. Semiflexible 

participants choose between two possible strategies. Flexible participants choose from 

amongst three or more strategies. Whereas these categories of flexibility describe the 

number of distinct strategies that participants use, strategy-range profiles describe the 

types of strategies that they use. These are described in terms of the Standard-to-

Nonstandard spectrum. 

 Strategy ranges offer a more fine-grained way of characterizing mental 

computation reasoning. There is also the potential for strategy ranges to provide a useful 

tool to describe students’ reasoning in other domains, such as comparing fractions. 

                                                
31 Note that Inflexible need not imply MASA-bound. In fact, Valerie is an exception. Apart from her 

case, however, the Inflexible participants invariably were MASA-bound. Likewise, Heirdsfield and Cooper 
(2004) described accurate, inflexible mental calculators as relying on the MASAs specifically. It is not 
clear how to integrate invalid strategies into the picture of strategy ranges. This matter will require further 
attention. 
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Strategy-Arguments 

 The strategy-argument construct itself represents a contribution to the field. In 

interview settings, researchers often depend on students’ verbal descriptions in order to 

understand and identify their strategies. These descriptions serve to justify the student’s 

solution to a given task. They are mathematical arguments made by a student in a social 

context. Viewing them as such acknowledges the human aspects of the research setting. It 

also can help the researcher to distinguish the mathematical ideas that students use to 

justify their strategies. 

 I identified 17 particular strategy-arguments articulated by prospective elementary 

teachers, including the ideas that students used as warrants and backings. These results 

represent a contribution to the literature concerning prospective elementary teachers’ 

mathematics content knowledge, as well as to the literature concerning number sense and 

mental computation. More broadly, the literature concerning mental computation has not 

emphasized those conceptions that support students’ reasoning about the nonstandard 

aspects of nonstandard strategies, such as which way to compensate. The ideas that the 

study participants used to justify their strategies, both standard and nonstandard, provide 

insights into aspects of their reasoning that are important in supporting number sense 

development. 

Documenting Collective Activity 

 The methodology of Rasmussen and Stephan grew out of their previous research 

(Stephan & Rasmussen, 2002) was introduced to the field formally in 2008. This 

methodology was developed in the analysis of data from an inquiry-oriented differential 

equations class. It has since been used to document collective activity in inquiry-oriented 
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linear algebra (e.g., Wawro, 2011), as well as in a physical chemistry (Cole et al., 2011). 

To the best of my knowledge, the present study represents the first instance to date of the 

methodology being used to document collective activity in a mathematics content course 

for prospective teachers. 

 Using the methodology to analyze data from a mathematics content course 

presented challenges due to the layers of activity involved in such a course. As in any 

mathematics class, the students engaged in mathematical activity. However, these 

students were prospective teachers. This being the case, the pedagogical implications of 

the course content were often discussed as well. Furthermore, students’ activity was often 

not purely mathematical but involved reasoning about children’s mathematical thinking. I 

focused my analysis on the mathematical ideas at play in these discussions since my 

interest lied in number sense development. However, the potential exists for a different 

analysis, focused instead on the development of pedaogical content knowledge. 

Implications for Teaching 

 This study investigated a course designed to promote prospective elementary 

teachers’ number sense development. I used pre/post surveys and interviews to analyze 

whether and how participants’ number sense improved. Having found evidence of 

substantial improvement in their number sense, I further investigated the developmental 

process by documenting both collective activity and individual case studies. The results 

of this study answer the question of how prospective elementary teachers’ number sense 

can improve substantially during a single-semester mathematics content course. 

 Given that preservice elementary teachers who have already taken their college 

mathematics courses are known to have poor number sense (Ball, 1990; Thanheiser, 
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2010; Tsao, 2005), I expect that many elementary mathematics content courses could 

benefit by (a) incorporating aspects of the instructional approach that was used in our 

classroom teaching experiment and (b) taking into account some of the findings of this 

study. For example, the findings concerning the role of the standard algorithms in 

students’ number sense development stand out to me as noteworthy and useful. These 

will be incorporated into the local instruction theory and shared with colleagues in 

mathematics teacher education. 

 This study led to the development of new analytic tools in the analysis of number 

sense. I also documented collective activity in a mathematics content course in which 

prospective elementary teachers developed improved number sense. The study results 

will also enable me to think about how the NSRS or similar instruments can be revised 

based on what was learned about prospective elementary teachers’ mathematical 

thinking.  

 Findings will be shared with the mathematics teacher education community 

through conversations with colleagues, conference presentations, publications, and 

curricular materials. I have already reported on the analysis of collective activity at a 

recent conference (Whitacre, 2012), and several publications related to this work are 

planned. Dr. Nickerson is one of the authors of the textbook that is used by instructors of 

the mathematics content course that was studied. This textbook is used at many other 

institutions across the country. Dr. Nickerson and I plan revisions to the textbook that 

make use of findings from this study. We have been working on prospective elementary 

teachers’ number sense development for several years now, and the field is beginning to 

take notice. Recently, a colleague from another university contacted us to ask for 
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suggestions and materials that he could use in a workshop for inservice teachers that will 

focus on number sense development. 

 The role of the standard algorithms stands out as a subject of surprising findings 

from both the sociogenetic and ontogenetic analyses. I never anticipated a classroom 

math practice characterized by assuming the authority of the standard algorithms, nor did 

I imagine that such a practice could be leveraged productively and play an important role 

in the progression toward reasoning flexibly about the operations. On the individual level, 

I had not anticipated how a student’s knowledge of a standard algorithm might actually 

serve as a productive resource in that she could use that algorithm as a tool to organize 

her activity. 

 I had underestimated the importance of place value in the process by which 

students came to reason flexibly about the operations. Upon reflection, I think this is 

because I was familiar with the kinds of justifications that students gave for nonstandard 

strategies, and place value ideas are often slip below the surface of these arguments. In 

my current conceptualization, students’ understanding and awareness of place value 

stands out as important to their number sense development in two ways. 

 First, by relating place value ideas to the operations, prospective elementary 

teachers can make sense of standard algorithms and Transition strategies. Doing so opens 

the door to a range of other possible ways of performing the operations. For many of 

these students, who reason inflexibly about the operations at the beginning of the course, 

I believe that there is a radical transition that occurs when they move from trusting the 

standard algorithms as ways of performing operations on the basis of their authoritative 
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status to judging for themselves the validity of a given strategy or algorithm on the basis 

of their own mathematical reasoning. 

 Second, prospective elementary teachers bring knowledge of place value with 

them to the course. This is not to say that students do not develop new mathematical 

understanding during the place value unit of the course. However, what seems to me most 

significant about their experience in the place value unit is that students become more 

aware of place value. They come to reason about digits in terms of place value when 

performing operations, both by the standard algorithms and otherwise, and this is a key to 

reasoning flexibly about the operations. 

 Prior to conducting this study, I had taught a total of nine sections of the 

mathematics content course. I had conducted a previous teaching experiment in the 

course. I had also supervised instructors of the course for two years. Having been so 

involved with this course, I find it surprising that I learned so much from this study. I 

began the study with an interest in certain aspects of the classroom activity, particularly 

the naming of strategies and the role of particular models in students’ reasoning about 

mental computation. These phenomena certainly figured into both the sociogenetic and 

ontogenetic strands. The ontogenetic analysis was especially illuminating with regard to 

those aspects since I had never before studied individual students’ thinking in the class in 

such a detailed way. 

Directions for Future Research 

 Directions for future research related to this work involve both untapped data 

from the study and future data collection. In this section, I discuss both of these avenues. 
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Untapped Data 

 I deliberately collected considerably more data than would be used for the 

dissertation study itself. This untapped data includes interview data and written work, 

data related to the rational-number portion of the course, and video of small-group 

activity. The case studies were selected after all data had been collected. For this reason, 

sufficient data was collected to afford case studies of all interview participants and for 

each operation. As discussed in Conclusion section of Chapter 6, additional case studies 

are of interest and will be useful to account for different extents of c and various 

developmental trajectories. 

 We also collected data related to the rational-number portion of the course. This 

included all data analogous to that collected for the present study: pre/post surveys, 

fraction comparison interviews, SST interviews, classroom video, and written work. This 

data will afford analyses analogous to those reported here. The basic interview data has 

already been analyzed and the results shared with the research community (Whitacre & 

Nickerson, 2011b). We have also reported on the instructional approach to the rational-

number unit, which involved extending the local instruction theory to a new content 

domain (Whitacre & Nickerson, 2011a). Further analyses will include documenting 

collective activity during the rational-number unit and analyzing at least one case study, 

concerning Maricela’s developing reasoning about fraction magnitude. 

 Finally, the analysis of classroom data in this study was limited to whole-class 

discussions. However, video cameras also recorded activity during small-group work. 

This activity was certainly integral to students’ learning in the course. Very often, 

students worked in groups on a task and created a shared representation of their work on 
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the group’s whiteboard. Students then presented these ideas in whole-class discussion. 

There is a great deal of opportunity to better understand students’ reasoning by analyzing 

group discussions. 

 Taking small groups as a unit of analysis would bridge the gap between whole-

class discussion and individual students’ reasoning. For the most part, the classroom data 

did not afford access to Brandy or Valerie’s reasoning during class. I used homework and 

test responses to trace the development of their mathematical thinking. However, in 

small-group discussions, students’ thinking is on display during classroom activity. 

Therefore, I plan to conduct some pilot analyses of small-group activity in order to more 

carefully consider how to study that activity. There is some precedent for this in the 

literature (e.g., Scherr & Hammer, 2009; Southerland, Kittleson, Settlage, & Lanier, 

2005), but it is an area that is relatively uncharted. 

Future Research 

 There are many ways in which this work might be extended. In the near future, I 

will begin teaching an elementary mathematics methods course and a course focused on 

children’s mathematical thinking. These courses represent the counterpart to the 

mathematics content course that I taught in the past and that was the setting for the 

dissertation study. I anticipate opportunities in these new setting to study aspects of 

prospective elementary teachers’ mathematical preparation that extend beyond content 

knowledge. There is the possibility of documenting collective activity in discussions of 

children’s mathematical thinking, rather than discussions of the mathematics itself. 

 Other possible directions include extending the work to other content domains or 

to other student populations. It is interesting to consider how envisioned learning routes 
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for number sense development change if working with different student populations. 

Clearly, elementary children who have not yet been taught those algorithms follow 

different learning routes. The development of their arithemetic reasoning has been well 

studied (e.g., Carpenter et al., 1999). However, in the number sense literature, middle 

school students and preservice elementary teachers have been talked about similarly. 

Authors have identified both of these groups as generally exhibiting poor number sense 

and relying heavily on standard algorithms and procedures (e.g., Reys & Yang, 1998; 

Yang, 2007). Thus, it natural to ask whether and how the local instruction theory for 

number sense development would apply to middle school mathematics instruction. This 

task would make for an interesting challenge since the occasions for engagement in 

computational reasoning and discussions of strategies would look different than in an 

elementary mathematics content course. 

 Another way of extending the research is to move into different content domains. 

I mentioned in the previous section the work that Dr. Nickerson and I have done around 

fractions in the content course. The domain of integers represents another extension of 

the natural numbers, and this may be a topic worth exploring. Recently, Lamb and 

colleagues have researched how K-12 students think about integers and integer arithmetic 

(Lamb et al., 2012). Lamb’s research group is working on characterizing integer sense as 

a form of number sense. Their efforts will likely lead to classroom-based research 

focused on integer sense development, which could be informed by findings from this 

study of number sense development.  
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Appendix 1: Number Sense Rating Scale, adapted from Hsu, 
Yang, and Li (2001). 

Mathematical Thinking Survey 

This is a multiple-choice survey intended to investigate aspects of your mathematical 

thinking. The questions are not meant to be solved by written work, so please do not do 

any writing, except to indicate your answers. Simply read each question, consider the 

answer options, and choose the best answer based on your knowledge, reasoning, and/or 

mental math. Don’t worry if you’re unsure about some of the responses. You can make 

an educated guess or just indicate that you’re unsure. Please just select the response that 

best reflects your mental reasoning.  

 

This survey is confidential. Your instructor will not be informed of your responses, and 

your responses will not affect your course grade. Please just do your best. 

  

Thanks! 
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1. How many fractions are between  and  ? 

a) none  b) one   c) ten   d) infinitely many 

2. Which fraction below is between  and 1 ? 

a)   
 
b)   

 
c)   

 
d)  

3. Which answer below is the same as 0.5 x 840 ? 

a) 840 ÷ 2 b) 5 x 840 c) 840 ÷ 5 d) 0.50 x 84 

4. A pizza is cut into 8 equal pieces. Then each piece is cut into 3 equal pieces. 

How many equal pieces does the pizza have now?   

a) 3  b) 8  c) 12  d) 24 

5. How many decimal numbers are between 9.43 and 9.44 ?  

a) none  b) one  c) ten  d) infinitely many 

6. Compare  and . Which one is greater? 

a)   b)   c) they are equal d) I’m not sure 

7. Compare 7.2 and 7.1987. Which one is greater? 

a) 7.2  b) 7.1987 c) they are equal d) I’m not sure 

8. Compare 3.111 and 3.1099. Which one is greater? 

a) 3.111 b) 3.1099 c) they are equal d) I’m not sure 

9. 93 x 134 = 12462. How much greater than 12462 is the product of 93 and 135?  

a) 93   b) 134   c) 135   d) I can’t tell without calculating 
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10. Which description of 6  ÷  is correct? 

a) greater than 6  

b) smaller than 6  

c) equal to 6   

d) I can’t tell without calculating 

11. Which description of 87 x 0.09 is correct?  

a) much smaller than 87 

b) a little bit smaller than 87 

c) much greater than 87 

d) a little bit greater than 87 

12. Which description of 245 x 0.98 is correct? 

a) greater than 245 

b) smaller than 245 

c) equal to 245 

d) I can’t tell without calculating 

13. Which description of 0.997 x 0.9 is correct? 

a) greater than 0.9 

b) smaller than 0.9 

c) equal to 0.9 

d) I can’t tell without calculating 
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14. Which description of 487 ÷ 0.99 is correct? 

a) greater than 487 

b) smaller than 487 

c) equal to 487 

d) I can’t tell without calculating 

15. How many digits are in the product of a 2-digit number and a 2-digit number?  

a) must be three digits 

b) must be four digits 

c) can be three digits or four digits 

d) can be three digits, four digits, or five digits 

16. The sum of a 3-digit number and a 3-digit number: 

e) must be three digits 

f) must be four digits 

g) can be three digits or four digits 

h) can be three digits, four digits, or five digits 

17. Which product below is the greatest? 

a) 18 x 17 b) 16 x 18 c) 17 x 19 d) 19 x 15  

18. Which description of 145 x 4 below is correct?   

a) greater than 450 

b) smaller than 450 

c) equal to 450 

d) I can’t tell without calculating 
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19. Which answer below is greater than 1? 

a)  +  b)  +  c)  + 
  

d)  +  

20.  103 x 236 = 24308. So, 103 x 235 = ? 

a) 24307 b) 24205 c) 24335 d) 24544 

21. Which description below is correct for the result of  + 1.5 ? 

a) greater than 2 

b) smaller than 2 

c) equal to 2 

d) Fractions and decimals cannot be added together 

22. Which description below is correct for 9 x 99.99?  

a) greater than 900 

b) smaller than 900 

c) equal to 900 

d) I can’t tell without calculating 

23. Compare 521 x 5 and 520 + 521 + 522 + 523 + 524. Which is greater? 

a) the result of 521 x 5 is greater 

b) the result of 520 + 521 + 522 + 523 + 524 is greater 

c) they are equal 

d) I can’t tell without calculating 

24. What is the sum of  and  approximately? 

a) 1 b) 2  c) 21 d) can’t tell without calculating 
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0 0.1

1     ( ) 

25. Which answer is the product of 18 and 19 closest to? 

a) 250  b) 350  c) 450  d) 550 

26. A cat eats 600 grams of fish every four days. How many grams of fish does this cat 

eat in six days?   

a) 400  b) 600  c) 800  d) 900 

27. Which value below is the best estimate of “( )” ?  

a) 0.01  b) 0.5  c) 0.05  d) 0.005 

 

28. Mary took a trip. She spent 5 hours traveling to her destination, with an average speed 

of 80km/hr. Mary’s return trip took only 4 hours. What was her average speed on the 

return trip?      

a) 60 km/hr b) 70 km/hr c) 90 km/hr d) 100 km/hr 

29.  x (  ) = , which number below can we put into (  ) ? 

a)  b)  c) 1  d) 4 

30. Which fraction below is the best estimate of “( )” ?  

  a)                                                                                                

b) 
 

c) 
 

d)  

0 

   ( ) 
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31. Which fraction below is the best estimate of “( )” ?  (Refer to the figure above.) 

  a)  

b) 
 

c) 
 

d)  

32. Which fraction below is the best estimate of “( )” ?  

a)  b)  c)  d)   

33. Which is the most typical weight of a male who is 67 inches tall? 

a) 22 lbs b) 55 lbs c) 154 lbs d) 431 lbs 

34. Which description below is correct for  ?  

a) greater than  

b) equal to 2.5 

c) equal to 0.4 

d) smaller than  

35. Which value below is equal to 1  ?  

 a) 1.14  b) 1.41  c) 1.25  d) 1.0 

 

0 1 

   ( )

 

( ) 
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36. Which point in the figure can represent 2.19 best?   

a) A 

b) B 

c) C 

d) D 

37. Sam starts off at the top left corner of a square and moves (clockwise) along it.  

Which figure shows the point at which Sam has walked  of the way around? 

     a)             b)     c)        d)  

 

 

 

0      1 2 3 

A B    C   D 
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Appendix 2: Student Preference Survey, modified from an 
instrument developed by McIntosh et al., (1995). 

Student Preference Survey 

 

Computations and number comparisons can be performed by calculator, written work, or 

mentally. Please look at each computation and fraction comparison problem below and 

indicate whether or not you would do it mentally. Circle Yes or No to indicate your 

response. It is not necessary to actually perform the computations or comparisons. 

Please just answer honestly. 

 

Would you compute these mentally? 

1. 37 + 52 Yes No 

2. 78 – 34  Yes No 

3. 15 x 24  Yes No 

4. 420 ÷ 14  Yes No 

5. 64 + 87  Yes No 

6. 178 – 52  Yes No 

7. 19 x 21  Yes No 

8. 570 ÷ 30  Yes No 

9. 96 + 157  Yes No 

10. 82 – 45  Yes No 

11. 25 x 16  Yes No 

12. 275 ÷ 25  Yes No 

13. 38 + 99  Yes No 

14. 125 – 49  Yes No 

15. 99 x 15  Yes No 

16. 900 ÷ 45  Yes No 
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Appendix 3: Mental computation interview tasks, used in the 
first and second interviews. 

Instructions: For the following tasks, please find an exact answer mentally and explain 

your thinking. Each task involves a story about Bobo, who sells oboes. 

 

Whole Number Addition 

Story: Bobo’s oboe business is booming! However, he could use some help keeping 

track of his sales. 

Task Notes 
A1. 
Bobo sells 37 oboes one 
month and 52 the next month. 
How many oboes did he sell 
in those two months?  

 

A2. 
Bobo sells 64 oboes one 
month and 87 the next month. 
How many oboes did he sell 
in those two months? 

 

A3. 
Bobo sells 96 oboes one 
month and 157 the next 
month. How many oboes did 
he sell in those two months? 

 

A4. 
Bobo sells 38 oboes one 
month and 99 the next month. 
How many oboes did he sell 
in those two months? 
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Whole Number Subtraction 

As everyone knows, oboes don’t grow on trees. Bobo has to spend money to make 

money. 

Task Notes 
S1. 
If Bobo buys an oboe for $34 
and then sells it for $78, how 
much money does he make? 

 

S2. 
If Bobo buys an oboe for $52 
and then sells it for $178, how 
much money does he make? 

 

S3. 
If Bobo buys an oboe for $45 
and then sells it for $82, how 
much money does he make? 

 

S4. 
If Bobo buys an oboe for $49 
and then sells it for $125, how 
much money does he make? 
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Whole Number Multiplication 

Story: Bobo is now selling oboes in bunches. 

Task Notes 
M1. 
Bobo offers a package of 
15 oboes for $24 per 
oboe. How much does 
that package cost? 

 

M2. 
Bobo offers a package of 
19 oboes for $21 per 
oboe. How much does 
that package cost? 

 

M3. 
Bobo offers a package of 
25 oboes for $16 per 
oboe. How much does 
that package cost? 

 

M4. 
Bobo offers a package of 
99 oboes for $15 per 
oboe. How much does 
that package cost? 
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Whole Number Division 

Task Notes 
D1. 
If Bobo charges $420 for 
a package of 14 oboes, 
what is the price per 
oboe? 

 

D2. 
If Bobo charges $570 for 
a package of 30 oboes, 
what is the price per 
oboe? 

 

D3. 
If Bobo charges $275 for 
a package of 25 oboes, 
what is the price per 
oboe? 

 

D4. 
If Bobo charges $900 for 
a package of 45 oboes, 
what is the price per 
oboe? 
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Appendix 4: Numeration Tasks, used in the first and second 
interviews. 

The number 63 is made up of ___ tens and ___ ones. 

Are there other possible answers? 

 

If you have $535 in the bank, how many $10 bills could you withdraw? 

How many $100 bills? 

How many $5 bills? 

  

A bag of 30 marbles can be put into ___ groups of ___ marbles. 

Are there other possible answers? 

 How many different ways can the marbles be grouped? 

 

Suppose you have 50 groups of marbles, with 18 marbles in each group. If you 

rearranged the marbles into 100 equal-sized groups, how many marbles would be in each 

of those groups?
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Appendix 5: Operation Tasks, used in the first and second 
interviews. 

Please solve 259 + 38 by the normal, written method. 

Follow up: What is the meaning of the little 1 that you wrote above the 5? 

 

Please solve 429 – 34 by the normal, written method. 

Follow up: What is the meaning of the little 1 that you wrote above the 2? 

 

Follow up: Does the little 1 from the addition problem mean the same thing as the little 1 

in the subtraction problem? Why or why not? 

 

Please solve 27 x 13 by the normal, written method. 

Follow up: Why did you shift over (or write a zero) when you moved down to the second 

line? 

 

Jessica says that 37 x 58 can be solved by taking 30 x 50 + 7 x 8. Does Jessica’s method 

make sense to you? Explain. 

 

Please solve 528 ÷ 8 by the normal, written method. 

Follow up: Do the two 6’s in your answer mean the same thing? Why do you bring down 

the 8? Why did the 4 become a 40? Was it 40 before you brought the 8 down? Can’t 8 go 

into 40? 
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