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Comparison of Sparse Domain Approaches for 
4D SPECT Dynamic Image Reconstruction 

Debasis Mitra1, Mahmoud Abdalah2, Rostyslav Boutchko3, 

Haoran Chan1, Uttam Shrestha4, Elias Botvinick4, Youngho Seo4,

Grant T. Gullberg4

1Florida Institute of Technology, 2Moffitt Cancer Center, 3Lawrence 

Berkeley National Lab, 4University of California San Francisco

E-mail1: dmitra@cs.fit.edu

Abstract.  Purpose:  Dynamic  imaging  (DI)  provides  additional

diagnostic  information  in  emission  tomography  in  comparison  to

conventional static imaging at the cost of being computationally more

challenging.  Dynamic  SPECT  (Single  Photon  Emission  Computed

Tomography)  reconstruction  is  particularly  hard  because  of  the

limitations in sampling geometry present in most existing scanners. We

have  presented  an  algorithm  Spline  Initialized  Factor  Analysis  of

Dynamic Structures (SIFADS) that is a matrix factorization method for

reconstructing  the dynamics  of  tracers  in  tissues and blood directly

from the projections in dynamic cardiac SPECT, without first resorting

to any 3D reconstruction.  Methods:  SIFADS is different from “pure”

FADS in that it employs a dedicated spline-based pre-initialization. In

this paper, we analyze the convergence properties of SIFADS and FADS

using multiple metrics. The performances of the two approaches are

evaluated for numerically simulated data and for real dynamic SPECT

data from canine and human subjects.  Results:  Most reconstruction

algorithm  convergence  metrics  analyzed  here  show  better  curve

features  over  iterations,  or  better  tissue  segmentations,  for  SIAFDS

than  pure  FADS.  Computational  times  measured  are  also  typically
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2

better  for  SIFADS  implementations  over  those  with  pure  FADS.

Conclusion: The analysis supports the utility of the pre-initialization of

factorization algorithm for better dynamic SPECT image reconstruction.

Abbreviations: FADS: factor analysis with dynamic structures; SIFADS: spline-

initialized FADS; TAC: time activity curve; LV: left ventricle; RV: right ventricle

1. INTRODUCTION

In  conventional  static  nuclear  imaging,  one  assumes  equilibrium  in  tracer

concentration  and  reconstructs  a  three  dimensional  image  of  the  accumulated

tracer  distribution.  Dynamic  imaging  extends  beyond  that  and  probes  dynamic

properties of the tracer by measuring the tracer distribution as it changes with time

from the moment of injection. We have shown previously how to obtain direct organ

segmentation based on the respective tracer dynamics for both SPECT1 and PET

(Positron  Emission  Tomography)2,  by  applying  a  known  matrix  factorization

technique3 called factor analysis in dynamic structures (FADS)4. One of the novelties

we claimed for SPECT reconstruction directly from the projections was that often we

can recover the blood input function and other time activity curves, which was not

generally  available  from  post-reconstruction  region-of-interest  (ROI)  sampling  in

conventional  approaches  providing  three  dimensional  reconstructed  temporal

images. In this work we further study our algorithm’s convergence properties on

more extensive sets of data. 

There  have  been  several  works  published  about  dynamic  cardiac  SPECT  using  various

cameras: three headed cameras,5 two headed large field of view cameras,6-9 two headed

large field of view cameras with diagnostic CT,10 and new dedicated cameras using CZT.11-13

With  these  various  cameras,  dynamic  cardiac  SPECT  has  been  performed  with  various

tracers,  including:  201Tl,14 99mTc-teboroxime,5,15-18 99mTc-sestamibi,8 and  99mTc-tetrofosmin.9,13

Recently work has shown that dynamic SPECT has promise for measuring flow and CFR with

large field of view gamma cameras.8,10,19-21 However, in all of these works it is recognized

that because of slow camera rotation, dynamic data must be reconstructed directly from the
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3

projections  themselves,  that  is,  performing  4D  reconstruction1,6,7,9,22 with  appropriate

corrections for attenuation, partial volume, and scatter.23-25 

Algorithms  have  advanced,26 including  modeling  of  cardiac  motion  in  dynamic  5D

reconstruction,27,28 modeling of cardiac and respiratory motion in dynamic 6D reconstruction

[Shrestha],29 and directly fitting compartment models.30  Our SIFADS method1,31 [Alhassen??
20] is a 4D reconstruction approach that directly estimates time activity curves (TACs) from

projections of dynamic data acquired from slowly rotating gamma cameras and differs from

these previous methods where first  dynamic image frames are reconstructed,  and then,

from which  TACs  can  be  generated.  Our  method, first  uses  splines  to  obtain  an  initial

solution  for  a  FADS  algorithm  that  estimates  the  desired  TACs.  The  method involves

segmenting  the  tissues  based  on  their  dynamics  and  involves  a  similar  approach  as

proposed  by  Zan et  al.32 via  reduction  in  spatial  and  temporal  dimensions.  The  SIFADS

method can be further extended to address cardiac motion. 

Dynamic SPECT imaging with slow gantry rotation involves camera heads rotating

while the tracer concentration is temporally changing due to tracer kinetics. Direct

reconstruction from the projection data is the only way to describe tracer dynamics

immediately  following  the  injection,  since  a  dynamic  sequence  of  static  3D

reconstructions  is  not  feasible4,10,20,33,34  because  of  data  inconsistencies.  FADS

approach4 is possibly the only way to address this problem. However, such matrix

factorization  techniques  are  known  to  be  dependent  on  solution  initialization.

SIFADS  addresses  that  by  using  a  spline-based  initialization  technique.  This

approach  of  initialization  acts  also  as  generic  method  for  estimation  of  tracer

dynamics  without  being  sensitive  to  which  tracer  is  actually  being  used  in

experiments.  This  leads  to  better  quantitative  and  qualitative  results  in

reconstruction of time activity curves as evidenced from our results.

Our method is an alternative to kinetic modeling6,35, which is a popular approach in

dynamic nuclear imaging, and is not exactly comparable. We segment the tissues

based on their dynamics and do not study their diffusion between blood and tissue

types. A detailed study on cohorts to show which approach is better for diagnosis:

ours or the standard kinetic parameter estimation, is beyond the scope of this work.

Accuracy measurements presented in this work are similar to those of Jin et al.28.
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4

SIFADS differs from that work in factor initialization5  and regularization regime,36

and our work does not address cardiac or any motion at this stage.28,37

The paper is organized as follows. In Section 2, we present the algorithm and some

measures that we use in the current work to evaluate the algorithm’s performance.

We also describe in this section methods used to generate simulated data and to

acquire canine and human SPECT projection data. The results of our work and a

conclusion are provided in Sections 3 and 4, respectively.

2. METHODS

2.1. Algorithm

The forward problem in our dynamic reconstruction is:

Pn=∑
k

Snk V k (t )Pn=∑
i

S¿V i (t ),                               

(1)

where Pn are the projection bins that depend on time (one projection view angle per

time instance), Snk are the elements of the (sparse) system matrix, and Vk(t) are the

time-dependent voxel intensities to be determined, n runs on detector bins whereas

k runs on image voxels. In order to solve this problem, the time-dependent volume

is factorized:

V k ,t=∑
j

Ckjf j ,tV j=∑
j

C ijf jt , 

(2)

with t the index of discretized time; j [1,J] the index of the factor  f from a set of J

one-dimensional  time series acting as expansion basis functions for factorization

(typically  J  ~ 3-5), and  C  the spatially discretized distribution of factor expansion

coefficients. Each estimated  C is thresholded using Otsu’s method.38 Thresholded

coefficients represent segmentation of the tissues based on the respective temporal

dynamics, and the corresponding factors f represent estimated temporal dynamics).

Note that the index  t  addresses both time points and equivalently, the subset of

projection bin indices  n corresponding to the gantry rotation angle for the SPECT

camera.  SPECT  system  matrices  in  our  work  were  generated  by  us  from  the

acquisition parameters and collimator specification with a Gaussian point spread
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5

function. Attenuation coefficients were used for real data, but not in the case of

simulation data. No scatter correction was used in this work.

In  a  pure  spline-based method39,  f  is  a  fixed set  of  b-splines.  The  optimization

procedure estimates only the coefficients C (Fig. 1A). In pure FADS4,5,40,41, both C and

f  arrays  are estimated from  P and  S,  with the optimization algorithm iteratively

searching alternately for C and for f (Fig. 1B).  For this pure FADS initialization of f

vectors are with b-splines but initialization of C matrix may be with arbitrary values,

and we initialize with all ones. The primary limitations of these methods are reliance

on the correct choice of initial temporal basis functions for the pure spline-based

approach,  and  high  sensitivity  to  factor  initialization  and  high  likelihood  of

converging  to  a  local  minimum for  FADS.  These  methods  are  types  of  a  non-

negative  matrix  factorization approach3 that  is  known  to  be  very  sensitive  to

initialization.  FADS  method  is  also  similar  to  dictionary  learning  in  image

processing42,43.

We  show  the  spline-based  method  in  Fig.  1A  as  we  use  it  as  pre-initialization

process within SIFADS, and the pure FADS in Fig. 1B, which constitutes the essence

of SIFADS.  The purpose of developing SIFADS is to find a way to initialize FADS

better with spline-based method. Fig 1C shows how these two algorithms are used

within  SIFADS.  The  top  right  side  of  Fig.  1C is  where  the  spline-based  method

produces initial values for the subsequent FADS part (the bottom three steps Fig

1c).  SIFADS mitigates the problem of both the pure spline-based method and the

arbitrarily initialized FADS method by first using a few iterations of the spline-based

method (typically, 3-5 iterations) in order to initialize (C and corresponding f arrays)

and, subsequently, performs FADS. The result is a robust and more reliable method

as described in1. 
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6

(a) Spline-based Method.

(c) SIFADS Method.(b) FADS Method.
Figure 1: Flow diagram for the three approaches. (A) Spline-based method. (B) FADS method. (C) 
SIFADS method.

In  order  to  quantify  the  performance  differences  between  SIFADS  and  its

predecessors,  we apply the algorithm to three dynamic cardiac SPECT datasets:

simulated data using an XCAT phantom, a canine dynamic imaging study, and a

human dynamic imaging study. In order to have a fair comparison, we initialize all

algorithms with the same b-splines. In pure FADS the number of TACs may differ

from the number of initial b-splines based on how many regions for which we want

to estimate TACs. The final estimated TAC for each segment is the average over all

the TACs of the voxels in that segment. Each segment is obtained by segmentation

of the 3D image reconstructed from later projections (usually projections are almost

consistent  4.5  to  30  minutes  after  tracer  injection)  of  the  same  SPECT  data

acquisition.  Maximum  likelihood  expectation  maximization  (MLEM)  algorithm,  or

rather  its  regularized  version,  maximum  a-posterior  (MAP)  algorithm44  with

anisotropic  total  variation45,  is  used  for  this  static  reconstruction.  The  earlier
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7

tomographic  rotations  are  used  for  the  dynamic  reconstruction  (inconsistent

projections from 0 to 4.5 minutes after tracer injection).

2.2. Performance Measures 

The following measures are used to evaluate the performance of the algorithm as a

function  of  the  iteration:  projection  error,  a  posterior  function,  convergence

estimate,  and  TAC  curve  error.  All  of  these  measures  (except  CPU  time)  are

dimensionless.

2.2.1.  The  mean square  projection  distance computes  how close  the  estimated

projections are to the measured projections. In the absence of the ground truth, this

quantity serves as the most direct estimate of the validity. This distance should

never  become  zero  except  for  noise-free  simulated  projections  of  a  smooth

distribution,  as  the  projection/  backprojections  generally  reduces  noise  and

smoothens the signal noise: 

Error Distance=
1
N ∑

n=1

N

(sinogramTrue−sinogramest)
2

                         .

(3)

2.2.2. The a-posterior function is the objective function in the MAP reconstruction45

that estimates the likelihood of the reconstructed image taking into account the

acquired projections and the prior information:

L (C ,f )=∑
n (−(∑k

Snk∑
j

Ckj f j ,t)+Pn ln(∑k

Snk∑
j

Ckj f j ,t)+ln (Pn !))−U (C ,f ) ,

(4)

where  U (C ,f )=Ω (c )+Θ(c)+Θ(f ) is  a prior function that describes the available a-

priori knowledge about C and f . We use two types of regularizing functions within U,

one for spatial regularization and one for temporal regularization, described in more

detail in Abdalah et al.1 Spatial regularization is applied to the coefficients  C and

includes two penalty functions. One function for preventing the coefficients from

being mixed together in the same voxel, i.e. we prefer each voxel to be of one

tissue type. This is managed by minimizing the dot product between coefficients42.

For more detail on this penalty function one may refer Abdalah et al.1,31
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Ω (c )=∑
k , j

∑
l∨l≠ j

J

(Ck , j .Ck ,l¿)¿.                                                                                    (5)

The  second  penalty  is  an  anisotropic  (tissue-specific)  total  variation  function  to

enforce spatial smoothness45. 

Θ (c )=∑
k , j

∑
n∈ {Nk }

|Ck , j−Cn, j|,                                                                      (6)

where {Nk}  is  the  set  of  the  kth  voxel’s  immediate  neighbors.  The  temporal

regularization function is applied to the estimated factor curves  f  to enforce their

smoothness. We use the L1-norm for the smoothness penalty functions that is more

robust against outliers.45,46

Θ (f )=∑
j=1

J

∑
t=2

T

|f j ,t−f j ,t−1|.                                                                      (7)

Even though our results (in subsequent sections) show that SIFADS does not always

converges to lower objective function values compared that of FADS, we still used

this measure in the study to have the playing field level. Objective function in both

the algorithm is same and this is the only measure that the optimization algorithm

is “aware” of. We discuss the implication of our results later in this paper.

2.2.3.  In  order  to  measure  the  iteration-wise  degree  of  convergence of  the

coefficients Ck,j (independent of its accuracy), we use the asymptotic mean ratio of

the reconstructed voxel values to the values of the same voxels in the previous

iteration of the algorithm:  

Convergencei=
1

J×K (∑j

J

∑
k=1

K Ck , j
i

Ck , j
i−1 )      .

(8)

At  the  i-th  iteration  the  convergence  value  is  equal  to  the  sum of  the  current

measured  coefficient  value  divided  by  the  coefficient  value  from  the  previous

iteration, where k is the voxel index and j is the factor index. However, this measure

has  to  be  interpreted  with  care  as  only  non-zero  voxels  participate  in  this

computation.  The number of non-zero voxels on the boundary of precision (with

respect to an arbitrarily assigned low threshold used by us) fluctuates from iteration
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9

to  iteration.  In  essence,  this  measure  produces  a  combined  effect  of  zero

elimination and voxel-convergence.

2.2.4.  When the ground truth is available, as in the simulated dynamic projection

data generated from XCAT phantom,47 we also measure the accuracy of the TACs by

calculating the relative root-mean square (RMS) difference between the estimated

TACs and the ground truth TACs used to generate the dynamic projections:

RMS (TAC j )=√∑
t

¿¿¿¿¿                        .                                      (9)

2.2.5. CPU time of the main algorithm’s iterations is also measured as a function of

iteration for comparing SIFADS against pure FADS.

2.3. Data Description:  Simulation, Canine, and Human Subject Studies

Simulation. The simulated dynamic datasets were generated from a 646441

array of voxels of an XCAT phantom48 with a parameter set characteristic for cardiac

scans  performed using  the  GE  Millennium VG3 Hawkeye SPECT/CT camera  (the

camera that has been used to acquire human and animal subject data addressed in

this  paper).  The  dynamic  projections  were  generated  by  forward  projecting  the

phantom with presumed tracer activities of  99mTc-sestamibi over different  J tissue-

types segmented from the XCAT phantom: left-ventricular blood-pool, myocardial

tissue, and liver. Fig 2a shows the TACs used to model the tracer concentration for

these  three  segments  of  the  phantom,  respectively,  and  the  corresponding

phantom segments in the same colors in Fig 2b, to produce the dynamic projections

(some sample slices shown in Fig 3c).  
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Figure 2. Left (a), an example of the ground truth TACs and center, segments of XCAT in color, 
respectively for each curve. Each curve represents how each corresponding segment’s intensity is 
varied while producing the forward projected dynamic data. Middle (b), three respective segments of 
the phantom. Right (c), generated dynamic projections with added Poisson noise.

The three curves are based on our expected ideal  shape of  tracer  dynamics as

observed before in dynamic SPECT imaging studies4 and are represented here with

b-splines. We use only three segments in this study as our work is focused on heart

imaging with SPECT. During simulation the heart was presumed stationary. All the

tracers used in this work have very similar dynamics. These segments and the three

curves  were  subsequently  used  as  the  ground  truth  for  comparisons  with  the

reconstructed TACs and coefficient images. Poisson noise was subsequently applied

to the simulated projection data.  Projection data was created using real  system

matrix of our camera, similar to the one used in animal and human data acquisition.

Acquisition parameters used for the forward projection were: (1) LEHR parallel-hole

collimation, (2) single head detector, (3) 6464 bins per projection angle, (4) 72

projections over 360° rotation, and (5) camera rotating at a speed of one second

per projection, i.e., 72 seconds for a full rotation. 

Canine imaging. The pre-clinical cardiac data set used in this work came from a

canine rest-study performed with a GE Millennium VG3 Hawkeye SPECT/CT camera

with  LEHR  parallel-hole  collimators  where  two  detector  heads  were  in  H-mode

(opposite to  each other)  and rotating continuously.  A bolus injection of  3.7 mCi

(1.37108 Bq)  of  201Tl  tracer  was  administered  at  the  onset  of  acquisition  that

continued for 20 minutes. For each rotation, two sets of 72 one-second projections

over 360° were acquired. First few rotations (results for 72 seconds for one rotation

are  shown  later)  of  inconsistent  data  was  used  for  dynamic  reconstruction.

However,  subsequent  projections from consistent  data  set  are  used for  a  static

reconstruction  that  is  used  inside  the  dynamic  reconstruction  algorithm  as

anatomical prior. Each view contained 6464 projection bins with 4.424.42 mm

bin size, close to the intrinsic resolution of the camera. 

Human dynamic cardiac data came from a rest study of a standard clinical rest-

stress study on a SPECT/CT camera (Infinia Hawkeye 4, GE Healthcare) configured

in H-mode (two detectors oriented 180° to each other. Dynamic acquisition began

immediately  prior  to  the  patient  receiving  an  IV  bolus  injection  (10-20  second
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duration)  of  approximately  10 mCi  of  99mTc-tetrofosmin34.  Two views with a 3°

increment every second and a total of 120 projection images (60 views from each

camera head) per minute were acquired. The rotation speed of each camera head

was 2 minutes per rotation. Projection data were binned into 128×128 detector bins

with a bin size of 4.42×4.42 mm. In this work, the projections were cropped to

128×40 pixels (around the heart) to reduce the data size.  Projections used in this

study is similar to that in canine study mentioned above – first few rotations for

dynamic study supported by static reconstruction from consistent projection data. 

3. RESULTS

3.1 Simulation Study: Comparison with XCAT data  

Fig. 3 shows an example of a comparison of the TACs and the coefficient images

obtained using the two algorithms, SIFADS and pure FADS, against the ground truth.

A better recoverability of the TACs using SIFADS is clear. When comparing the FADS

part of the SIFADS algorithm against the pure FADS (that is, using factor analysis

with spline-based pre-initialization versus initialization with arbitrary b-splines), the

curves illustrate that, with TACs and coefficients estimated with the spline-based

part, the subsequent FADS portion of SIFADS algorithm is better initialized and the

resulting convergence is faster and better (as observed from resulting coefficient

images, TACs, and often with the convergence parameters) than the pure FADS. 

We ran the SIFADS and FADS algorithms several times with different initializing b-

splines, and each time both algorithms started with the same set of b-splines. Each

column of Fig. 4 corresponds to each initializing b-spline set presented in the first

row. For each of the three initializing splines the SIFADS algorithm demonstrates

faster convergence and better optimization than the pure FADS algorithm. Fig. 4

shows measures of convergence for the two algorithms versus iteration for three

different  initializing  b-splines.  The  figure  shows  the  convergence  (eq.  8),  the

estimation error (eq. 3), and the value of the a-posterior function (eq. 4)  versus

iteration in rows Figs 4d-f, Figs 3g-i, and Figs 4j-l, respectively. 

SIFADS has two phases of iterative processes: spline-based optimization and then

FADS optimization. We distinguish between these two types of iterations as  pure

spline-based  iterations and  FADS-iterations.  FADS  algorithm  has  only  FADS-
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iterations.  We  compared  the  performance  of  the  two  algorithms  for  thirty-five

iterations.  Two  FADS-iterations  take  approximately  the  same  time  as  five  pure

spline-based iterations  used within SIFADS (see table 1 below). Hence, we adjust

for the overhead pre-initialization time of  SIFADS (blue curve) with two units on

each plot’s x-axis toward the right. Note that the pure spline-based optimization

algorithm  optimizes  only  for  the  coefficients  of  the  splines,  wheras  the  FADS

algorithm  optimizes  for  both  the  factors  (starting  with  the  splines)  and  their

coefficients1, and hence, a FADS iteration takes more time than a spline-based one. 
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a b c

d e f

Figure 3.  Results of SIFADS and FADS algorithms using simulation data. a: the spline functions used
in both algorithms for initialization. b: ground truth TACs (grey background curve) along with resulting
TACs after 30 iterations using  SIFADS, and  c:  the same result using FADS. SIFADS produces better
TACs. 2nd row:  d:  ground truth coefficients,  e:  resulting coefficients from SIFADS, and  f:  those from
FADS  (right  col.).  Activity  values  on  resulting  TACs  (y-axis)  and  intensity  values  on  voxels  of
coefficients are relative. TAC values are relative to that of input initial spline, where the peak value is 1
(for  the  fourth  open  spline  on  a)  and  coefficient  voxel  values  are  in  terms  of  gamma counts  in
sinogram, such that TACs multiplied with coefficient values of respective voxels (eq. 2) produces the
respective estimated gamma counts on voxels on resulting 4D image.

Fig 4 shows that SIFADS and FADS converge to similar values given enough time.

However, SIFADS produces better estimation in less time (i.e., with less iterations),

even  including  the  extra  overhead  for  the  iterations  in  the  spline-based

initialization. For example, only five iterations of SIFADS will produce better results

than FADS with  seven iterations  with  arbitrary  initialization (two FADS-iterations

take  equivalent  time  to  that  of  five  spline-based  pre-initialization  steps  within

SIFADS).  We  chose  35  iterations  because  we  did  not  see  much  change  in  the

updates of the images as our measures of convergence demonstrate. Achieving full

convergence is very time consuming. 
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a b c

d e f

g h i

j k l

Figure 4.  Results of comparison measures using the simulation data. 1st row of each column (a-c):
three  different  initializing  b-splines.  2nd row (d-f):  convergence  values  (eq.  8);  3rd row (g-i):  error
distance (eq. 3); 4th row (j-l): a-posteriori functional values (eq. 4) versus number of iterations. The
SIFADS curves (blue) are artificially shifted here by 2 iterations on x-axis to compensate for the spline-
initialization overhead time. Contrast of convergence between the two algorithms is mostly observed
between 5 to 10 iterations. We show results for up to 35 iterations on x-axis.
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Fig 5 shows the resulting curves in respective columns for the same initializing b-

splines  as  in  Figs  4a-c  first  row.  Figs  5a-c  shows  the  corresponding  results  for

arbitrary initialized FADS, and Figs 5d-f shows the same with SIFADS. 

a b c

d e f
Figure 5. TACs comparison in simulation study. TACs estimated by FADS and SIFADS for the three 
initializations as in Fig. 4. 1st row (a-c): TACs estimated by the FADS algorithm. 2nd row (d-f): TACs 
estimated by the SIFADS algorithm. Ground truth curves are shown in grey for comparison. Lesser RMS
values for each curve in plots show that SIFADS consistently produces better curves.

Table  1  has  the  computation  times  for  the  FADS  and  SIFADS  algorithms.  All

algorithms were implemented and 

evaluated on an Apple Xserve (Early 2009 version) running Mac OS X server. The

machine had two dual quad-core 2.93 GHz Xeon processors and 12 GB of RAM. We

report below the timings for SIFADS in two parts: spline-based pre-initialization and

FADS (first row, columns 3 and 4). Timings for pure FADS are in the second row.

3.2. Canine Study

Fig. 6 shows estimated TACs from the canine SPECT study. Even though the curves exhibit

significant  mutual  contamination between tissues,  SIFADS-computed factors describe the

expected  physiology  of  the  LV  blood  pool  concentration  more  realistically.  Also,  the

reconstructed coefficient images computed with SIFADS (Fig. 7a and c) demonstrate better

separation between different tissue types, whereas the coefficients estimated by FADS with
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blind initialization (Fig. 7b and d) are much more smeared between different tissue types. All

relevant results including 3D images are available online for any interested reader to view48.
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Converge
nce Value

(Eq. 8)

Computing
time of
initial

Coefficients
and TACs

with spline-
method

(sec)

FADS time (sec)
Total
time
(sec)

Error Distance
of

 Last Iteration
(Eq. 3)

RMS
of

TACs
(Eq.
9) 

SIFADS CPU
(5 spline-

based
iterations,

and
subsequent

30 FADS-
iterations)

0.172

44.931 (5
iterations)

8.99
/iterations

390.632
13 /FADS-
iterations

435.5
63

0.285 0.070

Pure FADS
(30 FADS-
iterations)

0.179 -
507.031

16.90 /FADS-
iterations

507.0
31 0.285 0.292

Table 1. Computation times for the FADS and SIFADS algorithms in processing the simulated data. 
The spline-based initialization phase in the SIFADS algorithm can accelerate the conventional FADS 
algorithm in spite of the fact that it needs more time to prepare the initial TACs and coefficients. These
results are from the first initialization in column 1 of Fig. 5.

Fig.  8 shows comparisons of the SIFADS and pure FADS algorithms in terms of  rates of

convergence,  image quality,  and the a-posterior  function  values versus iteration for  the

canine data set. Note that although the number of initializing spline-curves for SIFADS may

differ  (in  each  of  our  experiments  as  shown  in  Figs  8a-c)  the  number  of  factors  are

determined by the number of segments we want to extract from the data, determined by

visual inspection of the projections data (or by trial and error, or by the targeted diagnostic

application). Surprisingly, the projection error

a b
    
Figure 6. Estimated TACs for the canine SPECT study by: (a) SIFADS and (b) FADS. The arrows on the
x-axis show the time at which the tracer uptake arrives to a peak: RV first (blue), then myocardium
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(green)  followed  by  (or  simultaneously  with)  LV  (red).  Lungs  (purple)  peak  appears  at  relatively
different times for the two algorithms

and  the  value  of  the  a-posterior function  do  not  differ  significantly  at  large  number  of

iterations,  suggesting  fewer  iterations  are  sufficient.  FADS shows  better  or  very  similar

convergence  characteristics  for  the  first  two  criteria,  whereas  SIFADS  shows  better  a-

posterior convergence when initial curves are widely different from expected final curves

(last two columns of Fig. 8). Fluctuations of the metrics observed for both algorithms are for

reasons unknown to us, but they do not affect the overall observations. Possibly, they are

related  to  the  removal  and  reintroduction  of  zero  values  on  coefficients  as  iteration

progresses. This is because our implementation avoids storing and computing lower-than-

threshold values that we consider as zero's.

Corresponding to the initialized b-splines of Figs 8a-c, the resulting TACs for pure FADS and

SIFADS are shown in the two rows of Fig 9, respectively. SIFADS-computed TACs describe

the expected physiological timing of the RV and LV blood pool concentrations, and lung and

myocardial tissue concentrations more realistic. 
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Figure 7. Estimated tissue coefficient images for the canine SPECT study by: (a and c) SIFADS, and (b
and d) FADS. The upper row (a and b) shows some slices of respective coefficients and the  lower row 
(c and d) shows the same images in 3D from SIFADS and FADS respectively.
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a b c

d e f

g h i

j k l
Figure 8. Measures of comparison on canine study for three different initializing b-splines (a-c, 1st row
for each column). 2nd row (d-f): convergence values (eq. 8); 3rd row (g-i): error distance (eq. 3); 4th row
(j-l): a-posteriori functional value (eq. 4) all versus number of iterations. The resulting SIFADS curves
(blue) are shifted by 1 iteration to compensate for the overhead time in the spline initialization (see
table 2 below).
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a b c

d e f

Figure 9. Estimated TACs by FADS and SIFADS for the three initializations in Fig. 8. 1st row (a-c): TACs
estimated by the FADS algorithm. 2nd row (d-f): TACs estimated by the SIFADS algorithm. Blue curves
for RV, red curves for LV, green curves for myocardium and purple curves for lungs.

Table  2  shows  that  SIFADS  exhibits  only  minor  reduction  in  time  per  iteration

compared  to  pure  FADS.  We  believe  the  speed  up  becomes  less  as  the  data

becomes more complex and noisy.  This happens because fewer non-zero values

are obtained in the intermediate results as our implementation ignores only zero

values. There is no ground truth for the TACs for the real data to measure the RMS

error value, as was for the simulation data in table 1.

Converge
nce Value

(Eq. 8)

Computing
time of initial
Coefficients

and TACs with
spline-method

(sec)

FADS time (sec)
Total
time
(sec)

Error Distance
on

Last Iteration
(Eq. 3)

SIFADS CPU
(5 spline-

based
iterations,

and 30
subsequent

FADS-
iterations)

1.674566
56.293 (5
iterations)

11.25 /iterations

486.794
16.06 /FADS-

iterations

543.0
87 2.5043

Pure FADS
(30 FADS-
iterations)

1.793 -
488.049

16.27 /FADS-
iterations

488.0
49

2.852
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Table 2. Computation times for the FADS and SIFADS algorithms in processing the canine data. 
Convergence value and running time for the two methods in estimating TACs from the canine data 
with 30 iterations. These results are from the first initialization in column 1 of Fig. 8. 

3.3. Human Study

Fig 10 shows the same set of comparisons as in the previous studies with the two algorithms

used to estimate TACs from data in a human dynamic SPECT study. At a first glance, the

TACs from pure FADS in Fig 10b appear to separate RV and LV TACs as can be seen in Fig 9.

However, visually on Fig 10a, SIFADS provides better overall tissue separation. 

a b
Figure 10. Estimated TACs for the human study after 30 iterations by: (a) SIFADS and (b) FADS. X-
axis in time in seconds. Blue curves for RV, red curves for LV, green curves for myocardium and purple
curves for lungs.

SIFADS estimates the blood tracer concentration as a single curve (blue in Fig. 10).

The  myocardium  seems  to  be  well  represented  by  the  green  curve  (see  its

coefficients in Fig. 11 below where it shows a clear shape of the heart). On the other

hand, FADS (right) estimates two curves for blood (blue for RV and red for LV).

However,  the  RV  curve  (blue)  has  a  lower  signal  than  the  LV  (red),  which  is

unrealistic  and  not  obvious  in  the  projection  data.  Also,  the  myocardium curve

(green)  seems  to  have  an  unrealistically  fast  uptake  and  washout  (50  sec).

Furthermore, liver and kidney TACs are mixed together in the FADS results. Each

frame in Fig. 11 consists of an overlay of the corresponding four color-coded slices

from the four 3D coefficient images, where the colors are the same as that for the

corresponding curves of factors in Fig. 10. It is evident by the coefficients of SIFADS

that the tissue types are better distinguishable (each color represents a tissue type,

i.e.,  blood,  heart,  liver,  or  kidneys).  This  is  in  contrast  to  the  fact  that  the

coefficients estimated by FADS are not well separated.
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a b

Figure 11.  Coefficient images. Frames from color-coded superimposed coefficient images after 30
iterations of SIFADS (a) and pure FADS (b). Colors are assigned based on the corresponding TACs’
colors as in Fig. 10: Blue for RV, red for LV, green for myocardium and purple for lungs.

We believe that the FADS curves are less accurate because: 1) LV actually has a

stronger signal than the RV (as seen in the projections) as opposed to what the pure

FADS curve is showing. 2) Coefficients from pure FADS visually do not show the

clear segmentation observable in the SIFADS coefficient images. Visual inspection of

the coefficients obtained from pure FADS does not allow clear correspondence of

the  blue  and  red  curves  to  specific  ventricular  regions  whereas  in  SIFADS  the

unseparated blue curve clearly corresponds to a single ventricular region. 3) Liver is

not clearly segmented with pure FADS despite  being well defined in the projections.
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a b c

d e f

g h i

j k l
Figure 12.  Measures of comparison using the human data for three different initializing b-splines (1st

row for each column, a-c). 2nd row (d-f): convergence values (eq. 8); 3rd row (g-i): error distance (eq.
3); 4th row (j-l): a-posteriori functional values (eq. 4) versus number of iterations. The SIFADS curves
(blue) are shifted by 1 iteration to compensate for the spline-initialization overhead time (see table 3).
Blue curves for RV, red curves for LV, green curves for myocardium and purple curves for lungs.
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Fig 12a-c shows three sets of initial b-splines, and the subsequent rows display the algorithm

performance measures corresponding to these sets.  All  three performance measures for

SIFADS (blue curves) are notably similar across the three initialization sets, demonstrating

the stability and reproducibility of the algorithm. Convergence plots in Fig 12d-f show that in

two cases (first and third columns, Figs 12d and f) SIFADS achieves better convergence than

pure FADS after a few iterations. The third row Figs 12g-i present error distances (eq. 3)

between the estimated and the actual projections indicates that pure FADS better estimates

the projections. The human scan data were extremely noisy, and SIFADS actually removed

more noise than did FADS, thus, the solution deviated further from the input data. The a-

posteriori function values in the fourth row Figs 12j-l suggest that FADS outperforms SIFADS

after 6 to 12 iterations. This is an anomalous result since the optimization in both algorithms

is performed with the same objective function, and we clearly see better segmentation in

the coefficient images produced by SIFADS after thirty iterations (see Fig. 11 and the data

available on the provided link48). This may mean that SIFADS and FADS are converging to

two different local minima and the local minimum attained by SIFADS is better suited for the

purpose of tissue segmentation based on tracer kinetics. 

a b c

d e f
Figure 13. Estimated TACs by FADS and SIFADS for human study for the three initializations in Fig.
12. 1st row (a-c): TACs estimated by the FADS algorithm. 2nd row (d-f): TACs estimated by the SIFADS
algorithm. Blue curves for RV, red curves for LV, green curves for myocardium and purple curves for
lungs.

TACs computed from two algorithms corresponding to different initializations (Fig. 12, first

row) are shown in the two rows of Fig. 13, respectively. SIFADS-computed TACs describe the

expected physiology more realistically.
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Convergen
ce Value
(Eq. 8)

Computing time of
initial Coefficients

and TACs with
spline-method

(sec)

FADS time
(sec)

Total
time
(sec)

Error Distance
at

Last Iteration
(Eq. 3)

SIFADS 
(5 spline-

based
iterations,

and 30 FADS-
iterations)

0.54

2444.21 (5
iterations)

488.84 sec /
iterations

22961.86  
765.40 sec /

FADS-iterations
25406.07 0.37

FADS
(30

iterations)
1.30 -

22633.06
754.44 Sec /

FADS-iterations
22633.06 0.39

Table 3. Computation times for the FADS and SIFADS algorithms in processing the human data. 
Convergence values and run times for the three methods in reconstructing the TACs from the human 
data. These results are from the first initialization in column 1 of Fig. 12.

Table 3 shows that the pure FADS algorithm surprisingly takes slightly less time per iteration

on average for the human data although its convergence is slower (Figs 12d-f, and table 3-

column 1).

4. Discussion

The focus of this paper was to compare accuracy and convergence properties of

SIFADS and FADS reconstruction algorithms. SIFADS clearly performs better on all

three  performance  measures  for  simulated  data,  reconstructing  dynamic  noise-

added data generated from the XCAT phantom (Figs 3-5). This was true for any

number  of  iterations.  In  the  canine  study  (Fig  8),  although FADS attains  better

values  for  the  a-posterior  objective  function  after  around  ten  iterations,  the

physiological features estimated by SIFADS is more realistic (Fig 7). For the human

study  (Fig  12),  the  objective  function  values  for  the  two  algorithms  cross-over

between 8 to 15 iterations, depending on the initialization. The other two measures

of convergence and error distance seem to follow fairly similar trends after a few

iterations, again depending on the initialization. Overall, SIFADS seems to provide

better estimates of the expected physiological aspects of the tracer kinetics with

fewer iterations (only 5) than FADS. Note that the curves estimated by SIFADS are

already adjusted for the overhead time to determine the initial spline coefficients. 

We believe that SIFADS and FADS are converging to different local minima because

of different initializations. Even though FADS shows different values of the objective

function than that of SIFADS after 30 iterations (human data, Fig 9) the estimated
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TACs and coefficient images with SIFADS appear much more realistic upon visual

inspection as shown in Figs. 10-1148, over a range of iterations. This observation

leads  us  to  conjecture  that  the  a-posterior  objective  function  is  not  the  best

performance metric for estimating the quality of segmenting tissue based on the

tracer dynamics.

In  the  previous  section,  we  commented  that  the  FADS  iterations  take  less

computation  time  as  opposed  to  those  of  SIFADS  (table  3,  third  column).  This

seemingly counter-intuitive effect is explained by the procedure of how zero values

are eliminated below a pre-assigned threshold from being processed further in the

reconstruction. Some factor values approach zero after only a few FADS iterations.

Potentially, this may compromise the estimation of TACs by pure FADS by providing

less realistic TACs in return for slight improvement in efficiency. 

One may observe in the plots in Figs 6, 9 and 13 that many curves are converging

to similar values and thus wonder why then one sees clear segmentations for a

static reconstruction with the same tracer. The reason for this is the fact that the

intensity values in static and dynamic imaging have different interpretation. The

sestamibi uptake in the heart begins immediately with the injection and continues

with little washout. At the start of the static perfusion study approximately 60-70

mins later there is excellent contrast between the myocardium and the blood in the

left ventricular cavity. The plots show that at that time there is very little activity in

the blood in the left ventricular cavity;  whereas,  the activity  in the heart  is  the

integral of the time activity curve shown here for the heart over the 60-70 minutes.

This integral of activity provides excellent contrast compared with the background

blood activity.  

5. Conclusion

FADS  is  a  powerful  method  capable  of  reconstructing  tissue  TACs  and  spatial

distributions from dynamic SPECT projections; however, it is overly sensitive to the

initialization both in terms of performance and the reconstruction accuracy. FADS

accuracy  and  convergence  time  may  be  improved  by  using  b-spline-based

initialization of  the factors  implemented in our SIFADS algorithm. SIFADS clearly

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597



29

outperforms FADS in reconstruction of simulated phantom study as seen from our

results presented here. However, in order to check its performance further on real

data  we have  compared  SIFADS with  FADS on  data  sets  of  canine  and human

studies.  When  reconstructing  on  these  real  data,  numerical  performance

comparisons do not give clear advantage to either algorithm, however, the tissue

distribution  images  obtained  with  SIFADS  appear  to  be  more  physiologically

meaningful. This suggests a few primary directions for future work: (1) Changing the

objective  function  formulation  that  reflects  our  goal  of  tracer-dynamics  based

segmentation may further improve the quality of the dynamic SPECT reconstruction.

(2)  Alternative  initialization  techniques  (other  than  the  spline-based  one  as  in

SIFADS) may be explored2 to address the non-uniqueness of FADS. (3) How cardiac

motions affects the dynamics needs to be studied39 with respect our initialization

techniques. 

All  real  data  sets  used  here  were  acquired  on  past  projects  with  appropriate

Institutional  Review Board’s  and  animal  care  and use  committee’s  approvals  at

Lawrence Berkeley National Laboratory, California.
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