UC Berkeley
UC Berkeley Previously Published Works

Title

Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific
Environmental Tolerance

Permalink
https://escholarship.org/uc/item/3q4340n4

Journal
mSystems, 6(3)

ISSN
2379-5077

Authors
Kothari, Ankita
Roux, Simon
Zhang, Hangiao

Publication Date
2021-06-29

DOI
10.1128/msystems.00537-21

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/3q4340ns
https://escholarship.org/uc/item/3q4340ns#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

c

f AMERICAN
SOCIETY FOR
-

MICROBIOLOGY

ystems

RESEARCH ARTICLE

L)

Check for
updates

Ecogenomics of Groundwater Phages Suggests Niche
Differentiation Linked to Specific Environmental Tolerance

Ankita Kothari,®* Simon Roux,® Hangiao Zhang,? Anatori Prieto,? Drishti Soneja,?
Xiaoqin Wu,9 Sara Altenburg,' {?Matthew W. Fields,"™ (©’Adam M. Deutschbauer,<*
Romy Chakraborty,® ©© Aindrila Mukhopadhyay®<

Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA

bDepartment of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA

John-Marc Chandonia,c Sarah Spencer,hik
Adam P. Arkin,<9 (2 Eric J. Alm,hiik

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

dEarth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
eDepartment of Plant and Microbial Biology, University of California, Berkeley, California, USA
‘Energy Biosciences Institute, Berkeley, California, USA

9Department of Bioengineering, University of California, Berkeley, California, USA

hDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

iDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

JBroad Institute of MIT Cambridge, Cambridge, Massachusetts, USA

“Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

'Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
mDepartment of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA

ABSTRACT Viruses are ubiquitous microbiome components, shaping ecosystems
via strain-specific predation, horizontal gene transfer and redistribution of nutrients
through host lysis. Viral impacts are important in groundwater ecosystems, where
microbes drive many nutrient fluxes and metabolic processes; however, little is
known about the diversity of viruses in these environments. We analyzed four
groundwater plasmidomes (the entire plasmid content of an environment) and iden-
tified 200 viral sequences, which clustered into 41 genus-level viral clusters (approxi-
mately equivalent to viral genera) including 9 known and 32 putative new genera.
We used publicly available bacterial whole-genome sequences (WGS) and WGS from
261 bacterial isolates from this groundwater environment to identify potential viral
hosts. We linked 76 of the 200 viral sequences to a range of bacterial phyla, the ma-
jority associated with Proteobacteria, followed by Firmicutes, Bacteroidetes, and
Actinobacteria. The publicly available WGS enabled mapping bacterial hosts to sev-
eral viral sequences. The WGS of groundwater isolates increased the depth of host
prediction by allowing host identification at the strain level. The latter included 4
viruses that were almost entirely (>99% query coverage, >99% identity) identified
as integrated in the genomes of Pseudomonas, Acidovorax, and Castellaniella strains,
resulting in high-confidence host assignments. Lastly, 21 of these viruses carried pu-
tative auxiliary metabolite genes for metal and antibiotic resistance, which might
drive their infection cycles and/or provide selective advantage to infected hosts.
Exploring the groundwater virome provides a necessary foundation for integration
of viruses into ecosystem models where they are key players in microbial adaption
to environmental stress.

IMPORTANCE To our knowledge, this is the first study to identify the bacteriophage
distribution in a groundwater ecosystem shedding light on their prevalence and dis-
tribution across metal-contaminated and background sites. Our study is uniquely
based on selective sequencing of solely the extrachromosomal elements of a micro-
biome followed by analysis for viral signatures, thus establishing a more focused
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approach for phage identifications. Using this method, we detected several novel
phage genera along with those previously established. Our approach of using the
whole-genome sequences of hundreds of bacterial isolates from the same site
enabled us to make host assignments with high confidence, several at strain levels.
Certain phage genes suggest that they provide an environment-specific selective
advantage to their bacterial hosts. Our study lays the foundation for future research
on directed phage isolations using specific bacterial host strains to further character-
ize groundwater phages, their life cycles, and their effects on groundwater micro-
biome and biogeochemistry.

KEYWORDS groundwater, virus, phage, plasmidome, viral sequences, metal resistance,
antibiotic resistance, extrachromosomal DNA, viral genome, viral host

iruses are known to influence the structure and diversity of microbial communities

by infection and lysis of microbial cells. Their influence has been widely studied in
aquatic communities (1), where they are predicted to infect approximately one-third of
seawater microbes at any given time (2). In marine ecosystems, major biogeochemical
cycles are known to be influenced by viruses affecting community composition, meta-
bolic activity, and evolutionary trajectories (2, 3). As the recent focus on exploration of
viruses in aquatic environments has been on marine ecosystems (4-9), freshwater envi-
ronments remained mostly unexplored despite their importance as a drinking water
supply (10). Most studies of viral diversity in freshwater systems have been conducted
in lakes, across all continents and from pole to pole (11-15). Collectively, these studies
revealed a large diversity of viruses specific to and/or mostly identified in freshwater
ecosystems, mostly phages with double-stranded DNA (dsDNA) genomes, but also
including eukaryotic viruses and phages with single-stranded DNA (ssDNA) and RNA
genomes (16-18). Comparatively, viral diversity in groundwater systems has been much
less studied, but recent metagenomic studies suggested that groundwater viral commun-
ities were clearly distinct from other freshwater environments, that their diversity and
structure reflected changes in environmental parameters, including especially pH level
and the presence of contaminants, and that viruses may significantly influence ground-
water microbe dynamics (19, 20). The Oak Ridge Field Research Center (ORFRC) (21-23) is
a well-studied U.S. Department of Energy site that includes groundwater areas with and
without metal contamination, referred to as the contaminated and background sites,
respectively. It has been well characterized in terms of the physical parameters, micro-
biome distribution, and fluctuation in response to different environmental stresses and
thus served as an excellent model groundwater system for studies. We chose this environ-
ment to study the incidence of viruses in groundwater microbiome.

Identification of viral sequences in the environment is difficult given the lack of
approaches similar to rRNA gene profiling in bacteria and their isolation remains chal-
lenging because of the difficulties in identifying the bacterial host(s) and our limited
ability to culture them. Recently, research has been directed toward exploring viral di-
versity from metagenome data (7, 24, 25), thus circumventing these limitations and
providing direct insights into the composition of environmental viral communities (26).
In this study, we explored an alternate method to sifting through large amounts of
chromosomal DNA sequences to find viral sequences by specifically searching circular
DNA sequence data generated from the plasmidome analysis. Specifically, we mined
the plasmidome data from a well-characterized groundwater system and analyzed the
resulting viral sequences complete with genomic and ecological contexts.

RESULTS AND DISCUSSION

New viruses detected in the circular DNA data sets. To study groundwater viruses,
we leveraged existing data focused on extrachromosomal circular DNA templates by
identifying viruses from plasmidome data sets (Fig. 1). This method primarily identifies
active (intracellular) and lysogenic phages. Viruses and plasmids can coexist stably,
support the transfer of each other to new hosts (27), or even form a hybrid (28). Given
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FIG 1 Overview of the study. Groundwater from the Oak Ridge Field research site from background (B) and
contaminated (C) areas was filtered and subjected to circular DNA extraction. Sequencing, assembly, and
annotation resulted in identification of both plasmids and viral genomes. The viral genomes were subjected to
viral cluster analysis to study the virus types, host association analysis to get a prediction of bacteria they
might infect, and auxiliary metabolite analysis (AMG) to study what functional genes they carry.

that both can be found as extrachromosomal circular DNA molecules, we used
VirSorter, a tool designed to predict bacterial and archaeal virus sequences on the plas-
midome assemblies (29), and identified 200 sequences as groundwater viral sequences
from 13,770 plasmidome contigs (Fig. STA). We then categorized viral sequences into
viral clusters (approximately equivalent to known viral genera) using shared gene con-
tent information and network analytics (30, 31). Clustering of the 200 groundwater vi-
ral sequences with publicly available bacterial and archaeal viruses revealed that 85
groundwater viral genomes formed 41 viral clusters with at least one representative of
groundwater virus (Table S3). Of these 41 clusters, 9 included a reference viral genome
(Fig. 2) and 32 were putative new viral genera. The details on the size of different clus-
ters are depicted in Fig. S1B. The largest identified virus was a circular 296,356-bp con-
tig (see virus size distribution in Fig. 3) and was part of a novel viral cluster. Although
more viral sequences were identified from the background than contaminated ground-
waters, the fractions of all contigs identified as viral sequence were similar across both
sites (Fig. STA). There was little overlap between viral clusters from background and
contaminated sites, with only 3 instances of viral sequences being in the same cluster
from contaminated and background sites. Thus, the 200 groundwater viruses spanned
a wide variety of sizes and included representatives of both known and novel viral
genera.

Certain aspects of the viral clusters provide evidence of optimal clustering of
groundwater viruses. All 9 viral clusters with known reference viral genomes were cir-
cular DNA viruses. The viral cluster with 14 representatives had 11 representatives
belonging to the family Microviridae, subfamily Gokushovirinae, which are 4.5- to 6-kb,
circular single-stranded DNA viruses. Interestingly, the 3 viral contigs that are clustered
are from the background site and are also in the same size range (4.61, 4.78, and
5.09kb). At least one virus (GW460_nc_scaffold_3616, 8,250 bp) from the background
site is an inovirus (5 to 15 kb, circular single-stranded DNA genomes with rod-shaped
or filamentous virions [32]) clustering with known inovirus Ralstonia phage 1 NP-2014.
The genomes of inoviruses are known to be chromosomally integrated or replicated as
a plasmid (33), which may be why this virus was recovered from plasmidome data.

Host predictions. Once we identified viral genomes and their clusters, we sought
to identify the range of hosts that these viruses infect. Using the 261 ORFRC bacterial
isolates, we were able to assign bacterial hosts to 20 viral genomes (Fig. 4) of the 200,
indicating that we were able to predict hosts for 10% of the viral genomes identified
(Table S4). As expected, the maximum number of predictions were made using
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FIG 2 vConTACT-generated viral cluster map depicting clustering of 85 viral sequences from
background (light blue) and contaminated (dark blue) groundwater, along with known virus
reference genomes (white). The 9 viral clusters that contain known viruses are annotated on the
figure as follows: 1, Microviridae; 2, Podoviridae (Caudovirales); 3, Mpyoviridae (Caudovirales); 4,
Myoviridae (Caudovirales); 5, Podoviridae (Caudovirales); 6, Siphoviridae (Caudovirales); 7, Podoviridae
(Caudovirales); 8, Inoviridae; 9, Myoviridae (Caudovirales). The green lines show vContact pairwise
similarity scores. The order and distance between different viruses are arbitrarily selected values.

tetranucleotide frequency (16 bacterial strains predicted as hosts), followed by BLAST
(9 bacterial strains predicted as hosts) and CRISPR (2 bacterial strains predicted as
hosts) analysis (Fig. S2A). All 9 viral sequences that had a bacterial host genus pre-
dicted via BLAST also had strain-level predictions using BLAST99. An example of host
prediction via BLAST99 is depicted in Fig. S2B, where the entire viral sequence was
found in five different Acidovorax strains. Interestingly, 7 viral genomes were assigned
hosts using both BLAST and tetranucleotide frequency methods, and 6 of them were
predicted to have the same bacterial-host genus, increasing the confidence in their
host prediction. Out of 20, 10 viral genomes had Pseudomonas predicted as the bacte-
rial host, and overall, 18 viral genomes were assigned to Proteobacteria. This could be
attributed to the fact that of 261 ORFRC isolates, over 50% were pseudomonads and
over 85% were Proteobacteria, making it easier to identify them as host strains. Thus,
several ORFRC bacterial genus and strains belonging to the phyla Proteobacteria,
Actinobacteria, and Firmicutes were predicted as hosts for the viruses.

We also leveraged the complete archaeal and bacterial genome sequences avail-
able on NCBI, to make predictions of bacterial hosts for the 200 viral genomes. No hits
were found using the 311 archaeal strains. Using the 14,028 bacterial strains, host pre-
dictions could be made for about 36.5% (73 of 200) of the viral genomes, with a vast
majority assigned to the phylum Proteobacteria (Table S4). Other bacterial hosts were
in the phyla Actinobacteria, Bacteroidetes, Firmicutes, Chlamydiae, and Chloroflexi.
Again, the maximum number of predictions (71) were made using tetranucleotide fre-
quency, followed by BLAST analysis (5 bacterial strains predicted as hosts) (Fig. S2A).
The BLAST99 analysis had no hits, so strain-specific bacterial host predictions were not
made. Interestingly, all 5 viral genomes that had predictions with BLAST also had pre-
dictions using the tetranucleotide frequency method. Although a higher number of vi-
ral sequences could be assigned to bacterial hosts using whole-genome sequences
(WGS) from NCBI than ORFRC, the probability of finding a host for every bacterial WGS
tested was higher with ORFRC strains (7.6%) than NCBI strains (0.5%), highlighting the
benefits of including bacterial strains from the same environment as the viral sequence
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FIG 3 Size distribution of viruses from the background and contaminated groundwaters. The circular
viral sequences are depicted in blue, while the rest are in red.

itself. More importantly, strain-specific host assignments could only be made using
groundwater bacterial isolates, and such high-resolution host assignment is important
when designing experiments aimed at isolating specific phages.

Using the ORFRC and NCBI strain host predictions together, we were able to assign bac-
terial hosts to 38% (76 of 200) of the viral genomes (Fig. 5). Around 17 viruses had host pre-
dictions based on both ORFRC and NCBI strains (Fig. S2A), with the same bacterial phyla pre-
dicted as hosts (Table S4). Differences like this could be attributed to the nonoverlapping
nature of the strains from NCBI and ORFRC and differences in the strength of host prediction
methods. Next, we compared host prediction between members of the same viral cluster
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FIG 4 Viral host predictions based on BLAST, high-stringency BLAST (BLAST99), tetranucleotide frequency (4-
mer), and CRISPR methods using whole-genome sequence (WGS) information from 261 ORFRC bacterial
isolates. The details of the 20 viruses (“a” to “t”) are provided in Table S4. The viruses “h” and “p” are assigned
to hosts in the class Betaproteobacteria and the family Comamonadaceae. The rest of the viruses are assigned
to the indicated genera. The phylogenetic tree was made from 16S rRNA sequence of 261 ORFRC strains. The
viral sequence “s” appears twice because it was predicted to infect two different genera based on the different

prediction methods.
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FIG 5 Compilation of viral sequences across the background and contaminated groundwater sites
based on availability of bacterial host prediction (green indicates that the bacterial host was
predicted, while blue indicates a lack of available bacterial-host prediction).

(Table S4). The bacterial host predictions mostly remained consistent within the same viral
cluster. The minor discrepancy seen in the viral clusters can likely be explained on further
analysis; for instance, the exceptional viral cluster VC_138_0 consists of 10 members, with
six being groundwater viruses, and their hosts were predicted to be either Burkholderiales
or Pseudomonadales based on the prediction method used. Interestingly, the four known
viruses they cluster with were Bordetella virus BPP1, Pseudomonas phage AF,
Pseudomonas phage vB_PaeP_Tr60_Ab31, and Xanthomonas citri phage CP2, indicating
that members of this cluster infect both Burkholderiales and Pseudomonadales. Thus, con-
sistent patterns of host prediction emerge within the same viral cluster.

Presence of metabolic genes. In addition to affecting groundwater biogeochemistry
through their physical contribution to dissolved organic matter and the lysis of their hosts,
viruses can also affect the diversity and function of microbial populations through the incor-
poration and expression of auxiliary metabolic genes (AMGs) (4, 34). AMG definitions are still
being refined (35), but generally, these genes are not involved in viral replication or structure
but instead allow viruses to directly manipulate host metabolism during infection.
Examination of all the viral sequences revealed a total of 1,486 hits classified into known
Pfam categories (Fig. S3). Exploring Pfam domains associated with microbial metabolism
resulted in the identification of 51 unique putative AMGs (Table S5). Since these viral
sequences are from a site where metal and antibiotic resistance genes are routinely seen
(36-38), all the unique PFAM hits were manually curated to identify metal and antibiotic re-
sistance genes (Table S5). We found that the metal resistance genes identified as putative
AMGs were those providing resistance to copper, while the antibiotic resistance genes in the
list of putative AMGs were annotated as multiresistance beta-lactamase, providing resistance
to B-lactam antibiotics; multidrug efflux pumps in the AcrB/AcrD/AcrF family, providing mul-
tidrug resistance; and streptomycin adenylyltransferase, providing resistance to streptomy-
cin. An excellent example is viral sequence GW456_c_scaffold_130, which was annotated to
encode metal and antibiotic resistance genes along with signature phage genes, consistent
with a complete phage genome (Fig. 6; annotation details are provided in Table S6). The
compilation of all the data discussed is available in Table S7. To the best of our knowledge,
this is the first report of the presence of metal and antibiotic resistance genes on viral
sequences. The presence of metal and antibiotic resistance genes suggests that ground-
water viruses may manipulate metal tolerance mechanisms, enabling their hosts to adapt to
environmental stressors.

Conclusion. We demonstrate identification of novel viruses by leveraging plasmi-
dome data for exploring environmental viral communities. Our analyses revealed the
presence of novel viruses, likely representing new viral genera, in the underexplored
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gw456_c_scaffold_130
94,434 bp

FIG 6 Example of a viral contig carrying auxiliary metabolite genes. Map of the virus (gw456_
c_scaffold_130) from background groundwater with phage-related genes highlighted in green (darker
green represents true hallmark genes of viruses), metal (copper, cobalt, zinc, cadmium, lead, mercury,
and arsenic) resistance genes highlighted blue, antibiotic (spectinomycin and fosfomycin) resistance
genes highlighted in pink, and the metabolism (lactate dehydrogenase) gene in yellow. The viral
contig was annotated via Prokka in KBase and the annotations for virus-associated genes were
updated on the map using VirSorter predictions; details are in Table S6.

groundwater environment. Using different data sets, we achieved bacterial host predic-
tions for a substantial number of the viral sequences. Several of these phages carry genes
related to signaling and tolerance mechanisms, thus likely augmenting ecosystem func-
tion by modifying the metabolism of their bacterial hosts. Interestingly, we found genes
annotated to provide tolerance to metals, which is significant source of stress at this site.
These predictions form the basis of future work on guiding phage isolation efforts and
functional assessment of virus-host linkages. The ability to isolate phages would open
new avenues for targeted manipulation of specific subsets of bacteria, thus allowing the
systematic dissection of a microbiome for probing community dynamics and function.

MATERIALS AND METHODS

Groundwater sample collection and sequencing analysis. The groundwater samples were
obtained from the Oak Ridge Field Research Center (ORFRC) site (21-23) and included samples from
metal-contaminated (wells FW104 and FW106) and background (wells GW456 and GW460) areas. The
metal-contaminated site was characterized by chronically high concentrations of radionuclides (e.g., ura-
nium), nitric acid, organics, salts, mercury, and other heavy metals (36). The level of contaminants in the
background site is available in the supplemental material of a previous study (37) exploring the plasmi-
dome. The plasmidome study (37) described the circular DNA isolation (plasmidome analysis) procedure
from 5 liters of groundwater from background sites (GW456 and GW460), followed by sequencing, as-
sembly, annotation, and other analyses. Additionally, for the present study, we also used plasmidome
sequence data from two contaminated-site samples comprising 8 liters groundwater from FW104 and
FW106 and subjected to the same analysis (unpublished data; sequencing data available via MG-RAST
IDs mgm4830571.3 and mgm4830867.3).

To extract DNA from bacteria on a filter, we used a modified version of the alkaline hydrolysis plas-
mid DNA isolation method (39). The remnant linear DNA fragments were removed by plasmid-safe ATP-
dependent DNase (Epicentre Biotechnologies, Madison, WI) at 37°C for 48 h with double the recom-
mended ATP and enzyme amounts. The lack of chromosomal DNA contamination was confirmed by
PCR with degenerate 16S rRNA primers. The plasmid DNA was amplified with phi29 DNA polymerase
(New England Biolabs, Ipswich, MA) as previously described (40) for 6 days at 18°C. This was followed by
ethanol precipitation and use of a NanoDrop instrument to concentrate and quantify the DNA. The lack
of chromosomal DNA contamination in plasmid DNA extracted from groundwater samples F and G was
confirmed by PCR with degenerate 16S rRNA primers.

All DNA was sequenced using lllumina MiSeq reagent v3 kit (paired-end protocol). Trimmomatic
0.36 (41) (http://www.usadellab.org/cms/?page=trimmomatic) was used to trim the reads with the fol-
lowing parameters: llluminaClip:TruSeq3-PE.fa:2:30:10, Leading:3 Trailing:3 SlidingWindow:4:15 MinLen:
36. IDBA-UD (42) (used for de novo read assembly with the parameter “~pre_correction”). Assembled
sequences were searched against the SILVA 16S rRNA database (43) using BLASTN; all scaffolds with
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>200-bp identity to 16S rRNA were removed from further analysis to reduce any chromosomal DNA
contamination. This step significantly reduces chromosomal contamination, but given the nature of the
study, is not possible to eliminate all chromosomal-DNA contamination in the data set. We modified a
pipeline method for postassembly detection of circularity among scaffolds with the following criteria to
identify the complete closed circular scaffolds referred to as “circular_scaffolds” or simply circular plas-
mids: (i) scaffold length of >2kb, (ii) >34-bp homology (E value > 1e—5) at the ends of the scaffold in
the correct direction, and (iii) at least two read pairs mapping on opposite ends of the contig, a maxi-
mum of 500 bp from the end.

Identification of viral contigs. After sequencing, the assembly of all contigs (including plasmid and
viral DNA), along with prediction of circular sequences using bioinformatic analyses, was performed as
described previously (37). Briefly, all plasmid sequences obtained were subjected to a pipeline method
for postassembly detection of circularity among scaffolds, and any scaffolds failing this are termed non-
circular contigs, to distinguish them from plasmid sequences which met the criteria. All circular contigs
along with noncircular contigs encoding more than 10 proteins were subjected to VirSorter analysis (29),
an iVirus tool available via CyVerse (44) for identification of viruses. VirSorter was used to identify and
remove microbial contigs using the “virome decontamination” mode, with every contig that was not
identified as viral being considered a microbial contig. The final set of viral contigs was formed by
compiling sequences detected as VirSorter categories 1 and 2 along with prophage categories 4 and 5
(Table S1). Thus, we focused on the 200 viral sequences with high-confidence assignments (VirSorter cat-
egories 1, 2, 4, and 5) and ignored the low-confidence assignments (VirSorter categories 3 and 6).
VConTACT2 (45) was used to perform viral cluster analysis, and the results were visualized using
Cytoscape (46). Since the groundwater from background site was spiked with Desulfovibrio vulgaris
Hildenborough (ATCC 29579), Escherichia coli DH1 (ATCC 33849), and E. coli strain J-2561 as controls for
the plasmidome study, any viruses associated with these strains were removed from the analysis. Given
that the DNA isolation procedure concentrated on targeted isolation of circular DNA, there is an
expected inherent bias in identifying circular dsDNA viral sequences from this data set. All viral genomes
are available at https://kbase.us/n/76973/17/.

Generation of host database. (i) Generation of host database from ORFRC bacterial isolates. (a)
Isolation of bacterial strains. The bacterial isolates were obtained via direct-plating under aerobic or an-
aerobic conditions at 25 to 30°C in the dark, using ORFRC groundwater or sediment extract as the inocu-
lum, or via two-step isolation: enrichment incubation of 1 ml groundwater in 9 ml liquid medium aerobi-
cally for 2 weeks followed by direct plating for isolation. A subset of isolates were obtained from biofilm
reactors (CDC reactors) that were fed ORFRC groundwater and had nonporous glass beads (30 um) as a
matrix for biofilms in coupons. Water or beads from the reactors were used as the inoculum. For direct
plating, rich-medium (Luria-Bertani, tryptic soy; R2A; Eugon, Winogradsky) agar plates or basal-medium
(4.67 mM ammonium chloride, 30 mM sodium phosphate, with vitamin and mineral mixes as previously
described [47]) agar plates were used. The liquid medium for enrichment incubation was filtered
groundwater amended with one or a combination of the following carbon sources: glucose (5 mM), ace-
tate (5 mM), benzoate (0.5 mM), Casamino Acids (10 wg/ml), bacterial cell lysate, and sediment-extracted
dissolved organic matter. After direct plating, single colonies were picked and regrown in liquid medium
for 16 to 48 h until the culture reached mid-log phase. Then a portion of the culture was used to extract
DNA for 16S rRNA-based identification, and the rest was cryopreserved with sterile glycerol (to a final
concentration of 30%), flash frozen with liquid nitrogen, and stored at —80°C.

(b) Whole genome sequencing and de novo assembly. Cultures were revived from glycerol stocks by
streaking onto Luria-Bertani or R2A agar plates. Individual colonies developed at 30°C over 48 h and
were then inoculated into corresponding liquid media and grown at 30°C for 48 h. The cultures were
centrifuged, and the genomic DNA was extracted using the Qiagen DNeasy kit (Qiagen, Venlo, the
Netherlands) according to the manufacturer’s instructions. All samples were eluted in Qiagen’s AE buffer:
10 mM Tris-Cl, 0.5 mM EDTA (pH 9.0). Genomic DNA was stored at —20°C followed by transfer into a 384-
well plate for automated library preparation. The isolated genomic DNA was normalized to 0.2 ng/ul in
10 mM Tris (pH 8.0), and libraries were prepared using the Illumina Nextera XT kit at 1/12 reaction vol-
ume on a SPT Labtech Mosquito HV. Final libraries were purified using solid-phase reversible immobiliza-
tion beads, and sequenced on an lllumina NextSeq 500 with 150-bp paired-end reads. The program
Cutadapt v1.12 was used to remove adapter sequences with the parameters -a CTGTCTCTTAT -A
CTGTCTCTTAT (48). We performed sliding-window quality filtering with Trimmomatic v0.36 (parameters:
-phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:5:20 MINLEN:50) (41). All genomes were assembled
de novo using SPAdes v3.9.0 with the following options (-k 21,33,55,77 —careful) (49). Genome quality
was validated with the program checkM v1.0.6 using the lineage_wf pipeline with default parameters
(47), and all draft genomes met the criteria of contamination of <10% and completeness of >95%. The
16S rRNA gene sequences were recovered with RNAmmer v1.2 (=S bac -m ssu) and taxonomically classi-
fied with SINTAX (usearch v9.2.64) against the Ribosomal Database Project (RDP) (50) 16S rRNA gene
training set v16 with species names and the following parameters: —strand both -sintax_cutoff 0.8 (51,
52). The whole-genome sequences (WGS) of 261 bacterial isolates (details in Table S2) from ORFRC were
combined to form a database for further bioinformatic analyses. The WGS of the 261 strains are available
at https://kbase.us/n/63776/35 with the DOI 10.25982/63776.53/1637360.

(ii) Generation of host database from NCBI bacterial and archaeal isolates. A genome database
of putative hosts for the viruses was generated including all archaeal (311 assembled complete
genomes, downloaded in September 2019) and bacterial (14,028 assembled complete genomes, down-
loaded in August 2019) genomes from NCBI Assembly. The taxonomic affiliation of the genomes was
taken from the NCBI taxonomy.
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Host prediction and diversity. Three different previously published approaches (53, 54) for predict-
ing hosts based on examining similarities between (i) a bacterial genome-encoded CRISPR spacer and viral
genome (55), (i) viral and microbial genomes due to integrated prophages or gene transfers (56), and (iii)
viral and host genome nucleotide signatures (here, tetranucleotide frequency similarity) (30) were used as
described below. The confidence in assignment via these three methods to different clades in bacterial
classification was estimated previously (57), with CRISPR-based predictions being the most accurate, while
the tetranucleotide frequency-based predictions were the least accurate at the genus level.

(i) BLAST-based identification of sequence similarity between viral contigs and host genome.
All 200 viral contigs were compared to all archaeal and bacterial genomes with BLASTn (threshold of 50
for bit score and 0.001 for E value), to identify regions of similarity between a viral contig and a microbial
genome, indicative of a prophage integration or horizontal gene transfer. As previously established (54),
host prediction was made when an NCBI genome displayed a region similar to the viral contig of
=4.9kb at =70% identity. When one viral sequence had hits to multiple bacterial strains, the top 5 hits
(based on bit score) were analyzed to determine the last common ancestor clade. This clade was then
assigned as the host to the virus. Based on this method, genus-level bacterial-host predictions were
made. Bacterial strain-specific host predictions were made only when the entire virus was found to be
present in the bacterial whole-genome sequence. In this case, BLAST with highly stringent parameters,
referred to as BLAST99 (>99% query coverage, E value =0, and >99% identity), was performed to query
for the presence of an entire viral sequence in the host.

(ii) Matches between viral contigs and CRISPR spacers. CRISPR arrays were predicted for all ORFRC
microbial genomes with CRISPR Recognition Tool (CRT) (58) using default settings (repeat settings used 3
minimum repeats, a minimum repeat length of 19, a maximum repeat length of 38, and a search window of
8, along with spacer settings using a minimum spacer length of 19 and a maximum spacer length of 48). We
used previously published (54, 59) BLAST parameters for identifying the target of CRISPR spacers (i.e., using
the BLASTn-short task, a maximum expect value of 1, a gap opening penalty of 10, a gap extension penalty
of 2, a word size of 7, and dust filtering turned off). Given that the accuracy of this approach for detecting
phage hosts strongly depends on the maximum number of mismatches allowed between the CRISPR spacer
and the viral sequence, the results were filtered to allow 0 or 1 mismatch. Only the CRISPR spacers that
matched viral sequences were then compared back with the bacterial WGS with no mismatch to come up
with bacterial host predictions. Based on this method, strain-level bacterial-host predictions were made.

(i) Nucleotide composition similarity: comparison of tetranucleotide frequency. Bacterial and
archaeal viruses tend to have a genome composition close to the genome composition of their host, a
signal that can be used to predict virus-host pairs (54, 57, 60). Here, canonical tetranucleotide frequen-
cies (also referred to as 4-mers) were observed for all viral and host sequences using Jellyfish (61), and
mean absolute error (that is, the average of absolute differences) between tetranucleotide-frequency
vectors was computed with in-house Perl and Python scripts for each pair of viral and host sequence as
previously reported (57). A viral contig was then assigned if the average of absolute differences (d)
between tetranucleotide-frequency vectors was <0.001. When multiple strains had hits to one viral
sequence, the top five hits (based on lowest distance) were analyzed to determine the lowest common
ancestor of the group. This lowest common ancestor was then assigned as the host to the virus. Based
on this method, genus-level bacterial-host predictions were made.

Phylogenetic tree construction. For constructing the phylogenetic tree using ORFRC isolates, the
16S rRNA sequences from all 261 strains were aligned using Muscle (62). The evolutionary history was
inferred by using the maximume-likelihood method based on the Tamura-Nei model using MEGA7 (63).
The tree with the highest log likelihood (—7,846.44) is shown. The initial tree(s) for the heuristic search
was obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise dis-
tances estimated using the maximum composite likelihood (MCL) approach and then selecting the to-
pology with superior log likelihood value. The analysis involved 255 nucleotide sequences. All positions
containing gaps and missing data were eliminated. There were a total of 519 positions in the final data
set. All branches were collapsed at the genus level. For the phylogenetic tree depicting NCBI isolates,
existing trees were downloaded using NCBI Taxonomy and collapsed to genus levels.

Viral sequence annotation. A functional annotation of all virus-encoded predicted proteins was
based on a comparison to the Pfam domain database v.32 (64) with HmmScan (65) (threshold of 30 for
bit score and 102 for E value). The Pfam categories were assigned based on Pfam target name as previ-
ously described (57), and any Pfam target name not categorized earlier is referred to as “not catego-
rized.” All contigs were also uploaded to KBase for annotation. To specifically identify metal and antibi-
otic resistance genes, all the unique Pfam target names and their descriptions were manually curated.
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