
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Building an Efficient Concolic Executor

Permalink
https://escholarship.org/uc/item/3q32j16v

Author
Chen, Ju

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3q32j16v
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Building an Efficient Concolic Executor

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ju Chen

June 2022

Dissertation Committee:

Professor Chengyu Song, Co-Chairperson
Professor Heng Yin, Co-Chairperson
Professor Rajiv Gupta
Professor Zhiyun Qian

Copyright by
Ju Chen

2022

The Dissertation of Ju Chen is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, Professor Chengyu Song, and Professor Heng Yin. Without

their help, I would not have been here. Their knowledge, enthusiasm, and continuous support

are the key to my Ph.D. study. Besides, my sincere gratitude goes to the rest of my Ph.D.

dissertation committee: Professor Zhiyun Qian and Professor Rajiv Gupta for their insightful

questions and comments. I would like to thank our collaborator, Professor Byoungyoung

Lee, for his insightful suggestions. I also want to thank my fellow Jinghan, Jie, Mingjun,

Haochen, Sheng, Zhenxiao, Zixiang, Wei, Lian, and Yu, for their help during my hard times.

This dissertation includes previously published materials entitled “SymSan: Time and Space

Efficient Concolic Execution via Dynamic Data-flow Analysi” published in the USENIX

Security Symposium, 2022, and “JIGSAW: Efficient and Scalable Path Constraints Fuzzin”

published in the IEEE Symposium on Security and Privacy, 2022.

iv

To my wife for all the support.

v

ABSTRACT OF THE DISSERTATION

Building an Efficient Concolic Executor

by

Ju Chen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2022

Professor Chengyu Song, Co-Chairperson
Professor Heng Yin, Co-Chairperson

Concolic execution is a powerful program analysis technique for systematically

exploring execution paths. It is especially good at exploring paths that are guarded by

complex and tight branch predicates. However, concolic execution faces scalability issues

that prevent concolic execution from being adopted widely in practice. This thesis tries to

reduce the overhead from two major sources in the concolic execution.

The first source of overhead is constraints collecting. This thesis presents a novel

design that models concolic execution as a special form of dynamic data-flow analysis.

Therefore, the concolic executor can be implemented by leveraging the existing highly-

optimized data-flow analysis framework. The evaluation results show that the new design

can significantly improve the efficiency of the concolic execution and reduce its memory

consumption.

The second source of overhead is path constraints solving. This thesis presents a

novel way to flip branches efficiently. The insight is that constraints collected by concolic

executors are pure and straight-line functions that make pure functions an ideal target for

vi

evaluating newly generated test inputs. Concretely, by converting constraints to native

programs (using JIT compilation), more than 1 million inputs can be tested per second.

The evaluation results show that this new design can significantly outperform existing SMT

solvers.

In summary, this thesis shows that with the improvements in constraints collecting

and constraints solving, a concolic executor can be built more efficiently than the existing

tools and is helpful in coverage-guided software testing.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Thesis Statement . 4

2 Background 5
2.1 Symbolic Execution . 5

2.1.1 Concolic Execution . 6
2.1.2 Scalability Issues and Recent Advances 6

2.2 Automated Test Generation . 7
2.2.1 Efficiency of Test Generation . 9

3 SymSan: Reducing The Overhead of Managing Symbolic Expressions 12
3.1 Motivation . 12
3.2 Design . 13

3.2.1 Symbolic State Access . 17
3.2.2 Symbolic Expression Management . 20
3.2.3 Additional Optimizations . 22
3.2.4 Interactions with External Libraries 24

3.3 Implementation . 25
3.4 Evaluation . 27

3.4.1 Dataset . 28
3.4.2 Performance . 29
3.4.3 Memory Consumption . 34
3.4.4 Code Coverage . 35
3.4.5 Hybrid Fuzzing . 37
3.4.6 Security Implications . 38

4 JIGSAW: Speeding Up Branch Flipping 42
4.1 Overview . 42

4.1.1 Insight . 42

viii

4.1.2 Overview . 43
4.1.3 Challenges . 46
4.1.4 Comparison with SMT Solvers . 47

4.2 Design . 48
4.2.1 Getting Constraints . 49
4.2.2 Preprocessing . 50
4.2.3 Code Generation . 51
4.2.4 Solving . 52
4.2.5 Scaling . 53

4.3 Implementation . 55
4.4 Evaluation . 56

4.4.1 Constraint Solving Performance . 56
4.4.2 End-to-End Fuzzing Performance . 66
4.4.3 Threat to Validity . 72

5 Conclusions 73

Bibliography 75

ix

List of Figures

1.1 Thesis Overview . 3

3.1 The overall design of SymSan . 14
3.2 A running example illustrating how SymSan instrument the target program. 15
3.3 AST node of SymSan. 21
3.4 Execution time of 102 CGC challenge binaries 31
3.5 Execution time for the real-world programs. 32
3.6 The peak resident size for each concolic execution without solving. 35
3.7 Coverage score comparing SymSan and SymCC per tested program (102 CGC

challenge binaries in total). 36
3.8 Edge coverage growth over time for local fuzzing. 38

4.1 Overview of JIGSAW . 43
4.2 Constraints processing time distribution (in micro-seconds). 58
4.3 Average search throughput and branch flipping rate of JIGSAW on multiple

cores. 64
4.4 Edge coverage growth over time for local fuzzing. 68

5.1 Execution time for the real-world programs. The figure is drawn in logarithmic
scale. SymSan-NoOpti is SymSan without expressions deduplication and
load/store optimization. SymSan-NoLoad is without load/store optimization). 82

5.2 Maximum number of AST nodes tracked by SymSan and SymCC 82

x

List of Tables

3.1 Memory layout of the program for taint analysis. 25
3.2 Performance results for pure concrete execution on NBENCH 30
3.3 Execution time of concolic execution engines with solving (in seconds). . . . 34
3.4 Comparing SymSan with other state-of-the-art symbolic executors based on

their publicly available Fuzzbench results. 39
3.5 Mean bug survival times—both Reached and Triggered—over a 24-hour

period, in seconds, minutes, and hours. Bugs are sorted by “difficulty” (mean
times). 40

4.1 Transforming a comparison operation into a distance-based loss function. . . 51
4.2 Details of real-world applications used for evaluation. 57
4.3 Solving capability comparison. 57
4.4 The throughput (number of tried inputs per second) of JIGSAW (JIGSAW-

1K) and Bitwuzla (BZLA-LS-100K) in a single-threaded execution. 61
4.5 The branch flipping rate of single thread JIGSAW and comparison with

popular SMT solvers. 62
4.6 Accumulated solving time breakdown of JIGSAW 63
4.7 Benefits of using function cache, when solving 20,000 constraints from readelf. 63
4.8 Comparison of concolic execution engines on flipping all symbolic branches

along a single execution trace. 66
4.9 Comparing JIGSAW with other state-of-the-art symbolic executors based on

their publicly available Fuzzbench results. 70

5.1 Execution time of concolic execution engines collecting all constraints without
solving (in seconds). SymCC cannot build sqlite3. SymCC crashes on 70% of
seeds for libpng. 81

xi

Chapter 1

Introduction

Symbolic execution treats program inputs as symbolic values instead of concrete

values. Program variables (including memory and register content) are represented as

symbolic expressions, i.e. functions of symbolic inputs. Symbolic execution is a powerful

software testing tool because it can cover an execution path using a symbolic input instead

of multiple concrete ones.

A symbolic execution engine maintains (i) a symbolic state σ, which maps program

variables to their symbolic expressions, and (ii) a set of path constraints PC, which is a

quantifier-free first-order formula over symbolic expressions [13]. To generate a concrete input

that would allow the program to follow the same execution trace, the symbolic execution

engine uses PC to query an SMT solver for satisfiability and feasible assignments to symbolic

values (i.e., input).

One disadvantage of classical symbolic execution is that it cannot explore an

execution path where a constraint solver cannot solve its path constraints PC(e.g., when

1

the constraints contain uninterpreted functions or are too complex). To circumvent the

issue, researchers proposed concolic execution (a.k.a. dynamic symbolic execution) where

symbolic execution is combined with concrete execution. In concolic execution, (i) each

variable has two states, one with concrete input and the other with symbolic input, and (ii)

the execution path is dictated by the concrete input (i.e., the execution path that is always

feasible, regardless of the feasibility of the path constraints). To explore execution paths

that deviate from the current concrete path, the concolic executor checks the feasibility of

the branch target opposite to the concrete direction; if feasible, it generates a corresponding

input.

The advantage of symbolic execution over random mutation/generation is the ability

to handle complex branch conditions more efficiently (i.e., to find an input that can visit

the opposite direction of a branch, solving the corresponding path constraints are faster

than fuzzing). The drawback, however, is the lack of scalability. There are two performance

bottlenecks: constraints collecting and constraints solving.

For constraint collecting, Yun et al. [77] observed that KLEE is around 3,000 times

slower and angr is more than 321,000 times slower than native execution when testing

md5sum, chksum and sha1sum. They pointed out the slowdown of KLEE and angr is due

to their adoption of IR and symbolic emulation, so they proposed a dynamic-instrumentation-

based approach directly atop binary instructions. Based on the observation that collecting

symbolic constraints at IR-level is simpler than collecting at instruction-level [52], Poeplau

and Francillon proposed using IR-level instrumentation to (i) avoid symbolic emulation of

instructions and (ii) retain the simplicity of symbolic constraints [53]. As a result, their tool

2

SymCC performs significantly faster than both IR-less QSYM [77] and IR-based KLEE [11].

Despite recent improvements on symbolic execution, the state-of-the-art symbolic executors

still impose a significant performance and memory overhead compared to native execution.

For constraint solving, Poeplau and Francillon [53] reported that constraint solving

contributes up to 93.3% of the concolic execution’s performance overhead. We also have a

similar observation when testing programs such as objdump libjpeg, vorbis and woff2. As a

concrete example, it takes about 24 seconds to symbolically execute objdump on 560 inputs

without solving, while it takes 12 hours to finish executing when solving is turned back on.

Build An Efficient Concolic Executor

Constraints Collecting Constraints Solving

A Time and Space Efficient
Concolic Executor

An Efficient and Scalable
Path Constraints Fuzzer

Figure 1.1: Thesis Overview

3

1.1 Thesis Statement

My thesis aims to make concolic execution more efficient in open-sourced programs.

To this end, as illustrated in Figure 1.1, this project aims to tackle two interconnected tasks

by proposing two novel techniques.

• An efficient concolic executor. This task aims to improve the efficiency of concolic

execution. To this end, we propose SymSan, a time and space efficient concolic

executor built based on the high-optimized data-flow analysis framework.

• An efficient path constraints solver. This task aims to address the bottleneck of

constraints solving. To this end, we propose JIGSAW, an efficient and scalable path

constraints solver. JIGSAW finds feasible inputs for a path constraint by (just-in-time)

compiling the constraint to a pure native function(s) and performing gradient descent

search on the JIT’ed function(s).

4

Chapter 2

Background

2.1 Symbolic Execution

Symbolic execution treats program inputs as symbolic values instead of concrete

values. Program variables (including memory and register content) are represented as

symbolic expressions, i.e., functions of symbolic inputs. Symbolic execution is a powerful

software testing tool because it can cover an execution path using a symbolic input instead

of multiple concrete ones.

A symbolic execution engine maintains (i) a symbolic state σ, which maps program

variables to their symbolic expressions, and (ii) a set of path constraints PC, which is a

quantifier-free first-order formula over symbolic expressions [13].

The path constraint PC is empty initially. Whenever a conditional statement is

encountered, if its predicate is symbolic, the symbolic executor constructs a boolean formula

ϵ (i.e., ϵ = true for the if then branch or ϵ = false for the else branch). The symbolic

executor can then check the feasibility of each branch direction by consulting a satisfiability

5

modulo theories (SMT) (i.e., whether PC ∧ ϵ and PC ∧ ¬ϵ are satisfiable). For each feasible

direction, the symbolic executor updates its path constraint PC by adding the constraint

(ϵ = true or ϵ = false) according to the branch direction.

To generate a concrete input that would allow the program to follow the same exe-

cution trace, the symbolic execution engine uses PC to query an SMT solver for satisfiability

and feasible assignments to symbolic values (i.e., input).

2.1.1 Concolic Execution

One disadvantage of classical symbolic execution is that it cannot explore an

execution path where a constraint solver cannot solve its path constraints PC(e.g., when

the constraints contain uninterpreted functions or are too complex). To circumvent the

issue, researchers proposed concolic execution (a.k.a. dynamic symbolic execution) where

symbolic execution is combined with concrete execution. In concolic execution, (i) each

variable has two states, one with concrete input and the other with symbolic input, and (ii)

the execution path is dictated by the concrete input (i.e., the execution path that is always

feasible, regardless of the feasibility of the path constraints). To explore execution paths

that deviate from the current concrete path, CE checks the feasibility of the branch target

opposite to the concrete direction; if feasible, it generates a corresponding input.

2.1.2 Scalability Issues and Recent Advances

The advantage of symbolic execution over random mutation/generation is the ability

to handle complex branch conditions more efficiently (i.e., to find an input that can visit the

opposite direction of a branch, solving the corresponding path constraints are faster than

6

fuzzing). The drawback, however, is the lack of scalability. There are three main performance

bottlenecks: constraint solving, instruction interpretation, and symbolic state management.

Recently, a line of research work aims to improve the performance of the instruction

interpretation. For example, Yun et al. [77] observed that KLEE is around 3,000 times slower

and angr is more than 321,000 times slower than native execution when testing md5sum,

chksum and sha1sum. They pointed out the slowdown of KLEE and angr is due to their

adoption of IR and symbolic emulation, so they proposed a dynamic-instrumentation-based

approach directly atop binary instructions.

Based on the observation that collecting symbolic constraints at IR-level is simpler

than collecting at instruction-level [52], Poeplau and Francillon proposed using IR-level

instrumentation to (i) avoid symbolic emulation of instructions and (ii) retain the simplicity

of symbolic constraints [53]. As a result, their tool SymCC performs significantly faster than

both IR-less QSYM [77] and IR-based KLEE [11].

2.2 Automated Test Generation

Testing is an important and effective way to detect software bugs. However,

manually generated test cases are usually biased towards normal or expected inputs so they

do not provide enough coverage, especially for corner cases. As a result, simply testing

software with random inputs is enough to generate many crashes [44], most of which are

exploitable. Automated test generation aims to generate test cases to cover as much code as

possible. Fuzzing and symbolic execution are the two most popular automated test generation

techniques.

7

Fuzzers create inputs in a generative manner or mutational manner. Generative

fuzzers can be grammar guided [28, 23, 1, 58, 47] or learning based [71, 56, 31]. Mutational

fuzzers generally adopt two genetic operations: random mutation and crossover [44, 78, 33, 62].

The first generation of fuzzers was blackbox fuzzers [44, 23, 1], which just create random

test inputs. While they have successfully found many bugs, most of those bugs are shallow;

once fixed, these fuzzers cannot go deeper and cover more code/states. The reason is that

blackbox fuzzers are aimless so they can easily generate lots of redundant test cases. To solve

this problem, greybox (a.k.a.feedback-guided) fuzzers were invented [78, 33, 62, 38, 51, 5, 69,

6, 2, 75, 20, 25, 16, 17, 4, 42, 76]. By using lightweight instrumentation to collect limited

runtime information (e.g., branch coverage), greybox fuzzers can measure the progress they

have made and steadily progress towards their goals [48].

White-box fuzzers and symbolic/concolic executors [30, 19, 12, 77, 61, 13, 10, 29,

11, 14, 53, 54, 9] generate new input test cases more systematically. They treat the test

input as a sequence of symbolic bytes. When executing the target program, a symbolic

execution engine maintains (1) a symbolic state σ, that maps program variables to symbolic

expressions and (2) a set of quantifier-free first-order formulas over symbolic expressions that

are imposed by conditional branches (a.k.a.path constraints) [13]. Whenever the execution

engine encounters an uncovered branch, it will query an SMT solver for the satisfiability of

that branch’s predicate under current path constraints. If the branch predicate is satisfiable,

it asks the SMT solver to return a model for the relevant inputs bytes and generates a new

test input that should be able to cover that branch.

8

2.2.1 Efficiency of Test Generation

Since we only have limited resources (CPU, memory, and time), the most important

metric for measuring an automated test generation technique is its efficiency, i.e., how

much coverage can it achieve with the limited resources. The first component that has

a huge impact on efficiency is state/path scheduling. For fuzzers, since each testcase

represents an execution path, testcase scheduling is the same as path scheduling. A basic

observation is that if opposite branches along a path have already been covered or are

hard/infeasible to flip, then spending more time on this path will not give any reward (new

coverage). This scheduling problem can be generally modeled as a multi-armed bandit (MAB)

problem [15, 76] and numerous scheduling algorithms have been proposed to improve the

efficiency of fuzzers [5, 6, 39, 26, 57, 4, 76, 72, 70].

Once a path is scheduled, the next important factor that affects the efficiency is the

speed to flip an uncovered branch. The branch flipping problem is a typical search problem:

how to find an input that can satisfy the branch predicate and additional path constraints

that must be satisfied to reach this branch [17]. The efficiency of this step depends on two

factors. The first factor is the search algorithm. Off-the-shelf fuzzers [78, 33, 62] do not pay

much attention to this problem and rely on a random search. As a result, their search is

aimless and usually faces difficulties when trying to flip branches with tight constraints (e.g.,

magic number check). To overcome this limitation, researchers have proposed numerous

heuristics [57, 2, 50, 73]. A more general solution is to measure progress and perform a

directed search, such as splitting branches [37], using gradient-guided search [16, 17, 64, 65],

binary search [20], genetic algorithms [25], or simulated annealing [67]. For complex path

9

constraints, the most efficient way so far is to use an SMT solver, which applies a large set of

sophisticated heuristics to transform/rewrite the constraints into simpler ones, then searches

for a satisfying solution. Modern SMT solvers usually leverage two main solving strategies

for path constraints that are in the quantifier-free theories of bit-vectors and arrays: (1)

bit-blasting, which reduces the constraints into a corresponding SAT (boolean satisfiability)

problem, then queries an efficient SAT solver to find a solution; (2) local search, which

transforms the constraints into an objective function and applies optimization techniques

to find a solution. Recent research also shows that employing the aforementioned fuzzing

heuristics can be beneficial [40, 49, 8]. Note that the focus of this work is not on improving

the search heuristics, but on improving the throughput; and our approach can be combined

with any fuzzing- or local-search-based heuristics.

The second factor that affects the efficiency of branch flipping is the number of

new inputs that can be tried in a unit of time. The more inputs a fuzzer can try, the

faster it can find a satisfying input. For this reason, efforts have also been made to improve

the throughput of fuzzers. For example, AFL [78] uses fork_server to avoid initialization

overhead. kAFL [60] avoids instrumentation by using a hardware trace collector. Firm-

AFL [79] avoids expensive whole-system emulation through augmented user-mode emulation.

Xu et al. [74] designed three new operating system (OS) primitives to improve the scalability

of parallel fuzzing on multi-core machines. Nyx [59] employs a fast virtual machine reset

technique. By evaluating with JIT’ed path constraints, our approach can significantly improve

the search throughput.

10

Previously, the major drawback of symbolic execution has been that collecting

symbolic constraints is very slow [77], so the overall branch flipping efficiency is not as good

as greybox fuzzers. However, recent advances in constraints collection have largely reduced

this overhead [77, 53, 54, 9].

11

Chapter 3

SymSan: Reducing The Overhead of

Managing Symbolic Expressions

3.1 Motivation

Despite recent improvements on symbolic execution, the state-of-the-art symbolic

executors still impose a significant performance and memory overhead compared to native

execution. For example, we tested 24 real-world applications with inputs obtained from

24-hour fuzzing, and found that SymCC introduces 8.5x to 32,220x overhead and SymQEMU

introduces 226.9x to 39,658.8x overhead than native execution, respectively.

To understand the source of the overhead, we profiled the performance of SymCC

and SymQEMU. The result revealed a bottleneck previously overlooked by the existing tools:

the maintenance of the symbolic state σ, including representation, storage, and retrieval of

symbolic expressions. Concretely, the existing designs (e.g., the runtime from QSYM [77])

12

represent a symbolic expression as an on-demand allocated memory object and store those

objects in hash map alike data structures. The memory objects are keyed by the variable’s

address in the application’s address space. To ease memory management, some tools adopt

smart pointers. As a result, the allocation, store, and retrieval of symbolic expressions

introduce non-negligible overhead. Since those operations are the most frequent ones during

symbolic execution, their overhead dominates the overall performance of symbolic execution.

In this work, we aim to solve these bottlenecks. Our key observations are (i) forward

symbolic execution is a type of dynamic data-flow analysis and (ii) existing dynamic data-flow

tools have already spent decades of effort to optimize the allocation, store, and retrieval of

labels. Therefore, we can significantly reduce the overhead for maintaining the symbolic state

by building a symbolic execution engine on top of a highly-optimized dynamic data-flow

analysis framework.

3.2 Design

Insight. SymSan’s design goal is to improve the time and space efficiency of the concolic

execution. To achieve the goal, SymSan leverages an important insight: the concolic execution

can be viewed as a special form of dynamic data flow analysis. This observation enables

us to build the concolic tool by extending the existing highly-optimized data-flow sanitizer

framework. This design removes two primary bottlenecks in the existing concolic execution

tools brought by the management of symbolic state.

Overview. Similar to existing instrumentation-based concolic executors like SymCC [53],

SymSan performs compile-time instrumentation to insert the logic for introducing, propa-

13

%2 = mul nsw i32 %0, %1

%3 = icmp sgt i32 %2 100

Source Code

Front-
end

%5 = mul nsw i32 %1, %0
%6 = call @__taint_union()
%7 = icmp sgt i32 %5,100
%8 = call @__taint_union()

Instru.
Pass

Code

Gen

SymSan
Runtime

Instrumented
Program +

- %

Native
Exec.

SMT Query
Serializer

Test
Cases

SymSan

1
2

43

LLVM IR
Instrumented LLVM IR

AST

Figure 3.1: The overall design of SymSan

gating, and checking symbolic expressions. The overall architecture of SymSan is shown

in Figure 3.1. 1 SymSan takes a compiled LLVM IR as input and instruments the code

via a compiler pass. SymSan’s run-time 2 is then linked with the instrumented program

to form the final binary. During run-time, the symbolic state (which can be viewed as an

abstract syntax forest) 3 of all program variables is then populated according to the symbolic

execution policy. At points of interest (e.g., conditional branches), 4 SymSan constructs the

symbolic formulas of the path constraints, asks an SMT solver to check their feasibility, and

generates new test inputs for feasible branch targets.

A Running Example. Figure 3.2 shows a running example illustrating how SymSan

instruments a target program. This program takes two arguments as inputs and returns a

boolean. The first argument is an integer pointer (int *a), and the second argument is an

integer (int b). The function first calculates the product of two integers provided by the

inputs ((*a) * b). Then it compares the product with 100. If the product is greater than

100, the function returns true; otherwise it returns false. We deliberately make the first

argument a pointer to show how SymSan accesses shadow memory.

Line 11 - 48 of Figure 3.2 shows the instrumented version of the function. Recall

that given an instruction like %4 = mul %3, %1, the core logic of concolic execution consists

of three operations:

14

; bool example(int *a, int b) {
; return (*a) * b > 100;
; }
define i1 @example(i32* %0, i32 %1) {

%3 = load i32, i32* %0
%4 = mul nsw i32 %3, %1
%5 = icmp sgt i32 %4, 100
ret i1 %5

define i1 @"dfs$example"(i32* %0, i32 %1) {
; load taint labels for the arguments
%3 =load i32,getelementptr(@__dfsan_arg_tls, 0) ; arg0
%4 =load i32,getelementptr(@__dfsan_arg_tls, 1) ; arg1
; load taint label from shadow memory
%5 = ptrtoint i32* %0 to i64 ; get shadow_addr(%0)
%6 = and i64 %5, -123145302310913
%7 = mul i64 %6, 4
%8 = inttoptr i64 %7 to i32*
%9 = call i32 @__taint_union_load(i32* %8, i64 4)
; load concrete value
%10 = load i32, i32* %0
; concrete execution
%11 = mul nsw i32 %10, %1
; create a new label to represent (*a) * b
%12 = zext i32 %11 to i64 ; extend
%13 = zext i32 %1 to i64
%14 = call i32 @__taint_union(

i32 %9, i32 %4, ; symbolic operands
i16 MUL, ; operator
i8 32, ; operand size in bits
i64 %12, i64 %13 ; concrete operands
)

; concrete execution
%15 = icmp sgt i32 %11, 100
; create a new label to represent (*a) * b > 100
%16 = zext i32 %15 to i64
%17 = call i32 @__taint_union(

i32 %14, ; symbolic left operand
i32 0, ; zero label for concrete right operand
i16 ICMP_LARGER_THAN, ; operator
i8 32, ; operand size
i64 %15, i64 100 ; concrete operands
)

; store the label of the return value
store i32 %17, @__dfsan_retval_tls
ret i1 %15

}

Figure 3.2: A running example illustrating how SymSan instrument the target program.

15

• Load: Locate the symbolic expressions corresponding to %3 and %1 from the symbolic

state.

• Creation: Create a new symbolic expression of that represent the expression mul %3, %1.

• Store: Bind the new symbolic expression to %4.

Next, we describe how these steps are done in SymSan.

At Line 14, SymSan loads the label of b, which represents a unique symbolic

expression (more details in subsection 3.2.2), from the thread local storage (TLS). Line

16 - 20 shows how SymSan loads the label of *a. It first uses the original address (%0) to

calculate its corresponding shadow address (%8) through a fixed mapping scheme (i.e., the

shadow address from Address Sanitizer [63]), then directly loads the label from the shadow

address. Next, it creates a (new) symbolic expression (%14) by passing the two source labels

(%9 and %4) and the operator (MUL) to the runtime function. Because the product of the

inputs ((*a) * b) is temporary, its corresponding label (%14) will not be permanently stored.

Instead, SymSan will record, at compile-time, that the label of %11 is %14. Later, when the

product is used in the comparison (Line 35), SymSan can directly pass %14 to the runtime

function to create the label (%17) corresponding to the comparison result (%15). Finally, to

pass the label of the return value, SymSan stores its label in TLS.

In summary, SymSan uses labels to represent symbolic expressions, which are stored

and retrieved as (i) local (shadow) variables, (ii) thread local storage, (iii) shadow memory,

and (iv) additional arguments (described later).

16

3.2.1 Symbolic State Access

In this subsection, we explain how SymSan reduces the performance overhead for

storing and retrieving symbolic expressions by comparing it to the closest state-of-the-art

tool SymCC [53].

Symbolic Expression Representation. In SymCC, a symbolic expression is either a

pointer(usually 64 bits in 64-bit systems) points to a Z3 abstract syntax tree (AST) node

(when the simple backend is configured), or points to a QSYM AST node. In SymSan, a

symbolic expression is a 32-bit label, which is an index to our AST Table (subsection 3.2.2).

Arguments and Return Value. In SymCC, the symbolic expressions for arguments are

passed through a globalstd::array. Similarly, symbolic expressions for return values are

passed through a global variable. Consequently, it requires multiple function invocations as

well as additional overhead imposed by the C++ container. In addition, this design also

limits current SymCC implementation to single-thread programs.

In SymSan, labels are passed in two different ways, which are inherited from

the DFSAN framework. As shown in Figure 3.2, the first way is through the per-thread

thread local storage (TLS). Accessing TLS is very fast, which usually only requires a single

instruction. For example, on x86, retrieving the label for argument b can be done by a single

mov instruction:

; %4 =load i32,getelementptr(@__dfsan_arg_tls, 1)
movq __dfsan_arg_tls@GOTTPOFF(%rip), %rax

The second way is to introduce additional arguments. For instance, the wrapper

functions for implementing custom symbolic expression constructions for standard C library

17

uses additional shadow arguments for each original argument, and a special return label

argument:

SANITIZER_INTERFACE_ATTRIBUTE size_t
__dfsw_fread(void *ptr, size_t size,

size_t nmemb, FILE *stream,
dfsan_label ptr_label,
dfsan_label size_label,
dfsan_label nmemb_label,
dfsan_label stream_label,
dfsan_label *ret_label)

Either way, when symbolic expressions are propagated between functions, SymSan

is more efficient.

Shadow Memory. For variables stored in memory, most concolic executors use shadow

memory to store their labels. To retrieve symbolic expressions from the shadow memory,

a CE first needs to convert the original address (a) to its corresponding shadow address.

As memory accesses (i.e., load and store) are very frequent, the speed to perform such

translation is critical. In SymCC, shadow memory is implemented in a two-tier mapping.

Given an address addr, it first uses its page-level address to retrieve the corresponding

shadow page through a std::map. Once the shadow page is retrieved, the shadow address is

calculated by adding the page offset of addr:

std::map<uintptr_t, SymExpr *> g_shadow_pages;
SymExpr* getShadow(uintptr_t addr) {

return g_shadow_pages[addr & ~0xfffL]
+ (addr & 0xfffL);

}

Due to the lookup through std::map, the search complexity is O(log(n)).

Because shadow memory is also used by dynamic taint analysis (DTA) tools, they

have spent significant efforts to reduce the overhead. So far, the most efficient approach is

to use direct mapping, which offers constant time (O(1)) lookup. SymSan uses the direct

18

mapping shadow memory from the sanitizer family [63]. Specifically, given an address addr,

its shadow address is calculated as:

dfsan_label *shadow_for(uptr addr) {
return (ptr & ShadowMask()) << 2;

}

In summary, SymSan provides much faster shadow memory access.

Shadow Variables. Both SymCC and SymSan use compile-time instrumentation at the

LLVM-IR level. Therefore, they enjoy the freedom of introducing additional local variables,

which is not feasible for binary-level CEs like QSYM and SymQEMU. Leveraging this

advantage, they both use local shadow variables to store symbolic expressions for local

variables. Using shadow variables has two main advantages. First, the mapping and lookup

are maintained at compile-time, so accessing shadow variables will not introduce additional

runtime lookup overhead. Second, it allows compile-time optimizations to remove redundant

(stack and shadow memory) accesses. For example, in Figure 3.2, the product’s shadow

variable (%14) can be directly used to construct the symbolic expression of the return value,

without storing and loading from the stack. In summary, both SymCC and SymSan provides

optimal accesses to symbolic expressions of local variables.

Summary. Based on the above analysis, we can see that by leveraging the highly-optimized

infrastructure from DFSAN, SymSan can significantly reduce the overhead for storing and

retrieving symbolic expressions. Moreover, SymSan uses a more concise representation for

symbolic expressions.

19

3.2.2 Symbolic Expression Management

In this subsection, we describe how SymSan allocates and stores symbolic expres-

sions in detail. State-of-the-art CEs represent symbolic expressions as memory objects or,

more precisely, abstract syntax trees (AST). These tools will dynamically allocate a new AST

node and populate it based on the source operand(s) to create a new symbolic expression.

For example, SymCC [53] offers two different forms of AST. When the simple runtime is

configured, SymCC directly uses the AST nodes from Z3. When the QSYM runtime is

configured, SymCC uses the AST nodes from QSYM. To ease the memory management, Z3

AST nodes use reference counter to track living references, while QSYM uses smart pointers

std::shared_ptr to track living references. Because heap allocation is costly and reference

tracking is not free, based on our performance profiling, SymCC spends a considerable

amount of time on just allocating (∼3%) and tracking AST nodes (∼28%).

To reduce the overhead of allocating, tracking, and accessing symbolic expressions,

SymSan uses an AST table (i.e., an array of AST node) to store symbolic expressions. Our

observation is that, during dynamic testing (e.g., hybrid fuzzing), because fuzzing throughput

has a big impact on the overall fuzzing performance, existing fuzzers all prefer smaller input

files [6] and will actively minimize the input files (e.g., afl-min). As a result, when processing

these small input files, we need to worry too much about memory leaks (e.g., as shown

in Figure 3.5, most concolic execution processes last less than 1 second).

Therefore, we organize AST nodes in an array and perform simple forward allocation

to allocate new AST nodes.

20

struct dfsan_label_info {
dfsan_label l1;
dfsan_label l2;
u64 op1;
u64 op2;
u16 op;
u16 size;
u32 hash;

} __attribute__((aligned (8), packed));

Figure 3.3: AST node of SymSan.

AST Nodes. Figure 3.3 shows the AST node design of SymSan. Each AST node support

at most two child nodes (l1 and l2). If a child node is symbolic, its corresponding label will

be non-zero, which refers to a subtree. As mentioned above, in SymSan, labels are indices

into the AST table (array). If a child node is concrete (i.e., not symbolic), its label will

be 0, and the corresponding concrete value will be stored in the data fields (op1 and op2).

op stores the operator over the subtree(s). size stores the size of operand(s) in bits. hash

is a hash value of the tree, which is used for deduplication (subsection 3.2.3). To make it

easier to share symbolic expressions, we use the packed attribute to prevent the compiler

from re-ordering the fields.

AST allocation. SymSan uses a simple forward allocation strategy to allocate new

AST nodes. Specifically, SymSan preserves large enough consecutive virtual addresses

(see Table 3.1) for the AST table during initialization. To allocate a new node, it tracks

the last label previously allocated (i.e., the largest array index in use) and performs an

atomic_fetch_add to update the last label. This allows SymSan to allocate a new AST

node with a single instruction. The use of atomic_fetch_add also allows SymSan to support

multi-thread programs.

21

3.2.3 Additional Optimizations

Although using simple forward allocation is fast, we can quickly exhaust the fixed

size AST table if we blindly allocate new AST nodes every time _taint_union is invoked. To

address this issue, we designed some optimizations to reduce the size of the consumed AST

table entries and improve SymSan’s memory efficiency.

Deduplication. The first obvious strategy to reduce the number of allocated AST nodes is

deduplication. Before allocating a new AST node, we will check if an identical node already

exists. If so, we will reuse the existing one instead of allocating a new node. This is done

through a reverse lookup table. In particular, SymSan uses a hash table to map AST nodes

back to their labels. Whenever two labels need to be merged, SymSan first queries the hash

map to see if it had recorded the corresponding label for the potentially new AST node

(l1, l2, op1, op2, op, size). If so, it reuses the label returned by the hash map; otherwise, it

allocates a new label (AST node).

Because the lookup process involves checking whether two AST nodes are identical

and our AST nodes are not small, such comparison could be expensive. Therefore, we need

a faster way to check whether two nodes are identical. We use a hash table implementation

with chaining to resolve collisions for simplicity. This also requires us to apply a good hash

algorithm to avoid frequent collisions. We adopted the Merkle hash tree to meet these

requirements. Specifically, each AST node has a hash, which is calculated as follows:

• If the node is a leaf node (i.e., an input byte), its has equal to its label.

• If the node is a intermediate node, its hash is calculated based on its child nodes.

• If a child node is a concrete value, its hash is 0.

22

With this hash value calculated for each AST node, when checking if two AST

nodes are identical, we will first check if their hash values match; if not, we do not need to

check the rest fields. This hash value is also used to access the hash table slot.

Finally, hash table entries are also allocated using a simple forward allocator. To

better support multi-thread programs, we also adopted a lock-free implementation.

Load and Store Simplification. In traditional concolic execution, both load and store

operations work at byte granularity. As a result, loading data larger than one byte will

involve several concat operations; and storing data larger than one byte will result in several

extract operations.

For example, consider a simple assignment statement with two 32-bit integers:

x = y, where y is symbolic. When the load operation is recorded at the byte granularity,

SymSan needs to create three new AST nodes to concatenate the four individual bytes. To

make the matter worse, when storing Lx back to memory, SymSan needs to create additional

four AST nodes to extract individual bytes from the symbolic expression.

In order to increase the label space utilization and simplify the symbolic expressions,

SymSan implements additional optimizations for load and store operations. First, SymSan

uses a special operator uload to express loading a sequence of bytes:

label := (uload, lstart, size, size)

where Lstart represents the label of first byte and size indicates how many bytes are loaded.

When handling a load operation, SymSan will first check if the uload operation is applicable

(i.e., reading a consecutive of input bytes) before falling back to the concat way. Second,

23

when handling store operations, if the label is a result of uload operation, SymSan will

directly extract labels of the corresponding bytes from the uload operation.

3.2.4 Interactions with External Libraries

Similar to DFSAN, SymSan provides two ways to support external libraries. First,

we can instrument the dependent libraries using SymSan, and statically link it with the

target program. Most of the Fuzzbench programs we evaluated in section 3.4 follow this

way. For libraries that cannot be instrumented, such as glibc, we use custom wrappers

to implement special label propagation rules. Using a custom wrapper also simplifies the

symbolic expressions based on domain knowledge.

Label Introduction. SymSan introduces symbolic labels where test inputs are read. For

instance, if the underlying fread operation is successful, we will mark bytes in the output

buffer as symbolic input bytes, based on their offsets from the beginning of the test input file.

Label Propagation. SymSan also uses custom wrapper functions to implement special

propagation rules. Two typical examples are memcpy and memcmp. In memcpy, besides copying

the concrete data from the source buffer to the destination buffer, SymSan also needs to

propagate labels corresponding to the data in the source buffer to the data in the destination

buffer. As memcmp is frequently used to check against magic numbers or key words, we

introduced a special higher-order operator fmemcmp to symbolize the return value of memcmp.

Later, if the return value is used in a conditional branch, we can reconstruct the corresponding

formula (e.g., bytes in the first buffer must equal to the bytes in the second buffer).

24

3.3 Implementation

In this section, we reveal some implementation details of our SymSan. SymSan

is implemented based on the data-flow sanitizer (DFSAN) [68], which is part of the LLVM

compiler toolchain.

Table 3.1: Memory layout of the program for taint analysis.

Start End Description

0x700000040000 0x800000000000 application memory
0x400010000000 0x700000020000 ast table
0x400000000000 0x400010000000 hash table
0x000000020000 0x400000000000 shadow memory
0x000000000000 0x000000010000 reserved by kernel

Memory Layout. SymSan uses directly mapping shadow memory to store labels of

program variables stored in memory. Achieving this goal requires 64-bit address space and

special memory layout. Table 3.1 shows the memory layout of an instrumented program.

To enforce this memory layout, we wrote a linker script to restrict the application

memory range, which can avoid colliding with other designated regions. Once the program

starts, the runtime library of SymSan reserves the designated regions, so the OS kernel will

not allocate virtual addresses within these regions to the application.

Note that although the preserved regions are enormous, the OS kernel will not map

physical pages to the addresses until needed.

Label Introduction. To assign labels to input bytes, SymSan instruments file related

functions. In our current prototype, we only support symbolic data from an input file and

stdin; symbolic data from the network is not supported yet but can be easily extended.

When the program opens a file that should be symbolized, SymSan calculates the size of

25

the file and reserves the input label entries. When the program reads from the file, SymSan

calculates the offset (within the file) and the size to be read, and assigns the corresponding

labels to the target buffer that receives the read bytes.

Currently, the following functions are supported: getc, fgetc, gets, fgets, read,

fread, pread, getline, getdelim.

Label Propagation. Our label propagation policies are almost identical to DFSAN, the

only difference is that when combining two labels, we will construct symbolic expressions.

The following (bitvector) operations are supported:

• Bit-wise operations: bvnot, bvand, bvor, bvxor, bvshl, bvlshr, bvashr;

• Arithmetic operations: bvneg, bvadd, bvsub, bvmul, bvudiv, bvsdiv, bvurem, bvsrem;

• Truncation and extension: bvtrunc, bvzext, bvsext;

In our current prototype, we do not support floating point and vector operations, for

fair comparison with SymCC [53] and SymQEMU [54], which also do not support non-integer

operations. We also do not support intrinsic functions of LLVM IR.

Label Checking. In our current prototype, we consider br and switch instructions as

data-flow sinks (i.e., coverage-oriented). For br instruction, SymSan checks whether it is

conditional; if so, whether its condition is symbolic. For switch instruction, SymSan treats

each case as a comparison between the condition variable and the case value. For branch

targets controlled by symbolic values, SymSan will generate a new test inputs for branch

target(s) other than the concrete one.

Symbolic Addresses. In our current prototype, we use the same strategy as QSYM [77]

and SymCC [53] to handle symbolic addresses. Specifically, SymSan will (1) generate new

26

test inputs to visit other possible addresses; and (2) bind the symbolic address in the current

execution trace to its concrete value to ensure correctness.

Nested Branches. One particular challenge when solving path constraints is that solving

a single branch predicate alone is insufficient. In our current prototype, we use QSYM’s [77]

approach to identify nested branches based on data dependencies: finding all precedent

branches whose input bytes overlap with the current branch. This strategy is also used by

SymCC and SymQEMU.

Supporting run-time libraries. SymSan cannot perform label propagation correctly

for code inside an uninstrumented library due to source-code-based instrumentation. For

standard C library, we implemented custom wrapper functions to propagate labels. For

standard C++ library, we instrumented libc++ from LLVM.

3.4 Evaluation

In this section, we evaluate the performance of SymSan to answer the following

research questions.

• RQ1: Time efficiency. Does SymSan impose less runtime overhead than the state-of-

the-art CEs for maintaining the symbolic state? If so, by how much?

• RQ2: Space efficiency. Does SymSan use less memory than the state-of-the-art CEs?

If so, by how much?

• RQ3: Effectiveness. Can testcases generated by SymSan achieve the same or higher

code coverage than the state-of-the-art CEs?

27

• RQ4: End-to-end fuzzing. Can SymSan improve the performance of end-to-end hybrid

fuzzing?

• RQ5: Security impacts. Can SymSan improve the performance of bug finding?

Experimental Setup. All our evaluations were performed on a server with an Intel(R)

Xeon(R) E5-2683 v4 @ 2.10GHz (40MB cache) and 512GB of RAM, running Ubuntu 16.04

with Linux 4.4.0 64-bit.

Baseline. We mainly evaluate SymSan against two state-of-the-art CEs: SymCC [53]

and SymQEMU [54]. We believe the comparison with SymCC is especially meaningful as

both CEs perform compile-time instrumentation at the LLVM IR level, as use Z3 as the

constraint solver. For hybrid fuzzing, we include the state-of-the-art fuzzer AFL++ [24] for

comparison.

3.4.1 Dataset

Standard Benchmark. We choose nbench [43] to evaluate the instrumentation overhead

of SymSan and baseline CEs. We did not use SPEC CPU benchmark because its test inputs

are too large for evaluated CEs—they all run out-of-memory.

DARPA Cyber Grand Challenge. CGC programs remove the use of system calls,

enabling a fair comparison between source-based and binary-based concolic executions tools

and are widely used in evaluation of state-of-the-art CEs [77, 53, 54]. We follow the same

evaluation procedure as previous work, we used PoVs (proofs of vulnerability) as inputs for

evaluation. We excluded programs that require inter-process communication and programs

on which baseline CEs failed to generate inputs.

28

Real-world Programs. We evaluated 20 real-world programs shown in Table 3.3. 16

programs are from Google’s Fuzzbench [34], 4 programs are from binutils.

Inputs Selection. To obtain the test inputs for real-world applications, we used AFL++

to fuzz the target programs for 24 hours and obtained the generated seeds as test inputs. To

avoid bias toward repetitively executed code paths, we used the utility cmin from AFL++ to

prune the seed corpus. For bintuils, we used the publicly available seed corpus from [64] for

better reproducibility.

3.4.2 Performance

The performance overhead of an instrumentation-base concolic executor can be

classified into the following four categories, which we evaluated separately.

• Instrumentation. The overhead from additional code injected to the target program.

• Symbolic state access. The overhead for accessing the symbolic expressions correspond

to program variables.

• Symbolic state management. The overhead for creating and updating of symbolic

expressions.

• Constraint solving. The overhead from consulting an SMT solver.

Pure Concrete Execution

We ran programs in nbench [43] natively (without instrumentation), and with

instrumentation of different concolic executors. When running the programs (pinned to a

dedicated CPU core) with concrete inputs, the concolic executors will not invoke its symbolic

29

Table 3.2: Performance results for pure concrete execution on NBENCH

Tests (Iterations/s) Native SymSan SymCC SymQEMU

NUMERIC SORT 1785.3 169.34 29.025 15.153
STRING SORT 2154.1 703.02 1.1445 1.2757
BITFIELD 8.68e+08 3.19e+07 9.79e+06 5.34e+06
FP EMULATION 828.42 17.114 16.382 4.9317
FOURIER 71570 2811.6 8901.6 261.54
ASSIGNMENT 66.037 3.7029 0.8271 0.28006
IDEA 14819 529.04 241.16 85.503
HUFFMAN 6112.6 279.63 75.263 32.832
NEURAL NET 129.7 6.1487 0.61978 0.17407
LU DECOMPOSITION 3323.3 145.08 24.214 8.4286

Score Index

Memory Index 67.104 5.881 0.283 0.167
Integer Index 47.344 2.002 0.754 0.298
Floating-point Index 79.270 3.434 1.292 0.184

backend. In this way, we can measure the instrumentation overhead of each concolic executor.

Table 3.2 reports the results. Compared to native execution, SymSan is 7.7× slower on

memory index, 17.1× slower on integer index, and 5.45× slower on floating-point index.

SymCC and SymQEMU are much slower than SymSan. SymCC is 215.4× slower on memory

index than native execution, 57.1× slower on integer index, and 64.5× slower on floating-point

index. SymQEMU is 332.7×, 128.7×, and 356.9× slower than native execution, respectively.

We also noticed that SymSan performed much better than SymCC on memory index. We

believe this is due to the direct-mapping-based shadow memory scheme used by SymSan.

Pure Taint Propagation

In this experiment, we measure the performance overhead of pure symbolic state

accesses. To do so, we disabled the real creation and storage of symbolic expressions; instead,

we “simulate” the creation of new symbolic expressions by simply returning a new label for

30

Native SymSan-Taint SymCC-Taint SymSan-NS SymSan-QSYM-NS SymCC-NS SymQEMU-NS SymSan SymCC SymQEMU

10 2

100

102

Figure 3.4: Execution time of 102 CGC challenge binaries

SymSan, and a new expression pointer (casted from an increasing integer) for SymCC. This

comparison shows the benefit of SymSan’s shadow memory implementation.

CGC. Following the same procedure as previous papers [77, 53, 54], we used the first PoV

input to test each CGC challenge. We enforced the same 5-minute timeout for each execution

as [77] for easier comparison with number reported in previous papers. The results are

shown in Figure 3.4. Compare to native execution, SymSan (SymSan-Taint) has 1.3 times

slowdown, and SymCC (SymCC-Taint) has 4.9 times slowdown.

Real-world applications. For real-world applications, we collected the overall running

time for every concolic executor executing all seeds. The results are shown in Figure 3.5.

Overall, SymSan (SymSan-Taint) introduces 6.0 times overhead comparing to the native

execution, while SymCC (SymCC-Taint) introduces 67.2 times overhead.

Both experiments show that SymSan’s sanitizer-based shadow memory implemen-

tation is much faster than SymCC’s.

31

Native SymSan-Taint SymCC-Taint SymSan-NS SymSan-QSYM-NS SymCC-NS SymQEMU-NS SymSan SymCC

10 1

102

105

108

Figure 3.5: Execution time for the real-world programs.

Concolic Execution without Solving

In this section, we evaluate the performance of concolic executors without solving.

Overhead measured in this experiment is an accumulation overhead of instrumentation,

symbolic state access, and symbolic state management.

To better reflect the benefit of SymSan’s AST table, we included a configuration

SymSan-QSYM that uses the same shadow memory implementation to access symbolic

expressions, but uses QSYM’s backend to manage symbolic expressions (i.e., the same

as SymCC and SymQEMU). The ablation study for the two additional optimizations

presented in subsection 3.2.3 is in Appendix. Overall, constraint deduplication improved the

performance by 20% and load/store simplification added another 120% speed up on top of

deduplication.

CGC. We used the same procedure as described above. The execution time for each

program is visualized in Figure 3.4. SymSan (SymSan-NS) is 1.3 times slower than the native

execution, and SymSan with QSYM backend (SymSan-QSYM-NS) is 1.4 times slower. Since

each CGC program is only run for 5 minutes with a single input, the performance difference

between SymSan’s AST table and QSYM’s backend is not very large. In comparison,

32

SymCC (SymCC-NS) and SymQEMU (SymQEMU-NS) are 7.2 and 9.9 times slower than SymSan

respectively.

Real-world applications. The distribution for inputs that did not timeout is shown

in Figure 3.5. Note that SymQEMU timeout on all inputs so it is not shown. Similarly,

75% of inputs timeout on SymCC and only 65% of inputs timeout on SymSan. Overall,

SymSan (SymSan-NS) introduces 9.2× overhead comparing to the native execution, while

SymCC (SymCC-NS) and SymQEMU (SymQEMU-NS) introduce 589.2× to 3407× overhead

respectively. As a result, SymSan achieves 62.0× performance speedup over SymCC and

371.1× over SymQEMU. In this experiment, as each execution trace is much longer than

CGC’s, SymSan’s AST table exhibits much better performance than QSYM’s backend

(15.4× speedup), and only imposes a small overhead over SymSan-Taint.

Full-fledged Concolic Execution

We enabled constraint solving for each concolic executor and check if a faster

symbolic backend would improve the overall concolic execution speed.

CGC. We used the same setup for CGC as in the previous CGC experiment. We collected

the execution time for each program and the result is visualized in Figure 3.4.As we can

see, SymSan is still faster than SymCC and SymQEMU, but its advantage becomes smaller.

This is because constraint solving takes a significant portion of the overall concolic execution

time, which was also reported in previous work [53].

Real-world applications. For real-world application, we placed a 90-second timeout for

each execution. Otherwise, the experiments cannot be completed in a reasonable time. Note

33

Table 3.3: Execution time of concolic execution engines with solving (in seconds).

Program #seeds Total Execution Time (sec) Basic Block Coverage

SymSan SymCC SymQEMU SymSan SymCC SymQEMU

readelf 604 27,712 41,695 49,947 7,938 6,067 3,807
objdump 560 43,612 44,052 47,627 4,853 4,668 4,528
nm 249 6,106 14,127 18,628 3,492 2,746 2,755
size 207 3,517 8,920 15,976 2,647 2,198 2,226
libxml2 1952 2,234 51,588 33,172 8,161 8,014 8,022
proj4 770 696 N/A 7,181 4,452 N/A 4,286
vorbis 526 27,476 44,606 45,531 1,396 1,396 1,396
re2 1073 47,536 N/A 37,596 5,139 N/A 5,136
woff2 548 18,432 28,843 45,693 3,454 3,464 3,460
libpng 218 907 N/A 13,781 1,251 N/A 1,283
libjpeg 846 61,672 56,888 59,159 2,754 2,744 2,744
lcms 157 800 3,278 6,545 2,073 2,047 2,106
freetype 4789 245,684 288,627 338,307 16,171 16,013 15,294
harfbuzz 2955 1,472 144,190 196,759 9,536 9,471 9,351
jsoncpp 450 667 3,733 2,584 968 966 941
openthread 268 1,280 1,474 3,562 5,565 5,565 5,533
openssl 1577 48,180 119,786 134,798 11,887 11,900 11,893
mbedtls 491 3,479 29,569 39,968 4,177 4,145 4,140
sqlite3 5253 111,029 N/A 421,947s 32,765 N/A 36,124
curl 1343 501 1,312 102,180s 13,171 13,122 13,140

that placing a timeout for each concolic execution is a common practice adopted by both

SymCC and SymQEMU. The results are shown in Table 3.3. The execution time distribution

for inputs that did not timeout is shown in Figure 3.5. As we can see, with solving enabled,

SymSan still enjoys a performance speedup over SymCC and SymQEMU. But again, the

advantage is smaller compared to concolic execution without solving.

3.4.3 Memory Consumption

In this section, we evaluated the memory usage by SymSan and compared with

SymCC, since both are source-based concolic executors. We chose maximum resident size as

34

the memory usage metric for each comparison. The visualized result is shown in Figure 3.6.

As we can see, SymSan introduces much smaller memory overhead than SymCC (3.5× vs.

98.2×). The result also shows that our AST table is more memory efficient than the QSYM

backend.

Native SymSan SymCC-QSYM SymCC

104

105

106

107

108

Figure 3.6: The peak resident size for each concolic execution without solving.

3.4.4 Code Coverage

In this experiment, we compared SymSan’ code coverage with SymCC and SymQEMU

on CGC programs and real-world applications.

CGC. For CGC, we measured the coverage by following the the method introduced by

Yun et al. [77]. For each program, we used an AFL coverage map to collectively record

the coverage for all generated test cases. For each program, let A be the coverage map for

SymSan and B the coverage map for our comparison target (SymCC or SymQEMU). The

difference of A and B is then calculated as below as per [77] (when A! = B):

35

d(A,B) = |A−B|−|B−A|
|(A∪B)−(A∩B)|

The score will be in range of [−1.0, 1.0], where 1.0 means SymSan not only covers

all paths that are covered by other concolic executor but also covers some unique paths. Our

results is visualized in Figure 3.7. As we can see, SymSan has the similar code coverage as

SymCC, it covers slightly more than SymCC in 83 programs while covers less in 19 programs.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.7: Coverage score comparing SymSan and SymCC per tested program (102 CGC
challenge binaries in total).

Real-world Applications. For each real-world application, We measured the basic-block

coverage for all generated inputs using SanitizerCoverage [41]. The results is in Table 3.3.

In most programs, SymSan has similar coverage as SymCC and SymQEMU except sqlite3,

where SymSan covers significantly less than SymQEMU, this is because SymQEMU is

binary-based concolic executor and can handle external libraries better than SymSan. In 11

out of 20 programs tested, SymSan covers more than SymCC and SymQEMU. In the rest

of 11 programs, SymSan covers slightly less than SymCC and SymQEMU.

36

3.4.5 Hybrid Fuzzing

In this evaluation, we plugged SymSan in the hybrid fuzzing scheme to check if a

faster concolic executor helps in the end-to-end fuzzing.

Fuzzbench. We first compared SymSan with other popular concolic executors and fuzzers

on Google’s Fuzzbench dataset [34]. We use AFL++ (commit 70bf4b4 with the default build

and fuzz options1) for hybrid fuzzing. The experiment is conducted by Google on its cloud.

Due to the page limit, we only provide a summary here. The full report can be retrieved

at https://anonymoussubmission2022.github.io. Out of 12 fuzzers (11 state-of-the-art

and 1 from us), SymSan is 1st by average score and by average rank, For median coverage,

SymSan leads in 9 programs, and AFL++ only leads in 3 programs.

We also compared SymSan’s performance with other concolic executors including

SymCC [53], SymQEMU [54], and Fuzzolic [9] based on their publicly available experiment

report2. The merged report can be retrieved at https://anonymoussubmission2022.github.

io/symsan. SymSan is the first by average score and third by average rank. We summarized

the median coverage reached in 24 hours for each concolic executor tool in Table 3.4. SymSan

leads in 7 programs, both SymQEMU and Fuzzolic lead in 4 programs, and SymCC leads in

3 programs.

Local fuzzing. For programs that are not included in the Fuzzbench dataset, we conducted

hybrid fuzzing in our local environment. For the baseline, we added AFL++ with commit

70bf4b4 and cmplog enabled. SymSan, SymCC [53], and QSYM [77] used the same hybrid

fuzzing configuration as described in the QSYM’s tutorial: a concolic executor paired with
1https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
2https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html

37

 https://anonymoussubmission2022.github.io
https://anonymoussubmission2022.github.io/symsan
https://anonymoussubmission2022.github.io/symsan
https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html

two AFL (version 2.56b) instances, one master and one slave. In addition, the concolic

executor has a 90 seconds timeout for executing each seed. For each concolic executor/fuzzer,

we executed 10 fuzzing trials, each for 24 hours. To ensure fair comparison, we uses the

Fuzzbench’s configuration to run each fuzzer/concolic executor in a docker container with 1

physical CPU-core assigned.

The result is shown in Figure 3.8. SymSan can achieve higher final coverage than

other tools on the four programs from binutils. For rest three programs, SymSan performs

similarly to another CEs but lags behind AFL++. There are two main reasons. First, the

current implementation of SymSan only supports tracking symbolic expressions over integers,

while AFL++ is type-agnostic. Second, SymSan’s support for external libraries is limited

by its custom wrappers. As a result, certain important label propagation rules could be

missing. SymSan was lagging behind SymCC on objdump at the beginning because SymCC

only imports seeds marked with +cov, while SymSan will execute all imported seeds.

0.04 0.02 0.00 0.02 0.04
time (hour)

0.04

0.02

0.00

0.02

0.04

nu
m

be
r o

f e
dg

es

JIGSAW Angora Z310S Z350MS NEUZZ QSYM FUZZOLIC AFL++

1 3 6 9 12 15 18 21 24
2000

4000

6000

8000

10000

objdump

1 3 6 9 12 15 18 21 24

1000

2000

3000

4000

5000

6000

size

1 3 6 9 12 15 18 21 24
0

2000
4000
6000
8000

10000
12000
14000
16000 readelf

1 3 6 9 12 15 18 21 241000
2000
3000
4000
5000
6000
7000
8000

nm

1 3 6 9 12 15 18 21 24
2000
3000
4000
5000
6000
7000
8000
9000

xml

Figure 3.8: Edge coverage growth over time for local fuzzing.

3.4.6 Security Implications

Recent research has show a strong correlation between a testing tool’s ability to

achieve code coverage and its ability to find bugs [7]. Similarly, recent research also showed

38

Table 3.4: Comparing SymSan with other state-of-the-art symbolic executors based on their
publicly available Fuzzbench results.

Target SymSan SymCC SymQEMU Fuzzolic

curl 17926.5 17622.0 17564.5 17599.5
freetype 28080.0 25496.0 24028.0 26371.0
harfbuzz 8656.0 8482.5 8482.5 8515.0
lcms 3506.5 3701.5 3656.0 3770.0
libjpeg 3802.5 3810.5 3819.0 3814.0
libpng 2136.0 1914.5 2149.5 2146.5
libxml2 12799.0 11097.0 12305.0 12072.0
libxslt 18799.0 18577.0 18592.5 18515.0
mbedtls 8353.5 8260.0 8244.5 8268.0
openssl 13772.5 13777.0 13777.0 13767.5
openthread 5833.5 5935.0 5862.5 5912.0
proj4 7262.0 5365.0 5314.0 5836.5
re2 3516.0 3521.5 3519.0 3544.5
vorbis 2166.0 2167.5 2168.0 2168.0
woff2 1872.0 1934.0 1934.0 1936.5

that leveraging symbolic execution to solve bug triggering constraints can also improve a

hybrid fuzzer’s ability to find bugs [18]. Based on these observations, we expect that SymSan

can also help on finding bugs.

In this subsection, we present case studies to demonstrate SymSan’s ability on find-

ing bugs. Specifically, we used programs with known bugs from the Magma benchmark [35],

and evaluated three hybrid fuzzers: (1) symsan (SymSan with AFL), (2) symsan_sec, with

inserted security assertions for divide-by-zero (as a simulation to [18]), and (3) symccafl

(SymCC with AFL). The full results are shown in Table 3.5. The present numbers are average

over 10 trials. Following are a few highlights.

• AAH001 (CVE-2018-13785) is a divide-by-zero bug in libpng and can be used to

demonstrate the utility of the symbolic executor. symsan can trigger the bug in 8 minutes,

while symsan_sec can trigger it much faster—in just 29 seconds. For comparison, symcc

39

Table 3.5: Mean bug survival times—both Reached and Triggered—over a 24-hour period,
in seconds, minutes, and hours. Bugs are sorted by “difficulty” (mean times).

symcc symsan symsan_sec symcc symsan symsan_sec
Bug ID R T R T R T Bug ID R T R T R T

AAH037 10.0s 25.50s 10.00s 25.00s 10.00s 25.00s AAH041 15.00s 30.00s 15.00s 26.50s 15.00s 26.50s
AAH003 10.00s 1.58m 10.00s 15.00s 10.00s 15.00s JCH207 10.00s 1.62m 10.00s 2.34m 10.00s 1.37m
AAH056 15.00s 17.80m 15.00s 9.07m 15.00s 7.81m AAH015 15.07m 1.02h 17.12m 59.22m 17.21m 58.20m
AAH055 15.00s 2.44h 20.00s 13.33m 20.00s 15.72m AAH020 5.00s 11.22h 10.00s 2.38h 10.00s 2.89h
MAE016 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h AAH052 15.00s 5.28m 15.00s 4.78h 15.00s 4.61h
AAH032 15.00s 12.95h 15.00s 7.91h 15.00s 8.00h MAE008 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
AAH022 15.07m 15.25h 17.12m 22.22h 17.21m 17.07h MAE014 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
JCH215 1.85h 18.08h 3.33h 14.51h 5.10h 13.65h AAH017 9.92h 9.92h 7.63h 7.63h 5.84h 5.84h
JCH232 21.81h 21.81h 7.25h 10.71h 9.41h 15.88h AAH014 10.68h 10.68h 20.56h 20.56h 23.19h 23.19h
JCH201 15.00s 14.27h 15.00s 24.00h 15.00s 24.00h AAH007 15.00s 23.12m 15.00s 10.15m 15.00s 12.18m
AAH008 15.00s 23.43h 15.00s 22.07h 15.00s 22.88h AAH045 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h
AAH013 24.00h 24.00h 23.31h 23.31h 24.00h 24.00h AAH024 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
JCH209 24.00h 24.00h 24.00h 24.00h 21.67h 21.67h MAE115 15.00s 10.13h 15.00s 18.76h 15.00s 21.58h
AAH026 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH001 15.00s 14.58h 15.00s 8.12m 15.00s 29.00s
MAE104 24.00h 24.00h 15.00s 16.46h 15.00s 18.16h AAH010 4.76h 24.00h 7.89h 22.09h 23.42h 24.00h
AAH016 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h JCH226 24.00h 24.00h 16.07h 24.00h 22.53h 24.00h
JCH228 22.66h 23.80h 11.75h 24.00h 13.02h 24.00h AAH035 19.00s 24.00h 15.00s 24.00h 15.00s 24.00h
JCH212 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH025 24.00h 24.00h 22.64h 22.64h 24.00h 24.00h
AAH053 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h AAH042 45.00s 24.00h 45.00s 24.00h 45.00s 24.00h
AAH048 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h AAH049 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
AAH043 25.00s 24.00h 21.87h 24.00h 21.73h 24.00h JCH210 32.50s 24.00h 60.00s 24.00h 55.00s 24.00h
AAH050 29.00s 24.00h 30.00s 24.00h 30.00s 24.00h AAH054 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h
MAE105 10.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH011 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h
AAH005 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h JCH202 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
MAE114 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH029 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
AAH034 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH004 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h
MAE111 20.00s 24.00h 15.00s 24.00h 15.00s 24.00h AAH059 20.00s 24.00h 15.00s 24.00h 15.00s 24.00h
JCH204 20.00s 24.00h 30.00s 24.00h 30.00s 24.00h AAH031 25.00s 24.00h 55.00s 24.00h 1.02m 24.00h
AAH051 30.00s 24.00h 25.00s 24.00h 25.00s 24.00h MAE103 31.00s 24.00h 20.00s 24.00h 20.00s 24.00h
JCH214 35.00s 24.00h 35.00s 24.00h 35.00s 24.00h JCH220 2.28h 24.00h 4.80h 24.00h 5.19h 24.00h
JCH229 2.32h 24.00h 5.39h 23.61h 5.29h 24.00h AAH018 1.85h 24.00h 7.20h 24.00h 6.60h 24.00h
JCH230 5.57h 24.00h 8.07h 24.00h 8.59h 24.00h AAH047 25.00s 24.00h 25.00s 24.00h 25.50s 24.00h
JCH233 5.17h 24.00h 7.94h 24.00h 10.81h 24.00h JCH223 10.60h 24.00h 8.04h 24.00h 8.64h 24.00h
JCH231 10.62h 24.00h 8.11h 24.00h 8.70h 24.00h MAE006 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h
MAE004 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h JCH222 20.82h 24.00h 11.59h 24.00h 16.26h 24.00h
AAH009 23.42h 24.00h 23.46h 24.00h 24.00h 24.00h JCH227 24.00h 24.00h 23.17h 24.00h 20.46h 24.00h
JCH219 24.00h 24.00h 24.00h 24.00h 22.83h 24.00h JCH216 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h

40

takes 14.58 hours to trigger the bug, and the fastest mutational fuzzer Honggfuzz uses

17.7 hours [35].

• AAH017 (CVE-2019-7663) is a NULL-pointer dereference bug in libtiff. symsan_sec

is the fastest hybrid fuzzer to trigger the bug, using 5 hours. symsan uses 7 hours to trigger

this bug. In comparison, symccafl takes 9.9 hours to trigger the bug, and the fastest

mutational fuzzer moptafl takes 5.2 hours [35].

• AAH055 (CVE-2016-2108) is a out-of-bound read issue in openssl. Both symsan and

symsan_sec can trigger this bug, using 13 minutes and 15 minutes, respectively. However,

it takes 2.44 hours for symccafl to trigger the bug.

41

Chapter 4

JIGSAW: Speeding Up Branch

Flipping

4.1 Overview

4.1.1 Insight

Our design goal is to push the search throughput (i.e., the number of test inputs

got evaluated per unit time) to the next level. To achieve this goal, we leverage an important

insight: path constraints collected by symbolic executors are pure and straight-line functions.

Similar to a mathematical function, a pure function always returns the same value on the

same inputs (i.e., there is no hidden dependencies over global states) and has no side-effect

(i.e., will not affect global states). This makes pure functions an ideal target for evaluating

newly generated test inputs, because P1. no side-effect means no need to perform expensive

state reset (e.g., invoking fork()). P2. no external dependencies means we can linearly scale

42

Front-end

Front-end

JIGSAW

RPC
+

i 10

<
90

❶ branch
constraints

Task
queue

Di
sp

at
ch

er

worker thread

❷ pre-
process

❸ JIT
engine

❹ GD
search

sub-task

sub-task

native func

native func ❺ sat
inputs

worker thread

❷ pre-
process

❸ JIT
engine

❹ GD
search

sub-task

sub-task

native func

native func

Inputs
queue

Figure 4.1: Overview of JIGSAW

the search to multiple cores without worrying about data races and lock contention. P3.

being a function, we can easily pass the new test inputs as argument via registers or memory

thus avoid going through file systems. These properties alone already eliminate two major

scalability bottlenecks identified in [74], namely fork() and file system.

Moreover, being a straight-line function means the function does not have any

conditional branches, which means P4. it is easier for modern processors to exploit instruction-

level parallelism without worrying about branch mis-prediction during speculative execution.

Finally, since each branch predicate is much simpler than the original program

under test, so P5 fuzzing individual branch’s path constraints can be orders of magnitude

faster than fuzzing the whole program under test.

4.1.2 Overview

Figure 4.1 shows the design of JIGSAW. JIGSAW works in a way similar to

SMT solvers: 1 it takes a branch’s path constraints (with dependencies) in the abstracted

syntax tree (AST) form as input; 2 it preprocesses the AST to find all the input bytes and

constants, and decomposes it into potential sub-tasks; 3 it then compiles each sub-task into

a function in LLVM IR and uses LLVM’s JIT engine to compile the IR into a native function;

43

4 it searches for a satisfying solution using gradient-guided search; and 5 if a solution is

found within a time budget, it returns the solution.

bool test(i) { return i < 13; }
void main() {

unsigned int x;
read(0, &x, sizeof(x));
if (x > 8 && test(x))

assert(0);
}

Listing 1: A running example to demonstrate the work flow.

A Running Example. To demonstrate how JIGSAW works, we will use the following

branch constraints as an example. In this simple example, x is from stdin and will affect the

conditional branch at line 3. In step 1 , we use a symbolic execution engine to collect the

path constraints. This can be done by marking the input from the read system call (i.e., x)

as symbolic. When the execution reaches line 5, we have a conditional branch whose branch

predicate is symbolic, which can be represented as following.

land(
ugt(read(0, 32), constant(8, 32)),
ult(read(0, 32), constant(13, 32))

)

Note that path constraints are essentially a dynamic slice of the execution trace

of the PUT, so even though there is a function call (invoking test) in the original code, a

symbolic executor will “enter” the function and collect/slice instructions that are related to

the branch, instead of collecting test(read(0,32)). This example also shows how dependency-

based nested branch collection works. Here, both the branch on line 5 and line 1 depend on

x, so we need to solve them together.

44

Next, in step 2 , we break down the (conjunct) path constraints into two sub-tasks

that should be solved jointly. We will also normalize ASTs and map leaf nodes of ASTs (i.e.,

x and constant) as arguments. This step ensures every JIT’ed native function can return

a numeric distance, so we can calculate their approximated gradient to guide the search;

otherwise, we can only observe two binary value: true and false. The result is as follows.

ugt(arg0, arg1)
ult(arg0, arg1)

After preprocessing, in step 3 , we compile each sub-task into a function in LLVM

IR (2). Note that these functions are generated in memory using LLVM’s C++ API instead

of writing to files, like in [40, 49]. Following is an example (dumped as LLVM disassembly).

For the sake of space, we only show one of the sub-task ugt(arg0, arg1). Note that line 9

to line 13 is for calculating the distance for the gradient-guided search.

define i64 @rgdjit0(i64*) {
entry:

%1 = getelementptr i64, i64* %0, i32 0
%2 = load i64, i64* %1
%3 = trunc i64 %2 to i32
%4 = getelementptr i64, i64* %0, i32 1
%5 = load i64, i64* %4
%6 = trunc i64 %5 to i32
%7 = zext i32 %3 to i64
%8 = zext i32 %6 to i64
%9 = icmp ugt i64 %7, %8
%10 = sub i64 %7, %8
%11 = select i1 %9, i64 zeroinitializer, i64 %10
ret i64 %11

}

Listing 2: JIT’ed LLVM IR of the branch constraints in Listing 1.

After generating the IR function, we use LLVM’s JIT engine to emit a native

function. Note that we do not enable any optimizations during JIT compilation, for two

45

reasons: (1) path constraints are collected from already optimized code and are usually not

too complex, but (2) more importantly, we found that the extra time spent on optimization

will actually reduce the overall branch flipping rate because compilation is much more

expensive than fuzzing (see section 4.4 for more details). In step 4 , we plug two JIT’ed

functions into the gradient-guided search algorithm from Matryoshka [17] to search for a

satisfying x. This algorithm is able to jointly solve conjunctions of sub-tasks.

4.1.3 Challenges

While directly fuzzing branch constraints is promising, we need to address two

critical road-blockers.

Constraint Collection. First, in order to compile path constraints into native functions,

we need to collect the constraints. Traditionally, this was done by interpreting each executed

instruction [66, 11]. As a result, the collection phase was extremely slow. For example, Yun et

al. [77] reported that KLEE [11] is around 3,000 times slower than native execution and

Angr [66] is more than 321,000 times slower. So it could completely eclipse the benefit of faster

branch solving speed. As a result, their overall efficiency is worse than the random-mutation-

based fuzzing. To further reduce the overhead of constraint collection, we have implemented

a symbolic tracer based on the dataflow-sanitizer [68]. Our evaluation result shows that our

approach is significantly faster than existing ones, including the state-of-the-art SYMCC [53].

Constraint Compilation. While searching with JIT’ed native functions offers high

throughput, a slow compilation process can become a bottleneck and cancel the benefit of

faster solving speed (see section 4.4). Our solution to this problem is to cache the JIT-

46

compiled functions so we can avoid repeatedly compiling the same constraints. However,

simply caching the raw JIT’ed path constraints yields a mediocre cache hit rate. The reason

is that we do not see identical constraints very often. Our insight to solve this problem is

that many constraints operate on different data (e.g., x > 8 and y > 16) are performing the

same check (e.g., ugt(arg0,arg1)); therefore we can use the same JIT’ed function to solve

both constraints. Note that our function cache is different from the constraint cache used by

symbolic executors. A constraint cache memorizes satisfying solutions to avoid solving the

same constraints repeatedly; our function cache saves JIT’ed functions to avoid compilation,

not solving. So, they are complementary and can be used together.

Lock Contention. While invoking JIT’ed path constraints is highly parallelizable, data

races can happen in other steps (e.g., updating the native function cache). A standard way

to avoid data races is to use locks; however, lock contention can also scalability bottleneck.

We apply two main strategies to avoid lock contention: (1) we reduce data sharing thus the

locations where data race can happen; and (2) we reduce the use of locks by using lock-free

data structures.

4.1.4 Comparison with SMT Solvers

Since our prototype JIGSAW is a path constraint solver, a natural question is:

how it compares to SMT solvers. We believe the comparison can be done at two levels.

Methodology-wise, our approach provides a new and fast way to evaluate the satisfiability

of a concrete model (i.e., assignments to symbolic variables); therefore, our approach can

also be leveraged by SMT solvers to improve their performance. For example, we have used

path constraints collected from objdump to evaluate the z3_model_eval() API and JIT’ed

47

functions from JIGSAW: the Z3 API can evaluate about 43K concrete models per second

while JIGSAW can evaluate 8M models per second.

At the tool level, our prototype JIGSAW has both advantages and limitations.

First, due to the high search throughput, our evaluation shows that JIGSAW can solve

path constraints faster than SMT solvers. However, because JIGSAW only employs a single

search heuristic (the gradient-guided search from [16]), it is not as capable as off-the-shelf

SMT solvers. First of all, JIGSAW can only be used to find satisfying inputs, while SMT

solvers can also be used to prove theorems. Second, our current prototype only supports

constraints in the theory of bit-vectors while most modern SMT solvers support more theories

like arrays, floating-point numbers, and strings. Even for bit-vectors, JIGSAW cannot

identify unsatisfiable constraints and can only solve 94% of the constraints solved by Z3.

Nevertheless, we want to emphasize that these limitations are introduced by the search

heuristic but not the methodology proposed in this work. Therefore, these limitations can

be addressed by adopting additional heuristics from SMT solvers. For instance, similar to

Bitwuzla [45], we can apply rewriting rules to identify simple unsatisfiable constraints and

add a bit-blasting-based solver to handle constraints that cannot be decided by local search.

4.2 Design

In this section, we present the design details of JIGSAW.

48

message AstNode {
uint32 op;
uint32 width; // operand width
string value; // used by constant expr
string name; // used for debugging
uint32 offset; // used by read expr
uint32 label; // for expression dedup
uint32 hash; // for request dedup
repeated AstNode children;

}

Listing 3: AST node for function cache lookup.

4.2.1 Getting Constraints

JIGSAW relies on a concolic execution engine to collect path constraints to be

solved. To do so, we use our data-flow sanitizer-based engine (section 4.3). Similar to

SymCC [53], our engine collects path constraints at the LLVM IR [55] level. The collected

path constraints are then passed to JIGSAW through shared memory.

AST for Cache Lookup. 3 shows the format of each abstract syntax tree node we

use to store the collected constraints, where op denotes the operator and children denote

the child nodes of the AST. Currently, JIGSAW supports all of LLVM’s binary operators,

including integer arithmetic, bitwise, and logical instructions. It also supports three conversion

operators (ZExt, SExt, and Trunc) and relational comparison instructions. We add a special

operator Read to denote symbolic input bytes. Different input bytes are distinguished with

their offset from the beginning of the input.

Nested Branches. One particular challenge during branch flipping is that solving a single

branch predicate alone is not enough [17]. The reason is that the solution can negatively

affect preceding branches and cause the control-flow to diverge; as a result, the new input

49

may never reach this supposedly solved branch. To address this problem, we need to solve

these dependent/nested branches together. In this work, we used QSYM’s [77] approach to

identify nested branches based on data dependency: finding all precedent branches whose

input bytes overlap with the current branch.

4.2.2 Preprocessing

Since calculating the numeric approximation of gradient works best for individual

comparison instructions where we can measure the distance, we want to avoid logical operators

inside the JIT’ed testing function. Therefore, after receiving a solving request, the first step

is to break it up into possible sub-tasks, where each sub-task is a single AST rooted with a

comparison instruction. Then we will parse the AST to find all the arguments (both input

bytes and constants) to the testing function.

Removing Logical Or. Due to compiler optimizations, branch constraints may occasionally

contain logical or (LOr) operators. To remove LOr operators, we first convert a solving request

into DNF (disjunctive normal form). Each clause in the DNF can then be solved in parallel.

As long as one clause is solved, the branch can be flipped.

Removing Logical And. After removing LOr, each sub-task should be clauses connected

with logical and (LAnd). To remove LAnd, we will generate a separate testing function for

each clause. However, all clauses will be solved jointly (subsection 4.2.4).

Removing Logical Not. After removing LOr and LAnd, we may still have clauses/AST

with a leading logical not (LNot) operator. Removing LNot is relatively simple, we just remove

it and set the comparison condition to its opposite (e.g., < to ≥).

50

Table 4.1: Transforming a comparison operation into a distance-based loss function.

Comparison Loss function f()

slt(a, b) max(sext(a, 64)− sext(b, 64) + ϵ, 0)
sle(a, b) max(sext(a, 64)− sext(b, 64), 0)
sgt(a, b) max(sext(b, 64)− sext(a, 64) + ϵ, 0)
sge(a, b) max(sext(b, 64)− sext(a, 64), 0)
ult(a, b) max(zext(a, 64)− zext(b, 64) + ϵ, 0)
ule(a, b) max(zext(a, 64)− zext(b, 64), 0)
ugt(a, b) max(zext(b, 64)− zext(a, 64) + ϵ, 0)
uge(a, b) max(zext(b, 64)− zext(a, 64), 0)
a = b abs(zext(a, 64)− zext(b, 64))
a ̸= b max(−abs(zext(a, 64)− zext(b, 64)) + ϵ, 0)

Arguments Mapping. To maximize the reuse of JIT’ed functions and minimize the

compilation time (subsection 4.2.5), we treat both input data and constants as arguments to

the testing function. In our current design, the testing function takes a single argument as

an array of 64-bit integers, to support an arbitrary length of arguments. To correctly invoke

the testing function, we need to map input bytes and constants in the AST to the correct

offsets inside the argument array. To do so, we perform a pre-order traversal of the AST and

number the leaf nodes according to the traversal order.

4.2.3 Code Generation

After preprocessing a solving task and decomposing it into sub-tasks, the next step

is to JIT-compile each comparison AST into a testing function that returns a distance so we

can perform a gradient-guided search. To do so, we transform the comparison instruction into

a loss function similar to previous works [16, 17, 65]. Table 4.1 shows the transformation. To

minimize the impact of integer overflow/underflow during calculation, we first extend both

operands into 64-bit numbers. For each unsigned comparison, we perform a zero extension

51

(ZExt). For each signed comparison, we perform a signed extension (SExt). Then we apply

the max operation to avoid any negative distance. This is done by performing the original

comparison followed by a conditional move (i.e., Select) instruction. Because our AST

language is close to LLVM IR, the rest of the code generation is straightforward: just perform

a post-order traversal of the AST.

4.2.4 Solving

To search for a satisfying input, we use the gradient-guided search algorithm from

Matryoshka [17], which uses a numeric approximation to calculate the gradient and is capable

of solving conjunctions of comparisons. The original algorithm uses three search strategies

to solve conjunctions of branch constraints, in our prototype, we used a simplified version:

1. Prioritize satisfiability: try to solve the current branch predicate first.

2. Once we find a satisfying input, use the following loss function to solve nested branch

constraints using joint optimization:

g(x) =
n∑

i=1

fi(x)

To avoid negating a previously satisfied constraint, we will stop mutating an input

byte if its new value will violate any constraint that is satisfied previously. However, as long

as the constraint is satisfied, we will allow the input byte to be mutated according to the

gradient.

Handling Division and Remainder. During fuzzing, the JIT’ed function may generate

divide-by-zero exceptions. Instead of capturing and recovering from such exceptions, we

52

add a check before each divide instruction to see whether the divisor is zero and if so, we

simply skip the execution of the current input. Note that this handling will not prevent

JIGSAW from finding a satisfying solution, as a solution that will trigger a divide-by-zero

exception is not a satisfying solution. This handling will not prevent the coverage-guided

testing from discovering divide-by-zero bugs either. To detect divide-by-zero bugs in the

PUT, the concolic executor needs to explicitly check if divide-by-zero is possible (i.e., adding

an assertion for divisor ̸= 0) under the current path constraints.

4.2.5 Scaling

While the single thread design presented so far already provides a much higher

branch flipping rate than existing fuzzers (e.g., AFL and Angora), another major design goal

of JIGSAW is to provide linear scalability to multiple cores. As mentioned in section 4.1,

searching for a satisfying input with JIT’ed path constraints should be highly scalable, as

there are no interdependencies between different solving threads. However, constructing the

solving task may become a bottleneck. In this subsection, we discuss how we improve the

scalability of task construction.

Parallelized Solving. We scale the solving to multiple cores using threads instead of

processes, as communication through shared memory is easier and more efficient. Moreover,

two properties of our JIT’ed functions allow us to do so. (1) They have no side effects after

the invocation, so we do not need to clean up. (2) They do not have external dependencies,

so we do not need to worry about interference between different threads. Finally, thanks to

property (1), we can further avoid the expense of creating threads by using a thread pool,

53

because once a side-effect-free solving task is done, the thread is ready to handle another

task.

Function Cache. While LLVM’s JIT engine is easy to adopt, it is also much slower than

other JIT engines like the TCG (tiny code generator) from QEMU. Fortunately, many path

constraints collected during fuzzing are very similar (e.g., performing the same check over

different input data). Based on this observation, we designed a function cache to minimize

the invocation of the JIT engine. To further maximize the reuse of compiled testing functions,

we also treat all constants in the constraints as input arguments to the testing function. By

doing so, constraints like a+ b < 10 and c+ d < 40 can now reuse the same testing function.

Essentially, our function cache maps a partial AST (excluding all leaf nodes) to a

compiled function. To speed up the look-up and tree comparison, we added a hash value

to each AST node. Since we treat both input bytes and constants as arguments to the

testing function, each leaf node has a hash value according to the preorder traversal (i.e.,

the corresponding argument index). For each non-leaf node, its hash is calculated using its

operator and the hash(es) of its operand(s) (i.e., hash(es) of child node(s)). This is similar to

a Merkle tree (except we do not use a crypto hash function), so if the hash values of two ASTs

are different, we do not need to perform a more expensive recursive equality comparison.

Since it is important to maintain a high cache hit rate, we use a global function

cache instead of per-thread caches.

Avoiding Lock Contentions. We minimize the use of locks. First, each task construction

thread has its own LLVM JIT engine to avoid sharing. Second, the dispatcher and solving

threads communicate with a lock-free queue. Third, we implement the function cache

54

with a lock-free hash table. Finally, we minimize dynamic memory allocation and use the

TCMalloc [32] from Google to reduce contentions caused by malloc and free.

4.3 Implementation

In this section, we provide some implementation details of JIGSAW and additional

components to support end-to-end fuzzing.

JIGSAW. We implemented JIGSAW in C++ with about 4,800 lines of code. The

gradient-guided search algorithm is a re-implementation of Angora’s. We used the ORC

JIT APIs from LLVM for JIT compilation. We used the CTPL1 for the thread pool, and

an open-source implementation based on linear probing2 for the hash table. For the heap

allocator, we used the TCMalloc from Google.

Constraint Collector. JIGSAW can support different symbolic executors as the front-end

constraint collector. In our evaluation, we used our concolic execution engine based on the

data-flow sanitizer (DFSan)3. We chose this DFSan-based constraints collector for a better

comparison with Angora [16]. We re-implemented QSYM’s dependency forest [77] to identify

nested branches. To support C++ programs, we used the instrumented libc++ library.

Hybrid Fuzzer. JIGSAW itself acts as a solver. To perform end-to-end coverage-guided

test generation, we still need a fuzzing driver to close the loop. For the evaluation, we

implemented a hybrid fuzzer based on Angora [16].
1https://github.com/vit-vit/ctpl
2https://github.com/cmuparlay/parlaylib/
3https://github.com/ChengyuSong/Kirenenko

55

https://github.com/vit-vit/ctpl
https://github.com/cmuparlay/parlaylib/
https://github.com/ChengyuSong/Kirenenko

4.4 Evaluation

In this section, we evaluate our prototype JIGSAW, aiming to answer the following

research questions.

• RQ1: Does it improve the search throughput?

• RQ2: Can it improve the branch flipping rate?

• RQ3: Can it scale well with the increase of CPU cores?

• RQ4: Can it improve the performance of coverage-guide testing?

Experiment Setup. All evaluation was done on a workstation with two-socket, 48-core,

96-thread Intel Xeon Platinum 8168 processors. The workstation has 768G memory. The

GPU is Quadro P5000. To minimize the impact of I/O, we used four Intel 512G Pro 7600

NVME SSD in a RAID-1 setup. The operating system is Ubuntu 18.04 with kernel 5.4.0.

The file system is XFS. JIGSAW was compiled with LLVM 9.0.0 with -O3. For Z3, we used

version 4.8.7.

Dataset. We used two datasets in our evaluation. The first dataset includes 14 real-world

programs (Table 4.2). We use this dataset to answer RQ1, RQ2, and RQ3. To answer

RQ4, our main dataset is the Google Fuzzbench [34]. To compare with fuzzers that are not

supported by Fuzzbench, we use part of our first dataset.

4.4.1 Constraint Solving Performance

To evaluate the solving performance, we collected about 10 million path constraints

from 14 real-world programs (Table 4.2). We first use AFL to fuzz the target programs for 48

56

Table 4.2: Details of real-world applications used for evaluation.

Program Version #Constraints Program Version #Constraints

objdump 2.33.1 372,880 libpng 1.2.56 626,480
size 2.33.1 604,610 openssl-x509 b0593c0 1,000,000
nm 2.33.1 1,000,000 libjpeg-turbo b0971e4 494,695
readelf 2.33.1 1,000,000 mbedtls 4c08dd4 377,542
tiff2pdf 4.1.0 803,036 libxml2 2.9.2 942,240
file 5.39 1,000,000 vorbis c1c2831 47,387
tcpdump 4.9.3 1,000,000 sqlite3 c78cbf2 769,548

Table 4.3: Solving capability comparison.

Solver Nested vs. Z3-60s Single vs. Z3-60s

Z3-60s 50.07% - 89.17% -
STP 49.04% 0.98 89.13% 1.00
YICES2 49.07% 0.98 89.05% 1.00
Bitwuzla-60s 50.17% 1.00 89.13% 1.00
Bitwuzla-LS-1M 48.36% 0.97 88.40% 0.99
JIGSAW-1M 46.96% 0.94 87.97% 0.99

hours (single instance, non-deterministic mode, no dictionary). Then we ran our DFSan-base

constraint collector over the corpora generated by AFL and serialized path constraints

required to negate every branch to files. We chose to load the collected constraints from files

to minimize the impact of the constraint collector (which will be evaluated in subsection 4.4.2).

Because the numbers of seeds found by AFL vary a lot across the programs, to ensure we

have enough constraints from every program, we only applied a light filter when collecting

the constraints, which avoids duplicated constraints from the same seed. For programs with

more seeds, we cut off at 1 million. The collected path constraints include both satisfiable

and unsatisfiable ones, reflecting the real scenario during hybrid fuzzing.

Solving Capability. Before evaluating the search throughput and branch flipping rate,

we first compared JIGSAW’s solving capability with a set of SMT solvers that provide

57

JIGSAW Yices2 Bitwuzla Bitwuzla-LS STP Z3

101

103

105

107

JIGSAW Yices2 Bitwuzla Bitwuzla-LS STP Z3

101

103

105

107

JIGSAW Yices2 Bitwuzla Bitwuzla-LS STP Z3

101

103

105

107

JIGSAW Yices2 Bitwuzla Bitwuzla-LS STP Z3

101

103

105

107

Nested Branch SAT queries Nested Branch UNSAT queries

Single Branch SAT queries Single Branch UNSAT queries

Figure 4.2: Constraints processing time distribution (in micro-seconds).

C/C++ bindings, including Z3 [21], STP [27], Yices2 [22], and Bitwuzla [45]. For Bitwuzla,

we evaluated two different modes: (1) the configuration that won the SMT-COMP 2021 [46]

(denoted as Bitwuzla), and (2) the configuration that only uses local search without bit-

blasting (denoted as Bitwuzla-LS). Besides trying to understand the limitations of the

gradient-guided search heuristic, this evaluation also helps us to set the proper timeout for

the following experiments. For this purpose, we used large timeout setups in this experiment:

1 million iterations for JIGSAW (denoted as JIGSAW-1M) and Bitwuzla-LS, and 60 seconds

for Z3 and Bitwuzla. For STP and Yices2, we either did not find a timeout setting or the

timeout functionality did not work well, to avoid getting stuck in the middle of the evaluation,

we removed timeout constraints (using Z3) from the dataset when evaluating these two tools.

Note that the version of Z3 we used (4.8.7) does not support timeout on get_model(), the

API to retrieve a satisfying assignment. So we modified its source code to support a timeout.

As a result, there are cases where Z3 deems the constraints are satisfiable but cannot return

a model within the timeout. We consider these cases as not solved.

58

The result is shown in Table 4.3. All the results returned by JIGSAW were verified

by Z3 to validate their correctness. At 1M iterations, JIGSAW was able to solve 93.8% of

the nested branch constraints Z3 can solve within 60 seconds. We also evaluated last-branch

constraints because, in QSYM [77], the authors have demonstrated that inputs satisfying just

the last branch can also lead to new coverage in many cases. For last-branch constraints (i.e.,

without nested dependencies), JIGSAW was able to solve 98.65% of the constraints Z3 can

solve within 60 seconds. Based on the results, we conclude that JIGSAW’s simple gradient-

guided search algorithm (subsection 4.2.4) is capable enough to solve most constraints,

especially last branch constraints.

To understand why certain constraints are not solved by JIGSAW, we analyzed

the distribution of the following factors in the solved and unsolved constraints: (1) involved

operations, (2) AST size of a constraint, and (3) the number of nested constraints. The result

shows the two most important factors. First, a large portion of constraints with udiv, urem,

and xor are not solved by JIGSAW, due to the loss of gradient. Specifically, when estimating

the gradient, the algorithm adds a small ϵ (±1) to each input byte and then calculates

the change of distance to the objective (Table 4.1). However, when the constraints include

division or bitwise masking, ±1 is usually too small to change the distance, so the gradient

estimation would fail. The second factor is a well-known limitation of gradient-guided search:

when the constraints are not convex, the joint-optimization can get stuck at a local minimum.

On the contrary, the backtracing strategy used by SMT solvers can avoid this. We want to

emphasize again that these are the limitations of the search heuristic used in our prototype,

but are not limitations of the proposed methodology (i.e., using JIT’ed path constraints to

59

evaluate inputs); and our approach can be combined with other search heuristics to overcome

these limitations.

Solving Efficiency. Figure 4.2 shows the solving time distribution. For JIGSAW, solving

time is the fuzzing time. For SMT solvers, solving time includes checking for satisfiability

and retrieving the solution/model. As we can see, for satisfiable (sat) constraints, JIGSAW

is faster than all but Yices2. The biggest difference between JIGSAW and other solvers

is for unsolvable (unsat) constraints. Because JIGSAW cannot tell if a set of constraints

are not satisfiable, it can only timeout. As a result, unsat constraints will consume a lot of

time if we set JIGSAW’s timeout to a large number of iterations. On the contrary, SMT

solvers can tell whether a set of constraints are unsat rather quickly. We also analyzed the

most important factors that would affect JIGSAW’s solving time using linear regression. As

expected, the top ones are the size of the constraint’s AST, the number of nested constraints,

and the presence of division operations. We would like to point out again that lacking the

ability to answer unsat queries is not a fundamental limitation of our methodology, but a

limitation of our current prototype; and it can be addressed by incorporating more rewriting

rules and a bit-blasting solver similar to Bitwuzla.

Choosing Timeout Setups. To enable more fair comparisons between different tools on

the metric of branch flipping rate, we need to select appropriate timeout setups. Specifically,

the branch flipping rate is calculated as:

branch flipping rate =
number of satisfying solutions

total process time

Therefore, (1) a too-short timeout will reduce both the numerator (number of satisfying

solutions) and the denominator (total processing time), and (2) a too-long timeout will

60

unnecessarily increase the denominator. To address this issue, we can either fix the numerator

or fix the denominator. In the following experiments, we decided to fix the numerator because

we do not know the distribution of easy, hard, and unsat constraints in the dataset, so

if different solvers are not solving the same set of constraints, then the results could be

biased. To this end, we leveraged the experimental results in Figure 4.2 to determine the

timeout setups. Specifically, we set the timeout for JIGSAW at 1,000 iterations (denoted

as JIGSAW-1K), which can solve 93.8% of all the constraints that Z3 can solve within 60

seconds. Similarly, we set the timeout at 50ms for Z3 (denoted as Z3-50ms), at 6ms for

Bitwuzla (denoted as Bitwuzla-6ms), and at 10,000 model updates for Bitwuzla-LS (denoted

as Bitwuzla-LS-100K), which can solve 94.0%, 92.5%, and 94.5% of Z3-60s.

Table 4.4: The throughput (number of tried inputs per second) of JIGSAW (JIGSAW-1K)
and Bitwuzla (BZLA-LS-100K) in a single-threaded execution.

Program Nested Branch Constraints Last Branch Constraints

JIGSAW BZLA-LS JIGSAW BZLA-LS

objdump 382.3 (±2.1)K 25.7 (±0.5)K 4.3 (±0.8)M 84.9 (±1.4)K
size 1995.5 (±31.2)K 42.3 (±0.5)K 6.7 (±0.8)M 67.1 (±0.3)K
nm 4649.5 (±33.6)K 45.0 (±1.0)K 13.4 (±1.1)M 82.6 (±0.9)K
readelf 622.7 (±8.9)K 28.0 (±0.0)K 7.2 (±0.5)M 90.2 (±0.1)K
libpng 820.0 (±5.1)K 28.1 (±0.0)K 1.2 (±0.3)M 121.3 (±1.0)K
tiff2pdf 280.5 (±7.9)K 29.2 (±0.5)K 4.5 (±0.4)M 82.4 (±1.0)K
file 431.7 (±6.2)K 40.0 (±0.9)K 4.9 (±0.2)M 56.3 (±0.8)K
tcpdump 1396.9 (±18.4)K 41.3 (±0.9)K 1.7 (±0.1)M 82.0 (±0.9)K
openssl 270.2 (±40.4)K 57.4 (±0.1)K 4.2 (±0.1)M 102.5 (±0.5)K
sqlite3 3446.4 (±51.8)K 46.5 (±1.5)K 0.8 (±0.0)M 54.3 (±0.0)K
vorbis 358.4 (±11.5)K 38.5 (±0.3)K 3.1 (±0.0)M 101.0 (±1.8)K
mbedtls 61.1 (±1.6)K 37.3 (±0.8)K 2.8 (±0.1)M 26.2 (±0.2)K
libxml2 2629.4 (±13.5)K 21.0 (±0.0)K 2.4 (±0.1)M 69.1 (±0.0)K
libjpeg-turbo 110.6 (±4.1)K 6.9 (±0.0)K 0.9 (±3.5)M 42.9 (±0.1)K

Geomean 637.2K 31.7K 3.1M 71.2K

61

Table 4.5: The branch flipping rate of single thread JIGSAW and comparison with popular
SMT solvers.

Program Nested Branch Constraints Single Branch Constraints

Yices2 Boolector STP Z3 JIGSAW Yices2 Boolector STP Z3 JIGSAW

objdump 100.9 8.1 37.1 22.5 193.3 21.9 K 0.9 K 2.6 K 0.5 K 44.4 K
size 378.0 64.4 126.5 54.4 1263.0 13.9 K 0.8 K 1.0 K 0.6 K 23.7 K
nm 4109.0 539.7 777.3 294.5 4709.0 39.7 K 0.4 K 4.9 K 0.5 K 21.2 K
readelf 319.5 128.9 171.9 42.9 371.2 11.5 K 0.1 K 1.1 K 1.0 K 41.1 K
libpng 714.9 54.7 268.7 120.3 505.3 14.4 K 0.6 K 1.1 K 0.1 K 50.3 K
tiff2pdf 174.9 31.1 40.9 24.6 133.6 40.5 K 0.5 K 12.0 K 1.2 K 96.7 K
file 80.7 26.9 46.5 14.0 187.3 22.4 K 1.9 K 2.9 K 0.4 K 25.6 K
tcpdump 1095.9 139.2 437.7 92.5 599.1 23.7 K 1.1 K 4.5 K 0.5 K 7.4 K
openssl 2.4 1.4 27.8 21.7 186.0 6.6 10.8 0.6 K 0.5 K 6.7 K
sqlite3 21908.5 2228.4 2788.1 896.5 9886.4 70.2 K 6.9 K 10.5 K 2.0 K 100.0 K
vorbis 70.7 31.0 35.3 7.0 114.4 1.2 K 1.4 K 1.6 K 0.2 K 0.8 K
mbedtls 31.1 4.5 11.5 5.3 98.4 4.5 K 0.3 K 0.3 K 16.3 3.5 K
libxml2 2825.8 292.0 553.1 191.6 2556.2 44.0 K 4.1 K 6.4 K 0.3 K 54.7 K
libjpeg-turbo 2.1 0.5 2.9 4.7 23.1 92.4 8.0 208.2 53.7 362.0

Geomean 212.4 38.3 97.6 41.0 411.2 6.8 K 0.5 K 1.9 K 0.3 K 15.1 K

Single-thread Search Throughput. Because our primary design goal is to improve the

search throughput, we first evaluated JIGSAW’s throughput and compared it with Bitwuzla’s

local search mode. Similar to the previous experiment, all constraints were first loaded

into memory, then passed to the solver one by one. For each set of constraints, we ran the

corresponding experiments 30 times and report the average and standard deviation. Table 4.4

shows the result. The first half is for nested branch constraints and the second half is for the

last branch constraints. On nested branch constraints, our search throughput ranges from

61.1K to 4.6M inputs/sec with a single thread. For last branch constraints, as fewer functions

need to be evaluated, our search throughput is much higher, ranging from 755.3K to 13.4M

inputs/sec. The throughput on nm is much higher than others because only about 25% of the

collected constraints are solvable; so JIGSAW spent more time searching for a result with

the JIT’ed functions. To put these numbers into context, Angora’s search throughput ranges

from 58 (file) to 3363 (libpng) inputs/sec on the same machine. On average (geomean

62

Table 4.6: Accumulated solving time breakdown of JIGSAW

Preprocessing JIT Searching Cache Hit Rate

1328s 462s 4403s 99.99%

Table 4.7: Benefits of using function cache, when solving 20,000 constraints from readelf.

Caching Hit Rate JIT Searching Throughput

Disabled N/A 33.9s 12.6s 229K inputs/s
Full AST 66.9% 12.1s 12.6s 394K inputs/s
Normalized AST 99.9% 0.7s 12.6s 747K inputs/s

across all programs) JIGSAW’s throughput (on nested branch constraints) is about two

orders of magnitude higher (373×). Compared to Bitwuzla, JIGSAW’s throughput is also

much higher. Based on this experiment, we believe the answer to RQ1 is yes: our

approach indeed can significantly improve the search throughput.

Single-thread Branch Flipping Rate. Next, we compared our branch flipping rate with

popular SMT solvers. As shown in Table 4.5, JIGSAW’s branch flipping rate is also very

good when compared to SMT solvers: JIGSAW can beat other solvers on branch flipping

rate, including Yices2 and Bitwuzla (because of the shorter timeout setup). On average,

JIGSAW is 14.4× faster than Z3 on solving nested branch constraints and 119.7× faster

on solving single branch constraints. Based on this comparison, we believe the answer to

RQ2 is yes: when the search throughput is high enough, even with a simple search heuristic,

JIGSAW can flip branches faster than state-of-the-art tools.

Solving Time Breakdown. Table 4.6 shows the accumulated time spent on different

components of JIGSAW (preprocessing, JIT, and fuzzing), and the average function cache

hit rate. The timeout is at 1K iterations. As we can see, even with a high cache hit rate

63

1 8 16 24 32 40 48
#Core

0

2000

4000

6000

8000

10000

12000
Th

ou
sa

nd
 in

pu
ts

/s
ec

Throughput
Flipping Rate

0

2000

4000

6000

8000

10000

12000

Fl
ip

pi
ng

 ra
te

 (b
ra

nc
he

s/
se

co
nd

)

Nested branches

1 8 16 24 32 40 48
#Core

0

10

20

30

40

50

60

70

80

M
illi

on
 in

pu
ts

/s
ec

Throughput
Flipping Rate

0

100

200

300

400

500

600

700

800

900

Fl
ip

pi
ng

 ra
te

 (K
 b

ra
nc

he
s/

se
co

nd
)

Last branch

Figure 4.3: Average search throughput and branch flipping rate of JIGSAW on multiple
cores.

(99.99%), a significant portion of time is still spent on JIT compilation. Therefore, the

performance could be worse if without the code cache or with an even slower JIT procedure

(e.g., that used by [58, 49]). Similarly, we can further improve the performance by using a

faster JIT engine and by making the cache persistent.

Effectiveness of Function Cache. To better understand the impact of our normalized

AST to function cache, we did a comparison using 20K constraints from readelf. The

result is shown in Table 4.7. As we can see, when we enable cache with full AST matching,

the cache hit rate is only 66.9%, the JIT time is reduced by 64.3%, and the throughput

is mildly increased by 72.1%, compared to no function cache. With our optimization that

normalizes the AST before matching, the cache hit rate increases significantly to 99.9%.

The corresponding JIT time is reduced by 97.9%, and the throughput is increased by 3.3×

compared to no function cache.

Multi-thread Performance. In this subsection, we evaluate JIGSAW’s scalability to

multiple cores. We focus on two main performance metrics: search throughput and branch

64

flipping rate. We tested with 8-, 16-, 24-, 32-, 40-, and 48-threads, each thread is pinned to a

real CPU core (not hyper-thread). For comparison, we also tried multi-threaded Z3 where

each thread uses a separate Z3 context and solver.

Figure 4.3 shows the results. Overall, adding more threads/cores can help JIGSAW

increase the throughput and branch flipping rate. The geomean of JIGSAW’s throughput

can reach 12.5M inputs/sec for solving nested branch constraints and 74.7M inputs/sec

for solving single branch constraints. The geomean of JIGSAW’s branch flipping rate can

reach 11.3K branches/sec and 860.0K branches/sec, respectively. For Z3, we did not observe

much improvement when adding more parallelism, due to lock contention. Based on this

experiment, we conclude that the answer to RQ3 is yes: our approach can scale well to

multiple cores.

To put the numbers into context, Xu et al. reported a throughput of around 6.5M

inputs/sec when fuzzing libpng with libFuzzer, using 120 CPU cores and their new OS

primitives [74]. For libpng, the peak throughput of JIGSAW, using 48 cores, can reach

18.1M inputs/sec for solving nested branch constraints and 36.9M inputs/sec for solving

single branch constraints; which is about 22.1× and 30.9× faster than single thread mode,

respectively. The corresponding branch flipping rate can reach 15.0K branches/sec for solving

nested branch constraints and 895.1K branches/sec for solving single branch constraints;

which is also about 21.4× and 31.0× faster than single thread mode, respectively.

65

Table 4.8: Comparison of concolic execution engines on flipping all symbolic branches along
a single execution trace.

Programs JIGSAW Z3-10s Z3-50ms Angora SymCC Fuzzolic

readelf 2.2h 51.3h 12.6h 89.5h 546.6h 48.2h
objdump 12.3h 227.5h 29.6h 411.5h 373.5h 52.2h
nm 0.3h 18.1h 3.2h 72.3h 29.3h 48.2h
size 0.1h 8.4h 1.4h 16.8h 12.6h 5.2h
libxml2 0.2h 9.3h 3.6h 58.0h 52.3h 20.9h

readelf 7923 7957 7423 8287 6410 5843
objdump 4926 4926 4865 4846 4929 4689
nm 3347 3347 3329 3339 3122 3123
size 2453 2457 2449 2406 2229 2259
libxml2 6038 6233 6034 5952 6012 6022

4.4.2 End-to-End Fuzzing Performance

In this subsection, we evaluate the effectiveness of JIGSAW on coverage-guided

test generation. We choose the Z3 solver as the main comparing target in the end-to-end

fuzzing evaluation for the considerations below:

• Z3 is widely adopted by recently concolic executors, such as QSYM [77], SymCC [53],

SymQEMU [54], and Fuzzolic [9]. Using Z3 makes it easier to tell how much performance

gain is from our DFSan-based constraint collection engine, and how much is from JIGSAW.

• All other solvers are not as robust as Z3 and can get stuck in the middle of a fuzzing

campaign because they either do not provide APIs to specify a timeout (Yices2) or that

API does not work well (STP).

Concolic Execution Performance. We first compare JIGSAW with other state-of-

the-art concolic execution (CE) engines and fuzzers on flipping all symbolic branches along

execution traces of a fixed set of seeds. As argued in [54], this experiment setup removes the

66

path scheduling variable from the comparison so the result can better reflect the end-to-end

branch flipping performance (i.e., path constraints collection + constraints solving). The

first two configurations to compare are Z3-10s and Z3-50ms, which share the same hybrid

fuzzing driver as JIGSAW but use Z3 as the solver. The 10 seconds timeout is the setting

used by other concolic executors [77, 53, 54] and 50ms timeout is the setting that offers

a similar solving capability as JIGSAW-1K. The next one is Angora [16]. We believe the

comparison with Angora is especially meaningful because: (1) Our constraint collector and

Angora’s taint analysis are both implemented based on DFSan; and (2) JIGSAW uses the

same gradient-guided searching algorithm as Angora so the main difference is the search

throughput. In short, JIGSAW, Z3, and Angora are almost identical except for how they

try to flip a particular branch: Angora [16] performs gradient-guided search with the original

program, JIGSAW performs gradient-guided search with the JIT’ed path constraints, and

Z3 performs SMT solving with path constraints. We believe this setup can better reflect

JIGSAW’s impact on end-to-end fuzzing. We also compared with SymCC [53], a state-of-

the-art CE engine also uses compile-time instrumentation to collect constraints. Since it

also uses Z3 as the solver, comparison with it shows the advantages of our DFSan-based

constraint collector. The last one is Fuzzolic [9], with Fuzzy-Sat [8], another fuzzing-based

constraint solver. Note that we have disabled input level timeout so all tools will finish

flipping all branches in one seed before moving on to the next.

Table 4.8 shows the results over the corpora from Neuzz4. As we can see, JIGSAW

can flip branches much faster than other tools. Z3-50ms was faster than Z3-10s but also

flipped fewer branches (i.e., achieved lower code coverage). We want to point out that
4https://github.com/Dongdongshe/neuzz

67

https://github.com/Dongdongshe/neuzz

most other tools cannot even finish processing the corpora in 24 hours, which means under

a normal fuzzing setup where the seed level timeout is enabled, they may have problems

flipping branches in deep execution traces.

0.04 0.02 0.00 0.02 0.04
time (hour)

0.04

0.02

0.00

0.02

0.04

nu
m

be
r o

f e
dg

es

JIGSAW Angora Z310S Z350MS NEUZZ QSYM FUZZOLIC AFL++

1 3 6 9 12 15 18 21 24
2000

4000

6000

8000

10000

objdump

1 3 6 9 12 15 18 21 24

1000

2000

3000

4000

5000

6000

size

1 3 6 9 12 15 18 21 24
0

2000
4000
6000
8000

10000
12000
14000
16000 readelf

1 3 6 9 12 15 18 21 241000
2000
3000
4000
5000
6000
7000
8000

nm

1 3 6 9 12 15 18 21 24
2000
3000
4000
5000
6000
7000
8000
9000

xml

Figure 4.4: Edge coverage growth over time for local fuzzing.

Local Fuzzing. Next, we evaluated three fuzzers that are not supported by Fuzzbench.

The first one is Angora [16]. We want to emphasize again that the comparison between

JIGSAW, Z3, and Angora (where everything is the same except the solver) can better reflect

JIGSAW’s impact on end-to-end fuzzing. Note that for a better comparison with Angora,

JIGSAW and Z3 use Angora’s AFL mutator instead of AFL++ in this experiment. The

second one is QSYM [77], a state-of-the-art hybrid fuzzer, paired with AFL++. The third

one is Neuzz [64], which also uses gradient-guide search. However, instead of using numerical

approximation, it uses a neural network to approximate the program under test. The fourth

one is Fuzzolic [9] with Fuzzy-Sat [8] as the solver. Finally, we also included AFL++ [24]

(3.12c with cmplog enabled), the state-of-the-art fuzzer.

For comparison, we used the same strategy as Neuzz [64]. Specifically, all fuzzers use

a larger set of initial corpus instead of a single seed. To facilitate better reproducibility, we

used the corpora from the Neuzz repository. We chose 5 programs from Table 4.2: readelf,

objdump, nm, size, and libxml2, as we can find the corresponding corpus from Neuzz’s

68

repository and they can be successfully compiled by Angora. Note that we did not use the

binaries in Neuzz’s repository because both JIGSAW and Angora need to compile the target

program from the source code. To ensure a fair comparison, we followed Fuzzbench’s setting:

each fuzzing trial runs inside a docker container which is assigned and limited to one physical

CPU core. The only exception is Neuzz, which also uses a dedicated GPU (P5000). All

experiments are run 10 times, except Neuzz, which we cannot run in parallel. We use afl-cov

to measure the edge coverage with binaries built for Neuzz.

Figure 4.4 shows the accumulated coverage growth. Compared to the two Z3

configurations, JIGSAW is better on objdump and size, worse on nm, and similar on readelf

and libxml. This is similar to the CE testing results: given enough time (i.e., the per-input

timeout), Z3 can solve more constraints and achieve higher coverage; otherwise, JIGSAW can

go deeper into the execution trace and flip more branches. Compared to Angora, JIGSAW’s

coverage growth is much faster, reflecting the advantage of its higher search throughput. For

the rest fuzzers, JIGSAW is significantly better on the four binutils programs in terms of

both final coverage and the coverage growth rate; it achieved similar final coverage as QSYM

and AFL++ on libxml, but the coverage growth rate is higher.

Fuzzbench. Next, we compared JIGSAW with other popular fuzzers on Google the

Fuzzbench dataset [34]. We used two configurations of our fuzzing driver. The first one uses

JIGSAW as the solver, denoted as JIGSAW. The second one uses the same setup except

using Z3 with 10s timeout as the solver, denoted as Z3. This setup is to show the benefit of

69

Table 4.9: Comparing JIGSAW with other state-of-the-art symbolic executors based on
their publicly available Fuzzbench results.

Target JIGSAW Z3 SymCC SymQEMU Fuzzolic AFL++

curl 17956.5 17931.0 17622.0 17564.5 17599.5 17948.5
freetype 28026.0 27932.5 25496.0 24028.0 26371.0 27956.5
harfbuzz 8705.0 8959.0 8482.5 8482.5 8515.0 8427.0
lcms 3872.0 2874.0 3701.5 3656.0 3770.0 3446.0
libjpeg 3809.0 3802.5 3810.5 3819.0 3814.0 3798.0
libpng 2128.0 2124.0 1914.5 2149.5 2146.5 2080.5
libxml2 13010.5 13056.0 11097.0 12305.0 12072.0 12429.5
libxslt 19083.5 19064.5 18577.0 18592.5 18515.0 18963.5
mbedtls 8297.0 8310.0 8260.0 8244.5 8268.0 8252.5
openssl 13768.0 13778.0 13777.0 13777.0 13767.5 13779.0
openthread 7199.5 7197.5 5935.0 5862.5 5912.0 5837.5
proj4 6919.0 6785.0 5365.0 5314.0 5836.5 5563.5
re2 3518.0 3533.5 3521.5 3519.0 3544.5 3517.0
sqlite3 35767.0 35886.5 35478.5 35845.5 35922.5 36699.0
vorbis 2169.5 2166.5 2167.5 2168.0 2168.0 2168.0
woff2 1858.0 1875.5 1934.0 1934.0 1936.5 1871.5

JIGSAW over Z3. Both configurations use AFL++ (commit 70bf4b4 with the default build

and fuzz options5) for hybrid fuzzing. The experiment is conducted by Google on its cloud.

Out of 13 fuzzers (11 state-of-the-art and 2 from us), JIGSAW is 1st by average

score and 1st (tied) by average rank, Z3 is 2rd by average score, and 1st by average rank.

For median coverage, JIGSAW leads in 4 programs, Z3 leads in 3 programs, and AFL++

leads in 2 programs.

We also compared JIGSAW’s performance with other concolic executors based on

their publicly available experiment report6. Table 4.9 shows the result. We can see that

JIGSAW can outperform other CE engines including SYMCC [53], SymQEMU [54], and

Fuzzolic [9].
5https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
6https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html

70

https://github.com/google/fuzzbench/blob/master/fuzzers/aflplusplus/fuzzer.py
https://www.fuzzbench.com/reports/experimental/2021-07-03-symbolic/index.html

Analysis. Because our hybrid fuzzer with JIGSAW did not outperform all other tools,

including AFL++ across all benchmarks in end-to-end fuzzing, we analyzed the results to

figure out the reason. The most important factor is the ability to track branches that can

be affected by the inputs. Specifically, our constraint collector performs instrumentation

during the compile time so it cannot collect and update path constraints in uninstrumented

third-party libraries and across system calls (e.g., when the input is written to another file and

read back). As a result, it may try to flip fewer branches than runtime-instrumentation-based

tools like QSYM [77] and SymQEMU [54]. In addition, all the evaluated concolic executors

did not support tracking of floating-point number constraints, so they would not try to flip

branches with floating-point number constraints. On the contrary, fuzzers like AFL++ can

flip such branches.

The second issue is that the existing hybrid fuzzing scheme cannot fully utilize

JIGSAW’s fast-solving capability. Specifically, our hybrid fuzzer used the branch filter from

QSYM [77] to determine whether a branch should be flipped or not. Because this filter is

coarse-grained, many branches will be filtered. As a result, JIGSAW ended up idling most

time of the fuzzing campaign. We believe a new hybrid fuzzing scheme is required to address

this issue and leave it for future work.

Finally, the performance of a (hybrid) fuzzer is also constrained by other well-known

factors, such as (1) the fuzzing harness [3, 36], which limits the upper bound of the code

coverage that can be achieved (e.g., all fuzzers saturated the coverage on some FuzzBench

programs), and (2) scheduling (e.g., which input to fuzz next and which technique (mutation

or constraint solving) to apply).

71

Summary. Based on these three experiments, we conclude that the answer to RQ4 is

yes: our approach can improve the performance of coverage-guided testing.

4.4.3 Threat to Validity

There are three major threats to the validity of our evaluation. First, although we

tried to use a relatively large and diverse set of programs for evaluation, it cannot represent

all programs, so the conclusion may not be generalizable to all programs. Similarly, because

our constraint collector and JIGSAW only handle bitvector constraints, the conclusion may

not be generalizable to other types of constraints SMT solvers support, such as floating-point

numbers and strings. Second, the end-to-end performance of a coverage-guided testing

tool depends on many aspects. Besides the speed of branch flipping, it also depends on

path/seed scheduling, branch filtering, seed synchronization, randomness, etc. Although

we have performed each experiment several times and used statistical tools, the result may

not truly reflect the advantages and drawbacks of our approach. Finally, our prototype

implementation could have bugs. During our evaluation, we have identified and fixed several

bugs that led to poor coverage, but there could be more bugs that we have missed.

72

Chapter 5

Conclusions

The concolic executor (CE) is a powerful software testing tool but faces efficiency

issues. Its performance slowdown comes from two sources: constraints collecting and

constraints solving. In the thesis, I presented two systematic designs that alleviate CE’s

performance issues.

The first approach models the concolic execution as a form of dynamic data-flow

analysis. As a result, the concolic executor can be built on top of LLVM DFSan, a highly-

optimized dynamic data-flow analyzer. We built a prototype named SymSan. The evaluation

results show that SymSan can significantly reduce the performance and memory consumption

overhead simultaneously compared to previous works.

The second approach models the constraints solving as a search problem and pushes

the search throughput to the next level. The key to achieving a high throughput is converting

path constraints to pure straight-line functions. Based on this idea, we built a prototype

73

named JIGSAW. The evaluation results show that JIGSAW can significantly outperform

existing SMT solvers.

Combined SymSan and JIGSAW, our concolic executor analyzes programs and

generates test inputs significantly faster than the existing tools. It also helps to reach the

same code coverage in a much shorter time compared to existing CEs and mutational fuzzers.

74

Bibliography

[1] D. Aitel. An introduction to spike, the fuzzer creation kit. presentation slides, 1, 2002.

[2] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz. Redqueen: Fuzzing
with input-to-state correspondence. In Annual Network and Distributed System Security
Symposium (NDSS), 2019.

[3] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux, L. Szekeres,
and W. Wang. Fudge: fuzz driver generation at scale. In ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), 2019.

[4] M. Böhme, V. Manes, and S. K. Cha. Boosting fuzzer efficiency: An information
theoretic perspective. In ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2020.

[5] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed greybox fuzzing.
In ACM Conference on Computer and Communications Security (CCS), 2017.

[6] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as
markov chain. In ACM Conference on Computer and Communications Security (CCS),
2016.

[7] M. Böhme, L. Szekeres, and J. Metzman. On the reliability of coverage-based fuzzer
benchmarking. In International Conference on Software Engineering (ICSE), 2022.

[8] L. Borzacchiello, E. Coppa, and C. Demetrescu. Fuzzing symbolic expressions. In
International Conference on Software Engineering (ICSE), 2021.

[9] L. Borzacchiello, E. Coppa, and C. Demetrescu. Fuzzolic: mixing fuzzing and concolic
execution. Computers & Security, page 102368, 2021.

[10] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of constraints: White-
box fuzz testing in production. In International Conference on Software Engineering
(ICSE), 2013.

[11] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

75

[12] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: automatically
generating inputs of death. In ACM Conference on Computer and Communications
Security (CCS), 2006.

[13] C. Cadar and K. Sen. Symbolic execution for software testing: three decades later.
Communications of the ACM, 56(2):82–90, 2013.

[14] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary
code. In IEEE Symposium on Security and Privacy (Oakland), 2012.

[15] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational fuzzing. In IEEE
Symposium on Security and Privacy (Oakland), 2015.

[16] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search. In IEEE Symposium
on Security and Privacy (Oakland), 2018.

[17] P. Chen, J. Liu, and H. Chen. Matryoshka: Fuzzing deeply nested branches. In ACM
Conference on Computer and Communications Security (CCS), 2019.

[18] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu. Savior: Towards
bug-driven hybrid testing. In IEEE Symposium on Security and Privacy (Oakland),
2020.

[19] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-vivo multi-path
analysis of software systems. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2011.

[20] J. Choi, J. Jang, C. Han, and S. K. Cha. Grey-box concolic testing on binary code. In
International Conference on Software Engineering (ICSE), 2019.

[21] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, 2008.

[22] B. Dutertre. Yices 2.2. In International Conference on Computer Aided Verification
(CAV). Springer, 2014.

[23] M. Eddington. Peach fuzzer platform. http://www.peachfuzzer.com/products/
peach-platform/, 2011.

[24] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. Afl++: Combining incremental steps
of fuzzing research. In USENIX Workshop on Offensive Technologies (WOOT), 2020.

[25] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen. Greyone: Data flow
sensitive fuzzing. In USENIX Security Symposium (Security), 2019.

[26] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. Collafl: Path sensitive
fuzzing. In IEEE Symposium on Security and Privacy (Oakland), 2018.

[27] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In International
Conference on Computer Aided Verification (CAV), 2007.

76

http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/

[28] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
2008.

[29] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2005.

[30] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing. In
Annual Network and Distributed System Security Symposium (NDSS), 2008.

[31] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning for input fuzzing.
In IEEE/ACM International Conference on Automated Software Engineering (ASE),
2017.

[32] Google. TCMalloc. https://github.com/google/tcmalloc.

[33] Google. honggfuzz. https://github.com/google/honggfuzz, 2010.

[34] Google. Fuzzbench: Fuzzer benchmarking as a service. https://google.github.io/
fuzzbench/, 2020.

[35] A. Hazimeh, A. Herrera, and M. Payer. Magma: A ground-truth fuzzing benchmark.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(3):1–29,
2020.

[36] K. Ispoglou, D. Austin, V. Mohan, and M. Payer. FuzzGen: Automatic fuzzer generation.
In USENIX Security Symposium (Security), 2020.

[37] lafintel. Circumventing fuzzing roadblocks with compiler transformations. https:
//lafintel.wordpress.com/, 2016.

[38] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: automatically generating
pathological inputs. In International Symposium on Software Testing and Analysis
(ISSTA), 2018.

[39] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2018.

[40] D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett. Just fuzz it: solving floating-
point constraints using coverage-guided fuzzing. In ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), 2019.

[41] LLVM. Sanitizer coverage. https://clang.llvm.org/docs/SanitizerCoverage.html,
2017.

[42] V. J. Manès, S. Kim, and S. K. Cha. Ankou: Guiding grey-box fuzzing towards
combinatorial difference. In International Conference on Software Engineering (ICSE),
2020.

77

https://github.com/google/tcmalloc
https://github.com/google/honggfuzz
https://google.github.io/fuzzbench/
https://google.github.io/fuzzbench/
https://lafintel.wordpress.com/
https://lafintel.wordpress.com/
https://clang.llvm.org/docs/SanitizerCoverage.html

[43] U. F. Mayer. Byte magazine’s bytemark benchmark program. https://www.math.utah.
edu/~mayer/linux/bmark.html, 2017.

[44] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix
utilities. Communications of the ACM, 33(12):32–44, 1990.

[45] A. Niemetz and M. Preiner. Bitwuzla at the SMT-COMP 2020. CoRR, abs/2006.01621,
2020.

[46] A. Niemetz and M. Preiner. Bitwuzla at the smt-comp 2021. https://smt-comp.
github.io/2021/system-descriptions/Bitwuzla.pdf, 2021.

[47] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon. Semantic fuzzing with
zest. In International Symposium on Software Testing and Analysis (ISSTA), 2019.

[48] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar. Fuzzfactory: domain-
specific fuzzing with waypoints. In Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2019.

[49] A. Pandey, P. R. G. Kotcharlakota, and S. Roy. Deferred concretization in symbolic
execution via fuzzing. In International Symposium on Software Testing and Analysis
(ISSTA), 2019.

[50] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: fuzzing by program transformation.
In IEEE Symposium on Security and Privacy (Oakland), 2018.

[51] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[52] S. Poeplau and A. Francillon. Systematic comparison of symbolic execution systems: in-
termediate representation and its generation. In Annual Computer Security Applications
Conference (ACSAC), 2019.

[53] S. Poeplau and A. Francillon. Symbolic execution with symcc: Don‘t interpret, compile!
In USENIX Security Symposium (Security), 2020.

[54] S. Poeplau and A. Francillon. SymQEMU: Compilation-based symbolic execution for
binaries. In Annual Network and Distributed System Security Symposium (NDSS), 2021.

[55] L. Project. LLVM language reference manual. https://llvm.org/docs/LangRef.html.

[56] M. Rajpal, W. Blum, and R. Singh. Not all bytes are equal: Neural byte sieve for
fuzzing. arXiv preprint arXiv:1711.04596, 2017.

[57] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer: Application-
aware evolutionary fuzzing. In Annual Network and Distributed System Security Sympo-
sium (NDSS), 2017.

78

https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html
https://smt-comp.github.io/2021/system-descriptions/Bitwuzla.pdf
https://smt-comp.github.io/2021/system-descriptions/Bitwuzla.pdf
https://llvm.org/docs/LangRef.html

[58] J. Ruderman. Introducing jsfunfuzz. http://www.squarefree.com/2007/08/02/
introducing-jsfunfuzz/, 2007.

[59] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz. Nyx: Greybox
hypervisor fuzzing using fast snapshots and affine types. In 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[60] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kAFL: Hardware-
assisted feedback fuzzing for os kernels. In USENIX Security Symposium (Security),
2017.

[61] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c. In ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE), 2005.

[62] K. Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In IEEE
Cybersecurity Development (SecDev). IEEE, 2016.

[63] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast
address sanity checker. In USENIX Annual Technical Conference (ATC), 2012.

[64] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana. Neuzz: Efficient fuzzing with
neural program learning. In IEEE Symposium on Security and Privacy (Oakland), 2019.

[65] S. Shen, S. Shinde, S. Ramesh, A. Roychoudhury, and P. Saxena. Neuro-symbolic
execution: Augmenting symbolic execution with neural constraints. In Annual Network
and Distributed System Security Symposium (NDSS), 2019.

[66] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, and C. Kruegel. Sok:(state of) the art of war: Offensive techniques
in binary analysis. In IEEE Symposium on Security and Privacy (Oakland), 2016.

[67] L. Szekeres. Memory corruption mitigation via software hardening and bug-finding. PhD
thesis, Stony Brook University, 2017.

[68] the Clang team. Dataflowsanitizer design document. https://clang.llvm.org/docs/
DataFlowSanitizerDesign.html, 2018.

[69] D. Vyukov. Syzkaller: an unsupervised, coverage-guided kernel fuzzer, 2019.

[70] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and N. Abu-Ghazaleh.
SyzVegas: Beating kernel fuzzing odds with reinforcement learning. In USENIX Security
Symposium (Security), 2021.

[71] J. Wang, B. Chen, L. Wei, and Y. Liu. Skyfire: Data-driven seed generation for fuzzing.
In IEEE Symposium on Security and Privacy (Oakland), 2017.

[72] J. Wang, C. Song, and H. Yin. Reinforcement learning-based hierarchical seed scheduling
for greybox fuzzing. In Annual Network and Distributed System Security Symposium
(NDSS), 2021.

79

http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html

[73] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In IEEE Symposium on Security
and Privacy (Oakland), 2010.

[74] W. Xu, S. Kashyap, C. Min, and T. Kim. Designing new operating primitives to improve
fuzzing performance. In ACM Conference on Computer and Communications Security
(CCS), 2017.

[75] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang. Profuzzer:
On-the-fly input type probing for better zero-day vulnerability discovery. In IEEE
Symposium on Security and Privacy (Oakland), 2019.

[76] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou. Ecofuzz: Adaptive
energy-saving greybox fuzzing as a variant of the adversarial multi-armed bandit. In
USENIX Security Symposium (Security), 2020.

[77] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. Qsym: A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX Security Symposium (Security), 2018.

[78] M. Zalewski. American fuzzy lop.(2014). http://lcamtuf.coredump.cx/afl, 2014.

[79] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. Firm-afl: high-throughput
greybox fuzzing of iot firmware via augmented process emulation. In USENIX Security
Symposium (Security), 2019.

Appendix

Concolic Execution without Solving. Table 5.1 shows the execution time of SymSan,

SymCC, and SymQEMU to collect symbolic constraints without solving (section 3.4.2).

Effectiveness of the Two Additional Optimizations. Figure 5.1 shows the execution

time distribution of (1) native execution, (2) SymSan without expression deduplication and

load/store optimization, (3) SymSan without load/store optimization, and (4) full-fledge

SymSan. As we can see, both optimization techniques can help reduce the execution time.

Statistics of Collected Constraints. Figure 5.2 shows (1) the maximum number of

tracked expressions (in number of AST nodes).

80

http://lcamtuf.coredump.cx/afl

Table 5.1: Execution time of concolic execution engines collecting all constraints without
solving (in seconds). SymCC cannot build sqlite3. SymCC crashes on 70% of seeds for
libpng.

Program #seeds Native SymSan SymCC SymQEMU

Time vs. Native Time vs. Native vs. SymSan Time vs. Native vs. SymSan

readelf 604 1.6s 10.1s 6.3x 462.8s 289.3x 45.8x 2916.2s 1822.6x 288.7x
objdump 560 2.7s 24.4s 9.0x 2097.0s 776.7x 85.9x 21913.1s 8116.0x 898.1x
nm 249 0.8s 3.3s 4.1x 169.1s 211.4x 51.2x 2598.6s 3248.3x 787.5x
size 207 0.6s 2.2s 3.7x 91.5s 152.5x 41.6x 1520.2s 2533.7x 691.0x
libxml2 1952 6.7s 36.5s 5.4x 2966.5s 442.8x 81.3x 12040.0s 1797.0x 329.9x
proj4 770 2.6s 10.8s 4.2x 22.2s 8.5x 2.1x 776.8s 298.8x 71.9x
vorbis 526 2.6s 267.2s 102.8x 83772.2s 32220.0x 313.5x 103113.2s 39658.9x 385.9x
re2 1073 7.3s 215.2s 29.5x 16655.4s 2281.6x 77.4x 221078.9s 30284.8x 1027.3x
woff2 548 2.2s 295.4s 134.3x 19812.6s 9005.7x 67.1x 12918.0 5871.8x 43.7x
libpng 218 0.7s 2.5s 3.6x N/A N/A N/A 1126.1s 1608.7x 450.4x
libjpeg 846 3.1s 83.0s 26.8x 42243.3s 13626.9x 509.0x 49465.2s 15956.5x 596.0
lcms 157 0.8s 4.9s 6.1x 26.9s 33.6x 5.5x 4335.0s 5418.8x 884.7x
freetype 4789 15.9s 202.1s 12.7x 16139.3s 1015.1x 79.9x 98562.2s 6198.9x 487.7x
harfbuzz 2955 9.4s 22.3s 2.4x 11903.4s 1266.3x 533.8x 16788.0s 1786.0x 752.8x
jsoncpp 450 1.6s 5.9s 3.7x 478.4s 299.0x 81.1x 1395.4s 872.1x 236.5x
openthread 268 0.9s 3.8s 4.2x 18.2s 20.2x 4.8x 204.2s 226.9x 53.7x
openssl 1577 11.3s 88.4s 7.8x 43255.3s 3827.9x 489.3x 215200.1s 19044.3x 2434.4x
mbedtls 491 1.6s 18.1s 11.3x 4146.9s 2591.8x 229.1x 9532.2s 5957.6x 526.6x
sqlite3 5253 19.7s 257.7s 13.1x N/A N/A N/A 46465.7s 2358.7x 180.3x
curl 1343 7.1s 35.0s 4.9x 398.8s 56.2x 11.4x 4494.8s 633.1x 128.4x

Geomean 9.2x 589.2x 62.0x 3407x 371.1x

We checked the total number of branch predicates that fell back to optimistic solving

(because of timeout), as an indication of the difficulties of the constraints. For SymCC, the

number is 2166. For SymSan, the number is 2461.

81

Native SymSan_NoOpti SymSan_NoLoadOpti SymSan
10 3

10 2

10 1

Figure 5.1: Execution time for the real-world programs. The figure is drawn in logarithmic
scale. SymSan-NoOpti is SymSan without expressions deduplication and load/store opti-
mization. SymSan-NoLoad is without load/store optimization).

SymSan SymCC

102

104

106

Figure 5.2: Maximum number of AST nodes tracked by SymSan and SymCC

82

	List of Figures
	List of Tables
	Introduction
	Thesis Statement

	Background
	Symbolic Execution
	Concolic Execution
	Scalability Issues and Recent Advances

	Automated Test Generation
	Efficiency of Test Generation

	SymSan: Reducing The Overhead of Managing Symbolic Expressions
	Motivation
	Design
	Symbolic State Access
	Symbolic Expression Management
	Additional Optimizations
	Interactions with External Libraries

	Implementation
	Evaluation
	Dataset
	Performance
	Memory Consumption
	Code Coverage
	Hybrid Fuzzing
	Security Implications

	JIGSAW: Speeding Up Branch Flipping
	Overview
	Insight
	Overview
	Challenges
	Comparison with SMT Solvers

	Design
	Getting Constraints
	Preprocessing
	Code Generation
	Solving
	Scaling

	Implementation
	Evaluation
	Constraint Solving Performance
	End-to-End Fuzzing Performance
	Threat to Validity

	Conclusions
	Bibliography

