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Abstract

Experimental rat models of stroke and hemorrhage are important tools to investigate cere-

brovascular disease pathophysiology mechanisms, yet how significant patterns of functional

impairment induced in various models of stroke are related to changes in connectivity at the

level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved.

To address this gap in knowledge, we employed two middle cerebral artery occlusion mod-

els and one intracerebral hemorrhage model with variant extent and location of neuronal

dysfunction. Motor and spatial memory function was assessed and the level of hippocampal

activation via Fos immunohistochemistry. Contribution of connectivity change to functional

impairment was analyzed for connection similarities, graph distances and spatial distances

as well as the importance of regions in terms of network architecture based on the neuroVII-

SAS rat connectome. We found that functional impairment correlated with not only the

extent but also the locations of the injury among the models. In addition, via coactivation

analysis in dynamic rat brain models, we found that lesioned regions led to stronger coacti-

vations with motor function and spatial learning regions than with other unaffected regions

of the connectome. Dynamic modeling with the weighted bilateral connectome detected

changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting

the extent of hippocampal hypoactivation and impairment in spatial learning and memory

function. Our study provides a comprehensive analytical framework in predictive identifica-

tion of remote regions not directly altered by stroke events and their functional implication.

Introduction

The functional sequelae of stroke vary by nature and degree, depending on the location and

extent of brain damage. Although it is relatively intuitive to predict the type and severity of the

functional impairment based on brain regions directly impacted by stroke, there is consider-

able uncertainty regarding how function is affected by the change of brain connectivity due to
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stroke, particularly in regions remote from the stroke epicenter that still maintain normal

structure yet with disrupted functional networks.

Connectomics [1–4] has been used as a method to investigate and quantify connectivity

changes following experimental lesions, injuries and therapies of mammalian brains [2, 5–9].

By means of a mesoscale connectome analysis using the neuroVIISAS platform [10], we previ-

ously found that all the damaged cortical regions caused by distal occlusion of the MCA

(dMCAO) had a relatively high connectivity with brain regions involved in processing spatial

information [1], which may underlie the observed memory impairment [11, 12]. Ample

electrophysiological evidence supports the impact of stroke in the remote hippocampus region

including changes in hippocampal theta power [13], coherence of theta oscillation between the

hippocampus and prefrontal cortex [14, 15], the aberrant increase in sharp-wave-associated

ripples and altered theta-gamma modulation [13, 16], reaffirming stroke-induced connectivity

changes. By adapting relevant parameter spaces and synaptic connectivity, the neuronal point

and population models developed recently exhibited similar dynamic bioelectrical behavior as

the recorded data. These simulated oscillations based on mathematical and biophysical princi-

ples can be created based on structural connectivity data to provide a reliable prediction model

for network activity and behavior. This type of theoretical analysis and computational models

was used to explore the dynamics of neuronal networks [17, 18] and to investigate the propa-

gation of synchronous spiking activity in feedforward neural networks in the absence of

electrophysiology data, providing valuable insights into the mechanisms of spiking activity

propagation in neuronal networks [19, 20]. Thus, connectomic analysis may help to reveal the

functional impairment in greater levels beyond the direct contribution of known lesions

caused by experimental brain injury paradigm.

By comparing three experimental models of stroke, namely the distal middle cerebral artery

occlusion (dMCAO), intraluminal filament model of MCAO and the intracerebral hemor-

rhage model (ICH) targeting the internal capsule [21–25], the current study sought to test the

hypothesis that lesion location in each stroke model distinctly affects global and local network

structure, network dynamics and function [26–28]. The following hypotheses were also exam-

ined in more detail. The connectivity relationship between lesioned regions and regions

involved in motor or learning behavior is affected distinctly depending on the stroke model.

Changes in coactivation patterns in the functional connectome due to lesions can predict

changes in motor or learning behavior following stroke. The propagation of spiking activity in

remote brain regions relevant to learning and memory, as simulated by neural models, is dif-

ferentially affected by the lesion locations in the three stroke models.

We first compared lesions size and functional impairment with motor and memory tests,

and accessed the extent of neural activation via Fos immunohistochemistry in the remote hip-

pocampus region upon spatial exploration [29–32]. Following the mapping of lesioned regions

in each model, by means of connectomics we analyzed the global network structure of control

connectome and stroke-induced connectome, local network parameters of control regions fol-

lowing removal of lesioned regions, connectivity relationship between lesioned regions and

regions that process motor or learning behavior [11]. We evaluated the differential coactiva-

tion of regions in non-lesioned and lesioned connectomes via differential functional connec-

tomics to determine if coactivation changes in functional models may predict motor or

learning behavior changes following stroke. We investigated the propagation of spiking activ-

ity in remote brain regions relevant to learning and memory function with simulated oscilla-

tions using the point neuron FitzHuge-Nagumo (FHN) model, Wilson-Cowan neural mass

model and the Mimura-Murray reaction-diffusion model comparing the control and the three

lesioned connectomes [18–20, 33]. We present our findings in how lesion location affects

structural and functional connectivity across the experimental stroke models.
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Materials and methods

All animal experiments were conducted in accordance with the Guide for Care and Use of

Laboratory Animals, and reported in compliance with the Animals in Research: Reporting In

Vivo Experiments (ARRIVE) guidelines [34, 35], and were approved by the San Francisco Vet-

erans Affairs Medical Center Institutional Animal Care and Use Committee, under approved

protocols 17–006, 20–015 and 23–012. The identity of each animal with respect to treatment

was concealed to experimenters who conducted the procedures and analysis.

Handling of the animals

Rats were anesthetized by 5% isoflurane inhalation in an induction chamber using vaporizer.

Depth of anesthesia was evaluated by assessing response to physical stimuli. Once in deep

anesthesia, the animal underwent bilateral thoracotomy/transcardiac perfusion and/or decapi-

tation for brain tissue collection. It is consistent with the recommendations of the Panel on

Euthanasia of the AVMA.

Rats were anesthetized with isoflurane prior to stroke or sham surgery. Once anesthetized,

breathing was monitored constantly by visual inspection. Core temperature was maintained

between 37±0.5˚ C with a heating blanket and rectal thermistor servo-loop. Rats were closely

monitored for the depth of anesthesia throughout surgery by measuring the rate of respiration

and hindlimb pain reflexes.and anesthesia was adjusted as needed throughout the surgical pro-

cedure. Bupivacaine s.c. were used as analgesics prior to skin incision and after suturing the

skin in stroke or sham surgeries. Following surgery, Buprenorphine SR s.c. 1.0 mg/kg was pro-

vided as postop analgesics.

In addition to proving postop analgesics Buprenorphine SR, rats were provided with wet

food and daily glucose saline injections s.c. to prevent weight loss and dehydration. Experi-

ments were terminated and rats euthanized if any of the following occurred: body condition

score less than 2 or weight loss >15%, gross behavioral changes such as coma or seizure activ-

ity, delayed wound healing for more than one week (potential infection) or other signs of pain

unrelated to surgery such as 1) rapid and shallow respiration; 2) back arching, flinching, writh-

ing, twitching or staggering; 3) pilo-erection or unkempt fur due to reduced grooming; 4)

vocalizing, or aggression 5) feed/water refusal.

Models of ischemic and hemorrhagic stroke

The distal middle cerebral artery occlusion model (dMCAO). Stroke was induced uni-

laterally in male Sprague-Dawley rats (n = 21, 2.5 months of age, Charles River, CA) under iso-

flurane/O2/N2O (1.5/30/68.5%) according to the well-established distal middle cerebral artery

occlusion (dMCAO) method [1, 12, 23, 36–38]. Briefly, the main trunk of the left MCA was

ligated just underneath the rhinal fissure with a 10–0 suture, and the bilateral common carotid

arteries (CCA) were occluded for 60 min with 4–0 sutures. The sutures were then removed to

restore blood flow, and the cervical incision was closed. Sham-operated rats (n = 19) did not

receive occlusion of either the MCA or the CCAs. Serial coronal sections were processed by

NeuN immunostaining and all affected regions were identified. Six reproducible damaged

regions were identified by 2 independent observers include parietal association cortex (PtA),

agranular insular cortex dorsal part (AID), agranular insular cortex ventral part (AIV), dysgra-

nular insular cortex (DI), granular insular cortex (GI) and primary somatosensory cortex (S1).

The intracerebral hemorrhage model (ICH). Collagenase was injected in AP: -1.3 mm,

L: 3 mm, V: 6 mm in 23 SD rats (right hemisphere). Lesioned regions were identified in the

same manner as the dMCAO model. After summarizing subregions, a core subset of 22 signifi-

cant lesioned regions was used for further analysis: endopiriform system (EnN), basal nucleus
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Meynert (B), angular thalamic nucleus (Ang), anteroventral thalamic nucleus (AV), centrolat-

eral thalamic nucleus (CL), paracentral thalamic nucleus (PC), mediodorsal thalamic nucleus

lateral part (MDL), ventroanterior thalamic nucleus (VA), ventrobasal complex (VB), ventro-

medial thalamic nucleus (VM), laterodorsal thalamic nucleus (LD), reticular thalamic nucleus

(Rt), bed nucleus of the stria terminalis medial division (BSTM), central amygdaloid nucleus

(Ce), interstitial nucleus of the posterior limb of the anterior commissure (IPAC), amygdalos-

triatal transition area (AStr), basolateral amygdaloid nucleus (BL), central amygdaloid nucleus

medial division (CeM), lateral globus pallidus (LGP), medial globus pallidus (MGP), caudate

putamen (CPu), dorsal endopiriform nucleus (DEn).

The intraluminal suture occlusion of the middle cerebral artery (sMCAO). Stroke was

induced by the intraluminal suture occlusion of the MCA (sMCAO or Suture) for 60 mins in

11 SD rats. Summarizing of subregions resulted in 57 significant lesioned regions: ventral

endopiriform nucleus (VEn), nucleus of the horizontal limb of the diagonal band (HDB),

nucleus of the vertical limb of the diagonal band (VDB), basal nucleus Meynert (B), substantia

innominata (SI), lateral preoptic area (LPO), magnocellular preoptic nucleus (MCPO), ventro-

lateral preoptic nucleus (VLPO), medial preoptic area and medial preoptic nucleus lateral and

medial (MPA/MPOL/MPOM), ventromedial hypothalamic nucleus central part (VMHC),

anterior hypothalamic area posterior part (AHAP), lateral hypothalamic area (LH), anterior

hypothalamic area (AHA), anteromedial thalamic nucleus (AM), ventrolateral thalamic

nucleus (VL), ventral posterolateral thalamic nucleus (VPL), ventromedial thalamic nucleus

(VM), ventral reuniens thalamic nucleus (VRe), reticular thalamic nucleus (Rt), zona incerta

(ZI), tuber cinereum area (TC), anterior basomedial nucleus (BMA), posterior basomedial

nucleus (BMP), dorsolateral part of the lateral nucleus (LaDL), ventrolateral part of the lateral

nucleus (LaVL), bed nucleus of the stria terminalis (BST), central amygdaloid nucleus (Ce),

interstitial nucleus of the posterior limb of the anterior commissure (IPAC), anterior amygda-

loid area (AA), cortical amygdaloid nucleus (CAn), nucleus of the lateral olfactory tract (LOT),

medial amygdaloid nucleus anterodorsal part (MeAD), amygdalohippocampal area anterolat-

eral part (AHiAL), amygdalostriatal transition area (AStr), intercalated masses (IM), interca-

lated nuclei of the amygdala (I), basolateral amygdaloid nucleus (BL), central amygdaloid

nucleus medial division (CeM), lateral accumbens shell (AcbShl), accumbens nucleus core

(AcbC), caudate putamen (CPu), piriform cortex (Pir), cingulate cortex area 1 (Cg1), cingulate

cortex area 2 (Cg2), temporal association cortex 1 (TeA), secondary auditory cortex (Au2),

agranular insular cortex (AI), dysgranular insular cortex (DI), granular insular cortex (GI),

perirhinal cortex (A35), ectorhinal cortex (A36), primary somatosensory cortex (S1), second-

ary somatosensory cortex (S2), secondary visual cortex lateral area (V2L), lateral orbital cortex

(LO), olfactory tubercle (TuO), claustrum (Cl).

Neurobehavioral assessment

Motor function was evaluated from 5 weeks after stroke or sham surgery in the order listed

below: while spatial memory function was determined 8 weeks after stroke or sham surgery.

Catwalk-assisted gait test. Rats were subjected to 3 consecutive runs of gait assessment

using the CatWalk automated gait analysis system (Noldus Information Technology) as

described previously [39–42]. The images from each trial were converted into digital signals

and processed following the identification and labeling of each footprint. Intensity, maximum

area and stride length were analyzed.

Rotor-Rod test. The task requires the rat to balance on a rotating rod. After a 1-min adap-

tation period on the rod at rest, rats were acclimated to the rotating rod by 5 rpm every 15 sec,

and the total time the rat remained on the rod (also known as fall latency) was recorded. Before
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and after assessments of roto-rod performance, the equipment was cleaned with 1 mM acetic

acid to remove residual odors [43, 44].

Horizontal ladder test. Rats were videotaped while traversing a 15o ladder with variable

spacing between bars. The percentages of footfalls (slipping through the bars) with the affected

or unaffected contralateral limbs were recorded and averaged from 3 trials [40, 45].

Barnes maze test. A black acrylic escape tunnel was placed under one of the holes on a

circular platform (120 cm in diameter) with 40 holes (6 cm in diameter per hole) along the

platform perimeter. Rats from each treatment group were randomly assigned to locate the

escape tunnel from one of the four pre-determined locations to rule out spatial preference. In

order for the rats to find and get into the box, bright light (300–350 LUC) and blowing fans

(strong enough to move the fur) were provided. Once the rats located the box they were

allowed to remain on it for 15 seconds. The rats were trained to locate the box from different

counterbalanced starting positions in 2 successive daily sessions for 5 days (3 trials per session,

3 minutes per trial), with a 1-hour intersession interval. The performance was analyzed by Nol-

dus EthoVision video tracking system (Noldus). Following 30 trials of acquisition test, a 1-min

probe trial was conducted 24 hours after the last trial on day 6 to determine memory retention

with the hidden box removed [39, 40, 44, 46].

Assessment of neural activation during spatial exploration

Functional recruitment of hippocampal circuitry was determined by mapping /quantifying the

Fos expression immediately following spatial exploration in a seperate cohort to avoid the

influence of spatial exploration on behavioral tests. Rats were either maintained in standard

housing conditions (“home”) (n = 22) or underwent a spatial exploration task (“expl”)

(n = 18), consisting of 15-minute exploration of an open field on a circular table (120 cm in

diameter) with a large ball placed on the table each on days 4 and 5 after MCAO or ICH [1,

31]. The spatial configuration of the environment was altered between sessions post MCAO

simply by changing the position of the large ball from the center (days 4) to the periphery

(days 5) of the table with everything else remaining the same. Ninety minutes after the explora-

tion task (or at the same time of the day for “home cage” controls), rats were perfused with 4%

paraformaldehyde and 40 μm coronal sections were stained for the expression of Fos (rabbit-

anti-Fos, Oncogene Science, 1:5000) [1, 47]. Fos-positive cells were counted manually under a

light microscope at 40x magnification using the NIH ImageJ cell counting plugin tool. Three

sequential serial sections (480 μm apart) were analyzed per animal and the counts were aver-

aged and expressed as number of cells/mm2.

Lesion size assessment

At the end of Barnes maze test, rat brains were sectioned and processed for NeuN immunos-

taining. Infarct volume was measured by subtracting the volume of intact tissue in the ipsilat-

eral hemisphere from that in the contralateral hemisphere on NeuN-stained serial coronal

sections (480 μm apart) by ImageJ (NIH) as described previously [37, 39].

neuroVIISAS-based rat brain connectomics

The neuronal connections of the rat connectome have been collated in a metastudy [48]. For

this, peer-reviewed publications which described results of tract-tracing experiments in juve-

nile to adult healthy rat strains were manually evaluated. All sources and targets of neuronal

connections of each experimental observation and their semiquantitative or quantitative con-

nection weights (e.g. light, moderate, strong) were gathered. All connectional data and features

of neuronal connections were imported into the rat nervous system project of the generic
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framework neuroVIISAS [5, 10]. The rat connectome project covers all described connections

documented in more than 7800 tract-tracing publications since 1972. All network analyses

used in this contribution have been conducted consistently in the neuroVIISAS framework as

shown in further studies [3, 49]. Verifications, reliability and reproducibility studies of the rat

connectome managed in neuroVIISAS showed that the collation of neuronal connections

based on tract tracing studies have a low interrater variability [48] and can be reproduced with

other methods [50]. Further details are described in [1].

Differential connectomics by comparing the control and lesioned connectome. To

investigate how connectivity is affected in each of the stroke models, we determined the con-

trol connectome and lesioned connectomes following mapping the damaged regions using ste-

reotaxic rat brain atlas as described above [51]. The control connectome consists of damaged

regions and their interconnected regions, while the dMCAO, sMCAO, and ICH lesioned con-

nectomes are built from the control connectome minus the lesioned areas of each model,

whereas the control connectome comprises of the damaged regions and their connecting

regions. Differential connectomics and lesion connectomics were conducted to quantify the

connectome changes specifically induced by each model [52].

Assignment of motor and learning behavioral networks. By assigning functional attri-

butes to regions of the connectome it becomes possible to determine functional network

changes following stroke experiments. A total of 13 regions are identified for the control of

motor functions including primary cortical regions (AGl = M1, AGm = M2), basal ganglia

regions (LGP, MGP, CPu, SNR, SNC, STH, VL) and cerebellar regions (CERC, DCeN, Pn)

[53–55]. Motor nuclei of the cranial nerves, visceral motor neurons and spinal cord motor

neurons or regions for hypothalamic goal directed behavior are not considered here [56].

Nineteen regions involved in learning behavior are identified including CA1, CA2, CA3, DG,

S, LEnt, CMAM, Cg1, Cg2, PrS, PaS, A35, POR, AVv, IAM, Po, RhN, SPFr and ADR [57–61].

Construction of the multidimensional circular relationship diagrams (MCRD). Based

on the following 5 primary parameters, each model’s own MCRD presents the afferent and

efferent connections between each lesioned area and regions of the control connectome: (1)

the direction of a connection (afferent, efferent or reciprocal), (2) the weight (color code), (3)

the number of observations of a connection in tract-tracing studies (line thickness) and (4) the

average rank of its local parameters (distance of a region which is connected with the center

region of the MCRD), and (5) the number of connections with other lesioned regions is coded

as the arc length of the border of the MCRD. If connections between lesioned and non-

lesioned regions were reported more than 2 times in tract-tracing publications (coded by line

thickness), they were deemed more reliable (RELi) connections. If a non-lesioned region has

connections with more than one lesioned region, we perceived it as multiple lesional effect

(MULi), which is represented by the distance of regions to the center of the MCRD. The

importance of a region in the network (NETi) can be estimated by the average rank of local

network parameters. To effectively identify the most important non-lesioned regions sustained

the greatest impact of stroke lesion, with smallest average ranks of local network parameters, a

triple filtering with the parameters RELi = 2, MULi = 4, NETi = 80% was performed to select

out the top 20% most important regions (high ranks or low rank numbers) in the network.

Structural network analysis

Lesional effects have been quantified via methods of graph theory for the different global and

local network parameters as well as particular matrix representations of the connectomes. The

following 6 global network parameters were comparatively applied to the 3 lesion models and

are discussed in a subsection in the Results section.
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Global network parameters include the reciprocal edges, average path length, average clus-

ter coefficient, small-worldness, transitivity and the knotty centrality or centeredness. The fol-

lowing is a very brief consideration of the general definitions and interpretations of these 6

global network parameters.

Reciprocal edges indicates the number of neuronal connections between two regions that

can send signals from region 1 to region 2 as well as from region 2 to region 1. The reciprocity

of a directed graph can be calculated by the ratio between the number of edges oriented in

both directions and the total number of edges in the graph.

The average path length or average shortest path length is defined as the average number of

steps along the shortest paths for all possible pairs of network nodes or in other words the aver-

age minimal number of edges of all possible node connections [62]. The average path length is

calculated from all possible shortest paths such as region 1 to region 2 and region 2 to region 1

by summing all the path values and dividing by the number of paths.

The clustering coefficient of a network is a measure of the degree to which nodes in a con-

nectome tend to cluster together. The local clustering coefficient is computed for each node in

the connectome. The local clustering coefficient of a region describes the likelihood that the

neighbors of the region are also connected. To calculate local clustering coefficient we use the

number of triangles a node is a part of it, and the degree of the node. At the end the local clus-

ter coefficients are needed to compute the average clustering coefficient for the whole graph by

normalizing the sum over all the local clustering coefficients.

The global network measure small worldness quantifies the expression of the small world

property of a network. The small worldness is determined in the first step by means of the

transitivity of the connectome and the average length of the shortest path. Then, the average of

the same indices is calculated for a given number of random networks. The small-worldness

index is then calculated as the transitivity (normalized by the random transitivity) over the

average shortest path length (normalized by the random average shortest path length).

The transitivity is the total probability that neighboring nodes are connected in a network,

indicating the presence of closely connected clusters. It is calculated by the ratio between the

observed number of closed triplets and the maximum possible number of closed triplets in the

graph.

Knotty-centredness or knotty-centrality is a measure of topological centrality and quantifies

the extent to which a given subset of regions of a network constitutes a densely intra-connected

topologically central connective core [63]. The knotty-centredness can be determined by

exhaustively searching all subsets of the connectome whose members fall into the top knots for

betweenness centrality and then using the gradient ascent.

To calculate the mean ranks of local network parameters, they were transformed to have

comparable numerical ranges. Some exemplary parameters from the total of 49 different local

network parameters are: DGAll (Degree all), Katz (Katz status index), CluCAll (Cluster coeffi-

cient all), Lev (Levarage), Loc (Locality index), LE (Local efficiency), BC (Betweeness central-

ity), EC (Eigenvector centrality), FC (Flow coefficient), Shapley (Shapley rating).

A detailed definition of the parameters have been published previously [3, 64].

Connectivity matching index (CMI). The CMI is a measure for the amount of overlap in

connections between a pair of regions and was used with regard to lesioned regions and their

connections with functionally defined regions. It can be computed by combining afferents or

inputs to regions (CMIIn) with efferents or outputs from regions (CMIOut) as CMIAll. If two

connected regions are very similar with regard to their connections then the values of CMIAll

become large. A CMIAll index of 1 refers to the situation that afferents and efferents of region

“i” are exactly the same as those of region “j”. The following formula shows the normalized

(denominator) calculation of CMIAll of a pair of nodes or regions i and j (A: adjacency matrix,
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k: number of similar connections):

CMIijAll
¼

Pn
k ¼ 1
k 6¼ i
k 6¼ j

Aik � Ajk þ Aki � Akj

P
max Aik;Ajk

n o
þmax Aki;Akj

n o ð1Þ

Generalized topology matrix (GTOM). GTOM has been applied to the dMCAO, ICH

and sMCAO adjacency matrix [65] for a formal definition see also [3]. It is a measure of pair-

wise interconnectivity that is proportional to the number of neighbors (two distinct directly

connected brain regions) that a pair of nodes respectively a pair of distinct brain regions have

in common. The measure is a count of the number of m-step neighbors that a pair of brain

regions share and is normalized to a value between 0 and 1. Because we found a stronger con-

nectional relationship of the anterior basal nucleus using GTOM just for the ICH model, only

this finding is presented and no further properties of the GTOM matrices for the other two

models.

Functional network analysis

Emerging evidence suggests that changes in connectivity can affect propagation of oscillations

in connectomes as reflected by changes in synchronization, coherence, and frequency of oscil-

lations in neural networks. For example, the strength and directionality of connections

between neurons can have a significant impact on the emergence and frequency of oscillations

[66]. Three established models can be used to simulate the neural oscillatory behavior in a

defined network.

The FitzHugh-Nagumo (FHN) model. The dynamic effect of stroke lesion in each model

on learning/memory function was predicted by modeling the coactivation pattern and inter-

spike variability between neurons in each lesioned region and functional region using the Fitz-

Hugh-Nagumo (FHN) model, which pertains an excitable system like a neuron and it acts as a

relaxation oscillator if an external stimulus passes a certain threshold Statistical mechanics of

complex networks [67, 68]. The FHN model was applied in the connectome by coupling the

FHN neurons through the weighted connectome connections [69] in order to investigate the

propagation and mutual interference of oscillations in the connectome rather than to recon-

struct and simulate microcircuits of neuron populations. Coactivation of two regions arises

from common neighbors or similarly connected regions. However, a connection between two

regions reduces the likelihood of coactivation because a sequential excitation of the two

regions, leading in principle to a negative effect of structural and functional connectivity. Nev-

ertheless, the global topological or connectome-based oscillation transfer can annihilate this

effect. The coupled FHN system has been stimulated and after 500 ms or steps the coactivation

of pairs of regions or FHN neurons have been computed and visualized in a coactivation

matrix, in which a large coactivation value reflects similar FHN activity between two regions.

The FHN model has been adapted to be used in weighted adjacency matrices (D) in our study.

Sufficient accuracy was obtained by solving the equations with a forward Euler approach.

Parameter exploration suggests a slight variation of parameters in comparison with [69] as fol-

lows: α = 0, β = −0.064, γ = 1.0, φ = 1.0, � = 2.0, k = 1.0, σ = 0.25, τX = 1.0, τY = 1.0, x0 < 2.0, x0

> 2.0, y0 < 2.0, y0 > 2.0. x is the membrane potential and y the recovery variable. τX and τY are

time scale factors for x and y. k is a global scaling parameter for the coupling strength and σ is

a scaling factor for uncorrelated Gaussian noise ν with 0 mean and unit variance. � is a scaling

factor for the recovery function. D is the transposed and weighted adjacency matrix of the
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connectome and f(x) is the logistic coupling function.

tx
dxðtÞ
dt
¼ gxðtÞ �

x3ðtÞ
3
� yðtÞ þ kDf ðxðtÞÞ þ snxðtÞ ð2Þ

ty
dyðtÞ
dt
¼ byðtÞ � xðtÞ þ aþ snyðtÞ ð3Þ

f ðxÞ ¼
1

ð1þ e� xÞ
ð4Þ

One FHN-neuron (Fig 1) was modeled for each node of the connectome and connectome

connections were used as the coupling matrix. After a simulation time of 500 ms with the step

size of 1 ms the coactivation matrix has been calculated. It was used in the same way as the

CMIAll matrix for pairwise ranking. For the coactivation matrix Co a spike detection Ci(t) on

the basis of average excitation and standard deviation of excitations of a region need to be

performed:

In most cases a relative coactivation to excitatory states Coij has been calculated instead of a

coactivation relative to time steps ((1/tmax S Ci(t) Cj(t)):

Coij ¼

Ptmax
t¼1

ciðtÞ � cjðtÞ
Ptmax

i¼1
maxðcit; cjðtÞÞ

ð5Þ

Functional network analysis by modeling hippocampal network dynamics

To reveal dynamic changes resulting from connectivity loss that led to hippocampal functional

impairment [70–74], we tested if differences of signal patterns in the hippocampal regions

CA1 and DG [75, 76] appear in dynamic modeling after removing stroked lesioned regions.

Since changes in information transmission from inter-cortical networks have been docu-

mented after stroke [77, 78], we investigated how signal propagate in connectome after stroke

taking into considerations of connectome properties such as directionality [79], weighting,

axon collaterals, bilaterality, completeness and transsynaptic pathways [80, 81].

Wilson and Cowan model. The Wilson and Cowan model is a neural mass model that

provides a framework for studying large-scale neural networks in the brain. It is commonly

used to model the dynamics of populations of excitatory and inhibitory neurons in the cortex,

and is especially useful for studying the generation of oscillations and other complex patterns

of neural activity. The model is based on the idea that the activity of a population of neurons

Fig 1. The membrane potentials of a FHN model. The FHN dynamics of two coupled FHN neurons over 8000 ms. The same parameters were used by

[70], however, � was set to 1.

https://doi.org/10.1371/journal.pone.0310743.g001
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can be described by a single variable, which represents the average firing rate of the population.

It has been successfully applied to study signal propagation in neural networks. The applica-

tion in mouse cortex models allowed for the first time a mechanistic interpretation of informa-

tion transmission in a realistic neuronal network [82]. Therefore, we also adopted this

approach to analyze signal-stimulus response changes in a connectome perturbed by stroke

using another model category.

The Wilson and Cowan model describes the dynamics of two interacting populations of

neurons, an excitatory population (E) and an inhibitory population (I). The specific equations

depend on the assumptions made in the model, such as the properties of the neurons, the sig-

moidal activation functions, the strength and directionality of the connections, and the exter-

nal inputs. The model assumes that the activity of each population can be described by a single

variable, which represents the average firing rate of the population. Let x(t) and y(t) be the

average activity of the excitatory and inhibitory populations, respectively, at time t. The

dynamics of the model are governed by the following set of coupled differential equations:

dx
dt
¼ ð� xþ Fðwxx � x � wyx � yþ IextxÞÞ=tx

dy
dt
¼ ð� yþ Fðwxy � x � wyy � yþ IextyÞÞ=ty

where:

• F is a sigmoidal activation function that captures the non-linear relationship between neural

activity and synaptic input, typically given by F(z) = 1/(1 + e−z)

• wxx, wyx, wxy, and wyy are the connection strengths between the populations, where wxx and

wyy are the self-connections of the populations

• Iextx and Iexty are external inputs to the populations

• taux and tauy are time constants that govern the decay of the activity in the populations.

These equations describe the evolution of the activity of the excitatory and inhibitory popu-

lations over time, taking into account the interactions between the populations through their

connections and the external inputs to each population.

The Wilson and Cowan model is useful for studying the dynamics of large-scale neural net-

works in the brain, and has been used to model a wide range of phenomena, including the gen-

eration of oscillations, the emergence of spatial patterns of activity, and the effects of

neuromodulation on neural activity. The model can also be extended to include additional

populations of neurons, as well as more complex network architectures, making it a versatile

tool for studying the neural mechanisms underlying cognition and behavior.

Mimura-Murray reaction-diffusion model. Flow-based network analysis using diffusive

processes (network diffusion) [83] has been successfully used to study the relationship between

structure and function in the nervous system. Based on the Lotka and Volterra model, the dif-

fusion efficient and flexible reaction-model was developed by Mimura and Murray. In the con-

text of neural networks, the model has been used to study the formation of spatial patterns of

activity in directed networks, where the activity of one population of neurons affects the activ-

ity of another population through excitatory or inhibitory connections [84]. The model can

also be extended to include additional populations of neurons, as well as more complex net-

work architectures, making it a powerful tool for studying the dynamics of large-scale neural

networks.
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In a more formal definition the reaction-diffusion model of Mimura-Murray is a system of

partial differential equations that describe the spatiotemporal dynamics of a system of interact-

ing objects. Here, the two populations are considered on a domain with two spatial dimensions

in such a way that the PDEs have the form [85]:

@Pðx; y; tÞ
@t

¼
aþ bP � P2

c
� v

� �

P þ DPDP ð6Þ

@Qðx; y; tÞ
@t

¼ ðQ � ð1 � dQÞÞvþ DQDQ ð7Þ

Parameters of the local reaction of the Mimura-Murray model were used as suggested by

[86] a: 13, b: 16, c: 9, d: 0.4, Du: 0.1, Dv: 0.01.

Neural population simulation engine Neural Simulation Tool (NEST). To investigate

the particularly large lesion effects of the sMCAO experiment in a dynamic model, we used the

interface of neuroVIISAS [10] and NEST [87, 88]. In neuroVIISAS, each parameter of the neu-

ron models available in NEST can be specified precisely, the populations and couplings

(weighted and directed neuronal connectivity) can be defined exactly, and the simulation in

NEST can be executed efficiently on parallel computers. The results of the simulations are read

into neuroVIISAS and can be dynamically visualized in the available digital atlases in neuroVII-
SAS as well as coupled with structural network data and statistically analyzed. In the following,

we will briefly describe the well-known leaky integrate-and-fire neuron model, which is partic-

ularly suitable for use in neuron populations.

The leaky integrate-and-fire (LIF) model is a simplified mathematical model commonly

used in neuroscience to study the behavior of neurons for building artificial neural networks.

The LIF model describes a neuron as a simple electrical circuit, where the neuron’s membrane

potential is represented by a voltage variable, V. The model assumes that the neuron receives

input currents, I, from other neurons or from the environment. These input currents cause the

neuron’s membrane potential to change over time, according to the equation:

dV=dt ¼ ðI � V=RÞ=C

where R is the neuron’s membrane resistance and C is its capacitance. This equation describes

the rate of change of the membrane potential, dV/dt, which depends on the difference between

the input current I and the membrane potential V, divided by the product of the resistance R
and the capacitance C. The leaky part of the LIF model refers to the fact that the neuron’s

membrane potential leaks over time due to the presence of ion channels that allow ions to pass

through the membrane. This leakage is modeled by adding a term proportional to the differ-

ence between the resting potential, Vrest, and the current membrane potential, V, to the equa-

tion:

dV=dt ¼ ðI � V=R � ðV � VrestÞ=RleakÞ=C

where Rleak is the membrane leakage resistance. This equation describes how the membrane

potential changes over time, including the effect of the input currents and the leakage. The

integrate-and-fire part of the LIF model refers to the fact that the neuron “fires” when its mem-

brane potential reaches a certain threshold value, Vthresh. When the membrane potential

exceeds this threshold, the neuron generates an action potential or spike, which is transmitted

to other neurons. After firing, the membrane potential is reset to a lower value, Vreset, and the

neuron enters a refractory period during which it cannot fire again. This behavior is modeled
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by adding a threshold condition to the equation:

f V � Vthresh : V ¼ VresetspikeðÞ

where spike() is the function that generates an action potential or spike. In summary, the leaky

integrate-and-fire model describes the behavior of a neuron as a simple electrical circuit, tak-

ing into account the effect of input currents, leakage, and firing threshold. For the simulation

of the sMCAO connectome we parameterized the LIF model of NEST by 80% excitatory neu-

rons (total of 229116 LIF neurons). The synaptic delay was set to 1 ms, the locus coeruleus was

stimulated by 10kHz and simulation time was 300 ms. Spike distributions were computed and

interspike intervals were calculated. An interspike interval (ISI) refers to the time interval

between two consecutive action potentials or spikes generated by the same neuron. When a

LIF neuron receives input currents that cause its membrane potential to reach the firing

threshold, it generates an action potential or spike, which is transmitted to other neurons in

the population. After firing, the neuron’s membrane potential is reset to a lower value, and the

neuron enters a refractory period during which it cannot fire again. The duration of this

refractory period, combined with the input currents received by the neuron, determines the

interspike interval between successive spikes. In the LIF model, the refractory period is typi-

cally modeled as a fixed duration during which the neuron cannot fire again, regardless of the

strength of the input currents. The interspike interval is an important measure of the activity

of neurons in a population, as it reflects the frequency and regularity of their firing. By analyz-

ing the distribution of interspike intervals across the population, we can gain insights into the

dynamics of the neural network and the functional properties of the neurons. For this purpose,

we calculated and compared the variability of the spike intervals using the mean error

coefficient.

Statistical analyses

To determine differences among stroke models in global and local network parameters,

ANOVA, student t-test or U-test were used. Data for infarct volume and neurobehavior were

first checked for normal distribution using the Kolmogorov-Smirnov or Shapiro-Wilk nor-

mality test. Data were analyzed by one way ANOVA, followed by Tukey’s multiple comparison

test. Difference between stroke models is considered significant when adjusted p values were

less than 0.05.

To determine whether there was a significant difference between control and lesioned con-

nectomes of the 3 stroke models, we applied the concept of permutation of random networks

(null models) [89–93]. This non-parametric method allows the comparison of two groups, in

this case, the normal control connectome and the lesioned connectomes [94–97]. The metrics

for comparison are global or local network measures, including reciprocal edges, centrality,

average cluster coefficient, small-worldness, directed modularity, global efficiency. The permu-

tation process was repeated between 100 and 10.000 times to generate the distributions of

parameters.

Multivariate analyses were used to determine groups of classes of regions with modularity

testing, hierarchical cluster analysis (spectral clustering [98–102], Markov chain clustering

[103], Girvan-Newman [104–107], Louvain modularity [108], principal component analysis

[PCA] [109, 110], multidimensional scaling [MDS] [111], self-organizing maps [SOM] [112]).

We further defined and compared structural groups of regions among experimental models by

analyzing connections weights, connectivity matching and local network parameters.
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Results

The level of functional impairment depends on both: Lesion size and

location

The sMCAO model produced damage to the sensorimotor cortex, the lateral portion of the

striatum, and the fiber tracks between the cortex and the basal ganglia. The dMCAO model on

the other hand, caused damage only in the sensorimotor cortex. Finally, despite yielding the

smallest infarct volume, the ICH model induced damage to the internal capsule, the striatum,

and the anterior portion of the thalamus and its neighboring fiber tracts (Fig 2A). Regarding

lesion size, sMCAO led to the most extensive damage, approximately twice the size as that in

the dMCAO model, while the ICH model produced the smallest injury, 15% of the sMCAO

infarct volume (Fig 2B).

Motor function was examined using the accelerating rotor-rod, the ladder test, and the cat-

walk test. Although all three models showed impaired motor function in comparison to the

sham group, rats subjected to the sMCAO model consistently exhibited the worst motor func-

tion outcomes in all the tests (Fig 3). Surprisingly, despite sustaining small infarct volumes,

rats subjected to the ICH model also exhibited very poor motor function outcomes indistin-

guishable from the sMCAO rats such as the rotor rod test (Fig 3A), and some of the intensity

parameter of the catwalk gait test (Fig 3C). Rats that have undergone dMCAO appeared to

Fig 2. Comparison of the damage produced by the three types of stroke. (A) Reconstructions of coronal sections showing the extent of infarct in

the rats of three stroke models. Smallest and largest damaged areas appear in black and gray, respectively. Numbers indicate the section distance in

millimeters from Bregma. (B) The mean infarct volume of three stroke models. **p<0.01, ***p<0.005, ****p<0.001. n = 9–14/group.

https://doi.org/10.1371/journal.pone.0310743.g002
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Fig 3. Motor function impairment in the three stroke models. (a) Performance on the accelerating Rotor Rod in all

three stroke groups of rats had the significant motor function impairment compared to the sham rats (*p<0.05;

‡p<0.01), but no difference among the three stroke groups was seen. (b) Ladder test. Performance on the ladder test in

all the three stroke groups of rats had significant motor function impairment compared to the sham rats (‡p<0.01),

and the impairment of the sMCAO rats was significantly worse than those of the other two stroke groups (#p<0.01).

dMCAO and ICH group vs sMCAO group). No difference between the dMCAO and ICH stroke groups. (c) Catwalk

test. Effects of stroke on paw pressure (a), area of paw contacts (b) and stride length (c). Gait parameters were assessed

at preoperative (d0) and 5 weeks (d5w) after left stroke surgeries. All three parameters had no difference among the

four groups before stroke surgery, but five weeks after stroke surgery, the sMCAO rats presented very severe gait

impairments compared to the sham rats, especially the impairments of paw intensity and maximal area. The paw

intensity, max areas and stride length were reduced at all paws after sMCAO stroke. Different from the sMCAO, the

dMCAO and ICH had no significant change in the temporal parameter of stride length, The paw intensity and max

area of affected limbs of ICH rats had a similar significant decrease with sMCAO. The paw intensity and max area were

reduced at the paws after dMCAO, but only had significant difference in the paw intensity of the affected forepaw (RF).

*p<0.05, ‡p<0.01 vs sham group; *p<0.05, # p<0.01 vs sMCAO group.

https://doi.org/10.1371/journal.pone.0310743.g003
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suffer the least extent of motor impairment among 3 models, or remaining a comparable level

of performance in some tests relative to the ICH rats. (Fig 3).

All three stroke models showed impairment in spatial memory, as determined by path

length to escape box in the Barnes maze, compared to the sham control group. sMCAO rats

showed the greatest deficits in spatial learning in the Barnes maze, compared to comparable

performance between the dMCAO and ICH rats (Fig 4).

Hippocampal activity following spatial exploration was determined by Fos-immuno-reac-

tivty in the CA1, CA3 and the DG regions. All rats that were allowed to spatially explore

showed increased Fos expression; however, the amount of Fos-positive nuclei was markedly

reduced in ischemic groups compared to the sham group. In all three hippocampal regions,

the sMCAO group exhibited the least amount of Fos-positive nuclei, or the greatest extent of

hippocampal hypoactivation, whereas the dMCAO and ICH groups exhibited comparable

level of hypoactivation (Fig 5). Taken together, the results suggest that both large infarct size

and subcortical injury location contribute to a greater degree of functional deficits.

Fig 4. Spatial memory impairment of the three stroke models. All three stroked rats performed more poorly than

sham controls during spatial learning in the Barnes maze, especially the sMCAO rats (‡p<0.01 vs sham). Their path

length to locate the escape box in the Barnes maze was also significantly longer than those of dMCAO and ICH rats (#

p<0.01 vs sMCAO).

https://doi.org/10.1371/journal.pone.0310743.g004
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Fig 5. Stroke or hemorrhage reduces hippocampal activation following the exploration of a novel environment.

(A) Counts of Fos-positive nuclei in the hippocampal CA1 region of shams and dMCAO rats remaining in their home

cage or exploring a circular arena. Spatial exploration increased Fos expression (# p<0.01) but this effect was reduced

in ischemic rats. Although affecting both hemispheres, it was predominant in the ipsilateral infarcted hemisphere

(*p<0.05; ‡p<0.01), (B) A similar pattern of effect was observed in the CA3 region of the hippocampus. Spatial

exploration increased Fos expression compared to home cage controls (# p<0.01). This effect was diminished in all

PLOS ONE Connectome-based prediction of stroke induced functional impairments

PLOS ONE | https://doi.org/10.1371/journal.pone.0310743 December 19, 2024 16 / 48

https://doi.org/10.1371/journal.pone.0310743


Stroke induced a greater connectivity loss within the lesioned regions than

the interhemispheric connections

Connectivity changes in each stroke model are reflected by adjacency matrices among the

damaged regions (intrinsic) and with contralateral homotopic regions (extrinsic) (Fig 6). The

ipsilateral lesioned right hemispheric regions in the dMCAO, ICH and sMCAO models are

highly connected intrahemispherically compared to modest connections with the intact homo-

topic regions of the contralateral hemisphere. Hence, the connectivity of lesioned regions is

greatly disrupted intrinsically. In the ICH model for example, BL has most output connections

(histogram of rows of the adjacency matrix) among lesioned regions and the CPu most input

connections (histogram of columns of the adjacency matrix).

By incorporating the lesioned regions into the existing neuroVIISAS connectome, the con-

trol connectome of each model provides a thorough connectivity mapping (S1 Fig). Here we

show an example of the control connectome of the dMCAO model in the form of a weighted

and directed adjacency matrix with hierarchical organization of regions as well as column and

row frequencies of connections (Fig 6). A concentration of connections is visible around the

main diagonal in the lower right of the adjacency matrix, indicating a relatively strong inter-

connectedness of cortical regions.

Stroke altered the global network structure

Three lesioned connectomes were compared to the control connectome in the first step of our

differential connectome study. All three lesioned connectomes displayed reduced total num-

bers of regions, links and reciprocal connections compared to the control connectome as sum-

marized in Table 1, together with other changes of global network parameters. Not

surprisingly, the sMCAO model with the largest lesion size resulted in the most numbers of

lesioned regions (57), which gave rise to the greatest change in global network structure

including the biggest loss of reciprocal connections by 59.81% and largest increase of small-

worldness by 34.7%, significantly altering the network architecture. Surprisingly, albeit with a

smaller lesion size, the ICH model had a greater change in global network structure compared

to that of the dMCAO model.

To better visualize the global connectome differences, some well-chosen global network

parameters were comparatively visualized for the real tract-tracing connectome and random-

ized connectomes. The detailed results of the empirical control (red dots) and lesioned con-

nectomes (blue dots) combined with 100 randomized Erdős-Rényi (ER) type and 100 null

model of the rewiring or degree preserving network (RW) simulation of each of six global net-

work parameters, such as reciprocal edges, average path length, average cluster coefficient,

small-worldness, transitivity, and knotty-centredness, are shown in Fig 7.

The relationship of the 6 global parameters for the non-simulated control and lesioned con-

nectome appears to be mirrored by the simulated counterparts. For example, the numbers of

reciprocal edges, transitivity, and mean cluster coefficients appear larger both in the simulated

and non-simulated control connectomes (red), in contrast to the smaller values seen in mean

path lengths, small worldness and knotty-centredness in both types of control connectomes. It

suggests that the simulated connectomes are equally useful in comparing global network

parameters compared to the real connectomes.

stroked rats (*p<0.05; ‡p<0.01). (C) In the DG of the hippocampus, spatial exploration enhanced Fos expression (#

p<0.01) and revealed hypoactivation in stroke.

https://doi.org/10.1371/journal.pone.0310743.g005
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Fig 6. Weighted and directed bilateral adjacency matrices with right hemispheric lesioned regions. a) dMCAO

model (6 lesioned regions: green), b) ICH model (22 right hemispheric lesioned regions: green), c) sMCAO model (57)

right hemispheric lesioned regions (blue). Histograms of rows and columns represent the number of output and input

connections, respectively.

https://doi.org/10.1371/journal.pone.0310743.g006
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The impact of lesion severity seems to have a compounding effect on reciprocal connec-

tions and average path length, mean cluster coefficients and transitivity, compared to a propor-

tional effect in other global parameters among the 3 models. It suggests that greater number of

lesioned regions disproportionally reduced the reciprocal connections and increased mean

pathlength, decreasing the accessibility between any given two regions and thus reducing the

efficiency of signal processing and speed of synchronization.

The mean cluster coefficient shows similar values for the dMCAO and ICH lesioned connec-

tome in contrast to the great reduction for the sMCAO model, suggesting that the basis of the

small world architecture in the sMCAO network has changed significantly, causing the rapid

exchange and interaction of bioelectrical signal patterns to decrease dramatically. This is sup-

ported by the differences among models in global parameter small-worldness values, suggest-

ing that this network property cannot be protected by the network architectures after lesioning

and is better preserved as a value. The transitivity parameter behaves inversely to the small

world property, a disproportionally decrease in transitivity of the lesioned connectome was

seen in sMCAO compared to ICH and dMCAO models. Since the differences of Knotty-Cent-

redness between control and lesioned connectomes is only minor, this parameter seems to

indicate only a small change of densely interconnected regions as network core subsets.

Identification of important regions in each model based on centrality

parameters

We then performed a local network analysis to determine the importance of a given region

with respect to connectivity in each model by ranking the averaged scores over 50 local net-

work parameters (see Methods and materials). The angular thalamic nucleus, the secondary

visual cortex, the submedius thalamic nucleus and the ventral posterior thalamic nucleus were

found to have much greater connectional importance in the lesioned dMCAO connectome

than in the control connectome. On the other hand, the posterior hypothalamus, median

raphe nucleus, and medial preoptic area are most important in the control connectome as well

as in the lesioned connectome. The medial agranular prefrontal cortex, posterior hypothalamic

nucleus, infralimbic cortex, M1 and ventral pallidum are most important in the ICH control

connectome, while the posterior hypothalamic nucleus, median raphe nucleus, ventral palli-

dum and the medial preoptic area are most consequential with the lowest rank number in the

ICH-lesioned connectome. Furthermore, the lateral hypothalamic area (16), medial agranular

prefrontal cortex (15) prelimbic cortex (15) and infralimbic cortex (14) were identified to have

dense connections between ICH lesioned regions and non-lesioned regions (S2 Table). The

medial agranular prefrontal cortex (M2), the lateral agranular prefrontal cortex (M1),

Table 1. Comparison of global network structure change after stroke.

Parameter dMCAO ICH sMCAO

Regions in control connectome 540 540 540

Links in control connectome 13183 13183 13183

Lesioned regions 6 22 57

Regions in lesioned connectome 534 518 483

Links in lesioned connectome 11693 10462 6883

Reduction in reciprocal connections [%] 8.52 20.4 59.81

Increase in small worldness [%] 6.41 12.24 34.7

Reduction in cluster coefficient [%] 0.748 0.705 19.36

Increase of average pathlength [%] 0.42 2.27 12.38

https://doi.org/10.1371/journal.pone.0310743.t001

PLOS ONE Connectome-based prediction of stroke induced functional impairments

PLOS ONE | https://doi.org/10.1371/journal.pone.0310743 December 19, 2024 19 / 48

https://doi.org/10.1371/journal.pone.0310743.t001
https://doi.org/10.1371/journal.pone.0310743


infralimbic cortex, and posterior hypothalamic nucleus have the lowest average ranks in the

sMCAO control connectome, compared to the median raphe nucleus, infralimbic cortex, pos-

terior hypothalamic nucleus, prelimbic cortex and the medial septal nucleus in the sMCAO

lesioned connectome.

Fig 7. Comparison of 6 global network parameters of the dMCAO, ICH, sMCAO and control connectome. The

average path length do not show a larger difference of the control (red large point) and dMCAO lesioned connectome

(blue large point). Empirical parameters were tested in the Erdős-Rényi (ER) and the degree preserving rewiring model

(RW) for 100 iterations (small dots). The parameters of the empirical ICH-lesioned connectome and the ICH control

connectome can be clearly distinguished from randomized connectomes. This distance between the large red and blue

points indicates the difference of the sMCAO lesioned connectome and the non-lesioned control connectome. The

strongest difference was found for the number of reciprocal edges.

https://doi.org/10.1371/journal.pone.0310743.g007
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The effect of lesion on connectivity and functional network of the models

dMCAO model. The afferent and efferent connectivity relationship between individual

lesioned regions and regions of the control connectome for dMCAO are shown as 6 multidi-
mensional circular relationship diagrams (MCRD) in Fig 8a in sorted order. Following the

selection for the top 20% regions with the most importance and connected to at least 4 lesioned

regions, the filtered MCRDs are shown in Fig 8b. The analysis indicated that S1 has the most

numbers of connections with regions of the control connectome while DI has the least. The

regions that were filtered and visualized in the MCRD are arranged selectively in an adjacency

matrix to demonstrate there dense interconnectivity (Fig 9b). Each of 23 non-lesioned regions

(those regions in Fig 8b that are not labeled with green) is connected with all 6 lesioned regions

(Fig 9a), e.g., the perirhinal cortex, rhomboid thalamic nucleus, reuniens thalamic nucleus, S2

and medial orbital cortex, building a core network that are intensively interconnected. In par-

ticular, five thalamic, the lateral hypothalamic, mesocortical and orbitofrontal regions show

intense interconnections with lesioned regions of the dMCAO model (Fig 9b). Conversely, all

Fig 8. Multidimensional circular relation diagrams (MCRD) of the 6 lesioned regions (dMCAO) and control

connectome regions. The lesioned regions were sorted with regard to the number of filtered and connected regions.

Center circle: lesioned region. Distance from center: Average rank of 50 local network parameters, Line thickness:

number of observations of a connection. Line color: color codes of connection weights. Black line: connection is not

reciprocal. Arc length: Number of connections to other lesioned regions. Outer half of a line: connection from the

non-lesioned region to the lesioned region, Inner half of a line: connection from the lesioned region to the non-

lesioned region. a) The sorted non-filtered MCRD. b) The 20% of regions with highest importance or lowest mean

ranks and regions which are connected to at least 4 lesioned regions. Abbreviations are listed in S1 Fig.

https://doi.org/10.1371/journal.pone.0310743.g008
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Fig 9. Filtering of most important regions which are connected with dMCAO lesioned regions. a) Remaining non-lesioned

regions with direct reliable connections to the 6 lesioned regions following 3 parameter filtering. Distance from center region

(lesioned region) is the average rank of local network parameters filtered for the 20% of lowest ranks (largest importance for the

network), connections to all other lesioned regions (6) and 2 observations per connection. The lesioned regions were sorted with

regard to the number of filtered and connected regions. b) Adjacency matrix of lesioned regions and non-lesioned regions of the

dMCAO experiment.

https://doi.org/10.1371/journal.pone.0310743.g009
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6 lesioned regions are connected to the following learning and memory functional regions,

namely the perirhinal cortex (6 reciprocal), lateral entorhinal cortex (6 reciprocal) and post-

rhinal cortex (5 reciprocal) (S3 Table), while CA1 has 5 non-reciprocal connections to lesioned

regions. On the other hand, all lesioned regions are also connected to motor function regions

M1 (6 reciprocal connections), M2 (5 reciprocal connections), SNR, SNC, CPu, STh and pon-

tine nuclei. Details about reciprocal connections of dMCAO lesioned regions and functional

defined regions are shown in S3 and S4 Tables.

ICH model. The numbers of links between the 22 ICH lesioned regions and non-lesioned

regions are shown in the complete (S2 Fig) partially filtered (S2 Fig) or filtered MCRD (for top

20% important regions) (Fig 10), respectively. The lesioned regions Ce, BL and CPu are sub-

cortical nuclei with a large number of connections to different subcortical and cortical regions,

critically affecting information processing. The number of connections between lesioned

regions and functionally defined regions as well as control regions without a functional defini-

tion are shown in S6 Table. Lesioned regions and with the most abundant connections with

the functional regions are CL (11), B (10), PC (19), MDL (10), VM (10), BLA (9) and CPud

(9). There were more connections found between the lesioned regions and motor regions (6–

15 connections) than with learning regions (6–7 connections) (S5 Table), supporting that ICH

lesion may lead to significant motor impairment. The CA1 region has 6 non-reciprocal and 1

reciprocal connections with the lesioned regions.

sMCAO model. The complete and filtered MCRD representations of the connections

between 57 sMCAO lesioned regions and non-lesioned regions are shown in the S4–S6 Figs

Fig 10. MCRD of 12 from a total of 22 ICH lesioned regions and control connectome regions. The lesioned regions

were sorted with regard to the number of filtered and connected regions. For a more detailed description see Fig 8. The

lesioned regions are in the centers of the MCRDs (green filled circles). The same filter condition as in Fig 8b was

applied: The 20% of regions with highest importance or lowest mean ranks and regions which are connected to at least

6 lesioned regions and 2 observations per connection.

https://doi.org/10.1371/journal.pone.0310743.g010
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and in Fig 11, respectively. The diencephalic lateral hypothalamic nucleus appears to be the

most important region in terms of network architecture followed by the amygdalar regions

BST and Ce and the thalamic zona incerta. The lesioned regions with most connections are

connected to several identical contralateral non-lesioned regions, suggesting that the function

of latter regions is strongly affected by sMCAO (S7 Table).

Five lesioned regions, namely the ventrolateral thalamic nucleus (VL), caudate putamen

(CPu), cingulate cortical area 1 (Cg1), cingulate cortical area 2 (Cg2), perirhinal cortex (A35)

also belong to a functional group. Therefore, these functionally defined regions were removed

from the functional groups of motor and learning processing. The sum of connections of the

set of lesioned regions and motor regions is the greatest for the substantia nigra pars compacta

(42), followed by subthalamic nucleus (31) and substantia nigra reticular part (31). The CA1

region has 48 connections followed by the lateral entorhinal cortex (45). The maxima of con-

nections (input and output connections) of lesioned regions are found for the infralimbic

Fig 11. A filtered MCRD visualization of sMCAO lesioned regions which share most connections and their

relations to control connectome regions. Distance from center region (lesioned region) is the average rank of local

network parameters filtered for the 80% of lowest ranks (largest importance for the network). The lesioned regions

were sorted with regard to the number of filtered and connected regions. Regions without lines indicate connections to

or from the lesioned regions in the center by one of their subregions.

https://doi.org/10.1371/journal.pone.0310743.g011
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cortex (56), the prelimbic cortex (55), CA1 (48), reuniens nucleus (46) and rhomboid thalamic

nucleus (43) among important primary cortical regions (primary visual cortex, orbital corti-

ces) interconnected through more than 20 links with lesioned regions. This pattern of connec-

tions between learning regions and primary cortex areas suggests that specific learning

functions of the visual system (especially secondary visual cortex) and regions controlling

value-based decision making (such as striatum and ventromedial prefrontal cortex) are partic-

ularly affected functionally in sMCAO stroke as shown in the reduced adjacency matrices

(Fig 6).

The number of connections from lesioned regions to motor or learning regions is 248

(33%) or 507 (67%) for sMCAO, compared to 75 (61%) or 48 (39%) in ICH, reflecting the

dominant nature of functional impairment afflicted by each type of injury. Consistent with

this metric, we found that the connectivity pattern between lesioned regions and the regions

processing learning behavior (40) have more frequently larger CMIAll (connectivity matching

index) values (0.3058±0.0864) than those with the motor behavior regions (21) (0.2776

±0.0885). However, the sMCAO model still has a greater impact on overall connectivity loss as

the connections between the lesioned and non-lesioned regions is 35%, compared to 13% for

the ICH model and to 1.13% for the dMCAO model.

Relationship between dMCAO lesioned regions and functionally defined

regions

The similarity of connections between lesioned regions and functionally defined regions

(motor or learning function region) was performed by calculating the connectivity matching

matrix for input and output connections (CMIAll) as described in Methods and Materials. The

FitzHugh-Nagumo (FHN) neuron model was also applied to the connectome data accordingly

[69]. The FHN-coactivation matrix was used in the same way as the CMIAll matrix for the com-

parison of FHN-coactivations and connectivity matchings of pairs of regions. For example,

subparafascicular thalamic nucleus rostral part and PtA have a CMIAll value of 0.222 and a

FHN-coactivation value of 0.172 as shown in the first row of S8 Table, which further demon-

strate the comparison of each pair of a non-lesioned motor or learning region (1 row) and a

lesioned region with regard to 5 parameters (graph distance D for output Distance Dout and

input distance Din, Euclidian distance Dspat, CMIAll, FHN) shown in 5 columns.

To find out which learning regions share a high similarity in connectivity with lesioned

regions, data from S8 Table was first sorted for the functional markers (2: motor, 3: learning),

followed by secondary sorting with respect to the spatial distance between the functional learn-

ing group and the motor group (Dspat) of the PtA_R region, to determine the connection simi-

larity between lesioned and functional regions (S9 Table). The same applies to the similarity of

the activation dynamics if sorted by FHN rank (S10 Table). As a result we found that, the post-

rhinal, perirhinal and cingulate cortex (CG1) displayed the greatest similarities in connectivity

to PtA_R. After sorting the CMIAll values of the lesioned PtA region it turns out that perirhinal

cortex (Peri), CG1 and LEnt have the largest CMIAll values (0.588, 0.482, 0.462). Interestingly,

the LEnt is connected with all lesioned regions, and the most similar input and output connec-

tions when compared with each of the 6 lesioned regions. Not surprisingly, LEnt is the major

source for the trisynaptic circuit through the hippocampal learning system. CG1 has a much

larger coactivation value of 0.32 in the FHN matrix in comparison with Peri and LEnt (maxi-

mal coactivation is 0.533 for the region pair PtA-Subiculum). By sorting the coactivation

matrix values of the coupled FitzHugh-Nagumo neuron simulation of S8 Table, a hippocampal

pattern of coactivations was found among the lesioned regions. S1, PtA, AID and AIV are

strongly co-activated with CA1, S, Par and Pre. DI and GI are strongly co-activated with CA1,
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S, Par and Pre. This is a further indication of considerable involvement through lesioned

regions and their connections with regions functionally embedded in spatial learning pro-

cesses. Following sorting the CMIAll values of the two functional sets (motor behavior, learning

behavior) and dMCAO lesioned regions, highly ranked pairs were found for lesioned regions

and both functional groups with rank number smaller than 50 (out of maximum rank of 242)

(S10 Table). One top ranked pair between the perirhinal cortex and the lesioned PtA indicate

that PtA has the largest connectional similarity (sharing connections with same source and tar-

get regions) with the non-lesioned perirhinal cortex region. A similar trend was also found by

sorting the ranks of the FHN coactivation matrix accordingly (S11 Table), pairs of lesioned

regions and either functional region came up among the top 50 ranked groups. Thus, based on

structural connectome analysis using CMIAll and functional FHN model, dMCAO preferential

affects brain regions crucial for motor and learning functions.

Relationship between ICH lesioned regions and functionally defined

regions

CMIAll and the FHN coactivation matrices were used to identify the functional regions with

extensive connections with the lesioned regions (S2 and S12 Tables). We found that the

lesioned anterior basolateral nucleus shares similar connections with motor region medial

agranular prefrontal cortex per CMIAll rank, and with the laterodorsal thalamic nucleus gener-

alized topology matrix (GTOM) which estimates the normalized counts of the number of m-

step neighbors that a pair of nodes share [65]. Additionally, the laterodorsal thalamic nucleus

showed a large coactivation of the FitzHugh-Nagumo neuron simulation [69] with the

lesioned central amygdaloid nucleus medial division. The connectivity similarity (connectivity

matching) of lesioned regions with functional regions is also high as evidenced by the high

ranks of CMIAll and FHN values, between 1 and 61.

Relationship between sMCAO lesioned regions and functionally defined

regions

The lesioned ectorhinal cortex was identified as the most highly connected lesioned region per

CMIAll ranking with 6 different learning regions, followed by anteromedial thalamic nucleus

(rank 2), the piriform cortex (3) and the cortical amygdaloid nucleus (rank 5). Whereas the lat-

eral globus pallidus (1), the cerebellar nuclei (2), M1 (6) and the zona incerta (9) had rich con-

nections with motor regions.

Likewise, agranular insular cortex (1), the basal nucleus of Meynert (1), the posterior

basomedial nucleus (2), the nucleus of the vertical limb of the diagonal band (2), the primary

somatosensory cortex (2), the dysgranular insular cortex (2) and the secondary somatosensory

cortex (2) were the top lesioned regions highly connected to learning regions based on FHN-

simulation coactivation values.

Apart from CMIAll and FHN coactivation, we found that the mean graph theoretical dis-

tance of lesioned regions to motor or learning functional regions. The mean functional dis-

tance of lesioned regions to motor or learning functional regions to be 7.8/8.2 (Input/Output)

or 13.1/12.9 (Input/Output). This suggests a stronger impact of sMCAO lesion on learning

than motor function.

As a proof of principle approach to confirm the learning impairment caused by sMCAO,

we performed a homogeneous spiking population simulation of the sMCAO control and the

lesioned connectome. For each region, 500 leaky integrate-and-fire (LIF) neurons with 20% of

inhibitory and 80% excitatory neurons were modeled using the NEST simulator [87, 88] in

neuroVIISAS [10] (total of 229116 LIF neurons). The synaptic delay was set to 1 ms, the locus
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coeruleus was stimulated by 10kHz and simulation time was 300 ms. We found that the mean

coefficient of variation of spike intervals (CEisi) increases in CA1, CA3 and DG after sMCAO,

from 0.027, 0.071 and 0.098 in the control connectome to 0.183, 0.282 and 0.287 in the

sMCAO lesioned connectome, respectively. In addition to the hippocampal core areas, regions

that are integrated into the functional circuits of memory and learning like the mammillary

body and the subiculum also increased their CEisi from 0.004 and 0,026 to 0.047 and 0.132,

respectively. This dynamic changes of the sMCAO lesioned network is consistent with the

hypoactivation as marked by reduced Fos immunoreactivity in lesioned animals comparison

to sham operated animals during functional activation (Fig 5).

In conclusion, the simulation revealed an increase of interspike variability of learning and

motor behavior regions. Similar effects have been described in lesion studies and neurophysio-

logical measurements of interspike intervals [113–116].

Similarity of functionally defined regions with lesioned regions in each

model

By determining the similarity of connections, coactivation or cross-correlation patterns

between the lesioned regions and functional groups or non-lesioned regions, we assessed the

associations between lesioned regions and functions. The similarity between lesioned and

functional regions was computed for the structural feature CMIAll values of the connectomes

and for the dynamic feature of mean coactivations between lesioned and the functional groups.

The CMI of input and output connections of a pair of regions were first compared against

CMIAll values of all pairs of regions, and the significance determined by the Student’s T-test.

Since each group is composed of several regions, the mean CMIAll values of a lesioned region

were calculated with all regions of a functional group and the results were show in S13 Table.

The FHN dynamics has been performed by applying 500 iterations with a step size of 1.0

using weighted connections, generating cross-correlation matrix used for the multiple subset

statistics in neuroVIISAS. Consistent with the CMIAll similarity values, FHN model model also

revealed a greater similarity between learning regions and lesioned regions of dMCAO and

sMCAO than between the motor regions and the lesioned counterparts. To the contrary, the

ICH lesioned regions showed a greater similarity to motor regions for both CMIAll values and

the FHN model. The similarity analysis affirmed a stronger impact of dMCAO and sMCAO

lesion on learning function, contrary to the stronger impact of ICH on motor function.

Comparison dMCAO and ICH

In contrast to the apparent discrepancy in lesion size, the extent of functional impairment

between the dMCAO and ICH models are comparable. We thus compared the relative loss of

neuronal connections due to gray matter destruction between the dMCAO and ICH groups.

This was done with respect to the relative loss of connections of the functionally defined

regions in the control connectome after removal of the lesioned regions. The relative loss of

neuronal connections of motor regions averaged 5.63% and cognitive regions 5.6% for

dMCAO, compared to 33.9% and 10.97% for ICH. With respect to the loss of reciprocal con-

nections, 4.18%/4.3% for dMCAO relative to 35.35%/11.19% for ICH for the motor/learning

systems. Based on these analyses, the ICH model suffers from a bigger relative loss of connec-

tivity between lesioned and functional regions compared to the dMCAO model, likely to

account for the severe functional impairment relative to its lesion size. This clearly indicates

that ICH has a greater impact on motor than learning function compared to the dMCAO

stroke, which is supported by the behavioral data.
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Dynamical modeling of CA1 and DG comparing control and lesioned

connectomes predicts hippocampal functional impairment

Stroke by dMCAO led to impairment of hippocampus-dependent function and brain oscilla-

tions [117], we first determined whether dMCAO-induced structural network lesion has

dynamic effects on spike propagation in remote brain regions like the CA1 or DG in a directed

weighted bilateral connectome of a simple network consisting of a total of 40 regions as shown

in the matrix (Fig 12) following the removal of 6 lesioned regions in the ipsilateral hemi-

shphere using 3 dynamic models; namely the coupled FHN model (membrane potentials), the

Wilson-Cowan neural mass model (inhibitory and excitatory interacting populations) and the

Mimura-Murray reaction-diffusion model. The overall amplitude level of the propagation

waves of CA1 region is consistently smaller than that of the DG region in both the control and

lesion connectome detected in the FHN model, while a slight increase of membrane potential

was detected from 30 in control- to 36 in lesioned connectome, resulting in an increased peri-

odicity in spike propagation waves in both CA1 and DG compared to control (Fig 12). In addi-

tion to the change in the frequency of CA1 and DG waves, a slight phase shift of the CA1

region after about 20 iterations in the control connectome was noticeable, in contrast to the

nearly synchronous waves in two regions in the lesioned connectome.

The Wilson-Cowan neural mass model reflects connectome activity as spindle shaped oscil-

lations with variable amplitudes. The lesioned connectome oscillations showed a larger vari-

ability but with smaller overall amplitudes in the CA1 region compared to control

connectome. In the DG, compared to the alternating large and small amplitude spindle clus-

ters in the control connectome, the small amplitude-spindles seemed to diminish in the

lesioned connectome.

In the Mimura-Murray reaction-diffusion model the control connectome CA1 showed

clusters of large amplitude spikes in greater periodicity compared to those in lesioned connec-

tome. In contrast, the lesioned connectome showed less pronounced clustering with a blend of

random large and small amplitude spikes in CA1 and DG regions.

In general, the CA1 clusters lasted longer and had larger amplitudes compared to those of

the DG region. The general dynamical tendency of the spikes of the Mimura-Murray model in

the DG region seems to resemble the distinct patterns of spindles in the Wilson-Cowan model,

providing converging evidence that connectivity changes after dMCAO may have altered the

spike propagation in the hippocampus.

Since the Mimura-Murray reactions-diffusion model showed the greatest extent of differ-

ences in dynamic signal propagation in CA1 and DG between control and lesioned connec-

tome, this model was selected to compare the three lesion models with identical model

parameters (Fig 13). The locus coeruleus with its very extensive cortical connections was cho-

sen as the region from which the initial signal excitation originates.

For the simulation, the same parameters were used for the control, dMCAO, ICH, and

sMCAO connectome, respectively: A: 13.0, B: 16.0, C: 9.0, D: 0.4, dP: 0.1, dQ: 0.01, minX: 6.0,

maxX: 6.0, minY: 12.0, maxY: 12.0 timeStep: 1.0, timeSteps: 1000 and the DoPri45 ODE solver.

The global dynamic behavior of the non-lesioned and lesioned connectome can be character-

ized by the average activation, average coactivation and Kuramoto index, among which the lat-

ter two measures also provide estimates of the extent of signal coherence and signal similarity,

respectively. The Kuramoto index, also known as the Kuramoto order parameter, calculates

the synchronicity of the CA1 and DG function curves [118, 119]. In the control connectome,

the Kuramoto index curve displayed alternating phases of high and low synchronicity between

DG and CA1, indicating a periodic pattern of coherence between the two regions. Both the

CA1 and DG signals also exhibit alternating phases of large and low amplitude spindles, in
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which the high amplitude clusters have a duration of about 60–80 iterations and usually corre-

spond to the high Kuramoto index values.

dMCAO lesion appeared to disrupt the synchronicity between two regions as reflected by

the irregular pattern of Kuramoto index curve. Although the alternating phases of large and

Fig 12. Dynamics of FHN, Wilson-Cowan and Mimura-Murray models in control and lesioned connectomes. The

dynamics of the hippocampal CA1 and DG regions which are not directly concerned in the dMCAO models are

shown. The coherence of diffused concentrations are shown for the Mimura-Murray reaction-diffusion model.

Parameters of the models are shown on the right of the diagrams. They were hold constant for the control, resp., lesion

models.

https://doi.org/10.1371/journal.pone.0310743.g012
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low amplitude spindles were largely preserved in the CA1 and DG signals, the maximal ampli-

tude has increased in the CA1 spindles. In addition, there were both a decrease in the coher-

ence measures average coactivation and Kuramoto index and a general decrease in overall

connectome activity, consistent with the cognitive impairment detected in the dMCAO

model. Compared to dMCAO, the ICH simulation showed a more synchronized connectome

activity between CA1 and DG based on Kuramoto index curve, despite shorter but more fre-

quent synchronous phases relative to those of control connectome. Large amplitude clusters of

spindles in both CA1 and DG are also more frequent but shorter with increased maximal

amplitude compared to control connectome. The maximal amplitude of CA1 spindles were

Fig 13. Mimura-Murray simulation of control and lesioned connectomes. The black curve depicts the Kuramoto index. Light red curve corresponds

to CA1 and the dark red curve to DG.

https://doi.org/10.1371/journal.pone.0310743.g013
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also larger than that of the control. The Kuramoto index curve of sMCAO completely lacked

alternating phases of high and low synchronicity as in the control or ICH connectome simula-

tions. Also, the local maxima and minima of the Kuramoto index curve are significantly lower

than in the ICH or control connectome case. The typical high-amplitude intercept and low-

amplitude gap pattern is no longer evident for the CA1 and DG regions (Fig 13). The decrease

in signal coherence both for the Kuramoto index and average coactivation as well as the mean

connectome activity were somewhat more pronounced in the ICH model relative to dMCAO

model, yet most severe in the sMCAO model. Overall, the results of the CA1 and DG in 3

stroke models using the Mimura-Murray dynamic simulation are consistent with the extent of

functional impairment displayed for the Barnes maze learning and spatial exploration.

Discussion

General aspects

Stroke is known to change brain activity [120], structure [121] and induce reorganization

[122], yet how stroke affects functional activation at the level of neuronal networks is not well

understood [2]. We compared the degree of functional impairment and mapped the changes

of connectivity patterns among three commonly used experimental stroke models, namely the

sMCAO, dMCAO and ICH models with progressively smaller lesion sizes but with distinct

lesion locations [1, 12, 23, 36–38]. The sMCAO model consistently exhibited the biggest lesion

size and most severe functional impairment with the greatest number of lesioned regions dis-

tributed in both the cortical and subcortical regions, resulting in the greatest change in struc-

tural and functional connectivity. Interestingly, despite a 3.5-fold smaller lesion size in the

ICH model relative to dMCAO model, the former displayed a comparable if not greater degree

of functional impairment compared to the latter, albeit with higher number of lesioned regions

exclusively in the subcortical locations. This is consistent with the fact that subcortical regions

are generally ranked with greater importance than cortical regions according to the analysis

based on local network parameters. Further, all three models produced impaired function

involving regions remote from ischemic injury, highlighting the contributory role of connec-

tivity loss in functional impairment. Connectome analysis also revealed that brain regions cor-

responding to learning and motor behavior exhibit structural connection changes and altered

dynamics during functional simulation following the removal of regions and their connections

in the investigated connectomes. The lesioned regions seem to have a greater structural con-

nection and dynamic relationship with the functional groups compared to intact regions.

Most importantly, via the connectome informatics, we have identified key brain regions

affected by the lesions of each injury model, providing complementary information in predict-

ing how function might be affected in each type of stroke.

Global connectomics

Both global and local network parameters [64] were used to analyze structural connectivity

changes. Following differential connectome analysis with 6 chosen global network parame-

ters, the number of reciprocal connections was found to be increasingly reduced in the order

of dMCAO, ICH and sMCAO models, in which a massive decrease of 59.8% of reciprocal

connections was detected in the lesioned sMCAO connectome. In contrast, the small-world-

ness [123] was progressively increased among the 3 stroke models, with the biggest increase

for the sMCAO by 34.7%. Although there are only 1.03 more connections loss in the ICH

model than in the dMCAO model, the mean path length of the former has increased by 5.3

times, hence the accessibility of the regions to each other become much reduced. Similarly,

lesioned regions in sMCAO quadrupled when compared to those in ICH, but the reduction
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of the cluster coefficient was about 27 times. Thus, there is no linear relationship between the

number of lesioned regions and the global parameters determined here, which could be

attributed to damage of specific connections with particularly important topological network

properties.

Local connectomics

To identify these structurally important regions, average rank of each region was determined

in the 3 non-lesioned and lesioned connectomes using an array of 50 different local network

parameters including centrality measures, Shapley index and the Katz index [3], means of

coactivations of regions derived from dynamic models. We found that in general subcortical

regions ranked higher (with low rank number) in importance than cortical regions. In the case

of non-lesioned dMCAO connectome, subcortical nuclei including diencephalic nuclei, angu-

lar thalamic nucleus, the submedius thalamic nucleus and the ventral posterior thalamic

nucleus were deemed most important with regard to network architecture and formed intense

connections with the cortical regions. In the sMCAO control connectome the regions M2, M1,

IL and posterior hypothalamic nucleus ranked the highest, in parallel with median raphe

nucleus, IL, posterior hypothalamic nucleus, prelimbic cortex and the medial septal nucleus in

the sMCAO lesioned connectome. The shared top ranked regions of IL and posterior hypotha-

lamic nucleus between the control and lesioned connectome reflects the existence of stability

for important regions of brain networks.

To further identify regions most affected by each model of stroke, MDCR diagrams were

first filtered with at least 4 connections between the non-lesioned regions and two different

lesioned regions to reflect a strong multiple lesion effect, followed by ranking for importance

in network architecture. We found that the lesioned regions in the dMCAO model had stron-

ger and reciprocal connections with other cortical regions compared to subcortical or dience-

phalic nuclei, projecting a stronger dysfunction at the cortical level. In contrast, in the ICH

model more regions with strong connectivity to lesioned regions are located within subcortical

and diencephalic regions rather than within the cortex. Unlike in the dMCAO model, the

lesioned regions that are strongly interconnected in the ICH model are distributed much more

diffusively in brainstem, mesencephalic, diencephalic and subcortical as well as cortical

regions, yet the densest connections of lesioned areas in the ICH model and non-lesioned

areas lie in the lateral hypothalamus, medial agranular prefrontal cortex, prelimbic cortex and

infralimbic cortex. Similar to the ICH model, lesioned regions of sMCAO with the densest

connections such as the LH, BST, Ce and ZI also belong to subcortical nuclei and

diencephalon.

To fine tune how function of regions or neuronal ensembles are affected by stroke, an

approach similar to a more precise micro-mapping of functional topography as proposed

recently by [124] were applied to the regions of interest in this study. By interactive filtering

and visualization in MCRD diagrams there revealed numerous connections of lesioned regions

with the two sets of functionally defined regions for motor or spatial learning behavior. By ana-

lyzing ranks of similarities of CMIAll, GTOM and FHN coactivation matrices, one can predict

how function is affected in each model [88, 125–129]. One caveat of our study is that we have

only performed the connectome analysis assuming a complete destruction of the identified

lesioned regions. However, there could be various extent of survived neurons particularly in

larger anatomical regions. Another limitation is that the neuroVIISAS connectome is restricted

to information in the grey matter. Future fine tuning is warranted taking into consideration of

the extent of neuronal loss within each region and white matter connectivity.
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Functional connectomics

It appears that the ICH lesion has a more distributed lesional effect to many different dience-

phalic and subcortical relay regions with key functions of signal transmission to higher level

cortical regions. For example, most connections were detected for the ICH lesioned amygdalar

region CeM with control regions [49]. Another lesion region VPL with many connections to

the control regions lies in is an important relay nucleus in the thalamus for peripheral sensory

signal transmission. It suggests that these polyfunctional areas with their subareas may induce

multiple fine granular behavioral changes due to the known regulatory microcircuits as well as

massive subregional, regional and supraregional intrinsic connectivity, which were not cap-

tured by the type of behavioral tests performed here. Interestingly, based on the connection

similarity comparison approach with CMIAll values, ICH lesions demonstrated a greater simi-

larity with the motor than with learning regions.

In contrast, the mean CMIAll values of dMCAO lesioned regions are larger for the set of

learning regions than for the set of motor regions. A comparable result was obtained by ana-

lyzing the coactivation pattern of a FHN simulation [130–135]. Thus, it can be predicted that a

dMCAO lesion is very likely to lead to learning disorders per lesion-to-functionally defined

region relationship. From the perspective of connectomics, the dMCAO lesion has stronger

remote effects on the learning system rather than on the motor system. In support of the effect

of dMCAO on remote region involved in learning function, we have detected reduced hippo-

campal activation following exploration of a novel environment in CA1, CA3 and DG, indicat-

ing changes in spatial memory processing [1, 12].

In the sMCAO model, the lesions are so extensive that even regions assigned to specific

functional motor and learning groups of the control connectome were destroyed. Thus, pro-

nounced impairment in both motor and learning function can be predicted. A large number

of connections between lesioned regions and motor regions was found in the sMCAO model

for the subcortical nuclei SNC, STh and SNR, suggesting that these core regions of the basal

ganglia seem to be particularly affected by the sMCAO stroke. Yet there are almost twice as

many connections between sMCAO lesioned regions and the learning regions are compared

to those between lesioned regions and the motor regions, with particularly dense connections

to CA1 and LEnt and the thalamic nuclei. Thus, from the perspective of connection structure,

the sMCAO lesion seems to also affect the learning regions more than the motor regions. In

conclusion, the three models of stroke investigated led to varying lesion sizes that do not corre-

late with the extent of functional impairment assessed by behavioral tests.

Connectome dynamics

Apart from changes in the structural network parameters, we detected changes in the signal

dynamics in the CA1 and DG regions when the nonlinear Mimura-Murray reaction diffusion

model [84] was applied to the control and lesioned connectomes from a well-defined source

region [79] or modeled neuron population [136]. Unlike the control connectome that showed

a relatively stable periodicity of alternating high and low-amplitude oscillations, incrementally

reduced periodicity was found in the lesioned connectome of ICH and dMCAO showed, or a

complete lack of periodicity in sMCAO, correlating with the extent of damage among the 3

injury models. However, although ICH had the least reduction in synchronicity between CA1

and DG, the number of synchronous phases for both functional curves of CA1 and DG

increased compared with the control connectome. The relationship between the oscillatory

changes in the dynamic network model applied here and real-life neurophysiology remains

unclear to us at the moment, further investigation is warranted to better understand the cau-

sality between network change and oscillatory changes in different models. For this purpose,
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future investigation of time-dependent relationships in the synchronization behavior of all

regions of a connectome using Granger causality analysis [17, 137–140] may provide a deeper

understanding.

Relationships to clinical stroke research

The findings from applied stroke models in rats provide several insights that could be lever-

aged to develop more targeted and effective therapies for stroke patients. The ICH model, with

smaller lesions, still resulted in severe motor deficits, suggesting that even small lesions in criti-

cal areas can lead to significant impairment. This indicates a need for precise therapeutic inter-

ventions that target specific brain regions rather than focusing solely on the extent of the

lesion. Motor function rehabilitation could be specifically tailored based on the type of stroke,

as well as the location and functional territory. For sMCAO-induced strokes in animal models,

intensive motor experimental “rehabilitation” might be necessary. In contrast, for ICH-

induced strokes, experimental therapies might focus more on fine motor skills and coordina-

tion. Cognitive rehabilitation programs should also be customized. Given that sMCAO leads

to significant spatial learning deficits, cognitive therapies might need to focus on spatial mem-

ory and navigation skills.

Connectivity and network-based therapies could aim to restore or compensate for these

connectivity losses. Techniques such as transcranial magnetic stimulation (TMS) or transcra-

nial direct current stimulation (tDCS) could be used to enhance connectivity in affected net-

works, potentially improving outcomes in motor and cognitive functions. Considering the

findings on reduced connectivity and network efficiency, therapies could focus on promoting

neuroplasticity. This could include pharmacological agents that enhance synaptic plasticity,

combined with cognitive and physical exercises that stimulate brain reorganization and repair.

The study shows that all ischemic groups exhibited reduced Fos-immunoreactivity, indicat-

ing decreased neuronal activity in critical brain regions like the hippocampus. Treatments

could include agents that boost neuronal activity and synaptic function, such as neurotrophic

factors (e.g., BDNF), or drugs that modulate neurotransmitter systems involved in learning

and memory (e.g., cholinergic agents).

The differential effects on motor and cognitive functions across the stroke models suggest

that a one-size-fits-all approach to stroke therapy is suboptimal. Personalized medicine

approaches could be developed where the type of stroke, lesion characteristics, and specific

functional impairments guide the therapeutic strategy.

The use of connectivity and network parameters could be integrated into predictive models

that help determine the likely outcomes of different therapeutic interventions. Integrating con-

nectomics data with clinical, demographic, and genetic information can be used to develop

individualized treatment plans that maximize the chances of recovery and minimize disability.

These models would allow treatments to be tailored to the individual patient, thus optimizing

the chances of recovery. Advanced imaging techniques, such as functional MRI (fMRI) and

diffusion tensor imaging (DTI), might be used to monitor changes in brain connectivity and

function during and after treatment. This would allow for real-time adjustments to therapy,

ensuring that interventions are having the desired effect. The molecular and connectivity

changes identified in the study could serve as biomarkers for assessing the severity of stroke

and the efficacy of treatments. For instance, levels of Fos-immunoreactivity or changes in spe-

cific connectivity parameters could be measured before and after experimental therapeutic

interventions to gauge their impact.
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If motor-oriented therapy is indicated due to the pattern of damage, techniques such as

constraint-induced movement therapy (CIMT), robot-assisted therapy and virtual reality (VR)

training can be adapted based on connectivity patterns to improve specific neural circuits.

For severe cases, where non-invasive methods may not be sufficient, understanding the

connectivity changes can guide the placement of electrodes for deep brain stimulation (DBS).

Targeting specific brain regions and networks that are critically impaired can potentially

restore lost functions.

Many dynamic models used in neuroimaging studies simplify neural dynamics. They often

assume linear or stationary interactions between brain regions. For instance, models based on

linear systems theory or autoregressive models may not fully capture the complex, nonlinear

dynamics of brain networks. This simplification can lead to an oversimplification of the actual

neural processes occurring post-stroke. Real neural networks exhibit nonlinear behaviors and

non-stationary dynamics, especially in response to pathological conditions like stroke. There-

fore, models that assume linearity may miss critical aspects of how connectivity dynamics

change over time, limiting the accuracy of predictions about functional outcomes.

Some dynamic models may rely on static connectivity matrices derived from resting-state

or task-based fMRI data as the basis for dynamic simulations. These matrices assume that con-

nectivity patterns remain constant over the simulation period. Following stroke, connectivity

patterns can change dynamically as a result of neural reorganization, compensatory mecha-

nisms, and recovery processes. Using static connectivity matrices may overlook these dynamic

changes, potentially leading to inaccuracies in predicting post-stroke outcomes. Dynamic

changes in connectivity, such as adaptive plasticity or maladaptive reorganization, are crucial

for understanding recovery trajectories but may not be fully captured by static models.

Dynamic models often assume homogeneous model parameters across brain regions or

individuals. Parameters such as time constants, coupling strengths, and noise levels are typi-

cally averaged or assumed to be uniform. We derived the dynamic simulation of spike propa-

gation by assuming a uniform ratio of excitatory and inhibitory neurons for all brain regions

in the connectome. A further refinement of the percentages of excitatory versus inhibitory

neurons in each brain region in the connectome may improve the precision of the dynamic

modeling of spike propagation in the hippocampus regions. In reality, brain regions and indi-

viduals exhibit considerable variability in these parameters. Stroke can further exacerbate this

variability due to lesion location, size, and individual differences in neural resilience. Homoge-

neous parameter assumptions may oversimplify the heterogeneity in stroke-related changes in

connectivity, potentially masking critical differences that influence functional outcomes across

patients.

Dynamic models may not adequately incorporate biological variability, such as genetic fac-

tors, age-related changes, or comorbidities, which can significantly influence brain connectiv-

ity and recovery processes post-stroke. Stroke outcomes are highly variable among patients

due to these biological factors. Models that do not account for such variability may provide

generalized predictions that do not apply uniformly across diverse patient populations. This

limitation can hinder the clinical applicability of model-based predictions for personalized

treatment planning.

Due to the fundamentally different neuroanatomy of the rat and human brain, there are

substantial limitations when comparing and relating the findings obtained here to the human

brain. Rat brains are much smaller and less complex compared to human brains. They lack

gyri and sulci found in human brains, which are important for increased cortical surface area

and higher-order cognitive functions. Moreover, the organization and connectivity patterns of

rat cortical regions differ from those in humans. Rats have simpler and less specialized cortical

areas compared to humans, particularly in areas related to language, higher cognition, and
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complex sensorimotor integration. Furthermore, behavioral and cognitive functions in rats

are more limited and differ substantially from humans. Rats exhibit basic sensorimotor skills

but lack the sophisticated cognitive abilities and behavioral complexities seen in humans.

Behavioral assessments in rat stroke models may not capture the full spectrum of deficits and

recovery mechanisms relevant to human stroke patients. Human stroke outcomes often mani-

fest in complex cognitive impairments, emotional changes, and diverse functional deficits that

cannot be fully replicated in rodent models. Stroke-induced changes in connectivity and func-

tional reorganization observed in rat models may not accurately reflect the complex network

adaptations seen in humans. The consequences of stroke in humans often involve complicated

interactions between different cortical and subcortical areas that are not fully reflected in rat

models. Stroke in humans often affects specific cortical areas that are more developed and

functionally specialized compared to rats. Thus, the anatomical differences limit the direct

extrapolation of stroke mechanisms and recovery processes observed in rats to humans.

Vascular anatomy and stroke pathophysiology differ between rats and humans. The size,

distribution, and structure of blood vessels vary significantly, influencing stroke mechanisms,

severity, and outcomes. Stroke induction methods in rats (e.g., middle cerebral artery occlu-

sion) do not precisely mimic the diverse etiologies and pathophysiological mechanisms

observed in human stroke. This discrepancy limits the translational relevance of therapeutic

interventions tested in rodent models to human clinical settings.

Using connectomics, our study provides insight into the effects of lesion location and con-

nectivity loss on connectome architecture with respect to motor and learning systems. Our

proof of principle study based on structural and functional connectomics approach offers a

viable platform in predicting stroke induced functional impairment and identifying remote

brain regions along the connection pathways crucial for motor and learning functions.

Conclusion

The conclusions resulting from the experiments and their analyses in this study are summa-

rized in two textboxes. The first textbox lists the findings of the behavioral, neuroanatomical

and structural network analysis. The second text box summarizes the findings on the dynamic

changes.

Summary of stroke induced structural changes

1. Larger infarct volumes contribute more to functional deficits than smaller or more

localized cortical lesions and have significant impacts on global network

parameters.

2. Ipsilateral lesioned regions show high intrahemispheric connectivity and only

modest connections with their intact contralateral homotopic counterparts. Stroke

significantly disrupts the intrinsic connectivity of the lesioned regions, while hav-

ing a less pronounced effect on their contralateral extrinsic connections.

3. The importance of specific brain regions in terms of connectivity changes signifi-

cantly after stroke, and this change varies depending on the stroke model.

(a) dMCAO: Regions like the angular thalamic nucleus, secondary visual cortex,

submedius thalamic nucleus, and ventral posterior thalamic nucleus gained
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much greater connectional importance in the lesioned connectome compared

to the control connectome.

(b) ICH: While regions like the medial agranular prefrontal cortex and infralimbic

cortex were most important in the control connectome, the posterior hypotha-

lamic nucleus, median raphe nucleus, and ventral pallidum became most con-

sequential in the lesioned connectome.

(c) sMCAO: The median raphe nucleus, infralimbic cortex, posterior hypotha-

lamic nucleus, prelimbic cortex, and medial septal nucleus became the most

important in the lesioned connectome, compared to different regions in the

control connectome.

4. Key connector regions that play crucial roles in connecting lesioned and non-

lesioned areas, particularly in the ICH model are: the lateral hypothalamic area,

medial agranular prefrontal cortex, prelimbic cortex, infralimbic cortex.

5. Specific lesioned regions in the ICH model have a large number of connections

tocentral nucleus of amygdala, basolateral amygdaloid nucleus, caudate putamen

6. Additionally, other lesioned regions with abundant connections to functional

regions were identified, including CL, B, PC, MDL, VM, BLA, and CPud.

7. Difference in the connectivity between lesioned regions and different functional

areas:

(a) Motor regions: Lesioned regions had more abundant connections with motor-

related areas (6–15 connections).

(b) Learning regions: Fewer connections were found between lesioned regions

and learning-related areas (6–7 connections).

8. The sMCAO model has a more pronounced effect on learning-related functions

compared to motor functions. This is further supported by the higher CMI values

for connections between lesioned regions and learning behavior regions

(0.3058 ± 0.0864) compared to motor behavior regions (0.2776 ± 0.0885).

9. The sMCAO model has the most severe impact on overall brain connectivity

among the three stroke models studied: sMCAO: 35%, ICH: 13%, dMCAO: 1.13%

loss of connections.

10. The study identified specific non-lesioned regions that share high connectivity

similarities with lesioned regions

(a) The postrhinal, perirhinal, and cingulate cortex showed the greatest similarities

in connectivity to the lesioned posterior parietal association cortex.

(b) The lateral entorhinal cortex was found to be connected with all lesioned

regions and showed the most similar input and output connections when

compared with each of the 6 dMCAO lesioned regions.

(c) The perirhinal cortex, CG1, and LEnt had the largest CMIAll values with the

lesioned PtA region.
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11. Specific functional regions that share high connectivity similarities with lesioned

regions in the ICH model were identified.

(a) The lesioned anterior basolateral nucleus showed similar connections with the

motor region medial agranular prefrontal cortex, as indicated by the CMIAll

rank.

(b) The laterodorsal thalamic nucleus shared similar connections with the lesioned

anterior basolateral nucleus, as indicated by the generalized topology matrix

analysis.

Summary of stroke induced dynamic network changes

1. Strong functional connections were identified between lesioned and non-lesioned

regions through both structural and simulated functional analyses

(a) The laterodorsal thalamic nucleus showed large coactivation with the lesioned

central amygdaloid nucleus medial division in the FitzHugh-Nagumo neuron

simulation.

(b) High connectivity similarity between lesioned regions and functional regions

was observed, as evidenced by high ranks (between 1 and 61) in both CMIAll

and FHN values.

2. The sMCAO model has a more pronounced effect on learning-related regions

compared to motor-related regions

(a) Several lesioned regions, including the ectorhinal cortex, anteromedial tha-

lamic nucleus, and piriform cortex, showed high connectivity with learning

regions based on CMIAll ranking.

(b) The mean graph theoretical distance between lesioned and functional regions

was shorter for learning compared to motor regions.

3. The spiking neural network simulation confirmed the learning impairment caused

by sMCAO:

4. The simulation revealed an increase in the coefficient of variation of spike intervals

in key learning-related brain areas after sMCAO indicating local disturbance

5. Dynamic changes in the sMCAO network are consistent with the hypoactivation

observed in lesioned animals through reduced Fos immunoreactivity.

6. Structural CMIAll and dynamic (FHN) analyses revealed greater similarity between

lesioned and learning-related compared to motor-related regions. In contrast,

ICH has a stronger impact on motor compared to learning functions.
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Supporting information

S1 Fig. The directed and weighted ipsilateral adjacency matrix with 6 lesioned region of

the dMCAO model (green). Cortical non-lesioned (red half-tones) and lesioned regions

(arrow, green) are located in the upper right, resp., lower left part of the matrix.

(PNG)

S2 Fig. A complete MCRD visualization of ICH lesioned regions and their relations to con-

trol connectome regions. Distance from center region (lesioned region) is the average rank of

local network parameters filtered for the 25% of lowest ranks (largest importance for the net-

work). The lesioned regions were sorted with regard to the number of filtered and connected

regions. All other lesioned regions have to large average ranks or too few connections and they

are not displayed.

(PNG)

S3 Fig. A filtered MCRD visualization of ICH lesioned regions and their relations to con-

trol connectome regions. Distance from center region (lesioned region) is the average rank of

local network parameters filtered for the 80% of lowest ranks (largest importance for the net-

work). The lesioned regions were sorted with regard to the number of filtered and connected

regions.

(PNG)

S4 Fig. Part 1 of the sorted MCRD diagrams of the sMCAO model. Filtering conditions are

the same as described in Fig 11.

(PNG)

7. The extent of functional impairment is not solely determined by the size of the

lesion. The ICH model, despite potentially having a smaller lesion size, causes

more severe disruption to brain connectivity.

8. Dynamic changes were observed

(a) dMCAO model: Disrupted synchronicity between CA1 and DG, increased

maximal amplitude in CA1 spindles, and decreased overall connectome activ-

ity and coherence.

(b) ICH model: More frequent but shorter synchronous phases between CA1 and

DG, increased frequency and amplitude of spindles in both regions.

(c) sMCAO model: Complete loss of alternating phases of synchronicity, signifi-

cantly lower Kuramoto index, and loss of typical high-amplitude intercept and

low-amplitude gap pattern in CA1 and DG.

9. The simulated changes in hippocampal dynamics correlated with the extent of

functional impairment observed in behavioral tests:

(a) The decrease in signal coherence (measured by Kuramoto index and average

coactivation) and mean connectome activity was most pronounced in the

sMCAO model, followed by ICH, and then dMCAO.
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S5 Fig. Part 2 of the sorted MCRD diagrams of the sMCAO model. Filtering conditions are

the same as described in Fig 11.

(PNG)

S6 Fig. Part 3 of the sorted MCRD diagrams of the sMCAO model. Filtering conditions are

the same as described in Fig 11.

(PNG)

S1 Table. List of abbreviations.

(PDF)

S2 Table. Sorted sum of connections of non-lesioned and lesioned ICH regions. The col-

umn “Region” contains non-lesioned regions and the column “Max” the number of connec-

tions of non-lesioned regions with lesioned regions. The regions with functional markers (F)

are motor (M) or learning regions (L). E.g., the medial agranular prefrontal cortex is a motor

region (M) and has 15 connections with ICH lesioned regions. In the last column of non-

lesioned regions which have only 1 connection with ICH lesioned region no functional assign-

ments are available. Anterodorsal thalamic nucleus rostral part (L), anteroventral thalamic

nucleus ventral part (L), field CA2 of hippocampus (L), presubiculum (L), cerebellar cortex

(M), cerebellar nuclei (M) and pontine nuclei (M) are non-lesioned regions with functional

assignments, however, without connections from or to ICH lesioned regions.

(PDF)

S3 Table. Connections of dMCAO lesioned regions to motor and learning regions. The

relation of functional groups (Marker: motor behavior (2), learning behavior (3)) to 6 lesioned

regions in the dMCAO model. Regions were sorted by their sum of connections and reciprocal

connections. E.g. the lateral enthorinal cortex has 6 connections to all lesioned regions and all

of these 6 connections are reciprocal.

(PDF)

S4 Table. Overview of all connections of dMCAO lesioned regions. Connections of

dMCAO lesioned regions, functionally defined regions and control regions without functional

definitions.

(PDF)

S5 Table. Overview of all connections of ICH lesioned regions. Connections of ICH lesioned

regions, functionally defined regions and control regions without functional definitions.

(PDF)

S6 Table. Identification of ICH lesioned regions strongly connected with functionally

defined regions. This table (subset stats table) allows comparison of several parameters and

matrices like the connectivity matching matrix (CMIAll), GTOM and FHN of the lesioned

regions (2nd, 8th, 16th . . . column) of the ICH connectome with non lesioned regions (first

colum, all rows). The lower table displays a clipping of the lesioned regions basal nucleus Mey-

nert (B_R) and anteroventral thalamic nucleus (AV_R). The non lesioned regions were sorted

by the CMIAll parameter: The lateral enthorinal cortex has the largest CMIAll value (from all

non lesioned regions) with the basal nucleus Meynert.

(PDF)

S7 Table. Overview of all connections of sMCAO lesioned regions. Connections of sMCAO

lesioned regions, functionally defined regions and control regions without functional definitions.

(PDF)
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region. FHN are pairwise coactivations of a functional region and a lesioned region. The

regions were sorted by their functional groups (marker column).
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S9 Table. Ranks of lesioned regions of the ICH experiment and the motor (Marker: 2) as

well learning behavior (Marker: 3) groups. Sorting was performed for the coactivation matrix

of a FHN simulation.
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S10 Table. Ranks of lesioned regions of the dMCAO experiment and the motor (Marker:

2) as well learning behavior (Marker: 3) groups. The articles which provides evidence for at

least one of these functions are quoted in the column References. Sorting was performed for

CMIAll ranks. Marker 0 indicates regions of the control connectome. Those with large ranks

were shown, only. The average rank column displays the average rank values of the local

parameter computation.

(PDF)

S11 Table. Ranks of lesioned regions of the dMCAO experiment and the motor (Marker:

2) as well learning behavior (Marker: 3) groups. Sorting was performed for the FHN rank

computed with the coactivation matrix of a FHN simulation. The average rank column dis-

plays the average rank values of the local parameter computation.

(PDF)

S12 Table. Ranks of lesioned regions of the ICH experiment and the motor (Marker: 2) as

well learning behavior (Marker: 3) groups. Sorting was performed for the CMIAll rank.

(PDF)

S13 Table. Similarities of lesioned regions with regard to motor regions or learning regions

or non-lesioned regions. Larger similarity values indicate a stronger similarity. The maximum

values for each experimental group and method were highlighted.

(PDF)
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