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Using Neural Networks to Extend Cropped Medical Images for 
Deformable Registration Among Images with Differing Scan 
Extents

Elizabeth M. McKenzie, M.S., Nuo Tong, Dan Ruan, Ph.D., Minsong Cao, Ph.D., Robert K. 
Chin, M.D. Ph.D., Ke Sheng, Ph.D.
Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA 90024 USA

Abstract

Purpose: Missing or discrepant imaging volumes is a common challenge in deformable image 

registration (DIR). To minimize the adverse impact, we train a neural network to synthesize 

cropped portions of head and neck CT’s and then test its use in DIR.

Methods: Using a training dataset of 409 head and neck CT’s, we trained a generative 

adversarial network to take in a cropped 3D image and output an image with synthesized anatomy 

in the cropped region. The network used a 3D U-Net generator along with VGG deep feature 

losses. To test our technique, for each of the 53 test volumes, we used Elastix to deformably 

register combinations of a randomly cropped, full, and synthetically full volume to a single 

cropped, full, and synthetically full target volume. We additionally tested our method’s robustness 

to crop extent by progressively increasing the amount of cropping, synthesizing the missing 

anatomy using our network, then performing the same registration combinations. Registration 

performance was measured using 95% Hausdorff distance across 16 contours.

Results: We successfully trained a network to synthesize missing anatomy in superiorly and 

inferiorly cropped images. The network can estimate large regions in an incomplete image, far 

from the cropping boundary. Registration using our estimated full images was not significantly 

different from registration using the original full images. The average contour matching error for 

full image registration was 9.9mm, while our method was 11.6mm, 12.1mm, and 13.6mm for 

synthesized-to-full, full-to-synthesized, and synthesized-to-synthesized registrations, respectively. 

In comparison, registration using the cropped images had errors of 31.7mm and higher. Plotting 

the registered image contour error as a function of initial pre-registered error shows that 

our method is robust to registration difficulty. Synthesized-to-full registration was statistically 

independent of cropping extent up to 18.7cm superiorly cropped. Synthesized-to-synthesized 

registration was nearly independent, with a −0.04mm change in average contour error for every 

additional millimeter of cropping.
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Conclusions: Different or inadequate in scan extent is a major cause of DIR inaccuracies. We 

address this challenge by training a neural network to complete cropped 3D images. We show that 

with image completion, the source of DIR inaccuracy is eliminated, and the method is robust to 

varying crop extent.

Keywords

deformable registration; scan extent; deep learning

Introduction

Deformable image registration (DIR) is a topic of intense research and clinical interests in 

radiation therapy. DIR establishes correspondence between medical images for imaging 

information synthesis, dose accumulation and adaptive treatment planning. For these 

applications, DIR is frequently performed on image pairs that exhibit non-rigid motion. 

On the other hand, the usefulness of DIR can be limited by low accuracy and robustness. 

The process of matching one image to another can introduce erroneous or unrealistic tissue 

deformation1, requiring practice of caution when DIR is involved in clinical decision for 

interventions. In cases where the DIR accuracy is unsatisfactory or the accuracy cannot be 

verified, rigid registration is used instead as a compromise2–4.

Besides differences in multimodal image intensity and large deformation, a common factor 

contributing to the DIR difficulty is the mismatch in the image scan extents or the field-of-

view. Because the boundary conditions are not explicitly available, unrealistic deformation 

is often introduced in DIR. The unrealistic stretch or compression of tissues is most 

severe near the edges of an image but can propagate through the entire image volume 

with smoothness constraints in the DIR DVF. The scan extent mismatch is common in 

retrospective analysis, where images were acquired with varying scanning protocols, as 

well as in multimodal registration problems. In image guided radiotherapy, cone beam CT 

(CBCT) images are used to help with patient set up but CBCTs have a substantially more 

limited coverage in both the axial and longitudinal dimensions compared with the planning 

CT. Imaging volume mismatch is also common in MR to CT registration. MR provides 

superior soft tissue visualization that is helpful for tumor and normal tissue delineation, but 

the MR imaging volume is often smaller than the planning CT. MR images acquired on 

oblique orientations further complicate the imaging volume mismatch issues. We previously 

demonstrated that the challenges in registering MR to CT due to differences in imaging 

intensities can be mitigated via synthetic image bridge5 but the issues due to mismatched 

imaging volumes persist. According to TG-132, differences in scan extent are a major source 

of deformable registration error6.

Research to mitigate the adverse impact due to imaging volume mismatch has been 

reported. A straightforward approach to reduce the registration error due to mismatched 

imaging extent is to manually crop the larger imaging volume to match the scan length 

of the shorter image7,8. Manually cropping the images not only reduces the workflow 

efficiency, but also introduces error because the image matching lines are not explicitly 

available to the operator. The error can be substantial when large patient pitch correction or 
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deformation is involved. Periaswamy and Farid used an expectation maximization algorithm 

to simultaneously segment the more complete image volumes and register partial images9. 

The method effectively contained the registration error due to image artifacts but its ability 

to handle both large deformation and mismatched scan volume was not demonstrated. To 

address differing scan lengths in CBCT and planning CT registration, researchers and then 

relied on the DVF smoothness constraint to outside the effective field of view4,10. The 

method was shown to reduce the DIR error, but the registration accuracy was still limited by 

the lack of contextual information due to missing volumes.

Aside from their specific algorithms, the existing methods share the strategy of using the 

intersection of the two images as the starting point of DIR. By doing so, the imaging 

information in the more complete image is discarded despite its potential value for the 

overall registration accuracy. In this study, we take a fundamentally different approach. 

Instead of cropping the images, we propose to fill the missing portion of the anatomy using 

neural networks. The registration can then proceed using the artificially extended image. 

We design the study to answer two questions: (1) Do registrations with artificially extended 

images perform as well as registration pairs with equal extent (2) How does the quality of 

the registration with artificially extended images vary as a function of the initial amount of 

missing tissue?

Materials and Methods

Dataset

Head and Neck CT images were acquired from The Cancer Imaging Archive (TCIA) 

dataset11. We had a total of 409 training, 53 validation, and 53 testing images. Scan extent 

went from the top of skull to approximately the carina. Scanning beds and immobilization 

equipment were masked out of the images. For input into the network, all images were 

rigidly registered to a template image and downsized to 128×128×128 with 4mm isotropic 

voxels. Image intensity value were clipped to a range of [−1024, 3000], then normalized 

to [−1, +1]. For analysis, volumes were automatically segmented using a neural network 

approach12,13. This resulted in 16 contours per patient.

Network

For this work, we used a Generative Adversarial Network (GAN) approach to extend the 

cropped volume14. We term the network CropGAN. A GAN consists of a generator to 

create synthesized data, and a discriminator to judge if data is synthesized or real. The input 

to our generator was a cropped volume, and the output was a volume with the missing 

portion replaced with synthesized data. The cropped region was randomly created each 

iteration of training, where the angle was randomly varied between 0 and 45 degrees in the 

superior-inferior direction, and between −5 and 5 degrees in the other 2 dimensions; and 

the amount of cropping was varied on both the superior and inferior edges from 120 to 

210mm. We chose to vary the cut angle of the crop to simulate two common scenarios in 

DIR. First, as a preprocessing step, rigid registration is performed prior to DIR. Correction 

of the patient pitch and yaw will lead to oblique cutting planes relative to the target image. 

The second scenario is registration of the MR acquired in oblique orientations. In CropGAN, 
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the generator was a 3D U-net with skip connections15. At the bottom of the U-net, we used 

4 dilated convolutions to increase the amount of contextual information for prediction16. All 

of the convolutions in the U-net used instance normalization with elu activation and were 

gated so the network could adaptively learn feature selection, as was done by Yu et al17. The 

discriminator had 3 inputs: the cropped image, either the original full image (uncropped) 

or synthesized output from the generator (synthetically uncropped), and the mask used 

to crop the image. The cropped and uncropped (either full or synthetic) inputs were first 

concatenated together. The Discriminator was dual branching, with one branch operating 

on the entire concatenated image, while the other branch applied the mask for cropping to 

only use the data from within the mask to focus on the fidelity of the synthesized portion. 

The discriminator used spectral normalization, which has been shown to add stability to 

discriminator training18. The output of the discriminator was a concatenation of the two 

branches. Figure 1 shows details of the networks.

For the loss function we followed the formulation of Hui et al19, which uses several 

deep feature-based losses. We passed the generated and target uncropped image through 

a previously trained VGG network20. This network was trained to classify CT and MR 

imaging sites from patches and had learned activations pertinent to these modalities’ 

features21. An example showing the first 5 activation layers for the generator output and 

ground truth target is given in Figure 2.

We compared the activations between the generated and target images in two ways. First, we 

compared the activations from the first 5 convolutional VGG layers [Equation 1].

lossvgg = ∑
l = 1

5
wl

ΨIgt
l − ΨIoutput

l
1

NΨIgt
l Equation 1

Where ΨI*
l  is the activation map of the lth layer, for image volume I* (gt = ground truth, 

output=output from generator). NΨIgt
l  is the number of elements in the ground truth image’s 

lth layer. wl weights each addend as a function of the channel size of the lth layer of the 

ground truth image [Equation 2]. CΨIgt
l

l
 in Equation 2 is the channel size of ΨIgt

l .

wl = 1e6
CΨIgt

l
l Equation 2

Second, to focus on more challenging areas of the image, we compared the error map 

weighted activations from the first two VGG layers. [Equation 3]

lossvgg cℎallenge = ∑
l = 1

2
wl

Mguidance
l ⊙ ΨIgt

l − ΨIoutput
l

1
NΨIgt

l Equation 3
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Where Mguidance
l  is the error map associated with layer l and is used to give more weight to 

the VGG layer differences which are more challenging to match. For each layer, Mguidance
l

is given by Mguidance
l + 1 = average pooling  Mguidance

l . Mguidance
1  is equal to Mguidance,p which 

is the error map value at position p [Equation 4]. Mguidance,p is derived from the generated 

image and its corresponding ground truth. Average-pooled guidance maps give a spatial 

correspondence between the differences seen in the images, and the differences seen at 

deeper layers.

Mguidance, p = Merror, p − min Merror
max Merror − min Merror

Equation 4

where, Merror = (Iout − Igt)2

Mean absolute error was used to assess the fidelity between the generated and target 

uncropped images. This is given as Lfidelity. For the adversarial loss, we used a Wasserstein 

Hinge loss22.

In addition to the adversarial loss, the discriminator also used a deep feature-based loss. 

The activation layers of the cropped-area discriminator branch were used to compare the 

generator output and ground truth [Equation 5].

Lossdisc features = ∑
l = 1

6
wl Dl Igt − Dl Ioutput 1

NDl Igt
Equation 5

The total loss function is thus:

Total loss = Ladverarial + λ1Lfidelity + λ2Lvgg + λ3Lvgg cℎallenge
+ λ4Ldisc features

Equation 6

We searched for a stable training result by iteratively varying the weights (λ*) using the 

validation set. This led to empirically selected weights of 20, 10, 10, and 5, respectively. 

Further tuning may possibly lead to improved results. Our generator and discriminators used 

an RMSprop optimizer with a learning rate of 0.00005. We used a batch size of 2 and trained 

for 2000 epochs.

The output from the network was a 128×128×128 image with 4mm3 voxels. The synthesized 

portion was resized to 512×512×512 (1mm3 voxels) to match the size of the original image. 

The final synthetically extended image only had synthesized voxels in the cropped region. 

The non-cropped portion was copied to the final image.

Registration

We tested how well deformable registration with the synthetic cropped images compared to 

uncropped (ground truth) registration and cropped registration. To do this, we deformably 

registered the moving images (cropped, uncropped, and synthetic uncropped) to the same 

target images (cropped, uncropped, and synthetic uncropped) in all unique combinations. 

It is worth noting that for fair comparison the synthetic image volumes are only used to 
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assist DIR. When the moving image was synthetically extended, we applied the resulting 

deformation vector field to the cropped image such that the final result only included actual 

scanned data.

Without losing generality, we performed registrations using an open source B-spline method 

(Elastix23,24). We used a multi-resolution deformable registration scheme and mutual 

information as the cost function, as in a previous publication5. This method was selected due 

to its competitive performance in registering head and neck images25, open-source nature to 

facilitate comparison, and flexible registration parameter settings; however, the CropGAN 

images are expected to work with other registration algorithms.

Analysis

We tested our hypothesis that synthetically extending cropped images would lead to the 

same registration quality as a registration performed with the full, ground truth images by 

evaluating the similarity between deformed and target contours. To avoid being skewed 

by the organ size, instead of the Dice index, the similarity was calculated using the 95% 

Hausdorff distance surface matching metric26,27. We analyzed our results using a one-way 

ANOVA amongst registration pairs, as well as a linear regression between the pre- and 

post-registration contour similarity. All analyses were performed using GraphPad Prism.

We tested our secondary hypothesis that the registration quality using synthetically extended 

images would be the same as using full images independent of the initial cropping amount 

(range of approximately the superior apex of the skull to the inferior nose: 120 to 210 

mm superior cropping) by cropping the same image by variable amounts, synthesizing 

the missing portion using CropGAN, then performing the same registration tests. For this 

experiment the angle of cropping was kept a constant 23 degrees in the superior-inferior 

direction. This angle was selected to be the middle of the angle ranges used during training. 

The other two cropping planes had angles of zero. The results were averaged over 3 patients 

and analyzed using linear regression.

Results

Execution

Training the CropGAN network took 6 days on one Nvidia Quadro RTX 8000 GPU. 

Once completely trained, inference took 0.04 seconds to synthesize the missing part of the 

cropped image.

Registration Comparisons

We performed 364 deformable image registrations to compare all 7 combinations of source 

and target volumes across the 52 test images (one of the 53 test images was held back as the 

target image), with random amounts of induced cropping from 120 to 210mm. An example 

showing one such set of registrations is given in Figure 3 and Figure 4. The columns 

are for a given target image (synthesized, cropped, or full) and the rows are for a given 

source image (synthesized, cropped, or full). The intersection of a row and column show the 

registration result (Figure 4 shows the respective deformed contours overlaid on the target). 
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From the provided example, it is clear that deformable registration between images with 

different scan extent leads to unrealistic distortion. Compared with the worst case when 

the moving image is cropped and the target image is full, registering a full volume to the 

cropped volume results in less distortion, though it is still worse than registering between 

two uncropped images. Registering with the synthesized images in all three cases leads 

to close performance to the registration of uncropped images as shown in the deformed 

contours of Figure 4.

In the quantitative analysis, the 95% Hausdorff distance averaged across all contours is 

displayed with 95% confidence intervals in Figure 5. Using a one-way ANOVA with a 

post-hoc Tukey multiple comparison test, registration using CropGAN synthesized images 

in all three cases is not statistically different from the best-case full image registration 

(p>0.9), while it is significantly different from registrations using a cropped image in 

either the source or target (p<0.0001). While the average contour distance of registrations 

using synthesized images was approximately half that of a simple rigid alignment, this 

difference was not statistically significant. We strengthened these conclusions by testing 

for equivalence between our proposed method and full image registration using a two-one-

sided t-test. We chose our equivalency delta to be the average error reported for the 

automatic contouring algorithm (3.39mm 95% Hausdorff distance13). We concluded with 

95% confidence that both synthesized-to-full and full-to-synthesized registrations were 

equivalent to a full-to-full image registration within the error of contouring. Registrations 

using synthesized images for both the source and target had confidence limits 1.6mm 

beyond this contouring error threshold. Thus, while it may not be significantly different from 

full image registration, it is advantageous to have either the source or target image be full. 

Interestingly, the full-to-cropped registration had confidence intervals 20.7mm beyond the 

contour error.

Figure 6 shows the 95% Hausdorff distance of individual contours. The trends are consistent 

with the average distance analysis. The esophagus showed the greatest error across 

registrations due to inconsistencies in the inferior range of this lower contrast contour.

To analyze the dependence of our results on the degree of registration difficulty, we 

plotted the average 95% Hausdorff distance of the registrations as a function of the 

original degree of error (Figure 7). A simple linear regression was used to obtain best 

fit lines. The slope for the proposed method closely follows that of the best-case full image 

registration. Specifically, the full-to-full image registration and full-to-synthesized slopes 

were not significantly different (p=0.29), with a shared slope of 0.27. Synthesized-to-full 

and synthesized-to-synthesized registrations were also not significantly different (p=0.10) 

with a shared slope of 0.48; however, they were significantly different from a full-to-full 

registration. Additionally, the relatively flat nature of these lines indicates that our proposed 

method performs well across a broad range of registration difficulty. When both the source 

and target images are cropped, the more challenging registrations can have errors exceeding 

10cm. When only the source or target are cropped errors are in the 3–5cm range. This is 

consistent with the qualitative results shown in Figure 3.
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Dependence on Cropping Amount

To analyze the effect the amount of cropping had on the registration result, we progressively 

increased the amount superiorly cropped in the moving image, while keeping the angle 

of cropping constant (S-I plane=23°, A-P=L-R=0°). These increasingly cropped images 

were passed through the trained CropGAN network to synthesize the missing regions. The 

target images (full, cropped, and synthesized) were kept the same for this experiment. The 

results averaged across three patients, along with a visualization of the cropping extent, are 

shown in Figure 8. The lines for registrations where the moving image was full are flat, 

as these are not changing in this experiment; however, they offer useful reference lines. 

Our proposed method performs as well as a full image registration until approximately 

18.7cm of scan is missing from the superior edge. The synthesized-to-full registration 

was closest to the full registration result (average difference of 1.5mm). When both the 

moving and target images were synthesized, the average difference was 4.5mm from the full 

registration. This is contrasted with the registrations including cropped images, which had an 

average difference of 22mm and higher. The registrations with cropped moving images show 

larger error, however there is a noticeable decrease around 170mm. For cropped-to-cropped 

registration (black line), the error decreases until the cropped moving image extent matches 

the cropped target image’s extent. As the moving image is cropped further, the extents 

again become mismatched, and the error increases. For the cropped-to-full registration 

(brown line), the error increases until the regularization of the registration algorithm prevents 

further stretching of the small moving image to the larger full image. While the average 

error for cropped-to-full registration appears to decrease slightly in Figure 8, observing the 

registration results directly reveals extreme distortion for these larger crop amounts.

For our proposed method, the synthesized-to-full and synthesized-to-synthesized 

registrations are independent of crop extent (slope was not significantly different from 

0, p=0.2887 and 0.8556, respectively) until this extreme cut point of 18.7cm. This point 

roughly corresponds to the region of the nose, suggesting this to be an important landmark 

for synthesis. This is in sharp contrast to the large, varying results with the original cropped 

registrations. These results show that our method is robust across a wide range of scan 

extents.

CropGAN Synthesis Visual Performance Variation

While it not the intent to recover the accurate anatomy for individual patients, it is 

interesting to visually exam the potential for creating missing tissues. Figure 9 shows 

two representative cases for good (top row) and poor (bottom row) synthesis of missing 

imaging volumes. In the good case, the network synthesized realistic anatomies including 

sinuses, sternum, and heart. In the poor case, the network failed to generate the patient 

nasal and skull base anatomies possibly due to the low number of training images and large 

variation of metal artifacts. In any case, the anatomies generated using CropGAN in its 

current form is not actual and cannot be used as such. For registration purposes, however, the 

quality of image synthesis achieved using CropGAN appears to provide adequate contextual 

information for DIR.
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Discussion

We present here a novel solution to directly address adverse effects due to inadequate or 

mismatched scan extent in deformable registration. DIR between images of insufficient 

extents is a major source of registration error. Existing approaches focus on cropping the 

larger or more complete images to better match the cropped images, which results in loss 

of information that could have benefited the registration. This is particularly problematic 

when both the moving and target images have inadequate scan extent for registration. We 

were able to artificially extend cropped images using a method which is fully 3D. The 

method is fully automated and able to handle a broad range of scan extent differences. 

Once trained, our method fills the missing volume in 0.04 seconds, making it an amenable 

addition to a clinical workflow. To our knowledge, the current study is the first to synthesize 

the missing or cropped imaging volumes to improve the registration performance. It is worth 

emphasizing that the synthesized anatomy cannot represent the actual patient anatomy in 

the missing volumes. It serves the purpose of assisting DIR of the actual imaging volume. 

Therefore, when the moving image is cropped, we apply the DVF from the synthesized 

moving image registration to the cropped image, thereby only including the real imaging 

data in the final result.

The task to synthesize missing image slices itself is also novel. Neural networks have 

been used to inpaint a missing patch inside a 2D medical image slice28–30, which is 

a considerably less challenging problem that is analogous to interpolation with known 

boundary conditions around the missing patch. In contrast, synthesizing data in a cropped 

image is analogous to extrapolation with undefined boundary conditions. A study looking 

at network-based image extension in 2D landscape photos was able to successfully extend 

natural 2D images, however they caution that their results did not apply well to photos 

of human faces.22 Our proposed CropGAN uses generative adversarial networks (GAN) to 

synthesize missing data, a technique that has been well tested in network-based inpainting 

tasks17,31. Specifically, we based our method on the winner of the AIM 2020 Challenge 

on Extreme Inpainting19,32, which used deep features in the generator, discriminator, and a 

VGG net as terms in the loss function. That study showed impressive results filling in holes 

of 2D color photos, yet has not yet been pursued for image extension nor for 3D medical 

images.

Our proposed method of using a neural network to synthetically extend 3D cropped images 

improves deformable registration between images of differing scan extents. It creates a 

bespoke synthesis in the cropped region that takes cues from each image’s anatomy. In most 

cases, it synthesizes realistic anatomies even far beyond the line of cropping. CropGAN 

creates details such as sinuses, lungs, orbits, and heart that continue smoothly from the 

available anatomical information. These large details help anchor the registration algorithm 

while it optimizes the correspondence within the real portions of the image. This advantage 

was seen even with extreme differences in scan extent (e.g., a cranium to carina scan and a 

scan only including the neck).

It has been observed that deforming a full image to a cropped image is more robust than the 

reverse. Therefore, implementing inverse consistency33 in DIR could conceivably improve 
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the registration of the former case. However, as shown in the study, CropGAN synthesized 

images still significantly outperforms the case of full-to-crop registration.

We noticed that the synthesized images were poorer when metal imaging artefacts were near 

the cropping boundary. This may be due to a lack of accurate anatomical cues near the 

boundary which the network can use to make its prediction. Interestingly, once further away 

from the artefact, the network can still create realistic anatomies, and the registration result 

is not significantly different from cases without such artifacts, as well as to the result using 

full images. Therefore, while the study was not designed to quantify the effects of artefacts, 

current results suggest our technique is robust to this effect.

We chose to use a b-spline based registration algorithm for our study, but this technique is 

generalizable for other algorithms. Our preliminary results suggest that CropGAN similarly 

improves demons based registration. Preprocessing with CropGAN could also aid in other 

medical imaging neural network tasks, since it can help to standardize the data.

One limitation of this technique is that it requires training data for each region one wishes 

to extend. We focused this study on CT images in the head and neck since this region 

can include large non-rigid motion. For other anatomical sites or imaging modalities, one 

would need a large dataset with similar scan extents to provide supervised training between 

an induced cropped image and its full image ground truth. For example, cone beam CT 

deformable registration may benefit from our method due to its limited field of view relative 

to the simulation CT target. However, the network would need to be trained and verified 

on this different modality. Improvement may also be seen by better selecting the trained 

VGG net used for deriving the deep features in the loss function. The network we used 

was trained for the unrelated task of classifying small 3D patches of CT and MR images 

by their scan site. The features learned from this network may not be optimal for our 

task, which used full image volumes. While having a VGG net trained on full images may 

lead to a better result, recent research has suggested that using deep features to assess 

image similarity can be surprisingly effective even when the network was trained for an 

unrelated task34. An additional limitation is the inherent uncertainty in the contours used 

for this study’s analyses. We used a previously developed in-house segmentation network 

to increase reproducibility13. While this network demonstrated impressive dice scores, there 

is still an inherent amount of uncertainty. Despite the abovementioned limitations, we have 

provided a foundation upon which other studies can extend our work. The code which was 

used for this manuscript is openly available in Github at https://github.com/emckenzi123/

CropGAN/.

Conclusion

Differences and inadequacy in scan extent is a difficult problem in medical image 

deformable registration. We proposed a solution using a neural network to synthesize the 

missing portions of the scan. These syntheses were able to successfully create realistic 

anatomy for the missing volume with details such as sinuses, orbits, skull, lungs, and 

heart. It was also robust to the amount of cropping in the inferior and superior directions. 

After filling the cropped volumes using CropGAN synthesis, the two images can then be 
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deformably registered as though they had the same full scan length. Using 95% Hausdorff 

distance on a selection of head and neck contours, we found that our registration workflow 

was able to match contours equally well to a registration with complete scans. CropGAN 

performance for DIR as a function of cropped tissue is robust up to until 20cm of 

the superior end of the head was missing. By using CropGAN as a preprocessing step 

to deformable registration, we have provided an intuitive solution to the challenge of 

registration with different scan extents.
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Figure 1. 
Architecture of Generator (top) and Discriminator (bottom).
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Figure 2. 
visualizes the activations in the first 5 layers of the VGG network for a predicted and 

uncropped ground truth image. These activations are used as features, which are compared 

using equations 1, 3, and 5 to produce a similarity metric, driving the predicted image to 

resemble the target. Best viewed in color (online version).
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Figure 3. 
Example registration of one of the 53 test patients. Columns are for a given target image; 

Rows are for a given moving image. The intersection shows the deformable registration 

result. Our method (top row of central grid) has applied the deformation vector field to 

the original cropped image, so only real data is included in the final registration result. 

Cropped-to-predicted, and predicted-to-cropped are not shown, since if one cropped image 

could be predicted, the other could feasibly be predicted as well.
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Figure 4. 
Example registration of one of the 53 test patients. Columns are for a given target image; 

Rows are for a given moving image. The intersection shows the deformable registration 

result applied to the moving image’s contours. Best viewed in color (online version).
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Figure 5. 
The average 95% Hausdorff Distance between deformed and target contours for each 

registration pair, averaged across all 16 contours, and all 53 test patients. The best-case 

registration is “Full2Full” (leftmost bar), while registrations using our method are shown 

in the next 3 bars. These 4 leftmost bars are not significantly different (represented by 

being the same color blue). Full2Crop and Crop2Crop were not significantly different, while 

Crop2Full was the highest of all. While the difference between our method and rigid overlap 

did not reach significance, we did see a near halving of the error (20.6mm average error 

down to ~12mm error). The error bars are the 95% confidence interval.
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Figure 6. 
shows the average registration error broken down by each contour used in this study. The 

error bars are standard deviation. The horizontal axis has been split into two levels to 

improve readability.
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Figure 7. 
demonstrates how the registration error varies as a function of initial rigidly aligned 95% 

Hausdorff distance. The intial overlap value is a measure of the difficulty of the registration. 

The full-to-full registrations and the ones using our proposed CropGAN technique all have 

relatively flat lines, showing their robustness to the registration’s initial conditions. Best 

viewed in color (online version).
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Figure 8. 
shows the registration error as a function of missing tissue averaged across three patients. 

The images below the plot help to visualize a given amount of cropping. We see that for 

our method (purple and red lines) the amount of superior cropping does not have much of 

an effect before 18.7cm, where nearly all the superior half of the tissue is missing. This 

demonstrates the robustness of our technique. Our method is also superior to rigid alignment 

for all cropping amounts investigated. When the moving image is left cropped (brown and 

black lines), the registration quality varies wildly.
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Figure 9. 
An example showing a good (top) and poor (bottom) predicted completion of a cropped 

image. The first column shows the cropped image, the second column shows the uncropped 

ground truth, and the third column shows the predicted result from our network. A 

difference image is shown in the right-most column (best seen in color). The poor prediction 

occurs near an artefact in the mouth.
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