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ABSTRACT OF THE DISSERTATION  

The Genomics of Experimental Evolution  

By 

Kathreen Eve Bitner 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2020 

Professor Laurence Mueller, Chair 

 

This dissertation focused on two central theories in experimental evolution; studying the death 

spiral and looking at trade-offs in adapted populations to a toxin in their environment. These 

results are summarized in Chapter 1. Chapter 2 focused on quantifying the efficacy of ingested 

dyes (using the ‘Smurf’ assay) to predict when an individual would die. This can be extremely 

useful for many research problems in aging. The death spiral is a short period prior to death that 

is marked by a dramatic decline in physiological health. The results show three key conclusions: 

that all blue dyes used had significant negative effects on mean longevity, only a small fraction 

of the flies showed the Smurf phenotype prior to death, and among the small fraction that did 

become Smurfs most (40-60%) become blue during their last 24 hours of life.  The research in 

Chapters 3-5 focused on the phenotypic and genomic evolution of urea adapted populations. 

Insects are often exposed to many toxic substances in their environments. Urea and ammonia 

differ from most studies of resistance to toxic pesticides because of their wide-ranging effects on 

organismal and cellular physiology. The UX and UTB selection groups (adapted to high levels of 

urea in the larval stage of development), displayed slower larval feeding rates, slower larval 

growth rates, and lower starvation resistance compared to the other populations reared that had 
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not adapted to urea.  The UX and UTB selection regimes also showed higher viability, faster 

development time, and lower starvation resistance when reared on food supplemented with urea 

compared to controls. Chapter 4 of this dissertation studied genomic differentiation among 

populations subjected to different types of selection for tolerance to urea in their larval food.  

The RUX, reverse selected of the urea adapted populations still maintained measurable levels of 

adaptation to urea suggesting any reverse selection is slow.  We saw parallel evolution occurring 

in the replicates of the same environmental populations, as well as genomic differentiation in the 

urea adapted lines, UX, UTB and RUX versus the control population of AUC. The starting 

conditions for the important gene regions might have been important and very different for the 

UX and UTB populations. These differences may account for why these populations share only 

50% of the same significantly differentiated SNPS (single nucleotide polymorphisms). Chapter 5 

sought to connect potential genes as the causative agents for specific phenotypes studied in 

Chapter 3. FLAM, the fused lasso additive model, is a statistical learning tool for determining 

which genes may affect differentiated phenotypes. The FLAM analysis provided us with 53 

SNPS that had large effects on the four phenotypes studied – larval feeding rate, larval growth 

rate, development time and viability. Almost 500 genes were located to be potentially 

responsible for the 53 SNPS identified by FLAM.  
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CHAPTER 1 

Introduction  
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My dissertation centers on two different research topics. Chapter 2 was focused on the 

potential SMURF assay technique for identifying when a Drosophila melanogaster fruit fly 

would be in the death spiral using a blue dye. After the completion of the experiment, my 

research was the focused on the urea-adapted populations of flies in the Rose and Mueller lab, 

and the phenotypic (Chapter 3), and genomic (Chapter 4) changes that occurred as a result of 

their adaptation to a toxin in the environment. Finally, Chapter 5 focused on using the Fused 

Lasso Additive Model, FLAM to distinguish significant SNP’s that may directly affect specific 

urea adapted phenotypes (Mueller 2018). 

Chapter 2 focused on quantifying the efficacy of ingested dyes to predict when an 

individual would die. This can be extremely useful for many research problems in aging. Under 

protected conditions, late-life is characterized by a plateau in age-specific mortality (Carey et al. 

1992, Curtsinger et al. 1992, Rose et al. 2006, Vaupel et al.  1998) female fecundity (Mueller et 

al. 2007, Rauster et al. 2005), male virility (Shahrestani et al. 2012), and age related motor 

performance decline and specific late-life motor disabilities (Gaitanidis et al. 2019). It has been 

suggested there is a fourth stage of adult life called the death spiral (Mueller et al. 2007, Rauser 

et al. 2005, Mueller et al. 2016). The death spiral is a short period prior to death that is marked 

by a dramatic decline in physiological health. There is evidence of this decline in fecundity 

(Rauser et al.  2005, Muller et al. 2001, Rogina et al. 2007), supine behavior (Papadopoulos et 

al. 2002), activity and desiccation resistance (Shahrestani et al. 2012a), and male virility 

(Shahrestani et al. 2012b). We have previously shown that the decline in fecundity can be used 

to predict death (Mueller et al. 2016). We were looking for a better and faster way to predict 

death as current phenotypic methods are cumbersome.  
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A process described by Rera et al. 2012 as the ‘Smurf Assay’ would have presented an 

easier and faster way to visually observe a fly in the death spiral. According to (Rera et al. 2012) 

and (Martins et al. 2018) individuals fed food with a blue dye (FD&C blue dye #1) would 

maintain their ability to prevent the dye from permeating the intestinal barrier until a few days 

before death. At that time the entire body of the fly would become blue, leading Rera et al. 2012 

to identify the individuals so colored as “Smurfs” (Dambrose et al. 2016, Darby et al. 2019, 

Kissoyan et al. 2019, Klichko et al. 2019, Liang et al. 2019, Rodriguez-Fernandez et al. 2019).  

The original paper Rera et al. 2012, presented no quantitiatve demographic data for this assay, 

and we set out to run a large, multi-population, multi-dye experiment to see if this method would 

have useful applications we were hoping for in gene expression studies.  

The study in Chapter 2 established a number of important conclusions. (1) All dyes used 

had significant negative effects on mean longevity, with decreases ranging from 5 to almost 10 

days. (2) Only a small fraction of the flies showed the Smurf phenotype prior to death. Over all 

populations and dyes, 22% of males and 34% of females became Smurfs. (3) Among the small 

fraction that did become Smurfs most (40-60%) become blue during their last 24 hours of life. 

Thus, even with daily checks most of the Smurf flies would be dead when initially identified as 

Smurf making their utility for gene expression studies nil. There was substantial replication, with 

each population undergoing 6 different dyes and a control. These results would tend to limit the 

utility of this method depending on the application the method was intended for. 

After the completion of the Smurf experiment in Chapter 2, my research changed to 

focusing on the urea-adapted populations (Chapter 3 – 5). Insects are often exposed to many 

toxic substances in their environments, which include insecticides, heavy metals, chemicals or 

feeding deterrents synthesized by plants. Urea and ammonia differ from most studies of 
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resistance to toxic pesticides because of their wide-ranging effects on organismal and cellular 

physiology (Somero and Yancey, 1997).  Fitness components in flies are frequently correlated 

with traits that confer the ability to resist and survive various stresses (Prasad and Joshi 2003, 

Flatt 2020).  Larval competitive ability in D. melanogaster depends on many factors, such as 

feeding rate, initial weight, relative time spent on molting, minimum food requirement for 

pupation, and resistance to crowding. Past research has shown that feeding rates in Drosophila 

larvae are affected by environmental factors 

An important model looked at the evolution of feeding rates in D. melanogaster larvae in 

stressful environments found they would decrease in response to adaptation to high levels of 

ammonia, urea, and the presence of parasitoids (Mueller et al 2015). If there are toxic 

compounds in the larval food, energy is required for detoxification, and larvae can maximize 

food intake by slowing their feeding rate (Mueller et al 2015). While it may be argued that a 

slower feeding rate does not necessarily prove that the larva will grow slower, previous studies 

(Joshi and Mueller 1996; Mueller et al. 1991) showed that fast feeding rate larvae required more 

food to reach the same critical minimum size. Mueller et al 1990 showed a negative correlation 

between feeding efficiency and feeding rate. 

Our goal in Chapter 3 was not only to study larval feeding rates of our urea-adapted lines, 

but to also look at various other phenotypes, such as viability, development time, starvation and 

desiccation resistance, larval growth rate and adult size. The UX and UTB selection groups 

displayed slower larval feeding rates, slower larval growth rates, and lower starvation resistance 

compared to the other populations reared that had not adapted to urea.  The UX and UTB 

populations also showed higher viability, faster development time, and lower starvation 

resistance when reared on food supplemented with urea compared to controls. With the 
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significant slower feeding rates of the urea adapted lines – UTB, UX and RUX, it is quite clear 

that larval feeding rates evolve in response to environmental factors, and are correlated with a 

slower growth rates. 

After establishing various phenotypic adaptations in the urea adapted selection groups, 

next we looked at the genomic aspect of these populations in Chapter 4.   Genome-wide 

sequencing of experimentally evolved populations has emerged as a powerful method for 

understanding the genetic basis of adaptation (Burke et al. 2010; Turner et al. 2011; Tenaillon et 

al. 2012; Schlotterer et al. 2015, Graves et al. 2017). Previous work has shown that Drosophila 

populations can evolve resistance to high levels of environmental urea (Joshi et al. 1996, 

Shiotsugu et al., 1997, David et al. 1999, Etienne et al. 2001), a compound that stresses the 

Drosophila larvae.  

Chapter 4 of this dissertation studied genomic differentiation among populations 

subjected to different types of selection for tolerance to urea in their larval food. The results, we 

showed some depressions in heterozygosity in all four populations, but very few regions had 

variations that had been completely expunged.  The RUX populations still maintained 

measurable levels of adaptation to urea suggesting any reverse selection is slow.  We saw 

parallel evolution occurring in the replicates of the same environmental populations, as well as 

genomic differentiation in the Urea adapted lines, UX, UTB and RUX versus the control 

population of AUC. Of the 70,980 differentiated SNPs in the UX populations 50.8% were also 

differentiated in the UTB populations. The starting conditions for the important gene regions 

might have been very different and this may have led to different trajectories for this variation 

once the environment was changed.  
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Chapter 5 combined the phenotypic results of Chapter 3 with understanding the potential 

genes that might be playing a role in the adaptation to the urea toxin.   Understanding the 

relationship between genes and phenotypes is the base of much genetic and experimental 

evolutionary work. Lewontin’s (1974) goal was understanding this relationship, which now may 

be possible with genome-wide sequencing in the field of evolutionary biology. Other 

experiments have suggested that the genomic response to selection can involve many selected 

SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive 

effects. (Wengel et al 2012). The efficacy of FLAM, the Fused Lasso Additive Model, is 

improved with increased number of independent populations, reduced environmental phenotypic 

variation, and increased within-treatment among-replicate variation (Mueller et al. 2018). With 

the simulations in FLAM, we are picking up the genes that have the most direct impact on a 

phenotype.   

FLAM was applied to SNP variation measured in 40 populations of D. melanogaster – 20 

of which are the urea adapted selection regimes and controls, UX, UTB, RUX and AUC, and 20 

that make up the demographic lines subjected to selection for age-at reproduction or starvation/ 

desiccation resistance – CO, nCO, TSO, and TDO. The FLAM analysis provided us with 53 

SNPS that had large effects on the four phenotypes studied – larval feeding rate, larval growth 

rate, development time and viability. Almost 500 genes were located to be potentially 

responsible for the significant SNPS differentiated.  

Three of the four phenotypes compared had high correlation coefficients between the 

FLAM predictions and the observed phenotypes. These high correlations were based on 

separating observations into testing sets, used to estimate FLAM parameters, and prediction sets. 

Larval feeding rate had the highest correlation coefficient. The lowest correlation coefficient for 
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the larval growth rate was 0.64.  When we looked directly at the growth rate parameter among 

the 40 populations (Chapter 3), there were no significant differences. Genes with smaller 

influences that are not being picked up by the FLAM analysis, may be playing role in the 

correlation of a faster feeding rate with a faster growth rate (Chapter 3).  

Three SNP’s were found to be pleiotropic, affecting the viability and development time 

phenotype. These two phenotypes reflect the physiological impact of urea on either survival or 

development time also show overlapping genes. The other two phenotypes, larval feeding rate 

and larval growth rate are not necessarily a response to the same stress.  While we don’t see 

extensive pleiotropy of genes, we are also dealing with a limitation of FLAM, to identify more 

significant SNPs than the number of pupations examined. Thus, our analysis might be missing 

many pleiotropic genes limiting our ability to make strong inferences about their relative 

importance.   

The analysis of genetic variation at the for locus showed that this variation was helpful in 

clustering the UX and RUX vs. the AUC populations, but did a poor job differentiating the UTB 

and all the demographic populations. The UX populations (and its close relative, the RUX 

populations) may have taken a different evolutionary trajectory than the UTB populations.  

As the FLAM technique gets modified and more advanced, or replaced by a different 

analytical technique, more genes may be discovered with attributions to the four physiological 

characteristics we studied – larval feeding rate, development time, viability and larval growth 

rate.  
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CHAPTER 2 

Predicting death by the loss of intestinal function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
Bitner K, Shahrestani P, Pardue E, Mueller LD (2020) Predicting death by the loss of intestinal 

function. PLoS ONE 15(4): e0230970. https://doi. org/10.1371/journal.pone.0230970  
 



	 13 

Abstract 

The ability to predict when an individual will die can be extremely useful for many research 

problems in aging. A technique for predicting death in the model organism, Drosophila 

melanogaster, has been proposed which relies on an increase in the permeability of the fly 

intestinal system, allowing dyes from the diet to permeate the body of the fly shortly before 

death. In this study, we sought to verify this claim in a large cohort study using different 

populations of D. melanogaster and different dyes. We found that only about 50% of the 

individuals showed a visible distribution of dye before death. This number did not vary 

substantially with the dye used. Most flies that did turn a blue color before death did so within 24 

hours of death. There was also a measurable effect of the dye on the fly mean longevity. These 

results would tend to limit the utility of this method depending on the application the method was 

intended for. 
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Introduction 
 

Evolutionary biologists recognize three phases of adult life in organisms that reproduce 

multiple times. The first phase occurs prior to reproduction and can be called development. 

During this phase, we expect natural selection to oppose any genetically based reductions in 

survival since death at these ages means zero fitness. In the second phase, called aging, the 

strength of natural selection declines with age as first outlined by Hamilton [1]. Under protected 

conditions, we typically see an age-dependent increase in mortality and a decline in fertility [2]. 

Finally, at advanced ages organisms enter late-life [3 - 6]. Again, under protected conditions late-

life is characterized by a plateau in age-specific mortality [3-5, 7] female fecundity [6, 8], male 

virility [10], and age related motor performance decline and specific late-life motor disabilities 

[11]. 

Recently we have suggested there is a fourth stage of adult life called the death spiral [6, 

8, 12]. The death spiral is a short period prior to death that is marked by a dramatic decline in 

physiological health. There is evidence of this decline in fecundity [8, 13 -14], supine behavior 

[15], activity and desiccation resistance [9], and male virility [10]. We have previously shown 

that the decline in fecundity can be used to predict death [12]. We are looking for a better and 

faster way to predict death as current phenotypic methods are cumbersome.  

Additional study of the death spiral and a more detailed understanding of the 

physiological systems that are under decline could be done if there was a reliable and easy way 

to identify individuals that were about to die. This would permit one to do destructive assays on 

individuals in the death spiral such as gene expression studies and compare them to similarly 

aged individuals who are not about to die. Rera et al. [16] describes such a process for D. 

melanogaster. According to [16] and [17] individuals fed food with a blue dye (FD&C blue dye 
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#1) will maintain their ability to prevent the dye from permeating the intestinal barrier until a few 

days before death. At that time the entire body of the fly will become blue, leading [16] to 

identify the individuals so colored as “Smurfs” [18 – 23] 

This technique, in principle, offers exactly the assay needed for more detailed analysis of 

the death spiral. Unfortunately, prior work with the technique has not laid out any detailed 

analysis of the demographic features of the Smurf phenotype. For instance, what is the average 

and distribution of the time interval between becoming a Smurf and death? Do these properties 

change with chronological age?  In large samples what fraction of flies become Smurfs prior to 

death? How does the appearance of the Smurf phenotype vary with other dyes and different 

populations of D. melanogaster? The goal of this study is to answer these questions.  
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Methods 

Populations 

Five large independent populations of D. melanogaster were used in this experiment. 

Two of these populations, ACO and CO, are large, outbred populations that have been 

maintained on different age-at-reproduction schedules for hundreds of generations. The ACO 

population was maintained on 9-day discrete generation cycles. The CO population was kept on 

28-day discrete generation cycles. The remaining populations, S93, A4 3852 and Canton S 

(CAS), were inbred lines raised on three week cycles in the Long lab at the University of 

California, Irvine. All populations were raised in identical conditions of temperature, food, 

cultures and density for three generations prior to these experiments.  

Mortality Assay 

Adult, 14 day old (from egg) flies were knocked out with CO2 gas and placed into 

individual plastic straws about 4 inches in length and capped with plastic pipette tips on both 

ends (Fig. 2.1). During anesthetization, a steady supply of CO2 was flowing through a semi-

porous plate. The flies were placed on the plate and separated by gender and each fly was gently 

swept into the plastic straw using a fine painters brush.  An equal number of females and males 

were used per population. Food was provided to each fly at one end of the straw. Each fly was 

transferred to a new straw with new food and new pipette tips every 3 days to maintain a clean 

environment. The straw length and girth permitted individuals to fly from one end to the other.  

The process of transferring the flies, as well as daily checking of the flies, required a light 

tapping of the fly into the pipette tip. Cohorts of about 56 adult flies, equal numbers of males and 

females from each of the five populations were exposed to either control food or food with one 
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of six dyes (table 2.1) added to their food. Substantial replication was used. Thus, the original 

dye, SPS Alfachem, was replicated in 5 different populations, and each population was replicated 

in 6 different dye environments. The use of different FDA FD&C Blue dye #1’s permitted us to 

determine if the development of the SMURF phenotype was sensitive to the particular dye used. 

By using a combination of different populations of D. melanogaster, which varied in levels of 

inbreeding, we could determine if the development of the SMURF phenotype was limited to 

inbred populations.   

The flies were exposed to the blue dyes from day 14 (from egg) continuously to their 

death. Each fly was individually checked underneath a microscope and light to see if it had 

become a ‘Smurf’. Smurf status required that the entire body changed to any variation of a blue 

color. This was an important distinction as all the Drosophila flies fed food with a blue dye 

would have visible blue coloring in only the gut portion when they weren’t a Smurf.  Some of 

the dyes resulted in a slight variation in blue color in the Smurfs. Every day under a microscope 

with a light we looked for any change of color in the fly thorax, head and abdomen. If the fly was 

any shade of blue in all three sections, it was marked as a Smurf and was then checked daily to 

see when it died. We did not limit our observations to individual sections of the fly, such as only 

the thorax, for our evaluation of when a fly became a Smurf. 

Tapping 

We did the tapping experiment to see if the physical disruption, the process of tapping the 

fly into the pipette tip, affected the mean longevity and lifespan of the fly. A total of 164 ACO 

flies were chosen for this assay – 83 males and 81 females. The 164 flies were placed into 

regular food straws with no dye. A total of 84 flies (42 male and 42 female) were tapped 5 times 

daily, mimicking the checking that occurred in the original experiment, and the other 81 (41 
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males and 39 females) flies were not tapped. The flies were transferred to new straws, with fresh 

food and new pipette tips every 3 days. Each fly was checked daily for movement and if no 

movement was detected, the fly was classified as deceased on that day. Only ACO flies were 

used as the purpose of the Tapping experiment was to see if our methods for checking for Smurf 

flies would affect the mean longevity of the fly.  

Food & Dyes 

Flies were provided with banana-molasses food with one of the dyes added. The control 

flies received only banana molasses food in their respective straws. The recipe for the banana 

molasses food used in the lab, as well as the experiment, can be found in the Supplemental 

Portion. Food with dye was prepared by mixing 2.5 grams of each dye to create a 100-ml 

solution of the banana molasses food mixed with the dye (2.5% wt/vol). Food was always 

prepared the day before it was needed and stored in a refrigerator until it was used. The dyes 

were kept separate and carefully handled so no cross-contamination occurred during the 

preparation and food blending process.  

Statistical Analysis  

To analyze the effects of dye, sex and population on longevity we let yijkl be the age at 

death of the lth individual of sex-i (i=1 (female), 2 (male)), treatment-j (j=1,,..,7 (see table 1, 

7=control)), and population-k (k=1,..,5 (see table 1)). Then a linear model for longevity is, 

 

!"#$% = ' + )"* + )#+# + )$,$ + )#)$-#$ + ."#$%,     (1) 

 

where ds=0 if s=1, and 1 otherwise, eijkl is an error term assumed to have normal distribution with 

mean 0 and variance s2. An initial test showed no significant differences between sexes so the 
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final model tested did not include the b parameter. These tests were run with R (version 3.4.3, R 

Core team, 2017) and the lm function. Pairwise tests with Bonferroni corrections for 

simultaneous tests were conducted with the R emmeans function.  

 At the time of death each fly was classified according to their sex, population, treatment, 

and Smurf status (blue: yes or no). Using hierarchical log-linear models (loglm function in the R 

MASS package) we tested in succession whether sex, treatment, and population would have an 

effect on Smurf status at the time of death.  

A t-test was performed on the Tapping Experiment results, comparing the mean longevity of 

the tapped flies versus the non-tapped flies to see if the mechanical disruption would affect their 

mean longevity.  
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RESULTS  

We tested the difference in mean longevity for each population in the control 

environment vs. each of six dyes yielding a total of 30 hypothesis tests (table S2.1, Fig. S2.1). 

We found the control populations lived longer in all cases and 7 out of 30 of these tests were 

significantly different (using a Bonferroni correction for multiple testing). The log-rank tests 

detected 9 significant differences (table S2.2). Median longevity and maximum longevity were 

also calculated for each population-dye combination (table S2.3 and S2.4). Averaged over the six 

dye- treatments there were significant differences in mean longevity between all populations and 

their controls except CO and s93 (p=0.16, Bonferroni corrected for 5 different tests). Averaged 

over the five different populations, the control treatments lived significantly longer than every 

other dye treatment. The controls lived from 4.9 to 9.8 days longer, depending on which dye they 

were compared to, or about 8% to 17% of the control fly mean longevity (Fig. 2.2). 

  All FD&C blue dyes did show a Smurf phenotype, though the fraction of flies becoming 

Smurfs varied considerably from dye to dye, as well as among populations (Fig. 2.3 and Table 

S2.5). These results are consistent with a preliminary study we conducted on 172 ACO flies (Fig. 

S2.1). 

The null loglinear model with no interactions was compared to a model with an 

interaction between sex and Smurf status and showed that sex has a significant effect on whether 

a fly becomes a Smurf (/01 = 30, p<10-5). Averaged over all blue dye treatment populations, 

22% of the males became Smurfs and 34% of the females became Smurfs. If we add an 

interaction between dye treatment and Smurf status to the previous model with the sex 

interaction there is a significant effect of dye treatment (/41 = 13.0, p< 0.022). Finally, adding an 

interaction between population and Smurf status to the previous model with interactions between 
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sex, treatment and Smurf status there is a significant effect of population (/71 = 28, p=0.00001). 

Thus, achieving the Smurf phenotype before death is significantly affected by sex, dye, and 

population. However, the majority of flies never showed the Smurf phenotype prior to death. 

The flies became a distinct Blue color in their abdomen, thorax and head when they 

became a ‘Smurf’ (Fig 2.1). This could be seen in some flies as much as 3 or 4 days before their 

death. However, of the flies that became a Smurf, the majority did so on the day of their death or 

one day before death (Fig. 2.4).  

A t-test was run on the tapping experiment, comparing the mean longevity of the tapped 

flies versus the non-tapped flies to see if the mechanical disruption would affect their mean 

longevity.  The males were not affected by tapping, with a mean longevity of 53.2 days for those 

tapped and 53.9 days for those not tapped (p=0.83, Table 2.2). Likewise females were not 

affected due to the tapping mechanism either, with a mean longevity of 54.5 days for the tapped 

females and 54.4 days for the untapped females (p=0.99, Table 2.2).  
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Discussion  

This study has established a number of important conclusions. (1) All dyes used have 

significant negative effects on mean longevity, with decreases ranging from 5 to almost 10 days. 

(2) Only a small fraction of the flies show the Smurf phenotype prior to death. Over all 

populations and dyes 22% of males and 34% of females became Smurfs. (3) Among the small 

fraction that do become Smurfs most (40-60%) become blue during their last 24 hours of life. 

Thus, even with daily checks most of the Smurf flies will be dead when initially identified as 

Smurf making their utility for gene expression studies useless. As can be seen from Table 2.1, 

there was substantial replication, with each population undergoing 6 different dyes and a control. 

The original dye used in Rera et al. [16], SPS Alfachem, was replicated in 5 different 

populations, and each population was replicated in 6 different dye environments, allowing for 

substantial replication across the whole experiment. The three results cited above were 

consistently seen across all the replicates suggesting that these findings are robust. 

These results certainly contradict prior claims [16]. Rera et al [16] suggested that 

essentially all flies become Smurfs prior to death and that the dyes do not affect survival. 

Certainly, one can claim there were differences in handling or techniques used in these studies 

[16]. This is challenging to evaluate. We note that the food used in our study has 2.5 grams of 

dye per 100 mL of food (2.5 % wt/vol), which is the same dye concentration that Rera et al [16] 

put in their food [17]. Thus, our observations of increased mortality due to dye cannot be 

attributed to overdosing. We also tested whether the tapping employed in our experimental 

technique could explain the mean longevity differences. That experiment showed no detectable 

effects of tapping on either male or female longevity. We only tested one population, ACO, for 

an effect of tapping on mean longevity. Thus, for the ACO population it is clear that dyes are 
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responsible for their reduced longevity not tapping. While it is theoretically possible that the 

other populations are not affected by the dyes but are affected by tapping, we believe this is an 

unlikely possibility. 

There might be variation in how much food a fly consumes, but since each fly was in 

their own environment with only the dyed food, the flies had no other option but to consume the 

food or die from starvation.  The purpose of this assay technique is to identify flies about to die 

under normal husbandry protocols. Future experiments can focus on whether the dead ‘non-

Smurfed’ flies consumed food before death or not. But if the majority of the flies are dying 

without the distinguishing blue body color, then the technique is of little practical use. Lastly, 

most flies which did turn blue did so during their last 24 hours of life. This also renders the 

technique less useful for collecting live flies shortly before their death. 

Many experiments have used the Smurf Assay technique [18 – 23]. However, the 

widespread use of the Smurf assay to differentiate between aging flies and young flies is not 

justified. At older ages, less flies Smurfed than flies that were younger. Prior research has 

demonstrated that the technique will differentiate between individuals that loose intestinal 

integrity and become Smurfs and those that don’t, but they fail to provide exact details on how 

many individuals become Smurfs prior to death.  

Our results also demonstrate significant effects of fly population of origin and dye on 

both mean longevity and frequency of Smurfs. However, these effects are essentially background 

noise to the major observations that only about 28% of flies ever become Smurfs and those that 

do only do so on their day of death or one day before death. 
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FIGURES 
 

 
Figure 2.1 Setup of Smurf experiment and ‘Smurfed’ flies. A. Adult, 14 day old (from egg) 
flies were placed into individual plastic straws about 4 inches in length and capped with plastic 
pipette tips on both ends. Each straw was labeled with a number that allowed us to keep track of 
each fly, B. Blue male Smurf at the time of death, C. Blue female Smurf at time of death.  The 
head, thorax and abdomen have all visibly become blue for both the male and female D. 
melanogaster flies.  
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Figure 2.2 The mean longevity of five populations of D. melanogaster in the control and six 
different dye treatments. Bars are 95% confidence intervals calculated from a pooled variance 
estimate by the emmeans R function. Each dye treatment resulted in a significant reduction in 
mean longevity compared to the control treatment. Treatment 2: SPS Alfachem Blue, 3: Sigma 
Aldrich, 4: Spectrum Blue, 5: Flavors and Color Blue, 6: Chemistry Connection Blue, 7: Electric 
Blue 
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Figure 2.3 Percentage of flies that became Smurfs for each population and dye. Bars are 
standard errors. 
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Fig. 2.4 Timing of SMURF appearance. We used only flies that satisfied our criteria for being 
a Smurf. Most flies appeared to be Smurfs on the day they are found dead or 1 day before death. 
Of the D. melanogaster that became a Smurf, the majority of them did so on the day of their 
death or one day before. Bars are simultaneous 95% confidence intervals. Dye 1: SPS Alfachem 
Blue, Dye 2: Sigma Aldrich, Dye 3: Spectrum Blue, Dye 4: Flavors and Color Blue, Dye 5: 
Chemistry Connection Blue, and Dye 6: Electric Blue 
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TABLES 

Table 2.1 The number of flies used in the experiment per population of D. melanogaster as well 
as the total number and sex (M = Male, F = Female) of flies exposed to each dye. The left 
column has the five populations used: ACO, CO, S93, A4 3852 and Canton S, and the top row 
has the medium that the flies were fed: either the control banana molasses food or the banana 
molasses food with the indicated dye. This table excludes one CO individual in dye 1 whose sex 
was unknown. 

 

 

Popul
ation 

Control Dye 1 Dye 2 Dye 3 Dye 4 Dye 5 Dye 6 Total 
Flies 
per 

Popula
tion 

Regular 
Banana 

Molasses 
Food 

Food & 
SPS 

Alfachem 
Blue 

Food & 
Sigma 

Aldrich 

Food & 
Spectrum 

Blue 

Food & 
Flavors 
& Color 

Blue 

Food & 
Chemistry 
Connection 

Food & 
Electric 

Blue  

1: 
ACO 

Total Flies Total Flies Total 
Flies 

Total 
Flies 

Total 
Flies Total Flies Total 

Flies 

382 
57 56 52 54 55 55 53 

M  F  M  F  M  F  M  F  M  F  M  F  M  F  

30 27 28 28 27 25 27 27 29 26 27 28 28 2
5 

2: CO 

Total Flies Total Flies Total 
Flies 

Total 
Flies 

Total 
Flies Total Flies Total 

Flies 

395 
54 54 56 56 57 61 57 

M  F  M  F  M  F  M  F  M  F  M  F  M  F  

27 27 25 29 29 27 27 29 29 28 29 32 28 2
9 

3: S93 

Total Flies Total Flies Total 
Flies 

Total 
Flies 

Total 
Flies Total Flies Total 

Flies 

410 
57 58 59 58 59 60 59 

M  F  M  F  M  F  M  F  M  F  M  F  M  F  

27 30 29 29 30 29 27 31 30 29 30 30 31 2
8 

4: A4 
3852 

Total Flies Total Flies Total 
Flies 

Total 
Flies 

Total 
Flies Total Flies Total 

Flies 

396 
57 57 56 57 58 56 55 

M  F  M  F  M  F  M  F  M  F  M  F  M  F  

28 29 30 27 27 29 29 28 29 29 27 29 27 2
8 

5: 
Canto

n S 
(CAS) 

Total Flies Total Flies Total 
Flies 

Total 
Flies 

Total 
Flies Total Flies Total 

Flies 

398 
55 58 58 55 56 57 59 

M  F  M  F  M  F  M  F  M  F  M  F  M  F  

27 28 29 29 29 29 24 31 28 28 28 29 29 3
0 

Total 
Flies 
per 
dye 

280 283 281 280 285 289 283 1982 
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Table 2.2. Mean longevity from the tapping experiment. The p-value is for a t-test for different 
mean longevities of same sex treatments. There is no discernible difference in the mean 
longevity of the flies that were tapped versus those that were not tapped.  
 

Sex Tapping Mean 
Longevity 

(Days) 

95% Confidence 
Interval 

p value 

Male Yes 53.2 (47.8, 58.5) 0.83 
Male No 53.9 (49.4, 58.5)  

Female Yes 54.5 (49.0, 60) 0.88 
Female No 54.4 (49.0, 59.8)  
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SUPPLEMENTAL FIGURES 
 
 

 
 
Figure S2.1. Mean longevity in days of flies in the control environment and dyes across all 5 
populations. Standard error bars. When pooling the dyes against the control, the control flies 
lived significantly longer than the flies in an environment with dye in the food. The dyes used: 
Dye 1: SPS Alfachem Blue, Dye 2: Sigma Aldrich, Dye 3: Spectrum Blue, Dye 4: Flavors and 
Color Blue, Dye 5: Chemistry Connection Blue, and Dye 6: Electric Blue 
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Figure S2.2. Results of the preliminary study of 172 ACO1 adults. The percent of first 
appearance of all 81 Smurfs as a function of the days before death when raised on food with dye 
1. The bars are simultaneous 95% confidence intervals. The majority became Smurfs on the day 
they were found dead (day 0) or 1 day before death. A total of 47% (95% confidence interval, 
(39%, 54%)) eventually became Smurfs. The mean longevity (from egg) of all flies in this 
experiment was 32.9 days (95% confidence interval ±1.4 days). These results are consistent with 
those in the full experiment. Specifically, less than 50% of all flies became Smurfs prior to death 
and those that did become Smurfs most frequently did so on the day or day before they died. 
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SUPPLEMENTAL TABLES 

Table S2.1.  Average longevity for every population and every dye used in the experiment. Also 
provided are the average day of Smurfing.  
 

Population   Dye 1 Dye 2  Dye 3  Dye 4  Dye 5  Dye 6  Control  

ACO 

Average 
Day of 
Death 

33.518 34.558 34.815 31.655 32.545 33.566 40.053 

Average 
day of 
Smurf 

30.129 31.143 26.571 26.8 28.913 31.2 N/A 

CO 

Average 
Day of 
Death 

56.255 49.107 62.143 49.439 60.689 55.719 67.87 

Average 
day of 
Smurf 

43.538 41.944 61.857 48.545 63.143 53.929 N/A 

S93 

Average 
Day of 
Death 

61.293 59.508 58.724 55.712 54.95 63.678 65.86 

Average 
day of 
Smurf 

59.154 56.857 61.571 46.083 48.524 46.889 N/A 

A4 3852 

Average 
Day of 
Death 

50.632 48.821 50.07 46.948 46.821 45.091 52.719 

Average 
day of 
Smurf 

47.444 49.5 50 46.5 44.739 40 N/A 

CAS 

Average 
Day of 
Death 

51.362 51.655 53.582 50.786 45.754 52.051 58.691 

Average 
day of 
Smurf 

50.333 54.933 45.308 46.5 41.444 41.067 N/A 

 

 

 

 

 

 

 



	 36 

Table S2. Log-rank p-values comparing the control treatment to each of the other populations at 

each of the dye treatments. These results are from the R survdiff function in the survival package. 

The significant results are shown in bold (using the Bonferroni correction for 30 tests). 

Population Dye 1 Dye 2 Dye 3 Dye 4  Dye 5  Dye 6 

ACO 9.1´10-3  9.4´10-3  4.9´10-2  2.5´10-4  2.0´10-3  3.7´10-4 

CO 8.8´10-3  5.9´10-8  4.6´10-2  4.9´10-8  1.1´10-2  3.89´10-4 

S93 0.17  3.2´10-2  2.7´10-2  1.6´10-2  1.5´10-2  0.58 

A4 3852 1.2´10-2  9.6´10-3  0.051  2.9´10-4  4.1´10-3  3.4´10-3 

CAS 3.02´10-2  9.9´10-4  1.01´10-2  4.5´10-4  3.4´10-6  3.2´10-2 

 

Table S2.3. The median longevity for each population at every dye treatment. The median 
longevity for each population was greater in the control treatment in than every other dye except 
for A4 3852 and dye 1. 
 
Population Dye 1 Dye 2 Dye 3 Dye 4 Dye 5 Dye 6 Control 

A4 3852 54 49 51 49 50 47 53 

ACO  33 33.5 36 31 33 33 37 

CAS  51 54 57 54.5 45 51 63 

CO  56 54 65 49 59 55 68 

S93  63.5 63 62.5 56 54 68 68 
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Table S2.4. The maximum longevity for each population, dye combination. 

Population Dye 1 Dye 2 Dye 3 Dye 4 Dye 5 Dye 6 Control 

ACO  62 61 64 63 71 55 74 

CO  104 86 105 88 123 95 100 

S93  100 100 89 85 100 96 105 

A4 3852 70 71 72 65 67 73 86 

CAS  89 84 89 82 79 86 89 

 

Table S2.5. The number of flies that Smurfed per population and per dye, as well as the number 
of total flies per population and dye.   
 

Population   Dye 1 Dye 2 Dye 3 Dye 4 Dye 5 Dye 6 

ACO 
TOTAL Smurf 

30 21 14 20 23 15 

Total Flies 
56 52 54 54 55 53 

CO 
TOTAL Smurf 

13 18 14 22 14 28 

Total Flies 
55 56 56 57 61 57 

S93 
TOTAL Smurf 

13 14 7 12 21 9 

Total Flies 
58 59 58 59 60 59 

A4 3852 
TOTAL Smurf 

9 12 11 10 23 17 

Total Flies 
56 56 57 58 56 55 

CAS 
TOTAL Smurf 

12 15 13 14 18 15 

Total Flies 
58 58 55 56 57 59 
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STANDARD ROSE AND MUELLER LAB BANANA FOOD RECIPE 

The laboratory is a controlled environment with respect to temperature and so on, and we must 

take care that the food given the flies is equally uniform in quality. Most of the adult phenotype 

is determined by the larval stages, and the larvae feed, bathe, and live in the banana food. It is 

therefore absolutely critical that the food be consistent, particularly when the flies are to be 

assayed in an experiment. Limited variation in banana ripeness & quality, slight burning (&c) 

can be tolerated for routine stock maintenance, but should be avoided as much as possible for 

experimental-generation flies. The ideal banana is ripe but not rotting, with full yellow color and 

the first hints of browning spots.  

INGREDIENTS 

Cook Size 4.4 Liters 6.6 Liters 
STEP 1   
Distilled water 4.4 Liters 6.6 Liters 
Agar 66.7 grams 100 grams 
STEP 2     
Bananas unpeeled 600 grams 900 grams 
Distilled water 267 ml 400 ml 
Light Karo syrup 1 & 1/3 scoop * 2 scoops * 
Dark Karo syrup 1 & 1/3 scoop * 2 scoops * 
Barley Malt 2 scoops * 2 scoops * 
STEP 3   
Distilled water 307 ml 460 mL 
95% Ethanol 107 ml 160 mL 
Yeast 160 grams 240 grams 
Step 4   
95% Ethanol 104 ml 156 mL 
p-hydrobenzoic acid 10.4 grams 15.6 grams 
Table S2.6 Ingredients used in the Rose and Mueller laboratory food recipe. * A "scoop" 
refers to the ice-cream scooper used in the Rose Lab, which is 55 mL, volumetrically 
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DIRECTIONS  

STEP 1 

Start by measuring the water & agar and combining them in the cook pot with a stir-bar (a large 

one) and put the hot-plate on "high". Don't turn the stirring speed too high or the stir-bar will 

come off-center. Allow the pot to boil; this may take better than an hour, so you should start the 

cook while still attending to other things. The Bunsen burner may be used at this stage to speed 

up the boiling, but even at this stage over-boiling and burning are possible. Do not leave the lab 

with the flame on.  

STEP 2  

When the agar-water has boiled vigorously for at least 5 minutes you may proceed with step two; 

do not start this step too early, or else the mixture will congeal into nasty lumps and the bananas 

will oxidize. For the small (4.4L) cook one blender is sufficient, but two are necessary for the 

6.6L cook. Add the water to the blender(s), which should be well cleaned, and then the weighed 

bananas one by one while blending on low. Make sure the bananas are smoothly blended in by 

switching to a high setting. Then add the other ingredients (karo & barley malt). Mix everything 

well and then add to the boiling agar-water. Do not wash the blenders. Using a wooden spoon to 

scrub the areas of the pot outside of the stir-bar's reach (don't knock stir-bar off center) and rotate 

the whole pot slightly help prevent burned spots which slow down re-boiling.  

STEP 3  

While it was critical in step one to allow the mixture to boil, the third step may be started before 

the food re-boils. Add most of the water to one of the blenders (at least 3/4), saving a bit in the 
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graduated cylinder, and rinse it out before pouring it into the other blender (it only takes one) to 

get most of the residual banana mix out. Add ethanol, and, gradually while blending, the yeast. 

Blend until all particles of yeast are dissolved (5-10 minutes); too short and the yeast will 

precipitate out, too long and it will start growing in the blender. Use the bit of water you saved to 

rinse out the blender and add it to the cook. Allow the final mixture to boil for at least five 

minutes. As the food boils at the final stage it will foam up and overflow if the lid is on; you 

must watch the food as it nears a boil. Generally, it is best to take the lid off when the food 

comes to a boil and let it boil for at least five minutes. It is absolutely critical that the food boil 

after the yeast has been added.  

STEP 4 anti-fungal solution� 

Remove the food and allow it to cool -- a cold water bath speeds this up. Mix up the  

ethanol and hydrobenzoic acid and cover it to prevent evaporation. The food should be  

stirred occasionally while cooling. When the temperature hits 48oC the anti-bacterial solution 

should be added, and mixed in thoroughly before pouring.  

STEP 5 - pouring  

Vials: For most purposes, we require vials for egg-collection/larval rearing. The standard depth 

in an 8-dram vial is about 2cm (or 6mL), which is well in excess of the amount eaten by the 

larvae; within reason, any level of food above about 1cm is adequate. A 6.6L cook will make 

about 41/2 racks of each. food if carefully poured; a 4.4L cook will make about 3 racks. Vials 

which are only for temporary feeding of adults (transfer vials) can be poured low.  

Plates: Plates are usually poured up to the upper lip of a 15x100mm petri dish. A cook will 

produce about 12 - 14 plates / liter. Plates are almost always needed in the lab, so if you have 
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extra food pour plates.  

STEP 6 - cooling & storage  

Putting the food in front of the fan will speed its cooling and help prevent stray flies from getting 

into it. Egg-collection vials should be covered with the screening and plates should not be left 

out for flies to lay on. When vials are room temperature (1/2 - 1 hour), they should be inverted 

with paper towel on top into a new & clearly labelled & dated rack. Plates should be closed, 

bagged, labelled & dated. All food to be kept for more than two days should be refrigerated. 

Don't expect a fan or a screen to keep out loose flies: check.  
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CHAPTER 3 

Correlated response to Urea Adaptation 
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INTRODUCTION 

It is crucial in evolutionary biology to understand the role the natural environment has in 

molding adaptations and affecting allele frequency change, especially in insects (Partridge and 

Harvey 1988; Roff 1992; Stearns 1992). Insects are often exposed to many toxic substances in 

their environments, which include insecticides, heavy metals, chemicals or feeding deterrents 

synthesized by plants.  Studies of resistance to toxic pesticides usually focus on compounds that 

target a specific enzyme or biological process. Urea and ammonia differ from these because of 

their wide-ranging effects on organismal and cellular physiology (Somero and Yancey, 1997). 

Many life-history characters are interrelated and rooted in the common network of physiological 

processes constituting metabolism and determining reproductive success or fitness (Lande 1982, 

Lande and Arnold 1983, Service, 1987, 1989; Rose, 1991; Graves et al., 1992; Charlesworth 

1993, Chippindale et al., 1993, Borash et al., 2000, Flatt 2020).  

Fitness components in flies are frequently correlated with traits that confer the ability to 

resist and survive various stresses (Prasad and Joshi 2003, Flatt 2020).  Larval competitive 

ability in D. melanogaster depends on many factors, such as feeding rate, initial weight, relative 

time spent on molting, minimum food requirement for pupation, and resistance to crowding. 

Experimental studies indicate that, in laboratory populations of D. melanogaster, the outcome of 

larval competition for food depends primarily on the feeding rate (Bakker, 1961). They found 

that an important component of the feeding rate is the number of bites the larva takes from the 

food medium per unit time, which can be measured as the number of sclerite retractions per 

minute. It was also demonstrated that there is a fair amount of additive genetic variation for 

retraction rates in populations of D. melanogaster (Sewell et al. 1975). The implication of their 
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finding meant that sclerite-retraction rate could be a character that responds to natural selection. 

Joshi et al. (1988) found significant genetic variation for feeding rates in D. melanogaster.  

Past research has shown that feeding rates in Drosophila larvae are affected by 

environmental factors. Experiments with crowded conditions (hundreds of larvae vs. 50-80 

larvae per vial) have shown to lead to a major food shortage, intense competition, and increasing 

levels of toxic metabolic waste (ammonia) produced by the larvae (Shiotsugu et al. 1997; Borash 

et al. 1998). Under such crowded cultures, early emerging larvae have high larval feeding rates 

and lower absolute viability in food laced with ammonia while the late emerging types have 

reduced feeding rates but higher absolute survival (Joshi et al 1988, Borash et al. 1998).  

Previous experiments in our research laboratory have examined adaptations in 

populations of D.  melanogaster to high levels of environmental urea and ammonia. Although 

Botella et al. (1985) suggested urea might be the primary nitrogen waste product of Drosophila 

larvae, more recent work by Borash et al. (1998) showed that only ammonia accumulated in the 

food of crowded Drosophila cultures. Urea appears to have general cytotoxic effects due to 

interference with translation, action as protein denaturant (Somero and Yancey, 1997), and its 

reduction of enzyme activity and thermostability (Bowlus and Somero, 1979; Yancey and 

Somero, 1979; Yancey, 1985; Yancey, 1992; Somero and Yancey, 1997).  Other experiments 

have found that increased levels of isoaspartyl residues, a type of protein, are found in larvae 

reared on urea-containing media (David et al. 1999). However, urea is not a common nitrogen 

waste produce in insects. Borash et al 1998 found that urea levels were very low in regular 

environments, and even in crowded environments the levels were not high enough to be toxic. 

Borash et al, 2000 has shown that feeding rates decline as populations adapt to urea and 

ammonia, while feeding rates decline also in the presence of parasites (Fellowes et al. 1999). 
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Previous work has shown that Drosophila populations can evolve resistance to high levels of 

environmental urea (Joshi et al. 1996, Shiotsugu et al., 1997, David et al. 1999, Etienne et al. 

2001). 

An important model that looked at the evolution of feeding rates in D. melanogaster 

larvae in stressful environments found they were altered as they adapted to high levels of 

ammonia, urea, and the presence of parasitoids (Mueller et al 2015). If there are toxic 

compounds in the larval food, energy is required for detoxification, and larvae can maximize 

food intake by slowing their feeding rate (Mueller et al 2015). While it may be argued that a 

slower feeding rate does not necessarily prove that the larva will grow slower, previous studies 

(Joshi and Mueller 1996; Mueller et al. 1991) showed that fast feeding rate larvae required more 

food to reach the same critical minimum size. Mueller et al. 1990 showed a negative correlation 

between feeding efficiency and feeding rate. 

Our goal was not only to study feeding rates of our urea-adapted lines, but to also look at 

various other phenotypes, such as viability, development time, starvation and desiccation 

resistance, larval growth rate and adult size.  Numerous studies have measured phenotypic 

variation in fitness components by assaying these traits under standard laboratory conditions. 

These various studies (referenced in Flatt 2020) revealed that there generally exist large amounts 

of phenotypic variation for many components of fitness, including traits such as development 

time, larval competitive ability, viability, size at eclosion, age-specific fecundity, lifetime 

reproductive success, age-specific mortality, life span, and various stress resistance traits.  

We developed 3 replicated lines of D. melanogaster that are currently, or have at some point in 

the past, been exposed to many generations of urea exposure in the larval food. Previous research 

on urea adapted lines have shown changes in larval feeding rates, larval foraging paths, and 
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viability in urea laced environments (Shiotsugu et al., 1997; Borash et al., 2000; Mueller et al., 

2005). Some of the same phenotypes are examined in this study. In addition, we have undertaken 

the measurements of larval growth rates. This will allow us to test whether larval feeding rates 

affect growth rates as suggested by Mueller and Barter (2015). The relationship between larval 

feeding rates and food consumption rates has been questioned (Kaun et al., 2007). The 

experiments described next will present decisive evidence on this issue.  
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MATERIALS AND METHODS 

1.1 Populations 

All the populations in the lab are derived from an established Rose IV population (Rose, 

1984), Figure 3.1. They are maintained on a banana-molasses food (Rose, 1984) at 25C (24 h 

light), uncontrolled humidity, and having a generation time of approximately 3 - 4 weeks (Table 

3.1). All selection regimes are five-fold replicated, uncrowded as larva (60–80 eggs per 8-dram 

vial), with emergent adults kept at a low density of approximately 50–60 flies per 8-dram vial, 

and transferred to a cage environment with fresh food given about every other day for 

approximately 1 week. Effective populations sizes for each line were in the range of 700-1000 

(Mueller et al., 2013) every generation and maintained at large population sizes (1000), with 

discrete generations. The CO and nCO are control groups of populations that are on a 28-day life 

cycle. The TSO selected populations are a starvation selected population of five replicates, while 

the TDO’s are a starvation and desiccation selected treatment population group of five replicates, 

both on 28-day life cycles. Both the TSO and TDO have now been in a control environment.   

The UX and the UTB populations were subjected to selection for increased larval 

tolerance to the presence of toxic levels of urea in the food. The levels of urea were increased 

every few generations, when it was observed that a great proportion of larvae were surviving to 

adulthood. The derivation of the urea-tolerant (UX) and unselected controls (AUC) selection 

regimes was created in the Fall of 1996. Both populations were derived from a five-fold 

replicated set of populations called UU, which had a 3-week generation time, and were reared at 

low larval and adult densities. The UU group of populations were derived in 1990, from the Rose 

B populations (Rose, 1984; Chippindale et al., 1994, 1996). The RUX are a reverse selected line 
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of the UX. They have been in a control environment since January 2013 The UTB line were 

created in October 2013. The AUC, RUX, UX, and UTB lines are all 21-day cycle flies.  

 For every assay, eggs were collected from the 8 groups of population types and passed 

through two generations of common, standard conditions – low larval density, 1000 adult 

density, discrete generation times and regular banana-molasses food (Bitner et al. 2020).  

1.2 Feeding Rates 

Feeding rates were collected on a total of eight groups of populations (Table 3.2). Eggs 

were collected from adults who had undergone a two-generation standardization procedure – low 

density, regular banana-molasses food. To measure the feeding rate, individual larvae around 48 

hours old were gently moved onto a 3% agar coated with a 10% live yeast suspension. The 

larvae were given 60 seconds to adjust to the new surroundings, and their sclerite retractions 

were recorded for 60 seconds and counted for twenty larvae per population. The procedure for 

measuring sclerite rates is similar to Sewell et al. (1975) and described in Joshi et al. (1988).  

 The feeding rates were done in two blocks. The TSO populations were used in each block 

and therefore the feeding rates were presented as a difference from the TSO mean feeding rate. 

To control for block differences all feeding rates for individuals were converted to feeding rate 

differences by subtracting the mean feeding rate of all TSO populations which were tested in 

both block 1 and block 2. Then we can let the feeding rate difference for selection regime-i (i= 

1,..,7), population-j (k= 1,..,35) and individual-k (k= 1,..,25 or 50) be yijk. The linear mixed effects 

model for yijk is, 

!"#$ = : + '")" + ;# + ."#$ 

where	di	= 0,	if i=1,	and 1 otherwise,	Bj	and	eijk	are independent normally distributed random 

variables with zero mean and variances <=1 and <>1. The model was analyzed with the linear 
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mixed effects R function lme (R Core Team, 2017). Pairwise differences were evaluated after 

adjusting for multiple comparisons using Tukey’s method implemented by the R function 

lsmeans. 

 The UX, RUX and UTB groups of populations all have a current or past history of being 

raised as larvae in food with urea. Since past research (Borash et al, 2000) has shown that 

feeding rates decline as populations adapt to urea, we were interested in testing the feeding rates 

of these three selection regimes as a group. Thus, we pooled all 15 UX, RUX, and UTB selection 

treatments into one urea population and repeated the analysis as described above comparing the 

urea adapted groups of populations to the AUC control. 

1.3 Starvation and Desiccation 

Individual female flies were collected from the eight selected groups, a total of 30 flies 

per replicate per assay (150 flies per population for one assay). Each fly was placed into a straw 

with pipette tips on both ends. The straws were wide enough for the flies to be able to move from 

one end to the other. The flies selected for the starvation assay were placed into straws with 3% 

agar while the flies selected for the desiccation assay were placed into straws with desiccant 

separated by cheese cloth. Desiccant can clog their airways and the cheese cloth functioned to 

dry out the environment, but not kill the flies directly. Flies subjected to desiccation were 

checked hourly, and flies undergoing starvation were checked every 4 hours.  

Time to death by starvation and desiccation was collected on a total of eight populations 

groups. We can let the desiccation (or starvation) time for selection regime-i (i= 1,..,8), 

population-j (k= 1,..,40) and individual-k (k= 1,..,30) be yijk. The linear mixed effects model for 

yijk is, 

!"#$ = : + '")" + ;# + ."#$ 
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where	di	= 0, if i=1, and 1	otherwise,	Bj	and	eijk	are independent normally distributed random 

variables with zero mean and variances <=1 and <>1. The model was analyzed with the linear 

mixed effects R function lme (R Core Team, 2017). Pairwise differences were evaluated after 

adjusting for multiple comparisons using Tukey’s method implemented by the R function 

lsmeans. 

1.4 Viability vs. Food type 

The viability experiment started with 50 first instar larvae. However, due to the size of 

this experiment and technical difficulty of counting out exactly 50 larvae the actual number of 

larvae put in each vial is more properly thought of as a random variable which could be both 

higher or lower than 50. Thus, in this analysis we have analyzed the total number of larvae that 

survived to become adults under the assumption that the mean number of input larvae was the 

same in all treatments. 

 Larvae were raised under two experimental treatments, a control environment with 

regular food and food with added urea. Ten vials were used per population per environment, for 

a total of 20 vials per population. Each vial held the approximate 50 larvae. Ultimately, we are 

interested in the testing the effects of urea on survival for each population as well as differences 

between the different selection regimes. These experiments were also run in three blocks each 

separated by about one years’ time: (i) AUC, RUX and UX, (ii) TSO, CO, NCO, and UTB, (iii) 

UTB, UX, CO, and nCO. 

 The analysis of the differences among the urea selected lines (RUX, UX, and UTB) and 

their control (AUC) was done with blocks (i) and (iii). For this analysis, viability was scaled to 

the mean viability of the UX group of populations in the urea food environment. The analysis of 

demographically selected lines (TSO, CO, and nCO) was done with blocks (ii) and (iii). Viability 
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for the demographically selected populations was scaled to the mean viability UTB populations 

in urea. 

 Let yijkm be the number of survivors in food type-i (control (1), urea (2)), selection 

regime-j (AUC (1), RUX (2), and UTB (3) in the urea analysis and TSO (1), CO (2), and nCO 

(3) in the demographic analysis), population-k (k= 1,..,15) and replicate m (m=1,…,10). Let 

!?@AB be the mean viability in the urea control populations (UX for blocks (i) and (iii) and UTB 

for blocks (ii) and (iii)). We analyzed the differences, ∆"#$D= !"#$D − !?@AB. The effects of 

selection regime and food type were studied with the linear mixed effects model, 

∆"#$D= ' + )"*" + )#+# + )")#,"# + F$ + G"#$D 

where	di=0 if i=1 and 1 otherwise,	bk	and	cijkm	are the population and residual error terms 

assumed to have a mean of zero and different variances. Parameter estimates for these terms 

were made by the lme R function (R core team, 2017). All pairs of selection regimes were 

compared for significant differences in viability using the R emmeans program.  

 We also developed a statistical analysis of the relative level of adaptation to urea for each 

selection regime. Let yijkm be the number of survivors in food type-i (control, urea), selection 

regime-j (TSO, AUC, CO, NCO, RUX, UX, UTB), population-k (k= 1,..,35) and replicate m 

(m=1,…,10). Then we analyzed the differences, ∆#$D= !HIJK@I%#$ − !?@AB#$D where !HIJK@I%#$ 

is the mean in selection regime-j and population-k.  

1.5 Developmental Time vs Food type  

This portion of the assay was focused on looking at differences in the development time 

of the larvae. The measurements were made from when first instar larvae were collected to when 

the fly eclosed in the control banana molasses environment compared to the urea environment. 

For each population, 10 vials were set up with 50 freshly hatched larvae each in a banana 
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molasses environment. Another 10 vials were set up with urea food and 50 freshly hatched 

larvae. Eclosing adults were collected every 6 hours separated by male and female and recorded.  

 The methods for the analysis of the development time experiment were the same as the 

viability analysis except there was one additional fixed effect, sex. The first analysis was on the 

difference between the urea development time and the control development time. Here the mean 

control development time for each selection/sex/population/rep sample was calculated and then 

subtracted from the corresponding development time in urea.  

 In this first section, we analyzed blocks (i) and (iii) using UX-urea as the standard. Thus, 

in block (i) we computed the mean UX-urea, and this mean was subtracted from the other control 

and urea observations. The same was done for block (iii) using the UX-urea mean from block 

(iii). In the second section, we analyzed blocks (ii) and (iii) using UTB as the standard. Thus, in 

block (ii) we computed the mean UTB-urea, and this mean was subtracted from the other control 

and urea observations. The same was done for block (iii) using the UTB-urea mean from block 

(iii).  

1.6 Larval Growth Rate  

 Pairs of populations, matched by the replicate number, were assayed together in a 

randomized block design and the assay followed the same procedures as mentioned in Santos et 

al. (1997). With a two-generation lead in for each population, 45 newly hatched first instar larvae 

were collected with a fine paint brush and placed onto non-nutritive agar petri dishes with 3 ml 

of yeast paste (188 grams of yeast in 500 ml of DI water) and placed randomly into a 25 C 

incubator with 24-hour lighting. There were 13 different “hour numbers” larvae were sampled at: 

24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, and 105 hours after the larvae were added to the 

petri dish. At the designated hour, the larvae were washed with DI water and then allowed to air 
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dry. The wet weight was taken of the larvae and they were then placed into an 80-degree C 

drying oven, after which their dry weights were recorded.  

 Empirically, larval growth follows a logistic trajectory. We used a three-parameter 

logistic model to model basic growth dynamics. Under this model the size of individual larvae 

after t-hours of growth is given by, 

L M, O =
PQ

0RAST PUVK
PW

.      (2) 

In model (2) the asymptotic maximum size is equal to	j1,	and the time to reaching half the 

maximum size is	j2.With this model we let yijkt	be the average size of a larva from selection 

regime-i (i=1 (AUC), 2 (CO), 3 (nCO), 4 (RUX), 5 (UTB), 6 (UX), 7 (C) and 8(D)), population-j 

(j=1,…,40), and block-k at time-t. Random variation arises due to both population effects 

(random genetic drift) and individual variation. Consequently, the size of larvae from selection 

regime-i and population-j at time-t is yijt =	f(jij,t)	+	eijkt,	and,		

X"0 = '0 + )"+0" 	 	 	 	 	 	 	

X"#1 = '1 + )"+1" + F# + G$		 	 	 	 	 (3)	

X"Z = 'Z + )"+Z",	 	 	 	 	 	 	

where di	=0, if i=1 and 1 otherwise. The within population variation,	e,	is assumed to be normally 

distributed with a zero mean.	This variation increases as the larvae get larger so we assumed that 

Var(e)=	<1 O 1∆	where	D	is estimated from the data. Population variation, b, and block variation, 

c, is assumed to only affect parameter j2.	We tested models with population variation in the 

other parameters and the model with variation in	j2	was chosen due to having the lowest Akaike 

and Bayesian information criterion (Pinheiro and Bates, 2000, chapter 8). The population 

variation is assumed independent of the within population variation and has a normal distribution 
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with zero mean and variance,	<[1.	Parameters of equation (3) were estimated by the restricted 

maximum likelihood techniques implemented by the nlme function in R (R Core Team, 2017).	

 When displaying the predicted larval size from equations (2-3) we also calculated 95% 

confidence intervals. With eight different selection regimes we have 24 maximum likelihood 

parameters estimates and their covariance matrix estimates, 	\ = *0, *1, . . , *17  and ]. These 

were assumed to have a t-distribution. From these distributions we drew samples of the 

parameter vectors, :$, (k= 1,…,m). For each sampled parameter vector, we made size predictions 

for each selection regime for ages, 42, 48, 54, and 60 hours. At a specific age let the kth (out of 

m) prediction for selection regime-i be !$". From these m predictions, we generated order 

statistics, Δ_(!$"), where Δ0(!$") is the smallest predicted value at t and ΔD(!$") is the largest. 

From the order statistics we then used Δ%(!$") as the lower confidence limit and Δ?(!$") as the 

upper confidence limit. In our simulations we set m=5,000. Therefore, a 95% confidence interval 

corresponds to Δ% !$" = Δ014(!$") and Δ? !$" = Δ7bcd(!$").  

One hypothesis of interest was whether there was a relationship between the larval 

feeding rates and the growth of larvae. To test this, we fitted a line to the larval size vs. feeding 

rate observations at 4 larval ages around 48 hours – the age our feeding rates were measured. A 

significant positive slope for these lines were taken as evidence consistent with our hypothesis. 

1.7 Adult size 

 The adult size was collected from the same larvae collected for the larval growth rate 

assay (section 1.6). Following Santos et al. (1997), at hour 105, 30 pupa were collected and 

placed into non-nutritive agar vials to allow for their development. When they had eclosed, 

flynap was used to anesthetize the flies to record their wet weights. Afterwards, they were placed 

into a drying oven at 80 degrees Celsius for 48 hours. The dry weight of the adult flies was then 
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recorded after the 48 hours had passed. The statistics for analyzing the adult dry size of the D. 

melanogaster flies are the same as the development time differences. 
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RESULTS 

Feeding rates 

Toxic environments can lead to various trade-offs in D. melanogaster. Larval feeding 

rates in D. melanogaster are highly correlated with competitive ability (Sewell et al., 1975; 

Burnet et al., 1977; Joshi et al., 1988). A significant slower feeding rate was observed in the 

urea-adapted lines – UX, UTB and RUX. Figure 3.2 shows that the RUX, UX and UTB groups 

of populations are feeding at similar rates.  

The UX, RUX and UTB populations all have a current or past history of being raised as 

larvae in food with urea. Since past research (Borash et al, 2000) has shown that feeding rates 

decline as populations adapt to urea, we were interested in testing the feeding rates of these three 

selection regimes as a group. Thus, we pooled all 15 UX, RUX, and UTB populations into one 

urea population and repeated the analysis. In the Urea vs AUC contrast the p-value for just that 

one test was 0.028. So, the urea lines feed significantly more slowly than the AUC control (Fig. 

3.3).  

Starvation and Desiccation Resistance 

In looking at starvation and desiccation resistance, two of the selection treatments, TSO 

and TDO, had undergone selection in their evolutionary history for resistance to starvation 

(TSO) and starvation and desiccation (TDO) but were now reverse selected culturing in the 

control environment. Regarding desiccation resistance, there was no significant difference 

between any of the 8 groups of populations (Figure 3.4). Starvation resistance showed no 

difference between the selection treatments under the horizontal bars, but significant differences 

were seen in some population comparisons (Figure 3.5). UTB had a significant difference 

between TSO (p=0.0002), TDO (p=0.0026), nCO (p=0.0029) and CO (p=0.039). UX had a 
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significant difference between TSO (p=0.0003), TDO (p=0.0054) and NCO (p=). RUX (p 

values=) and AUC had a significant difference with TSO. (p =0.0061) 

Viability  

As a measure of adaptation to urea we compared the viability of each population in the 

control environment to the urea environment by computing the difference in the two (Fig 3.6). If 

this difference is positive and significantly different from zero it indicates sensitivity to the toxic 

effects of urea. The TSO, AUC, CO, and nCO selected groups show significant sensitivity to 

urea (Figure 3.6). The viability difference is not significantly different from zero in the RUX, 

UX and UTB groups of populations. This difference points to an adaptation of the urea 

environment in the RUX, UX and UTB populations, and little to no adaptation in the AUC and 

demographic populations. It is of some interest that despite more than 100 generations in the 

control environment the RUX populations still retain an ability to survive well in urea laced 

food.  

The viability of the AUC in the control environment was not significantly greater than 

UX and RUX group of populations, but was significantly greater than UTB (Figure 3.7). In the 

urea environment, AUC viability was significantly less then UX, RUX and UTB (Figure 3.7). In 

both environments, the TSO selection regime has lower viability than the CO and nCO regimes. 

There were no significant differences between the CO and nCO regimes in either environment 

(Fig 3.8).  

Developmental Time 

The developmental time of the D. melanogaster is calculated as the time it took for the 

first instar larvae to pupate and eclose. These experiments were run in three blocks: (i) AUC, 

RUX and UX, in Spring 2017 (ii) TSO, CO, NCO, and UTB in Spring 2018, (iii) UTB, UX, CO, 
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and NCO in Spring of 2019. The block structure will become important when we try to compare 

populations for significant differences. As an example, to compare all the urea adapted 

populations and the control, AUC populations require observations from blocks (i) and (iii). 

These two blocks have in common the UX populations and thus they can be used as a standard to 

assess differences among the group as a whole. 

The first analysis is on the difference between the urea development time and the control 

development time (Figure 3.9). Here the mean development time in the control environment for 

each selection/sex/population/replicate sample was calculated and then subtracted from the 

corresponding development time in urea. Thus, a positive value for this difference indicates that 

the larva takes longer to develop in urea. Prior evidence suggests urea slows development. The 

populations that have been selected for urea resistance, RUX, UX and UTB, show the smallest 

development time difference consistent with their adaptation to urea. However, all populations 

show a development time difference that is positive and significantly different than zero (see 

confidence intervals in Figure 3.9. Thus, even populations adapted to urea show delayed 

development in urea laced food. 

 We assessed differences in development time among demographically selected 

populations separately from urea selected populations. To evaluate the demographic populations, 

we used blocks (ii) and (iii) making UTB the standard. Thus, in block (ii) we computed the mean 

UTB-urea development time, and subtracted this from the TSO, CO, and nCO, control and urea 

observations. The same was done for block (iii) using the UTB-urea mean from block (iii) and 

subtracting that mean from the CO and nCO observations. The actual mean development times 

for the relevant UTB populations were: females:  UTB-urea(ii) 301.8, UTB-urea(iii) 243.0; 

Males: UTB-urea (ii) 302.8, UTB-urea (iii) 245.8. For the control environment: Females: UTB-
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control (ii) 262.5, UTB-control (iii) 227.9; Males: UTB-control (ii) 266.0, UTB-control (iii) 

231.4. In the control environment, there are no significant differences between males and 

females from the CO, nCO and TSO selected groups (Figure 3.10). In the urea environment, the 

TSO females developed significantly slower than the CO and nCO flies. Likewise, the TSO 

males developed more slowly than the CO and nCO flies. There were no significant differences 

between the nCO and CO flies. 

 Then we analyzed the blocks (i) and (iii) using UX-urea as the standard to assess 

development time differences among the urea populations. Thus, in block (i) we computed the 

mean UX-urea, and this mean was subtracted from the other control and urea observations. The 

same was done for block (iii) using the UX-urea mean from block (iii). The actual mean 

development times in urea for the relevant UX selection treatment were: UX-female (i) 270.7, 

UX-male (i) 274.7, UX-female (iii) 255.5, UX-male (iii) 257.4. For the control environment: ux-

female (i) 247.8, UX-male (i) 251.7, UX-female (iii) 229.6, UX-male (iii) 232.9. Thus, in the 

urea environment the UX phenotype is 0 in the control environment it is: females (-24.4), males 

(-23.75). We found that in the urea environment, AUC females and males had significantly 

greater development times than their respective sexes in UTB, but no difference with UX or 

RUX (Figure 3.10). In the control environment, the development time of the AUC females were 

not significantly greater than UTB, RUX or UX, while AUC males were significantly less than 

RUX, but not different than UX or UTB (Figure 3.11).  

Larval Growth Rate 

The larval growth rate assay provided dry weight of larvae for all 8 groups of populations 

– TSO, TDO, AUC, UX, RUX, UTB, CO and nCO at hours 24, 30, 36, 42, 48, 54, 60, 66, 72, 

78, 84, 90 and 105. The pupa that were collected at the 105-hour mark were weighed and dried. 
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A separate collection of pupa was collected for the adult weights. The mean dry weights of each 

selection regime and the fitted growth equation [eq. (2)] are shown in Figure 3.12. 

 We connected the predicted individual larval dry weights, with 95% confidence intervals, 

as a function of feeding rate (Figure 3.13). The p-values are for tests of the hypothesis that the 

slope of the line is zero. The order of the eight selection regimes from slowest feeding to fastest 

was RUX, UX, UTB, AUC, nCO, TSO, CO, and TDO. The x-axis coordinates are offset to 

improve readability. A significant correlation was seen in all 8 groups of populations at the hours 

48 (p=0.004), 54 (p=0.002) and 60 (p=0.002), showing that a slower feeding rate results in a 

slower growth rate.  

Dry Weight 

From the pairwise tests comparing the adult female dry weights from the flies of the 

larval growth rate experiment, we see no significant differences between any selection regimes 

(Figure 3.14). The males divided into three groups which had one or more members that showed 

significant differences from the other groups (Figure 3.15). The TDO was significantly different 

with TSO, RUX, UX and UTB. CO was significantly different with TSO, nCO, and UTB. 

Finally, nCO was significantly different with RUX, UTB and UX.  
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DISCUSSION 

Previous research on urea adapted lines have shown changes in larval feeding rates, larval 

foraging paths, and viability in larval urea environments (Shiotsugu et al., 1997, Borash et al. 

2000, Mueller et al., 2005). However, the relationship between larval feeding rates and food 

consumption rates has been questioned (Kaun et al., 2007). Our goal was to test whether larval 

feeding rates affect growth rates as suggested by Mueller and Barter (2015).  

We found significant decreases in feeding rate correlated with a slower growth rate. 

Feeding efficiency, the fraction of ingest food that is digested by larvae, is a decreasing function 

of feeding rate. Empirical support for this claim comes from a comparison of two different sets 

of crowding-adapted (fast feeding) and control (slow feeding) Drosophila populations (Joshi and 

Mueller 1996; Mueller et al. 1991). These studies showed that fast feeding larvae required more 

food to reach the same critical minimum size as control larvae.  Other experiments performed on 

feeding rate (Joshi et al. 1988, Bakker 1961 1961) support the view that larval feeding rate is an 

important component of competitive ability of Drosophila in high-density conditions. The results 

of Joshi et al. 1988 and Burnet et al. 1977 indicate that Drosophila larva retraction rates are good 

indicators of the ability to compete for limiting resources. With the significant slower feeding 

rates of the urea adapted lines – UTB, UX and RUX, it is quite clear that feeding rates are 

affected by environmental factors, as well as a correlation with a slower growth rate.  

While allele fixation could have occurred in the urea-adapted populations, other traits 

such as viability, and development time, do not show any evidence of inbreeding depression. 

Also, both the UX, and the UTB groups of populations, created at different times in the 

phylogeny of the populations in our research laboratory, display similar traits (feeding rate, 

developmental time, viability, larval growth rate) in their larval urea environments. Some of 
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these traits, like development time, have reverted to their ancestral state in the reverse selected 

RUX population group. The RUX populations have been in a control environments for 108 

generations.  

Etienne et al. 2001 found that larvae of urea adapted lines appear to have adapted to urea 

exposure by decreasing the ability of urea to enter the body larvae.  This correlation with a 

slower feeding rate might be a reasonable explanation for the lower levels of urea in the D. 

melanogaster larvae that Etienne found. This would be something to test in the future in our 

UTB, UX and RUX populations of D. melanogaster larvae.  

All populations were removed from selection for two generations prior to the 

experiments. This eliminates non-genetic influences from confounding the results, such as 

maternal and environmental effects. Therefore, any phenotypic differences between populations 

reflect genetic differences that have arisen due to the selection regime. The UX and UTB 

populations displayed slower feeding rates, slower growth rates, higher viability, faster 

developmental time, and lower starvation resistance when reared on food supplemented with 

urea, compared to the other populations reared, as larvae, on urea.  

  Though the TSO and TDO lines reverted to their ancestral state regarding desiccation 

resistance, starvation resistance was still significantly higher in both of these selection 

treatments. D. melanogaster can evolve increased resistance to desiccation by decreasing water 

loss rates and by increasing bulk water content but not by increasing metabolic water content or 

dehydration tolerance (Archer et al 2007). While glycogen is involved in water storage, its 

primary role is in water binding, not the production of metabolic water (Archer et al 2007). 

Future studies can focus on glycogen storage in the urea-adapted lines to see if they have lower 

glycogen levels and high water loss rates due to their significantly lower resistance to starvation 
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in the environment.  

The study of trade-offs has been a fundamental component of modern theory of life-

history evolution (van Noordwijk et al. 1986, Zera et al. 2001, 2011, Roff et al. 2007). Trade-

offs occur in the D. melanogaster larvae and adult flies. The urea has toxic effects on the larvae, 

and there is some observed toxic effect on the adult flies, such as lower starvation resistance.  

Joshi et al 1996 found that the urea was not toxic to the adult flies, since they only suffered a 

decline in fecundity and not longevity. A model proposed by Mueller et al. 2015 stated that 

lower larval feeding rates could be favored by natural selection if the resulting larvae had a 

higher viability in a toxic environment. Not only do we see a significant difference in the feeding 

rates of the larvae, but this is correlated with a slower growth rate, supporting the theory 

proposed in Mueller et al. (2015).  

Future studies will focus on the genomic analysis of the urea adapted lines compared to 

various control population groups. Potential projects would be to look at urea consumption in the 

larvae vs concentration of urea in the larvae and looking at glycogen storage.  
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FIGURES 
 

 
 

Figure 3.1. The phylogeny of all current populations in the Rose/Mueller lab. The number 
by each population group is the total number of generations since their derivation.  
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Figure 3.2 Feeding rate comparison between all 8 groups of populations compared to the 
TSO group. The horizontal bars mark groups that are not significantly differentiated form each 
other. Between the separate groups are significant differences, with TDO feeding the fastest and 
RUX feeding the slowest.  
 
 

  
 
Figure 3.3 Feeding rate of the urea selection treatments grouped together compared to the 
demographic lines. A one-sided test comparing the Urea pooled populations (UX, UTB and 
RUX) against the AUC control, nCO, CO, TSO and TDO. The mean feeding rate difference for 
the fifteen urea populations was -25.88. This is significantly less than the AUC feeding rate 
difference (-14.13) with p=0.014. The urea also fed significantly slower than the nCO, CO, TSO 
and TDO.  
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Figure 3.4 Desiccation resistance results. No significant difference was observed between any 
of the populations in their resistance to desiccation.  

  
 
Figure 3.5 Starvation resistance results. No difference between the populations under the 
horizontal bars, but significant difference was seen in some population comparisons. UTB had a 
significant difference between TSO, TDO, NCO and CO. UX had a significant difference 
between TSO, TDO and NCO. RUX and AUC had a significant difference with TSO.  
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Figure 3.6 Difference in survival subtracting the urea viability of the population from the 
control viability of the population. The * indicates differences that are significantly different 
from 0. The bars are 95% confidence intervals. The difference of AUC is significantly greater 
than RUX, UX, and UTB in each case with a p<0.0001.  
 
 
 
 

  
 
Figure 3.7 Survival of the urea adapted lines compared to AUC. The urea lines (RUX, UTB, 
UX) and control (AUC). Survival is shown relative to the UX- urea mean survival in each block. 
This makes the mean UX survival in urea 0 and in the control environment, 1.5. In the control 
environment, AUC did not have a significant survival than UX, RUX, but was significantly 
greater than UTB. In the urea environment, AUC is significantly less then UX, RUX and UTB.  
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Figure 3.8 Survival of the demographic lines (TSO, CO, nCO) related to UTB. Survival is 
shown relative to the UTB- urea mean survival in each block. This makes the mean UTB 
survival in urea 0 and in the control environment, 0.39. In both environments the TSO selection 
regime has lower viability than the CO and nCO regimes. There are no significant differences 
between the CO and nCO regimes in either environment. 
 
 
 

  
 
Figure 3.9 Development time of all 7 groups of populations.  Development times of each 
group of population in urea food relative to the development time in control (banana) food for 7 
groups of populations – TSO, nCO, CO, AUC, RUX, UTB, and UX.  
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Figure 3.10 Development time of the urea adapted lines (RUX, UTB, UX) and control 
(AUC). Development time, in hours, is shown relative to the UX- urea mean development time 
in each block. Thus, fast developing selected groups have large negative times and slow 
developing populations have large positive values.  
 
 

  
 
Figure 3.11 Development time of demographic lines relative to UTB. Development time, in 
hours, is shown relative to the UTB- urea mean development time in each block for the 
demographic lines – nCO, CO and TSO. Thus, fast developing populations have large negative 
times and slow developing populations have large positive values.  
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Figure 3.12 Dry weight of larvae from larval growth rate experiment. The dry weight of 
larvae at various ages for all 8 groups of populations – TSO, TDO, AUC, UX, RUX, UTB, CO 
and nCO. The points are the average weights over the five replicate populations. The lines are 
the predicted weights from model larva.nlme6.  
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Figure 3.13 Predicated larval dry weights as a function of feeding rate. The predicted 
individual larval dry weight, with 95% confidence intervals, as a function of feeding rate. The p-
values are for tests of the hypothesis that the slope of the line is zero. The order of the eight 
selection regimes from slowest feeding to fastest is RUX, UX, UTB, AUC, nCO, TSO, CO, and 
TDO. The x-axis coordinates are offset to improve readability. 
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Figure 3.14 The adult female dry weights from the flies of the larval growth rate 
experiment. From the pairwise tests, we see no significant differences between any selection 
regimes. 
 

  
 
Figure 3.15 The adult male dry weights from the flies of the larval growth rate experiment. 
Males divide into three groups which have one or more members that show significant 
differences from the other groups. 
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TABLES 

Table 3.1. All 8 groups populations of D. melanogaster used in the phenotypic assays. The 
number of days spent in vials, number of days spent in cages, their generation time and if they 
lived in a larval environment with urea is specified per population group. See section 2.1 of the 
Materials and Methods for a description of each population group.  
 
Population* Days in Vials Days in cages 

before egg 
collect 

Generation 
Time 

Urea in larval 
environment 

AUC 14 7 21 No 
RUX 14 7 21 Previously yes 
UX 14 7 21 Yes 
UTB 14 7 21 Yes 
CO 14 14 28 No 
nCO 14 14 28 No 
TSO 14 14 28 No 
TDO 14 14 28 No 

 
 
 
 
Table 3.2. Phenotypic assays performed on the 8 populations  
 
Population Feeding 

Rate 
Developmental 
Time 

Viability Larval 
growth 
rate 

Starvation 
Resistance 

Desiccation 
Resistance 

AUC Yes Yes Yes Yes Yes Yes 
CO Yes Yes Yes Yes Yes Yes 
nCO Yes Yes Yes Yes Yes Yes 
RUX Yes Yes Yes Yes Yes Yes 
TSO Yes Yes Yes Yes Yes Yes 
TDO Yes No No Yes Yes Yes 
UTB Yes Yes Yes Yes Yes Yes 
UX Yes Yes Yes Yes Yes Yes 
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CHAPTER 4 

Genomic Differentiation Among Urea Selected Populations 
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INTRODUCTION 

Genome-wide sequencing of experimentally evolved populations has emerged as a 

powerful method for understanding the genetic basis of adaptation (Burke et al. 2010; Turner et 

al. 2011; Tenaillon et al. 2012; Schlotterer et al. 2015, Graves et al. 2017). Various 

environmental stresses affect both vertebrate and invertebrate organisms throughout their 

lifetime, and both will experience and adapt to such stresses, usually affecting their physiological 

machinery. This stress can be manipulated in a laboratory setting, allowing us to create 

differentiated populations with which to study adaptation and measure physical robustness and 

evolution.  

Previous work has shown that Drosophila populations can evolve resistance to high 

levels of environmental urea (Joshi et al. 1996, Shiotsugu et al., 1997, David et al. 1999, Etienne 

et al. 2001), a compound that stresses the Drosophila larvae. Previous experiments in our 

research laboratory have examined adaptations in populations of D. melanogaster to high levels 

of environmental urea and ammonia. Although Botella et al. (1985) suggested urea might be the 

primary nitrogen waste product of Drosophila larvae more recent work by Borash et al. (1998) 

showed that only ammonia accumulated in the food of crowded Drosophila cultures. Urea 

appears to have general cytotoxic effects due to interference with translation, action as protein 

denaturant (Somero and Yancey, 1997), and its reduction of enzyme activity and thermostability 

(Bowlus and Somero, 1979; Yancey and Somero, 1979; Yancey, 1985; Yancey, 1992; Somero 

and Yancey, 1997).   

Previous research on urea adapted lines have shown changes in larval feeding rates, larval 

foraging paths, and viability in larval urea environments (Shiotsugu et al., 1997, Borash et al. 

2000, Mueller et al., 2005). However, the relationship between larval feeding rates and food 
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consumption rates has been questioned (Kaun et al., 2007). A model proposed by Mueller et al. 

2015 predicted that lower larval feeding rates could be favored by natural selection if the 

resulting larvae had a higher viability in a toxic environment. In chapter 3, experiments were 

presented to support the clear differentiation of the urea adapted lines compared to the control 

populations for their viability in urea laced food and other phenotypes. Not only do we see a 

significant difference in the feeding rates of the larvae, but this is correlated with a slower 

growth rate, supporting the theory proposed in Mueller et al. 2015.  

We developed three replicated selection regimes of D. melanogaster that are currently, or 

have at some point in the past, been exposed to many generations of urea exposure in their larval 

food. Previous research on urea adapted lines have shown changes in larval feeding rates, larval 

foraging paths, and viability in urea laced environments (Shiotsugu et al., 1997; Borash et al., 

2000; Mueller et al., 2005). The UX, and UTB populations, both currently exposed to urea in the 

larval environment, were created at different times in the phylogeny of populations studied in our 

laboratory. The UX and UTB group of populations display phenotypic differentiation from the 

controls, the AUC populations, for feeding rate, developmental time, viability, and larval growth 

rate (see Chapter 3). The RUX selection treatment populations, which are the reverse selected 

urea adapted lines, were found to have reverted back to an ancestral state for development time, 

but still were differentiated in feeding rate, viability and larval growth rate (see Chapter 3).  

We studied genomic differentiation among populations subjected to different types of 

selection for tolerance to urea in their larval food. The five AUC populations served as controls 

and were fed normal food and kept on a three-week generation cycle like the other populations. 

The UX and UTB populations were raised on larval food containing urea up to the time that 

genomic samples were collected. The RUX populations were derived from the UX populations 
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after 282 generation of selection for urea tolerance and were placed back on standard food for 

108 generations prior to the genomic samples.  
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METHODS 

1.1 Populations 

All the populations in the lab are derived from an established Rose IV population (Rose, 

1984, Figure 4.1). They were maintained on a banana-molasses food (Rose, 1984) at 25oC (24 h 

light) and uncontrolled humidity, and have a generation time of approximately 3 - 4 weeks 

(Table 4.2). All selection regimes were five-fold replicated, uncrowded as larva (60–80 eggs per 

8-dram vial), with emergent adults kept at a low density of approximately 50–60 flies per 8-dram 

vial, and transferred to a cage environment with fresh food given about every other day for 

approximately 1 week. Effective populations sizes for each line were in the range of 700-1000 

(Mueller et al., 2013) every generation.  

The UX and the UTB populations were subjected to selection for increased larval 

tolerance to the presence of toxic levels of urea in the food. The levels of urea were increased 

every few generations, when it was observed that a great proportion of larvae were surviving to 

adulthood. The derivation of the urea-tolerant (UX) and unselected controls (AUC) selection 

regimes was in the Fall of 1996. Both populations were derived from a five-fold replicated set of 

populations called UU, which had a 3-week generation time, and were reared at low larval and 

adult densities. The UU populations were derived in 1990, from the Rose B populations (Rose, 

1984; Chippindale et al., 1994, 1996). The RUX are a reverse selected line of the UX. They have 

been in a control environment for 108 generations. The UTB line were created in October 2013. 

The AUC, RUX, UX, and UTB lines are all 21-day cycle flies.  

1.2 DNA Extraction and Sequencing  

Genomic DNA was extracted in May 2019 from a large sample of 200 female flies using 

the Qiagen/Gentra Puregene kit. The manufacturer’s protocol for bulk DNA purification were 
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followed. 30 gDNA pools were prepared as standard 200–300bp fragment libraries for Illumina 

sequencing.  A DNA pooled sample of about 30 female flies was sequenced in June 2019 from 

the large sample of 200 female flies.  A second sequencing was conducted on the other 180 

approximate female flies in December 2019. The DNA was stored in a -20 C freezer during the 

time between June and December. Libraries were run across PE100 lanes of an Illumina HiSEQ 

2000 at the UCI Genomics High throughput Sequencing Facility and constructed such that each 

five replicate populations of a treatment (e.g., UX1–5) were given unique barcodes, normalized, 

and pooled together (Graves et al. 2017). Each 5-plex library was run on individual PE100 lanes 

of an Illumina HiSEQ 2000 at the UNC High Throughput Sequencing Facility and the resulting 

data were 200 bp paired-end reads. Each population was sequenced two times; data from both 

runs were combined for analysis. Combining reads from two independent sequencing runs likely 

alleviates the effects of possible bias introduced from running all replicates for each population 

in the same lane.  

1.3 SNP Analysis Read Mapping and Preprocessing. 

We first trimmed the reads to remove low-quality bases using a script provided in the 

PoPoolation software package (Kofler, Orozcoter Wengel, et al. 2011) separately of the June and 

then the December data sets. We then mapped reads with the Burrows-Wheeler Aligner (BWA) 

software package (Li and Durbin 2009) against the D. melanogaster reference genome (release 

6.31) using bwa mem with default settings with the following mapping parameters: -n 0.01 (error 

rate), -o 2 (gap opening), -d 12 and -e 12 (gap length), and -l 150 to effectively disable the seed 

option. The SAM files were filtered for reads mapped in proper pairs with minimum quality of 

20 and converted to the BAM format using SAMtools (Li et al. 2009). The combined December 

and August databases yielded an average coverage of 69.1, assuming a genome size of 137 Mb. 
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The rmdup command in SAMtools was then used to remove potential PCR duplicates. The two 

BAM files from each population’s two sequencing runs were merged using BAMtools to 

maximize coverage (Barnett et al. 2011). These merged BAM files were then all combined in the 

mpileup format once again using SAMtools. Using PoPoolation2 (Kofler, Pandy et al. 2011), the 

resulting mpileup was converted to “synchronized” files, which is a format that allele counts for 

all bases in the reference genome and for all populations being analyzed.   

1.4 Heterozygosity  

We calculated and plotted heterozygosity across the five major chromosome arms to see 

if we could find any evidence of selective sweeps and to determine if there was convergence in 

overall patterns of variation. To do this, SNPs were first called across all 20 populations used in 

this study from our synchronized file. SNPs where discarded if coverage in any of the 

populations was less than 4X or greater than 500X. We also required a minimum minor allele 

frequency of 2% across all eight populations. A SNP table with major and minor allele counts for 

each SNP in each population was then generated. Using these counts, heterozygosities were 

calculated and plotted over 150 kb non-overlapping windows. We also performed t-tests 

comparing mean genome-wide heterozygosities between different groups of populations.   

1.5 FST estimates 

FST estimates for replicate populations were obtained using the formula: efg =
hiVhj
hi

 

where HT is heterozygosity based on total population allele frequencies, and HS is the average 

subpopulation heterozygosity in each of the replicate populations (Hedrick, 2009). FST estimates 

were made at every polymorphic site in the data set for a given set of replicate populations. This 

was done to quantify the level of similarity between replicates of our four sets of selection 

regimes.  
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1.6 SNP Sampling Simulation 

Two separate samples of very different sizes have been analyzed by pooled sequencing 

techniques. Each of the pooled samples has about the same coverage. Thus, can these two 

samples be combined to analyze SNP frequencies and if so, how should they be combined? 

We assume that the major nucleotide frequency at a genomic site is P in a relatively large 

population. Two samples of chromosomes are taken from the population, N1 and N2. From these 

samples a pooled DNA sample has DNA fragments amplified at random giving rise to n1 and n2 

DNA copies in the two samples. We assume that the count of the major nucleotide in sample 1 

and 2 is x1 (out of the n1 samples) and x2 (out of the n2 samples) respectively. There are two 

obvious ways to estimate P, a simple average from both samples or a weighted average, 

k0 =
SQRSU
JQRJU

       (1) 

k1 =
SQlQ

JQ(lQRlU)
+

SUlU
JU(lQRlU)

       (2) 

To determine which of these two estimation procedures is best we generated 10,000 dual 

samples, a sample of N1 and N2 chromosomes and a sample of DNA fragments of n1 and n2. We 

estimated the mean squared error (MSE) for each method at nine different values of P, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (figure 4.2). These results show that the simple average (Eq. 1) 

has the smallest MSE at all allele frequencies.  

The next question is, how does the use of Eq. 1 using two samples, compare to a single 

sample of size N1 with different coverage values (n1)? With this comparison, we can estimate an 

effective coverage value by merging the two samples as done by Eq. 1. The effective coverage 

will be the value of n1 that gives the same MSE as Eq. 1. We see that two samples with samples 

of 180 and 30 females has about the same MSE of a single sample of 180 females with a 
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coverage of 59 (Figure 4.3). Thus, we can consider the effective coverage in our study to be 

about 59. 

1.7 Statistical Tests of Differentiation 

We performed two tests to identify significantly differentiated single nucleotide 

polymorphisms (SNP). The Generalized Cochran- Mantel-Haenszel (CMH, Landis et al., 1978) 

test examines whether the SNP counts from two or more replicated selection regimes come from 

the same multinomial statistical distribution. The second test is called the quasibinomial test. It 

has been suggested that due to random genetic drift in replicated populations and 

pseudoreplication of SNPs in genomic analysis the CMH test may not be appropriate (Wiberg et 

al., 2017). The quasibinomial test is a general linear model with selection regimes as treatments 

and a quasibinomial error distribution. The test statistic is the difference between the null 

deviance and the model deviance.  

The CMH test was implemented with the mantelhaen.test R function (R Core Team, 

2019). The quasibinomial test was implemented with the glm R function using the quasibinomial 

family and logit link.  

These tests are applied to each of several hundred thousand SNP’s and consequently the 

control of false positives becomes an important issue. One simple approach is the Bonferroni 

inequality which divides the type-I error rate by the number of tests done to determine the p-

value required for significance. However, this p-value may be too severe and result in reduced 

power. An approach that may be more useful is to control the number of false positives among 

all positives. These positive results may become the focus of further investigations and thus it 

would be important not to pursue false leads. 

We used a method called the plug-in method for what? (Hastie et al., 2009, chpt. 18). 
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Suppose we did M total hypothesis tests. If we let V be the number of positive results when the 

null hypothesis is true and S be the number of positive test results when the null hypothesis is 

false, then the false discovery rate (FDR) is defined as V/(V+S). A critical test statistic, C, was 

chosen and the plug-in method computes the FDR for that critical point. Step 1 in the estimation 

procedure is the estimation of V+S. This was simply the total number of test statistics from the M 

hypothesis tests that exceed C. Let this number be R. To estimate V, we permuted the labels of 

the replicated populations assigning them genetic data at random. The number of significant test 

statistics greater than C was then saved. This permutation process was repeated 100 times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 88 

RESULTS 

Tests were done on the four different selection regimes contrasting two selection regimes 

at a time. A summary of these results is shown in Table 4.1. The greatest number of significantly 

differentiated SNPs are seen between the control populations (AUC) and the urea selected 

populations (UX and UTB, Table 4.1). The selection regimes with the smallest differences are 

UX vs. RUX (Table 4.1). Although the RUX populations originated from the UX populations the 

108 generations of reverse selection would presumably be the cause of most of the loss of 

differentiation. However, the RUX populations still maintain measurable levels of adaptation to 

urea suggesting any reverse selection is slow. Hence, the RUX populations show roughly similar 

levels of differentiation from the AUC populations, relative to the UX populations. By contrast 

the UX populations show very large numbers of differentiated SNPs when compared to AUC. 

FST estimates were made from each polymorphic site among the five replicate 

populations within a selection regime (Table 4.3). All FST fall in the same range as similar 

populations in the Rose and Mueller laboratory (Table 4.3). Based on frequencies at each SNP 

and averaged together, they indicate there is a high degree of similarity between replicate 

populations with parallel evolutionary histories, as indicated by mean genome wide FST estimates 

that are all less than 0.10 from SNP data. There are some notable depressions consistent across 

replicates that may be indicative of soft sweeps.  

In general, we see that the quasibinomial test typically has lower FDR but detects a larger 

number of differentiated SNPs suggesting greater statistical power. The CMH results can be seen 

in Figures 4.5 through 4.7, and the quasibinomial results in Figures 4.8 through 4.10 comparing 

AUC with UX, UTB and RUX.  In the next chapter the differentiated SNPs will be identified in 
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50kb regions for use with the FLAM statistical learning tool. We will use the apparent superior 

performance of the quasibinomial tests to do this screening.  
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DISCUSSION 

We see some depressions in heterozygosity in all four populations, but very few regions 

have variations that has been completely expunged (Figure 4.4).  With consistent sweeps in 

depressions in heterozygosity across replicate populations, parallel selection may be acting 

across the replicates. Mean heterozygosity ranged from 0.228 in the UX populations to 0.258 in 

the RUX population. FST  values were consistently low. below 0.10, indicating a high degree of 

similarity between the replicates of the populations. The UX populations had the highest FST  

values indicating a reduced, but still significant, similarity between the replicates. The RUX 

populations still maintain measurable levels of adaptation to urea suggesting any reverse 

selection is slow. This will allow us to combine all 3 populations, the UX, UTB and RUX, into a 

grouping that we will call the ‘Urea populations’ for further testing in the following chapter.  

Our extraction process resulted in a large amount of DNA collected. The DNA of 30 flies 

from the large pool were sent off for testing in June 2019, and the DNA of the rest of the 

approximate 180 flies from the same large pool were sent off for testing in December 2019. 

Combining the two data sets resulted in the identification of over 1.4 million SNP’s that are 

polymorphic for the Urea populations (UX, UTB and RUX), with a fraction of 1.4/120, or 0.007.  

The two samples were merged using equation 1, giving us an effective average coverage of 59.  

The RUX populations have maintained some of the adaptive phenotypic differentiation of 

the other urea selected populations like reduced larval feeding rates and increased viability in 

urea laced food. There are also 10,463 SNPs that are significantly differentiated between the 

AUC and RUX populations. Of these 10,463 differentiated SNPs in the RUX populations, 6,406 

are also differentiated in the UX and UTB populations. These would presumably be SNPs at or 

close to genes that are important to the urea adaptations that are still differentiated in the RUX 
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populations. There are also 1,143 differentiated genes in the RUX populations that are not 

differentiated in either the UX or UTB populations. These may have become differentiated due 

to drift and some may be false positive. Indeed, about 220 of these differentiated SNPs would be 

expected to be false positives. The remaining 2,914 differentiated SNPs in the RUX populations 

are differentiated in just one of the selection regimes UX (1,940) or UTB (974). These may also 

represent gene regions that are important to urea adaptation, but they have not achieved the 

requisite level of significance in all three selection regimes or due to different starting conditions 

became important in adaptation in only one set of populations. 

Of the 70,980 differentiated SNPs in the UX populations 50.8% are also differentiated in 

the UTB populations. This result does not seem to be sensitive to the critical test statistic level. If 

we reduce the critical quasi-binomial test statistic to 75, although there are many more SNPs that 

achieve significance only 50.6% of the UX differentiated SNPs are also differentiated in the 

UTB populations. The UX and UTB populations can trace their ancestry back to the B 

populations but the samples but were derived at very different times. Genetic variation in the 

gene regions important for urea adaptation may not have been under strong stabilizing selection. 

Thus, it is not unreasonable to assume the starting conditions for the important gene regions were 

very different and this may have led to different trajectories for this variation once the 

environment was changed.  

The idea that natural selection may follow different trajectories depending on their initial 

conditions was first outlined in Wright’s shifting balance theory (Wright, 1982). In this theory 

Wright postulates a fitness landscape in which populations with different gene frequencies may 

be located near different fitness peaks. Populations then come under the forces of the local 

fitness peak and are taken to different local fitness maxima. These ideas have been made 
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concrete with detailed multilocus population genetic models of viability selection (Franklin and 

Lewontin, 1970; Feldman et al., 1974). These studies revealed that selection at multiple loci can 

have multiple stable equilibria. Each of these stable points have their own domain of attraction 

and hence the end points of natural selection will depend on the initial conditions. We envisage a 

similar situation with the UX and UTB populations. Nearly 582 generation of B selection passed 

between the founding of the UX and UTB populations, enough time to generate the different 

starting conditions that could affect these trajectories. 

Further analysis will occur in Chapter 5, using the Fussed Lasso Additive Model to look 

at polymorphic SNP differentiation. In conclusion, we can see parallel evolution occurring in the 

replicates of the same environmental populations, as well as genomic differentiation in the Urea 

adapted lines, UX, UTB and RUX versus the control population of AUC.  
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FIGURES 
  

 
 
 

Figure 4.1 The phylogeny of all current populations in the Rose/Mueller lab. The number by 
each population is the total number of generations since their derivation and the time when the 
DNA was extracted for populations AUC, RUX, UX and UTB.  
 
 

 
 
Figure 4.2 The MSE from Eq. 1 is lower at all SNP frequencies due mostly to its lower 
variance. Parameter values used were, N1=360 (180 females), N2=60 (30 females), n1=n2=34. 
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Figure 4.3 MSE of SNP frequency estimates as coverage decreases. Using an initial sample of 
360 chromosomes (180 females), and a population SNP frequency of 0.5, the MSE of a SNP 
frequency estimate decreases as the coverage increases (solid line). The dashed line shows the 
MSE for the combined sample of 180 and 30 females each with a coverage of 34. The dashed 
line and the solid line cross at a coverage of about 59. 
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Figure 4.4 The average heterozygosity across all 5 replicates and two database averages.  
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Figure 4.5 CMH test comparison of AUC and UX populations across both data sets from 
June and December 2019. The CMH test statistic is shown on the y-axis. Two thresholds for 
significance are shown as red lines at 50 and 100. The FDR for these two threshold are 
summarized in Table 4.1. 
 

 
 
Figure 4.6 CMH test comparison of AUC and UTB populations across both data sets from 
June and December 2019. The CMH test statistic is shown on the y-axis. Two thresholds for 
significance are shown as red lines at 50 and 100. The FDR for these two threshold are 
summarized in Table 4.1. 
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Figure 4.7 CMH test comparison of AUC and RUX populations across both data sets from 
June and December 2019. The CMH test statistic is shown on the y-axis. Two thresholds for 
significance are shown as red lines at 50 and 100. The FDR for these two threshold are 
summarized in Table 4.1. 
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Figure 4.8 Quasibinomial test of AUC and UX populations across both data sets from June 
and December 2019. The Quasibinomial test statistic is shown on the y-axis. Two thresholds for 
significance are shown as red lines at 50 and 75. The FDR for these two threshold are 
summarized in Table 4.1 

 
 
Figure 4.9 Quasibinomial test of AUC and UTB populations across both data sets from 
June and December 2019. The Quasibinomial test statistic is shown on the y-axis. Two 
thresholds for significance are shown as red lines at 50 and 75. The FDR for these two threshold 
are summarized in Table 4.1 
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Figure 4.10 Quasibinomial test of AUC and RUX populations across both data sets from 
June and December 2019. The Quasibinomial test statistic is shown on the y-axis. Two 
thresholds for significance are shown as red lines at 50 and 75. The FDR for these two threshold 
are summarized in Table 4.1 
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TABLES 
  
Table 4.1. Counts of significantly differentiated SNPs from the CMH and Quasibinomial tests 
from both databases in June and December 2019. Associated with each significance level is a 
false discovery rate (FDR) estimated from the plug-in method. The total number of polymorphic 
SNP’s examined 1,389,302 
 

CMH Test    Quasibinomial Test 
Comparison  50  100 150  50  75  100 
AUC v UX 
# significant tests  197,610  60,382 21296  218,415  121,455  70980 
FDR   0.169  0.0788 0.052  0.0347  0.0131  0.0063 
AUC v UTB 
# significant tests  275937  110340 110340  306643  194437  128913 
FDR   0.11  0.047 0.030  0.021  0.0057  0.0020 
AUC v RUX 
# significant tests  58599  8054 1654  70157  25989  10463 
FDR   0.093  .030 0.016  0.086  0.039  0.021 
UX v UTB 
# significant tests  167586  39925 9938  191140  93850  48383 
FDR   0.21  0.10 0.065  0.030  0.0098  0.0041 
UX v RUX 
# significant tests  31779  4594 1085  34532  12190  5095 
FDR   0.60  0.38 0.23  0.22  0.12  0.074 
UTB v RUX 
# significant tests  157656  38736 10311  178862  91657  48297 
FDR   0.14  0.059 0.034  0.031  0.0093  0.0037 
 
 
 
Table 4.2. All four populations of D. melanogaster used in the genomic analysis. The number of 
days spent in vials, number of days spent in cages, their generation time and if they lived in a 
larval environment with urea is specified per population.  
 
 

Population Days in Vials Days in cages 
before egg 
collect 

Generation 
Time 

Urea in larval 
environment 

AUC 14 7 21 No 
RUX 14 7 21 Previously yes 
UX 14 7 21 Yes 
UTB 14 7 21 Yes 
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Table 4.3 Fst values from our analysis of the two databases compared to other Rose lab 
populations analyzed (* Graves et al. 2017, # Phillips et al. 2018) 
 

Population FST (and potential confidence  interval) 

AUC 1-5 0.04268 ± 0.000056 

RUX 1-5 0.06120, +- 0.000085 

UX 1-5 0.09951, +- 0.00015 

UTB 1-5 0.06059, +- 0.00012 

ACO 1-5 * 0.062 

AO 1-5 * 0.087 

B 1-5 * 0.058 

BO 1-5 * 0.041 

CO 1-5 * 0.028 

TSO # 0.04 

TDO # 0.07 

 
 
Table 4.4 The average heterozygosity of the four population across both databases – AUC, RUX, 
UTB and UX.  
 
AUC 0.2565553 
RUX 0.2576476 
UTB  0.2410314 
UX 0.2275179 
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Table 4.5. The number of significantly differentiated SNPs shared between selection regimes. 
Differentiation was based on a quasi-binomial test statistic greater than 100 when the AUC 
populations were compared to a specific urea selection regime.  
 
Contrasts  Shared SNPs  Maximum Possible Shared 
RUX and UTB 7,380   10,463 
RUX and UX  8,346   10,463 
UX and UTB  36,080   70,980 
UX, UTB, and RUX 6,406   7,380 
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CHAPTER 5 

 

Using FLAM Analysis to distinguish between  
differentiated genes of Urea Adapted populations 
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Introduction  

Understanding the relationship between genes and phenotypes is the base of much 

genetic and experimental evolutionary work. Lewontin’s (1974) goal was understanding this 

relationship, which now may be possible with genome-wide sequencing in the field of 

evolutionary biology. Understanding adaptation can be studied through three different genomic 

approaches: 1) QTL mapping; 2) population genetics; and 3) experimental evolution. 

Experimental evolution can produce extreme phenotypic differentiation among traits in 

replicated populations (Garland and Rose 2009). This method allows for controlling various 

aspects of an organism’s environment, as well as its population history.  

Model organisms that have undergone sustained experimental evolution can show high 

levels of phenotypic differentiation and can be genomically characterized by DNA sequencing 

technology. With genome-wide sequencing and Pool-Seq, we can trace trajectories. 

Experimental evolution has been successfully used in microorganisms, such as Escherichia coli 

(Elena & Lenski 2003) and yeast (Zeyl 2006; Parts et al. 2011), and also in multicellular 

organisms, including Drosophila (Hoffmann et al. 2003; Turner et al. 2011; Zhou et al. 2011).  

Combining experimental evolution in D. melanogaster with genome-wide next 

generation sequencing of DNA pools (Pool-Seq) can help to identify SNPs or alleles that play a 

role in the adaptive process.  Sequencing of DNA from pooled individuals (Pool-Seq) provides 

an excellent tool to determine allele frequencies on a genomic scale (Futschik & Schlotterer 

2010; Kolaczkowski et al. 2011, Wengel et al. 2012)  

We studied phenotypic differentiation (chapter 3) and genomic differentiation (chapter 4) 

among populations subjected to different types of selection for tolerance to urea in their larval 

food. The five AUC populations served as controls and were fed normal food and kept on a 



	 108 

three-week generation cycle like the other populations. The UX and UTB populations were 

raised on larval food containing urea up to the time that genomic samples were collected. The 

RUX populations were derived from the UX populations after 282 generation of selection for 

urea tolerance and were placed back on standard food for 108 generations prior to the genomic 

samples. We saw parallel evolution occurring in the replicates of the same environmental 

populations, as well as genomic differentiation in the Urea adapted lines, UX, UTB and RUX 

versus the control population of AUC. Furthermore, in chapter 4, we compared the Urea lines 

(UX, UTB, RUX and control AUC) to the demographic lines; CO, nCO, TSO, and TDO. Our 

next step is to look at polymorphic SNP differentiation using FLAM.   

The ‘fused lasso additive model’ (FLAM) technique is a discovery tool for determining 

which genes may affect differentiated phenotypes. Evidence from computer simulations has 

shown that this statistical model can effectively sort out those loci that are differentiated and 

have a causal effect on a phenotype versus those that are differentiated but do not have a causal 

effect (Mueller et al. 2018). It minimizes cross-validation error to find a subset of genomics 

SNPs that can be used to predict phenotypes.  Other experiments have suggested that the 

genomic response to selection can involve many selected SNPs that show unexpectedly complex 

evolutionary trajectories, possibly due to nonadditive effects. (Wengel et al. 2012). The efficacy 

of FLAM is improved with increased number of independent populations, reduced 

environmental phenotypic variation, and increased within-treatment among-replicate variation 

(Mueller et al. 2018).  

Our focus with FLAM was to distinguish significant SNP’s that influence the phenotype, 

a process that FLAM can do well with even small samples (Mueller 2018). FLAM was applied 

to SNP variation measured in 40 populations of D. melanogaster – 20 of which are the urea 
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adapted selection regimes, UX, UTB, RUX and AUC, and 20 that make up the demographic 

lines subjected to selection for age-at reproduction or starvation/ desiccation resistance – CO, 

nCO, TSO, and TDO.  
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MATERIALS AND METHODS 

1.7 Populations 

All the populations in the lab are derived from an established Rose IV population (Rose, 

1984), Figure 3.1. They are maintained on a banana-molasses food (Rose, 1984) at 25C (24 h 

light), uncontrolled humidity, and having a generation time of approximately 3 - 4 weeks (Table 

5.1). All selection regimes are five-fold replicated, uncrowded as larva (60–80 eggs per 8-dram 

vial), with emergent adults kept at a low density of approximately 50–60 flies per 8-dram vial, 

and transferred to a cage environment with fresh food given about every other day for 

approximately 1 week. Effective populations sizes for each line were in the range of 700-1000 

(Mueller et al., 2013) every generation and maintained at large population sizes (1000), with 

discrete generations. The CO and nCO are control populations that are on a 28-day life cycle. 

The TSO population is a starvation selected population, while the TDO is a starvation and 

desiccation selected population, both on 28-day life cycles. Both the TSO and TDO have now 

been in a control environment for hundreds of generations.   

The UX and the UTB populations were subjected to selection for increased larval 

tolerance to the presence of toxic levels of urea in the food. The levels of urea were increased 

every few generations, when it was observed that a great proportion of larvae were surviving to 

adulthood. The derivation of the urea-tolerant (UX) and unselected controls (AUC) selection 

regimes was done(?) in the Fall of 1996. Both populations were derived from a five-fold 

replicated set of populations called UU, which had a 3-week generation time, and were reared at 

low larval and adult densities. The UU populations were derived in 1990, from the Rose B 

populations (Rose, 1984; Chippindale et al., 1994, 1996). The RUX are a reverse selected line of 
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the UX. They have been in a control environment for 108 generations. The UTB line were 

created in October 2013. The AUC, RUX, UX, and UTB lines are all 21-day cycle flies.  

 For every assay, eggs were collected from the 8 selection regime types and passed 

through two generations of common, standard conditions – low larval density, 1000 adult 

density, discrete generation times and regular banana-molasses food (Bitner et al. 2020).  

1.2 Phenotypes 

Four different phenotypes were compared between all 8 sets of selection regimes: 

viability, growth rate, feeding rate and developmental time. Feeding rate is the rate at how often 

the sclerite retractions occur in D. melanogaster larvae as they are observed over a standard 

period of time, 60 seconds. To measure the feeding rate, individual larvae around 48 hours old 

were gently moved onto a 3% agar coated with a 10% live yeast suspension. The larvae were 

given 60 seconds to adjust to the new surroundings, and their sclerite retractions were recorded 

for 60 seconds and counted for twenty larvae per population. The procedure for measuring 

sclerite rates is similar to Sewell’s et al. (1975) procedure and described in Joshi et al. (1988). 

Feeding rates were collected on all 8 selection regimes– AUC, RUX, UX, UTB, CO, NCO, TSO 

and TDO. 

Viability looked at how many larvae survived to adulthood in a certain environment. 

Larvae were raised under two experimental treatments, a control environment with regular food 

and food with added urea. Ten vials were used per population per environment, for a total of 20 

vials per population. Each vial held the approximate 50 larvae. Ultimately, we are interested in 

the testing the effects of urea on survival for each population as well as differences between the 

seven selection regimes, AUC, RUX, UX, UTB, CO, NCO and TSO. Developmental time 

focuses looking at differences in the development time of the larvae.  The measurements were 
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made from when first instar larvae were collected to when the fly eclosed in the control banana 

molasses environment compared to the urea environment. For each population, 10 vials were set 

up with 50 freshly hatched larvae each in a banana molasses environment. Another 10 vials were 

set up with urea food and 50 freshly hatched larvae. Eclosing adults were collected every 6 hours 

separated by male and female and recorded. Development time was collected on the AUC, RUX, 

UX, UTB, CO, NCO and TSO populations.  

The larval growth rate assay focused on measuring the growth of larvae until pupation. 

45 newly hatched first instar larvae were collected with a fine paint brush and placed onto non-

nutritive agar petri dishes with 3 ml of yeast paste (188 grams of yeast in 500 ml of DI water) 

and placed randomly into a 25 C incubator with 24-hour lighting. There were 13 different “hour 

numbers” larvae were sampled at: 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, and 105 hours 

after the larvae were added to the petri dish. At the designated hour, the larvae were washed with 

DI water and then allowed to air dry. The wet weight was taken of the larvae and they were then 

placed into an 80 degree C drying oven, after which their dry weights were recorded. A logistic 

growth model was estimated from these data. The parameter which describes the age at which a 

larva reaches 50% of its maximal size was used in the FLAM analysis. 

1.3 FLAM 

We assume that SNP frequencies across m loci has been measured in n independent 

populations along with phenotypes for each population, P=(P1, P2,..,Pn). At locus-j, for instance, 

we assume that the allele frequencies can be ordered as, n0# < n1#< …  < nJ#. The regression 

relationship, E[Pi|n"#] = qi , of the fused lasso additive model (FLAM, Peterson et al., 2016) will 

yield estimates of the parameter vector, qj=(q1j, …, qnj) subject to, 
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 (Peterson et al. 2016). 

Large values of the tuning parameter l will tend to make |qi-1,j – qi,j| equal to zero. Hence, the 

final function will be a series of steps with jumps or knots that are adaptively chosen.  

Over all loci, we add to the optimization problem in equation (1) a group lasso penalty 

function that will encourage whole qj vectors to be zero and thus serve to eliminate 

uninformative loci yielding, 

opqpoprs
-z ∈ ℝ, t# ∈ ℝ

J, 1 ⩽ | ⩽ o
0

1
w − t#

D
#}0 − -z1 1

1
+ 'x y~#t# 0

D
#}0 + 1 −

' x t# 1
D
#}0 , (2) 

where Mj is a matrix that orders the values of �# from smallest to largest. Equation (2) adds a 

second tuning parameter a, which ranges from 0 to 1 (Peterson et al. 2016). The R-function, 

flamCV (in the flam package), will search for the best l based on the cross-validation error rates 

for a given value of a. In our analyses, we used a grid of 19 a-values to find the best model (a= 

0.05, 0.1, …,0.95). 

The solutions to (2) are characterized by a sparse set of loci where t# 1
≠ 0. Although 

there is a global minimum for the objective function (2), there is not a unique solution. One 

method for finding this minimum is called block coordinate descent (“BCD,” Friedman et al. 

2007). While it is fast and robust compared to other methods, the sparse set of loci that are 

identified by BCD depend on the arrangements of loci in the matrix of independent variables. 
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We identified causative loci with the following algorithm. Find a solution to (2) using 

BCD and save the sparse set. Then permute the columns of the matrix of independent variables 

and solve (2) again. Repeat the permutation and solution steps 100 times. Enumerate the 

frequency of occurrence of each SNP among these 100 sparse sets. Let the frequency of the most 

common SNP among the 100 set be Cmax. Identify as the causative loci only those that occur 

greater than Cmax/2. The utility of FLAM and the modifications described here for finding SNP’s 

located in causative genes has been explored by computer simulations (Mueller et al., 2018). 

1.4 Identification of Differentiated SNPs due to Urea Adaptation 

To identify SNPs that will be used in FLAM for phenotype-genome associations we used 

the only SNPs that exceed the critical value of 100 on the quasibinomial test. With this criteria 

the false discovery rate (FDR) was less than, often much less than, 0.07 in all pairwise 

comparisons. We required that a differentiated SNP show significant differentiation in both a 

comparison of AUC vs. UX and AUC vs. UTB. UX and UTB comprise the populations that 

were still under selection for larval urea resistance at the time of the genomic assays and thus the 

most important for identifying the loci involved in urea adaptation. However, the phenotypes that 

were tested show variation in many other populations so when using FLAM we included all 35 

or 40 populations that have been assayed for the important phenotypes related to urea adaptation, 

feeding rates, viability in urea, development time in urea, and larval growth rates. 

The ability of FLAM to identifying causal loci will be hindered if too many SNPs from a 

small region of the genome in linkage disequilibrium are used. Thus, following a procedure used 

in Mueller et al. (2018) we utilized only the most differentiated SNP in a region of 50kb. To do 

this we searched each chromosome arm until a SNP that satisfied the criteria for differentiation 

was found. Then we continued to search over the next 50kb identifying the most differentiated 
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SNP in that region and saving its location. This procedure was applied to the SNPs identified as 

differentiated in the AUC vs UX comparison and the AUC vs UTB comparison. Using the 

shorter AUC vs UX list we identified SNPs in the AUC vs UTB list that were within 25kb of the 

AUC vs UX SNPs. From this reduced list of pairs of close SNPs in the AUC vs UX and AUC vs 

UTB lists we chose the single SNP from each pair which had the highest test statistic. 

We independently produced a SNP table for the TSO, TDO, CO and nCO populations. 

Genomic data was extracted at various time points of these populations. Libraries were run 

across PE100 lanes of an Illumina HiSEQ 2000 at the UCI Genomics High throughput 

Sequencing Facility and constructed such that each five replicate populations of a treatment (e.g., 

UX1–5) were given unique barcodes, normalized, and pooled together (Graves et al. 2017). The 

reads were trimmed to remove low-quality bases using a script provided in the PoPoolation 

software package (Kofler, Orozcoter Wengel, et al. 2011). The reads were mapped with BWA 

(Li and Durbin 2009) against the D. melanogaster reference genome (6.31).  The SAM files were 

converted to BAM and potential PCR duplicates were removed and the BAM files combined. 

Using PoPoolation2 (Kofler, Pandy et al. 2011), the resulting mpileup was converted to 

“synchronized” files, which is a format that allele counts for all bases in the reference genome 

and for all populations being analyzed. The SNP’s were compiled and a SNP table with major 

and minor allele counts for each SNP in each population was then generated. From this table and 

the previous differentiated list of SNPs a total of 673 SNPs were used in the FLAM analysis.  

To summarize the precision of the FLAM predictions we estimated the correlation 

between predictions and observations as follows. Depending on the phenotype we had either 7 or 

8 different selection regimes, each replicated five times. We deleted one population from each 

selection regime forming two data sets: a test data set of 7 or 8 observations and a training data 
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set of 28 or 32 observations. FLAM parameters were then estimated using the training data set 

and the sparse list of SNPs. From this fitted FLAM model, we then predicted the 7 or 8 

observations that had not been used to fit the FLAM parameters. This process was repeated five 

time so that all observations were eventually predicted from a training set of observations. The 

Pearson correlation coefficient was then estimated from the observed and predicted phenotypes. 

SNP to Gene 

We downloaded the FlyBase genome assembly of D. melanogaster release 6.31. 

Comparing the locations of the SNP locations to the gene start and stop locations, we found all 

genes that were within the 50 kb window of the SNP location. We reproduced the annotations for 

the genes based off the information we found on FlyBase.   

Variation at the foraging locus 

One locus which we have an a-priori interest in is the foraging locus (for). This locus 

affects foraging behavior of Drosophila larvae (Sokolowski et al., 1983, 1997). Previous work 

with the AUC and UX populations has shown a decline in the foraging path length – the primary 

phenotype for is believed to affect (Mueller et al., 2005). Foraging path length and feeding rates 

tend to change in a parallel fashion and thus the for locus may account for some of the 

phenotypic differentiation in feeding rates documented in chapter 3.  

The for locus is located on chromosome 2L at positions 3,622,074 to 3,656,953. We 

identified 13 SNPs that were significantly differentiated between the AUC and UX populations 

and 11 SNPs that were differentiated between the AUC and UTB populations. The 

differentiation was assessed using SNPs with a quasi-binomial test statistic greater than 75. The 

false discovery rate using this criterion is less than 0.013. Since these were non-overlapping sets 

all 24 SNP’s were used in a principal component analysis. Allele frequencies at the 24 SNPs 
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were transformed by taking the arcsin, square root of the allele frequencies and then centering 

and scaling these values. Principal components were estimated using the R prcomp function (R 

Core team, 2019) on all 20 urea populations and all 20 demographic populations. The first three 

principal components, which explain 76% of the total variance, were used to generate a 

hierarchical cluster of all 40 populations using the R hclust function.  
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RESULTS 
A sparse list of the SNP’s was generated with the cytogenic location for the four 

phenotypes (Table 5.1). We enumerated for each SNP all the genes that occur +/- 25kb of the 

SNP picked out by FLAM (Table 5.2) with the FLAM associated attributions, according to 

FlyBase. Pooling samples from two different DNA sequencing events resulted in the urea lines 

having over 1,000,000 SNPs, and the demographic lines also had over 1,000,000.   

The FLAM step function predicted feeding rates as a function of SNP frequency at 22 

genomic locations identified by FLAM (Figure 5.1). Each figure (Figures 5.1, 5.3, 5.5 and 5.7) is 

a compilation between 7-22 smaller figures. Each one of these smaller figures contains an integer 

which equals the number of times that SNP was included in the 100 permutations of the genetic 

matrix. The frequency of a SNP appearing is a suggestion of its relative importance. Our cut off 

rate was at 50%. Using lower values of maybe 30 or even 25% might include SNP’s that are 

more likely to be false positives.   In some of the figures the curves change dramatically, 

furthering the assumption they are the more important SNP’s. In figure 3, viability rates were 

predicated as a function of SNP frequency at 13 genomic locations identified by FLAM. In 

figure 5 the FLAM step function predicted the larval growth rates as a function of SNP 

frequency at 7 genomic locations identified by FLAM. Finally, in figure 7, the FLAM step 

function predicted the development time as a function of SNP frequency at 14 genomic locations 

identified by FLAM.  

The only way FLAM can distinguish causal loci from noncausal differentiated loci is if 

there is between replicate genetic variation within well-differentiated groups of populations that 

leads to small differences in average phenotypes among the replicate populations of such groups 

(Mueller et al. 2018).  
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In additional to deciding which SNPs are informative, it arranges the allele frequencies 

from smallest to large and tries to fit a step function to the phenotype as a function of SNP 

frequency. Using FLAM, we can look at correlations between phenotypes and the predictions 

from FLAM (Figures 5.2, 5.4, 6, and 5.8). In each of these four graphs, we have a correlation 

coefficient with 95% confidence intervals. The correlation between the predicted and observed 

phenotypes was 0.96 (Figure 5.4) for viability and 0.95 for development time (Figure 5.8). 

Feeding rates resulted in a lower correlation coefficient 0.89 (Figure 5.2). Larval growth rate 

parameters had the lowest correlation at 0.64 (Figure 5.6).  

For the two highest correlation coefficients, viability and developmental time, they 

shared 3 of the same SNPS - 3L_11894035 (CEN 68E), 3L_15323813 (CEN 71C), and 

3L_16272757 (CEN 72D), found in Table 5.2. SNP 3L_11894035 could be associated with the 

following genes: CG44837 (protein-coding gene), CG5906 (protein-coding gene), Sprn (which 

encodes a testis-specific mitochondrial lumen protein that first appears during the spermatocyte 

stage of spermatogenesis, but is absent from mature sperm), CCDC151 (protein-coding gene for 

the coiled-coil domain), CG5897 (protein-coding gene for Bestrophin 4) and CR43624 (a long 

non-coding RNA:CR43624). SNP 3L_15323813 could be associated with Best4 (Bestrophin 3 

which encodes a paralog of the produce of Best1, a CA-activated CL channel), CG7255 (protein-

coding gene), CR46213 (long non-coding RNA:CR46213), CR43247 (long non-coding 

RNA:CR43247), CR43992 (RNA:CR43992), Toll-6 (Toll-6 encodes a member of the Toll-like 

receptor family that has neurotrophin receptor activity and contributes to dendrite guidance) and 

CG33259 (protein-coding gene). SNP 3L_16272757 might have functional attributes of 

CG13055, CG13054, CG13053, CG34247, CG13071, CG13070, CG13051, CG13069, CG4950, 

CG13068, CG34248, CG13067, CG13066, CG13065, CG13050, CG13064, CG13049, 
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CG13048, CG13047, CG13046, CG13045, CG4962, all of which are protein-coding genes 

(Table 5.2).  

The cluster analysis successfully grouped the UX and RUX populations (Figure 5.9) as 

well as the AUC populations. However, the UTB populations are not grouped together or 

consistently with the UX and RUX populations (Figure 5.9).  
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DISCUSSION 

FLAM functions in finding a subset of genomic SNP’s that are important and using them 

to predict phenotypes. FLAM can only distinguish between causal and noncausal differentiated 

loci when there is genetic variation between the replicates of the selection regimes in 

differentiated populations. Even when all conditions are favorable, an increased number of 

independent populations, reduced environmental phenotypic variation, and increased within-

treatment among-replicate variation (Mueller et al. 2018), FLAM will not identify all causative 

loci. Mueller et al. 2018 showed that FLAM does an exceptionally good job of predicting 

phenotypes. Ultimately, when we predict the phenotype based of the genetic data, like we do in 

the correlation figures, we are using the allele frequencies from each population in combination 

with all the important SNPs, and getting a predicted phenotype from it. With the use of a 

minimal cross-validation error, that subset of genomic significant SNPs can be used to predict 

phenotypes.  

Two of the four phenotypes compared had high correlation coefficients, signifying a 

significant correlation between the SNP’s discovered, and their role in the phenotypic 

observances, which can be seen in Chapter 3. Development time and viability both had 

correlation coefficients above 0.9.  Feeding rate had a high coefficient of 0.89, with the lowest 

correlation coefficient of 0.64 for the larval growth rate. When we looked at the growth rate 

parameter among the 40 populations (Chapter 3), there were no significant differences. There is 

not a strong differentiation of the growth rate parameter among the 8 selection regimes according 

to FLAM (Figure 5.6). That there is a weak correlation since differences among the 40 

populations are not tremendously large is not surprising.  Chapter 3 presented us with a 

correlated relationship between feeding rate and growth rate; a slower feeding rate resulted in a 
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slower growth rate. How fast a larva eats, and how quickly it grows is most likely influenced by 

a larger subset of genes, which might not be discovered by FLAM.  

We created a list showing gene regions that are within a distance where there might be 

reasonable levels of linkage disequilibrium to each of these SNP. The results did not show 

extensive pleiotropy. The same genes were not showing up for the same traits, except for the 

urea-based traits – viability and development time. Three SNP’s were found to be pleiotropic, 

affecting the viability and development time phenotype. These two phenotypes reflect the 

physiological impact of urea on either survival or development time also show overlapping 

genes. This is not unreasonable that these two phenotypes show pleiotropy as they are a different 

response to the same stress – urea toxin in the food and may be relying on similar physiological 

mechanisms. The other two phenotypes, larval feeding rate and larval growth rate are not 

necessarily a response to the same stress.  

With the simulations in FLAM, we are picking up the genes that have the most direct 

impact on a phenotype. While we don’t see extensive pleiotropy of genes, we are also dealing 

with a limitation of FLAM, and the number of populations we have, to only identify a handful of 

possible genes that have pretty large effects. We cannot detect all the loci with the FLAM 

analysis. It is possible that there might be pleiotropy that has not been uncovered with smaller 

effects. There might be a lot of genes that have small effects are going to be missed by this 

technique. As this technique gets modified and more advanced, or replaced by a different 

analytical technique, more genes may be discovered with attributions to the four physiological 

characteristics we studied – larval feeding rate, development time, viability and larval growth 

rate.  
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The analysis of genetic variation at the for locus showed that this variation was helpful in 

clustering the UX and RUX vs. the AUC populations. However, it did a poor job differentiating 

the UTB and all the demographic populations. This may suggest that the evolutionary trajectory 

that lead to the genetic differentiation of the UX populations (and hence their close relatives 

RUX) from the AUC populations was consistent among the UX populations but different from 

the route taken by the UTB populations.  

Future studies would include further analysis and focusing on certain genes and their 

immediate effects. A transcriptomic analysis of the urea adapted lines could bring more 

information in further identifying genomic regions active in the adaptation of the urea adapted D. 

melanogaster.  
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FIGURES 
 

 
 
Figure 5.1 The FLAM step function, E[Pi|�ÅÇ] = qi, predicting feeding rates as a function of 
SNP frequency at 22 genomic locations identified by FLAM. Each figure contains an integer 
which equals the number of times that SNP was included in the 100 permutations of the genetic 
matrix. The sparse set using the 50% criteria. 
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Figure 5.2 Predicted feeding rates in the original transformed units for each of the 40 
populations. These predictions were based on FLAM fitted to the 22 SNPs shown in figure 5.1. 
The correlation between feeding rate predictions on test data and the observed feeding rates was 
0.89 with 95% confidence intervals of (0.80 0.94) 
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Figure 5.3 The FLAM step function, E[Pi|�ÅÇ] = qi, predicting viability rates as a function 
of SNP frequency at 13 genomic locations identified by FLAM. Each figure contains an 
integer which equals the number of times that SNP was included in the 100 permutations of the 
genetic matrix. The sparse set using the 50% criteria. 
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Figure 5.4 Predicted viability rates in the original transformed units for each of the 40 
populations. These predictions were based on FLAM fitted to the 13 SNPs shown in figure 5.3. 
The correlation between viability predictions on test data and the observed viability data was 
0.96 with a 95% confidence interval of (0.92, 0.98).  
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Figure 5.5 The FLAM step function, E[Pi|ÉÑÖ] = qi, predicting larval growth rates as a 
function of SNP frequency at 7 genomic locations identified by FLAM. Each figure contains 
an integer which equals the number of times that SNP was included in the 100 permutations of 
the genetic matrix. The sparse set using the 50% criteria. 
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Figure 5.6 Predicted larval growth rates in the original transformed units for each of the 40 
populations. These predictions were based on FLAM fitted to the 7 SNPs shown in figure 5.5. T
he correlation between larval growth rate predictions on test data and the observed larval growth 
rates was 0.64 with a 95% confidence interval (0.41, 0.79) 
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Figure 5.7. The FLAM step function, E[Pi|ÉÑÖ] = qi, predicting development time as a 
function of SNP frequency at 14 genomic locations identified by FLAM. Each figure contains 
an integer which equals the number of times that SNP was included in the 100 permutations of 
the genetic matrix. The sparse set using the 50% criteria. 
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Figure 5.8 Predicted development time in the original transformed units for each of the 40  
populations. These predictions were based on FLAM fitted to the 14 SNPs shown in figure 5.7. 
The correlation between development time rate on test data and the observed development time 
was 0.95 with a 95% confidence interval (0.90, 0.97).  
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Figure 5.9 A cluster analysis of 40 populations based on genetic variation at the for locus. 
Distances between populations and clusters were based on the Euclidian distance. Group joining 
was determined by the largest pairwise distance between pairs of populations within each group 
(the compete method). The red box outlines the grouping of the 10 UX and RUX populations 
while the blue box outlines the grouping of the five AUC populations.  
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TABLES 
 
Table 5.1 The sparse list of SNPs for four phenotypes with their SNP and cytogenic location 
(Cen): feeding rate, viability, development time and growth rate. 
SNP   Cen Feeding Rate Viability Development Time Growth Rate 
2L_4531327  24F     X 
2L_7207001  27E X  
2L_7403125  27F   X 
2L_9680141  30C X 
2L_10377993  31D   X 
2L_11478767  32F X 
2L_13379565  34B X 
2L_13810371  34E X 
2L_15114884  35C     X 
2L_23215692  40F X 
2R_2311784  41A     X 
2R_3400392  41A     X 
2R_3704100  41A        X 
2R_6012388  42A X 
2R_7248434  43A        X 
2R_7985106  44A   X 
2R_8458006  44D     X 
2R_8516281  44D        X 
2R_19501220  56D   X 
2R_19727187  56F   X 
2R_21971950  58A   X 
2R_22285947  58D        X 
2R_23060438  59C X 
2R_25091135  60F   X 
3L_151386  61B   X 
3L_4368193  64B   X 
3L_9086420  66F X 
3L_10769473  67E X 
3L_10920886  67F X 
3L_11894035  68E   X  X 
3L_13775342  70C X 
3L_15323813  71C   X  X 
3L_16272757  72D   X  X 
3L_16350779  72E        X 
3L_17260381  74A X 
3L_17928678  75A X 
3L_21395960  78D X 
3L_22241372  79D X 
3R_6203559  83E     X 
3R_6302438  83E     X 
3R_23113045  94D     X 
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3R_8945249  66D X 
3R_17087687  89E X 
3R_25361898  96E   X 
X_442317  1B        X 
X_4573308  4C     X 
X_6900105  6E        X 
X_7338301  7B X 
X_7761153  7B X 
X_8478041  7F X 
X_9676328   8F     X 
X_19036434  18A X 
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Table 5.2. SNP location, FlyBase ID of potential associated gene, symbol, and FlyBase 
functional attribution from FLAM. Non-coding genes marked with *. Genes with no known 
FlyBase attribution are labeled N/A in the fourth column.  

SNP Gene (FB ID) Symbol FlyBase Functional Attribution from FLAM 

2L_4531327 

FBgn0053196 dpy 

dumpy (dpy) encodes an extracellular protein 
involved in epidermal-cuticle attachment, 
aposition of wing surfaces and trachea 
development 

2L_7207001 

FBgn0031893 CG4495 N/A 
FBgn0031894 CG4496 N/A 
FBgn0031895 CG4497 N/A 
FBgn0031896 CG4502 E2 Ubiquitin conjugating enzymes 

FBgn0031897 CG13784 cellular organization/biogenesis, 
transport/localization and endomembrane system 

FBgn0263133 ico 

mitochondrial translation elongation factor G 1 
(mEFG1) encodes a mitochondrial elongation 
factor that catalyzes the translocation of the 
mRNAs and tRNAs along the ribosomes via GTP 
hydrolysis. 

FBgn0266324 CR44989 N/A* 

FBgn0259111 Ndae1 

Na[+]-driven anion exchanger 1 (Ndae1) encodes 
an intrinsic membrane protein that reversibly 
mediates the exchange of 1 Na[+] and 2 
HCO[[3]][-] for 1 Cl[-] at basolateral membranes 
of gut and renal epithelia as well as CNS 
neurons. In the CNS, the product of Ndae1 can 
lower resting intracellular Cl[-] controlling 
GABA(A) Cl-channel activity 

FBgn0264343 CG43799 N/A 

2L_7403125 

FBgn0002938 ninaC Myosin function 
FBgn0031904 CG5149 N/A 
FBgn0031905 gudu N/A 
FBgn0031906 CG5160 N/A 
FBgn0264888 CR44079 pseudogene attribute 
FBgn0031907 CG5171 trehalose-phosphatase activity 
FBgn0267924 CR46205 N/A* 
FBgn0031908 CG5177 haloacid dehalogenases 
FBgn0031909 CG5181 N/A 
FBgn0031910 CG15818 c-type lectin-like 

FBgn0028387 chm 

chameau (chm) encodes a histone acetyl 
transferase involved in epigenetic mechanisms of 
transcriptional control and regulation of 
replication origin activity. Its functions include 
modulation of JNK activity and gene regulation 
by Polycomb group genes. 

FBgn0264439 CR43857 N/A* 
FBgn0262453 mir-275 miRNA gene 
FBgn0262458 mir-305 miRNA gene 
FBgn0031912 CG5261 N/A 
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2L_9680141 

FBgn0032136 Apoltp 

Apolipoprotein lipid transfer particle (Apoltp) 
encodes a apolipoprotein of the ApoB family. It 
is assembled with lipids to form high density, 
low abundance lipoproteins named lipid transfer 
particles (LTP). LTP catalyzes the transfer of 
lipids from the gut to circulating lipophorin and 
from lipophorin to peripheral tissues, such as 
imaginal discs and ovaries 

FBgn0053299 CG33299 N/A 
FBgn0267927 CR46208 N/A* 
FBgn0264999 CR44150 N/A* 

FBgn0000273 Pka-C1 

Protein kinase, cAMP-dependent, catalytic 
subunit 1 (Pka-C1) encodes a serine/threonine 
kinase that contributes to axis specification, 
rhythmic behavior and synaptic transmission. 

FBgn0015393 hoip 
RNA-binding protein hoip accelerates polyQ-
induced neurodegeneration in Drosophila 

FBgn0011207 pelo N/A 
FBgn0051710 CG31710 N/A 

2L_10377993 

FBgn0085396 CG34367 N/A 
FBgn0032228 CG5367 N/A 
FBgn0032229 CG5045 N/A 
FBgn0027568 Cand1 CAND family 

FBgn0003087 pim 

pimples (pim) encodes the Drosophila Securin 
homolog. Securins bind to the endoprotease 
Separase. In some species including Drosophila, 
this binding appears to promote proper folding of 
Separase. In addition, securin binding inhibits 
separase endoprotease activity in all species via 
an inhibitory pseudosubstrate region. 

FBgn0032230 lft 

lowfat (lft) encodes a protein that influences 
Dachsous-Fat signaling by elevating levels of the 
products of ds and ft at apical membranes. 
Mutation of lft causes mild planar cell polarity 
and growth phenotypes.  

FBgn0032231 CG5056 N/A 
FBgn0041723 rho-5 N/A 
FBgn0053303 CG33303 N/A 
FBgn0032233 dpr19 N/A 

FBgn0032234 gny 

garnysstan (gny) encodes a glucosyltransferase 
involved in cuticle barrier formation and thought 
to have a role in N-glycan biosynthesis and 
epidermal differentiation. 

FBgn0032235 CG5096 N/A 
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FBgn0004106 Cdk1 

Cyclin-dependent kinase 1 (Cdk1) encodes a 
catalytic protein kinase subunit that can only 
become active after association with 
either CycA, CycB or CycB3 products. The 
protein kinase activities of these complexes 
(CycA-Cdk1, CycB-Cdk1, CycB3-Cdk1) control 
important aspects of progression through the cell 
cycle. Functionally, the different Cdk1 
complexes are partially redundant. They 
phosphorylate hundreds of target proteins and are 
most important for progression into and through 
mitotic and meiotic M phases. 

FBgn0032236 mRpS7 N/A 

FBgn0267821 da 

daughterless (da) encodes a class I bHLH protein 
important for sex determination and dosage 
compensation by controlling the feminizing 
switch gene Sxl. It participates in transcriptional 
regulation of a wide variety processes, including 
oogenesis, neurogenesis, myogenesis and cell 
proliferation 

FBgn0267439 CR45789 antisense RNA* 

FBgn0262782 Mdh1 

Malate dehydrogenase 1 (Mdh1) encodes a L-
malate dehydrogenase involved in the 
interconversion of malate and oxaloacetate 

FBgn0051716 Cnot4 

CCR4-NOT transcription complex subunit 4 
(Cnot4) encodes a positive regulator of the 
Jak/Stat pathway which acts by stabilizing the 
DNA binding of the product of Stat92E. 

2L_11478767 

FBgn0003313 sala N/A 
FBgn0263087 CG43355 N/A 
FBgn0032361 CG6488 Component of oligomeric golgi complex 8  
FBgn0032362 spz4 Spätzle related 

2L_13379565 

FBgn0032506 CG9395 N/A 
FBgn0032507 CG9377 N/A 
FBgn0022069 Nnp-1 RRP1 
FBgn0032509 CG6523 Family of disulfide oxidoreductases 

FBgn0051852 Tap42 

Two A-associated protein of 42kDa (Tap42) 
encodes a phosphatase inhibitor involved in wing 
disc morphogenesis and the organization of the 
mitotic spindle 

FBgn0051855 CG31855 N/A 
FBgn0032511 ND-B22 NADH dehydrogenase (ubiquinone) B22 subunit 

FBgn0032512 CG9305 
B double prime 1 (Bdp1) encodes a transcription 
factor involved in snRNA gene transcription 

FBgn0032513 CG6565 N/A 
FBgn0032514 CG9302 N/A 
FBgn0025724 beta'COP structural molecule activity 
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FBgn0032515 loqs 

loquacious (loqs) encodes a double-stranded 
RNA binding protein with multiple splicing 
isoforms. loqs-PB and loqs-PA associate with the 
product of Dcr-1 to facilitate processing of 
precursor miRNA into mature miRNA, whereas 
loqs-PD interacts with the product of Dcr-2 to 
enhance processing of dsRNA into siRNA. 

FBgn0265810 CR44599 antisense RNA* 

FBgn0032516 CG9293 

Inhibitor of growth family member 5 (Ing5) 
encodes a histone acetyltransferase that forms 
part of the Enok complex, which interacts with 
the product of elg1 to promote the G1/S 
transition via proliferating cell nuclear antigen 
(PCNA) unloading.  

FBgn0032517 CG7099 N/A 
FBgn0032518 RpL24 Ribosomal protein L24 
FBgn0032519 CG16957 N/A 
FBgn0032520 CG10859 N/A 
FBgn0265811 CR44600 antisense RNA:CR44600* 
FBgn0032521 CG7110 N/A 

2L_13810371 

FBgn0028539 CG31731 Adenosinetriphosphatase 
FBgn0266141 CR44847 antisense RNA:CR44847* 
FBgn0028931 CG16863 N/A 
FBgn0028538 Sec71 Secretory 71 

FBgn0027844 CAH1 

Carbonic anhydrase 1 (CAH1) encodes an alpha-
class carbonate dehydratase that catalyzes the 
reversible hydration/dehydration of carbon 
dioxide to bicarbonate and protons. 

FBgn0028658 Adat1 adenosine deaminases 
FBgn0028919 CG16865 N/A 
FBgn0032533 CG16888 N/A 
FBgn0001965 Sos Son of sevenless 

FBgn0000153 b 

black (b) encodes an aspartate 1-decarboxylase. 
Mutations of b result in viable flies with a 
cuticular melanization phenotype. 

FBgn0004406 tam 

tamas (tam) encodes the catalytic subunit of 
mitocondrial DNA polymerase γ, which is 
responsible for the replication and repair of the 
mitochondrial genome. 

FBgn0001961 Arpc1 

Actin-related protein 2/3 complex, subunit 1 
(Arpc1) encodes one of seven components of the 
highly conserved Arp2/3 complex. The Arp2/3 
complex is required for many cellular and 
developmental processes requiring F-actin 
polymerization, including germline ring canal 
growth, embryonic cellularization, myoblast 
fusion, and endocytosis. 

FBgn0015271 Orc5 Origin recognition complex subunit 5 

FBgn0004407 DNApol-gamma35 

DNA polymerase gamma 35kD subunit 
(DNApol-γ35) encodes the accessory subunit of 
mitocondrial DNA polymerase γ, which is 
responsible for the replication and repair of the 
mitochondrial genome. 
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FBgn0064115 CG33649 
Glutaminyl-tRNA synthase (glutamine-
hydrolyzing) 

FBgn0026373 RpII33 RNA polymerase II 33kD subunit 
FBgn0260407 mRpS23 mitochondrial ribosomal protein S23 

2L_15114884 

FBgn0028879 CG15270 N/A 
FBgn0028878 CG15269 N/A 

FBgn0001978 stc 

shuttle craft (stc) encodes a zinc finger 
transcription factor of the NFX1 family. 
Maternally contributed protein is essential for 
segmentation. During the late stages of 
embryonic neurogenesis, zygotically 
expressed stc product is involved in axon 
guidance, which is vital for proper muscle 
innervation. stc expression in the embryo is 
important for the adult life span and aging.  

FBgn0264435 CR43853 long non-coding RNA:CR43853 
FBgn0265917 CR44706 pseudogene attribute 
FBgn0264436 CR43854 long non-coding RNA:CR43854 
FBgn0028889 tRNA:L:35C tRNA gene 

2L_23215692 FBgn0267986 CR46253 N/A 

2R_2311784 No known 
association No known association No known association 

2R_3400392 No known 
association No known association No known association 

2R_3704100 No known 
association No known association No known association 

2R_6012388 

FBgn0264959 Src42A 

Src oncogene at 42A (Src42A) encodes the none-
receptor tyrosine kinase regulating cell 
proliferation, cell adhesion and morphogenetic 
processes including dorsal closure, tracheal tube 
size control and germ band elongation. It is 
regulated by both inhibitory and activating 
tyrosine phosphorylation 

FBgn0000043 Act42A Actin 42A 
FBgn0033050 Pngl PNGase-like 

FBgn0033051 Strica 

Ser/Thr-rich caspase (Strica) encodes a member 
of initiator caspases. It contributes, redundantly 
or cooperatively with the product of Dronc, to the 
apoptosis of selective larval neurons during 
metamorphosis and nurse cells during oogenesis, 
and competitive apoptosis of heterozygous 
mutant cells. 

FBgn0033052 SCAP SREBP cleavage activating protein 
FBgn0033054 CG14591 N/A 

2R_7248434 
FBgn0026389 Or43a 

Odorant receptor 43a (Or43a) encodes a multi-
transmembrane chemoreceptor that mediates 
response to volatile chemicals. It is sensitive to a 
number of volatile small molecule odorants 
including cyclohexanol, cyclohexanone, 
benzaldehyde, and benzyl alcohol 

FBgn0026602 Ady43A Adenosine kinase  

FBgn0033153 Gadd45 growth arrest and DNA damage-inducible gene 
45 



	 143 

FBgn0266818 CR45280 long non-coding RNA:CR45280 
FBgn0033154 CG1850 N/A 

FBgn0033155 Br140 

Bromodomain-containing protein, 140kD 
(Br140) encodes a histone acetyltransferase that 
is a component of the Enok complex, which 
interacts with the product of elg1 via Br140 to 
promote the G1/S transition via proliferating cell 
nuclear antigen (PCNA) unloading. 

2R_7985106 

FBgn0026361 Sep5 

Septin 5 (Sep5) encodes a member of the septin 
family of GTP-binding proteins. Septins form 
hetero-oligomeric filaments and rings that have 
roles in cytokinesis, cell polarity and membrane 
rigidity. Sep5 is not essential for development, 
but mutants display a synthetic lethal pupal 
phenotype when combined with mutations in its 
paralog Sep2. 

FBgn0027548 nito spenito 
FBgn0033243 CG14763 N/A 
FBgn0033244 CG8726 N/A 

FBgn0027054 CSN4 

COP9 signalosome subunit 4 (CSN4) encodes the 
subunit 4 of the COP9 signalosome (CSN) and is 
essential for the stability of the complex. The 
CSN plays a central role in the regulation of E3-
cullin RING ubiquitin ligases. 

FBgn0033246 ACC 

Acetyl-CoA carboxylase (ACC) encodes a 
ubiquitous metabolic enzyme. It catalyzes the 
carboxylation of acetyl-CoA to malonyl-CoA, the 
rate-limiting substrate for fatty acid synthesis. It 
is essential in the embryo and in the oenocytes 
(specialized abdominal cells) for the 
watertightness of the respiratory system. It is 
required in the fat body for triglyceride storage 
and in the muscles for locomotor activity. 

FBgn0033247 Nup44A 

Nucleoporin at 44A (Nup44A) encodes a nuclear 
pore protein involved in TORC1 signaling, 
autophagy and oogenesis.  

FBgn0265299 CR44272 long non-coding RNA:CR44272 

FBgn0033248 Dic3 

Dicarboxylate carrier 3 (Dic3) encodes a protein 
of the inner mitochondrial membrane that 
belongs to a subfamily of mitochondrial 
dicarboxylate carriers. It transports only 
phosphate, sulphate, and thiosulphate but not 
dicarboxylates (like the canonical dicarboxylate 
carrier encoded by Dic1). The product of Dic3 is 
exclusively present in the pupal stage 

FBgn0027788 Hey 

Hairy/E(spl)-related with YRPW motif (Hey) 
encodes a transcription factor involved in neuron 
fate determination. Heyexpression is regulated by 
Notch signalling in the embryonic and larval 
central nervous system 

FBgn0033249 CG11191 N/A 
FBgn0013307 Odc1 Ornithine decarboxylase 
FBgn0013308 Odc2 Ornithine decarboxylase 2 
FBgn0033250 CG14762 N/A 
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2R_8458006 

FBgn0011812 Lcp1Psi Larval cuticle protein 1 pseudogene 
FBgn0002533 Lcp2 Larval cuticle protein 2 
FBgn0002534 Lcp3 Larval cuticle protein 3 
FBgn0002535 Lcp4 Larval cuticle protein 4 
FBgn0033292 Cyp4ad1 Cyp4ad1 
FBgn0014469 Cyp4e2 Cytochrome P450-4e2 
FBgn0262316 mir-986 mir-986 stem loop 
FBgn0015034 Cyp4e1 Cytochrome P450-4e1 
FBgn0002570 Mal-A1 Maltase A1, Alpha-glucosidase 
FBgn0002569 Mal-A2 Maltase A2, Alpha-glucosidase 
FBgn0002571 Mal-A3 Maltase A3, Alpha-glucosidase 
FBgn0033294 Mal-A4 Maltase A4, Alpha-glucosidase 
FBgn0050359 Mal-A5 Maltase A5, Alpha-glucosidase 
FBgn0050360 Mal-A6 Maltase A6, Alpha-glucosidase 
FBgn0033296 Mal-A7 Maltase A7, Alpha-glucosidase 
FBgn0033297 Mal-A8 Maltase A8, Alpha-glucosidase 
FBgn0050361 mtt metabotropic glutamate receptors  

2R_8516281 FBgn0050361 mtt metabotropic glutamate receptors  

2R_19501220 

FBgn0260934 par-1 

par-1 (par-1) encodes a protein kinase involved in 
multiple processes, including microtubule 
cytoskeleton organization, axis specification and 
cell polarity. It regulates hippo signaling 
and osk mRNA localization 

FBgn0034451 TBCB 

tubulin-binding cofactor B (TBCB) encodes one 
of the cofactors required for the assembly of 
functional α/β-Tubulin dimers needed for 
microtubule assembly. It is essential for 
microtubule-associated transport and cell 
polarity, but not for cell division. 

FBgn0034452 Oseg6 N/A 
FBgn0026378 Rep Rab escort protein 

FBgn0261456 hpo 

hippo (hpo) encodes a kinase in the Salvador-
Warts-Hippo pathway. It controls tissue growth 
by controlling cell growth, proliferation and 
apoptosis. It has several roles in post-mitotic cells 
including fate specification of photoreceptors and 
tiling of dendritic neurons. 

FBgn0034454 CG15120 N/A 
FBgn0040732 CG16926 N/A 
FBgn0034455 CG11007 N/A 
FBgn0265665 CR44472 long non-coding RNA:CR44472 
FBgn0050223 tRNA:H:56E transfer RNA:Histidine-GTG 1-5 
FBgn0034456 Ir56b Ionotropic receptor 56b 
FBgn0034457 Ir56c Ionotropic receptor 56c 
FBgn0034458 Ir56d Ionotropic receptor 56d 

FBgn0003435 sm 

smooth (sm) encodes an RNA binding, 
heterogeneous nuclear ribonucleoprotein 
involved in axon guidance, mRNA processing, 
chemosensation, determination of lifespan and 
feeding behavior. 

2R_19727187 FBgn0034470 Obp56d Odorant-binding protein 56d 
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FBgn0265702 CR44509 antisense RNA:CR44509 
FBgn0034471 Obp56e Odorant-binding protein 56e 
FBgn0043533 Obp56f Odorant-binding protein 56f 
FBgn0034472 CG8517 N/A 
FBgn0050215 tRNA:CR30215 tRNA gene, transfer RNA:Isoleucine-AAT 1-9 

FBgn0050452 tRNA:CR30452 
tRNA gene, transfer RNA:initiator Methionine-
CAT 1-1 

FBgn0050218 tRNA:CR30218 
tRNA gene, transfer RNA:initiator Methionine-
CAT 1-2 

FBgn0011850 tRNA:E4:56Fc 
tRNA gene, transfer RNA:Glutamic acid-TTC 1-
4 

FBgn0065076 snoRNA:185 snoRNA_gene 

FBgn0011849 tRNA:E4:56Fb 
tRNA gene, transfer RNA:Glutamic acid-TTC 1-
5 

FBgn0011848 tRNA:E4:56Fa 
tRNA gene, transfer RNA:Glutamic acid-TTC 1-
6 

FBgn0050454 tRNA:CR30454 
tRNA gene, transfer RNA:Glutamic acid-CTC 2-
1 

FBgn0050220 tRNA:CR30220 
tRNA gene, transfer RNA:Glutamic acid-CTC 2-
2 

FBgn0050449 tRNA:CR30449 
tRNA gene, transfer RNA:Glutamic acid-CTC 5-
1 pseudogene 

FBgn0053452 5SrRNA:CR33452 rRNA gene, 5SrRNA:CR33452 
FBgn0053451 5SrRNA:CR33451 rRNA gene, 5SrRNA:CR33451 
FBgn0053450 5SrRNA:CR33450 rRNA gene, 5SrRNA:CR33450 
FBgn0053449 5SrRNA:CR33449 rRNA gene, 5SrRNA:CR33449 
FBgn0053448 5SrRNA:CR33448 rRNA gene, 5SrRNA:CR33448 
FBgn0053447 5SrRNA:CR33447 rRNA gene, 5SrRNA:CR33447 
FBgn0053446 5SrRNA:CR33446 rRNA gene, 5SrRNA:CR33446 
FBgn0053445 5SrRNA:CR33445 rRNA gene, 5SrRNA:CR33445 
FBgn0053444 5SrRNA:CR33444 rRNA gene, 5SrRNA:CR33444 
FBgn0053443 5SrRNA:CR33443 rRNA gene, 5SrRNA:CR33443 
FBgn0053442 5SrRNA:CR33442 rRNA gene, 5SrRNA:CR33442 
FBgn0053441 5SrRNA:CR33441 rRNA gene, 5SrRNA:CR33441 
FBgn0053440 5SrRNA:CR33440 rRNA gene, 5SrRNA:CR33440 
FBgn0053439 5SrRNA:CR33439 rRNA gene, 5SrRNA:CR33439 
FBgn0053438 5SrRNA:CR33438 rRNA gene, 5SrRNA:CR33438 
FBgn0053437 5SrRNA:CR33437 rRNA gene, 5SrRNA:CR33437 
FBgn0053436 5SrRNA:CR33436 rRNA gene, 5SrRNA:CR33436 
FBgn0053435 5SrRNA:CR33435 rRNA gene, 5SrRNA:CR33435 
FBgn0053434 5SrRNA:CR33434 rRNA gene, 5SrRNA:CR33434 
FBgn0053433 5SrRNA:CR33433 rRNA gene, 5SrRNA:CR33433 
FBgn0053432 5SrRNA:CR33432 rRNA gene, 5SrRNA:CR33432 
FBgn0053431 5SrRNA:CR33431 rRNA gene, 5SrRNA:CR33431 
FBgn0053430 5SrRNA:CR33430 rRNA gene, 5SrRNA:CR33430 
FBgn0053429 5SrRNA:CR33429 rRNA gene, 5SrRNA:CR33429 
FBgn0053428 5SrRNA:CR33428 rRNA gene, 5SrRNA:CR33428 
FBgn0053427 5SrRNA:CR33427 rRNA gene, 5SrRNA:CR33427 
FBgn0053426 5SrRNA:CR33426 rRNA gene, 5SrRNA:CR33426 
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FBgn0053425 5SrRNA:CR33425 rRNA gene, 5SrRNA:CR33425 
FBgn0053424 5SrRNA:CR33424 rRNA gene, 5SrRNA:CR33424 
FBgn0053423 5SrRNA:CR33423 rRNA gene, 5SrRNA:CR33423 
FBgn0053422 5SrRNA:CR33422 rRNA gene, 5SrRNA:CR33422 
FBgn0053421 5SrRNA:CR33421 rRNA gene, 5SrRNA:CR33421 
FBgn0053420 5SrRNA:CR33420 rRNA gene, 5SrRNA:CR33420 
FBgn0053419 5SrRNA:CR33419 rRNA gene, 5SrRNA:CR33419 
FBgn0053418 5SrRNA:CR33418 rRNA gene, 5SrRNA:CR33418 
FBgn0053417 5SrRNA:CR33417 rRNA gene, 5SrRNA:CR33417 

FBgn0053416 
5SrRNA-
Psi:CR33416 pseudogene attribute, 5SrRNA-Ψ:CR33416 

FBgn0053415 5SrRNA:CR33415 rRNA gene, 5SrRNA:CR33415 
FBgn0053414 5SrRNA:CR33414 rRNA gene, 5SrRNA:CR33414 
FBgn0053413 5SrRNA:CR33413 rRNA gene, 5SrRNA:CR33413 
FBgn0053412 5SrRNA:CR33412 rRNA gene, 5SrRNA:CR33412 
FBgn0053411 5SrRNA:CR33411 rRNA gene, 5SrRNA:CR33411 
FBgn0053410 5SrRNA:CR33410 rRNA gene, 5SrRNA:CR33410 
FBgn0053409 5SrRNA:CR33409 rRNA gene, 5SrRNA:CR33409 
FBgn0053408 5SrRNA:CR33408 rRNA gene, 5SrRNA:CR33408 
FBgn0053407 5SrRNA:CR33407 rRNA gene, 5SrRNA:CR33407 
FBgn0053406 5SrRNA:CR33406 rRNA gene, 5SrRNA:CR33406 
FBgn0053405 5SrRNA:CR33405 rRNA gene, 5SrRNA:CR33405 
FBgn0053404 5SrRNA:CR33404 rRNA gene, 5SrRNA:CR33404 
FBgn0053403 5SrRNA:CR33403 rRNA gene, 5SrRNA:CR33403 
FBgn0053402 5SrRNA:CR33402 rRNA gene, 5SrRNA:CR33402 
FBgn0053401 5SrRNA:CR33401 rRNA gene, 5SrRNA:CR33401 
FBgn0053400 5SrRNA:CR33400 rRNA gene, 5SrRNA:CR33400 
FBgn0053399 5SrRNA:CR33399 rRNA gene, 5SrRNA:CR33399 
FBgn0053398 5SrRNA:CR33398 rRNA gene, 5SrRNA:CR33398 
FBgn0053397 5SrRNA:CR33397 rRNA gene, 5SrRNA:CR33397 
FBgn0053396 5SrRNA:CR33396 rRNA gene, 5SrRNA:CR33396 
FBgn0053395 5SrRNA:CR33395 rRNA gene, 5SrRNA:CR33395 
FBgn0053394 5SrRNA:CR33394 rRNA gene, 5SrRNA:CR33394 
FBgn0053393 5SrRNA:CR33393 rRNA gene, 5SrRNA:CR33393 
FBgn0053392 5SrRNA:CR33392 rRNA gene, 5SrRNA:CR33392 
FBgn0053391 5SrRNA:CR33391 rRNA gene, 5SrRNA:CR33391 

2R_21971950 

FBgn0034670 CG13488 N/A 
FBgn0263324 CR43405 N/A 
FBgn0034671 CG13494 N/A 
FBgn0085398 ppk9 pickpocket 9 
FBgn0054029 CG34029 BP1066 
FBgn0034674 CG9304 N/A 
FBgn0041237 Gr58c Gustatory receptor 58c 
FBgn0041238 Gr58b Gustatory receptor 58b 
FBgn0041239 Gr58a Gustatory receptor 58a 
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FBgn0050401 CG30401 

distal antenna-young (dany) encodes a 
chromatin-binding protein required in 
spermatocytes for a normal gene expression 
profile, meiosis and sperm production.  

FBgn0085399 CG34370 N/A 

2R_22285947 

FBgn0020307 dve 

defective proventriculus (dve) encodes a 
transcriptional repressor that binds to the K50 
site. It is involved in developmental patterning, 
cell-type specification, and functional 
differentiation 

FBgn0263341 CR43422 long non-coding RNA:CR43422 
FBgn0034717 CG5819 N/A 

FBgn0034718 wdp 

windpipe (wdp) encodes a regulator of the 
JAK/STAT pathway. It is involved in intestinal 
homeostasis, trachea development and synaptic 
target recognition 

2R_23060438 

FBgn0261705 CG42741 N/A 

FBgn0265187 CG44252 
Long-chain-fatty-acid--CoA ligase, ABC-type 
fatty-acyl-CoA transporter 

FBgn0265188 CG44253 N/A 
FBgn0010622 DCTN3-p24 Dynactin 3, p24 subunit 
FBgn0034814 CG9890 N/A 

FBgn0261363 PPO3 

Prophenoloxidase 3 (PPO3) is expressed in 
lamellocytes (a type of hemocyte cell involved in 
encapsulation) and its product involved in the 
melanization reaction during wasp encapsulation. 

FBgn0021979 l(2)k09913 lethal (2) k09913 
FBgn0050201 tRNA:CR30201 tRNA gene, transfer RNA:Serine-TGA 1-1 
FBgn0050202 tRNA:CR30202 tRNA gene, transfer RNA:Serine-TGA 2-1 

FBgn0003062 Fib 

Fibrillarin (Fib) encodes an rRNA 2'-O-
methyltransferase required for pre-rRNA 
processing 

FBgn0065073 snoRNA:229 snoRNA_gene 
FBgn0034816 CG3085 N/A 

FBgn0034817 Art7 
Type II protein arginine methyltransferase, Type 
III protein arginine methyltransferase  

FBgn0263707 CG43659 N/A 
FBgn0045483 Gr59a Gustatory receptor 59a 
FBgn0045482 Gr59b Gustatory receptor 59b 

2R_25091135 

FBgn0001148 gsb 
gooseberry, paired homeobox transcription 
factors 

FBgn0004919 gol 

goliath (gol) encodes an E3 ubiquitin ligase, 
whose cellular substrates are unknown. During 
embyrogenesis gol is expressed in fusion-
competence myoblasts of the somatic and 
visceral mesoderm 

FBgn0050198 tRNA:CR30198 tRNA gene, transfer RNA:Alanine-CGC 1-1 
FBgn0050199 tRNA:CR30199 tRNA gene, transfer RNA:Alanine-CGC 1-2 
FBgn0050200 tRNA:CR30200 tRNA gene, transfer RNA:Alanine-CGC 1-3 
FBgn0266129 lov jim lovell 

3L_151386 FBgn0266949 CR45400 long non-coding RNA:CR45400 
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FBgn0020386 Pdk1 Phosphoinositide-dependent kinase 1 
FBgn0267455 CR45805 long non-coding RNA:CR45805 
FBgn0035099 CG6845 N/A 

FBgn0263988 Dic61B 

Dynein intermediate chain at 61B (Dic61B) 
encodes an axonemal dynein intermediate chain 
protein expressed specifically in male germ cells. 
It is required for the development and precise 
assembly of sperm axonemes, thus it is essential 
for male fertility. 

FBgn0035101 p130CAS 

p130CAS (p130CAS) encodes an SH3 domain-
containing protein phosphorylated by Src 
kinases. It contributes to integrin-mediated 
adhesion and in vertebrate cells is phosphorylated 
in response to mechanical stretch 

FBgn0262681 CR43151 long non-coding RNA:CR43151 
FBgn0035102 CG7049 Formylglycine-generating enzyme  
FBgn0267456 CR45806 antisense RNA:CR45806* 
FBgn0035103 Vdup1 Vitamin D3 up-regulated protein 1 

3L_4368193 

FBgn0035533 Cip4 

Cdc42-interacting protein 4 (Cip4) encodes an F-
BAR protein that functions as an adaptor protein 
regulating membrane curvature and dynamics. 

FBgn0266649 CR45156 long non-coding RNA:CR45156 
FBgn0035534 mRpS6 mitochondrial ribosomal protein S6 
FBgn0053514 CG33514 N/A 
FBgn0035537 CG11342 N/A 

FBgn0035538 DopEcR 

Dopamine/Ecdysteroid receptor (DopEcR) 
encodes a GPCR that shows ligand-biased 
activation. It can be activated by dopamine to 
increase cyclic AMP levels and by the insect 
steroid ecdysone to activate the MAPKinase 
pathway. It is widely expressed in the nervous 
system and can modulate a wide variety of 
complex behaviors including male courtship, 
locomotion, the response to stressful social 
interactions and the regulation of appetite. 

FBgn0265467 CR44360 Dopamine/Ecdysteroid receptor 
FBgn0052240 CG32240 N/A 

FBgn0035539 slow 

slowdown (slow) encodes a protein secreted from 
tendon cells and is required for integrin-mediated 
muscle-tendon adhesion. 

3L_9086420 

FBgn0000116 Argk Arginine kinase 
FBgn0035959 CG4911 F box only proteins 
FBgn0035960 CG4942 N/A 
FBgn0023479 Tequila tequila 
FBgn0043806 CG32032 N/A 
FBgn0040827 CG13315 N/A 

FBgn0011206 bol 

boule (bol) encodes a translational regulator 
required in spermatogenesis for entry into 
meiosis and spermatid differentiation. It has an 
additional role in mushroom body γ neurons as a 
negative regulator of axon pruning 

3L_10769473 FBgn0262890 CG43245 N/A 
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FBgn0265737 CR44544 long non-coding RNA:CR44544 
FBgn0265738 CR44545 long non-coding RNA:CR44545 
FBgn0265739 CR44546 long non-coding RNA:CR44546 
FBgn0267950 CR46230 long non-coding RNA:CR46230 

3L_10920886 

FBgn0036111 Aps 

Aps (Aps) encodes a diphosphoinositol-
polyphosphate diphosphatase that hydrolyses a 
range of (di)nucleoside polyphosphates. It is 
involved in glucose and lipid homeostasis. 

3L_11894035 

FBgn0266100 CG44837 Beta-lactamase 
FBgn0036217 CG5906 N/A 

FBgn0036218 Sprn 

Spermitin (Sprn) encodes a testis-specific 
mitochondrial lumen protein that first appears 
during the spermatocyte stage of 
spermatogenesis, and persists until late stages but 
is absent from mature sperm 

FBgn0036219 CCDC151 Coiled-coil domain containing protein 151 
FBgn0036220 CG5897 Bestrophin 4 
FBgn0263615 CR43624 long non-coding RNA:CR43624 

3L_13775342 No known 
association No known association N/A 

3L_15323813 

FBgn0036491 Best4 Bestrophin 4 

FBgn0036492 Best3 

Bestrophin 3 (Best3) encodes a paralog of the 
product of Best1, a Ca-activated Cl channel. A C-
terminal domain inhibits the Cl channel function 
so that the product of Best3 does not produce 
current at physiological transmembrane voltages. 

FBgn0036493 CG7255 N/A 
FBgn0267933 CR46213 long non-coding RNA:CR46213 
FBgn0262892 CR43247 long non-coding RNA:CR43247 
FBgn0264724 CR43992 long non-coding RNA:CR43992 

FBgn0036494 Toll-6 

Toll-6 (Toll-6) encodes a member of the Toll-like 
receptor family. It has neurotrophin receptor 
activity and contributes to dendrite guidance. 
Genetic interaction with 18w and Tollo suggests 
a Toll-6 role in convergent extension during early 
embryogenesis 

FBgn0036495 CG33259 N/A 

3L_16272757 

FBgn0036583 CG13055 N/A 
FBgn0036584 CG13054 N/A 
FBgn0040801 CG13053 N/A 
FBgn0085276 CG34247 N/A 
FBgn0036585 CG13071 N/A 
FBgn0036586 CG13070 N/A 
FBgn0040799 CG13051 N/A 
FBgn0040798 CG13069 N/A 
FBgn0036587 CG4950 N/A 
FBgn0036588 CG13068 N/A 
FBgn0085277 CG34248 N/A 
FBgn0036589 CG13067 N/A 
FBgn0040797 CG13066 N/A 
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FBgn0036590 CG13065 N/A 
FBgn0036591 CG13050 N/A 
FBgn0040796 CG13064 N/A 
FBgn0036592 CG13049 N/A 
FBgn0036593 CG13048 N/A 
FBgn0036594 CG13047 N/A 
FBgn0036595 CG13046 N/A 
FBgn0036596 CG13045 N/A 
FBgn0036597 CG4962 N/A 

3L_16350779 

FBgn0036608 CG13040 N/A 
FBgn0036609 CG13039 N/A 
FBgn0040795 CG13038 N/A 
FBgn0036610 CG13058 N/A 
FBgn0053061 CG33061 N/A 
FBgn0053060 CG33060 N/A 
FBgn0040074 retinin retinin 
FBgn0040794 CG13056 CPLCA cuticle protein family 
FBgn0036612 CG4998 S1A serine protease homologs 
FBgn0267553 CR45893 long non-coding RNA:CR45893 
FBgn0053257 CG33257 N/A 
FBgn0260460 mRpS34 mitochondrial ribosomal protein S34  
FBgn0036614 CG4925 Golgin 104 
FBgn0052357 tRNA:CR32357 transfer RNA:Methionine-CAT 1-4 
FBgn0036615 Tcs3 N/A 

FBgn0011693 Pdh 

Photoreceptor dehydrogenase (Pdh) encodes a 
retinal pigment cell dehydrogenase involved in 
retinol metabolism 

FBgn0267554 CR45894 antisense RNA:CR45894 

FBgn0266417 CG45057 

ringmaker (ringer) encodes a protein involved in 
microtubule bundle formation and 
polymerization.  

FBgn0036617 Cpr72Ea Cuticular protein 72Ea 
FBgn0036618 Cpr72Eb Cuticular protein 72Eb 
FBgn0036619 Cpr72Ec Cuticular protein 72Ec 
FBgn0036620 CG4842 Alcohol dehydrogenase 
FBgn0042137 CG18814 Alcohol dehydrogenase 
FBgn0036621 roq roquin 

3L_17260381 

FBgn0036702 CG6512 N/A 
FBgn0036703 CG7707 F box only proteins 
FBgn0264462 CR43870 long non-coding RNA:CR43870 
FBgn0036704 CG6497 N/A 
FBgn0264466 CR43874 long non-coding RNA:CR43874 
FBgn0036705 CG13723 N/A 
FBgn0266985 CR45436 long non-coding RNA:CR45436 

3L_17928678 

FBgn0036771 CG14353 WD repeat domain 92 
FBgn0036772 CG5290 N/A 
FBgn0267794 CR43174 long non-coding RNA:CR43174 
FBgn0266942 CR45393 long non-coding RNA:CR45393 

3L_21395960 FBgn0261258 rgn regeneration 
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FBgn0267615 CR45953 long non-coding RNA:CR45953 
FBgn0002842 sa spermatocyte arrest 
FBgn0267616 CR45954 long non-coding RNA:CR45954 
FBgn0037081 barc barricade 

3L_22241372 

FBgn0266395 CR45035 long non-coding RNA:CR45035 
FBgn0028500 Rich RIC1 homolog 

FBgn0015075 Ddx1 

Dead-box-1 (Ddx1) encodes a member of the 
DEAD box family of RNA helicases that bind 
and unwind double-stranded RNA. Ddx1 product 
depletion is associated with small size and 
aberrant gametogenesis, possibly through 
alternative splicing of Sirup RNA transcript. 

FBgn0037156 CG11523 N/A 

3R_6203559 

FBgn0051562 CR31562 pseudogene attribute 
FBgn0037408 NPFR Neuropeptide F receptor 
FBgn0037409 Osi24 Osiris 24 
FBgn0037410 Osi2 Osiris 2 
FBgn0037411 Osi3 Osiris 3 
FBgn0037412 Osi4 Osiris 4 
FBgn0037413 Osi5 Osiris 5 

3R_6302438 

FBgn0037419 Osi12 Osiris 12 
FBgn0037420 CG15597 N/A 
FBgn0037421 CG15594 N/A 
FBgn0037422 Osi13 Osiris 13 
FBgn0040279 Osi14 Osiris 14 
FBgn0037424 Osi15 Osiris 15 
FBgn0051561 Osi16 Osiris 16 
FBgn0267690 CG46026 N/A 
FBgn0051560 CG31560 N/A 
FBgn0037427 Osi17 Osiris 17 

3R_23113045 

FBgn0039054 Cow 

Carrier of Wingless (Cow) encodes a secreted 
heparan sulfate proteoglycan that binds the 
product of wg and increases its extracellular 
mobility. The binding with the ligand encoded 
by wg is dependent on heparan sulfate 
modification of the product of Cow. 

FBgn0039049 CG6726 N-acyl-aliphatic-L-amino acid amidohydrolase 
FBgn0039050 CG17110 N-acyl-aliphatic-L-amino acid amidohydrolase 
FBgn0039051 CG17109 N-acyl-aliphatic-L-amino acid amidohydrolase 
FBgn0039052 CG6733 N-acyl-aliphatic-L-amino acid amidohydrolase  
FBgn0039053 CG6738 N-acyl-aliphatic-L-amino acid amidohydrolase 

FBgn0039055 Rassf 

Ras association family member (Rassf) encodes a 
RASSF (ras-association domain family) protein 
that binds to the kinase encoded by hpo and 
promotes its dephosphorylation by the STRIPAK 
PP2A complex 

FBgn0039056 CenB1A Centaurin beta 1A 
FBgn0051365 CG31365 N/A 
FBgn0051457 CG31457 N/A 
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FBgn0004644 hh 

hedgehog (hh) encodes the Hh signaling pathway 
ligand. It acts as a morphogen contributing to 
segment polarity determination, stem cells 
maintenance and cell migration. Post-
translational modifications of the product 
of hh are essential for its restrictive spreading and 
signaling activity. 

3R_8945249 

FBgn0262604 CR43130 long non-coding RNA:CR43130 
FBgn0040532 CG8369 N/A 

FBgn0037637 IscU 

Iron-sulfur cluster assembly enzyme (IscU) 
encodes a ferrous iron binding protein involved 
in iron-sulfur cluster assembly.  

FBgn0037638 CG8379 N/A 

FBgn0262614 pyd 

polychaetoid (pyd) encodes a broadly acting 
protein that is associated with multiple proteins at 
the surface and within the cytoskeleton, 
connecting events between the two. 

FBgn0011966 tRNA:R:85Ca transfer RNA:Arginine-TCG 2-3 
FBgn0053551 tRNA:R:85Cb transfer RNA:Arginine-TCG 2-4 
FBgn0264790 CR44020 antisense RNA:CR44020 
FBgn0003015 osk oskar 

FBgn0037643 skap 

Succinyl-coenzyme A synthetase β subunit, 
ADP-forming (ScsβA) encodes a subunit of the 
ligase that converts succinate to succinyl-CoA in 
the TCA/Krebs cycle. It contributes to apoptosis 
and sperm individualization 

FBgn0037644 CG11964 spliceosome complex B, C and P 
FBgn0037645 CG11966 Transcriptional activator 

3R_17087687 

FBgn0020493 Dad 

Daughters against dpp (Dad) encodes the 
inhibitory SMAD in the BMP/Dpp pathway. It is 
involved in growth regulation and developmental 
patterning. 

FBgn0038473 Ns1 

Nucleostemin 1 (Ns1) encodes a GTPase that is 
enriched in the peripheral granular components 
of nucleoli of most larval and adult cells. It is 
required for nucleolar release of the large 
ribosomal subunit. Depletion of the Ns1 product 
reduces viability of midgut imaginal island cells 
and ribosome abundance in polyploid cells 

FBgn0038474 mRpS11 mitochondrial ribosomal protein S11 

FBgn0038475 Keap1 

Keap1 (Keap1) encodes a protein that interacts 
with the product of cnc to regulate the activation 
of genes by oxidative stress 

FBgn0038476 kuk 

kugelkern (kuk) encodes a nuclear envelope 
protein required for nuclear elongation during 
cellularization. It shares structural and functional 
similarities to lamins. 

FBgn0266465 GckIII 

Germinal centre kinase III (GckIII) encodes a 
serine/threonine kinase of the STE20 
superfamily. It is the sole Drosophila germinal 
center kinase type 3 family member. Loss 
of GckIIII results in tube dilation defects that are 
specific to the terminal cells of the tracheal 
system 
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FBgn0038478 cal1 

chromosome alignment defect 1 (cal1) encodes a 
protein that is required for maintenance of the 
epigenetic marks specifying centromeres. It binds 
to newly synthesized centromere-specific histone 
H3 variant encoded by cid and recruits it to the 
centromere by binding to the centromere protein 
encoded by Cenp-C 

FBgn0014141 cher 

cheerio (cher) encodes a dimeric F-actin 
crosslinking protein of the filamin protein family. 
It functions to organize the F-actin cytoskeleton 
in multiple contexts including ovarian germline 
ring canals, migrating somatic cells, and neuronal 
growth cones. 

3R_25361898 

FBgn0039329 CG10669 C2H2 Zinc finger transcription factors 
FBgn0028647 CG11902 C2H2 Zinc finger transcription factors 

FBgn0027376 rha 

rha (rha) encodes a protein that is postmeiotically 
present in spermatid nuclei and might be 
involved in the chromatin substitution process 
removing histones from the chromatin during 
sperm development. 

FBgn0261575 tobi target of brain insulin 
FBgn0004509 Fur1 Furin 1 

FBgn0039331 ND-49L 

NADH dehydrogenase, mitochondrial complex I 
= NADH: Ubiquinone Oxidoreductase complex 
subunits  

FBgn0039332 alrm astrocytic leucine-rich repeat molecule 
FBgn0051437 CG31437 N/A 

X_442317 

FBgn0011822 pcl 

Pepsinogen C-like (Pgcl) encodes a protein 
predicted to belong to a family of aspartic 
proteases and controls planar cell 
polarity. Pgcl mutants result in loss of wing 
margins. 

FBgn0000137 ase 

asense (ase) encodes a transcription factor in the 
achaete-scute complex. It acts together with other 
proneural genes in nervous system development, 
which involves N-mediated lateral 
inhibition. ase is expressed in the CNS type-I 
neuroblasts and the PNS sensory organ 
precursors (SOPs) but not in the proneural 
clusters that give rise to the SOP via lateral 
inhibition. 

FBgn0010019 Cyp4g1 

Cytochrome P450-4g1 (Cyp4g1) encodes the 
terminal oxidative decarbonylase in cuticular 
hydrocarbon biosynthesis within oenocytes. 

X_4573308  

FBgn0029711 Usf 

Usf (Usf) encodes a bHLH family transcription 
factor that recognizes E-boxes in 
the Ste promoter. 

FBgn0029712 CG15912 N/A 
FBgn0029713 CG11436 N/A 
FBgn0029714 CG3527 N/A 
FBgn0029715 CG11444 N/A 
FBgn0029716 CG3546 N/A 
FBgn0029717 CG12684 N/A 

X_6900105 FBgn0263993 CG43736 N/A 
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FBgn0029922 CG14431 N/A 

X_7338301 

FBgn0029943 Atg5 Autophagy-related 5 

FBgn0029944 Dok 

Downstream of kinase (Dok) encodes a 
membrane-associated protein that functions 
upstream of the product of Shark to activate Jun 
kinase signaling during embryonic dorsal closure. 

FBgn0029945 CG18155 
Long-chain-fatty-acid--CoA ligase, Malonate--
CoA ligase 

FBgn0261848 CG42780 N/A 
FBgn0026144 CBP sarcoplasmic calcium-binding protein 
FBgn0029946 CG15034 N/A 
FBgn0029947 CG1999 N/A 

X_7761153 

FBgn0029961 Ir7a Ionotropic receptor 7a 

FBgn0016041 Tom40 

Translocase of outer membrane 40 (Tom40) 
encodes a protein predicted to be a channel 
component of the TOM complex, which is 
involved in protein import into mitochondria. It is 
predicted to be involved in the cellular response 
to hypoxia.  

FBgn0085367 CG34338 N/A 
FBgn0052718 CG32718 N/A 

X_8478041 

FBgn0021767 org-1 

optomotor-blind-related-gene-1 (org-1) encodes a 
T-box transcription factor involved in the 
combinatorial activation of somatic muscle 
lineage-specific targets. 

FBgn0052713 CG32713 N/A 
FBgn0030040 CG15347 N/A 
FBgn0023506 Es2 ES2 

FBgn0014032 Sptr 

Sepiapterin reductase (Sptr) encodes a sepiapterin 
reductase involved in the biosynthesis of 
tetrahydrobiopterin 

FBgn0053223 CG33223 N/A 
FBgn0030041 CG12116 Sepiapterin reductase 
FBgn0014464 Cp7Fa Chorion protein a at 7F 

FBgn0014465 Cp7Fb 

Chorion protein b at 7F (Cp7Fb) belongs to a 
family of nine Chorion protein genes clustered in 
two chromosomes (X and 3rd). It is expressed in 
the follicle cells in a dynamic pattern. 

FBgn0014466 Cp7Fc 

Chorion protein c at 7F (Cp7Fc) belongs to a 
family of nine Chorion protein genes clustered in 
two chromosomes (X and 3rd). It is expressed in 
the follicle cells in a dynamic pattern. 

FBgn0000359 Cp36 

Chorion protein 36 (Cp36) encodes an abundant 
structural protein of the eggshell whose 
expression is enhanced by gene amplification in 
ovarian follicle cells. It is essential for fertility 
and for endochorion integrity.  

FBgn0000360 Cp38 Chorion protein 38 
FBgn0264382 CR43834 long non-coding RNA:CR43834 
FBgn0003023 otu ovarian tumor proteases 
FBgn0053181 CG33181 N/A 
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X_9676328  

FBgn0028341 Ptpmeg2 

Protein tyrosine phosphatase Meg2 (Ptpmeg2) 
encodes a phosphatase involved in border follicle 
cell migration. 

FBgn0030148 CG3106 N/A 

FBgn0261617 nej 

nejire (nej) encodes the transcriptional co-
activator CBP. It acetylates several nuclear 
proteins, including the histone encoded 
by His3 on K18, K27, and H4 on K8. By 
regulating gene expression, the product of nej has 
roles in cell proliferation, cell signaling and 
differentiation, and in developmental patterning 

FBgn0261522 CR42657 long non-coding RNA:CR42657 
FBgn0264786 CR44016 long non-coding RNA:CR44016 

FBgn0000233 btd 

buttonhead (btd) encodes a triple C(2)H(2) zinc 
finger protein structurally and functionally 
related to the human transcription factors Sp5, 
Sp8, and Sp9. The product of btd contributes to 
embryonic head segmentation, leg development, 
embryonic hematopoiesis, PNS formation, and 
maintenance of the functional heterogeneity of 
brain neural stem cells. 

X_19036434 
FBgn0264090 CG43759 N/A 
FBgn0085358 Diedel3 Diedel 3 
FBgn0030979 CG14190 N/A 

 
 
 




