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Abstract

Algebraic curves, Grassmannians, and integrable systems

by

Yelena Mandelshtam

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Problems in physics often inspire mathematical solutions, occasionally leading to the devel-
opment of new mathematical objects. Mathematicians may then explore these constructs
independently, sometimes uncovering new compelling physical interpretations in the pro-
cess. This thesis contributes to this dynamic interplay between mathematical abstraction
and physical reality, with a focus on algebraic curves. It aims to present findings that
resonate with and are useful to both the mathematics and physics communities

We first explore the connections between algebraic curves and integrable systems, focusing
on the KP equation, a nonlinear partial differential equation describing the motion of water
waves. Our approach is based on the connection established by Krichever and Shiota, which
showed that one can construct KP solutions starting from algebraic curves using their theta
functions. This lead also to a new perspective on the classical Schottky Problem which has
interested algebraic geometers for several decades. In this thesis, we explore KP solutions
arising from curves which are not smooth, having at worst nodal singularities. We introduce
the Hirota variety, which parameterizes KP solutions arising from such curves. Examining
the geometry of the Hirota variety provides a new approach to the Schottky problem, which
we study for irreducible rational nodal curves. We conjecture and prove up to genus nine a
solution to the Schottky problem for rational nodal curves.

When applying algebraic geometry or combinatorics to areas of physics such as integrable
systems or particle physics, positivity, in particular the positive Grassmannian, plays a
major role. In the last decade it has garnered much attention from physicists through its
connection with scattering amplitudes, which can be computed as volumes of amplituhedra.
An amplituhedron is the image of the nonnegative Grassmannian Gr≥0(k,n) under a totally
positive linear map Z̃ ∶ Gr(k,n) → Gr(k, k +m). In this dissertation we study Grasstopes:
generalizations of amplituhedra in which we allow arbitrary linear maps. As a result, we give
a full description of m = 1 Grasstopes, recovering some results about m = 1 amplituhedra,
and introduce some new directions of study. Though so far the study of Grasstopes has been
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motivated by pure mathematical interest, one hope is that physicists may come up with a
use for them as well.

We continue to draw inspiration from particle physicists in our study of the positive or-
thogonal Grassmannian. We initiate the study of the positive orthogonal Grassmannian
geometrically, for not necessarily maximal dimensions, and with varying signature coming
from the quadratic form. In particular we prove that, for arbitrary signature, the posi-
tive orthogonal Grassmannian for OGr≥0(1, n) is a positive geometry, confirming physicists’
intuition.

Finally, we highlight the value of computation in algebraic geometry by revisiting classi-
cal problems. The centuries-old uniformization theorem states that an algebraic curve is
equivalent to a compact Riemann surface. However, connecting a Riemann surface to an
algebraic curve utilizes Riemann theta functions, which are infinite sums of exponentials, so
this classical equivalence is transcendental, leaving a divide between analytic and algebraic
approaches. In this thesis we make a step in bridging this divide. We present an algorithm
which uses discrete Riemann surfaces to approximate the Riemann matrix of any square-
tileable translation surface. We apply our algorithm to specific examples of Jenkins-Strebel
representatives, a dense family of translation surfaces, leading to several conjectures about
their underlying algebraic curves. We also study two-dimenstional linear spaces of sym-
metric matrices, addressing questions motivated by algebraic statistics and optimization.
These spaces have many properties determined by their Segre symbols, which also provide
a stratification of the ambient Grassmannian.
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Chapter 1

Background and introduction

1.1 Overview and contributions

This thesis is divided into three main parts. Part I, consisting of Chapters 2 and 3, focuses
on the connections between algebraic curves and integrable systems. Part II, consisting
of Chapters 4 and 5, explores Grassmannians and positive geometry through the lens of
computation and algebraic geometry. Finally, Part III, consisting of Chapters 6 and 7,
highlights computation in algebraic geometry while revisiting classical results.

In Chapter 1 (the current chapter), I present some of the preliminary material that is
necessary for the research presented in the rest of the thesis. Though future chapters may
refer to definitions or ideas presented anywhere in this chapter, Section 1.2 is particularly
relevant for Chapters 2, 3, and 6, while Section 1.3 is more relevant for Chapters 4 and 5.

Part I of this thesis regards the interplay between algebraic geometry and integrable
systems, central to which is the Kadomtsev-Petviashvili (KP) equation. This is a nonlinear
partial differential equation whose solution function represents the amplitude of a shallow
water wave. Krichever provided an algebro-geometric procedure to construct a KP solution
from a point on a complex algebraic curve [78]. We study KP solutions whose underlying
algebraic curves undergo tropical degenerations. The curve in the limit becomes singular
with possibly many irreducible components. Through a tropical degeneration, the limiting
object can be described entirely combinatorially, and we use such combinatorial data to
perform a degeneration also at the level of the KP solution. We show that this procedure
gives rise to solitons, a subset of KP solutions that have been proven to have a fascinating
connection with the theory of total positivity for the Grassmannian [74].

Chapter 2 is based on the paper [7], joint with Daniele Agostini, Claudia Fevola, and
Bernd Sturmfels. In it we describe and introduce the degenerations at the level of curves,
Riemann theta functions, and KP solutions. We introduce the Hirota variety, which is a
space parameterizing soliton solutions to the KP equation associated with a nodal curve.
We find its defining equations and characterize the Hirota variety for some examples. We
also present some computational results. Certain Riemann-Roch spaces on a curve X are
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encoded as points on the Sato Grassmannian. Following [91], we present an algorithm and
its Maple implementation for computing these points and the resulting tau functions, for X
hyperelliptic. We also present an algorithm for obtaining KP solitons explicitly from nodal
rational curves.

In Chapter 3, we continue the thread of KP solutions from nodal curves, but we narrow
our focus to irreducible rational nodal curves, and we study their Hirota varieties in detail. In
this case, the Riemann theta function, in the limit ϵ→ 0, is supported on the g-dimensional
cube C = {0,1}g. Of particular interest is the irreducible subvariety of the Hirota variety
defined as the image of a parameterization map, which we call the main component. Proving
that this is an irreducible component of the Hirota variety corresponds to solving a classical
problem in algebraic geometry, namely the weak Schottky problem for rational nodal curves.
We conjecture a solution that we prove up to genus nine using computational tools. Finally,
we study the equations of the main component of the Hirota variety and how they relate
to the combinatorics of the cube. We conclude the chapter with a more explicit discussion
on the Schottky problem for irreducible rational nodal curves. This chapter is based on the
publication [45] which is joint work with Claudia Fevola.

In Part II, we shift our focus to Grassmannians and positive geometry. We open with
Chapter 4, which presents some preliminary results from ongoing work with Yassine El
Maazouz. In it we study the positive part of the orthogonal Grassmannian OGr≥0(k,n). The
definition of the orthogonal Grassmannian depends on a choice of a symmetric quadratic
form. Previous work on the positive orthogonal Grassmannian ([53, 66, 67]) has focused
on only one such choice, and only on the positive orthogonal Grassmannian OGr≥0(n,2n).
In this chapter, we study the positive orthogonal Grassmannian for quadratic forms with
arbitrary signature given by (p, q). We present some results for OGr

(p,q)
≥0 (n,2n) for arbitrary

(p, q), and we completely characterize the positive orthogonal Grassmannian OGrp,q≥0 (1, n),
in particular showing that it is a positive geometry, as predicted by physicists in [66].

In Chapter 5, based on [85], joint with Dmitrii Pavlov and Elizabeth Pratt, we study
Grasstopes. A Grasstope is the image of the totally nonnegative Grassmannian Gr≥0(k,n)
under a linear map Gr(k,n) ⇢ Gr(k, k +m). This is a generalization of the amplituhedron,
a geometric object of great importance to calculating scattering amplitudes in physics. The
amplituhedron is a Grasstope arising from a totally positive linear map, that is, one whose
representative matrix is totally positive. While amplituhedra are relatively well-studied
and a point of major focus in the emerging field of positive geometry, much less is known
about general Grasstopes. We study Grasstopes in the m = 1 case and show that they
can be characterized as unions of cells of a hyperplane arrangement satisfying a certain sign
variation condition, extending work in [72]. Inspired by this characterization, we also suggest
a notion of a Grasstope arising from an arbitrary oriented matroid.

Finally, in Part III we revisit classical problems using modern techniques with an empha-
sis on computation. Chapter 6 is based on the classical equivalence of Riemann surfaces and
algebraic curves. This equivalence, due to Riemann, leaves a divide between the analytic
and the algebraic in the sense that it does not give a recipe for explicitly translating one
to the other. This becomes transcendental as connecting a Riemann surface to an algebraic
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curve utilizes Riemann theta functions. In this chapter, we use the theory of discrete Rie-
mann surfaces to give an algorithm for approximating the Jacobian variety of a translation
surface whose polygon can be decomposed into squares. We first implement the algorithm
in the case of L-shaped polygons where the algebraic curve is already known. We also ,im-
plement the algorithm in any genus for specific examples of Jenkins-Strebel representatives,
a dense family of translation surfaces that, until now, lived squarely on the analytic side of
the transcendental divide between Riemann surfaces and algebraic curves. Using Riemann
theta functions, we give numerical experiments and resulting conjectures up to genus 5. This
chapter is based on [26], which is joint work with Türkü Özlüm Çelik and Sam Fairchild.

Chapter 7 begins by revisiting the history of the study of pencils of quadrics, or two-
dimensional linear subspaces in the space Sn of (real or complex) symmetric n × n matrices,
according to the classification by Segre symbols [65], addressing questions motivated by
algebraic statistics and optimization. We begin with a linear algebra perspective on Theorem
7.1.1 of Weierstrass and Segre. We denote by L−1 the set of the inverses of all invertible
matrices in a pencil L. Its closure in P(Sn) is a projective curve, called the reciprocal curve
and denoted PL−1. We prove that, when L is nonsingular, PL−1 is a rational normal curve.
We express its degree in terms of the Segre symbol of the pencil and determine its prime
ideal. This chapter is based on [46], which is joint with Claudia Fevola and Bernd Sturmfels.

Although there is a natural division in topics among the chapters in this thesis, there
are many themes that are shared among the different chapters and parts. In particular, the
work done in Part II with Grassmannians has a clear connection with Part I in that the
Grassmannian, and especially the positive Grassmannian, plays a role in finding solutions
to the KP equation ([74]). In [1], the authors associate to a given positroid cell (i.e. family
of KP soliton solutions) a degenerate M-curve, that is a curve with the maximum possi-
ble number of disjoint real components. There is considerable overlap between the soliton
solutions resulting from our approach in Part I and approaches directly from the positive
Grassmannian, and a direct link is undoubtedly waiting to be discovered. Tools coming
from the computational study of curves in Chapter 6 promise to help us understand curves,
in particular M -curves, as well as the Schottky problem, more deeply. We hope that as
the reader studies the material in the ostensibly unrelated chapters, she will find that tools
and ideas learned from one area of mathematics can play unexpectedly important roles in
the other areas pursued. In this dissertation, we collect a wealth of knowledge about sub-
jects including curves, theta functions, Grassmannians, positivity, and computation with the
expectation that these will continue to come together in beautiful ways yet to be discovered.

1.2 Algebraic curves, theta functions, and the

Schottky problem

An algebraic curve is an algebraic variety of dimension one. Any such variety, if contained
in a projective space, is birationally equivalent via projection to a projective plane curve,
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that is a variety given as the zero set of a homogeneous polynomial in three variables. The
uniformization theorem, dating back to the time of Riemann, states that an algebraic curve is
equivalent to a compact Riemann surface, or a compact one-dimensional complex manifold.
See Figure 1.1 for an example. On the left, it is drawn as the real part of the zero set of the
homogeneous polynomial y2z − x3 − 7z3. Dehomogenized with respect to z it can be drawn
in the affine plane as the zero set of y2 −x3 − 7. On the right is a complex (analytic) picture.

−2 2 4

−6

−4

−2

2

4

6 y2 = x3 + 7

x

y

Figure 1.1: A genus one (elliptic) curve, algebraic (left) and analytic (right).

Among central objects underlying the connection between the analytic and algebraic side
of this object are theta functions. These are complex-valued functions

θ(z ∣ τ) = ∑
n∈Zg

exp (πinT τn + nTz) (1.1)

where τ is a Riemann matrix, a square matrix that encodes the topological and geometric
properties of the curve.

The Riemann matrix is obtained as follows. Let C be a complex smooth algebraic curve
of genus g. The space H0(C,Ω1

C
), of holomorphic differential one-forms on C has dimension

g, and H1(C,Z) is a free abelian group with 2g generators. Let α1, . . . , αg, β1, . . . , βg be a
symplectic basis of H1(C,Z) and let ω1, . . . , ωg be a basis of H0(C,Ω1

C
).

The period matrix is the g × 2g matrix:

(τ1∣τ2) ∶= ((∫
αi

ωj) ∣ (∫
βi

ωj)) (1.2)

and τ ∶= τ−11 τ2 is called a Riemann matrix of the algebraic curve C. Riemann showed that,
for any choice of symplectic basis of H1(C,Z), there exists a choice of basis of holomorphic
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differentials ω1, . . . , ωg such that the resulting Riemann matrix lies in the set of g×g symmetric
matrices with positive definite imaginary part with complex entries. This set is known as
the Siegel upper half space Hg.

Not every matrix in Hg is a Riemann matrix: the Schottky problem (Problem 1.2.1) asks
to determine the locus of Riemann matrices as a subset of Hg. Below we will develop the
language to define the Schottky problem more precisely.

The 2g columns of the period matrix (τ1∣τ2) generate a lattice Λ = τ ⋅ Z ⊂ Cg. The
Jacobian of the curve C is the abelian group defined as the quotient

Jac(C) ∶= Cg/Λ.

The Jacobian can also be defined independently of the choice of basis. Consider the map

φ ∶H1(C,Z) Ð→H0(C, ωC)∨

γ z→ (ω ↦ ∫
γ
ω),

which integrates holomorphic one-forms along one-cycles. The image of φ is a discrete
lattice of maximal rank inside H0(C, ωC)∨. Therefore, the Jacobian can also be defined as
the quotient by this lattice:

Jac(C) ∶=H0(C, ωC)∨/H1(C,Z).
The map which takes an algebraic curve to its Jacobian can be explicitly represented

by a map which takes an algebraic curve to a Riemann matrix. It can also be written as a
map on moduli spaces. LetMg denote the moduli space of smooth algebraic curves of genus
g and let Ag be the moduli space of principally polarized abelian varieties of dimension g.
Formally, we have an isomorphism

Ag ≅ Hg/Sp(2g,Z),

between Ag and the quotient of the Siegel upper half-space by the symplectic group with
action defined by

(E F
G H

) ⋅B = (GB +H)−1(EB + F ).

Then, the Torelli map

J ∶ Mg Ð→ Ag

C ↦ Jac(C)

is a map of moduli spaces, mapping curves to Jacobians. Torelli’s Theorem, states that the
map J is injective, meaning that curves are identified up to isomorphism by their Jacobians.
The map is, however, not surjective for g > 3, and one seeks to describe its image. The
Schottky problem is a classical problem in algebraic geometry asking to characterize Jacobian
varieties amongst all abelian varieties.
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Problem 1.2.1 (Schottky Problem). Find the defining equations for the locus of Jacobians,
defined as the closure of J(Mg) in Ag.

Problem 1.2.2 (Weak Schottky Problem). Find defining equations for the locus of Jaco-
bians, defined as the closure of J(Mg) in Ag, up to extra irreducible components.

It is known that dim(Mg) = 3g − 3 and dim(Ag) = (g+12 ). For g ≤ 3 these dimensions
coincide, so in these cases the Schottky problem is trivial, in the sense that essentially every
polarized abelian variety is the Jacobian of a curve. For genus g ≥ 4, one has a proper
inclusion J(Mg) ⊂ Ag.

In the literature of the Schottky problem and the Torelli theorem, theta functions play
a central role [61]. The theta function with characteristic ε, δ ∈ {0,1}g is a complex-valued
function defined on Cg ×Hg:

θ [ε
δ
] (z ∣ τ) = ∑

n∈Zg

exp(πi(n + ε
2
)
T

τ (n + ε
2
) + (n + ε

2
)
T

(z + δ
2
)) . (1.3)

When ε = δ = 0, this is exactly the Riemann theta function (1.1), and differs by an exponential
factor from the latter. The characteristic is called even, and odd if ε ⋅ δ ≡ 0,1 (mod 2)
respectively. So there are 2g−1(2g + 1) odd and 2g−1(2g + 1) even characteristics. For fixed τ ,

the values θ [ε
δ
] (0 ∣ τ) at z = 0 are known as theta constants. We will also use the term theta

constant for the evaluation of the derivatives of the theta function at 0, which we denote as
follows:

θε,δij... ∶=
∂

∂zi

∂

∂zj
. . . θ [ε

δ
] (z ∣ τ)∣

z=0
. (1.4)

When g = 4, the so-called Schotkky-Igusa modular form defines an analytic hypersur-
face [68, Theorem 1] in terms of theta functions, which describes the Schottky locus. For
higher genera, the Schottky problem has proven to be hard, with only partial solutions so far
(see [9, 68, 43, 6]). The only known solution to the Schottky problem was given by Shiota
[100] through a connection with the KP equation (discussed in the next chapter), where fun-
damental objects are again the theta functions (1.3). A complete algebro-geometric solution
is still missing.

Theta functions also play an important role in encoding geometric properties of the curve.
For instance, the theta constants can determine (non)hyperellipticity of a curve. A curve is
hyperelliptic if it admits a degree two cover of P1. This cover is often called the hyperelliptic
map. As a plane curve, any hyperelliptic curve is the vanishing locus of a polynomial of the
form

y2 − h(x)y − f(x),
where h is a polynomial of degree < g + 2 and f has degree 2g + 1 or 2g + 1, for g the genus
of the curve. In its simplest form, we may consider equations of the form y2 = f(x), and the
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corresponding double cover of P1 is ramified at deg(f) points (i.e. the zeroes of f .) These
are called the branch points of the hyperelliptic map.

For a hyperelliptic curve, the values of (1.4) give the branch points. In the case of
non-hyperelliptic curves, (1.4) gives the so-called multitangent hyperplanes of the canonical
model in Pg−1. For instance, these are bitangent lines of smooth plane quartics in genus
3 or tritangent planes of smooth space sextics in genus 4. It has been proven that the
odd theta characteristics recover its algebraic curve [23]. For explicit reconstructions the
algebraic curve from their multitangent hyperplanes for small genera see [28, 27, 82, 83].
Mathematical software packages are available to compute with theta functions, such as [6,
32, 50, 54], which enable us to carry out experiments.

1.3 Grassmannians and positive geometry

The real Grassmannian Gr(k,n) is the variety parameterizing k-dimensional subspaces of an
n-dimensional vector space Rn. This can be identified with the variety of (k−1)-dimensional
subspaces of an (n−1)-dimensional real projective space Pn−1. A linear space, considered as
an element of Gr(k,n), can be represented by a k × n matrix A whose rows span the space.
However, as a choice of basis is not unique, one must view the Grassmannian as the space of
k×nmatrices modulo left multiplication byGLk, to account for possible changes of basis. The
Grassmannian Gr(k,n) can be realized as a subvariety of the projective space P(

n
k
)−1 via the

Plücker embedding, which sends a matrix A representing an element in Gr(k,n) to the vector
of its maximal minors, or determinants of its k × k submatrices. The maximal minors of A
are called Plücker coordinates. We express the Plücker coordinate corresponding to a minor
indexed by the set of columns I ∈ ([n]k ) as pI . This embedding does not depend on the choice of
matrix representative for the vector space. As an algebraic variety, the Grassmannian is cut
out by the Plücker relations, which are homogeneous equations describing the relationships
between maximal minors of a k × n matrix. See Example 1.3.1 for a derivation in low
dimensions.

Example 1.3.1. The Grassmannian Gr(2,4) parameterizes two-dimensional subspaces of
R4. Each subspace can be represented by a 2 × 4 matrix A. In the generic case, we can row
reduce it to look like

A = (1 0 a b
0 1 c d

) .

The Plücker embedding sends the matrix A to the point (1 ∶ c ∶ −a ∶ d ∶ −b ∶ ad − bc) ∈ P5,
where we order the points in reverse lexicographic order by minor indices. One can check that
applying row operations to A will yield the same point in projective space under the Plücker
embedding. Furthermore, it is clear that not every point in P5 can be obtained as the image
of the Plücker map. The image consists exactly of the points p = (p12 ∶ p13 ∶ p23 ∶ p14 ∶ p24 ∶ p34)
which satisfy p12p34−p13p24+p14p23 = 0. In this way we have realized Gr(2,4) as a subvariety
of P5.
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The Plücker relations for general k,n can be derived analogously. They have the form

k+1

∑
l=1

(−1)lpI∪jlpJ∖jl = 0,

with one relation for each pair of sets I, J = {j1, . . . jk+1} with ∣I ∣ = k − 1 and j1 ≤ j2 ≤ ⋅ ⋅ ⋅ ≤
jk+1. The relations are not, in general, algebraically independent. For more details on the
Grassmannian and the Plücker embedding see [88, Chapter 5].

The totally nonnegative Grassmannian Gr≥0(k,n) is the subset of Gr(k,n) consisting of
the elements whose non-zero Plücker coordinates all have the same sign [93, 114]. Each
element in Gr≥0(k,n) can be represented by a totally nonnegative k × n matrix, that is, by
a matrix with nonnegative maximal minors. The totally positive Grassmannian Gr>0(k,n)
is a subset of Gr(k,n) consisting of the elements whose Plücker coordinates are all non-zero
and have the same sign. Elements of Gr>0(k,n) can be represented by k × n matrices with
strictly positive maximal minors (such matrices are called totally positive).

Example 1.3.2 (Gr≥0(2,4)). The nonnegative Grassmannian Gr≥0(2,4) is a semialgebraic
set in P5. In addition to the one Plücker relation, it is defined by the inequalities p12, p13, p14,
p23, p24, p34 ≥ 0. In terms of the entries of a representative matrix A, as in Example 1.3.1, it
is given by the inequalities c, d ≥ 0, a, b ≤ 0, and ad ≥ bc. If these equalities are changed to
be strict, the resulting matrix will be totally positive.

Although the positive Grassmannian is not an algebraic variety, it possesses a remark-
able amount of structure. Since its introduction by Postnikov in [93], it has been studied
extensively and associated with numerous combinatorial objects. The role that positivity
plays has yet to be completely understood, though the extent of beautiful mathematics that
emerges from it suggests that there is something deep behind it. Since the introduction of
the amplituhedron in [11], it has also become clear that positivity plays a very important
role in some areas of physics. In recent years, physicists and mathematicians have begun to
attempt to formalize this phenomenon, with the introduction of positive geometry [10].

Formally, a positive geometry is defined as a pair (X,X≥0), where X is an irreducible
complex projective variety of dimension d and X≥0 ⊂X is a full-dimensional semialgebraic set
satisfying, in addition to some technical assumptions (listed in [10]), the following recursive
conditions regarding the boundaries of X≥0 and existence of a canonical form.

1. If d = 0 then X = X≥0 consists of a single point with a 0-form Ω = ±1, with sign
dependent on the orientation of X≥0

2. For d > 0, every boundary component (C,C≥0) of (X,X≥0) is a (d − 1)-dimensional
positive geometry.

3. There exists a unique nonzero rational form Ω on X with singularities only on the
boundary components, and with residue on C equal to the canonical form of (C,C≥0)
on each boundary component C.
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The rather technical definition of a positive geometry attempts to capture important
properties which make a space amenable to computations in physics. In a sense, the definition
generalizes polytopes having faces of all dimensions, which are polytopes themselves. Indeed,
polytopes are all positive geometries and it is fairly simple to write down their canonical
forms. A less simple but still very important example of a positive geometry is the totally
nonnegative Grassmannian as a subset of the Grassmannian [81]. Finding new examples of
positive geometries is an interesting topic in its own right, since the existence of a canonical
form satisfying the positive geometry axioms is a highly nontrivial property that is usually
quite difficult to verify.

The currently accepted definition of a positive geometry unfortunately excludes some
objects that one might believe intuitively “should” be included. Notably, a disk is not a
positive geometry for the reason that it has no zero-dimensional boundary. This is may be
unexpected since it can be approximated with arbitrary precision by polytopes, which are
positive geometries. Furthermore, the interior of a disk can be thought of as the “positive
part” of a space since it is defined by an inequality. General spectrahedra, which for similar
reasons may be expected to be positive geometries, are also excluded. This suggests that
the definition may need to be extended in order to include more objects that one might like
to consider “positive.”



10

Part I

Algebraic curves and integrable
systems
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Overview

This part of the dissertation is based on the papers “KP Solitons from Tropical Limits” [7]
and a follow-up paper called “Hirota Varieties and Rational Nodal Curves” [45]. The former
is joint work with Daniele Agostini, Claudia Fevola, and Bernd Sturmfels, and the latter is
joint with Claudia Fevola.

In the interplay between integrable systems and algebraic geometry [1, 5, 38, 76, 78,
90, 91], the study of complex algebraic curves is connected to the Kadomtsev-Petviashvili
(KP) equation

∂

∂x
(4pt − 6ppx − pxxx) = 3pyy. (1.5)

This is a heavily studied nonlinear partial differential equation for an unknown function p
that describes the evolution of certain water waves. The value of the function p(x, y, t) gives
the height of a shallow water wave at space coordinates (x, y) and time t.

In the next two chapters, given a smooth complex algebraic curve, we write B for its
Riemann matrix, which is normalized to have negative definite real part. Note that this
is a slightly different normalization from the one used in Section 1.2. Their relationship is
that B = −iτ , where τ is the Riemann matrix from Section 1.2. The purpose of this is to
emphasize real numbers and real solutions. One considers the associated Riemann theta
function

θ = θ(z ∣B) = ∑
c∈Zg

exp [1
2
cTBc + cTz] . (1.6)

In a breakthrough result which combined previously disparate areas of mathematics [78],
Krichever constructed g-phase solutions to the KP equation as follows. Let τ(x, y, t) be
obtained from (1.6) by setting z = ux + vy + wt. Here, u = (u1, . . . , ug), v = (v1, . . . , vg),
w = (w1, . . . ,wg) are coordinates on the weighted projective space WP3g−1 that is defined by

deg(ui) = 1 , deg(vi) = 2 , deg(wi) = 3 for i = 1,2, . . . , g. (1.7)

We require that the trivariate tau function τ(x, y, t) satisfies Hirota’s differential equation

ττxxxx − 4τxxxτx + 3τ 2xx + 4τxτt − 4ττxt + 3ττyy − 3τ 2y = 0. (1.8)

Under this hypothesis, the following function satisfies (1.5), and we call it the KP solution:

p(x, y, t) = 2
∂2

∂x2
log τ(x, y, t). (1.9)

The Dubrovin threefold associated to a curve studied in [5] comprises all points (u,v,w)
in WP3g−1 for which (1.8) holds. This space parameterizes solutions to the KP equation
associated to a smooth curve, and is a variety of dimension 3. It has many interesting
properties, and we refer the reader to [5] for a complete description as well as for a detailed
explanation of Krichevers parameterization of KP solutions.
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Our aim in this part of the thesis is to associate solutions of the KP equation to curves
that are not smooth. To this end, we work with curves which have nodal singularities, and
work to come up with analogs of objects such as theta functions and the Dubrovin threefold.
In Chapter 2 we develop the tools required to do this, and introduce the Hirota variety
associated to a family of nodal curves. In Chapter 3 we focus our attention on rational nodal
curves and study their Hirota varieties in detail.
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Chapter 2

KP solitons from nodal curves

2.1 Introduction

In order to study analogs of objects defined for smooth curves, we may think of a nodal
curve as a smooth curve which is defined over a non-archimedean field K such as Q(ϵ) or the
Puiseux series C{{ϵ}}. This can be regarded as a family of smooth curves which degenerates
as ϵ→ 0. The Riemann matrix Bϵ depends analytically on the parameter ϵ, and hence so do
the tau function and the KP solution. For ϵ → 0, the function p(x, y, t) becomes a soliton
solution of the KP equation (1.5). One of our aims is to compute these degenerations and
resulting KP solitons [1, 74] explicitly using computer algebra.

In the tropical limit, the infinite sum over Zg in the theta function becomes a finite sum

θC(z) = a1 exp[cT1 z ] + a2 exp[cT2 z ] + ⋯ + am exp[cTmz ], (2.1)

where C = {c1,c2, . . . ,cm} is a certain subset of the integer lattice Zg. Each lattice point
ci = (ci1, . . . , cig) specifies a linear form cTi z = ∑

g
j=1 cijzj, just like in (1.6). The coefficients

a = (a1, a2, . . . , am) are unknowns that serve as coordinates on the algebraic torus (K∗)m.

Example 2.1.1 (g = 2). Consider a genus two curve y2 = fi(x) where fi(x) is a polynomial
of degree six with coefficients in Q(ϵ). Here are two instances corresponding to Figures 2.1
and 2.2:

f1(x) = (x − 1)(x − 2ϵ)(x − 3ϵ2)(x − 4ϵ3)(x − 5ϵ4)(x − 6ϵ5),
f2(x) = (x − 1)(x − 1 − ϵ)(x − 2)(x − 2 − ϵ)(x − 3)(x − 3 − ϵ).

(2.2)

Note that f2 is an example of a degeneration as in [91, §7]. For any fixed ϵ ∈ C∗, we can
compute the Dubrovin threefold in WP5, using [5, Theorem 3.7], and derive KP solutions
from its points. The difficulty is to maintain ϵ as a parameter and to understand what
happens for ϵ→ 0.

As will be explained in detail in Example 2.3.3, one configuration in Z2 that arises here
is the square C = {(0,0), (1,0), (0,1), (1,1)}. In order for the associated theta function
θC = a00+a10 exp[z1]+a01 exp[z2]+a11 exp[z1+z2] to yield a KP solution, the following three
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polynomial identities are necessary and sufficient:

u41 − 4u1w1 + 3v21 = 0, ((u1+u2)4 − 4(u1+u2)(w1+w2) + 3(v1+v2)2)a00a11
u42 − 4u2w2 + 3v22 = 0, +((u1−u2)4 − 4(u1−u2)(w1−w2) + 3(v1−v2)2)a01a10 = 0.

If these conditions hold then p(x, y, t) can be written as a (2,4)-soliton by [74, §2.5]. The
arguments and importance of this example will be made more precise in future sections.

This chapter is organized as follows. In Section 2.2 we review the derivation of tropical
Riemann matrices. Theorem 2.2.3 characterizes degenerations of theta functions from alge-
braic curves over K. Proposition 2.2.4 shows that C is the vertex set of a Delaunay polytope
in Zg. In Section 2.3 we study the Hirota variety HC, which lives in (K∗)m ×WP3g−1. A
point (a, (u,v,w)) lies on the Hirota variety if and only if (1.8) holds for (2.1). We saw HC
for g = 2 and C = {0,1}2 in Example 2.1.1. Theorem 2.3.6 characterizes the Hirota variety of
the g-simplex.

A key idea in this chapter is to never compute a Riemann matrix or the theta func-
tion (1.6). Instead we follow the approach in [76, 90, 91] that rests on the Sato Grassman-
nian (Theorem 2.4.2). This setting is entirely algebraic and hence amenable to symbolic
computation over K. Section 2.4 explains the computation of tau functions from points on
the Sato Grassmannian.

In Section 2.5 we start from an algebraic curve X over K. Certain Riemann-Roch spaces
on X are encoded as points on the Sato Grassmannian. Following [91], we present an
algorithm and its Maple implementation for computing these points and the resulting tau
functions, for X hyperelliptic. Proposition 2.5.5 addresses the case when X is reducible.
This is followed up in Section 2.6, where we present Algorithm 2.6.2 for KP solitons from
nodal rational curves.

There is a substantial body of literature on the connection between the KP equation and
algebraic geometry: see for example [1, 38, 74, 76, 78, 91, 90]. Some of what follows below
has appeared elsewhere in a different language. We conclude the introduction with what we
see as the three main new results presented in this chapter: the degeneration of the theta
functions via Delaunay polytopes in Theorem 2.2.3 and the equations for the corresponding
Hirota varieties in Corollary 2.3.2, the Gröbner basis for the Hirota variety of the simplex in
Theorem 2.3.6, and the explicit method for computing soliton solutions from nodal rational
curves in Algorithm 2.6.2.

2.2 Tropical curves and Delaunay polytopes

We work over a field K of characteristic zero with a non-archimedean valuation. Let X
be a Mumford curve of genus g, that is, X is a smooth curve over K whose Berkovich
analytification is a graph with g cycles. This metric graph is the tropicalization Trop(X) of
a faithful embedding of X. In spite of the recent advances in [69], computing Trop(X) from
X remains a nontrivial task. All our examples were derived with methods described in [21].
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If the curve X is hyperelliptic, given by an equation y2 = f(x), then Trop(X) is a
metric graph with a harmonic two-to-one map onto the phylogenetic tree encoding the roots
of f(x). The combinatorics of harmonic maps is subtle. We refer to [19, Definition 2.2] for
an explanation.

Example 2.2.1 (g = 2). Let f(x) be of degree six. The six roots determine a subtree with
six leaves in the Berkovich line. The edge lengths are invariants of the semistable model
[21] over the valuation ring of K. There are two combinatorial types of trivalent trees with
six leaves: the caterpillar and the snowflake. These are realized by the two polynomials in
Example 2.1.1.

1 1 1
1

1

1

Figure 2.1: The metric trees defined by the polynomials f1 (left) and f2 (right) in (2.2)

Each trivalent metric tree with 2g + 2 leaves has a unique hyperelliptic covering by a
metric graph of genus g. It is found as follows. Every edge e of the tree will either have one
edge or two edges lying above it in the graph. The two cases are distinguished by cutting
the tree at e. If the two components remaining have an even number of leaves each, then
the edge e has two edges above it in the graph. If the two components have an odd number
of leaves each, then the edge does not split. A vertex in the tree can either have one or two
vertices lying above it as well. If a vertex has either a leaf or an edge that does not split, then
the vertex does not split. If the vertex is only adjacent to edges that do split, then the vertex
splits. Then there is a unique way to build a metric graph satisfying the above. This is the
content of [19, Lemma 2.4]. The edge lengths of the resulting genus g graph are obtained
from those of the tree by stretching or shrinking with a factor of 2, depending on whether
the edge split. See Example 2.2.2. Figure 2.2 shows the graphs that give a two-to-one map
to the trees in Figure 2.1.

2 21
2 2

2

2

Figure 2.2: The metric graphs Trop(X) for the curves X in Example 2.1.1 and Figure 2.1
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Example 2.2.2. We show how to obtain the metric graph Trop(X) for the snowflake in
Figure 2.2. Following the procedure described above, we find that for each edge of the
snowflake, the two components obtained by cutting at the edge both have an even number
of leaves, so each edge splits. The three outside vertices have leaves, so they do not split,
while the middle vertex splits. Figure 2.3 shows the resulting metric graph, lying above
the snowflake. The edges above the edges which split each have the same length. When
every pair of edges connected to a degree two vertex is replaced with a single edge whose
edge length is the sum of the original two edges, the result is exactly the metric graph in
Figure 2.2.

Figure 2.3: The metric graph on the right of Figure 2.2 covers the snowflake of Figure 2.1
by bending at the “elbows” as shown.

From the tropical curve Trop(X) we can read off the tropical Riemann matrix Q. This
is a positive definite real symmetric g × g matrix. Fix a basis of cycles in Trop(X) and write
them as the g rows of a matrix Λ whose columns are labeled by the edges. Let ∆ be the
diagonal matrix whose entries are the edge lengths of Trop(X). Then we have Q = Λ∆ΛT .

The genus two graphs in Figure 2.2 have three edges. Their Riemann matrices are

Q1 = [
1 0 0
0 0 1

]
⎡⎢⎢⎢⎢⎣

2 0 0

0 1
2 0

0 0 2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 0
0 0
0 1

⎤⎥⎥⎥⎥⎦
= [2 0

0 2
] and Q2 = [

1 −1 0
0 1 −1]

⎡⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 0
−1 1
0 −1

⎤⎥⎥⎥⎥⎦
= [ 4 −2
−2 4

] .

We now consider the degeneration of our curve X over K = C{{ϵ}} to its tropical limit.
The Riemann matrix can be written in the form Bϵ = −1

ϵQ+R(ϵ), where R(ϵ) is a symmetric
g × g matrix whose entries are complex analytic functions in ϵ that converge as ϵ→ 0.

Fix a point a ∈ Rg. Replacing z by z + 1
ϵQa in the Riemann theta function (1.6), we

obtain

θ (z + 1

ϵ
Qa ∣Bϵ) = ∑

c∈Zg

exp [− 1

2ϵ
cTQc + 1

ϵ
cTQa] ⋅ exp [1

2
cTR(ϵ)c + cTz] . (2.3)

This expression converges for ϵ→ 0 provided cTQc − 2cTQa ≥ 0 for all c ∈ Zg. Equivalently,

aTQa ≤ (a − c)TQ(a − c) for all c ∈ Zg. (2.4)
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Figure 2.4: A Delaunay polytope and Voronoi cells associated to its vertices.

This means that the distance from a to the origin, in the metric given by Q, is at most the
distance to any other lattice point c ∈ Zg. In other words, (2.4) means that a belongs to the
Voronoi cell for Q. Under this hypothesis, we now consider the associated Delaunay set

Da,Q = {c ∈ Zg ∶ aTQa = (a − c)TQ(a − c)}. (2.5)

This is the set of vertices of a polytope in the Delaunay subdivision of Zg induced by Q. If
a is a vertex of the Voronoi cell then the Delaunay polytope conv(Da,Q) is g-dimensional.
See Figure 2.4 for an example of a Delaunay polytope and its surrounding Voronoi cells.
The Delaunay polytope in the figure is given by the green tetrahedron. The four colored
permutohedra should be thought of as being glued together, they are Voronoi cells with
tetrahedra as corresponding Delaunay cells.

As in [4, §4], we observe that exp [− 1
2ϵc

TQc + 1
ϵc

TQa] converges to 1 for c ∈ Da,Q and to
0 for c ∈ Zg/Da,Q. We have thus derived the following generalization of [4, Theorem 4]:

Theorem 2.2.3. Fix a point a in the Voronoi cell of the tropical Riemann matrix Q. For
ϵ → 0, the series (2.3) converges to a theta function (2.1) supported on the Delaunay set
C = Da,Q, namely

θC(x) = ∑
c∈C

ac exp[cTz] , where ac = exp [
1

2
cTR(0)c] . (2.6)

The Delaunay polytope conv(C) can have any dimension between 0 and g, depending on
the location of a in the Voronoi cell (2.4). If a lies in the interior then C = {0} is just the
origin. We are most interested in the case when a is a vertex of the Voronoi cell, and we
now assume this to be the case. This ensures that C is the vertex set of a g-dimensional
Delaunay polytope. For fixed g, there is only a finite list of Delaunay polytopes, up to lattice
isomorphism. Thanks to [40] and its references, that list is known for g ≤ 6. However, not
every Delaunay polytope arises from a curve X and its tropical Riemann matrix Q = Λ∆ΛT .
To illustrate these points, we present the list of all relevant Delaunay polytopes for g ≤ 4.
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Proposition 2.2.4. The complete list of Delaunay polytopes C arising from metric graphs
for g ≤ 4 is as follows. For g = 2 there are two types: triangle and square. For g = 3 there
are five types: tetrahedron, square-based pyramid, octahedron, triangular prism and cube.
For g = 4 there are 17 types. These C have between 5 and 16 vertices. They are listed in
Table 2.1.

Proof. For any edge e of the graph, let λe ∈ Zg be the associated column of Λ. The Voronoi
cell is a zonotope, obtained by summing line segments parallel to λe for all e. It has a as a
vertex. After reorienting edges, in the corresponding expression of a as a linear combination
of the vectors λe, all coefficients are positive. This means that the Delaunay polytope equals

conv(C) = {c ∈ Rg ∶ 0 ≤ λTe c ≤ 1 for all edges e}. (2.7)

Our task is to classify the polytopes (2.7) for all graphs of genus g and all their orientations.
For g = 2 this is easy, and for g = 3 it was done in [4, Theorem 4]. We see from [4, Figure
2] that every Delaunay polytope can be realized by a curve over K. For g = 4 we started
from the classification of 19 Delaunay polytopes in [41, Theorem 6.2], labeled 1,2, . . . ,16 in
[41, Table V] and labeled A,B,C in [41, Table VI]. Two types do not arise from graphs,
namely the pyramid over the octahedron (#B) and the cross polytope (#C). The other 17
Delaunay polytopes all arise from graphs. They are listed in Table 2.1. The second row
gives the number of vertices. The third row gives the number of facets. These two numbers
uniquely identify the isomorphism type of C. The last row indicates which graphs give rise
to that Delaunay polytope. We refer to the 16 graphs of genus 4 by the labeling used in [30,
Table 1]. Table 2.1 was constructed by a direct computation. It establishes the g = 4 case in
Proposition 2.2.4.

polytopes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A
vertices 5 6 7 7 8 8 8 9 9 9 10 10 10 12 12 16 6
facets 5 6 6 8 7 9 6 7 9 6 7 12 10 7 10 8 9
graphs 1,2,3,4

5,7,10,13
1,3,4
5,6,9 3,7,10 4 7 5 8,11,15 6 10 12 11 9 13 12 15 16 2

Table 2.1: The 17 Delaunay polytopes that arise from the 16 graphs of genus 4. Polytopes are
labeled as in [41, Tables V and VI] and graphs are labeled as in [30, Table 1]. For instance, the
complete bipartite graph K3,3 is #2, and it has two Delaunay polytopes, namely the simplex
(#1) and the cyclic 4-polytope with 6 vertices (#A). The polytope #3 has 7 vertices and 6
facets. It is the pyramid over the triangular prism, and it arises from three graphs (#3,7,10).
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2.3 Hirota varieties

Starting from the theta function of the configuration C in (2.1), we consider the tau function

τ(x, y, t) = θC(ux + vy +wt) =
m

∑
i=1

ai exp[(
g

∑
j=1

cijuj)x +(
g

∑
j=1

cijvj) y +(
g

∑
j=1

cijwj) t].

The Hirota variety HC consists of all points (a, (u,v,w)) in the parameter space (K∗)m ×
WP3g−1 for which τ(x, y, t) satisfies Hirota’s differential equation (1.8). Thus HC is an ana-
logue to the Dubrovin threefold [5] for the classical Riemann theta function of a smooth
curve.

We recall from [74, equation (2.25)] that (1.8) can be written via the Hirota differential
operators as P (Dx,Dy,Dt)τ ● τ = 0, for the special polynomial P (x, y, t) = x4 − 4xt +
3y2. For any fixed index j, the equation P (uj, vj,wj) = 0 defines a curve in the weighted
projective plane WP2. More generally, for any two indices k, ℓ in {1, . . . ,m}, we consider the
hypersurface in WP3g−1 defined by

Pkℓ(u,v,w) ∶= P ( (ck − cℓ) ⋅ u, (ck − cℓ) ⋅ v, (ck − cℓ) ⋅w).

This expression is unchanged if we switch k and ℓ. The defining equations of the Hirota
variety HC can be obtained from the following lemma, which is proved by direct computation.

Lemma 2.3.1. The result of applying the differential operator (1.8) to the function τ(x, y, t)
equals

∑
1≤k<ℓ≤m

akaℓPkℓ(u,v,w) exp[ ((ck+cℓ) ⋅ u)x + ((ck+cℓ) ⋅ v) y + ((ck+cℓ) ⋅w) t ]. (2.8)

The polynomials defining the Hirota variety of C are the coefficients we obtain by writing
(2.8) as a linear combination of distinct exponentials. These correspond to points in the set

C[2] = {ck + cℓ ∶ 1 ≤ k < ℓ ≤m} ⊂ Zg.

A point d in C[2] is uniquely attained if there exists precisely one index pair (k, ℓ) such that
ck +cℓ = d. In that case, (k, ℓ) is a unique pair, and this contributes the quartic Pkℓ(u,v,w)
to our defining equations. If d ∈ C[2] is not uniquely attained, then the coefficient we seek is

∑
1≤k<ℓ≤m
ck+cℓ =d

Pkℓ(u,v,w)akaℓ. (2.9)

Corollary 2.3.2. The Hirota variety HC is defined by the quartics Pkℓ for all unique pairs
(k, ℓ) and by the polynomials (2.9) for all non-uniquely attained points d ∈ C[2]. If all points
in C[2] are uniquely attained then HC is defined by the (m2 ) quartics Pkℓ(u,v,w), so its
equations do not involve the coefficients a1, . . . , am. This is the case when C is the vertex set
of a simplex.
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Example 2.3.3 (The Square). Let g = 2 and C = {0,1}2 as in Example 2.1.1. Here,

C[2] = {(0,1), (1,0), (1,1), (1,2), (2,1)}.

The Hirota variety HC is a complete intersection of codimension three in (K∗)4×WP5. There
are four unique pairs (k, ℓ) and these contribute the two quartics P13 = P24 = u41−4u1w1+3v21
and P12 = P34 = u42 − 4u2w2 + 3v22. The point d = (1,1) is not uniquely attained in C[2]. The
polynomial (2.9) contributed by this d equals

P (u1 + u2, v1 + v2,w1 +w2)a00a11 + P (u1 − u2, v1 − v2,w1 −w2)a01a10. (2.10)

For any point in HC, we can write τ(x, y, t) as a (2,4)-soliton, as shown in [74, § 2.5].

Example 2.3.4 (The Cube). Let g = 3 and consider the tropical degeneration of a smooth
plane quartic to a rational quartic. By [4, Example 6], the associated theta function equals

θC = a000 + a100 exp[z1] + a010 exp[z2] + a001 exp[z3] + a110 exp[z1 + z2]
+ a101 exp[z1 + z3] + a011 exp[z2 + z3] + a111 exp[z1 + z2 + z3].

(2.11)

We compute the Hirota variety in (K∗)8 ×WP8. The set C[2] consists of 19 points. Twelve
are uniquely attained, one for each edge of the cube. These give rise to the three familiar
quartics u4j − 4ujwj + 3v2j , one for each edge direction ck − cℓ. Six points in C[2] are attained
twice. They contribute equations like (2.10), one for each of the six facets of the cube.
Finally, the point d = (1,1,1) is attained four times. The polynomial (2.9) contributed by d
equals

P (u1 + u2 + u3, v1 + v2 + v3, w1 +w2 +w3 )a000a111
+ P (u1 + u2 − u3, v1 + v2 − v3, w1 +w2 −w3 )a001a110
+ P (u1 − u2 + u3, v1 − v2 + v3, w1 −w2 +w3 )a010a101
+ P (−u1+u2+u3, −v1+v2+v3, −w1+w2+w3 )a100a011.

(2.12)

We restrict to the 9-dimensional component ofHC that lies in {a000a110a101a011 = a001a010a100a111}.
Its image in WP8 has dimension 5, with fibers that are cones over P1×P1×P1. They are de-
fined by seven equations arising from non-unique (k, ℓ). Six of these are binomials (2.10).
Extending [74, §2.5], we identify τ(x, y, t) with (3,6)-solitons for

A =
⎛
⎜
⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎞
⎟
⎠
. (2.13)

By definition, a (3,6)-soliton for the matrix A has the form

τ̃(x, y, t) = ∑
I

∏
i,j∈I
i<j

(κj − κi) ⋅ exp[x ⋅ ∑
i∈I

κi + y ⋅ ∑
i∈I

κ2i + t ⋅ ∑
i∈I

κ3i ], (2.14)
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where I runs over the eight bases 135,136,145,146,235,236,245,246. To get from (2.11) to
this form, we use the following parametric representation of the main component in HC :

u1 = κ1 − κ2 , v1 = κ21 − κ22 , w1 = κ31 − κ32 ,
u2 = κ3 − κ4 , v2 = κ23 − κ24 , w2 = κ33 − κ34 ,
u3 = κ5 − κ6 , v3 = κ25 − κ26 , w3 = κ35 − κ36 ,

a111 = (κ3 − κ5)(κ1 − κ5)(κ1 − κ3)λ0λ1λ2λ3 , a011 = (κ3 − κ5)(κ2 − κ5)(κ2 − κ3)λ0λ2λ3 ,
a101 = (κ4 − κ5)(κ1 − κ5)(κ1 − κ4)λ0λ1λ3 , a001 = (κ4 − κ5)(κ2 − κ5)(κ2 − κ4)λ0λ3 ,
a110 = (κ3 − κ6)(κ1 − κ6)(κ1 − κ3)λ0λ1λ2 , a010 = (κ3 − κ6)(κ2 − κ6)(κ2 − κ3)λ0λ2 ,
a100 = (κ4 − κ6)(κ1 − κ6)(κ1 − κ4)λ0λ1 , a000 = (κ4 − κ6)(κ2 − κ6)(κ2 − κ4)λ0.

If we multiply (2.14) by exp[−(κ2+κ4+κ6)x−(κ22+κ24+κ26) y−(κ32+κ34+κ36) t ] then we obtain
the desired function θC(ux+vy+wt) for the above generic point on the Hirota variety. The
extraneous exponential factor disappears after we pass from τ̃(x, y, t) to ∂2x log(τ̃(x, y, t)).
Both versions of the (3,6)-soliton satisfy (1.8) and they represent the same solution to the
KP equation (1.5). An analogous construction for the cube C = {0,1}g in any dimension g is
studied in the next chapter.

We now consider the simplex C = {0,e1, . . . ,eg}. This arises from plane quartics (g = 3)
that degenerate to four lines or to a conic plus two lines [4, Example 5]. The tau function is

τ(x, y, t) = a0 + a1 exp[u1x+v1y+w1t] + a2 exp[u2x+v2y+w2t] + ⋯ + ag exp[ugx+vgy+wgt].

We know from Corollary 2.3.2 that the conditions imposed by Hirota’s differential equation
(1.8) do not depend on a but only on u,v,w. We thus consider the Hirota variety HC in
WP3g−1.

Lemma 2.3.5. The Hirota variety HC of the simplex C is the union of two irreducible com-
ponents of dimension g in WP3g−1. One of the two components has the following parametric
representation:

uj ↦ κj − κ0 , vj ↦ κ2j − κ20 , wj ↦ κ3j − κ30 for j = 1,2, . . . , g. (2.15)

The other component is obtained from (2.15) by the sign change vj ↦ −vj for j = 1, . . . , g.

Proof. By Corollary 2.3.2, the variety HC is defined by the quartics P (ui, vi,wi) and P (ui −
uj, vi − vj,wi − wj). The first g quartics imply uj = κj − κj+g, vj = κ2j − κ2j+g, wj = κ3j − κ3j+g
for j = 1, . . . , g. Under these substitutions, the remaining (g2) quartics factor into products
of expressions κi − κj. Analyzing all cases up to symmetry reveals the two components.

Setting t = κ0 and κj = uj + t, the parameterization (2.15) of HC can be written as follows:

uj ↦ uj , vj ↦ 2ujt + u2j , wj ↦ 3ujt
2 + 3u2j t + u3j for j = 1,2, . . . , g. (2.16)

Theorem 2.3.6. The prime ideal of the Hirota variety in (2.15) is minimally generated by
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(a) the (g2) cubics viuj − vjui − uiuj(ui − uj) for 1 ≤ i < j ≤ g,

(b) the g quartics 4wiui − 3v2i − u4i for i = 1, . . . , g,

(c) the g(g − 1) quartics 4wjui − 3vivj + 3ui(ui − uj)vj − uiu3j for i /= j, and

(d) the (g2) quintics 4wivj − 4wjvi + 3uivj(vj − vi) + uivj(uj − ui)(ui − 2uj) + uiu3j(ui − uj).

These 2g2−g ideal generators are a minimal Gröbner basis with the underlined leading terms.

Proof. We consider the subalgebra of K[t, u1, . . . , ug] that is generated by the 3g polynomials
in the parametrization (2.16). We sort terms by t-degree. We claim that this is a Khovanskii
basis, or canonical basis, as defined in [73] or [104, Chapter 11]. The parametrization given
by the leading monomials uj ↦ uj, vj ↦ 2ujt, wj ↦ 3ujt2 defines a toric variety, namely the
embedding of P1 × Pg−1 into P3g−1 by the very ample line bundle O(2,1). Its toric ideal is
generated by the leading binomials viuj − vjui, 4wiui − 3v2i , 4wjui − 3vivj, wivj −wjvi seen in
(a)-(d). In fact, by [104, §14.A], these 2g2−g quadrics form a square-free Gröbner basis with
underlined leading monomials. Under the correspondence in [104, Theorem 8.3], this initial
ideal corresponds to a unimodular triangulation of the associated polytope (2∆1) ×∆g−1.

One checks directly that the polynomials (a), (b), (c), (d) vanish for (2.16). Since only
two indices i and j appear, by symmetry, it suffices to do this check for g = 2. Hence the
generators of the toric ideal are the leading binomials of certain polynomials that vanish on
the Hirota variety. By [73, Theorem 2.17] or [104, Corollary 11.5], this proves the Khovanskii
basis property. Geometrically speaking, we have constructed a toric degeneration from the
Hirota variety to a toric variety in WP3g−1. Furthermore, using [73, Proposition 5.2] or
[104, Corollary 11.6 (1)] we conclude that the polynomials in (a)-(d) are a Gröbner basis for
the prime ideal of (2.16), where the term order is chosen to select the underlined leading
terms.

Using the methods described above, we can compute the Hirota variety HC for each of
the known Delaunay polytopes C, starting with those in Proposition 2.2.4. We did this above
for the triangle, the square, the tetrahedron and the cube. Here is one more example.

Example 2.3.7 (Triangular prism). Let g = 3 and take θC to be the six-term theta function

a000 + a100 exp[z1] + a001 exp[z3] + a101 exp[z1 + z3] + a011 exp[z2 + z3] + a111 exp[z1 + z2 + z3].

The prism C arises in the degeneration as in Theorem 2.2.3 from a smooth quartic to a
cubic plus a line. This is the second diagram in Figures 1 and 2 in [5, page 11]. The
Hirota variety is cut out by four quartics in ui, vi,wi, one for each edge direction, plus three
relations involving the aijk, one for each of the three quadrangle facets. The edges from the
two triangle facets define a reducible variety of codimension 3. One irreducible component
is given by

⟨u41 + 3v21 − 4u1w1, u
4
2 + 3v22 − 4u2w2, u

2
1u2 + u1u22 − u2v1 + u1v2⟩.
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Together with the four other relations, this defines an irreducible variety of codimension 4
inside (K∗)6 ×WP8. That irreducible Hirota variety has the parametric representation

u1 = κ1 − κ2 , v1 = κ21 − κ22 , w1 = κ31 − κ32 ,
u2 = κ2 − κ3 , v2 = κ22 − κ23 , w2 = κ32 − κ33 ,
u3 = κ4 − κ5 , v3 = κ24 − κ25 , w3 = κ34 − κ35 ,

a000 = (κ1 − κ4)λ0 , a100 = (κ2 − κ4)λ0λ1 , a110 = (κ3 − κ4)λ0λ1λ2 ,
a001 = (κ1 − κ5)λ0λ3 , a101 = (κ2 − κ5)λ0λ1λ3 , a111 = (κ3 − κ5)λ0λ1λ2λ3 .

This allows us to write the τ -function as a (2,5)-soliton, with A = (1 1 1 0 0
0 0 0 1 1

) . The

six bases of the matrix A correspond to the six terms in θC, in analogy to the cube (2.11).

2.4 The Sato Grassmannian

The Sato Grassmannian is a device for encoding all solutions to the KP equation. Recall
that the classical Grassmannian Gr(k,n) parametrizes k-dimensional subspaces of Kn. It

is a projective variety in P(
n
k
)−1, cut out by quadratic relations known as Plücker relations.

Following [88, Chapter 5], the Plücker coordinates pI are indexed by k-element subsets I of
{1,2, . . . , n}. As is customary in Schubert calculus [88, §5.3], we identify these (nk) subsets
with partitions λ that fit into a k × (n − k) rectangle. Such a partition λ is a sequence
(λ1, λ2, . . . , λk) of integers that satisfy n − k ≥ λ1 ≥ λ2 ≥ ⋯ ≥ λk ≥ 0. The corresponding
Plücker coordinate cλ = pI is the maximal minor of a k ×n matrix M of unknowns, as in [88,
§5.1], where the columns are indexed by I = {λk + 1, λk−1 + 2, . . . , λ2 + k−1, λ1 + k}. With this
notation, the Plücker relations for Gr(k,n) are quadrics in the unknowns cλ.

Example 2.4.1. We revisit [88, Example 5.9] with Plücker coordinates indexed by par-
titions. The Grassmannian Gr(3,6) is a 9-dimensional subvariety in P19. Its prime ideal
is generated by 35 Plücker quadrics. These are found easily by the following two lines in
Macaulay2 [59]:

R = QQ[c,c1,c11,c111,c2,c21,c211,c22,c221,c222,c3,c31,c311,

c32,c321,c322,c33,c331,c332,c333]; I = Grassmannian(2,5,R)

The output consists of 30 three-term relations, like c211c22−c21c221+c2c222 and five four-term
relations, like c221c31 − c21c321 + c11c331 + c c333. These quadrics form a minimal Gröbner basis.

The Sato Grassmannian SGM is the zero set of the Plücker relations in the unknowns cλ,
where we now drop the constraint that λ fits into a k × (n − k)-rectangle. Instead, we allow
arbitrary partitions λ. What follows is the description of a minimal Gröbner basis for SGM.

Partitions are order ideals in the poset N2. The set of all order ideals, ordered by inclusion,
is a distributive lattice, known as Young’s lattice. Consider any two partitions λ and µ that
are incomparable in Young’s lattice. They fit into a common k × (n − k)-rectangle, for some
k and n. There is a canonical Plücker relation for Gr(k,n) that has leading monomial cλcµ.
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It is known that these straightening relations form a minimal Gröbner basis for fixed k and
n. This property persists as k and n − k increase, hence yielding a Gröbner basis for SGM.

The previous paragraph paraphrases the definition in [37, 99] of the Sato Grassmannian
as an inverse limit of projective varieties. This comes from the diagram of maps Gr(k,n+1) ⇢
Gr(k,n) and Gr(k+1, n+1) ⇢ Gr(k,n), where these rational maps are given by dropping the
last index. This corresponds to deletion and contraction in matroid theory [88, Chapter 13].
One checks that the simultaneous inverse limit for k →∞ and n−k →∞ is well-defined. The
straightening relations in our equational description above are those in [37, Example 4.1].
That they form a Gröbner basis is best seen using Khovanskii bases [73, Example 7.3].

We next present the parametric representation of SGM that is commonly used in KP
theory. Let V = K((z)) be the field of formal Laurent series with coefficients in our ground
field K. Consider the natural projection map π∶V → K[z−1] onto the polynomial ring in z−1.
We regard V and K[z−1] as K-vector spaces, with Laurent monomials zi serving as bases.
Points in the Sato Grassmannian SGM correspond to K-subspaces U ⊂ V such that

dimKerπ∣U = dimCokerπ∣U , (2.17)

and this common dimension is finite. We can represent U ∈ SGM via a doubly infinite matrix
as follows. For any basis (f1, f2, f3, . . . ) of U , the jth basis vector is a Laurent series,

fj(z) =
+∞

∑
i=−∞

ξi,jz
i+1.

Then U is the column span of the infinite matrix ξ = (ξi,j) whose rows are indexed from top
to bottom by Z and whose columns are indexed from right to left by N. The i-th row of ξ
corresponds to the coefficients of zi+1. Sato proved that a subspace U of V satisfies (2.17) if
and only if there is a basis, called a frame of U , whose corresponding matrix has the shape

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
⋯ 1 0 0 0 ⋯ 0
⋯ ∗ 1 0 0 ⋯ 0
⋯ ∗ ∗ ξ−ℓ,ℓ ξ−ℓ,ℓ−1 ⋯ ξ−ℓ,1
⋯ ∗ ∗ ξ−ℓ+1,ℓ ξ−ℓ+1,ℓ−1 ⋯ ξ−ℓ+1,1
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⋯ ∗ ∗ ξ−1,ℓ ξ−1,ℓ−1 ⋯ ξ−1,1
⋯ ∗ ∗ ξ0,ℓ ξ0,ℓ−1 ⋯ ξ0,1
⋯ ∗ ∗ ξ1,ℓ ξ1,ℓ−1 ⋯ ξ1,1
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.18)

This matrix is infinite vertically, infinite on the left and, most importantly, it is eventually
lower triangular with 1 on the diagonal, at the (−n,n) positions. The space U is described by
the positive integer ℓ and the submatrix with ℓ linearly independent columns whose upper
left entry is ξ−ℓ,ℓ. This description implies that a subspace U of V satisfies (2.17) if and
only if

there exists ℓ ∈ N such that dimU ∩ Vn = n + 1 for all n ≥ ℓ, (2.19)
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where Vn = z−nK[[z]] denotes the space of Laurent series with a pole of order at most n.
The Plücker coordinates on SGM are computed as minors ξλ of the matrix ξ. Think of a

partition λ as a weakly decreasing sequence of nonnegative integers that are eventually zero.
Setting mi = λi − i for i ∈ N, we obtain the associated Maya diagram (m1,m2,m3, . . . ). This
is a vector of strictly decreasing integers m1 >m2 > . . . such that mi = −i for large enough i.
Partitions and Maya diagrams are in natural bijection. Given any partition λ, we consider
the matrix (ξmi,j)i,j≥1 whose row indices m1,m2,m3, . . . are the entries in the Maya diagram
of λ. Thanks to the shape of the matrix ξ, it makes sense to take the determinant

ξλ ∶= det(ξmi,j). (2.20)

This Plücker coordinate is a scalar in K that can be computed as a maximal minor of the
finite matrix to the lower right of ξ−ℓ,ℓ in (2.18). We summarize our discussion as a theorem.

Theorem 2.4.2. The Sato Grassmannian SGM is the inverse limit of the classical Grass-
mannians Gr(k,n) ⊂ P(nk)−1 as both k and n−k tend to infinity. A parametrization of SGM is
given by the matrix minors cλ = ξλ in (2.20), where λ runs over all partitions. The equations
of SGM are the quadratic Plücker relations, shown in [37, Example 4.1] and in Example
2.4.1.

We now connect the Grassmannians above to our study of solutions to the KP equation.
Fix positive integers k < n and a vector of parameters κ = (κ1, κ2, . . . , κn). For each k-element
index set I ∈ ([n]k ) we introduce an unknown pI that serves as a Plücker coordinate. Our
ansatz for solving (1.8) is now the following linear combination of exponential functions:

τ(x, y, t) = ∑
I∈([n]

k
)

pI ⋅ ∏
i,j∈I
i<j

(κj − κi) ⋅ exp[x ⋅ ∑
i∈I

κi + y ⋅ ∑
i∈I

κ2i + t ⋅ ∑
i∈I

κ3i ]. (2.21)

Proposition 2.4.3. The function τ is a solution to Hirota’s equation (1.8) if and only if the
point p = (pI)I∈([n]

k
)
lies in the Grassmannian Gr(k,n), i.e. there is a k × n matrix A = (aij)

such that, for all I ∈ ([n]k ), the coefficient pI is the k × k-minor of A with column indices I.

Proof. This follows from [74, Theorem 1.3].

We define a (k,n)-soliton to be any function τ(x, y, t) where κ ∈ Rn and p ∈ Gr(k,n).
Even the case k = 1 is interesting. Writing A = (a1 a2 ⋯ an), the (1, n)-soliton equals

τ(x, y, t) =
n

∑
i=1

ai exp[x ⋅ κi + y ⋅ κ2i + t ⋅ κ3i ].

If we now set n = g + 1 and we divide the sum above by its first exponential term then we
obtain the tau function that was associated with the g-simplex in Lemma 2.3.5. Hence the
KP solutions that arise when the Delaunay polytope is a simplex are precisely the (1, n)-
solitons.
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We next derive the Sato representation in [74, Definition 1.3], that is, we express τ(x, y, t)
as a linear combination of Schur polynomials. Let λ be a partition with at most three parts,
written λ1 ≥ λ2 ≥ λ3 ≥ 0. Following [74, §1.2.2], the associated Schur polynomial σλ(x, y, t)
can be defined as follows. We first introduce the elementary Schur polynomial φj(x, y, t) by
the series exp[xλ+ yλ2 + tλ3] = ∑∞j=0φj(x, y, t)λj. The Schur polynomial σλ for the partition
λ = (λ1, λ2, λ3) is the determinant of the Jacobi-Trudi matrix of size 3 × 3:

σλ(x, y, t) = det(φλi−i+j(x, y, t))1≤i,j≤3.

To be completely explicit, we list Schur polynomials for partitions λ with λ1 + λ2 + λ3 ≤ 4:

σ∅ = 1, σ1 = x, σ11 = 1
2x

2 − y, σ2 = 1
2x

2 + y, σ111 = 1
6x

3 − xy + t, σ3 = 1
6x

3 + xy + t,
σ21 = 1

3x
3 − t, σ211 = 1

8x
4 − 1

2x
2y − 1

2y
2, σ22 = 1

12x
4 − tx + y2, σ31 = 1

8x
4 + 1

2x
2y − 1

2y
2, . . .

For a partition λ as above, we set λ4 = ⋯ = λk = 0. For I = {i1 < i2 < ⋯ < ik} we set

∆λ(κi, i ∈ I) ∶= det

⎛
⎜⎜⎜⎜⎜
⎝

κλ1+k−1
i1

κλ1+k−1
i2

⋯ κλ1+k−1
ik

κλ2+k−2
i1

κλ2+k−2
i2

⋯ κλ2+k−2
ik

⋮ ⋮ ⋱ ⋮
κλk
i1

κλk
i2

⋯ κλk
ik

⎞
⎟⎟⎟⎟⎟
⎠

.

The empty partition gives the Vandermonde determinant ∆∅(κi, i ∈ I) = ∏ i,j∈I
i<j
(κj − κi).

Lemma 2.4.4. The exponential function indexed by I in the formula (2.21) has the expan-
sion

exp[x ⋅ ∑
i∈I

κi + y ⋅ ∑
i∈I

κ2i + t ⋅ ∑
i∈I

κ3i ] = ∆∅(κi, i ∈ I)−1 ⋅ ∑
λ1≥λ2≥λ3≥0

∆λ(κi, i ∈ I) ⋅ σλ(x, y, t).

Proof. The unknowns x, y, t play the role of power sum symmetric functions in r1, r2, . . .:

x = r1 + r2 + r3 = p1(r), y =
1

2
(r21 + r22 + r23) =

1

2
p2(r), t =

1

3
(r31 + r32 + r33) =

1

3
p3(r).

It suffices to prove the statement after this substitution. By [74, Remark 1.5], we have
σλ(x, y, t) = sλ(r1, r2, r3), where sλ is the usual Schur function as a symmetric polynomial,
which satisfies ∆λ(κi, i ∈ I) = sλ(κi, i ∈ I) ⋅∆∅(κi, i ∈ I). Our identity can be rewritten as

exp [p1(w) ⋅ p1(κ) +
1

2
p2(w) ⋅ p2(κ) +

1

3
p3(w) ⋅ p3(κ)] = ∑

λ1≥λ2≥λ3≥0

sλ(κi, i ∈ I) ⋅ sλ(r1, r2, r3).

This is precisely the classical Cauchy identity, as stated in [103, page 386].

By substituting the formula in Lemma 2.4.4 into the right hand side of (2.21), we obtain
:
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Proposition 2.4.5. The (k,n)-soliton has the following expansion into Schur polynomials

τ(x, y, t) = ∑
λ1≥λ2≥λ3≥0

cλ ⋅ σλ(x, y, t) , where cλ = ∑
I∈([n]

k
)

pI ⋅∆λ(κi, i ∈ I). (2.22)

For any point ξ in the Sato Grassmannian SGM we now define a tau function as follows:

τξ(x, y, t) = ∑
λ

ξλ σλ(x, y, t). (2.23)

The sum is over all possible partitions. We can now state the main result of Sato’s theory.

Theorem 2.4.6 (Sato). For any ξ ∈ SGM, the tau function τξ satisfies Hirota’s equa-
tion (1.8).

Actually, Sato’s theorem is much more general. From a frame ξ as in (2.18), we define

τ(t1, t2, t3, t4, . . . ) = ∑
λ

ξλ σλ(t1, t2, t3, t4, . . . )

The sum is over all partitions. This function in infinitely many variables is a solution to
the KP hierarchy, which is an infinite set of differential equations which generalize the KP
equation. Moreover, every solution to the KP hierarchy arises from the Sato Grassmannian
in this way. The tau functions that we consider here arise from the general case by setting

t1 = x, t2 = y, t3 = t, t4 = t5 = ⋅ ⋅ ⋅ = 0.

We refer to [74, Theorem 1.3] for a first introduction and numerous references. We may also
start with an ansatz τ(x, y, t) = ∑λ cλ σλ(x, y, t), and examine the quadratic equations in
the unknowns cλ that are imposed by (1.8). This leads to polynomials that vanish on SGM.

Remark 2.4.7. We can view Proposition 2.4.3 as a special case of Theorem 2.4.6, given that
the Sato Grassmannian contains all classical Grassmannians Gr(k,n). Here is an explicit
description. We fix distinct scalars κ1, . . . , κn in K∗. Points in Gr(k,n) are represented by
matrices A in Kk×n. Following [76, §3.1] and [91, §2.2], we turn A into an infinite matrix ξ as
in (2.18). Let Λ(κ) denote the ∞×n matrix whose rows are (κℓ1, κℓ2, . . . , κℓn) for ℓ = 0,1,2, . . ..
We define A(κ) ∶= Λ(κ) ⋅ AT . This is the ∞ × k matrix whose jth column is given by the
coefficients of

n

∑
i=1

aji
1 − κiz

=
∞

∑
ℓ=0

n

∑
i=1

κℓi aji ⋅ zℓ.

This verifies [91, Theorem 3.2]. Indeed, the double infinite matrix representing τ equals

ξ = [
1 0

0 A(κ)] ,
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where 0 and 1 are infinite zero and identity matrices. In particular, the first nonzero row of
A(κ) is at the row −k of ξ. The corresponding basis (f1, f2, f3, . . . ) of the space U is given by

fj =
1

zk−1

n

∑
i=1

aji
1 − κiz

, for j = 1, . . . , k, fj =
1

zj−1
, for j ≥ k + 1. (2.24)

The Plücker coordinates cλ indexed by partitions with at most three parts are certain minors
of A(κ), and these are expressed in terms of maximal minors of A by the formula in (2.22).

2.5 Tau functions from algebraic curves

Let X be a smooth projective curve of genus g defined over a field K of characteristic zero.
In this section we show how certain Riemann-Roch spaces on X define points in the Sato
Grassmannian SGM. Using Theorem 2.4.6, we obtain KP solutions by choosing appropriate
bases of these spaces. The relevant theory is known since the 1980s; see [74, 76, 99]. We
begin with the exposition in [91, §4]. Our aim is to develop tools to carry this out in practice.

Fix a divisor D of degree g − 1 on X and a distinguished point p ∈ X, both defined over
K. For any integer n ∈ N, we consider the Riemann-Roch space H0(X,D + np). For m < n
there is an inclusion H0(X,D +mp) ⊆ H0(X,D + np). As n increases, we obtain a space
H0(X,D+∞p) of rational functions on the curve X whose pole order at p is unconstrained.

Let z denote a local coordinate on X at p. Each element in H0(X,D+∞p) has a unique
Laurent series expansion in z and hence determines an element in V = K((z)). Let m =
ordp(D) be the multiplicity of p in D. Multiplication by zm+1 defines the K-linear map:

ι ∶ H0(X,D +∞p) → V, s = ∑
n∈Z

snz
n ↦ ∑

n∈Z
snz

n+m+1.

Proposition 2.5.1 ([91, Theorem 4.1]). The space U = ι(H0(X,D+∞p)) ⊂ V lies in SGM.

Proof. The map ι is injective because a rational function on an irreducible curveX is uniquely
determined by its Laurent series. Setting Vn = z−nK[[z]] ⊂ V as in Section 2.4, we have

dimU ∩ Vn = h0(X,D + (n + 1)p) = n + 1 + h1(X,D + (n + 1)p). (2.25)

The second equality is the Riemann-Roch Theorem, with deg(D) = g−1. Hence (2.19) holds
provided h1(X,D + (n + 1)p) = 0. This happens for n ≥ g − 1, by degree considerations.

Following [91], we examine the case g = 2. A smooth curve of genus two is hyperelliptic:

X = {y2 = (x − λ1)(x − λ2)⋯(x − λ6)} .

Here λ1, λ2, . . . , λ6 ∈ K are pairwise distinct. Let p be one of the two preimages of the point
at infinity under the double cover X → P1. Using the local coordinate z = 1

x at p, we write

y = ±
√
(x − λ1)⋯(x − λ6) = ±

1

z3
⋅
+∞

∑
n=0

αnz
n,
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where α0 = 1 and the αi are polynomials in λ1, . . . , λ6. We consider three kinds of divisors:

D0 = p , D1 = p1 and D2 = p1 + p2 − p,

where p1 = (c1, y1), p2 = (c2, y2) are general points on X. For m ≥ 3, consider the functions

gm(x) = ∑m
j=0αjxm−j,

fm(x, y) = 1
2 (xm−3y + gm(x)) ,

hj(x, y) = f3(x,y)−f3(cj ,−yj)

x−cj
= y+g3(x)−(−yj+g3(cj))

2(x−cj)
for j = 1,2.

These rational functions are series in z with coefficients that are polynomials in λ1, . . . , λ6.
We write Ui for the image of the Riemann-Roch space H0(X,Di+∞p) under the inclusion ι.

Lemma 2.5.2 ([91, Lemma 5.2]). The set {1, f3, f4, f5, . . .} is a basis of U0, the set {1, f3, f4, f5, . . .}∪
{h1} is a basis of U1, and {1, f3, f4, f5, . . .} ∪ {h1, h2} is a basis of U2.

This lemma furnishes us with an explicit basis for the K-vector space U in Proposi-
tion 2.5.1. This basis is a frame in the sense of Sato theory. It gives us the matrix ξ in
(2.18), from which we compute the Plücker coordinates (2.20) and the tau function (2.23).
This process is a symbolic computation over the ground field K. No numerics are needed.
For general curves of genus g ≥ 3, the same is possible, but it requires computing a basis for
U , e.g. using [64].

Our approach differs greatly from the computation of KP solutions from the curve X via
theta functions as in [5, 38, 78]. That would require the computation of the Riemann matrix
of X, which cannot be done over K. This is why we adopted the SGM approach in [76, 91].

We implemented the method described above in Maple for D0 = p on hyperelliptic curves
over K = Q(ϵ). If λ is a partition with n parts, then the Plücker coordinate ξλ is the minor
given by the n right-most columns of ξ and the rows given by the first n parts in the Maya
diagram of λ. Since the tau function (2.23) is an infinite sum over all partitions, our code
does not provide an exact solution to the Hirota equation (1.8). Instead, it computes the
truncated tau function

τ[n] ∶=
n

∑
i=1

∑
λ⊢i

ξλ σλ(x, y, t), (2.26)

where n is the order of precision. In our experiments we evaluated (2.26) up to n = 12 on a
range of hyperelliptic curves of genus g = 2,3,4. The first non-zero τ[n] is τ[ g ] = σ(g)(x, y, t)
[91, Proposition 6.3]. When plugging (2.26) into the left hand side of (1.8), we get an ex-
pression in x, y, t whose terms of low order vanish. The following facts were observed for this
expression. For n > g+2, the term of lowest degree has degree n+g−3, and the monomial that
appears in that lowest degree n+g−3 = 1,2,3, . . . is x, y, t, xt, yt, t2, xt2, yt2, t3, xt3, yt3, t4, . . . .

We use our Maple code to study (k,n)-solitons arising from the degenerations in [91].
Namely, we explore the limit for ϵ→ 0 for hyperelliptic curves of genus g = n − 1 given by

y2 = (x − κ1)(x − κ1 − ϵ) ⋅ ⋯ ⋅ (x − κn)(x − κn − ϵ). (2.27)
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Set h(z) = (1 − κ1z)⋯(1 − κnz). For ϵ→ 0 the frame found in Lemma 2.5.2 degenerates to

U = {1, z−nh(z), z−(n+1)h(z), z−(n+2)h(z), z−(n+3)h(z), . . .}. (2.28)

Observe that z−nh(z) gets expanded to

z−n + z−(n−1)(−
n

∑
i=1

κi) + z−(n−2)( ∑
1≤i≤j≤n

κiκj) + z−(n−3)( ∑
1≤i≤j≤l≤n

κiκjκl) +O(z−(n−4)).

Following [91, §7], one multiplies all elements in U by h(z)−1 in order to obtain a soliton
solution. By [91, Theorem 3.2], we obtain a (1, n)-soliton solution given by the matrix

A = ((∏
i≠1

(κ1 − κi))
−1

(∏
i≠2

(κ2 − κi))
−1

⋯ (∏
i≠n

(κn − κi))
−1

) .

Example 2.5.3. The soliton that arises from the genus 2 curve defined by the polynomial
f2(x) in (2.2) is a (1,3)-soliton given by the matrix A = ( 1

2 − 1 1
2
) and parameters

κ = (1,2,3).

We computed the tau function for a range of curves over K = Q(ϵ). Their limit as ϵ → 0
is not the same as the tau functions obtained from the combinatorial methods in Section
2.2:

Example 2.5.4. Let X be the hyperelliptic curve of genus 3 given by y2 = f(x) where f(x)
is

(x+1+ϵ)(x+1+2ϵ)(x+1+ϵ+ϵ2)(x+1+2ϵ+ϵ2)(x+2+ϵ)(x+2+2ϵ)(x+2+ϵ+ϵ2)(x+2+2ϵ+ϵ2).

In Figure 2.5 we exhibit the subtree with 8 leaves that arises from the 8 roots of f(x) and
the corresponding metric graph of genus 3 which maps to it under the hyperelliptic covering.

2
1

1

1

1 1 11 1

1
2

1
2

Figure 2.5: The metric tree (left) and the metric graph (right) for the curve X

For a suitable cycle basis, the tropical Riemann matrix equals Q = [
2 −1 0
−1 3 −1
0 −1 2

]. This

appears in the second row in [4, Table 4]: the Voronoi polytope is the hexarhombic dodeca-
hedron. This corresponds to the tropical degeneration from a smooth quartic to a conic and
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two lines in P2. According to [4, Theorem 4] there are two types of Delaunay polytopes in
this case, namely the tetrahedron (4 vertices) and the pyramid (5 vertices). The theta func-
tion (2.1) for the tetrahedron equals θC(z) = a000 + a100 exp[z1] + a010 exp[z2] + a001 exp[z3].
The Hirota variety lives in (K∗)4 ×WP8, and it is characterized by Theorem 2.3.6. Each
point on the Hirota variety gives a KP solution. The theta function for the pyramid equals

θC′(z) = a000 + a100 exp[z1] + a001 exp[z3] + a101 exp[z1 + z3] + a111 exp[z1 + z2 + z3].

The Hirota variety HC′ ⊂ (K∗)5 ×WP8 is cut out by eight quadrics Pij as in Section 2.3, plus

P (u1 + u3, v1 + v3,w1 +w3)a000a101 + P (u1, v1,w1)a001a101.

The resulting tau functions differ from those obtained by setting ϵ = 0 in our Maple output.
This happens because y2 = f(x) is not a semistable model. The special fiber of that curve at
ϵ = 0 does not have ordinary singularities: it has two singular points of the form y2 = x4. On
the other hand, if the curve at ϵ = 0 is rational and has nodal singularities, as in (2.27), then
we get soliton solutions at the limit. We shall see this more precisely in the next section.

After this combinatorial interlude, we now return to Proposition 2.5.1, and explore this
for a singular curve X. Suppose X is connected, has arithmetic genus g, and all singularities
are nodal. We recall briefly how to compute H0(X,E) when E is a divisor supported in the
smooth locus of X. If X is irreducible, then we consider the normalization X̃ → X, that
separates the nodes of X. The divisor E lifts to X̃, and H0(X,E) is a subspace of H0(X̃,E).
It consists of rational functions which coincide on the points of X̃ that map to the nodes of
X. If X = X0 ∪ ⋅ ⋅ ⋅ ∪Xr is reducible, then H0(X,E) is a subspace of ⊕r

i=0H
0(Xi,E∣Xi

). Its
elements are tuples (f0, f1, . . . , fr) where fi and fj coincide on Xi ∩Xj.

Fix a divisor D of degree g−1 and a point p, where all points are smooth on X and defined
over K. We wish to compute H0(X,D+∞p). Riemann-Roch holds for X and hence so does
(2.25). In order for the proof of Proposition 2.5.1 to go through, we need two conditions:

(∗) A rational function in H0(X,D+np) is uniquely determined by its Laurent series at p.

(∗∗) We have h1(X,D + np) = 0 for n≫ 0.

Our next result characterizes when these two conditions hold. Let X0 be the irreducible
component of X that contains p, and let X ′0 =X/X0 be the curve obtained by removing X0.
Set Z =X0∩X ′0 and denote the restrictions of the divisor D to X0,X ′0 by D0,D′0 respectively.

Proposition 2.5.5. Condition (∗) holds if and only if H0(X ′0,D′0 −Z) = 0. Condition (∗∗)
holds if and only if H1(X ′0,D′0) = 0. These are vanishing conditions on the curve X ′0.

Proof. IfX is irreducible then (∗) holds since rational functions are determined by their series
on the normalization X̃. If X is reducible then X ′0 is nonempty. We need that the restriction

H0(X,D + np) Ð→ H0(X0,D0 + np)
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is injective. The kernel of this map consists exactly of those rational functions in H0(X ′0,D′0)
which vanish on Z. In other words, the kernel is the space H0(X ′0,D′0 −Z), as desired.

Also for the second statement, we can takeX to be reducible. Consider the exact sequence

0 Ð→ OX(D + np) Ð→ OX0(D0 + np) ⊕OX′0(D
′
0) Ð→ OZ(D0 + np) Ð→ 0.

Taking global sections we see thatH1(X,D+np) surjects ontoH1(X ′0,D′0), since dim(Z) = 0.
Hence H1(Z,D0 + np) = 0. In particular, if H1(X,D + np) = 0 then H1(X ′0,D′0) = 0.

Conversely, suppose H1(X ′0,D′0) = 0. Since X0 is irreducible, we have H1(X0,D0+np) = 0
for n≫ 0. The long exact sequence tells us that H1(X,D + np) = 0 as soon as the map

H0(X0,D0 + np) ⊕H0(X ′0,D′0) Ð→H0(Z,D + np), (f0, f ′0) ↦ f0∣Z − f ′0∣Z
is surjective. Actually, the map H0(X0,D + np) → H0(Z,D + np) is surjective for n ≫ 0.
Indeed, H1(X0,D −Z + np) = 0 for n≫ 0 since p is an ample divisor on the curve X0.

Remark 2.5.6. Here we presented the case of nodal curves for simplicity, but the same
discussion holds true, with essentially the same proofs, for an arbitrary singular curve.

Remark 2.5.7. The two conditions in Proposition 2.5.5 are automatically satisfied when
the curve X is irreducible. In that case we always get a point U in the Sato Grassmannian.

2.6 Nodal rational curves

Our long-term goal is to fully understand the points U(ϵ) in the Sato Grassmannian that
represent Riemann-Roch spaces of a smooth curve over a valued field, such as K = Q(ϵ). We
explained how these points are computed, and we implemented this in Maple for the case of
hyperelliptic curves. Our approach is similar to [76, 90, 91]. For a given Mumford curve, it
remains a challenge to lift the computation to the valuation ring (such as Q[ϵ]) and correctly
encode the limiting process as ϵ→ 0. In this section we focus on what happens in the limit.

Consider a nodal reducible curve X =X0 ∪ ⋯ ∪Xr, where each irreducible component Xi

is rational. The arithmetic genus g is the genus of the dual graph. We present an algorithm
whose input is a divisor D of degree g − 1 and a point p, supported in the smooth locus of
X. The algorithm checks the conditions in Proposition 2.5.5, and, if these are satisfied, it
outputs a soliton solution that corresponds to U = ι(H0(X,D +∞p)).

We start with some remarks on interpolation of rational functions on P1. Consider
distinct points κ1, . . . , κa and κ1,1, κ1,2, . . . , κb,1, κb,2 on P1. We also choose a divisor D0 =
m1p1+⋅ ⋅ ⋅+msps+mp, which is supported away from the previous points. Choose also scalars
λ1, . . . , λa, µ1, . . . , µb ∈ K. We wish to compute all functions f in H0(P1,D0 +∞p) satisfying

f(κj) = λj for j = 1, . . . , a and f(κj,1) = f(κj,2) = µj for j = 1, . . . , b. (2.29)

To do so, we choose an affine coordinate x on P1 such that p = ∞. Then we define

P (x) ∶=
s

∏
j=1

(x − pj)mj and K(x) ∶=
a

∏
j=1

(x − κj) ⋅
b

∏
j=1

(x − κj,1)(x − κj,2).
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Write K ′(x) for the derivative of the polynomial K(x). An interpolation argument shows:

Lemma 2.6.1. A rational function f in H0(P1,D0 +∞p) satisfies condition (2.29) if and
only if

f(x) = K(x)
P (x) [

a

∑
j=1

λj
P (κj)
K ′(κj)

1

x − κj
+

b

∑
j=1

µj (
P (κj,1)
K ′(κj,1)

1

x − κj,1
+ P (κj,2)
K ′(κj,2)

1

x − κj,2
) +H(x)],

where µ1, . . . , µb ∈ K and H(x) is a polynomial in K[x].

Lemma 2.6.1 gives a way to compute the Riemann-Roch space H0(X,E) when E is a
divisor on a nodal rational curve X as above. The normalization of such a curve is an union
of projective lines. On each line we need to compute rational functions with prescribed
values at certain points (corresponding to the intersection of two components of X) and at
certain pairs of points (corresponding to the nodes in the components of X).

Algorithm 2.6.2. The following steps compute the soliton (2.21) associated to the curve
data.

Input: A reducible curve X =X0 ∪⋯∪Xr as above, with a smooth point p and a divisor D
of degree g − 1 supported also on smooth points. Everything is defined over K.

(1) Let X0,X ′0,D0,D′0, Z be as in Section 2.5. Write Z = {q1, . . . , qa} and let n1, . . . , nb

be the nodes in X0. If ν∶P1 → X0 is the normalization of X0 we set κj ∶= ν−1(qj)
and {κj,1, κj,2} = ν−1(nj). We also write D0 = m1p1 + ⋅ ⋅ ⋅ +msps +mp, we fix an affine
coordinate x on P1 such that p = ∞, and we compute P (x) and K(x) as in (2.29).

(2) Compute a basis Q1,Q2, . . . ,Qℓ of H0(X ′0,D′0). If ℓ = degD′0+1−pa(X ′0) then proceed.
Otherwise return “Condition (∗∗) in Proposition 2.5.5 fails” and terminate.

(3) Compute the Riemann-Roch space H0(X ′0,D′0 −Z). If this is zero then proceed. Oth-
erwise return “Condition (∗) in Proposition 2.5.5 fails” and terminate.

(4) Define the ℓ × a matrix A and the b × 2b matrix B by

Ai,j ∶=
Qi(pj)P (κj)
K ′(κj)

, Bj,2j−1 ∶=
P (κj,1)
K ′(κj,i)

, Bj,2j ∶=
P (κj,2)
K ′(κj,2)

, Bi,j ∶= 0 otherwise.

Output: The (ℓ + b) × (a + 2b) matrix (A 0
0 B

). This represents the soliton solution for the

point ι(H0(X,D +∞p)) in the Sato Grassmannian SGM, after a gauge transformation.

Proposition 2.6.3. Algorithm 2.6.2 is correct.
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Proof. By Riemann-Roch, we have h0(X ′0,D′0) = h1(X ′0,D′0) + degD′0 + 1 − pa(X ′0). Hence
condition (∗∗) in Proposition 2.5.5 is satisfied if and only if the condition in step (2) of
Algorithm 2.6.2 is satisfied. Moreover, condition (∗) in Proposition 2.5.5 is precisely the
condition in step (3). Hence, we need to show that the output of the algorithm corresponds
to ι(H0(X,D +∞p)), after a gauge transformation. However, we know that any element of
H0(X,D +∞p) can be written as (f,∑j λjQj) such that f ∈H0(X0,D0 +∞p) and

f(κj) = ∑
i

λiQi(κj), for j = 1, . . . , a and f(κj,1) = f(κj,2) for j = 1, . . . , b.

At this point, Lemma 2.6.1 gives us a basis of ι(H0(X,D +∞p)). Remark 2.4.7 shows that
this corresponds exactly to the matrix given by the algorithm, after a gauge transformation.

We illustrate the algorithm in the following examples.

Example 2.6.4. Let X be an irreducible rational curve with g nodes. Algorithm 2.6.2
returns a matrix B for a (g,2g)-soliton. This is consistent with (2.13). Note that X is a
tropical limit where the graph is one node with g loops and the Delaunay polytope is the
g-cube. This is discussed in much more detail in Chapter 3.

Example 2.6.5 (g = 2). Let X be the union of two smooth rational curves X0,X1 meeting at
three points Z = {q1, q2, q3}. This curve is the special fiber of the genus 2 curve {y2 = f2(x)}
in Example 2.1.1. It corresponds to the graph on the right in Figure 2.2. We choose a smooth
point p ∈X0/Z, and we consider three different divisors of degree one: p, −2q+3p and 3q−2p,
where q is a smooth point in X1. We apply Algorithm 2.6.2 to these three instances.

• Take D = p. Then H0(X ′0,D′0) = H0(P1,O) = K has the constant function 1 as basis.
The conditions in steps (2) and (3) are both satisfied, and the algorithm gives us the
soliton solution corresponding to the matrix A = ( 1

K′(κ1)

1
K′(κ2)

1
K′(κ3)

). Note that
the Delaunay polytope C is the triangle, and the approach in Section 2.3 leads to the
gauge-equivalent matrix A = (1 1 1). This also arises for z1 = 0 in Example 2.3.7.

• Take D2 = −2q + 3p. Then H0(X ′0,D′0) ≅H0(P1,−2q) = 0 and the condition in step (2)
is not satisfied. Hence we do not get a point in the Sato Grassmannian.

• Take D3 = 3q − 2p. Then H0(X ′0,D′0) ≅ H0(P1,3q) has dimension 4 and the condition
in step (2) is satisfied. However, H0(X ′0,D′0 − Z) ≅ H0(P1,O) ≠ 0 so the condition in
step (3) is not satisfied, and we do not get a point in the Sato Grassmannian.

Example 2.6.6 (g = 3). Consider four general lines X = X0 ∪ X1 ∪ X2 ∪ X3 in P2. Set
X0 ∩Xi = κi and Xi ∩Xj = qij for i, j ∈ {1,2,3}. We fix the divisor D = p1 + p2 + p3 − p, for
general points p ∈ X0 and pi ∈ Xi for i = 1,2,3. After the preparatory set-up in step (1), we
compute H0(X ′0,D′0) in step (2). This is the space of functions (g1, g2, g3) in ⊕3

i=1H
0(Xi, pi)
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such that gi(qij) = gj(qij) for i, j ∈ {1,2,3}. Choose affine coordinates xi on Xi for i = 1,2,3
such that pi = ∞. We compute the following basis for H0(X ′0,D′0):

Q1 = (0, x2−q12
q23−q12

, x3−q13
q23−q12

) , Q2 = ( x1−q12
q13−q12

,0, x3−q23
q13−q23

) , Q3 = ( x1−q13
q12−q13

, x2−q23
q12−q13

,0) .

Hence ℓ = 3 and the condition in step (2) holds. We also find that H0(X ′0,D′0 − Z) = 0, so
that the condition in step (3) is satisfied as well. Algorithm 2.6.2 outputs the soliton matrix

A =
⎛
⎜⎜
⎝

0 κ1−q12
q13−q12

1
K′(κ1)

κ1−q13
q12−q13

1
K′(κ1)

κ2−q12
q23−q12

1
K′(κ2)

0 κ2−q23
q12−q13

1
K′(κ2)

κ3−q13
q23−q12

1
K′(κ3)

κ3−q23
q13−q23

1
K′(κ3)

0

⎞
⎟⎟
⎠
. (2.30)

The curve X is the last one in [4, Figure 2]. The Delaunay polytope C is a tetrahedron
as in Figure 2.4, so Theorem 2.3.6 applies. It would be desirable to better understand the
relationship between the soliton solution (2.30), the Hirota variety HC, and the Dubrovin
variety in [5, Example 6.2].

We end with a few words of conclusion. There are two ways to obtain a tau function from
a smooth curve: via the theta function and the Dubrovin threefold as in [5], or via the Sato
Grassmannian as in Section 2.5. In this chapter we presented a parallel for tropical limits of
smooth curves: namely, the Delaunay polytopes and Hirota varieties of Sections 2.1–2.3, or
the Sato Grassmannian as in Section 2.5. Our next goal is to better understand this process
in families. An essential step is to clarify the relation between the degeneration of theta
functions via a ∈ C as in (2.3) and the choice of the divisor D and point p in Algorithm 2.6.2.
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Chapter 3

Restricting to rational nodal curves

3.1 Introduction

In this chapter, we restrict our attention to irreducible rational nodal curves. For the case of
an irreducible rational nodal curve X of genus g, the dual graph consists of one unique node
with precisely g cycles, one for each node, and the associated tropical Riemann matrix is the
identity matrix of size g (see Figure 3.1). The induced metric is the Euclidean metric, so
the Voronoi and Delaunay subdivisions are both tiled by g-dimensional unit cubes centered
at lattice points and lattice points shifted by (1/2)g, respectively.

1

1

1

1

1

Figure 3.1: The metric graph for an irreducible rational nodal curve of genus 5

The degenerate Riemann theta function associated to X is a finite sum of exponentials

θC(z) = a1 exp[cT1 z] + a2 exp[cT2 z] + . . . + a2g exp[cT2gz] (3.1)

supported on the configuration of points C = {0,1}g in the integer lattice Zg. Each of these
points ci = (ci1,ci2, . . . ,cig) determines a linear form cTi z = ∑

g
j=i cijzj and the coefficients

a = (a1, a2, . . . , a2g) are unknowns that play the role of coordinates on the algebraic torus
(C∗)2g .

The Hirota variety HC associated to X, introduced in the previous chapter, lives in
the parameter space given by the product of the algebraic torus (C∗)2g with coordinates
a = (a1, . . . , a2g), and the weighted projective spaceWP3g−1 whose coordinates are the vectors
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u = (u1, . . . , ug), v = (v1, . . . , vg), and w = (w1, . . . ,wg) with weights 1,2, and 3, for ui, vi, and
wi respectively. It parameterizes the points (a, (u,v,w)) ∈ (C∗)2g ×WP3g−1 such that the
τ -function τ(x, y, t) = θC(ux+vw +wt) satisfies Hirota’s bilinear equation (1.8), providing a
sufficient condition for the function

p(x, y, t) = 2
∂2

∂x2
log τ(x, y, t) (3.2)

to be a solution for the KP equation.
Finding solutions to the KP equation is related to the Schottky problem, in that a theta

function satisfies the KP equation when the corresponding abelian variety is a Jacobian of a
curve [79, 100]. As discussed in Section 1.2, the Schottky problem is unsolved and difficult
for genus g ≥ 5. Many approaches to the Schottky problem have been developed (e.g., [9, 68])
and an explicit solution to the weak Schottky problem was provided in [43] and investigated
numerically for genus 5 in [6]. The proof of Theorem 3.2.3 in our paper relies on a solution
to the weak Schottky problem for nodal curves, which we provide for g ≤ 9.

This chapter is organized as follows. In Section 3.2, we introduce the Hirota variety of a
rational nodal curve and discuss its main component. We prove for genus g ≤ 9 that this is
an irreducible component of dimension 3g and we explain how this relates to the Schottky
problem. Section 3.3 studies the equations of the main component of the variety HC and
how this relates to the combinatorics of the cube.

3.2 The main component of the Hirota variety

Let X be a rational nodal curve of genus g. The degenerate theta function (3.1) associated
to X is supported on the vertices of the g-dimensional cube C whose vertices are all possible
binary g-dimensional vectors. The Hirota variety HC lives in the space (C∗)2g ×WP3g−1

with coordinate ring C[a±1,u,v,w], where deg(ui) = 1,deg(vi) = 2, and deg(wi) = 3, for
i = 1,2, . . . , g.

We now want to investigate the subvariety of the Hirota variety HC, denoted by HI
C
,

where the superscript I stands for ‘invertible’. We define this to be the Zariski closure of
the set

{ (a, (u,v,w)) ∈ HC ∶ u ≠ 0}. (3.3)

This subvariety contains an irreducible subvariety of HC which we call the main component,
denoted by HM

C
. In order to rigorously define HM

C
, consider the map from the affine space

C3g with coordinates (λ1, . . . , λg, κ1, κ2, . . . , κ2g) into the ambient space of the Hirota variety
HC given by

ϕ ∶ C3g ⇢ (C∗)2g ×WP3g−1 (3.4)

(λ1, . . . , λg, κ1, κ2, . . . , κ2g) Ð→ (ac1 , ac2 , . . . , ac2g ,u,v,w)

where the coordinates a = (ac1 , ac2 , . . . , ac2g ) are indexed by the points in C = {0,1}g. The
image of ϕ is defined as follows:
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ui = κ2i−1 − κ2i, vi = κ22i−1 − κ22i, wi = κ32i−1 − κ32i for all i = 1,2, . . . , g,
ac = ∏

i,j∈I
i<j

(κi − κj) ∏
i∶ci=1

λi, where I = {2i ∶ ci = 0} ∪ {2i − 1 ∶ ci = 1} for all c ∈ C. (3.5)

We call the closure of the image of ϕ the main component of HC and denote it by HM
C
.

In the first part of this section we explain the geometric intuition that leads us to the
definition of the main component HM

C
by way of the Abel map for curves and the theta

divisor, see [8]. In the second part we focus on the study of the main component and on its
connection with the weak and the classical Schottky problem.

The Theta Divisor of a Rational Nodal Curve

Let X be a curve as above and denote by n1, n2, . . . , ng its nodes. The normalization
ν ∶ X̃ →X that separates the g nodes of X is given by a projective line. We can con-
sider κ1, κ2, . . . , κ2g to be points on P1 and set ν−1(ni) ∶= {κ2i−1, κ2i}. Hence, each rational
curve with only nodal singularities corresponds to a copy of P1 and 2g points on it. This
fact motivates that the moduli space of rational nodal curves has dimension 2g − 3, where
one subtracts 3 to account for the dimension of the automorphism group of P1. We can find
a basis of canonical differentials for such curves as

ωi =
1

y
( 1

1 − κ2iy
− 1

1 − κ2i−1y
)dy for i = 1,2, . . . , g,

when fixing y = 1/x as local coordinate. These define a map α′ ∶ (P1)g−1 ⇢ Cg such that

(y1, . . . , yg−1) z→ (
g−1

∑
i=1
∫

yi

0
ωj)

j=1,2,...,g

where ∫
yi

0
ωj = log(

1 − κ2j−1yi
1 − κ2jyi

) .

The (generalized) Jacobian of the curve X is an algebraic torus (C∗)g. Exponentiation
allows us to map into the Jacobian through the map Cg → (C∗)g given by ((z1, . . . , zg) ↦
(exp[z1], . . . , exp[zg])). The composition gives the Abel map α ∶ (P1)g−1 ⇢ (C∗)g defined by

(y1, . . . , yg−1) z→ (
g−1

∏
i=1

1 − κ1yi
1 − κ2yi

,
g−1

∏
i=1

1 − κ3yi
1 − κ4yi

, . . . ,
g−1

∏
i=1

1 − κ2g−1yi
1 − κ2gyi

) . (3.6)

The theta divisor of X is the image of the Abel map α up to translation. We will motivate
later that we expect each point in the main component of the Hirota variety HM

C
to cor-

respond (non-injectively) to the choice of a curve in this moduli space and a theta divisor.
Following this reasoning, the projection of HM

C
into the space (C∗)2g has dimension 3g − 3,

accounting for the choice of a rational nodal curve and its theta divisor. For each point in
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this projection, the fiber is a threefold (analogous to the Dubrovin threefold studied in [5])
given by

{ (u,v,w) ∈WP3g−1 ∶ τ(x, y, t) = θC(ux + vy +wt) solves (1.8)}.
Thus, the expected dimension of the main component is 2g − 3 + g + 3 = 3g. This discussion
provides also a way to parameterize the main component of the Hirota variety. The idea is
that the choice of the curve X yields 2g parameters κ1, κ2, . . . , κ2g, and the family of theta
divisors corresponding to shifts of the unknown vector z ∈ Cg yields g parameters λ1, . . . , λg.
In particular, we are able to compute, using Macaulay2, the theta divisor as a shift (through
a change of variables) of the image of the map (3.6) up to genus 6. This is done following
the method described in [88, Corollary 4.8]. The equation of the theta divisor returned by
the code coincides precisely with (3.15) with coefficients a = (a1, a2, . . . , a2g) parameterized
in a way which can be shown, through a change of coordinates and some calculations, to be
geometrically equivalent to (3.5), up to the λ parameters. More precisely, this justifies that
the parameterization in (3.4) is not unique. The torus action on the theta divisor provides
new suitable parameterizations. The approach for computing the theta divisor was inspired
by [3].

To understand how the λ parameters arise, we consider the Riemann theta function (3.1)
evaluated at a point z ∈ Cg and at a shift of it, namely

θC(z + h) = ∑
c∈C

ac exp[cTh] exp[cTz],

where h = (h1, h2, . . . , hg) ∈ Cg represents the shift. These both provide solutions to the
KP equation (with nonzero ui), hence they correspond to points in HM

C
. More explicitly,

letting λi ∶= exp[hi], we see that for a point (a, (u,v,w)) ∈ HM
C
, the point (ã, (u,v,w)) ∈ HM

C
,

where ã = (ac exp[cTh]) = (ac∏i∶ci=1 λi). Thus, we conclude that the choice of theta divisor
is exactly represented by the parameterizing variables λ1, . . . , λg.

Example 3.2.1. (g = 3) This example is intended to clarify the role of the parameters in
the case of the 3-cube. For the κ parameters, as in the proof above we fix κ1, . . . , κ6 ∈ P1.
The differentials ω1, ω2, ω3, after the coordinate change y = 1/x, are given by

ω1 =
1

y
( 1

1 − κ2y
− 1

1 − κ1y
)dy, ω2 =

1

y
( 1

1 − κ4y
− 1

1 − κ3y
)dy,

ω3 =
1

y
( 1

1 − κ6y
− 1

1 − κ5y
)dy.

Then the Abel map α ∶ (P1)2 ⇢ (C∗)3 is defined by

(y1, y2) ↦ ((
1 − κ1y1
1 − κ2y1

) ⋅ (1 − κ1y2
1 − κ2y2

) ,(1 − κ3y1
1 − κ4y1

) ⋅ (1 − κ3y2
1 − κ4y2

) ,(1 − κ5y1
1 − κ6y1

) ⋅ (1 − κ5y2
1 − κ6y2

)) .

We find the implicit equation cutting out the image of this map in Macaulay2 with the code
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I = ideal(q1*(1-k2*y1)*(1-k2*y2)-(1-k1*y1)*(1-k1*y2),

q2*(1-k4*y1)*(1-k4*y2)-(1-k3*y1)*(1-k3*y2),

q3*(1-k6*y1)*(1-k6*y2)-(1-k5*y1)*(1-k5*y2));

J = eliminate(I,{y1,y2})

The resulting equation gives exactly the familiar theta function for g = 3, with the ac pa-
rameterized by the κi’s. For the λ parameters, we consider the theta functions

θ(z) = a000 + a100 exp[z1] + a010 exp[z2] + a001 exp[z3] + a110 exp[z1 + z2] (3.7)

+ a101 exp[z1 + z3] + a011 exp[z2 + z3] + a111 exp[z1 + z2 + z3]

and

θ(z + h] = a000 + a100 exp[h1] exp[z1] + a010 exp[h2] exp[z2] + a001 exp[h3] exp[z3]
+ a110 exp[h1 + h2] exp[z1 + z2] + a101 exp[h1 + h3] exp[z1 + z3]
+ a011 exp[h2 + h3] exp[z2 + z3] + a111 exp[h1 + h2 + h3] exp[z1 + z2 + z3].

Letting λi ∶= exp[hi], we have

θ(z + h) = a000 + λ1a100 exp[z1] + λ2a010 exp[z2] + λ3a001 exp[z3] + λ1λ2a110 exp[z1 + z2]
+ λ1λ3a101 exp[z1 + z3] + λ2λ3a011 exp[z2 + z3] + λ1λ2λ3a111 exp[z1 + z2 + z3].

This gives us g parameterizing factors λi with i = 1,2, . . . , g for the variables ac.

The code used in Example 3.2.1 is available at the repository website MathRepo [44] of
MPI-MiS via the link

https://mathrepo.mis.mpg.de/HirotaVarietyRationalNodalCurve. (3.8)

Geometry of the main component

The following result justifies the definition of the main component HM
C

and provides a con-
nection with soliton solutions to the KP equation.

Theorem 3.2.2. Consider the map ϕ given in (3.4). This is a birational map onto its
image, which is an irreducible subvariety of HM

C
and has dimension 3g.

Proof. Let I be as in (3.5). Let K ⊆ C3g be the closed set where at least two of the κi
coincide. The expression of τ(x, y, t) = θC(ux + vy +wt) where (a, (u,v,w)) is attained as
the image of a point in C3g∖K through the map ϕ, described in (3.4),is a point in the Hirota
variety HC. This is because it can be expressed as a (g,2g)-soliton [75] for the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1 1 0 0 0 0 . . . 0 0
0 0 λ2 1 0 0 . . . 0 0
0 0 0 0 λ3 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 0 . . . λg 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.9)

https://mathrepo.mis.mpg.de/HirotaVarietyRationalNodalCurve
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Indeed, if we denote Ei ∶= exp(κix + κ2i y + κ3i t), then plugging the parameterization in
θC(ux + vy +wt), we obtain:

τ̃C(x, y, t) =
1

E2E4⋯E2g

(∑
I

∏
i<j∈I

(κi − κj) ∏
i∶ci=1

λi∏
i∈I

Ei). (3.10)

Here the sets I that define the sum are the same ones defined in (3.5). The extraneous
exponential factor (E2E4⋯E2g)−1 disappears after we pass from τ̃(x, y, t) to ∂2x log(τ̃(x, y, t)).
Both versions of the (g,2g)-soliton satisfy Hirota’s bilinear form and they represent the same
solution to the KP equation. Hence, it follows that the image of C3g through the map ϕ is
contained in HC.

Furthermore, the map ϕ is invertible outside the closed set where the ui’s vanish: given
a point (a, (u,v,w)) in the image one can write

κ2i−1 =
u2i + vi
2ui

and κ2i =
vi − u2i
2ui

, (3.11)

and the λi’s can be obtained sequentially, starting from λ1, by plugging in the values for the
κ variables into the ai’s. Hence we can conclude that the map ϕ is birational. This implies
that the closure of the image is irreducible and of dimension 3g.

Notice that the method above gives a way to parameterize solutions arising from a genus
g rational nodal curve as (g,2g)-solitons. This is also consistent with [7, Example 29].

In what follows we show that HM
C

is an irreducible component of HC whose points cor-
respond to genus g rational nodal curves. This is equivalent to solving a version of the weak
Schottky problem. In fact, HM

C
parameterizes some solutions to the KP equation arising from

irreducible rational nodal curves of genus g, and hence corresponds to a variety containing
the locus of Jacobians of such curves as an irreducible component.

Theorem 3.2.3. For genus g ≤ 9, the subvariety HM
C

is an irreducible component of the
Hirota variety.

Proof. The proof is mainly computational. A direct computation performed in Macaulay2

shows that the Jacobian matrix of the Hirota variety HC evaluated at the image of a general
point in C3g through ϕ has rank r−3g, where r is the dimension of the space (C∗)2g ×WP3g−1.
Hence the map ϕ is dominant into the main component HM

C
.

The code used for the proof above can be found at (3.8). What makes the compu-
tation challenging for higher genus is mainly the fast growth of the number of variables
a = (ac1 , ac2 , . . . , ac2g ). One possible way to compute the ideal defining the variety HC is to
use the condition provided by the Hirota’s bilinear form (1.8), which becomes difficult when
the genus is larger than 7. To avoid this computation, we implement the equations cutting
out HC via the combinatorial description provided in [7, Section 3].

The parameterization for the main component of the Hirota variety associated to the
3-dimensional cube was already developed in [7, Example 8] even though the definition of
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the main component was not clearly stated yet. We revisit this example, working out the
details providing the intuition behind Theorem 3.2.2.

Example 3.2.4 (g = 3). The 3-cube associated to the dual graph of a rational nodal quartic
is the support of the degenerate theta function (3.7). The Hirota variety HC in (C∗)8 ×WP8

is cut out by 19 polynomial equations. These are displayed in Example 2.3.4. A direct
computation shows that the ideal defining HC has five minimal associated primes, hence the
Hirota variety has five irreducible components in (C∗)8 ×WP8. If we restrict to the main
component, then we can observe that the additional quartic relation

a000a110a101a011 = a100a010a001a111 (3.12)

holds. The main component has dimension 9, while its image in WP8 has dimension 5 and
it is defined by the equations u41 + 3v21 − 4u1w1, u42 + 3v22 − 4u2w2, u43 + 3v23 − 4u3w3, with fibers
given by cones over P1×P1×P1. The following is a parametric representation of the main
component in HC :

u1 = κ1 − κ2 , v1 = κ21 − κ22 , w1 = κ31 − κ32 ,
u2 = κ3 − κ4 , v2 = κ23 − κ24 , w2 = κ33 − κ34 ,
u3 = κ5 − κ6 , v3 = κ25 − κ26 , w3 = κ35 − κ36 ,

a111 = (κ3 − κ5)(κ1 − κ5)(κ1 − κ3)λ1λ2λ3 , a011 = (κ3 − κ5)(κ2 − κ5)(κ2 − κ3)λ2λ3 ,
a101 = (κ4 − κ5)(κ1 − κ5)(κ1 − κ4)λ1λ3 , a001 = (κ4 − κ5)(κ2 − κ5)(κ2 − κ4)λ3 ,
a110 = (κ3 − κ6)(κ1 − κ6)(κ1 − κ3)λ1λ2 , a010 = (κ3 − κ6)(κ2 − κ6)(κ2 − κ3)λ2 ,
a100 = (κ4 − κ6)(κ1 − κ6)(κ1 − κ4)λ1 , a000 = (κ4 − κ6)(κ2 − κ6)(κ2 − κ4).

It provides a way of identifying the τ -function arising from (3.7) with a (3,6)-soliton for the
matrix

A =
⎛
⎜
⎝

λ1 1 0 0 0 0
0 0 λ2 1 0 0
0 0 0 0 λ3 1

⎞
⎟
⎠
. (3.13)

The description given in this example of the projection of the main component HM
C

into
the space WP3g−1 reveals itself to be true for any genus:

Proposition 3.2.5. The projection of HM
C

into WP3g−1 is a (2g − 1)-dimensional variety
defined by the vanishing of u4i + 3v2i − 4uiwi for i = 1,2, . . . , g.

Proof. One direction (i.e., that the relations u4i + 3v2i − 4uiwi hold in the projection) is im-
mediate, as these are polynomials defining the Hirota variety (see Lemma 3.3.2) that do not
include any ai. For the other direction, it suffices to exhibit a point in HM

C
for any (u,v,w)

which satisfy u4i +3v2i −4uiwi for all i ∈ [g]. Using the inverse map in (3.11), given any ui, vi,wi

satisfying u4i + 3v2i − 4uiwi = 0, we uniquely determine (up to a scaling factor) κ2i−1, κ2i. We
can then choose arbitrary λ1, . . . , λg to get a point (a, (u,v,w)), so we are done.



CHAPTER 3. RESTRICTING TO RATIONAL NODAL CURVES 43

We conclude this section by stating two conjectures which consolidate and generalize
the results above to any genus. Indeed a generalization of Theorem 3.2.3 would provide a
solution to the weak Schottky problem for rational nodal curves of genus g.

Weak Schottky Problem. For any genus g, the main component of the Hirota variety
HM
C

is a 3g-dimensional irreducible component of HC with a parametric representation given
by (3.5).

Strong Schottky Problem. HM
C
= HI

C
.

Notice that one direction of the Schottky problem is immediate from the proof of Theorem
3.2.2: a sufficiently generic choice of κi ensures that, in the image, the ui are nonzero, thus
HM
C
⊆ HI

C
. The other direction is more difficult. To prove it, one would need to show that

any point in HI
C
can be parameterized as in (3.5).

3.3 Combinatorics of the Hirota variety

The results in this section describe in detail facts which we use in many of the proofs in
section 3.2. We begin by explaining how the nodal singularities on the curve X induce the
degenerate theta function in (3.1). To each curve of genus g we associate a metric graph
Γ of genus g. This graph has a vertex for each irreducible component, one edge for each
intersection point between two components, and a node on an irreducible component gives
a loop on the corresponding vertex. Hence, if X is a rational nodal curve of genus g, the
corresponding metric graph Γ is given by one unique node and g cycles. Figure 3.1 illustrates
an example when g = 5.

The way we read off the tropical Riemann matrix Q from a tropical curve is described in
[19, 29]. More explicitly, to determine such positive definite real symmetric g × g matrix one
needs to fix a basis of cycles in Γ and write these as the g rows of a matrix Λ whose columns
are labeled by the edges of the graph. Let ∆ be the diagonal matrix whose entries are the
edge lengths of Γ, then we define Q ∶= Λ∆ΛT . Hence, for X being a rational nodal curve
the matrices Λ and ∆ both equal the identity matrix Ig, returning Q = Ig as the tropical
Riemann matrix. Theorem 3 in [7] describes the Riemann theta function (1.1) when the
curve degenerates. In our case, the distance induced on Rg is the Euclidean distance and
we can fix the point a = (12 , 12 , . . . , 12) ∈ Rg as a vertex of the Voronoi cell for Ig given by the
cube with vertices (±1

2 ,±1
2 , . . . ,±1

2). Under these hypotheses, the support of the degenerate
theta function is the Delaunay set

C = Da,Ig = {c ∈ Zg ∶ ∥a∥2 = ∥a − c∥2 } = {0,1}g, (3.14)

where ∥⋅∥ denotes the Euclidean norm. The degenerate theta function is then a finite sum
of 2g exponentials

θC(z) = ∑
c∈{0,1}g

ac exp [cTz], where ac = exp[
1

2
cTR0c]. (3.15)
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Here the matrix R0 is the limit of a matrix Rϵ which is a symmetric g×g matrix with entries
given by complex analytic functions in ϵ converging for ϵ→ 0. This comes from degenerating
the family of Riemann matrices given by Bϵ = −1

ϵQ+Rϵ. The matrices Bϵ lie in the Schottky
locus. Corollary 2.3.2 describes the polynomials defining the Hirota variety associated to C.
These correspond to points in the set

C[2] = {ck + cℓ ∶ 1 ≤ k < ℓ ≤m} ⊂ Zg,

where one says that a point d in C[2] is uniquely attained if there exists precisely one index
pair (k, ℓ) such that ck + cℓ = d. Let P (x, y, t) = x4 + 3y2 − 4xt. The polynomials defining HC
are explicitly given by the quartics

Pkℓ(u,v,w) ∶= P ( (ck − cℓ) ⋅ u, (ck − cℓ) ⋅ v, (ck − cℓ) ⋅w), (3.16)

when d = ck + cℓ is uniquely attained, and by

∑
1≤k<ℓ≤m
ck+cℓ=d

Pkℓ(u,v,w)akaℓ,

when d ∈ C[2] is not uniquely attained. Hence, to better understand the variety HC we
investigate the elements in the set C[2]. We say that a point c ∈ C[2] is attained n times if
there exist n distinct pairs (k, ℓ) such that ck + cℓ = d.

Proposition 3.3.1. A point c = (c1, . . . , cg) in C[2] is attained 2d−1 times, where d = ∣{i ∶ ci = 1}∣.

Proof. For a point c ∈ C[2], consider the set of indices I = {i ∶ ci ≠ 1}. Suppose now c = c1+c2
for some points c1,c2 ∈ C. Then, for any i ∈ I, if ci = 0 then c1i = c2i = 0, while if ci = 2 then
c1i = c2i = 1. In the first case, this means that both c1 and c2 lie on the face of the g-cube
defined by the i-th coordinate hyperplane xi = 0. In the latter case, c1,c2 lie on the face
defined by xi = 1. The full set I of indices corresponding to elements ≠ 1 defines a set of
restrictions on xi for i ∈ I. In fact, it defines a face of codimension ∣I ∣ (and thus dimension d)
that c1 and c2 lie on. For the indices i ∈ [g]∖I, we have exactly one of c1i, c2i equal to 1. This
gives exactly 2d−1 such pairs. These pairs can be viewed as diagonals of the faces defined by
the restrictions given by I: they are the points which are distinct from one another in each
coordinate except for the ones fixed by the face.

As discussed in the proof, the points in C[2] correspond to d-dimensional faces of the
g-cube, where d is the number of coordinates equal to 1. Hence ∣C[2]∣ = ∑g

d=1 2
g−d(g

d
) and the

pairs that sum to points in C[2] correspond to diagonals of the associated face. See Figure
3.2 which illustrates this. In the picture, the blue edge of the three-cube corresponds to
the point (1,2,2) ∈ C[2], which is attained once. The pink two-dimensional face of the cube
corresponds to the point (2,1,1), which is attained twice, by the two diagonals of the face.
Another way to count ∣C[2]∣ is to observe that it consists exactly of the points in {0,1,2}g
which have at least one 1, so there are 3g − 2g of them.
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(0,1,0) (1,1,0)

(1,0,0)(0,0,0)

(0,1,1)

(0,0,1) (1,0,1)

(1,1,1)

(1,2,2)
(2,1,1)

Figure 3.2: The three-cube and a visual representation of points represented once (the blue
edge) and twice(the pink facet).

We now investigate the polynomials arising from the points in C[2]. The points which are
attained once correspond to the edges (one-dimensional faces) of the cube and the unique
pair that adds up to such a point are the two vertices ck,cℓ comprising the edge. Hence
these points contribute the quartic (3.16), one can notice that this quartic depends only on
the difference ck − cℓ, which is the same for all edges going in the same direction (that is, all
edges whose corresponding point in C[2] has the unique 1 at the same index). This reasoning
yields the immediate result

Lemma 3.3.2. The set C[2] contains g2g−1 points which are uniquely attained. These con-
tribute as generators of the ideal defining the Hirota variety HC with g quartics of the form
u4i − 4uiwi + 3v2i , for i = 1,2, . . . , g.

Recall that the Hirota variety lies in the ambient space (C∗)2g ×WP3g−1. The coordinate
ring is C[a±1,u,v,w] and the ideal defining HC has g +∑g

d=2 2
g−d(g

d
) generators with respect

to inclusion, one for each edge direction, and one for each face of every dimension from 2 up
to g.

The combinatorics of the cube has already been shown to be important when studying
the generators of the Hirota variety. In what follows we discuss more the combinatorics of
the cube as it relates to the main component, presenting a more general version of Lemma
3.3.2. We begin with some definitions.

A face of the g-cube is defined by fixing g−d indices of the corresponding points. Let the
non-fixed indices be given by the set I. We call this set the direction of the face. For two
faces with the same direction, their difference is the set J of fixed indices in the two faces
which are different.

Example 3.3.3. The direction of an edge is given by a set with one element, namely the
index of the standard basis vector to which the edge is parallel. The difference of two edges
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on the same two dimensional face is also a one-element set, consisting of the index of the
second standard basis vector defining the face (in addition to the standard basis vector given
by the direction). Also see Figure 3.3 for an example in the three-cube. The four blue edges
in the picture have the same direction {1}. The two pink facets have the same direction
{2,3}. The difference of edges 1 and 2 is {3}, while the difference between 1 and 3 is {2,3}.

(0,1,0) (1,1,0)

(1,0,0)

(0,1,1)

(0,0,1) (1,0,1)

1

2

3

(1,1,1)

(0,0,0)

Figure 3.3: A visualization of face directions in the three-cube.

In the following result, we restrict to the main component HM
C

of the Hirota variety. We
are interested in the points in HM

C
that also verify the quartic relations

ac1ac2ac3ac4 = ad1ad2ad3ad4 , with
4

∑
i=1

ci =
4

∑
i=1

di,
4

∑
i=1

c2i =
4

∑
i=1

d2
i , (3.17)

where ci,di are points in {0,1}g. For g = 3 there exists a unique relation of this type, namely
the one in (3.12). In particular, when the ai are exponentials of the form ac = exp[12cR0cT ],
as in (3.15), then they verify these quartic relations. More generally, one has

Lemma 3.3.4. The closure of the image of the map ψ ∶ Sym2(Cg) → P2g−1 defined by

R ↦ (ac = exp [1
2
cTRc] )

c∈{0,1}g
(3.18)

is cut out by the equations in (3.17) and the additional equation a0 = 1.

Proof. An immediate computation shows that the points in the image of ψ verify the relations
in (3.17) and a0 = 1. To show the other inclusion, we consider a point a ∈ P2g−1 with entries
indexed by points in C[2] such that it verifies the desired equations. Then we can define the
matrix R ∈ Sym2(Cg) with entries given by Rii = 2 log aei and Rij = log

aei+ej
aeiaej

, where the ei’s

denote the standard basis of Zg.



CHAPTER 3. RESTRICTING TO RATIONAL NODAL CURVES 47

Moreover, if we take a point point ac1 verifying a quartic (3.17) and assume that the
aci , adi

involved in the relation are exponentials as in the image of ψ, then expanding the
relation we obtain that ac1 is also of the form exp[12cT1Rc1]. Hence, we can proceed induc-
tively on n for elements of type ãn = ae1+⋅⋅⋅+en . We write aei = ai and aei+ej = ai+j. Then ãn

verifies a relation of type

ãn =
a1+⋅⋅⋅+(n−1) ⋅ a1+⋅⋅⋅+(n−2)+n ⋅ a(n−1)+n ⋅ a0

a1+⋅⋅⋅+(n−2) ⋅ an−1 ⋅ an
This concludes the proof.

Theorem 3.3.5. There are (gd) face directions for each dimension d, and all faces with the
same direction contribute the same quartic, up to a multiple, to the ideal defining HM

C
.

Proof. Consider two d-dimensional faces of the g-cube with the same direction. This means
that their corresponding points c1,c2 ∈ C[2] have 1s in exactly the same positions. Both
points have 2d−1 pairs which sum to them, and these pairs can be put in a correspondence.
Namely, for a pair ck,cℓ that sums to c1, the pair c̃k, c̃ℓ is a pair that sums to c2, where
ã is obtained from a by changing the entry from 0 to 1 (or vice-versa) for every index in
the difference of the two faces. For the two pairs, (ck,cℓ) and (c̃k, c̃ℓ), their corresponding
quartic Pkl is the same, since it is easy to see that ck − cℓ = c̃k − c̃ℓ. The generators of the
ideal I(HC) corresponding to the faces are of the form ∑k,ℓ∶ck+cℓ=c

Pkℓackacℓ . We will now
show that, when we restrict to the component above, the d-dimensional face with direction
D contributes the same quartic, up to a multiple, as the face corresponding to the point
c = ∑i∈D ei, where the ei are standard basis vectors. We have already shown that the Pkℓ are
the same for faces with the same direction. Thus it is sufficient to show that the polynomial

ackacℓ − d ⋅ ac̃kac̃ℓ
is in the ideal defining HM

C
, where d is some factor (in fact, a product of some ac’s) which

does not depend on k, ℓ. Instead it depends only on the difference and direction of the two
faces.

For ease of computations, we fix a direction D and we will take one of the faces (F1)
to be the face corresponding to the point c1 = ∑i∈D ei. The other face (F2) is a face with
direction D and difference E from F1. This means that the point corresponding to F2 is
c2 = ∑i∈D ei + ∑i∈E 2ei. Since we will show that the quartic contributed by F2 is the same
as the one contributed by F1 up to a multiple, this will show that all faces with the same
direction contribute essentially the same polynomial to the ideal of HM

C
.

Recall that the ac are given by exp[12cRcT ], where we write R for R0. Consider a pair
ck,cℓ that sum to c1. ThenD =D1∪D2, whereD1∩D2 = ∅ and ck = ∑i∈D1

ei and cℓ = ∑i∈D2
ei.

It follows that c̃k = ∑i∈D1∪E ei and c̃ℓ = ∑i∈D2∪E ei.
We will now use the linear algebra fact that for a symmetric g × g symmetric matrix, the

following hold

(∑
i∈I

ei)R
⎛
⎝∑j∈J

eTj
⎞
⎠
= ∑

i∈I,j∈J

Rij
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Then, we have

ac̃kac̃ℓ = exp[ ∑
i,j∈D1∪E

Rij] exp[ ∑
i,j∈D2∪E

Rij] = exp[ ∑
i,j∈D∪E

Rij] exp[ ∑
i,j∈E

Rij] (3.19)

which one can easily see is a multiple of exp[∑i,j∈DRij] = ac̃kac̃ℓ which only depends on the
sets D and E, as desired.

One can observe that Theorem 3.3.5 is a generalization of Lemma 3.3.2 to equations
arising from points in C[2] which correspond to higher dimensional faces. This holds for points
in the main component HM

C
. Moreover, Theorem 3.3.5 reduces the number of potentially

non-redundant relations holding in the ideal defining the variety HM
C

to 2g − 1. This is also
the codimension of HM

C
inside its ambient space (C∗)2g ×WP3g−1. Our code in (3.8) verifies

that this set of generators defines a variety which is a complete intersection, of which HM
C

is
a component for g ≤ 9.

Quartic relations and the Schottky locus

We conclude with a discussion relating the quartic relations among the ai parameters and
the Schottky problem. The classical Schottky problem, studied by Riemann and Schottky,
requires one to write down the defining equations for the Schottky locus Ig, namely the
subset of abelian varieties corresponding to Jacobians of curves. In fact, the second order
theta constants [57] define an embedding of Ag into a projective space µ ∶ Ag ↪ P2g−1 and
to solve the Schottky problem one aims to determine the defining ideal of µ(Ig) ⊂ µ(Ag).
Hence, the Schottky problem concerns the maps

Mg
JÐ→ Ag ↪ P2g−1. (3.20)

Moreover, the space Ag is parameterized by the Siegel upper-half space Hg, namely the set of
complex symmetric g×g matrices with positive definite imaginary part. As explained in the
introduction, in genus 3, a dimension count shows that in this case the Schottky problem is
trivial. In genus 4, the ideal I4 is an analytic hypersurface in H4. Furthermore, in genus 3
the second order theta constants verify an equation of degree 16 which leads to the equation
characterizing Jacobians of curves in genus 4, i.e., Igusa’s equation, see [56, Example 6.2],
[68]. An analogous situation can be described when looking at the degenerate theta functions
arising from irreducible rational nodal curves. The map ψ in (3.18) provides an embedding
of the space Sym2(Cg) in the projective space P2g−1. The dimension count for these spaces is
analogous to the one for the spaces involved in (3.20). In particular, for genus 3, we find that

im(ψ) = Sym2(C3) inside P7. Note that the image of the map ψ is contained in the locus
V (a111a100a010a001 − a110a101a011a000), where the relation among the ai’s comes from (3.12).
Equality then follows by a direct computation since these are both irreducible varieties of
equal dimension. We believe a similar situation should hold for higher genus.
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Part II

Grassmannians
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Chapter 4

Positivity for the orthogonal
Grassmannian

4.1 Introduction and background

This chapter is based on ongoing joint work with Yassine El Maazouz. The positive or-
thogonal Grassmannian was first considered and studied by particle physicists in [66, 67] in
the context of scattering amplitudes in ABJM theory. They observed many combinatorial
phenomena which were later proved and supplemented in [53], which also associated the
positive Orthogonal Grassmannian OGr≥0(n,2n) to planar Ising models. It is expected that
the positive orthogonal Grassmannian is a positive geometry [66, 10].

In all of the previous studies, the orthogonal Grassmannian was considered only with
one choice of quadratic form which has alternating signature. This choice of form has so
far proved sufficient for the purposes of applying it to ABJM theory and Ising models.
Nevertheless, it is still mathematically interesting to consider alternate choices of signature
for the quadratic forms. In addition, an explicit proof that the positive Grassmannian
is a positive geometry is still missing. In this chapter we initiate the study of the positive
orthogonal Grassmannian for forms other than the form with alternating signature, and make
a step towards showing that the positive orthogonal Grassmannian is a positive geometry.
We prove it for OGr≥0(1, n) in any signature.

4.2 The orthogonal Grassmannian

Preliminaries

Let E be a vector space of dimension n over a field k and Q a non-degenerate symmetric
bilinear form. We call a subspace V ⊂ E isotropic with respect to Q if Q(v, v′) = 0 for any
v, v′ ∈ V . We denote by OGr(k,E) the Grassmannian of k-dimensional isotropic subspaces
of E. In this paper we work with E = Rn, and denote the orthogonal Grassmannian by
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OGr(k,n). We denote by Xk,n the variety of k-dimensional linear subspaces V ⊂ E such
that

Q(v, v) = 0 for all v ∈ V.
It is clear that OGr(k,n) ⊂Xk,n.

Proposition 4.2.1. 1. Xk,n is empty when k > n/2.

2. OGr(k,2k) has two irreducible connected components.

3. OGr(k,n) where n ≠ 2k has one irreducible component.

Proof. This is the Proposition on page 735 of [60].

Theorem 4.2.2. The orthogonal Grassmannian OGr(2, n) is cut out by the following equa-

tions in P(
n
2
)−1 in addition to the Plücker relations:

∑
k

pikpjk = 0, for 1 ≤ i ≤ j ≤ n, (4.1)

where the pi,j are the Plücker coordinates with the convention pi,j = −pj,i. It has dimension
2n − 7.

Proof. Let p = (pi,j) be a point in OGr(2, n). Then there exists an isotropic plane V ⊂ Cn

corresponding to p. The plane V is spanned by two linearly independent row vectors:

(a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

) .

The Plücker coordinates can then be written as follows:

pi,j = a1,ia2,j − a1,ja2,i.

Hence for any 1 ≤ i ≤ j ≤ n we get

n

∑
k=1

pi,kpj,k =
n

∑
k=1

(a1,ia2,k − a1,ka2,i)(a1,ja2,k − a1,ka2,j)

= a1,ia1,j (
n

∑
k=1

a22,k) − (a1,ia2,j + a1,ja2,i)(
n

∑
k=1

a1,ka2,k) + a2,ia2,j (
n

∑
k=1

a21,k) .

But since V is isotropic we deduce that the latter sum is 0 for every 1 ≤ i ≤ j ≤ n. On
the other hand, let p be a point in the Grassmannian Gr(2, n) which satisfies the equations
above. We need to show that this point represents an isotropic subplane of Cn. Using the
Sn action on OGr(2, n) (which permutes the columns of the 2 × n matrix) we may assume
that p1,2 = 1. Hence we can pick the span of the two row vectors

(1 0 −p2,3 −p2,4 . . . −p2,n
0 1 p1,3 p1,4 . . . p1,n

)
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as the plane represented by the Plücker coordinates p in Gr(2, n). Since p satisfies the
relations listed above, we deduce that this plane is isotropic and thus p ∈ OGr(2, n).

Based on computations, we have the following conjecture, which we hope to prove using
Schubert calculus or Gröbner basis methods.

Conjecture 1. The orthogonal Grassmannian OGr(2, n) has degree under the embedding
in Theorem 4.2.2 given by:

deg(OGr(2, n)) = deg(Gr(2, n)) + 6 (2(n − 3))!
(n − 3)!(n − 1)! . (4.2)

For general k,n we have the following result which gives defining equations cutting out
OGr(k,n).

Theorem 4.2.3. In addition to the Plücker relations, the orthogonal Grassmannians OGr(k,n)
is cut out by the following equations in P(

n
k
)−1:

n

∑
k=1

ε(Ik)ε(Jk) pIkpJk = 0, for ordered sets I, J ∈ ( [n]
k − 1). (4.3)

where ϵ(Ik) denotes the sign of the permutation ordering the sequence Ik.

Proof. Let p = (pi,j) be a point in OGr(2, n). Then there exists an isotropic plane V ⊂ Cn

corresponding to p and V is spanned by two linearly independent row vectors:

A =
⎛
⎜⎜⎜
⎝

a1,1 a1,2 . . . . . . a1,n
a2,1 a2,2 . . . . . . a2,n
⋮ ⋮ . . . . . . ⋮

ak,1 ak,2 . . . . . . ak,n

⎞
⎟⎟⎟
⎠
.

The Plücker coordinates can then be written as follows:

pj1<⋅⋅⋅<jk = ∑
σ∈Sk

ϵ(σ)
k

∏
ℓ=1

aℓjσ(ℓ) .

Fix two ordered subsets I = (i1 < ⋅ ⋅ ⋅ < ik−1) and J = (j1 < ⋅ ⋅ ⋅ < jk−1) in [n]. We then have

n

∑
ℓ=1

ε(Iℓ)ε(Jℓ)pIℓpJℓ =
n

∑
i=1

∑
σ,τ∈Sk

ϵ(στ)
k−1

∏
s=1

aσ(s),isbτ(s),jsaσ(k),ibτ(k),i

= ∑
σ,τ∈Sk

ϵ(στ)
k−1

∏
s=1

aσ(s),isbτ(s),js (
n

∑
i=1

aσ(k),ibτ(k),i) .
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But, since V is isotropic, the last sum is 0 so we deduce that

n

∑
ℓ=1

ϵ(Iℓ)ϵ(Jℓ)pIℓpJℓ = 0.

Conversely, let p be a point in Gr(k,n) such that:

n

∑
ℓ=1

ϵ(Iℓ)ϵ(Jℓ)pIℓpJℓ = 0 for all I, J ⊂ ([n]
k
).

Using the Sn-action on Gr(k,n), we may without loss of generality assume that pI = 1 where
I = {1 < 2 < ⋅ ⋅ ⋅ < k}. So we can write the vector subspace of Cn represented by p as the row
span of the matrix:

A =
⎛
⎜⎜⎜
⎝

1 0 . . . 0 (−1)k−1p(I∖1)∪{k+1} (−1)k−1p(I∖1)∪{k+2} . . . (−1)k−1p(I∖1)∪{n}
0 ⋱ . . . ⋮ (−1)k−2p(I∖2)∪{k+1} (−1)k−2p(I∖2)∪{k+2} . . . (−1)k−2p(I∖2)∪{n}
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 . . . 0 1 p(I∖k)∪{k+1} p(I∖k)∪{k+2} . . . p(I∖k)∪{n}

⎞
⎟⎟⎟
⎠
.

From the equations, we can see that the rows of this matrix are orthogonal to themselves
and to one another. So we deduce that p ∈ OGr(k,n).

Proposition 4.2.4. The ratio of two complementary Plücker coordinates in OGr(n,2n) is
either ±1 if n +#S is even and ±i otherwise. Here S is the set of − in the signature of the
quadratic form (±, . . . ,±).

Proof. Suppose I, J ⊂ [2n] are disjoint, and consider some i ∈ I and j ∈ J . Then the
orthogonal relation coming from the sets I ∖ i, J ∖ j is given by

pIpJ+i−j ± pI+j−ipJ = 0,

where the sign is determined by the form and by I, J, i, j. This relation tells us that

pI
pJ
= ±pI+j−i

pJ+i−j
.

Thus, for two complementary sets I, J the ratio of their Plücker coordinates is equal, up
to sign, to the ratio of the Plücker coordinates of two new complementary sets obtained by
swapping one element of I with one element of J . We can swap elements n times and get a
chain of such equalities that ultimately yields

pI
pJ
= ±pJ

pI
.

If the sign is positive, this means the ratio is ±1, while if it is negative, the ratio is ±i,
where i =

√
−1. Moreover, note that any ratio of complementary Plücker coordinates can be
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obtained as a result of exchanging elements of I and J , so if pI
pJ
= ±1, then this is true for all

complementary Plücker coordinates. We now show that this is determined by the parity of
n +#S.

As noted above, since any pair of complementary sets can be obtained by exchanging
elements from a different pair, it is sufficient to consider pI

pJ
for just one pair I, J . Let

I = {1,3, . . . ,2n− 1} and J = {2,4, . . . ,2n}. Then, to swap the sets we proceed to iteratively
exchange the smallest odd element of I with the smallest even element of J . Observe that,
as a result of our choice of sets and exchanged elements, we have ε(Ĩk)ε(J̃k) = 1 for any Ĩ , J̃
obtained as a result of partially completing the exchange process.

Then, for any signature such that n+#S is even, the positive orthogonal Grassmannian
OGr≥0(n,2n) is the component of OGr(n,2n) where the ratios of complimentary Plücker
coordinates are 1.

Proposition 4.2.5. The two ideals given by the sets of equations below both cut out the
positive orthogonal Grassmannian OGr

(n,n)
≥0 (n,2n):

1. The Plücker relations, given by

∑
j∈J∩I

ε(I, J, j)pIjpJ∖j = 0,

for all sets, I ∈ ([2n]n−1
), J ∈ ([2n]n+1

) and the complement relations, given by

pI − pI = 0,

for all I ∈ ([2n]n
).

2. The orthogonal relations (4.3)

n

∑
k=1

ε(Ik)ε(Jk) pIkpJk = 0, for ordered sets I, J ∈ ( [n]
k − 1).

and the complement relations
pI − pI = 0,

for all I ∈ ([2n]n
).

Proof. We show that the two ideals are the same. Then the fact that they both cut out
the positive orthogonal Grassmannian follows. We will show that, using the complement
relations, a Plücker relation can be transformed into an orthogonal relation and vice-versa.

Consider general I ∈ ([2n]n−1
), J ∈ ([2n]n+1

). Suppose they have m elements in common. Then
we may write I = {i1, . . . , in−1} and J = {i1, . . . , im, j1, . . . , jn−m+1}. Then, the orthogonal
relation with I and J = {jn−m+2, . . . , jn+1, im+1, . . . , in−1} is given by

n−m+1

∑
l=1

pIjlpJjlε(IJl).
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Using the complement relation to replace pJjl with pJ∖jl , and checking that the signs ε(IJl) =
ε(IJl), we obtain exactly the Plücker relation for I, J . Thus we can derive the Plücker
relations from the orthogonal relations and complement relations. The same process can
be followed backwards to derive the orthogonal relations from the complement and Plücker
relations.

4.3 OGr≥0(1, n)
Restricting to the case k = 1, we now consider the positive orthogonal Grassmannian with
a quadratic form Q = (±1, ⋅ ⋅ ⋅ ± 1) with signature (p, q), meaning p of the entries in Q are

+1 and q are −1. We denote this by OGr
(p,q)
≥0 (1, n). It is the set of points {v ∈ Rn ∶ vQv =

0 and vi ≥ 0 for all i}.

Theorem 4.3.1. The positive orthogonal Grassmannian OGr
(p,q)
≥0 (1, n+1) in signature (p, q)

is combinatorially isomorphic to ∆p−1×∆q−1. Moreover it is a positive geometry with canon-
ical form:

Ω(p,q) = (1 + u21,0 +⋯ + u2p,0)
du1,0 ∧ du2,0 ∧ ⋅ ⋅ ⋅ ∧ dun−1,0
u1,0 u2,0 ⋯ un−1,0 u2n,0

where ui,j denotes the rational function xi/xj in the coordinates (x0 ∶ ⋅ ⋅ ⋅ ∶ xn) of Pn.

Proof. We begin by examining the combinatorial structure of OGr
(p,q)
≥0 (1, n + 1). It is a

simplex cut by the hypersurface X given by x⊺Qx = 0. By permuting the coordinates, we see
that any form with signature (p, q) will define the same hypersurface, up to relabeling, as the
form Q = (1, . . . ,1,−1, . . . ,−1) with all positive signs coming before all negative ones. The

combinatorial structure of OGr
(p,q)
≥0 (1, n+1) can be seen by building up from the intersections

of X with lower-dimensional boundaries of the simplex. Indeed, note that, setting xi = 0
for some i < p, the resulting boundary of OGr

(p,q)
≥0 (1, n + 1) is isomorphic to OGr

(p−1,q)
≥0 (1, n).

Similarly, setting xi = 0 for some i > p gives a copy of OGr
(p,q−1)
≥0 (1, n). Observe that if either

p or q are 0, it is clear that OGr
(p,q)
≥0 (1, p + q) is empty, since the form Q is setting a sum

of squares of projective coordinates to 0. On the other hand, we have OGr
(1,1)
≥0 (1,2) = {x ∈

[0,1] ∶ x2 − (1 − x)2 = 0} = {1/2}, or a single point i.e. a zero-dimensional simplex. Building
up inductively, every restriction to a boundary simplex S = conv({ei ∶ 1 ≤ i ≤ p+1}), where ei
is the ith standard with arbitrary p ≥ 1 and q = 1 yields a (shape combinatorially equivalent
to a) p−1 simplex with vertices given by the midpoints of the edges of S which connect ei to
ep+1 for 1 ≤ i ≤ p. The case with q arbitrary and p = 1 is the same. Now building by induction
we find that the unique shape with boundaries given by ∆p−1×∆q−2 on each boundary given
by xi = 0, for some i > p and ∆p−2 × ∆q−1 on each boundary given by xi = 0, for some
i ≤ p is exactly the product ∆p−1 ×∆q−1, as desired. We remark that this is combinatorially

equivalent to the convex hull of all the points which are given by an OGr
(1,1)
≥0 (1,2), i.e taking
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one coordinate corresponding to a positive p index and one from the negative q. This yields
the product of a (p − 1)-simplex and a (q − 1)-simplex.

Now we show that Ω(p,q) as given above is a canonical form for OGr
(p,q)
≥0 (1, n+1). Setting

x0 = 1 sends the boundary corresponding to x0 = 0 to infinity (we shall check different gauge
choice later). For ease of notation, we can then write ui for ui,0, and note that these are
given by the xi. In the way the form Ω(p,q) is defined, it is clear that for p + 1 ≤ i ≤ n − 1

Resui=0(Ω(p,q)) = (−1)i+1(1 + u21 + ⋅ ⋅ ⋅ + u2p)
du1 ∧ ⋅ ⋅ ⋅ ∧ d̂ui ∧ ⋅ ⋅ ⋅ ∧ dun−1

u1 . . . ûi . . . un−1u2n

For 1 ≤ i ≤ p, since 1 + u21 + . . . u2p − u2p+1 − ⋅ ⋅ ⋅ − u2n = 0, we can rewrite Ω(p,q) as

Ω(p,q) = (−u2p+1 − ⋅ ⋅ ⋅ − u2n)
du1 ∧ du2 ∧ ⋅ ⋅ ⋅ ∧ dun−1
u1 u2 ⋯ un−1 u2n

and then

Resui=0(Ω(p,q)) = (−1)i+1(−u2p+1 − ⋅ ⋅ ⋅ − u2n)
du1 ∧ ⋅ ⋅ ⋅ ∧ d̂ui ∧ ⋅ ⋅ ⋅ ∧ dun−1

u1 . . . ûi . . . un−1u2n

For the boundary corresponding to un = 0 note that since 1 + u21 + . . . u2p − u2p−1 ⋅ ⋅ ⋅ − u2n = 0
we have

u1du1 + ⋅ ⋅ ⋅ + updup − up+1dup+1 − ⋅ ⋅ ⋅ − undun = 0.
Taking the wedge on the right with du2 ∧ ⋅ ⋅ ⋅ ∧ dun−1 we get

u1du1 ∧ ⋅ ⋅ ⋅ ∧ dun−1 ± undun ∧ du2 ∧ ⋅ ⋅ ⋅ ∧ dun−1 = 0

so we deduce that

Ω(p,q) = (1 + u21,0 +⋯ + u2p,0)
du1,0 ∧ du2,0 ∧ ⋅ ⋅ ⋅ ∧ dun−1,0
u1,0 u2,0 ⋯ un−1,0 u2n,0

= ±(1 + u21,0 +⋯ + u2p,0)
dun ∧ du2 ∧ ⋅ ⋅ ⋅ ∧ dun−1

u21u2 . . . un−1un
.

So we get

Ω(p,q) = dun
un
∧ ±(1 + u21,0 +⋯ + u2p,0)

du2 ∧ ⋅ ⋅ ⋅ ∧ dun−1
u21u2 . . . un−1

.

We then get the residue at un = 0:

Resun=0(Ω(p,q)) = ±(1 + u21,0 +⋯ + u2p,0)
du2 ∧ ⋅ ⋅ ⋅ ∧ dun−1
u21u2 . . . un−1

.

This covers all the boundaries of OGr1,q(1, n) and since the residue at each boundary gives

the same form for a lower dimensional positive orthogonal Grassmannian OGr
(p−1,q)
≥0 (k,n) or

OGr
(p,q−1)
≥0 (k,n) , we can carry on taking residues for lower dimensional boundaries.
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Example 4.3.2 (OGr≥0(1,4)). We work in the signature (+,+,−.−). The points (x0 ∶ x1 ∶
x2 ∶ x3) in the positive orthogonal Grassmannian OGr≥0(1,4) in P3 are those such that:

x20 + x21 − x22 − x23 = 0 and x0, x1, x2, x3 ≥ 0.

We can see in this case that OGr≥0(1,4) is a curvy quadrilateral inside the 3-simplex in P3

depicted in Figure 4.1.

Figure 4.1: The positive Grassmannian OGr(1,4)≥0 in P3.

To show that this is a positive geometry, we now describe the canonical form. For
0 ≤ i ≠ j ≤ 3 denote by ui,j the rational function xi/xj. The equation above becomes:

1 + u21,0 − u22,0 − u23,0.

Now consider the form:

Ω = (1+u21,0)
du1,0 ∧ du2,0
u1,0 u2,0 u23,0

= (1+u20,1)
du2,1 ∧ du0,1
u0,1 u2,1 u23,1

= (1+u23,2)
du0,2 ∧ du1,2
u0,2 u1,2 u23,2

= (1+u22,3)
du0,3 ∧ du1,3
u0,3u1,3u22,3

.

We then see that

Resu1,0=0 (Ω) =
du2,0

u2,0(1 − u22,0)

Resu0,1=0 (Ω) = −
du2,1

(1 − u22,1)u2,1
.
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Example 4.3.3 (OGr≥0(1,5)). Again we work with (+,+,+,−,−) and for this case we use a
rational parametrization of X ⊂ OGr(1,5) in P4 where X is cut out by the equation

x20 + x21 + x22 − x23 − x24.

The canonical form is:

Ω = (1 + u21,0 + u22,0)
du1,0 ∧ du2,0 ∧ du3,0
u1,0 u2,0 u3,0 u4,02

.

4.4 Concluding remarks

A natural next step is to investigate OGr≥0(2, n) and determine whether it is a positive
geometry. We intend to study this and (more ambitiously) to extend this to general (k,n).

Another interesting direction is to study OGr(n,2n+1) and its positive part in the alter-
nating signature. This would be analogous to work done in [53] which was for OGr(n,2n).
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Chapter 5

Grasstopes

This chapter is based on the paper, “Combinatorics of m = 1 Grasstopes” [85], which is joint
with Dmitrii Pavlov and Lizzie Pratt.

5.1 Introduction

The (tree) amplituhedron, introduced by Arkani-Hamed and Trnka in [11], is a geometric
object playing an important role in calculations of scattering amplitudes in planar N = 4
Super-Yang-Mills theory. It is defined as the image of the totally nonnegative Grassmannian
Gr≥0(k,n) under a totally positive linear map Z̃ ∶ Gr(k,n) ⇢ Gr(k, k + m) given by an
n × (k +m) matrix Z. While immediate physical relevance of the amplituhedron becomes
manifest at m = 4, it is an object of independent mathematical interest for any m. It is
known that when k = 1, it is a cyclic polytope [105] and when k +m = n, it is isomorphic to
the totally nonnegative Grassmannian Gr≥0(k,n).

In recent years, the amplituhedron has been studied extensively from the point of view
of algebraic combinatorics for m = 1,2,4 (see [42, 52, 71, 72, 84, 92]). The structure of
the amplituhedron in the m = 1 case is particularly simple: Karp and Williams [72] show
that it is linearly homeomorphic to the complex of bounded cells of an affine hyperplane
arrangement and therefore is homeomorphic to a closed ball.

One reason that the amplituhedron is so amenable to combinatorial study is that the
totally nonnegative Grassmannian itself has a rich combinatorial structure. In particular,
Gr≥0(k,n) admits a stratification by positroid cells, which are all homeomorphic to open balls
[93]. However, amplituhedra are images of very special linear maps, just as cyclic polytopes
are very special polytopes. From this point of view, it makes sense to consider images of the
totally nonnegative Grassmannian under arbitrary linear maps. In [81], Lam considers the
images of positroid cells under arbitrary linear maps, and calls them Grassmann polytopes.
Images of the whole totally nonnegative Grassmannian are referred to as full Grassmann
polytopes.

While amplituhedra have attracted significant attention from the mathematical commu-
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nity, many results in this area rely on the total positivity of the map Z̃, and much less is
known about more general Grassmann polytopes. Most of the known results are assembled
in [81, Part 2]. Many of them are limited to the case when Z̃ does not have base points on
the totally nonnegative Grassmannian, i.e. is regular (well-defined) on Gr≥0(k,n).

In this chapter, we initiate the study of general full Grassmann polytopes (Grasstopes)
and focus on the case of m = 1, when the ambient Grassmannian is the dual projective space
(Pk)∨. We extend the results of [72], showing that when Z̃ is regular on Gr≥0(k,n), the
resulting Grasstope is a union of cells of a projective hyperplane arrangement satisfying a
certain sign variation condition. This, in particular, implies that Grasstopes arising from
such Z̃ are closed and connected, in accordance with [81, Proposition 15.2]. When there are
no additional restrictions on Z̃, we show that the image of the totally positive Grassmannian
Gr>0(k,n) can still be characterized in terms of sign changes, although the image of Gr≥0(k,n)
might have irregular boundary. We also show that, unlike amplituhedra, general m = 1
Grasstopes are not necessarily homeomorphic to closed balls or even contractible.

This chapter is organized as follows. In Section 5.2, we define Grassmannians, their totally
nonnegative and totally positive parts, and Grasstopes. We divide Grasstopes into three
categories (tame, wild, and rational) based on the properties of the map Z̃. We introduce
the concepts necessary for the sign variation characterization of m = 1 Grasstopes and prove
some auxiliary results about general Grasstopes. In Section 5.3, we study the combinatorics
and geometry of Grasstopes form = 1 and prove the sign variation characterization results for
tame and wild Grasstopes, as well as for open rational Grasstopes. Section 5.4 is devoted to
examples. In Section 5.5, we give background on oriented matroids, which is useful for Section
5.6. Finally, in Section 5.6 we investigate how many regions of a hyperplane arrangement
can be in an m = 1 Grasstope, and, based on the sign variation characterization, suggest a
definition of the Grasstope of a (not necessarily realizable) oriented matroid.

5.2 Preliminaries

Recall that the real Grassmannian Gr(k,n) is the variety parameterizing k-dimensional

subspaces of an n-dimensional vector space Rn. It is realized as a subvariety of P(
n
k
)−1 via the

Plücker embedding, such that a vector space is represented by a vector of maximal minors
of a matrix representative.

The totally nonnegative Grassmannian Gr≥0(k,n) is the subset of Gr(k,n) consisting of
the elements whose non-zero Plücker coordinates all have the same sign. The totally positive
Grassmannian Gr>0(k,n) is a subset of the totally nonnegative Grassmannian consisting
of the elements whose Plücker coordinates are all non-zero. Elements of Gr>0(k,n) can be
represented by k×n matrices with strictly positive maximal minors (such matrices are called
totally positive). For more information and references about the Grassmannian and the
positive Grassmannian we direct the reader back to Section 1.3.

Let Z be a real n× (k +m) matrix of full rank, where k +m ≤ n. The matrix Z defines a
rational map Z̃ ∶ Gr(k,n) ⇢ Gr(k, k +m) by [A] ↦ [AZ], where [A] is the class in Gr(k,n)
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of a matrix A.

Definition 5.2.1 (Grasstopes). The image Z̃(Gr≥0(k,n)) ⊆ Gr(k, k + m) is called the
(n, k,m)-Grasstope of Z and is denoted by Gn,k,m(Z).

The totally nonnegative Grassmannian Gr≥0(k,n) is a semialgebraic set (that is, it can
be described by polynomial equations and inequalities) and Gn,k,m(Z) is its image under a
polynomial map. Thus, it follows from the Tarski-Seidenberg theorem [13, Theorem A.49]
that Gn,k,m(Z) is also semialgebraic.

In [81], the sets Gn,k,m(Z) are called full Grassmann polytopes. When Z is a totally
positive matrix, one recovers the definition of the (tree) amplituhedron An,k,m(Z) [11], a
geometric object of fundamental importance to calculating scattering amplitudes in particle
physics.

Note that the matrix AZ defines an element in Gr(k, k +m) if and only if AZ has full
rank. It is a priori not guaranteed that the map Z̃ is well-defined on Gr≥0(k,n), that is, that
AZ has full rank for any totally nonnegative k×n matrix A. In general, the map Z̃ has base
locus

B(Z̃) ∶= {V ∶ dim(V ∩ kerZT ) ≥ 1} ⊂ Gr(k,n),
which may or may not intersect Gr≥0(k,n). Note that the B(Z̃) is a Schubert variety, so
in particular, it is closed in Gr(k,n) [81, Section 17]. We will often view Gr≥0(k,n) as a
parameter space of (k − 1)-dimensional subspaces of Pn−1, in which case the base locus is all
projective subspaces which are not disjoint from P(kerZT ).

Finding combinatorial conditions for Z̃ to be well-defined on Gr≥0(k,n) had been an
active area of research for several years. In [81, Proposition 15.2] Lam proved that if Z̃ is
well-defined on Gr≥0(k,n), then Gn,k,m(Z) is closed and connected. In the same proposition
he showed that the following condition is sufficient for Z̃ to be well-defined.

There exists a (k +m) × k matrix M such that all k × k minors of ZM are positive. (5.1)

Geometrically, condition (5.1) means that the element of Gr(k + m,n) represented by Z
contains a totally positive k-dimensional subspace, that is, an element of Gr>0(k,n). Lam
also conjectured that this condition is necessary for Z̃ to be well-defined on Gr≥0(k,n). This
conjecture turned out to be false, with a counterexample given by Galashin (see [72, Remark
9.3] and Example 5.4.2). A combinatorial criterion was given in [70, Theorem 4.2]. Lam’s
conjecture gives rise to the following definition.

Definition 5.2.2 (Tame Grasstope). The Grasstope Gn,k,m(Z) is called tame if Z satisfies
(5.1).

Let ϕ ∶ V →W be a map of vector spaces. We define its kth exterior power ∧kϕ ∶ ⋀k V →
⋀kW by v1 ∧ . . . ∧ vk ↦ ϕ(v1) ∧ . . . ∧ ϕ(vk). If M is a matrix representing ϕ in bases {ei}
of V and {ẽj} of W , we denote the matrix representing ∧kϕ in the induced bases of ⋀k V
and ⋀kW by ∧kM . Then the matrix of Z̃ is ∧kZ, where we use the standard embedding
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Gr(k,n) → ⋀k(Rn), Span{v1, . . . , vk} ↦ v1 ∧ . . . ∧ vk. Concretely, the entries of ∧kM are the
k × k minors of M . Those minors are ordered by multi-indices in reverse lexicographic order
(according to Macaulay2 convention).

We now give a simple geometric criterion of tameness. Although well-known to specialists
in this area, this result seems to have not appeared in the literature yet. In what follows, for
the sake of simplicity, we slightly abuse notation and write Gn,k,m(Z) both for the Grasstope
as a subset of Gr(k, k +m) and its image under the Plücker embedding.

Proposition 5.2.3. An n × (k +m) matrix Z satisfies (5.1) (i.e. Gn,k,m(Z) is tame) if and

only if there exists a hyperplane in P(
k+m
k
)−1, whose coefficients satisfy the Plücker relations,

which does not intersect Gn,k,m(Z).

Proof. Any (k+m)×k matrixM defines a hyperplane in P(
k+m
k
)−1 by its Plücker coordinates:

a point p ∈ P(k+mk )−1 lies on the hyperplane defined byM if and only if (∧kM)Tp = 0. Suppose
that Z satisfies (5.1) andM is a (k+m)×k matrix such that ZM is totally positive. Suppose
that a point in Gn,k,m(Z) lies on the hyperplane defined byM . Then, for some A ∈ Gr≥0(k,n),
it holds that (∧kM)T (∧kAZ)T = 0, which implies that (∧k(ZM))T (∧kA)T = 0. Since all k×k
minors of A are non-negative, and at least one is nonzero, it is not possible for all k×k minors
of ZM to have the same sign. Thus, if there exists M such that ZM has all positive (or
negative) k × k minors, then the image Gn,k,m(Z) does not intersect the hyperplane defined
by M .

Now suppose that Z does not satisfy (5.1), that is, for any M the matrix ZM has either
a zero k × k minor or at least one positive and one negative k × k minor. We will show that
there exists a matrix A ∈ Gr≥0(k,n) such that (∧k(ZM))T (∧kA)T = 0, so that the hyperplane
defined by M intersects Z̃(Gr≥0(k,n)).

In the first case, when ZM has a zero minor in the ith Plücker coordinate, one can find
an element A ∈ Gr≥0(k,n) which has all Plücker coordinates equal to zero except for the ith

one. In this case, (∧k(ZM))T (∧kA)T = 0.
Now consider the second case, in which ZM has at least one positive and one negative

k×k minor. By the pigeonhole principle, there exists a set of column indices I = {i1, . . . , ik−1}
such that two Plücker coordinates involving I (which we label pI∪{i} and pI∪{j}) have dif-

ferent signs. Then, take (q1,...k ∶ ⋅ ⋅ ⋅ ∶ qn−k+1,...,n) ∈ P(
n
k
)−1 such that all coordinates except for

qI∪{i}, qI∪{j} are zero, and qI∪{i} = ∣pI∪{j}∣ and qI∪{j} = ∣pI∪{i}∣. Then, all Plücker relations are
satisfied so this point represents an element A ∈ Gr≥0(k,n). We have (∧k(ZM))T (∧kA)T = 0,
so the hyperplane given by M intersects the Grasstope Gn,k,m(Z).

Note than when m = 1, all hyperplanes in Pk have coordinates satisfying the Plücker
relations. By choosing a hyperplane disjoint from Gn,k,m(Z) to be the hyperplane at infinity,
we arrive at the following result.

Corollary 5.2.4. The Grasstope Gn,k,1(Z) is tame if and only if its image under the Plücker
embedding is contained in some affine chart of Pk.
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Tame Grasstopes share many nice properties with amplituhedra. In particular, for m = 1
they are homeomorphic to closed balls and can be described as complexes of bounded cells of
affine hyperplane arrangements [72, Section 9]. The focus of this chapter, however, is to take
a step away from the tame case and study Grasstopes that behave somewhat less regularly.

Definition 5.2.5 (Wild Grasstope). If the map Z̃ is well-defined on Gr(k,n)≥0 but Z does
not satisfy (5.1), then the Grasstope Gn,k,m(Z) is called wild.

Even though Z̃ might not be well-defined on Gr≥0(k,n), it still makes sense to consider
the image of Gr≥0(k,n) ∖ (B(Z̃) ∩Gr≥0(k,n)), where B(Z̃) is the base locus of Z̃. In this
case, we will still write Z̃(Gr≥0(k,n)) for this image.

Definition 5.2.6 (Rational Grasstope). Suppose the map Z̃ is not well-defined on Gr(k,n)≥0.
Then the image Gn,k,m(Z) = Z̃(Gr(k,n)≥0) is called a rational Grasstope. The image
G○n,k,m(Z) = Z̃(Gr(k,n)>0) of the totally positive Grassmannian is called an open rational
Grasstope. This is indeed an open set, as shown in Proposition 5.3.4.

The definitions and names for “tame” and “wild” Grasstopes were suggested by Lam.
This is in contrast to Definition 5.2.6 above, which is new.

We conclude this section with technical results that will prove useful in the characteriza-
tion of m = 1 Grasstopes in Section 5.3. Given a point u in Pn, we associate a sign pattern
σ = (σ0, . . . , σn) ∈ {+,−,0}n+1 to u in the following way. Pick i such that ui ≠ 0 and set
σi ∶= +. Then σj ∶= sign(uiuj), which is a well-defined function of homogeneous coordinates
of u. Since we associate sign labels to points in projective space, we will identify sign labels
σ and −σ. Each orthant of the Pn consists of the points with the same sign pattern. For
instance, the sign pattern (+ ∶ + ∶ − ∶ +) for a point in P3 represents the orthant defined by

{u0u1 > 0, u0u2 < 0, u0u3 > 0, u1u2 < 0, u1u3 > 0, u2u3 < 0}.

Given a point x ∈ Pk being the image of a hyperplane X = Span{w1, ...,wk} under the
Plücker embedding of Gr(k, k + 1), and any point v ∈ Pk, one may consider the bilinear map

T ∶ Pk × Pk → R, x, v ↦ det

⎡⎢⎢⎢⎢⎢⎣

∣ ∣ ∣
w1 ... wk v
∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎦
=

k

∑
j=1

(−1)jp1...ĵ...kvj. (5.2)

Then T (x, v) = 0 if and only if v is contained in X. If v = Zi for some row Zi of Z, then
T (x,Zi) is commonly called a twistor coordinate of X with respect to Z [114, Definition 4.5].

Remark 5.2.7. One may also fix either argument x or v of T to get a linear form on Pk.
In this paper we will consider the twistor coordinates as functions of x by setting v = Zi and
denote the resulting forms by li(x). We will see in Theorem 5.3.1 that the vanishing loci of
the li’s are exactly the hyperplanes which contain the boundaries of Gn,k,m(Z).

We now recall the definition of sign variation from [72].
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Definition 5.2.8 (Sign variation). Given a sequence v of n real numbers, let var(v) be
the number of sign changes in v (zeros are ignored). Let var(v) ∶= max{var(w) ∶ w ∈
Rn such that wi = vi for all i ∈ [n] with vi ≠ 0}, i.e. var(v) is the maximum number of sign
changes in v after a sign for each zero component is chosen. Note that both var and var are
well-defined functions in the homogeneous coordinates of a point in Pn−1.

We call a (k − 1)-dimensional subspace of Pn−1 positive if it is a point in Gr≥0(k,n) and
totally positive if it is a point in Gr>0(k,n). Given a point u ∈ Pn−1, we define the hyperplane
Hu given by u to be the hyperplane orthogonal to u with respect to the standard dot product,
i.e. Hu ∶= {v ∈ Pn−1 ∶ u ⋅ v = 0}. Then we have the following proposition.

Proposition 5.2.9. Let Hu be the hyperplane given by u ∈ Pn−1.

1. Hu contains a positive subspace of dimension k − 1 if and only if var(u) ≥ k.

2. Hu contains a totally positive susbspace of dimension k − 1 if and only if var(u) ≥ k.

Proof. We start by proving the first statement. A hyperplaneHu contains a positive subspace

of dimension k if and only if u is in the kernel of some matrix of the form ( A
B

) where

A ∈ Gr≥0(k,n), and B ∈ Gr(n − k − 1, n). Here A represents the positive subspace, and B

the additional points to define a hyperplane. Note that u ∈ ker( A
B

) if and only if

u ∈ ker(A) and u ∈ ker(B). Then, the “only if” direction follows directly from [55, Theorems
V1 and V6] (also [72, Theorem 3.4(i)]). The “if” direction also follows, with the note that
one can always find n − k − 1 additional points to form the matrix B such that u ∈ ker(B).
The second statement is proved analogously, with replacing Gr≥0(k,n) by Gr>0(k,n) and
using [72, Theorem 3.4(ii)].

5.3 Grasstopes for m = 1: tame, wild, and rational

We begin by stating our main theorem which describes any m = 1 Grasstope Gn,k,1(Z)
arising from a well-defined map Z̃ as a subset of Pk ≅ Gr(k, k + 1). This theorem recovers
and generalizes many of the results of Karp and Williams describing m = 1 amplituhedra
and tame Grasstopes ([72, Section 6]).

Theorem 5.3.1. Suppose Z̃ ∶ Gr(k,n) ⇢ Gr(k, k + 1) is well-defined on Gr≥0(k,n). Then
the Grasstope Gn,k,1(Z) consists of the points x ∈ Pk such that var(L(x)) ≥ k, where L(x) is
the vector of twistor coordinates of x with respect to Z.

Proof. Let L(x) = (l1(x) ∶ ... ∶ ln(x)) ∈ Pn−1 (see Remark 5.2.7). By Proposition 5.2.9, it
suffices to show that HL(x) contains a positive subspace if and only if X ∈ Gn,k,1(Z).
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For the “if” direction, suppose that A ∈ Gr≥0(k,n) and x is the vector of Plücker coordi-
nates of [AZ]. Then for each row Ai of A, we have

L(x) ⋅Ai =
n

∑
j=1

T (x, Zj)Aij = T (x,
n

∑
j=1

AijZj) = 0,

since ∑AijZj is a row of AZ. Thus HL(x) contains A.
For the “only if” direction, suppose that HL(x) contains a positive subspace A, and let

v ∈ kerZT . Then

L(x) ⋅ v =
n

∑
i=1

T (x, Zi)vi = T (x,
n

∑
i=1

Zivi) = T (x,0) = 0.

So HL(x) contains P(kerZT ). Since P(kerZT ) ∩A = ∅ by regularity of Z̃ on Gr≥0(k,n), we
have by dimension considerations that any two hyperplanes containing A and P(kerZT )must
be equal. However, by the “if” direction, if a is the vector of Plücker coordinates of [AZ],
then HL(a) contains A. In addition, HL(a) contains P(kerZT ). Therefore HL(x) = HL(a).
Since u↦Hu is injective, we obtain x = a.

Note that in the proof of Theorem 5.3.1, the well-defined condition is necessary, since
otherwise there might be positive subspaces which intersect P(kerZT ). In this case, there
is no guarantee that a hyperplane containing a positive subspace also contains a positive
subspace disjoint from P(kerZT ), which might present problems on the boundary of the
Grasstope.

However, as we show in the following results, we can still describe the open rational
Grasstope in the case that the map Z̃ is not well-defined on Gr≥0(k,n). We first need the
following lemma about totally positive subspaces to show that intersection with P(kerZT )
does not cause issues.

Lemma 5.3.2. Let H be a hyperplane in Pn−1 containing an (n−k−1)-dimensional subspace
P . If H contains a totally positive (k − 1)-dimensional subspace, then it contains a totally
positive (k − 1)-dimensional subspace disjoint from P .

Proof. Let V ⊂ H be a totally positive (k − 1)-dimensional subspace. Let l = dim(V ∩ P ).
Then dim(V +P ) = n−l−2 and V +P ⊂H. In particular, the codimension of V +P inside H is
equal to l. Pick l+1 points q1, . . . , ql+1 in general position in H ∖(V +P ). LetM be a matrix
representing V +P ∈ Gr(n−l−1, n) such that the first k+1 rows ofM represent V ∈ Gr>0(k,n)
and there is a subset of rows r1, . . . , rl+1 ofM representing V ∩P ∈ Gr(l, n). Denote by B the
submatrix ofM given by its first k+1 rows. Note that the k− l rows s1, . . . , sk−l of B that are
not r1, . . . , rl+1 span a subspace W disjoint from P . Consider a matrix M ′ obtained from M
by replacing ri with ri+εiq̃i for i = 1, . . . , l+1, where εi > 0 and q̃i is a vector of homogeneous
coordinates of the point qi. Since the points q1, . . . , ql+1 are in general position in H∖(V +P ),
the matrix M ′ has full rank and represents an (n− l−2)-dimensional subspace of H. Denote
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the first k+1 rows ofM ′ by B′. Then, for ε1, . . . , εl+1 small enough, B′ represents a subspace
V ′ ∈ Gr>0(k,n). We claim that V ′ is disjoint from P . To show this, consider the matrix
D obtained by stacking B′ below a matrix C representing P . Note that D represents the
projective subspace V ′ +P . Since the points in Pn−1 defined by rows r1, . . . , rl+1 are in P , by

performing row operations on D, one can reduce it to the form D′ = (C
Q
) , where Q consists

of the rows s1, . . . , sk−l, q̃1, . . . , q̃l+1. Due to the choice of q1, . . . , ql+1 and the fact that W is
disjoint from P , D′ has full rank. This means that dim(V ′ + P ) = dim(V ′) + dim(P ), so V ′
and P are disjoint.

Following Lemma 5.3.2, we are ready to describe the open rational Grasstope Z̃(Gr>0(k,n)).
Recall that B(Z̃) denotes the set of base points of Z̃.

Proposition 5.3.3. For a map Z̃ ∶ Gr⩾0(k,n) ⇢ Gr(k, k + 1) given by a matrix Z the open
Grasstope Z̃(Gr>0(k,n)) consists of the points x ∈ Pk such that var(L(x)) ≥ k, where L(x)
is the vector of twistor coordinates of x with respect to Z.

Proof. We will prove this statement by slightly modifying the proof of Theorem 5.3.1. Fix a
totally positive matrix A ∈ Gr>0(k,n) ∖ B(Z̃) and let x be the vector of Plücker coordinates
of [AZ]. Then the hyperplane HL(x) contains P(kerZT ) and the totally positive subspace
A. Conversely, if a hyperplane H contains P(kerZT ) and a totally positive subspace A, then
by Lemma 5.3.2 H contains a totally positive subspace A′ disjoint from P(kerZT ) (thus,
A′ /∈ B(Z̃)). The hyperplane is then uniquely determined by its containment of P(kerZT )
and A′, so it must be HL(x), where x is the vector of Plücker coordinates of [A′Z]. We now

use the second part of Proposition 5.2.9 to conclude that the open Grasstope Z̃(Gr>0(k,n))
consists of the points in x ∈ Pk such that var(L(x)) ≥ k.

Proposition 5.3.4. The open rational Grasstope of Z is open and, if Z has no zero rows,
the rational Grasstope of Z is contained in the closure of the open rational Grasstope of Z.

Proof. Let Z define a rational Grasstope and consider a point x with var(L(x)) ≥ k, where
L(x) is the vector of twistor coordinates of x with respect to Z. Then for all points x′ in a
sufficiently small neighborhood around it, L(x′) has the same signs as L(x) in all the indices
of the nonzero entries of L(x). Since changing the zero entries cannot decrease the sign
variation, the neighborhood is contained in the open rational Grasstope.

Similarly to the reasoning of Theorem 5.3.1, it follows from the second part of Proposition
5.2.9 that the rational Grasstope of Z must be contained in the set C ∶= {x ∶ var(L(x)) ≥ k}.
We show that when Z has no zero rows, C is the closure of the open rational Grasstope
of Z. First, we show that the complement of C, the set {x ∶ var(L(x)) < k}, is open. Let
x be such that var(L(x)) < k. Then for all points x′ in a sufficiently small neighborhood
around x, L(x′) has the same signs as L(x) in all the indices of the nonzero entries of L(x).
Since changing the values of the zero entries cannot increase var, we know var(L(x′)) < k.
Therefore C is closed.
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Now consider a point x ∈ C and an open neighborhood N of points around it. We will
show that there is some x′ ∈ N with var(L(x′)) ≥ k, which is sufficient to conclude that C is
the closure of the open rational Grasstope of Z. Since Z has no zero rows, each zero entry
of L(x) corresponds to containment of x in a hyperplane. Any open neighborhood around
x contains points on either side of the hyperplane. Similarly, if x lies in the intersection of
several hyperplanes, any open neighborhood of x contains points in each orthant defined by
these hyperplanes, so any sign pattern can be achieved in the entries which are zero in L(x).
In particular, this means that there is a point x′ with signs in the nonzero entries of L(x)
equal to the signs of the corresponding entries of L(x′) (since we can restrict N to be small
enough such that the signs in the nonzero entries of L(x) are unchanged), and signs of the
zero entries replaced by the signs which ensure that var(L(x′)) ≥ k.

In Section 5.4, we show that the rational Grasstope may be equal to the closure of the
open rational Grasstope. However, we do not know if this holds in general, since as far as
we can tell, it might be possible for points in the boundary to be missing. Thus the question
of fully describing which parts of the boundary are contained in m = 1 rational Grasstopes
remains open.

5.4 Examples

In this section we provide examples of the families of Grasstopes we considered. We begin
with an example of a tame Grasstope.

Example 5.4.1 (A tame Grasstope). Let

Z =
⎡⎢⎢⎢⎢⎢⎣

1 0 −1 −3 −2
0 1 1 2 1
0 0 1 −1 −2

⎤⎥⎥⎥⎥⎥⎦

T

.

This matrix is not totally positive, since p123 = 1 and p124 = −1. However, the first two rows
of ZT span a totally positive line, so Z satisfies (5.1) with the matrix M being

[1 0 0
0 1 0

]
T

.

Therefore the resulting Grasstope is tame but is not an amplituhedron. The rows of Z define
5 linear forms, as noted in Remark 5.2.7:

l1 = z, l2 = −y, l3 = x − y − z, l4 = −x − 2y − 3z, l5 = −2x − y − 2z.

Not every affine chart that we choose results in a bounded picture. For instance, if we
map (x ∶ y ∶ z) ↦ (x + y ∶ y ∶ z) and dehomogenize with respect to the first coordinate, the
resulting picture is unbounded. However, as predicted by Corollary 5.2.4, there are lines
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Figure 5.1: Affine chart in which the tame Grasstope is bounded.

disjoint from the Grasstope. One of them is {−4x + z = 0} in P2. By picking it to be the
line at infinity (that is, by mapping (x ∶ y ∶ z) ↦ (−4x + z ∶ y ∶ z) and dehomogenizing with
respect to the first coordinate), we obtain affine lines given by the linear forms

l̃1 = ỹ, l̃2 = −x̃, l̃3 =
−1 − 4x̃ − 3ỹ

4
, l̃4 =

−1 − 8x̃ − 13ỹ
4

, l̃5 =
1 − 2x̃ − 5ỹ

2
.

Each line has an orientation, with the positive half-space given by the points (x̃, ỹ)
for which l̃(x̃, ỹ) ≥ 0. The lines divide the affine plane into regions, each of which has a
corresponding sign vector with ith coordinate being + if l̃i(x̃, ỹ) > 0 for all (x̃, ỹ) in the
region, and − if l̃i(x̃, ỹ) < 0. The Grasstope of Z consists exactly of those points in the
regions for which var(u) ≥ 2, as can be seen in Figure 5.1. The six lines corresponding to
the rows of Z are colored red, orange, yellow, green, and blue, in order, with orientations
given by arrows. The shaded portion of the figure is the Grasstope, which consists exactly
of the regions with at least two sign changes.

Example 5.4.2 (A wild Grasstope). Let

Z =
⎡⎢⎢⎢⎢⎢⎣

2 2 0 −1 1 0
2 3 1 0 2 0
2 2 0 0 2 1

⎤⎥⎥⎥⎥⎥⎦

T

.

This is the example found by Galashin (and communicated to us by Lam [80]) to show that
wild Grasstopes exist. Indeed, suppose there exists a 3 × 2 matrix M such that ZM has



CHAPTER 5. GRASSTOPES 69

positive 2× 2 minors. The 2× 2 minors of ZM are the entries of ∧2(ZM) = ∧2(Z)×∧2(M) =

=
⎡⎢⎢⎢⎢⎢⎣

2 2 2 2 3 1 2 1 −1 −2 0 0 0 0 0
0 0 0 2 2 0 2 2 0 −2 2 2 0 −1 1
−2 −2 −2 0 0 0 0 2 2 0 2 3 1 0 2

⎤⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎣

p12
p13
p23

⎤⎥⎥⎥⎥⎥⎦
,

where p12, p13, p23 are the minors of M . Then, column 4 of (∧2Z)T tells us that p12 + p13 > 0
but column 10 tells us that p12 + p13 < 0, so no such matrix M can exist.

The six rows of Z correspond to the six linear forms

l1 = 2x − 2y + 2z, l2 = 2x − 3y + 2z, l3 = −y
l4 = −z, l5 = 2x − 2y + z, l6 = x.

Mapping (x ∶ y ∶ z) ↦ (x + y ∶ y ∶ z) and dehomogenizing with respect to the first coordinate,
we obtain affine lines given by the linear forms

l̃1 = 2ỹ − 4x̃ + 2, l̃2 = 2ỹ − 5x̃ + 2, l̃3 = −x̃,
l̃4 = −ỹ, l̃5 = ỹ − 4x̃ + 2, l̃6 = −x̃ + 1.

We draw these in the affine plane and color them (in order) red, orange, yellow, green, blue,
and purple. We also give the lines orientations with the positive half-space given by the
points (x̃, ỹ) for which l̃(x̃, ỹ) > 0. Then the Grasstope of Z consists exactly of those points
in the regions between the lines for which var(u) ≥ 2, as can be seen in Figure 5.2. The six
lines corresponding to the rows of Z are pictured as described above, with orientations given
by the arrows. The regions are labelled by sign patterns. The shaded portion of the figure
is the Grasstope, and it consists exactly of those regions with at least two sign changes.

Example 5.4.3 (A rational Grasstope with closed boundary and Möbius strip topology).
Let

Z =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0
0 1 0 −1 1 −1
0 0 3 0 −2 −1

⎤⎥⎥⎥⎥⎥⎦

T

.

Note that (1,1,1,1,1,1) ∈ ker(ZT ), so the map Z̃ has base points on Gr≥0(2,6). Following
Proposition 5.3.3 we can still describe its open Grasstope. As in the previous examples, we
find 6 dehomogenized linear forms corresponding to six affine lines

l̃1 = ỹ, l̃2 = −x̃, l̃3 = −3x̃ + 3,
l̃4 = x̃ − ỹ, l̃5 = x̃ − 2, l̃6 = 2x̃ − 1.

Then we can find the open rational Grasstope of Z as in Figure 5.3. The six lines corre-
sponding to the rows of Z are pictured as described above, with orientations given by the
arrows. The regions can then be labelled by sign patterns. The shaded portion of the figure
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Figure 5.2: A wild Grasstope. It meets every line in P2
R

Figure 5.3: A rational Grasstope. The shaded region has the topology of a Möbius strip.
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is the Grasstope, and it consists exactly of those regions with at least two sign changes. In
this case, the shaded region is a Möbius strip.

We claim that the rational Grasstope of Z is the closure of the open rational Grasstope.
One can check this by directly finding Plücker coordinates for some M ∈ Gr≥0(2,6) which
map to the points that lie on the boundary. For example, to find such M for any point of
the form (0, a) with a ≥ 0, we solve ∧2(Z) × ∧2(M) = (1 ∶ 0 ∶ a). Then ∧2(M) must have
nonnegative entries which satisfy the Plücker relations. This process is made easier if one
recalls that the Plücker relations are trivially satisfied if all entries are zero except for ones
which correspond to pairwise overlapping submatrices, that is any two nonzero minors come
from submatrices which share a column. In this case, since

∧2(Z) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 −1 1 0 1 0 0 −1 −1 0 0 1 0
0 3 0 0 0 3 −2 0 0 2 −1 0 0 1 0
0 0 3 0 0 3 0 −2 −3 2 0 −1 3 1 −3

⎤⎥⎥⎥⎥⎥⎦

T

,

we find that the point (1 ∶ 0 ∶ a) is given by ∧2(M) = (0 ∶ 0 ∶ a/3 ∶ 0 ∶ 1 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶
0 ∶ 0 ∶ 0 ∶ 0 ∶ 0). Since the only nonzero entries correspond to the minors p23 and p24, the
Plücker relations are satisfied. Thus the portion of the boundary line x = 0 with y ≥ 0 is part
of the rational Grasstope of Z. One can similarly check that all other parts of all six lines
are included. Therefore the rational Grasstope of Z is closed. Furthermore, topologically, as
one can see from Figure 5.3, it is a Möbius strip. Indeed, since it is a projective picture, the
“positive” orthant and the “negative” orthant connect, but with a twist to account for the
sign inversion.

5.5 Background on oriented matroids

Much of the material on hyperplane arrangements can be naturally generalized to oriented
matroids [12]. In this section, we review the basics of oriented matroid theory and recall a
dictionary between hyperplane arrangements and oriented matroids. This will prove useful
in algorithmically counting the number of regions in a given Grasstope (see Section 5.6). We
begin by discussing signed circuits, which we will often abbreviate as circuits if the meaning
is clear from context.

Definition 5.5.1 (Signed circuit axioms). An oriented matroid consists of a ground set E
and a collection C of tuples of the form X = (X+,X−) called circuits, where X+,X− are
disjoint subsets of E satisfying

1. ∅ is not a circuit.

2. If X is a circuit, then so is −X = (X−,X+).

3. No proper subset of a circuit is a circuit.
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4. (Elimination). If X0 and X1 are two signed circuits with X0 ≠ X1 and e ∈ X+0 ∩X−1 ,
then there is a third circuit X ∈ C with X+ ⊂ (X+0 ∪X+1 )∖{e} and X− ⊂ (X−0 ∪X−1 )∖{e}.

We can obtain the oriented matroid of a matrix as follows.

Definition 5.5.2 (Oriented matroid of a matrix). Fix a matrix A and let ∑i λivi be a
minimal linear dependency among its rows. Associate to this dependency the signed set
X = (X−,X+), where

X− = {i ∶ λi < 0}
X+ = {i ∶ λi > 0}.

Then the oriented matroid MA associated to A has as its signed circuits the signed sets
coming from minimal linear dependencies.

One can check that oriented matroids of matrices satisfy the signed circuit axioms.

Example 5.5.3 (Matroid of a matrix A). Consider the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
2 −3 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the only linear dependency up to scaling is v4 −4v3 +3v2 − v1 = 0. Thus the only circuit
(when only one of X,−X is considered) is 2413, where we use a more compact notation in
which the bar indicates being in the negative part of the signed set.

Remark 5.5.4. One can also define MA by signed bases; the matroid is the map which
assigns to each size k subset I ⊂ [n] the sign of the determinant of AI . This definition is
called the chirotope definition [12, page 6] and satisfies the chirotope axioms, which we do not
describe here. In particular, the database [48] used in Section 5.6 indexes oriented matroids
by their chirotope.

We recall a few definitions we will need to explain how a hyperplane arrangement can be
viewed as an oriented matroid.

Definition 5.5.5 (Composition). Let X = (X+,X−) and Y = (Y +, Y −) be signed sets. Then
their composition X ○ Y is (X+ ∪ (Y + ∖X−),X− ∪ (Y − ∖X+)).

Definition 5.5.6 (Orthgonality). LetX = (X+,X−) and Y = (Y +, Y −) be signed sets. Define
S(X,Y ) = (X+∩Y −)∪(X−∩Y +). We say X and Y are orthogonal if S(X,Y ) and S(X,−Y )
are both empty or both non-empty.
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We define vectors as compositions of circuits, and cocircuits and covectors as the circuits
and vectors of the dual matroid [12, page 4], respectively. An equivalent definition which is
easier for computing is that the covectors ofM are the signed sets which are orthogonal to
all vectors ofM. For more detail, see [12, Chapter 1]. There is yet another definition in the
case of vector configurations.

Definition 5.5.7 (Oriented matroid of a vector configuration). One can also view the rows
vi of the matrix A as vectors in Rk. For such a vector configuration, the covectors can be
defined as the set of tuples YH = (Y +H , Y −H) as H runs over oriented hyperplanes, where Y +H is
the set of vectors in the positive halfspace defined by H, and Y −H is the set of vectors in the
negative halfspace. The cocircuits are the minimal covectors. They arise from hyperplanes
that are spanned by subsets of {v1, ..., vn}.

Definition 5.5.8 (Oriented matroid of a hyperplane arrangment). Let Hi be the hyperplane
given by the vanishing of li(x) = ai ⋅x. Then the oriented matroid of the arrangement {Hi}ni=1
is the matroid of the vector configuration given by a1, ..., an, or equivalently, the oriented
matroid of the matrix with rows a1, ..., an.

Remark 5.5.9. Faces of a hyperplane arrangement correspond to covectors of its oriented
matroid, and regions correspond to maximal covectors. The rank (denoted by r) of the
oriented matroid is k + 1, where k is the dimension of the ambient space [12, Chapter 1].

Example 5.5.10 (Matroid of a matrix A). Let A be the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
2 −3 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
as in Example 5.5.3. The cocircuits are given considering hyperplanes H spanned by pairs of
rows. For example, if H = Span{a1, a3} = {y = 0}, then a2 is in the positive halfspace (since
the y-coordinate is 1) and a4 is in the negative halfspace (since the y coordinate is −3). Thus
we obtain the cocircuit 24̄.

The total set of cocircuits (not including negations) is {24̄,34,23,14,31̄,12}. In the
previous sections we have used sign vector notation; that is, to each signed set we associate
a length n vector with ± at index i if i is in X± and 0 otherwise. Applying this convention,
one can check that the covectors are exactly the sign vectors with fewer than 3 sign changes.
For example, 24̄ ○ 31̄ = 2314, which corresponds to (− + +−).

Definition 5.5.11. A matroid is realizable if it arises from a hyperplane arrangement over R.

5.6 Extremal counts and oriented matroid Grasstopes

Given an n × (k + 1) matrix Z, one may ask questions about the topology of the resulting
m = 1 Grasstope. For instance, is it closed, connected, contractible? How many regions of
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the hyperplane arrangement does it contain? For them = 1 amplituhedron, the answer to the
first three questions is “yes” [72, Corollary 6.18]. As for the latter, the m = 1 amplituhedron
contains as few regions as possible, that is, all possible sign vectors with var < k appear as
labels of regions in the corresponding arrangement [72, Proposition 6.14]. In this section, we
investigate this last question for more general m = 1 Grasstopes.

Definition 5.6.1. A region of a hyperplane arrangement is a connected component of the
complement of the union of hyperplanes in the arrangement.

In [116], Zaslavsky gives the following formulae for the number of total regions t(A) and
bounded regions b(A) of an affine arrangement A of n generic hyperplanes in Ak:

t(A) = 1 + n + (n
2
) + ... + (n

k
),

b(A) = (n − 1
k
).

Note that since intersections of two hyperplanes in any projective arrangement P have
codimension two in Pk and there are a finite number of them, we can always find some
hyperplane avoiding them, and hence an an affine chart which contains all of them (see
Figure 5.4). A projective arrangement P naturally induces an affine arrangement A in this
affine chart. If a region of P intersects the chosen hyperplane at infinity, it induces two
unbounded regions of A. Otherwise it induces a single bounded region. Thus, the total
number of regions in P is

r(P) = b(A) + t(A) − b(A)
2

. (5.3)

Definition 5.6.2. Let P be an arrangement of n hyperplanes in Pk. Then P is called simple
if the intersection of any i hyperplanes in P has codimension i in Pk for all i ≤ k, and is
empty for i > k.

We write β(k,n) for the number of possible sign patterns of length n with sign variation
less than k and γ(k,n) for the number of sign patterns with variation greater or equal
than k (we identify sign patterns σ and −σ). Note that β(k,n) = 1 + (n−12 ) + ... + (

n−1
k
),

and γ(k,n) = 2n−1 −β(k,n). Theorem 5.3.1 and Proposition 5.3.4 then give the lower bound
r(P)−β(k,n) for the number of regions in Gn,k,1(Z), where P is the hyperplane arragnement
defined by Z. An upper bound is given by the minimum of γ(k,n) and r(P).

The database [48] contains a catalog of isomorphism classes of oriented matroids [47,
Section 6]. Each matroid is indexed by a vector of signs of its bases and each hyperplane
arrangement corresponds to a realizable matroid, as explained in the previous section. An
arrangement is simple if the vector of signs of bases of its matroid does not contain zeros,
that is, the matroid is uniform.
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Figure 5.4: An oriented hyperplane arrangement and its sign labels.

We iterate over all uniform oriented matroid isomorphism classes in this catalog for small
values of k and n. Note that, for all the values of k and n which we consider, all uniform
matroids are realizable [51], that is, arise from hyperplane arrangements. Within each iso-
morphism class, we iterate over all possible reorderings of the ground set and reorientations.
If the matroid is realizable, at the level of the matrix Z defining the arrangement as de-
scribed in Section 5.2, reorderings correspond to permuting the rows and reorientations to
negating certain rows. For each isomorphism class, ordering of the hyperplanes, and a choice
of orientation, we compute the number of regions in the corresponding Grasstope (that is,
the number of maximal covectors with sign variation greater or equal than k; see Remark
5.5.9). It turns out that for many values of k and n the minimal and maximal number of
regions in the Grasstope when iterating over reorderings and reorientations does not depend
on the oriented matroid isomorphism class. The minimal and maximal number of regions
in the Grasstope for these values of k and n are presented in Table 5.1. The Python code
used to extract this data is available at https://mathrepo.mis.mpg.de/Grasstopes. We
therefore have a computational proof of the following statement.

Proposition 5.6.3. For each pair of values of k and n in Table 5.1 the minimal and maximal
possible number of regions in a Grasstope arising from a simple arrangement of n hyperplanes
in Pk do not depend on the choice of arrangement.

Out of the entries in Table 5.1, note that for k = 2 and the pairs (3,5) and (4,6), there
is only one oriented matroid up to isomorphism [48]. For k = 2, this is because any matrix
may be turned into a totally positive matrix by permuting the rows. This can be done by
viewing rows as vectors in the plane and arranging them in counterclockwise position.

https://mathrepo.mis.mpg.de/Grasstopes
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k, n Minimal Maximal r(P) β(k,n) γ(k,n)
2, 6 10 16 16 6 26
2, 7 15 22 22 7 57
3, 5 4 5 15 11 5
3, 6 10 16 26 16 16
4, 6 5 6 31 26 6
4, 7 15 22 57 42 22

Table 5.1: Minimal and maximal possible number of regions in a Grasstope.

The pair (3,7) does not appear in Table 5.1. This is the first time we see variation
depending on which simple arrangement we choose, with the maximal number of regions
ranging from 38 to 42. The reorientations and reorderings of a totally positive matrix (i.e.
the amplituhedron case) give at most 42 regions, while all other oriented matroid classes
achieve fewer. We can see the maximal numbers of regions for other small k,n in Table 5.2.
It would be interesting to see whether the maximal number of regions attained by reorienting
and reordering a totally positive matrix attains the upper bound in general.

k, n Maximal r(P) γ(k,n)
3, 7 42 42 42
3, 8 64 64 99
4, 8 64 99 64
5, 8 29 120 29
2, 9 37 37 247
3, 9 93 93 219
4, 9 163 163 163

Table 5.2: Maximal number of regions from reorienting and reordering a positive matrix.

Example 5.6.4. Any totally positive 6× 3 matrix with the second and fourth rows negated
yields a Grasstope which includes all 16 regions counted by Equation (5.3). The resulting
hyperplane arrangement is cyclic, with just two orientations flipped. See Figure 5.5 to
see all of the regions labelled with sign patterns. The six lines are cyclically ordered with
orientations indicated by arrows. Every region has at least two sign changes, so the Grasstope
is all of P2.

Example 5.6.5. An example of a 6 × 3 matrix whose Grasstope has 16 regions is any
totally positive matrix with the 2nd and 4th rows swapped. For examples of totally positive
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Figure 5.5: The Grasstope of a totally positive matrix with two rows negated is all of P2.

matrices, one can take the Vandermonde matrix

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
d1 d2 d3 d4 d5 d6
d21 d22 d23 d24 d25 d26

⎤⎥⎥⎥⎥⎥⎦

T

.

with 0 < d1 < ... < d6.

Note that the lower bound r(P) − β(k,n) for the number of regions in a Grasstope
is actually attained for all k and n, by the m = 1 amplituhedron [72, Proposition 6.14,
Theorem 6.16]. The upper bound is also attained by starting from the m = 1 amplituhedron
and negating some rows of the defining totally positive matrix, for the values in Tables 5.1
and 5.2. One interesting question to study is to determine whether this holds in general,
and to describe all oriented matroids achieving this upper bound.

The dictionary between hyperplane arrangements and oriented matroids (Remark 5.5.9)
guides us to generalize our definition of a Grasstope to oriented matroids that are not nec-
essarily realizable, such that the definitions agree whenM=MZ .

Definition 5.6.6 (Grasstope of an oriented matroid). LetM be an oriented matroid of rank
r, and < be a total order on the ground set E ofM. Then we define the Grasstope G(M,<)
to be the subset of covectors {v ∶ var(v) ≥ r−1}, where r is the rank ofM and the variation
is with respect to <.

Note that by Topological Representation Theorem [49, Theorem 20], every rank 3 oriented
matroid arises from a pseudoline arrangement, with covectors labelling the cells of this
arrangement. In particular, the Grasstope G(M,<) can be identified with the union of cells
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of a pseudoline arrangement that satisfy the sign variation condition from Definition 5.6.6.
Therefore, Grasstopes of oriented matroids are meaningful geometric objects, and topological
concepts such as connectedness and contractibility generalize naturally to them. Studying
their topological properties is an interesting topic for future research.

Finally, we use our code to analyze a non-realizable example, which does not attain the
upper bound.

Example 5.6.7. Consider the non-realizable matroid FMR(8) of rank 4 on 8 elements,
whose signed cocircuits are given in [96, Table 1]. Reorientations and reorderings give at
least 34 and at most 63 regions. Thus, unlike the amplituhedron, FMR(8) does not achieve
the upper bound of 64.

In conclusion, there are many questions arising from our study of Grasstopes. These
are combinatorially and algebraically interesting objects with structure which becomes pro-
gressively more complicated as we increase the parameters k,n,m. In addition to the open
problems listed throughout this chapter, a natural next step would be to study Grasstopes
for m = 2 and in particular, see if results for the m = 2 amplituhedron such as in [92] can be
extended. Oriented matroid Grasstopes are also appealing objects to study and may yield
insights that end up having relevance to physics. In particular, we would like to know if
and how other topological concepts such as contractibility of Gn,k,m(Z) can be detected from
the oriented matroid. This would be an interesting problem for computational algebraic
topology.
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Part III

Classical problems revisited
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Chapter 6

Crossing the transcendental divide

This chapter is based on the publication “Crossing the transcendental divide: from transla-
tion surfaces to algebraic curves” [26], joint with Türkü Özlüm Çelik and Samantha Fairchild.

6.1 Introduction

We present an algorithm with numerical experiments as a step in bridging the transcendental
divide between Riemann surfaces and algebraic curves. The classical equivalence of Riemann
surfaces and algebraic curves leaves a divide in the sense that it is non-trivial to determine
the exact curve associated to a Riemann surface. This becomes transcendental as connecting
a Riemann surface to an algebraic curve utilizes Riemann theta functions. In our case we
use discrete harmonic functions to approximate the Jacobian variety of the algebraic curve
of a translation surface and the theta functions to understand these approximations.

A translation surface is obtained by identifying edges of finitely many polygons in the
plane with complex translations. This identification of polygons builds a Riemann surface
X, or equivalently a complex algebraic curve. The surface X naturally comes equipped
with a nonzero holomorphic 1-form ω, given locally by dz, with 2g − 2 zeroes located at the
vertices of the polygons, where g is the genus of X. One method to obtain an equation for
the underlying algebraic curve of a translation surface is to first find a basis of the space of
holomorphic one-forms on X. This space identifies a canonical model of the curve in some
projective space. For instance, if the translation surface has extra automorphisms the basis
of holomorphic one-forms can be determined exactly [39, 95, 101]. Instead of requiring extra
symmetries, we here aim to construct an algebraic curve explicitly from a translation surface
by approximating the Riemann matrix.

Recall that a Riemann matrix τ associated to an algebraic curve C is defined by integrating
a canonical basis of holomorphic differentials over the cycles forming a homology basis for
the curve. The matrix τ data defines the Jacobian variety of C, namely the quotient Cg/(Zg+
τZg). The Torelli theorem states that the curve C is determined by its Jacobian variety. In
practice, one can construct Riemann matrices given an algebraic curve [33], and, less trivially,
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given τ reconstruct the algebraic curve at least in low genus [2]. We will approximate the
Riemann matrix from a translation surface and then utilize tools from numerical algebraic
geometry to approximate the underlying curve.

The key instruments of our approach are discrete Riemann surfaces. They can be thought
as discrete counterparts of the Riemann surfaces in discrete complex analysis [102]. All
notions such as Riemann matrices and holomorphic differential forms have corresponding
discretizations. An important result in the literature of discrete Riemann surfaces, which is
fundamental for the present study, uses discrete energies to prove convergence of the discrete
Riemann surfaces to the underlying Riemann surface. In particular the discrete Riemann
matrices converge to a Riemann matrix [14, 15] of the Riemann surface. Our experiments
employ compact Riemann surfaces given by quadrangulations based on theory developed
in [17]. In the case of [17], convergence of the discrete Riemann matrices to a Riemann
surface is not known in full generality, but our results give evidence for a potential result on
convergence of the period matrices of [17].

A fairly technical algorithm to compute discrete Riemann matrices when the discrete
complex structure is given by triangulations was presented in [18]. In contrast to the previous
work, we present Algorithm 6.3 to be accessible to a large variety of mathematical audiences.
Algorithm 6.3 inputs a translation surface as a polygon, a level of approximation, and outputs
the associated discrete Riemann matrix. The given polygon must be able to be divided into
squares. Moreover one must place an initial bipartite graph on the square tiled polygons,
which means that the vertices are either black and white, and no two vertices of the same
color are connected by an edge. The bipartite graph must be chosen so that all identified
vertices of the translation surface are the same color. The rest is to find the correct basis of
homology which respects the pairings given in the translation surface.

We present two concrete implementations of Algorithm 6.3. In Algorithm 6.3 we consider
a family of symmetric L shaped polygons which are all genus 2 Riemann surfaces. The L
shapes are highly symmetric, so they serve as a good test case where the exact underlying
algebraic curve is known [101]. Another benefit of the L shapes is that they allow us to
experiment with convergence to polygons which cannot be square tiled e.g., shapes with an
irrational side length, by closer approximations of square tiled polygons.

We also present Algorithm 6.3, which gives a natural family of square tiled translation
surfaces, called Jenkins–Strebel differentials, for any genus g ≥ 2. When working with any
genus, the step of Algorithm 6.3 where we must choose a homology basis respecting the
identifications requires care. We explain our difficulties, and explain how we overcame these
difficulties. This algorithm leads to two interesting experiments. First we approximate the
Riemann matrix in a case where the underlying curve is not yet known. In genus 2, we can
numerically compute the hyperelliptic curve, leading to some conjectures on the structure
of the underlying curves. Further, we can do experiments in genus g = 3,4, and 5, to
understand how the discrete matrices approach along the Schottky locus of g × g matrices
which are associated to an algebraic curve.

In Section 6.2, we give history, definitions, and examples for algebraic curves, translation
surfaces, and discrete Riemann surfaces. In Section 6.3, we present the algorithms and
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numerical experiments introduced above. Namely in Algorithm 6.3 we give the algorithm for
any translation surface. Given a translation surface via its defining polygons, we approximate
its Riemann matrix through a family of discrete Riemann surfaces, which are expressed in
terms of subdivisions of the polygons. We then run experiments in two specific cases. In
Section 6.3 we describe the algorithm in details and discuss convergence to the underlying
Riemann surface for the case of the L. In Section 6.3 we again give specifics of the algorithm
for the family of Jenkins-Strebel differentials, and we use theta functions to approximate an
equation of the algebraic curve from the estimated matrix. Finally in Section 6.4 we give
tables of values for approximating discrete Riemann matrices. The code can be found at our
MathRepo page via the link

https://mathrepo.mis.mpg.de/Tsurfaces2Acurves. (6.1)

6.2 Background

We aim here to recall some background which we need to reconstruct algebraic curves from
their translation surfaces. This includes some preliminaries for Riemann surfaces and theta
functions, translation surfaces, and discrete Riemann surfaces. Each topic is a well studied
and interesting subject in its own right, so we provide references for their underlying theories.

Riemann Surfaces, analytic and algebraic

Riemann surfaces are one-dimensional complex manifolds, among which the compact ones
are complex smooth algebraic curves. As discussed in the introduction, among central objects
underlying the connection between the analytic side and the algebraic side are theta functions
(1.1). We refer the reader to Section 1.2 to recall the relevant definitions of Riemann matrix,
theta functions, theta constants, and the Schottky problem.

The theta functions play a central role in the literature of the Schottky problem and
the Torelli theorem [61]. When g = 4, the Schottky-Igusa modular form defines an analytic
hypersurface [68, Theorem 1] in terms of theta functions, which describes Riemann matrices
in the Siegel upper half space that are of algebraic curves, the Schottky locus. For higher
genus, there are analytical equations in terms of theta functions defining a locus containing
the Schottky locus. In the context of the Torelli theorem, we suggest the reader to see [62,
Theorem 8.1] for hyperelliptic curves and see [63, Theorem 1.1] for genus 3 non-hyperelliptic
curves. These rely on the classical formulae going back to Riemann, namely the Thomae for-
mula and the Weber formula [94, 109, 113] with their generalizations to any genus [25], which
relate the extrinsic and intrinsic sides of geometry of the underlying curve. For instance, the
vanishing theta constants i.e., the theta constants that are zero, are well-understood when
the curve is hyperelliptic [89]. Actually, the theta constants express certain divisors of the
curve C, e.g. theta characteristic divisors (semi-canonical divisors), which recover the curve
itself. More precisely, the choice of the basis ω1, . . . , ωg of the holomorphic differentials on C

https://mathrepo.mis.mpg.de/Tsurfaces2Acurves
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gives a map, namely the canonical map of C:

Φ ∶ C → Pg−1

P ↦ (ω1(P ), . . . , ωg(P )).

An important note is that the canonical image Φ(C) is defined over a field over which the
differential forms are defined. The following statement formulates the theta characteristic
divisors in terms of the canonical model:

Theorem 6.2.1 (Theorem 2.2, [62]). Let τ1 be the first g×g part of the period matrix (1.2).
Let D be an effective theta characteristic divisor of degree g − 1 with dimH0(C,D) = 1. The
corresponding equations of the hyperplanes spanned by Φ(D) are given by:

(θε,δ1 , . . . , θε,δg ) ⋅ τ−11 ⋅
⎛
⎜
⎝

x1
⋮
xg

⎞
⎟
⎠
= 0, (6.2)

where the characteristic [ε
δ
] ranges over the odd ones.

The values of the theta constants are nothing but the branch points for the case of
hyperelliptic curves, which directly deliver the image of the canonical map. In the case of
non-hyperelliptic curves, (6.2) gives the so-called multitangent hyperplanes of the canonical
model in Pg−1. For instance, the 28 bitangent lines of smooth plane quartics in genus 3, or
the 120 tritangent planes of smooth space sextics in genus 4. It has been proven that the
odd theta characteristics recover its algebraic curve [23]. For explicit reconstructions the
algebraic curve from their multitangent hyperplanes for small genera see [27, 82, 83].

Algebro-geometric solutions of integrable systems contribute solutions to the Torelli and
the Schottky problems in any genus [38, 78], where fundamental objects are again the theta
functions (1.3) (see Chapter 3 for more discussion). For our experiments, we use an imple-
mentation presented in [2] that follows these studies to recover curves from their Riemann
matrices. Mathematical software packages are available to compute with theta functions,
such as [6, 32, 50, 54], which enable us to carry out our experiments.

Translation surfaces

We will give two equivalent definitions of a translation surface, introduce the two families of
examples considered in this chapter, and conclude by discussing the connection to algebraic
curves.

Fix a Riemann surface X of genus g. Recall that ω is a holomorphic 1-form (also called
an abelian differential) if for every x ∈X there is a holomorphic function fx so that in local
coordinates ω = fx(z)dz with the condition that a transition map T between charts with
f(z) and g(z) as holomorphic function satisfies f(T (z))T ′(z) = g(z). In other words ω is a
global section of the cotangent bundle of X.
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Definition 6.2.2. A translation surface is:

1. a pairing (X,ω) where X is a Riemann surface and ω is a holomorphic 1-form. Two
translation surfaces (X,ω) and (Y, η) are equivalent if there exists a holomorphic dif-
feomorphism ϕ ∶X → Y so that ϕ∗η = ω.

2. collections of polygons up to an equivalence relation: P/ ∼. In particular P is a finite
collection of polygons P in the plane so that all sides come in pairs of equal length
with opposite orientations on the boundary of the polygons. Identifying these sides
gives a compact finite genus Riemann surface. Given such collections of polygons P
and Q, we say P ∼ Q if elements of P can be cut into pieces along straight lines (where
a cut produces two new boundary components that are paired) and these pieces can
be translated and re-glued (where gluing only occurs along paired edges) to Q.

For more background on translation surfaces see [86, 115].

Remark 6.2.3. If X has genus g then any holomophic 1-form ω has 2g − 2 zeros with
multiplicity. Away from the zeroes, ω = dz, and if z is a point where ω has a zero of order k,
then we can write ω = zk dz.

Example 6.2.4. The square torus P = [0,1]2 on the right and the torus Q on the left with
vertices given by (0,0), (1,0), (1,1), (2,1) are equivalent via the cut and paste operation
shown below.

1

1

2

2

1

1

2

2
3

1

1

2

2
3 3

1

1

23 3

The first definition of a translation surface is very concise, but the second definition is
useful for constructing examples, and we will use these as our source of examples for this
paper. As mentioned in Remark 6.2.3, there are 2g−2 zeroes with multiplicity [115, Theorem
1.2]. If we label the zeroes by a multi-index α = (α1, . . . , αk), then k is the number of distinct
zeroes, each with multiplicity αk, and ∑k αk = 2g − 2.

Definition 6.2.5. The set of translation surfaces with orders of zeroes given by a multi-
index α is the stratum H(α). When k = 2g − 2 and thus for each 1 ≤ i ≤ 2g − 2, αi = 1, then
the stratum is called the principal stratum.

Example 6.2.6. Consider the L shaped polygon of Figure 6.1, which lives in the stratum
H(2). For a general symmetric L shape fix λ > 1. Let 1 be the length of sides 4 and 1, and
let λ − 1 be the length of sides 2 and 3. Figure 6.1 shows λ = 2. The sides given by the
numbers 1,2,3,4 are identified by complex translations z ↦ z ± iλ, z ↦ z ± i, z ↦ z ± 1, and
z ↦ z ± λ, respectively. Under these edge identifications, the corners are all mapped to a
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Figure 6.1: The L shape: a symmetric genus two translation surface with opposite sides
identified by complex translation.

single point, which is a zero with angle 6π = (1 + 2)(2π). An angle of 6π is a zero of order
2 since it contains 2 full circles of excess angle. This can also be seen in the local charts
from C into the Riemann surface z ↦ z3, for which the differential is 3z2 dz, giving the zero
of order 2. Since there are 2g − 2 zeroes of ω with multiplicity, this implies that the genus
should be 2. We can also see this via the Euler characteristic 2 − 2g = V −E + F = 1 − 4 + 1,
since there is 1 vertex under identification, 4 edges, and a single facet.

Example 6.2.7. The other primary examples we will work with are a family of curves
in the principal stratum, so the 2g − 2 zeros are all distinct zeroes of order 1, namely the
Jenkins–Strebel differentials, which are formed by a single horizontal rectangle of length 4g−4
and height 1 [117]. In Section 6.3, we review these objects in more detail. By considering
horizontal lines connecting two zeros, there are at most 4g − 4 total parallel lines connecting
all of the zeroes as explained in Remark 6.3.5. In this example, the edge identifications are
given through a permutation identifying the edges on the top of the rectangle to the bottom
edges, as well as the horizontal translation identifying the vertical sides. For example in
Figure 6.2, the translation surface J2 is composed of a 1 × 4 rectangle where the numbers
indicate the sides identified by translation. There are 4 horizontal sides on the top and
bottom, and the sides are glued by taking a permutation of the top sides to glue to the

bottom sides. In this particular figure, the associated permutation is πJ2 = (
1 2 3 4
2 1 4 3

).
By an Euler characteristic argument, we can verify that there are 2 vertices, 5 edges, and
1 facet, resulting in a genus 2 surface. Thus J2 ∈ H(1,1). Higher genus examples will be
constructed in Section 6.3

By varying the edge lengths, we can move from J2 through a family of curves which are
all Jenkins–Strebel differentials of the same genus, similar to how λ formed a one-parameter
family of curves in H(2). In order to preserve some of the symmetries, we will only allow two
parameters to change. Given λ,µ ∈ (0,∞), let 0 have side length λ, side 1 has side length
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µ, and sides 2,3 and 4 each have length 1. This now gives a 2 dimensional family of curves
J2(λ,µ) ∈ H(1,1).

0 0

1 2 3 4

2 1 4 3

α1 α2β1 β2
λ

µ

µ

Figure 6.2: Above is J2(λ,µ) associated to the permutation πJ2 = (1,2)(3,4). The paths
αj, βj for j = 1,2 form a symplectic basis of homology.

For the Jenkins–Strebel differentials, we do not know the underlying Riemann surface.
However in the case of the L, we can use symmetries of the polygon to determine a second
linearly independent 1-form. This was done by [101, 95] in the case of the L using the order
4 symmetry to show that the underlying Riemann matrix is given by

τλ =
i

2λ − 1 (
2λ2 − 2λ + 1 −2λ(λ − 1)
−2λ(λ − 1) 2λ2 − 2λ + 1) . (6.3)

Moreover, since we are in genus 2 and thus hyperelliptic, the equation of the underlying
curve is given by

y2 = x(x2 − 1)(x − a)(x − 1/a) for a ≠ −1,0,1.
The values of a are computed in [101] for certain values of λ, in particular for the examples
computed in this paper that when λ = 2, then a = 7 + 4

√
3. Other families of surfaces where

the symmetries are used to compute the underlying curve can be found in [39].
We close our section with an example that illustrates reconstructing an algebraic curve

from its translation surface via numerical computations relying on methods in Section 6.2.

Example 6.2.8. We take the Riemann matrix τ as i(
5
3 −4

3

−4
3

5
3

) for certain λ in Equa-

tion (6.3). Section 6.2 contains more details about this example and its underlying translation
surface. We use SageMath [54], computing with 100 bits of precision, we approximate the
six branch points as follows via the six theta constants with odd characteristics:

−2.0000000000000000000000000000 + i6.4112869792140406597766726185 ⋅ 10−62,
−1.0242537764555949265655782388 + i4.6398778498086499909043081781 ⋅ 10−64,
−0.50000000000000000000000000001 − i3.0730068477907671248074738783 ⋅ 10−62,
−0.97632053987682181152178995357 − i3.8173070449992676299965669304 ⋅ 10−64,
1.2417360351295279957623671524 + i1.2694991939112402714970349296 ⋅ 10−61,
0.80532413629736369749980162893 + i1.1577740944972796938745848090 ⋅ 10−62.
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In fact, the branch points are nothing but the quotients of the six theta constants −θε,δ1 /θ
ε,δ
2

among all the even characteristics with the notation (1.4). To verify that this curve is
isomorphic to the curve exhibited in (6.3) one can compute their absolute Igusa invariants
in a SageMath class [98] and note that the absolute Igusa invariants of both curves coincide
up to a numerical round-off.

Discrete Riemann surfaces and discrete period matrices

The section aims to assist the reader in the literature on discrete Riemann surfaces. Our
references are [17, 87]. We here skip recalling the vast amount of technical background on
the topic and pinpoint the related results in the references instead.

Given a surface X, namely a two real-dimensional manifold, one discretizes the surface by
considering it via one of its cellular decompositions, say Λ together with a discrete complex
structure. Here, the discrete complex structure is introduced with the consideration of the
dual cell decomposition of Λ, denoted by Λ∗. Note that [17] encodes these objects, namely
Λ and Λ∗, by the colors black and white, respectively. Set Γ ∶= Λ ∪ Λ∗, which is called
the double of the cell decomposition Λ. This is to set a theoretical framework for discrete
complex analysis, that is to say the discrete theory of complex analytic functions.

First and foremost, the discretization of the Cauchy-Riemann equation is formulated in
terms of combinatorial elements of Λ and its dual Λ∗, namely the sub-cells. In particular,
for a complex valued function f defined on the 0-cells of Γ to satisfy the Cauchy-Riemann
equation means certain compatibility between the proportions of the 0-cells of Λ and Λ∗ and
their values under f , see [17, Section 3].

In the development of this theory, one fundamental concept is the discrete theory of
Riemann surfaces. In fact, many results in the classical theory have discrete counterparts,
which includes period matrices, Abelian integrals, and so forth. Bobenko and Günther use a
medial graph approach to the discrete theory of Riemann surfaces on quad-decompositions,
which was introduced as a perspective to discrete complex analysis in [16]. Mercat makes
use of the tool of deRham cohomology to introduce standard notions in discrete exterior
calculus [87]. A discrete one-form ω is defined as a complex function on the one-cells of Γ.
The evaluation of ω at an oriented edge is nothing but the discrete integral ∫e ω, via which
one defines the discrete integral over a directed path by means of the oriented edges forming
the path.

Suppose that X is a compact Riemann surface of genus g. Its discretization is given a
cell decomposition of X. We follow [17] for the notion of discrete Riemann matrix, where the
authors note that their object coincides with [87]. Fix a symplectic basis α1, . . . , αg, β1, . . . , βg
of H1(X,Z). One defines the A and B periods of a given discrete differential by taking the
integrals over the αj and βj, respectively. These cycles induce closed paths on Λ and Λ∗,
which are distinguished with the colors, white and black, labeling the cell decompositions.
This yields the notions of black or white A or B periods.

For a discrete differential, the 4g discrete black and white periods are defined as the
integrals that are over the induced black and white closed paths. For technical details



CHAPTER 6. CROSSING THE TRANSCENDENTAL DIVIDE 88

of the cycles and the periods, see [17, Section 5.1]. It turns out that there is a unique
holomorphic differential such that the black and white A and B periods match a given set
of 4g complex values [17, Theorem 6.3]. It follows that the canonical basis of holomorphic
one-forms ω1, . . . , ωg [17, §6.3 Definition] is well defined where the black and white A periods
are chosen to be equal with integration against the curves α1, . . . , αg is the identity matrix.
The g×g discrete period matrix entries are the B periods with respect to the canonical basis.
This is somewhat mimicking the normalization of the g × 2g period matrix in the classical
setting. Abusing the notation, we will call the discrete period matrix as discrete Riemann
matrix by referring its second g × g part.

There is another notion of a period matrix called the complete discrete period matrix,
which is a 2g × 2g block matrix made of four g × g matrices. These g × g matrices are formed
by not imposing that the white and black A periods are equal, and instead considering g × g
matrices formed according to the relationship of black and white periods. Note that the
discrete period matrix can be computed from the complete one [17, Remark at Page 917].

Computing the (complete) discrete period matrix amounts to computing the discrete
periods. The periods are the values of the discrete differentials at the edges of the closed
paths arising from the fixed symplectic basis. In order to compute these values, one may
use the condition of being holomorphic for the discrete differentials by the discrete Cauchy-
Riemann relations. This gives a linear system of equations, which we call holomorphicity
equations.

In our algorithm we also construct the so-called periodicity equations, which are given
by the presentation of our underlying surface as a translation surface. Translation surfaces
are an example of a polyhedral surface, which consists of planar polygons that are glued
together along edges. It turns out that this is yet another characterization of a compact
Riemann surface [20]. This perspective might be more convenient for explicit computations
involving discrete surfaces, in particular while considering the discrete complex structure on
the decomposition of the surface. For the case of computing the discrete period matrices,
the edges being glued adds linear equations to the holomoprhicity equations, namely the
periodicity equations.

As the decomposition into cells gets finer, one expects that the discrete period matrix
converges to a Riemann matrix of the underlying Riemann surface. At this point the conver-
gence of discrete Riemann surfaces to their continuous counterparts in full generality remains
open. When one decomposes the surface into a Delaunay triangulation, convergence of the
period matrices is proved.

Theorem 6.2.9 (Theorem 2.5, [15]). For a sequence of triangulations of a compact Riemann
surface X with the maximal edge length tending to zero and with face angles bounded from
zero, the discrete period matrices converge to a Riemann matrix of X.

The techniques of [15] led to the suggestion that one builds the discrete complex structure
via quad-decompositions with orthogonal diagonals. The study [17] put the suggestion in
place and examined related fundamental notions of such discrete Riemann surfaces. Another
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convergence result of [14, Theorem 3] considers compact Riemann surfaces in terms of their
branched covers of the Riemann spheres. Our experiments, which employ compact Riemann
surfaces given by quadrangulations, give evidence for a potential result on convergence of
the period matrices of [17].

The convergence rate is given by looking at particular triangulations as the longest edge
length l goes to zero. For translation surfaces, the convergence rate [15, Theorem 2.5], is
proportional to l when the genus g = 1. When g ≥ 2, the rate is l∣ log(l)∣ when the 2g − 2
zeroes are all distinct, and at worst l

2
2g−1 which corresponds to the case when there is a

single zero of order 2g − 2. In [14, Theorem 2.4], when working with ramified coverings of
the sphere and carefully choosing an optimal triangulation, the convergence rate is always
proportional to l. We consider square quadrangulations instead of triangulations for two
primary reasons. First, not every surface can be split into quadrilaterals, but when this is
possible, the computational ease of parameterizing the quadrangulation, subdivision of the
quadrilaterals, and elementary linear algebra needed to compute the matrices makes it more
effective. Moreover, after discussions with Felix Günther, we expect similar convergence
rates to [15]. The key idea is that by dividing the squares along the diagonal, the resulting
triangulation is sufficiently regular to fit into the framework of [15].

6.3 Algorithms

In the following section, we will present algorithms for constructing discrete Riemann ma-
trices associated to two families of translation surfaces: The L shape in Section 6.3 and the
Jenkins–Strebel representatives in Section 6.3. In the first case, we aim to construct the
associated discrete Riemann matrices when approximating the shape by squares and observe
the convergence to the known underlying algebraic curve. In the second case we observe
convergence and show experiments indicating what we expect from the underlying curve.

Definition 6.3.1. Given a translation surface P , the 0th level discrete approximation P0

is the discrete Riemann surface defined by the smallest bipartite square quadrangulation of
the surface which respects the identifications of the vertices in P . The nth level discrete
approximation Pn for n ∈ N≥1 is defined to be the discrete Riemann surface defined by the
bipartite square quadrangulation which subdivides each square of the n = 0 level into 32n

squares.

We give an algorithm for obtaining the discrete Riemann matrix associated to Pn.

General polygon algorithm

Input: A polygon P in R2 with fixed side lengths, and side identifications which gives a
translation surface, and a level n ∈ N≥0.
Output: The discrete Riemann matrix associated to Pn.
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1. Constructing an initial bipartite quadrangulation. We first divide the given
translation surface into a bipartite quadrangulation, note that the bipartite quadran-
gulation must also respect the identifications of the vertices under the identifications
in the given translation surface.

2. Quadrangulations for further levels of approximation. In order to preserve the
bi-coloring, we must divide each square into an odd number of squares, for which we
will choose 3. So each square of side length s will be divided into 32n squares, and so
the nth level approximation will consist of squares of size s/3n.

3. Labelling vertices. Placing the bottom left corner of the given polygon at the origin,
we label the the vertices by their location in the plane, where we will move freely
between complex notation and vector notation:

xi,j = (i
s

3n
, j
s

3n
) = i s

3n
+ j s

3n
i.

The vertex xi,j corresponds to the bottom left corner of the square which is (i+1) from
the left and (j + 1) from the bottom.

4. Holomorphicity equations. For each square with coordinate xi,j in the bottom left,
we have the holomorphicity relation

i(xi+1,j+1 − xi,j) = xi,j+1 − xi+1,j. (6.4)

See Figure 6.3 for a visual description of these relations.

xi,j xi+1,j

xi,j+1 xi+1,j+1

Figure 6.3: Representation of the holomorphicity equations at the ij square.

By [17, Proposition 2.1] and the discrete Cauchy Riemann equations, a discrete Rie-
mann surface tiled by squares with given orientation in Figure 6.3 should indeed satisfy
(6.4). When xi,j is instead a white vertex, [17] gives

i = xi+1,j+1 − xi,j
xi+1,j − xi,j+1

= xi+1,j+1 − xi,j
−(xi,j+1 − xi+1,j)

which is equivalent to (1.3).
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5. Periodicity. We choose a symplectic basis of homology α1, . . . , αg, β1, . . . , βg, and
the associated 4g discrete periods are given by Aw

k ,A
b
k,B

w
k ,B

b
k for k = 1, . . . , g, and the

superscripts w, b representing the white and black periods, respectively. The periodicity
relationships are constructed in order to make edge identifications for the given polygon
in the plane. So for each edge identification, the identified vertices have difference given
by the correct associated vector, and the coloring is found through checking the parity
of i and j.

6. Final Normalizations. To make a well-determined system, we make the following
normalizations:

• Fix the first values of the holomorphic function, one one black and one one white
vertex: x0,0 = x1,0 = 0. This comes from the fact that the associated holomorphic
function is only defined up to a constant, so we normalize the constant to be zero
at the origin.

• In order to construct the canonical basis of discrete holomorphic differentials, we
set the black and white values to be the same, and for each k = 1, . . . , g, the
differential ωk is determined by the following equations for j = 1, . . . , g:

Aw
j = Ab

j and Aw
j =
⎧⎪⎪⎨⎪⎪⎩

1 j = k
0 else.

7. Solving a system of equations for the discrete approximation. Now for each
k = 1, . . . , g, the kth row of the discrete period matrix is given by

1

2
(Bw

1 +Bb
1, . . . ,B

w
g +Bb

g).

Riemann matrix of the L

In this section we find numerical approximations to a family of translation surfaces for
which we already know the Riemann matrix. Namely, consider a symmetric L shape with
side length λ ∈ (1,∞) with opposite sides identified as in Figure 6.1. We aim to construct
the associated discrete Riemann matrices when approximating the shape by squares, and
observe the convergence towards τλ in Equation (6.3), which is guaranteed by [17].

As mentioned in Section 6.2, to construct the discrete Riemann matrix, we must solve
a system of linear equations given by holomorphicity relations between vertices of squares
in the polygonal subdivision, and by periodicity relations obtained from identifications of
points on the boundary of the shape. We now describe an algorithm which constructs for us
this system of equations. See [17] for more details on this construction. We used Matlab for
the implementation of the algorithm.
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Algorithm for symmetric L

Input: Let λ = p/q be rational and reduced so that gcd(p, q) = 1. Let n ∈ N ∪ {0} be the
level of approximation.
Output: Discrete Riemann matrix of the nth level approximation for symmetric L with
side length λ.

1. Constructing an initial bipartite quadrangulation. Refer to Figure 6.4 for an
example of the level 0 approximation. To divide the entire shape into squares, the sizes
of the squares must divide 1/q. In order to bi-color the square tiling and maintain the
vertex identifications, there must be an even number of squares on each side length.
Hence we define the step size to be sλ = lcm(q,2). The shape L can be bi-colored by
being divided into squares of size 1/sλ.

2. Quadrangulations for further levels of approximation. Each square of side
length 1/sλ will be divided into 32n squares, and so the nth level approximation will
consist of squares of size 1/(3nsλ).

3. Labelling vertices. We label the vertices with the following bounds to match the L
shape:

xi,j = (
i

3nsλ
,
j

3nsλ
) for

⎧⎪⎪⎨⎪⎪⎩

0 ≤ i ≤ 3nsλ 0 ≤ j ≤ λ3nsλ,
3nsλ + 1 ≤ i ≤ λ3nsλ 0 ≤ j ≤ 3nsλ.

4. Holomorphicity equations. For each bottom left of a square, we have a new holo-
morphicity equation. So in this case, we have a total of 32n(sλ)2(2λ−1) equations with
indices given by

⎧⎪⎪⎨⎪⎪⎩

0 ≤ i ≤ 3nsλ − 1 0 ≤ j ≤ λ3nsλ − 1,
3nsλ ≤ i ≤ λ3nsλ − 1 0 ≤ j ≤ 3nsλ − 1.

5. Periodicity equations. We first choose a symplectic basis of the underlying Riemann
surface, as shown in Figure 6.4. To justify our choice, under the edge identifications,
we select the closed loops α1 and β1 as the first two, and normalize the symplectic basis
so that we travel from α1 counterclockwise to β1 for a positive intersection number.
The choice of α2 comes naturally by trying to find another curve parallel to α1 which
does not intersect β1. The final step involves finding β2. To do this, recall α2 is also
identified by travelling from x2,0 to x8,0. Now going counterclockwise from α2, we travel
around the vertex x2,0, which is identified with x2,8, so β2 must travel from x2,8to x2,2
in order to have the correct intersection number with α2 and avoid intersecting β1 or
α1.
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x0,0 x1,0 x2,0 x3,0 x4,0 x5,0 x6,0 x7,0 x8,0

x0,1

x0,2

x0,3

x0,4

x0,5

x0,6

x0,7

x0,8 x1,8 x2,8

x8,1

x8,2
x2,2

β1

β2

α2

α1

δ1

δ2

γ2 γ1

Figure 6.4: Some of the labels in the level 0 approximation of a symmetric L with λ = 4.
On the right, we show a basis of homology (γ1, γ2, δ1, δ2), which gives a symplectic basis
of homology (γ1, γ2 − γ1, δ1, δ2). On the left is the basis of homology that we used in our
algorithm (see Remark 6.3.2).

We now need to construct the period equations, so for example to travel from x0,0 to
x8,0, we travel along the α1 curve on black periods

Ab
1 = ∫

α1

ωk = x8,0 − x0,0.

For all the A periods we have the following equations where the parity p is determined
by p = b if i + j ≡ 0 (mod 2) and p = w otherwise:

⎧⎪⎪⎨⎪⎪⎩

0 ≤ j ≤ 3nsλ xλ3nsλ,j − x0,j = A
p
1

3nsλ ≤ j ≤ λ3nsλ x3nsλ,j − x0,j = A
p
1 −A

p
2.

We compute similar equations for the B periods,

⎧⎪⎪⎨⎪⎪⎩

0 ≤ i ≤ 3nsλ xi,λ3nsλ − xi,0 = B
p
1

3nsλ ≤ i ≤ λ3nsλ xi,3nsλ − xi,0 = B
p
1 +B

p
2 .

In total we have 2(λ3nsλ + 1) equations.
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6. Final Normalizations. In the final two normalizations we have the following number
of equations:

• 2 equations for normalization of holomorphic function.

• For each k = 1,2, there are 4 equations normalizing to the canonical basis.

7. Solving a system of equations for the discrete approximation. For the kth
row of the period matrix with k = 1,2, we obtain the equations by solving the system
with:

• Total of 9+32n(sλ)2(2λ−1)+2λ3nsλ variables. With (3nsλ+1)(λ3nsλ+1)+(λ3nsλ−
3nsλ)(3nsλ + 1) variables xi,j, and 8 variables coming from Bp

j with j = 1,2 and
parity given by b and w.

• Total of 10+32n(sλ)2(2λ−1)+2λ3nsλ equations. With 32n(sλ)2(2λ−1) holomor-
phicity equations, 2(λ3nsλ+2) periodicity equations, and 6 normalizing equations.

Thus we have a system of linear equations overdetermined by 1 equation, and these
are not conflicting with a unique solution, as guaranteed by [17, Theorem 6.8] since
they are simply relations describing the unique holomorphic differential with the given
initial conditions.

Remark 6.3.2. In our implementation, we choose the homology basis that is exhibited in
Figure 6.4, namely α1, α2, β1, β2. This basis appears to be in relative homology, but this just
reflects the representation of the L as a translation surface which includes a holomorphic
one-form. Alternatively, in the same figure, we point out a different symplectic basis for
the object given by δ1, δ2, γ1, γ2 − γ1. The algorithm can be designed using the new basis by
replacing the cases of the periodicity conditions as follows:

x3nsλ,j − x0,j = A
p
2,

xi,λ3nsλ − xi,0 = B
p
2 +B

p
1 ,

xi,3nsλ − xi,0 = B
p
1 .

The matrix which results from δ1, δ2, γ1, γ2 − γ1 can be obtained from the matrix resulting
from α1, α2, β1, β2 by the transformation

[x y
y z
] ↦ [x + 2y + z −y − z−y − z z

] .

For each of the two the symplectic bases, we approximated the corresponding Riemann
matrices and their curves for several examples. We compared the results via their invariants,
which coincide up to 15 digits. Though the same curve is represented under this change
of basis, we note that the experiments arising from α1, α2, β1, β2 coincide with the results
following the algebraic computations of [101], whereas the computations from δ1, δ2, γ1, γ2−γ1
gives a matrix which is different from the one given by [101].
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Example for λ = 2

Fix λ = 2, in Table 6.1 we demonstrate the convergence to the Riemann matrix for levels 0
through 7 as defined in Definition 6.3.1. Indeed, note that the accuracy of the matrix entries
increases by about 1 digit with each additional level, resulting in accuracy up to 10−5 in level
7. The computation was unable to finish on the 8th level. Though the linear equations are
very sparse (on the order of 4-5 nonzero coefficients each), due to the size of the system we
were not able to push beyond level 8 for the computation. However, we believe there are
ways to increase the efficiency of the computation, which may be worth attempting in future
work.

An irrational λ

In this case, we first approximate the L surface up to a fixed tolerance via continued fractions.
As we decrease the tolerance, the denominator of the continued fraction approximation
grows, creating finer and finer quadrangulations as the size of the squares is dependent

on the size of the denominator (See Table 6.2). We selected the value λ = 1+
√
3

2 since the
underlying algebraic curve is defined over the field of rational numbers, given in [101], by
y2 = x(x2 − 1)(x − 2)(x − 1

2).
Finally to demonstrate the further convergence, we fix a continued fraction approximation

of 10864
7953 (See Table 6.3). Since the 0th level already includes squares of size 1

2(7953) , we were
only able to run subdivisions of level 1 and level 2. For comparison we then include the
numerical approximations of the Riemann matrices for the continued fraction as well as the
original value of λ. In this case, similarly to the λ = 2 case, we find that the entries of
the matrix are accurate to 10−6, both for the matrix for the continued fraction and for the
original irrational λ. The entries of the matrices for the continued fraction and for λ coincide
up to 8 digits.

The Jenkins–Strebel representatives

Given an integer g ≥ 2, the goal of this subsection is to use discrete approximations to
estimate the curve underlying a Riemann surface of genus g for which we do not a priori
know the underlying algebraic curve. Namely we will define Jg to be a square tiled Jenkins–
Strebel (JS) representative of the principal stratum. We construct discrete approximations
in low genera. Our construction of JS representatives for a holomorphic one-form with one
cylinder follows the work of [117].

Constructing a Jenkins–Strebel representative

In this section we define the surface Jg for g ≥ 2, with some background on how to obtain
a Jenkins–Strebel representative of the principal stratum for each genus g and select basis
curves for homology. Example 6.2.7 illustrates the surface when g = 2. In general we will
construct a Jenkens–Strebel representative by taking a 1×(4g−4) rectangle, identifying sides
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by translation, where the top and bottom are identified via a permutation πJg of the 4g − 4
horizontal edges and the single vertical side is identified. By varying the side lengths, we
can move from Jg through a family of curves which are all Jenkins–Strebel differentials of
the same genus. For the sake of tractable computations, we allow ourselves to vary only two
parameters that label the vertical edge and the far left horizontal edge in our experiments.
We insert the parameters in the parenthesis as Jg(λ,µ) if needed.

We say that πJg is the permutation associated to Jg.

Theorem 6.3.3 ([117] Proposition 2). Given a genus g ≥ 2, the Jenkins–Strebel representa-
tive associated to the principal stratum composed of unit squares is given by the permutation
on 4g − 4 elements where for k = 1, . . . ,4g − 4,

πJg(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k + 1, k is odd,

k − 1, k ≡ 2 (mod 4),
k + 3 (mod 4g − 4), k ≡ 0 (mod 4).

Remark 6.3.4. We apply a shear by [1 −1/2
0 1

], and then perform a cut and paste operation

moving the left square over to the right, and then relabel to obtain Theorem 6.3.3 from
Proposition 2 of [117]

Remark 6.3.5. Notice that there are always 4g − 4 elements in the permutation, which
comes from the fact that at each singularity, there is an angle of 4π, so there are at most
4 parallel saddle connections. This gives a total of 4(2g − 2) possible saddle connections,
but since each saddle connection has an incoming and outgoing direction, we have double
counted. Thus there are 2(2g − 2) = 4g − 4 possible parallel saddle connections.

Each JS differential is associated to a ribbon graph. Indeed we take the graph with vertices
given by the 2g−2 singularities, and edges labelled by the 4g−4 parallel saddle connections.
We then preserve the topological information by contracting the surface with boundary that
follows the graph (c.f. Figure 6.5). The fact that we can do this on Jg comes from the fact
that JS surfaces have closed horizontal leaves.

For any g, we obtain the ribbon graph by gluing g − 1 pretzels together. We define a
pretzel to be a ribbon graph on two vertices, with 3 edges connecting the two vertices, and
an open edge on each vertex. These pretzels are formed by the fact that 4π angle allows for
a graph of degree 4 at each vertex. Then there are 3 parallel saddle connections between
any two vertices, and the 4th at each pair of saddle connections is used to connect to other
pretzels.

The ribbon graph has a top and bottom surrounding each edge. Following around the
top edge starting at the top left in Figure 6.5, we start at 4g−4, then 1, then travel to 2,3,4,
and continue in order. Now start at the bottom edge of 4g − 4 on the left. The permutation
is now 3,2,1,4,7,6,5, and so on. For a concrete example, one can perform this exercise with
g = 3 and edge numbers 1 through 8 to obtain the permutation as given in Figure 6.6a.
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Figure 6.5: The ribbon graph associated to Jg. The first pretzel is given by the 1,2, and 3
edges, and then the two half edges 4g − 4 and 4. There are a total of g − 1 pretzels.

The next step we must take is to fix a basis of homology to help in determining the
periodicity equations. We first consider the topological picture, as in Figure 6.6b. We fix
standard symplectic homology basis curves αj, βj for j = 1, . . . , g where the pairs αi, βi are
oriented to have intersection number 1, and all other pairs have intersection zero. For higher
genus, the picture is best seen when αg, βg are in the center, and all other attached tori are
equally spread out and only attached to the αg, βg torus. The idea is each pretzel in the
ribbon graph adds one torus and two zeros. Notice that the symplectic basis is less obvious
in the polygonal picture. In Figure 6.6a, by removing the second reference to α3 used for
periodicity identifications, the set of curves are consistent in the intersection numbers to be
a symplectic basis, and one can see the curves are not homologous by cutting the surface
into g tori with boundary components formed by cutting vertically along the zeroes. The
curves αj, βj then form the standard two symplectic basis vectors of homology of the torus
excluding the basis curves relative to the boundary.

Next mark the 2g−2 zeroes of the one-form, between the αg, βg torus and the correspond-
ing numbers of that pretzel. For example in Figure 6.6b, the filled and unfilled circles belong
to the first pretzel, and the filled and unfilled squares belong to the second pretzel. Next
label each edge coming out of a vertex in the correct order. To determine the correct order,
for example in Figure 6.6a, consider the unfilled circle. Starting at the 0 side, we travel in a
circle with the unfilled circle vertex to our left. From side 0, we go to side 1, keep traveling
with the circle on our left, cross side 2, then 3, and 8 before returning to side zero. This
order matches the order seen in Figure 6.6b.

Now to connect edges, we have 3 cases. First we select the 1,2 (mod 4) edges in the jth
pretzel to be the edges crossing βj, αj, respectively. Next the 3 (mod 4) edges cross the βg.
Third, the 0 (mod 4) sides are either 0 and cross no homology curves, or cross αg. In this
manner, every homology curve is crossed by at least 1 edge. We then mark the respective
homology curves and their directions in the polygonal picture by keeping track of directions.
For example in 6.6b, as we travel along side 2 from open circle to filled circle α1 crosses from
left to right. Similarly α3 crosses from left to right as we travel along side 8 from filled square
to open circle, but this is exactly the opposite direction as side 2 in the polygonal picture
Figure 6.6a, giving the marked directions of α1 and α3.

Remark 6.3.6. Notice that the choice of the principal stratum is for simplicity. To construct
other orders of zeroes, [117] combines zeroes in the principal stratum. When the zeroes are
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0 0

1 2 3 4 5 6 7 8

2 1 4 7 6 5 8 3

α1 α2 α3α3β1 β2 β3β3

(a) Here is the polygonal representation of the JS surface for g = 3. The associated permutation is

πJ3 = (
1 2 3 4 5 6 7 8
2 1 4 7 6 5 8 3

). The sides which are not 3 (mod 4) are labelled by the homology

basis curve that is used for the periodicity equations in Algorithm 6.3. The curve β3 is represented
by a dashed line since more care must be taken to construct the periodicity equations. (See
Algorithm 6.3.)

α3α1 α2

β1 β3 β2

8

4

2 6

1

1

3

3

7

7

5

5

0

0

(b) Here is the topological representation of the polygonal surface for g = 3 keeping track of
edge identifications and zeroes of the 1-form, and the intersections of the edges with the standard
homology basis.

Figure 6.6: The polygonal representation and topological representation giving information
of how homology vectors behave under identified sides of the JS surface for genus 3.

combined, the same method of carefully following edge identifications in the polygon and
how they connect to the homology basis works as well.

In addition to computations for the two examples given in Figure 6.2 and Figure 6.6, we
will also give examples in genus 4 and 5 (Figure 6.7), where the choice of homology basis
follows the same strategy outlined above.
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0 0

0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1 4 7 6 5 8 11 10 9 12 15 14 13 16 3

α1 α2 α3 α4 α5α5α5α5β1 β2 β3 β4

1 2 3 4 5 6 7 8 9 10 11 12

2 1 4 7 6 5 8 11 10 9 12 3

α1 α2 α3 α4α4α4β1 β2 β3

Figure 6.7: Surface representations of J4 (above) and J5 (below) with marked homology
basis curves, the basis curve βg is represented by the dashed line.

Algorithm for discrete approximation of JS surfaces

Let g be the genus of the JS representative. Let n ∈ N ∪ {0} be the level of approximation.
For simplicity of the description we here fix all side lengths to be 1, but implementation with
varying side lengths can be found on our MathRepo page (6.1). We will note here, however,
that the algorithm requires side lengths to be rational numbers, with odd numerator and
denominator, due to the bicolored structure.

1. Constructing an initial bipartite quadrangulation. Since all the side lengths are
1, the shape is already divided into squares. In order to bi-color the square tiling and
maintain the vertex identifications, there must be an even number of squares on each
side length, which is always true since 4g − 4 is always even. Hence we define the step
size to be 1.

2. Quadrangulations for further levels of approximation. Each square of side
length 1 will be divided into 32n squares, and so the nth level approximation will
consist of squares of size 1/3n.

3. Labelling vertices. We label the vertices with the following bounds:

xi,j = (
i

3n
,
j

3n
) for 0 ≤ i ≤ 3n(4g − 4) and 0 ≤ j ≤ 3n.

4. Holomorphicity equations. For each bottom left of a square, we have a new holo-
morphicity equation. So in this case, we have a total of 32n(4g − 4) equations with
indices given by 0 ≤ i ≤ 3n(4g − 4) − 1 and 0 ≤ j ≤ 3n − 1.

5. Periodicity equations. The basis of homology was chosen so that each edge aside
from the 0 edge and the edges which are congruent to 3 (mod 4) is identifed via a single
basis of homology vector. For all of the following periods, the parity p is determined
by p = b if i + j ≡ 0 (mod 2) and p = w otherwise, so we only need to determine the
periodicity relationships.
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• Ak+1 periods for k = 0, . . . ,g − 2. We have (g − 1)(3n + 1) equations where for
each k there are 3n+1 equations, and the basis vectors occur at 2 (mod 4) to give

Ap
k+1 = xi+3n,3n − xi,0 for 4k3n ≤ i ≤ 3n(4k + 1).

• Ag periods. We have (g − 1)(3n + 1) equations where there are 3n + 1 equations
occuring at each of the 0 (mod 4) sides given by

Ap
g = xi,0 − xi+3n,3n for 3n(4k + 2) ≤ i ≤ 3n(4k + 3).

• Bk periods for k = 1, . . . ,g − 1. We use the same indexing as the Ak+1 periods
to have (g − 1)(3n + 1) equations given by

Bp
k+1 = xi,3n − xi+3n,0 for 4k3n ≤ i ≤ 3n(4k + 1).

• Bg periods and 0 (mod 4) side identifications. The homology curve is
crossed by all of the sides 3 (mod 4) , and the side 0 crosses no homology curve.
To find the correct identifications, we construct relations from highest numbers
to lowest numbers. The idea is for each unidentified edge, we follow all paths
around vertices which identify the two possible sides, except for the side 3 which
we choose to be the curve we follow around β3. We go through this carefully
following the identification in the example of g = 3 following the image in Fig-
ure 6.6b. We refer to the top and bottom of every edge by looking at the top and
bottom in the polygonal representation of Figure 6.6a.

– Sides 3 (mod 4) bigger than 3. On side 7, we describe the path travelling
from 7bottom to 7top, by travelling around the filled square to the right. To do
this we cross side 6 from bottom to top, which is identified via α2. Next we
cross side 5 top to bottom giving −β2, and finally side 8 bottom to top giving
a −α3. So all together,

7top − 7bottom = α2 − β2 − α3.

Following along a circle with the unfilled square to the left verifies the choice
that side 4 is identified by α3. In general working with 3 (mod 4) sides not
equal to 3 we have (g − 2)(3n + 1) equations of the form

x(i+3⋅3n),3n − xi,0 = Ak+2 −Bk+2 −Ag for

⎧⎪⎪⎨⎪⎪⎩

0 ≤ k ≤ g − 3,
(4k + 3)3n ≤ i ≤ 3n(4k + 4).

– Side 3. On the 3 side, travelling around the zeroes as in the 7 sides will be
used to determine the identifications of the 0 sides. We choose the 3 side to
encode the crossing information of βg since it is included in all genus g ≥ 2.
When g = 2, the curve β2 only is crossed by side 3. However for g = 3, we may
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follow the image in Figure 6.6b. Starting at the bottom of 3, we travel in the
direction of −β3, crossing side 7 from top to bottom before we complete β3 to
return to the bottom of 3. Thus

3top − 3bottom = −β3 + 7bottom − 7top = −β3 + α3 − α2 + β2.

For higher genus, there are g − 2 total 3 (mod 4) sides each contributing α3

and some βk − αk.
Setting

ι = i + 3 ⋅ 3n (mod 3n(4g − 4))
we have 3n + 1 equations for identifying the top and bottom of side 3 given
by

xι,3n − xi,0 = −Bg + (g − 2)Ag +
g−1

∑
j=2

(Bj −Aj) for (4g − 5)3n ≤ i ≤ 3n(4g − 4).

– Side 0. We conclude by identifying the zero sides. We will travel around
with the open circle on the left, and leave it to the reader to verify the same
result holds for travelling around the closed circle to the right. We start at
the left side of zero, crossing sides 1, 2, 3, 8. This gives

0right − 0left = −β1 + α1 + 3bottom − 3top − α3 = β3 − 2α3 + α2 − β2 + α1 − β1.

In general, we always follow the same crossing pattern, of −β1 + α1 − α3, and
then this must be combined with the information about the 3 side. This gives
3n + 1 equations of the form

x3n(4g−4),j − x0,j = Bg − (g − 1)Ag +
g−1

∑
j=1

(Bj −Aj) for 0 ≤ j ≤ 3n.

6. Final normalizations. In the final two normalizations we have the following number
of equations:

• 2 equations for normalization of holomorphic function.

• For each k = 1, . . . , g, there are 2g equations normalizing to the canonical basis.

7. Solving a system of equations for the discrete approximation. For the kth row
of the period matrix with k = 1, . . . , g, we obtain the equations by solving the system
with:

• Total of 32n(4g−4)+3n(4g−3)+4g+1 variables. With (3n(4g−4)(3n+1)+(3n+1)
variables xi,j, and 4g variables coming from Ap

k,B
p
k with k = 1, . . . , g and parity

given by b and w.
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• Total of 32n(4g−4)+3n(4g−3)+6g−1 equations. With 32n(4g−4) holomorphicity
equations, (2g−2)(3n+1) periodicity equations for the A periods, (2g−2)(3n+1)
equations for the B periods and 3 (mod 4) sides, 3n + 1 equations for the 0 sides,
and 2g + 2 normalizing equations.

Since g ≥ 2, we have a system of linear equations overdetermined by 2g − 2 equations,
and these are not conflicting with a unique solution, since they all describe the unique
discrete holomorphic differential guaranteed to exist by [17, Theorem 6.8].

Experiments in low genus

We consider the JS respresentative for g = 2,3,4,5 in the principal stratum. We only consider
2-parameter family Jg(λ,µ) as noted in the beginning of Section 6.3. When g = 2, such
a surface has been exhibited in Example 6.2.7. Setting the side lengths to be λ = µ =
1, we present our experiments of the discrete period matrix approximations up to level 7
in Table 6.4–6.8, which use our algorithm that has been described in Section 6.3. Our
computations with the approximations in theta functions encourage us to make the following
conclusions for low genus.
Genus 2. We now take the discrete Riemann matrix of level 7 from Table 6.4. As in
Example 6.2.8, we compute the odd theta constants and then approximate the six branch
points of the hyperelliptic curve corresponding the J2 surface via the SageMath package [54]:

α1 ∶= −3.55001177927944 + i ⋅ 9.27369555271397,
α2 ∶= −0.0360027110167584 − i ⋅ 0.0940498797751955,
α3 ∶= 0.603906137193071 + i ⋅ 3.24517640725254,
α4 ∶= 0.0554252204362169 − i ⋅ 0.297835386410189,
α5 ∶= 3.90800485599692 − i ⋅ 7.79154768793860,
α6 ∶= 0.0514341663705383 + i ⋅ 0.102546382318450.

We observe that these values are pairwise reciprocal, more precisely α1 ⋅α2 = α3 ⋅α4 = α5 ⋅α6 = 1
up to a numerical round off, which can be sharpened by working with a higher precision
complex field. Computing also the 10 even theta constants, we see that some of these values
coincide up pairwise to numerical error. These pairs of the constants are in the following
pairs of characteristics:

{[1 0
0 0
] , [0 1

0 0
]} , {[0 0

1 0
] , [0 0

0 1
]} , {[1 0

0 1
] , [0 1

1 0
]} .

Concluding from similar computations as above, we observe that the reciprocity is respected
for some other rational λ parameters and µ = 1. On the other hand, this phenomenon does
not occur if we change µ.
Therefore, our experiments suggest making the following conjecture:
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Conjecture 6.3.7. The family of hyperelliptic curves corresponding to the family of the
translation surfaces, J2(λ,1) of genus 2, in the stratum H(1,1), is given by the equation:

y2 = (x − a)(x − 1/a)(x − b)(x − 1/b)(x − c)(x − 1/c) (6.5)

for some complex parameters a, b, c.

A first remark about the conjecture is that the curve (6.5) can be transformed to the
curve by a projective transformation of P1:

y2 = x(x − 1)(x −A)(x −B)(x −B/(1 −A −B))

for some complex parameters A,B. The model (6.5) also manifests that this hyperelliptic
curve has an extra involution, namely (x, y) ↦ (1/x, y). This suggests studying of the
translation surface J2(λ,1), in particular to reconstruct the underlying algebraic curve via
exact computations, akin to the work of [101, 95] for the L-shape. We also remark that
there are a total of 5 possible choices of side lengths when constructing J2, and we do not
expect the symmetry of Weierstrass points to hold for every choice. Indeed by restricting to
only allowing λ to change, we observe Conjecture 6.5 still holds in the cases tested, whereas
allowing µ to change no longer preserved the symmetries of the fixed points. Indeed the
change in symmetry can already be seen on the diagonal entries as shown in Table 6.5,
which by continuity, we expect similar results for irrational λ.

In [97], the author is able to construct algebraic equations for genus two curves by ap-
proximating the coefficients numerically to high precision with transcendental methods, and
then deducing the algebraic numbers using their continued fraction expansions. Once one
has the algebraic numbers, it is significantly easier to prove that the equations are correct.
In our case, it appears that we need more digits to be able to draw conclusions from the
continued fraction expansions. In particular, the methods in section 5 of [97] do not lead
to any clear guesses as to what the algebraic numbers may be. An improvement to our
algorithm’s implementation, allowing one to compute further levels of subdivision, may lead
to these methods becoming applicable.
Genus 3. We take the level 7 approximation in Table 6.6. Among the 36 even theta
constants that we compute in SageMath, one of them gets closer to zero as the precision is
increased. As the hyperelliptic curves of genus 3 are characterized with the condition of at
least one vanishing even theta constant, we state Conjecture 6.3.8 for g = 3.
Genus 4. We first look for evidence that the discrete Riemann matrix estimates a Riemann
matrix of an algebraic curve. So we evaluate the discrete Riemann matrix of level 7 from
Table 6.7 in the Schottky-Igusa modular form [68] as the underlying precision increases.
We observe the values approximate to zero. For references see Section 6.2. Similar to the
case above, our computations in SageMath support that there are 10 vanishing even theta
constants, which inspires us to state Conjecture 6.3.8 for g = 4.
Genus 5. Plugging the discrete period matrix of level 7 from Table 6.7 into the three
equations [43, Proposition 1.2], we estimate each of the three values at zero. In addition,
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we observe that the number of even theta constants that converge the zero is more than 10,
which concludes Conjecture 6.3.8 for g = 5.

Conjecture 6.3.8. The surface Jg(λ,1) is hyperelliptic for g = 3,4,5.

One of the primary results of [117] was to give JS representatives in every connected
component of every stratum, of which some of these connected components are called hy-
perelliptic. As stated in remark 3 of [77] we note that a hyperelliptic Riemann surface is not
always contained in a hyperelliptic connected component. Thus we can expect these specific
elements of the principal stratum to be hyperelliptic, but shouldn’t expect that we keep a
hyperelliptic involution once we allow less symmetries by allowing the 4g − 3 side lengths to
be changed.
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6.4 Tables of (discrete) Riemann matrices

In the following tables, n denotes the level of approximation as given in Definition 6.3.1.
The code is always run in Matlab with run time given in seconds.

L shape tables

n Time Approximation

0 0.02 i(1.75 −1.5−1.5 2.00
)

1 0.05 i( 1.682276986822770 −1.364553973645541
−1.364553973645541 1.729107947291081

)

2 0.37 i( 1.670169914926280 −1.340339829852565
−1.340339829852566 1.680679659705133

)

3 3.92 i( 1.667472042082942 −1.334944084165891
−1.334944084165893 1.669888168331791

)

4 28.23 i( 1.666852605322711 −1.333705210645449
−1.333705210645455 1.66741042129092

)

5 255.10 i( 1.666709630962870 −1.333419261925784
−1.333419261925776 1.666838523851582

)

6 2333.12 i(1.666676596082551 −1.333353192165260−1.33335319216523 1.666706384330567
)

7 22786.59 i( 1.666668961530435 −1.333337923061337
−1.333337923061278 1.666675846122862

)

∞ i(
5
3 −4

3

−4
3

5
3

) i( 1.66666666667 −1.33333333333
−1.33333333333 1.66666666667

)

Table 6.1: Given the L shape as in Figure 6.1 for λ = 2, the table gives the successive
approximations with the bottom row representing the Riemann matrix in the limit. Since
we expect the real part to be zero, we only write down the imaginary parts of the matrix
level. The real parts are on the order of at worst 10−14.
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Fraction Tolerance Time 0 level approximation

15
11 1e − 2 0.33 i( 1.155267361944555 −0.582252607292078

−0.582252607292077 1.183447277345288
)

56
41 1e − 3 4.04 i( 1.15495696004714 −0.578505984176023

−0.57850598417602 1.159755674257178
)

209
153 1e − 4 56.96 i( 1.154756293461396 −0.577572595239909

−0.577572595239901 1.155583435806089
)

780
571 1e − 5 758.43 i( 1.154710996247692 −0.577390320924590

−0.577390320924568 1.154853829287965
)

780
571 1e − 6 758.43 i( 1.154710996247692 −0.577390320924590

−0.577390320924568 1.154853829287965
)

2911
2131 1e − 7 744.47 i( 1.15471099624769 −0.577390320924590

−0.577390320924568 1.154853829287965
)

10864
7953 1e − 8 774.37 i( 1.154710996247692 −0.57739032092459

−0.577390320924568 1.154853829287965
)

40545
29681 1e − 9 871.63 i( 1.154710996247692 −0.577390320924590

−0.577390320924568 1.154853829287965
)

Exact: i√
3
( 2 −1
−1 2

) i( 1.15470053838 −0.57735026919
−0.57735026919 1.15470053838

)

Table 6.2: This table gives the successive approximations representing τλ for λ = 1+
√
3

2 . Since
we expect the real part to be zero, we only keep track of the exponential parts of the real
term which are on the order of 10−14. We run a 0 level approximation, with the finer square
tilings coming from increasing the tolerance according to the continued fraction expansion.

Level Time Approximation

0 774.37 i( 1.154710996247692 −0.57739032092459
−0.577390320924568 1.154853829287965

)

1 7290.33 i( 1.154702501426855 −0.577358617765855
−0.577358617765802 1.154735511279386

)

2 72388.83 i( 1.154700538230285 −0.577351291004541
−0.577351291004404 1.154708167385750

)

∞ 10864
7953 i(1.15470053534 −0.5773502631

−0.5773502631 1.15470053534
)

∞ 1+
√
3

2 i( 1.15470053838 −0.57735026919
−0.57735026919 1.15470053838

)

Table 6.3: This table gives an approximation of λ = 1+
√
3

2 by the continued fraction expansion
up to a tolerance of 10−8 which is 10864

7953 . Since we expect the real part to be zero, we only
keep track of the exponential parts of the real term, which are on the order of 10−14.
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Jenkins–Strebel tables

n Time Approximation

0 0.01 (i 0
0 i
)

1 0.01 ( −0.162162162162162 + 0.972972972972974i −0.162162162162161 − 0.0270270270270267i
−0.162162162162163 − 0.0270270270270272i −0.162162162162162 + 0.972972972972973i )

2 0.01 ( −0.181145110935354 + 0.966032669224184i −0.181145110935353 − 0.0339673307758142i
−0.181145110935355 − 0.0339673307758161i −0.181145110935356 + 0.966032669224183i )

3 0.88 ( −0.183154151609461 + 0.96524676973432i −0.183154151609459 − 0.0347532302656807i
−0.183154151609457 − 0.0347532302656803i −0.183154151609459 + 0.965246769734321i )

4 6.07 ( −0.18337643045845 + 0.965159203662908i −0.183376430458463 − 0.0348407963370877i
−0.183376430458457 − 0.0348407963370859i −0.183376430458452 + 0.965159203662913i )

5 61.02 ( −0.183401116934979 + 0.965149470930576i −0.183401116935002 − 0.0348505290694085i
−0.183401116934996 − 0.0348505290694234i −0.183401116934987 + 0.965149470930574i )

6 539.43 ( −0.183403859739504 + 0.965148389476543i −0.183403859739557 − 0.0348516105233965i
−0.183403859739527 − 0.0348516105234329i −0.183403859739509 + 0.96514838947655i )

7 3969.65 ( −0.183404164493817 + 0.965148269314438i −0.183404164494 − 0.0348517306853213i
−0.183404164493896 − 0.0348517306854744i −0.183404164493843 + 0.965148269314462i)

Table 6.4: The table gives the successive approximations of the Riemann matrix for J2(1,1),
from the family of the Jenkins–Strebel differential of genus 2.
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(λ,µ) n Approximation

(3,1) 6 (0.391790821341348 + 0.799932604843609i −0.408209178658656 + 0.199932604843692i
−0.40820917865866 + 0.199932604843639i 0.391790821341349 + 0.799932604843633i )

(3/5,1) 5 ( −0.552067431042614 + 0.828028726521117i −0.0814791957486144 − 0.0543242146552902i
−0.0814791957485449 − 0.0543242146553346i −0.552067431042622 + 0.828028726521113i )

(5/7,1) 4 ( −0.435881709806809 + 0.891395736738509i −0.111557385482526 − 0.0545502092073928i
−0.111557385482489 − 0.0545502092074161i −0.435881709806802 + 0.891395736738513i )

(1,3) 6 ( −0.219850572165274 + 0.369151081713766i −0.0705500626168651 − 0.0418472644071332i
−0.0705500626168283 − 0.0418472644071658i −0.182947389640796 + 0.986855533802479i )

(1,3/5) 5 ( 0.0140501297786541 + 1.24511271092546i −0.237782438362241 − 0.00109980530376883i
−0.237782438362194 − 0.00109980530385763i −0.190005989628958 + 0.951563668084441i )

(1,5/7) 4 ( −0.0638935382171857 + 1.16061629684551i −0.220568218021264 − 0.0143136795919605i
−0.220568218021245 − 0.0143136795919968i −0.187013661219342 + 0.956221386346668i )

(3/5,5/7) 3 ( −0.553835613968335 + 1.13666373978695i −0.110172300923 − 0.054295316550795i
−0.110172300922962 − 0.0542953165508437i −0.550771147382289 + 0.825576938910713i)

Table 6.5: The table gives some approximations in genus 2 for J2(λ,µ) where we chose the
level n so that the number of subdivided squares is approximately the same for each case.

n Time Approximation

0 0.01
⎛
⎜
⎝

i 0 0
0 i 0
0 0 2i

⎞
⎟
⎠

1 0.01
⎛
⎜
⎝

−0.163636364 + 0.972727273i 0.001474201 + 0.000245700i −0.162162162 − 0.027027027i
0.001474201 + 0.000245700i −0.163636364 + 0.972727273i −0.162162162 − 0.027027027i
−0.162162162 − 0.027027027i −0.162162162 − 0.027027027i −0.324324324 + 1.945945946i

⎞
⎟
⎠

2 0.01
⎛
⎜
⎝

−0.181890640 + 0.965429514i 0.000745530 + 0.000603155i −0.181145111 − 0.033967331i
0.000745530 + 0.000603155i −0.181890640 + 0.965429514i −0.181145111 − 0.033967331i
−0.181145111 − 0.033967331i −0.181145111 − 0.033967331i −0.362290222 + 1.932065338i

⎞
⎟
⎠

3 0.27
⎛
⎜
⎝

−0.183837862 + 0.964626792i 0.000683710 + 0.000619978i −0.183154152 − 0.034753230i
0.006837101 + 0.000619978i −0.183837862 + 0.964626792i −0.183154152 − 0.034753230i
−0.183154152 − 0.034753230i −0.183154152 − 0.034753230i −0.366308303 + 1.930493539i

⎞
⎟
⎠

4 2.65
⎛
⎜
⎝

−0.184053419 + 0.964537638i 0.000676988 + 0.000621565i −0.183376430 − 0.034840796i
0.000676988 + 0.000621565i −0.1840534189 + 0.964537638i −0.183376430 − 0.034840796i
−0.183376430 − 0.034840796i −0.183376430 − 0.034840796i −0.366752861 + 1.930318407i

⎞
⎟
⎠

5 38.37
⎛
⎜
⎝

−0.184077360 + 0.964527733i 0.000676243 + 0.000621738i −0.183401117 − 0.034850529i
0.000676243 + 0.000621738i −0.184077360 + 0.964527733i −0.183401117 − 0.034850529i
−0.183401117 − 0.034850529i −0.183401117 − 0.034850529i −0.366802234 + 1.930298942i]

⎞
⎟
⎠

6 398.04
⎛
⎜
⎝

−0.1840800120 + 0.964526632i 0.000676160 + 0.000621757i −0.183403860 − 0.034851611i
0.000676160 + 0.000621757i −0.1840800120 + 0.964526632i −0.183403860 − 0.034851611i
−0.183403860 − 0.034851611i −0.183403860 − 0.034851611i −0.366807719 + 1.930296779i

⎞
⎟
⎠

7 3429.78
⎛
⎜
⎝

−0.184080315 + 0.96452651i 0.000676151 + 0.000621759i −0.183404164 − 0.034851731i
0.000676151 + 0.000621759i −0.184080315 + 0.96452651i −0.183404164 − 0.034851731i
−0.183404164 − 0.034851731i −0.183404164 − 0.034851731i −0.366808329 + 1.930296539i

⎞
⎟
⎠

Table 6.6: The table gives the successive approximations of the Riemann matrix for J3(1,1),
a specific surface from the family of the Jenkins–Strebel differential of genus 3. Results are
rounded to 9 decimal places.
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n Time Approximation

0 0.01

⎛
⎜⎜⎜
⎝

i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 3i

⎞
⎟⎟⎟
⎠

1 0.01

⎛
⎜⎜⎜
⎝

−0.163639 + 0.972727i 0.000739 + 0.000123i 0.00073859 + 0.000123i −0.162162 − 0.027027i
0.000739 + 0.000123i −0.163639 + 0.972727i 0.000739 + 0.000123i −0.162162 − 0.027027i
0.000739 + 0.000123i 0.000739 + 0.000123i −0.163639 + 0.972727i −0.162162 − 0.027027i
−0.162162 − 0.027027i −0.162162 − 0.027027i −0.162162 − 0.027027i −0.486486 + 2.918919i

⎞
⎟⎟⎟
⎠

2 0.02

⎛
⎜⎜⎜
⎝

−0.181893 + 0.96543i 0.000374 + 0.000301i 0.000374 + 0.000301i −0.181145 − 0.033967i
0.000374 + 0.000301i −0.181893 + 0.965430i 0.000374 + 0.000301i −0.181145 − 0.033967i
0.000374 + 0.000301i 0.000374 + 0.000301i −0.181893 + 0.96543i −0.181145 − 0.033967i
−0.181145 − 0.033967i −0.181145 − 0.033967i −0.181145 − 0.033967i −0.543435 + 2.898098i

⎞
⎟⎟⎟
⎠

3 .48

⎛
⎜⎜⎜
⎝

−0.18384 + 0.964628i 0.000343 + 0.00031i 0.000343 + 0.00031i −0.183154 − 0.034753i
0.000343 + 0.00031i −0.18384 + 0.964628i 0.000343 + 0.00031i −0.183154 − 0.034753i
0.000343 + 0.00031i 0.000343 + 0.00031i −0.18384 + 0.964628i −0.183154 − 0.034753i
−0.183154 − 0.034753i −0.183154 − 0.034753i −0.183154 − 0.034753i −0.549462 + 2.89574i

⎞
⎟⎟⎟
⎠

4 5.70

⎛
⎜⎜⎜
⎝

−0.18384 + 0.964628i 0.000343 + 0.00031i 0.000343 + 0.00031i −0.183154 − 0.034753i
0.0003437 + 0.00031i −0.18384 + 0.964628i 0.000343 + 0.00031i −0.183154 − 0.034753i
0.000343 + 0.00031i 0.000343 + 0.00031i −0.18384 + 0.964628i −0.183154 − 0.034753i
−0.183154 − 0.034753i −0.183154 − 0.034753i −0.183154 − 0.034753i −0.549462 + 2.89574i

⎞
⎟⎟⎟
⎠

5 89.00

⎛
⎜⎜⎜
⎝

−0.184079 + 0.964529i 0.000339 + 0.000310i 0.000339 + 0.000310i −0.183401 − 0.034851i
0.000339 + 0.000310i −0.184079 + 0.964529i 0.000339 + 0.0003103i −0.183401 − 0.034851i
0.000339 + 0.000310i 0.000339 + 0.000310i −0.184079 + 0.964529i −0.183401 − 0.034851i
−0.183401 − 0.0348518i −0.183401 − 0.034851i −0.183401 − 0.0348512i −0.550203 + 2.895448i

⎞
⎟⎟⎟
⎠

6 846.84

⎛
⎜⎜⎜
⎝

−0.184082 + 0.9645278i 0.0003396 + 0.000310i 0.000339 + 0.000310i −0.183404 − 0.034852i
0.000339 + 0.000310i −0.184082 + 0.964527i 0.000339 + 0.000310i −0.183404 − 0.034852i
0.000339 + 0.000310i 0.000339 + 0.000310i −0.184082 + 0.964527i −0.183404 − 0.034852i
−0.183404 − 0.034852i −0.1834044 − 0.034852i −0.183404 − 0.0348512i −0.550212 + 2.895445i

⎞
⎟⎟⎟
⎠

7 7997.04

⎛
⎜⎜⎜
⎝

−0.184082 + 0.964527i 0.000339 + 0.000310i 0.000339 + 0.000310i −0.1834043 − 0.03485125i
0.000339 + 0.000310i −0.184082 + 0.964527i 0.000339 + 0.0003105i −0.1834041 − 0.0348512i
0.000339 + 0.000310i 0.000339 + 0.000310i −0.184082 + 0.964527i −0.183404 − 0.034852i
−0.183404 − 0.034852i −0.183404 − 0.034852i −0.183404 − 0.034852i −0.550212 + 2.895445i

⎞
⎟⎟⎟
⎠

Table 6.7: The table gives the successive approximations of the Riemann matrix for J4(1,1)
from the family of the Jenkins–Strebel differential of genus 4. Results rounded to 6 places.
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n Time Approximation

0 0.01

⎛
⎜⎜⎜⎜⎜
⎝

i 0 0 0 0
0 i 0 0 0
0 0 i 0 0
0 0 0 i 0
0 0 0 0 4i

⎞
⎟⎟⎟⎟⎟
⎠

1 0.01

⎛

⎜
⎜
⎜
⎜

⎝

−0.163639 + 0.972727i 0.000737 + 0.000123i 0.000003 0.000737 + 0.000123i −0.162162 − 0.027027i
0.000737 + 0.000123i −0.163639 + 0.972727i 0.000737 + 0.000123i 0.000003 −0.162162 − 0.027027i

0.000003 0.000737 + 0.000123i −0.163639 + 0.972727i 0.000737 + 0.000123i −0.162162 − 0.027027i
0.000737 + 0.000123i 0.000003 0.000737 + 0.000123i −0.163639 + 0.972727i −0.162162 − 0.027027i
−0.162162 − 0.027027i −0.162162 − 0.027027i −0.162162 − 0.027027i −0.162162 − 0.027027i −0.648649 + 3.891892i

⎞

⎟
⎟
⎟
⎟

⎠

2 0.03

⎛

⎜
⎜
⎜
⎜

⎝

−0.181893 + 0.96543i 0.000373 + 0.000302i 0.000002 − 0.000001i 0.0003731 + 0.000303i −0.181145 − 0.033967i
0.000373 + 0.000302i −0.181893 + 0.96543i 0.000373 + 0.000302i 0.000002 − 0.000001i −0.181145 − 0.033967i
0.000002 − 0.000001i 0.000373 + 0.000302i −0.181893 + 0.965430i 0.000373 + 0.000302i −0.181145 − 0.033967i
0.000373 + 0.000302i 0.000002 − 0.000001i 0.000373 + 0.000302i −0.1818938 + 0.96543i −0.181145 − 0.033967i
−0.181145 − 0.033967i −0.181145 − 0.033967i −0.181145 − 0.033967i −0.181145 − 0.033967i −0.72458 + 3.864131i

⎞

⎟
⎟
⎟
⎟

⎠

3 0.69

⎛

⎜
⎜
⎜
⎜

⎝

−0.18384 + 0.964628i 0.000342 + 0.00031i 0.000002 − 0.0000001i 0.000342 + 0.00031i −0.183154 − 0.034753i
0.000342 + 0.00031i −0.18384 + 0.964628i 0.000342 + 0.00031i 0.000002 − 0.000001i −0.183154 − 0.034753i
0.000002 − 0.000001i 0.000342 + 0.00031i −0.18384 + 0.964628i 0.000342 + 0.00031i −0.183154 − 0.034753i
0.000342 + 0.00031i 0.000002 − 0.000001i 0.000342 + 0.00031i −0.18384 + 0.964628i −0.183154 − 0.034753i
−0.183154 − 0.034753i −0.183154 − 0.034753i −0.183154 − 0.034753i −0.183154 − 0.034753i −0.732617 + 3.860987i

⎞

⎟
⎟
⎟
⎟

⎠

4 9.02

⎛

⎜
⎜
⎜
⎜

⎝

−0.184055 + 0.964538i 0.000338 + 0.000311i 0.000002 − 0.000001i 0.000338 + 0.000311i −0.183376 − 0.034841i
0.000338 + 0.000311i −0.184055 + 0.964538i 0.000338 + 0.000311i 0.000002 − 0.000001i −0.183376 − 0.034841i
0.000001 − 0.000001i 0.000338 + 0.000311i −0.184055 + 0.964538i 0.000338 + 0.000311i −0.183376 − 0.034841i
0.000338 + 0.000311i 0.000001 − 0.000001i 0.000338 + 0.000311i −0.184055 + 0.964538i −0.183376 − 0.034841i
−0.183376 − 0.034841i −0.183376 − 0.034841i −0.183376 − 0.034841i −0.183376 − 0.034841i −0.733506 + 3.860637i

⎞

⎟
⎟
⎟
⎟

⎠

5 94.25

⎛

⎜
⎜
⎜
⎜

⎝

−0.184079 + 0.964529i 0.000338 + 0.000311i 0.000001 − 0.000001i 0.000338 + 0.000311i −0.183401 − 0.034851i
0.000338 + 0.000311i −0.184079 + 0.964529i 0.000338 + 0.000311i 0.000002 − 0.000001i −0.183401 − 0.034851i
0.000002 − 0.000001i 0.000338 + 0.000311i −0.184079 + 0.964529i 0.000338 + 0.000311i −0.183401 − 0.034851i
0.000338 + 0.000311i 0.000002 − 0.000001i 0.000338 + 0.000311i −0.184079 + 0.964529i −0.183401 − 0.034851i
−0.183401 − 0.034851i −0.183401 − 0.034851i −0.183401 − 0.034851i −0.183401 − 0.034851i −0.733604 + 3.860598i

⎞

⎟
⎟
⎟
⎟

⎠

6 1051.54

⎛

⎜
⎜
⎜
⎜

⎝

−0.184082 + 0.964527i 0.000338 + 0.000311i 0.000002 − 0.000001i 0.000338 + 0.000311i −0.183404 − 0.034852i
0.000338 + 0.000311i −0.184082 + 0.964527i 0.000338 + 0.000311i 0.000002 − 0.000001i −0.183404 − 0.034852i
0.000002 − 0.000001i 0.000338 + 0.000311i −0.184082 + 0.964527i 0.000338 + 0.000311i −0.183404 − 0.034852i
0.000338 + 0.000311i 0.000002 − 0.000001i 0.000338 + 0.000311i −0.184082 + 0.964527i −0.183404 − 0.034852i
−0.183404 − 0.034852i −0.183404 − 0.034852i −0.183404 − 0.034852i −0.183404 − 0.034852i −0.733615 + 3.860594i

⎞

⎟
⎟
⎟
⎟

⎠

7 12739.99

⎛

⎜
⎜
⎜
⎜

⎝

−0.184082 + 0.964527i 0.000338 + 0.000311i 0.000002 − 0.000001i 0.000338 + 0.000311i −0.183404 − 0.034852i
0.000338 + 0.000312i −0.184082 + 0.964527i 0.000338 + 0.000311i 0.000002 − 0.000001i −0.183404 − 0.034852i
0.000002 − 0.000001i 0.000338 + 0.000311i −0.184082 + 0.964527i 0.000338 + 0.000311i −0.183404 − 0.034852i
0.000338 + 0.000311i 0.000002 − −0.000001i 0.000338 + 0.000311i −0.184082 + 0.964527i −0.183404 − 0.034852i
−0.183404 − 0.034852i −0.183404 − 0.034852i −0.183404 − 0.034852i −0.183404 − 0.034852i −0.733617 + 3.860593i

⎞

⎟
⎟
⎟
⎟

⎠

Table 6.8: The table gives the successive approximations of the Riemann matrix for J5(1,1)
from the family of the Jenkins–Strebel differential of genus 5. Results rounded to 6 places.

Concluding remarks

The algorithms presented in this chapter are a step towards bridging the transcendental
divide. They provide an explicit way to generate examples and conjectures, some of which
are posed in Section 6.3. In addition, our study leads to yet another variant of the Schottky
problem 1.2.1: the discrete Schottky problem. It asks to classify the discrete Schottky locus
in relation to the classical Schottky locus. Concretely, it asks whether the sequence of
discrete Riemann matrices lies entirely in the Schottky locus, or whether it is possible for it
to converge inside the Schottky locus while starting outside.
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Chapter 7

Pencils of quadrics

This chapter is based on the article “Pencils of quadrics: old and new” [46], which is joint
with Claudia Fevola and Bernd Sturmfels. In it we revisit the classical study of pencils of
quadrics dating back to Weierstrass and Segre. We use the classification by Segre symbols,
in addition to computational methods, to answer questions motivated by algebraic statistics
and optimization.

7.1 Introduction

A pencil of quadrics is a two-dimensional linear subspace L in the space Sn of (real or
complex) symmetric n × n matrices. It is a point in the Grassmannian Gr(2,Sn), and it

specifies a line PL in the projective space P(Sn) ≃ P(n+12 )−1. The group GLn acts on Sn by
congruence and this induces an action on Gr(2,Sn). We say that two pencils are isomorphic
if they lie in the same GLn-orbit.

Fix a pencil L with basis {A,B}. The determinant det(L) = det(λA + µB) is well-
defined up to the action of GL2 by changing basis in L. The zeros of this binary form are a
multiset of size n in the line P1, well-defined up to isomorphism of P1. We exclude pencils L
that are singular, meaning that det(L) = 0.

The singular pencils form a subvariety Gr(2,Sn)sing in the Grassmannian. We are inter-
ested in a natural stratification of the open set of all regular pencils:

Gr(2,Sn)reg = Gr(2,Sn) /Gr(2,Sn)sing.

Each stratum is indexed by a Segre symbol σ. This is a multiset of partitions whose parts
add up to n in total. One exception: the singleton [(1,1, . . . ,1)] is not a Segre symbol. The
number S(n) of Segre symbols was already of interest to Arthur Cayley in 1855. In [24,
p. 316], he derived the generating function

∞

∑
n=1

S(n)xn = ∏
k≥1

1

(1 − xk)P (k) −
1

1−x = 2x2 + 5x3 + 13x4 + 26x5 + 57x6 + 110x7 + ⋯,
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where P (k) is the number of partitions of the integer k. The two Segre symbols for n = 2
are [1,1] and [2]. For n = 3 and n = 4 they are shown in Figure 7.1.

The Segre symbol σ = σ(L) of a given pencil L can be computed as follows. Pick a
basis {A,B} of L, where B is invertible, and find the Jordan canonical form of AB−1. Each
eigenvalue of AB−1 determines a partition, according to the sizes of its Jordan blocks. Then
σ is the associated multiset of partitions. It turns out that σ does not depend on the choice of
basis {A,B}. For the relevant background in linear algebra see [37, 110, 111] and Section 7.2
below.

The role of Segre symbols in projective geometry can be stated as follows.

Theorem 7.1.1 (Weierstrass-Segre). Two pencils of quadrics in Sn are isomorphic if and
only if their Segre symbols agree and their determinants define the same multiset of n points
on the projective line P1, up to isomorphism of P1.

Example 7.1.2 (n = 2). All pencils L are regular. There are two GL2-orbits, given by the
rank of a matrix X that spans L⊥ = {X ∈ S2 ∶ trace(AX) = trace(BX) = 0}. If X has rank
2 then det(L) has two distinct roots in P1 and the Segre symbol is σ(L) = [1,1]. If X has
rank 1 then it is a double root in P1 and σ(L) = [2].

We learned about Theorem 7.1.1 from an unpublished note by Pieter Belmans, titled Segre
symbols, which credits the 1883 PhD thesis of Corrado Segre. It appears in the textbooks
on algebraic geometry by Dolgachev [36, §8.6.1] and Hodge-Pedoe [65, §XIII.10]. The idea
goes back to at least the 1850s, in works of Cayley [24] and Sylvester [108]. One aim of this
chapter is to revisit this history.

We begin in Section 7.2 with a linear algebra perspective on Theorem 7.1.1. In Section
7.3 we study the reciprocal curve PL−1 of a pencil L ∈ Gr(2,Sn)reg. This curve lives in P(Sn),
and it is parametrized by the inverses of all invertible matrices in L. We prove that PL−1 is
a rational normal curve. We express its degree in terms of the Segre symbol σ(L), and we
determine its prime ideal.

In Section 7.2 we turn to maximum likelihood estimation for Gaussians. A pencil L plays
two different roles in statistics, depending on whether it lives in the space of concentration
matrices (as in [107]) or in the space of covariance matrices (as in [31]). This yields two
numerical invariants, the ML degree mld(L) and the reciprocal ML degree rmld(L). We
compute these in Theorem 7.4.2.

In Section 7.5 we study the constructible set defined by a fixed Segre symbol:

Grσ = {L ∈ Gr(2,Sn)reg ∶ σ(L) = σ }. (7.1)

Its closure Grσ is a variety. We study these varieties and their poset of inclusions, seen in
Figure 7.1. This extends the stratification of Gr(2,Rn) by matroids.
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Example 7.1.3 (n = 3). There are five strata Grσ in the Grassmannian Gr(2,S3):

symbol codim degrees P Q variety in P2

[1,1,1] 0 (2,2,3) ax2+by2+cz2 x2+y2+z2 four reduced points
[2,1] 1 (2,1,2) 2axy+y2+bz2 2xy + z2 one double point, two others
[3 ] 2 (2,0,1) 2axz+ay2+2yz 2xz + y2 one triple point, one other

[(1,1),1] 2 (1,1,1) ax2+ay2+bz2 x2+y2+z2 two double points
[(2,1)] 3 (1,0,0) 2axy+y2+az2 2xy + z2 quadruple point

For each Segre symbol σ, we display codim(Grσ), the triple of degrees

(deg(L−1),mld(L), rmld(L)),

the basis {P,Q} from Section 7.2, and its variety in P2. Here, x, y, z are coordinates on P2,
and a, b, c are distinct nonzero reals. This accounts for all regular pencils. A pencil is singular
if P and Q share a linear factor. One such L is spanned by xy and xz. This defines a line
and a point in P2. We conclude that Gr(2,S3)sing is an irreducible variety of dimension 4.

7.2 Canonical representatives

We identify symmetric n × n matrices A with quadratic forms xAxT in unknowns x =
(x1, . . . , xn). We fix the field to be C. The (n+12 )-dimensional vector space Sn is equipped
with the trace inner product (A,B) ↦ trace(AB). The group GLn acts on quadratic forms
by linear changes of coordinates, via x ↦ xg. This corresponds to the action of GLn on
symmetric matrices by congruence:

GLn × Sn → Sn , (g,A) ↦ gAgT .

Let L = C{A,B} be a regular pencil in Gr(2,Sn), with det(B) /= 0. The polynomial ring
C[λ] in one variable λ is a principal ideal domain. The cokernel of the matrix A − λB is a
module over this PID. Consider its elementary divisors

(λ − α1)e1 , (λ − α2)e2 , . . . , (λ − αs)es . (7.2)

Here e1, . . . , es are positive integers whose sum equals n. The list (7.2) is unordered and its
product is det(L) = ±det(A − λB). The complex numbers αi are the eigenvalues of the pair
(A,B). They form a multiset of cardinality n in P1.

Suppose there are r distinct eigenvalues αi. We have r ≤ s ≤ n. The exponents ei
corresponding to one fixed eigenvalue form a partition. This gives a multiset of r partitions,
with s parts in total, where the sum of all parts is n. This multiset of partitions is the Segre
symbol σ = σ(L). It is thus visible in (7.2). We now paraphrase Theorem 7.1.1 using the
elementary divisors of the matrix A − λB.
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Corollary 7.2.1. Consider two quadrics xAxT and xBxT with det(B) /= 0. There exists a
change of coordinates x ↦ xg which transforms them to xCxT and xDxT if and only if the
matrices A − λB and C − λD have the same elementary divisors.

Proof. For a textbook proof of this classical fact see [65, Theorem 1, p. 278].

Corollary 7.2.1 is used to construct a canonical form for pencils. For e ∈ N and α ∈ C, we
define a pair of symmetric e × e matrices by filling their antidiagonals:

Pe(α) =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 α
0 0 ⋯ α 1
⋮ ⋮ ⋰ ⋰ ⋮
0 α 1 ⋮ 0
α 1 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟
⎠

and Qe =

⎛
⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 1
0 ⋯ 0 1 0
0 ⋯ 1 0 0
⋮ ⋰ ⋮ ⋮ ⋮
1 ⋯ 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

. (7.3)

The e × e matrix Pe(α) − λQe has only one elementary divisor, namely (λ − α)e.
Let us now start with the list in (7.2). For each elementary divisor (λ−αi)ei we form the

ei × ei matrices in (7.3), and we aggregate these blocks as follows:

P =
⎛
⎜⎜⎜
⎝

Pe1(α1) 0 ⋯ 0
0 Pe2(α2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Pes(αs)

⎞
⎟⎟⎟
⎠

and Q =
⎛
⎜⎜⎜
⎝

Qe1 0 ⋯ 0
0 Qe2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Qes

⎞
⎟⎟⎟
⎠
. (7.4)

The matrices A − λB and P − λQ have the same elementary divisors. Hence, by Corollary
7.2.1, the pair (xAxT ,xBxT ) is isomorphic to (xPxT ,xQxT ) under the action by GLn. As
in Example 7.1.3, every regular pencil L ∈ Gr(2,Sn) has a normal form C{P,Q}, where the
matrices P and Q are defined by the unordered list (7.2). Given any Segre symbol σ, its
canonical representative is L = C{P,Q} where α1, . . . , αr are parameters. In what follows,
we often use index-free notation for unknowns, like x = (x, y, z) and (α1, α2, α3) = (a, b, c).

Example 7.2.2 (n = 5). Let σ = [(2,1),2]. The list of elementary divisors equals

(λ − a)2, (λ − a), (λ − b)2.

Our canonical representative (7.4) for this class of pencils L is the matrix pair

P =

⎛
⎜⎜⎜⎜⎜
⎝

0 a 0 0 0
a 1 0 0 0
0 0 a 0 0
0 0 0 0 b
0 0 0 b 1

⎞
⎟⎟⎟⎟⎟
⎠

and Q =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

.

The quadrics P = 2axy + y2 + az2 + 2buv + v2 and Q = 2xy + z2 + 2uv define a degenerate del
Pezzo surface of degree four in P4. This surface has two singular points, (0 ∶ 0 ∶ 0 ∶ 1 ∶ 0) and
(1 ∶ 0 ∶ 0 ∶ 0 ∶ 0); their multiplicities are one and three.
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Remark 7.2.3. To appreciate Theorem 7.1.1 and Corollary 7.2.1, it helps to distinguish
the two geometric figures associated with a pencil of quadrics, and how the groups GL2 and
GLn act on these. First, there is the configuration of n points in P1 defined by det(L). This
configuration undergoes projective transformations via GL2 but it is left invariant by GLn.
Second, there is the codimension 2 variety in Pn−1 defined by the quadrics in L. This variety
undergoes projective transformations via GLn but it is left invariant by GL2.

In this section, pencils L = C{A,B} are studied by linear algebra over a PID. We use the
relationship between elementary divisors and invariant factors. One can compute these with
the Smith normal form algorithm over C[λ]. We apply this to a specific torsion module,
namely the cokernel of our matrix A − λB.

Fix n and a Segre symbol σ = [σ1, . . . , σr], where each entry is now a weakly decreasing
vector σi = (σi1, σi2, . . . , σin) of nonnegative integers. With this convention, the Segre symbol
σ = [σ1, σ2] in Example 7.2.2, with n = 5, s = 3, r = 2, has σ1 = (2,1,0) and σ2 = (2,0,0).
Write α1, . . . , αr ∈ C for the distinct roots of det(A − λB). Then the elementary divisors are
(λ−αi)σij for i = 1, . . . , r and j = 1, . . . , n. Only s of these are different from 1. The invariant
factors are

dj ∶=
r

∏
i=1

(λ − αi)σij for j = 1, . . . , n.

Note that dn ∣dn−1 ∣⋯ ∣d2 ∣d1. The number of nontrivial invariant factors is the maximum
number of parts among the r partitions σi. For instance, in Example 7.2.2, the invariant
factors are d1 = (λ − a)2(λ − b)2, d2 = λ − a, d3 = d4 = d5 = 1.

The ideal of k × k minors of A − λB is generated by the greatest common divisor Dk of
these minors. The theory of modules over a PID tells us that

Dk ∶=
k

∏
j=1

dn+1−j =
r

∏
i=1

(λ − αi)σi,n−k+1+⋯+σi,n−1+σi,n . (7.5)

The Segre symbol of a pencil L = C{A,B} is determined by the ideal of k × k minors of
A−λB for k = 1, . . . , n. In practice, we use the Smith normal form of A−λB. In Section 7.1 we
proposed a different method, namely the Jordan canonical form of AB−1. This computation
uses only linear algebra over C, unlike the Smith normal form. To see that the Jordan
canonical form of AB−1 reveals the Segre symbol, consider the transformation from (A,B)
to (P,Q) in Corollary 7.2.1. This preserves the conjugacy class of AB−1. Therefore, AB−1

and PQ−1 have the same Jordan canonical form. We see in (7.4) that Q is a permutation
matrix, and hence so is Q−1. Furthermore, P is already in Jordan canonical form, after
permuting rows and columns, and σ is clearly visible in P .

7.3 The reciprocal curve

For any regular pencil L, we are interested in the reciprocal curve PL−1. We write deg(L−1)
for the degree of this curve in P(Sn). In Example 7.1.3, we have deg(L−1) = 2 in three
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cases, so PL−1 is a plane conic. In the other two cases, PL−1 is a line in P5. Here are the
homogeneous prime ideals of these curves:

Segre symbol Ideal of the reciprocal curve PL−1 mingens
[1,1,1] ⟨x12, x13, x23, (c−b)x11x22 + (a−c)x11x33 + (b−a)x22x33⟩ (3,1)
[2,1] ⟨x13 , x22 , x23 , x212 + (c − a)x11x33 − 2x12x33 ⟩ (3,1)
[3 ] ⟨x23 , x33 , x13 − 2x22 , x212 − x11x22 ⟩ (3,1)

[(1,1),1] ⟨x12 , x13 , x23 , x11 − x22 ⟩ (4,0)
[(2,1)] ⟨x13 , x22 , x23 , x12 − 2x33 ⟩ (4,0)

The column “mingens” gives the numbers of linear and quadratic generators.

Example 7.3.1 (n = 4). Two quadrics P and Q in P3 meet in a quartic curve. There are
13 cases, one for each Segre symbol. Here, x, y, z, u are coordinates on P3.

symbol codims degrees mingens quadrics P,Q variety in P3

[1,1,1,1] 0,0,0 (3,3,5) (6,3) ax2+by2+cz2+du2

x2+y2+z2+u2 elliptic curve

[2,1,1] 1,1,1 (3,2,4) (6,3) 2axy+y2+cz2+du2

2xy+z2+u2 nodal curve

[(1,1),1,1] 3,2,2 (2,2,3) (7,1) a(x2+y2)+cz2+du2

x2+y2+z2+u2 two conics meet twice

[3,1] 2,2,2 (3,1,3) (6,3) 2axz+ay2+2yz+du2

2xz+y2+u2 cuspidal curve

[2,2] 2,2,2 (3,1,3) (6,3) 2axy+y2+2bzu+u2

2xy+2zu twisted cubic with secant

[(2,1),1] 4,3,3 (2,1,2) (7,1) 2axy+y2+az2+du2

2xy+z2+u2 two tangent conics

[4] 3,3,3 (3,0,2) (6,3) 2axu+2ayz+2yu+z2

2xu+2yz twisted cubic with tangent

[2, (1,1)] 4,3,3 (2,1,2) (7,1) 2axy+y2+c(z2+u2)

2xy+z2+u2 conic meets two lines

[(3,1)] 5,4,4 (2,0,1) (7,1) 2axz+ay2+2yz+au2

2xz+y2+u2 conic and two lines concur

[(1,1), (1,1)] 6,4,4 (1,1,1) (8,0) a(x2+y2)+c(z2+u2)

x2+y2+z2+u2 quadrangle of lines

[(1,1,1),1] 8,5,5 (1,1,1) (8,0) a(x2+y2+z2)+du2

x2+y2+z2+u2 double conic

[(2,2)] 7,5,5 (1,0,0) (8,0) 2axy+y2+2azu+u2

2xy+2zu double line and two lines

[(2,1,1)] 9,6,6 (1,0,0) (8,0) 2axy+y2+a(z2+u2)

2xy+z2+u2 two double lines

We see that PL−1 ⊂ P9 is either a line, a plane conic, or a twisted cubic curve. This is
explained by the next theorem, which is our main result in Section 7.3.

Theorem 7.3.2. Let L be a regular pencil in Sn with Segre symbol σ = [σ1, . . . , σr]. Then
PL−1 is a rational normal curve of degree d in P(Sn), where d = ∑r

i=1 σi1 − 1 is one less than
the sum of the first parts of the partitions in σ. The ideal of PL−1 is generated by (n+12 )−d−1
linear forms and (d2) quadrics in (

n+1
2
) unknowns.
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Proof. The curve PL−1 is parametrized by (n+12 ) rational functions in one unknown λ, namely
the entries in the inverse of matrix P − λQ in Section 7.2. We scale each entry by Dn =
±det(P − λQ) to get a polynomial parametrization by the adjoint of P − λQ. This is an
n × n matrix whose entries are the (n−1) × (n−1) minors of P − λQ. These are polynomials
of degree ≤ n − 1 in λ, which are divisible by the invariant factor Dn−1. Note that Dn−1

has degree ∑r
i=1∑n

j=2 σij in λ. Subtracting this from the expected degree n − 1, we obtain
d = ∑r

i=1 σi1 − 1. We remove the factor Dn−1 from each entry of the adjoint. The resulting
matrix (Dn/Dn−1) ⋅ (P − λQ)−1 also parametrizes PL−1. The entries of that matrix are
polynomials in λ of degree ≤ d. As a key step, we will show that these span the (d + 1)-
dimensional space C[λ]≤d of all polynomials in λ of degree ≤ d.

The inverse of P − λQ is a block matrix, where the blocks are the inverses of the e × e
matrices Pe(α) − λQe in (7.3), one for each elementary divisor. A computation shows that
the entry of (Pe(α) − λ(Qe))−1 in row i and column j is

−(λ − α)i+j−e−2 if i + j ≤ e + 1 and 0 if i + j ≥ e + 2. (7.6)

It follows that the distinct nonzero entries in the n × n matrix (P − λQ)−1 are

±(λ − αi)−k where 1 ≤ k ≤ σi1 and 1 ≤ i ≤ r. (7.7)

The common denominator of these d + 1 = ∑r
i=1 σi1 rational functions in λ is equal to

Dn/Dn−1 = ∏i=1(λ − αi)σi1 . Multiplying by that common denominator, we obtain d + 1
polynomials in λ of degree ≤ d. Lemma 7.3.3 below tells us that these polynomials are
linearly independent. Hence they span C[λ]≤d ≃ Cd+1.

The proof of Theorem 7.3.2 now concludes as follows. By recording which entries of
(P −λQ)−1 are zero, and which pairs of entries are equal, we obtain (n+12 )−d−1 independent
linear forms that vanish on PL−1. We know that there exist linear forms ui in the matrix
entries which evaluate to λi for i = 0,1,2, . . . , d. The (d2) quadrics that vanish on PL−1 are
the 2 × 2 minors of the 2 × d matrix

(u0 u1 u2 ⋯ ud−1
u1 u2 u3 ⋯ ud

) . (7.8)

We have thus constructed an isomorphism between our curve PL−1 and the rational normal
curve {(1 ∶ λ ∶ ⋯ ∶ λd)}, whose prime ideal is given by (7.8).

Lemma 7.3.3. A finite set of distinct rational functions (λ−αj)−sij , each a negative power
of one of the expressions λ − α1, . . . , λ − αr, is linearly independent.

Proof. We use induction on r. The base case is r = 1. We claim that (λ−α)−s1 , . . . , (λ−α)−sn
are linearly independent when 0 < s1 < ⋯ < sn. Suppose

k1(λ − α)−s1 + ⋯ + kn(λ − α)−sn = 0 for some k1, . . . , kn ∈ C.

Clearing denominators, we obtain k1(λ − α)sn−s1 + ⋯ + kn = 0. Setting λ = α we find kn = 0.
Repeating this computation n times, we conclude k1 = k2 = ⋯ = kn = 0.
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For the induction step from r − 1 to r, we consider distinct negative powers

(λ − α1)−s1,1 , (λ − α1)−s1,2 , . . . , (λ − α1)−s1,n1 ,
⋮ ⋮ ⋮

(λ − αr)−sr,1 , (λ − αr)−sr,2 , . . . , (λ − αr)−sr,nr ,
(7.9)

where 0 ≤ si,j < si,j+1 for i = 1, ..., r and j = 1, ..., ni. Consider a linear combination of
(7.9) with coefficients k1,1, . . . , kr,nr . Multiplying by (λ − αr)sr,nr and setting λ = αr, we find
kr,nr = 0. Repeating with (λ − αr)sr,i for i = nr−1, nr−2, . . . ,1, we get kr,1 = ⋯ = kr,nr = 0. By
the induction hypothesis, the first r − 1 rows of (7.9) are linearly independent. This proves
that all kij are zero. Lemma 7.3.3 follows.

The last paragraph in the proof of Theorem 7.3.2 gives an algorithm for computing
generators of the ideal of PL−1. We show this for our running example.

Example 7.3.4. Let σ = [(2,1),2] as in Example 7.2.2. We have d = σ11 + σ21 − 1 = 3, so
PL−1 is a twisted cubic curve in P14. The inverse of P −λQ satisfies the (62)−3−1 = 11 linear
forms x13, x14, x15, x22, x23, x24, x25, x34, x35, x55, x12 −x33. The quadratic ideal generators are
u0u2 − u21, u0u3 − u1u2 and u1u3 − u22, where

u0 = (a − b)x11 − 2x12 + (a − b)x44 + 2x45 ,
u1 = (a2 − ab)x11 − (a + b)x12 + (ab − b2)x44 + (a + b)x45 ,
u2 = (a3 − a2b)x11 − 2abx12 + (ab2 − b3)x44 + 2abx45 ,
u3 = (a4 − a3b)x11 + (a3 − 3a2b)x12 + (ab3 − b4)x44 + (3ab2 − b3)x45.

Note that x11 = −(λ − a)−2, x12 = (λ − a)−1, x44 = −(λ − b)−2, x45 = (λ − b)−1.

7.4 Maximum likelihood degrees

Let Sn
≻0 denote the open convex cone of positive definite real symmetric n × n matrices. For

any fixed S ∈ Sn, we consider the following log-likelihood function:

ℓS ∶ Sn
≻0 → R , M ↦ log(det(M)) − trace(SM). (7.10)

We seek to compute the critical points of ℓS restricted to a smooth subvariety of Sn. Here,
by a critical point we mean a nonsingular matrix M in the subvariety whose normal space
contains the gradient vector of ℓS at M . This is an algebraic problem because the (n+12 )
partial derivatives of ℓS are rational functions.

The determinant and the trace of a square matrix are invariant under conjugation. This
implies the following identity for all invertible n × n matrices g:

ℓg−1S(g−1)T (gTMg) = log(det(gTMg)) − trace(g−1SMg) = ℓS(M) + const. (7.11)

Let L be a linear subspace of Sn, and fix a generic matrix S ∈ Sn. The ML degree mld(L)
is the number of complex critical points of ℓS on L. The reciprocal ML degree rmld(L) of L
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is the number of complex critical points of ℓS on L−1. Both ML degrees do not depend on
the choice of S, as long as S is generic. The ML degrees are invariant under the action of
GLn by congruence on Sn:

Lemma 7.4.1. The ML degree and the reciprocal ML degree of a subspace L ⊂ Sn are
determined by its congruence class. In particular, this holds for pencils L.

Proof. Fix g and L. If the matrix S is generic in Sn then so is g−1S(g−1)T . The image of L
under congruence by gT consists of all matrices gTMg whereM ∈ L. By (7.11), the likelihood
function of S on L agrees with that of g−1S(g−1)T on gTLg, up to an additive constant. The
two functions have the same number of critical points, so the subspaces L and gTLg have
the same ML degree. The same argument works if L is replaced by any nonlinear variety,
such as L−1.

We now focus on pencils (m = 2), and we state our main result in Section 7.4.

Theorem 7.4.2. Let L be a pencil with Segre symbol σ = [σ1, . . . , σr]. Then

mld(L) = r − 1 and rmld(L) =
r

∑
i=1

σi1 + r − 3 = deg(L−1) +mld(L) − 1. (7.12)

For generic subspaces L, with Segre symbol σ = [1, . . . ,1], this implies

mld(L) = deg(L−1) = n − 1 and rmld(L) = 2n − 3. (7.13)

The left formula in (7.13) appears in [107, Section 2.2]. The right formula in (7.13) is due to
Coons, Marigliano and Ruddy [31]. We here generalize these results to arbitrary pencils L.
The proof of Theorem 7.4.2 appears at the end of this section.

The log-likelihood function (7.10) is important in statistics. The sample covariance ma-
trix S encodes data points in Rn. The matrix M is the concentration matrix. Its inverse
M−1 is the covariance matrix. These represent Gaussian distributions on Rn. The subspace
L encodes linear constraints, either on M or on M−1. For the former, we get the ML degree.
For the latter, we get the reciprocal ML degree. These degrees measure the algebraic com-
plexity of maximum likelihood estimation. In the language in [31, 106], mld(L) refers to the
linear concentration model, while rmld(L) refers to the linear covariance model.

If L is a statistical model, then it contains a positive definite matrix. In symbols, L∩Sn
≻0 /=

∅. If this holds and dim(L) = 2 then L is called a d-pencil [112]. Thus, our numbers mld(L)
and rmld(L) are interesting for statistics when L is a d-pencil. Here, we can take advantage
of the following linear algebra fact.

Lemma 7.4.3. Every d-pencil L can be simultaneously diagonalized over R. After a change
of coordinates, L is spanned by the quadrics ∑n

i=1 aix
2
i and ∑n

i=1 x
2
i .
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Proof. We assume n ≥ 3. A pencil is a d-pencil if and only if it has no zeros in the real
projective space Pn−1. This is the Main Theorem in [112]. It was also proved by Calabi in
[22]. The fact that pencils without real zeros in Pn−1 can be diagonalized is [112, page 221,
(PM)]. It is also Remark 2 in [22, page 846].

Suppose there are r distinct elements in {a1, . . . , an}. Theorem 7.4.2 implies:

Corollary 7.4.4. If L is a d-pencil then mld(L) = deg(L−1) = r − 1 and rmld(L) = 2r − 3,
where L has r distinct eigenvalues. This holds for all statistical models.

The log-likelihood function for our d-pencil L can be written as follows:

ℓS(x, y) =
n

∑
i=1

( log(aix + y) − si(aix + y) ).

Here s1, . . . , sn ∈ R represent data. The MLE is the maximizer of ℓS(x, y) over the cone
{(x, y) ∈ R2 ∶ aix + y > 0 for i = 1, . . . , n}. Corollary 7.4.4 says that ℓS(x, y) has r − 1 critical
points. One of them is the MLE. The reciprocal log-likelihood is

ℓ̃S(x, y) =
n

∑
i=1

(−log(aix + y) −
si

aix + y
). (7.14)

The invariant rmld(L) is the number of critical points (x∗, y∗) of this function with∏n
i=1(aix∗+

y∗) /= 0, provided s = (s1, . . . , sn) is generic in Rn. Corollary 7.4.4 states that ℓ̃S(x, y) has
2r − 3 complex critical points. One of them is the MLE.

The following is an extension of a conjecture stated by Coons et al. [31, §6].

Conjecture 7.4.5. Let L be a d-pencil with r distinct eigenvalues. There exists s =
(s1, . . . , sn) ∈ Rn such that the function (7.14) has 2r − 3 distinct real critical points.

We can prove this conjecture for small values of n by explicit computation.

Example 7.4.6. Fix the pencil L with n = r and (a1, . . . , an) = (1, . . . , n). For n ≤ 7 we found
s ∈ Rn such that the reciprocal log-likelihood function ℓ̃s has 2n−3 distinct real critical points.
For n = 7 we can take s = (−74

39 ,
13
47 ,

61
40 ,

1
7 ,

23
18 ,−73,−27

43).

We now return to arbitrary Segre symbols σ. While non-diagonalizable pencils L do not
arise in applied statistics, their likelihood geometry is interesting.

Proof of Theorem 7.4.2. By Lemma 7.4.1, we may assume that L is parametrized by (x, y) ↦
xP −yQ with P and Q as in (7.4). For generic S ∈ Sn, we seek the number mld(L) of critical
points in C2 of the following function in two variables:

ℓS(x, y) = log(det(xP − yQ)) − trace(S(xP − yQ)). (7.15)
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After multiplying by d = ∏r
i=1(αix − y), the two partial derivatives of ℓS(x, y) have the form

f(x, y) = λSd + C and g(x, y) = µSd + D. Here λS = −trace(SP ) and µS = trace(SQ) are
constants, and the following are binary forms of degree r − 1:

C =
r

∑
i=1

n

∑
j=1

σij αi

r

∏
k=1,k≠i

(αkx − y) and D = −
r

∑
i=1

n

∑
j=1

σij
r

∏
k=1,k≠i

(αkx − y). (7.16)

The variety of critical points of ℓS in C2 is V (f, g)/V (d). We adapt the method introduced
in [31] to enumerate this set. Let F (x, y, z) and G(x, y, z) denote the homogenizations of f
and g with respect to z. Both F and G define curves of degree r in P2. Since F and G do
not share a common component, we can apply Bézout’s Theorem to count their intersection
points. This tells us that

mld(L) = r2 − I[0∶0∶1](F,G) − ∑
q∈V (F,G,z)

Iq(F,G). (7.17)

The negated expressions are the intersection multiplicities of F and G at the origin and on
the line at infinity. By computing these two quantities, we obtain

mld(L) = r2 − (r − 1)2 − r = r − 1.

The proof of the second formula in (7.12) is analogous but the details are more delicate.
We present an outline. The log-likelihood function for L−1 equals

ℓ̃S(x, y) = − log (
r

∏
i=1

(αix − y)σi1+...+σin) −
r

∑
i=1

σi1

∑
j=1

s̃ij
xj−1

(αix − y)j
,

where the s̃ij are linear combinations of the entries in the matrix S. This is obtained by
replacing the matrix xP − yQ in (7.15) with its inverse. We find

ℓ̃Sx = −
r

∑
i=1

n

∑
j=1

σijαi

αix − y
+

r

∑
i=1

σi1

∑
j=1

s̃ij
(j − 1)xj−2(αix − y) − j xj−1αi

(αix − y)j+1
,

ℓ̃Sy =
r

∑
i=1

n

∑
j=1

σij

αix − y
+

r

∑
i=1

σi1

∑
j=1

s̃ij
j xj−1

(αix − y)j+1
.

(7.18)

We claim that the number of common zeros of the two partial derivatives ℓ̃Sx and ℓ̃Sy in
C2/V (d) is equal to φ + r − 3 where φ = ∑r

i=1 σi1 = deg(L−1) + 1,
Clearing denominators in (7.18) yields polynomials −d′C + U and −d′D + V , where d′ =

∏r
i=1(αix − y)σi1 , the binary forms U,V have degree φ + r − 2, and C,D are precisely as in

(7.16). Hence deg(d′) = φ and deg(C) = deg(D) = r − 1. As before, these are sums of
binary forms in consecutive degrees. We use (7.17) to count their zeros in P2. We find
(φ + r − 1)2 − (φ + r − 2)2 − (φ + r) = φ + r − 3
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Example 7.4.7 (n = 5). Let σ = [(2,1),2] as in Example 7.2.2. The ML degrees are
mld(L) = 1 and rmld(L) = 3. Restricting the log-likelihood function to L gives

ℓS = log((ax − y)3(bx − y)2) + 2s12(ax − y) + s22x + s33(ax − y) + 2s45(bx − y) + s55x.

Its two partial derivatives are rational functions in x and y. Equating these to zero, we find
that ℓS has a unique critical point (x∗, y∗) in L. Its coordinates are

x∗ = (4(a − b)s12 + 5s22 + 2(a − b)s33 − 6(b − a)s45 + 5s55 ) /∆,

y∗ = (4a(a − b)s12 + (2a + 3b)s22 + 2a(a − b)s33 + 6b(b − a)s45 + (2a + 3b)s55 )/∆,

∆ = (−s22 + 2(a − b)s45 − s55) ⋅ (2(a − b)s12 + s22 + (a − b)s33 + s55).

The restriction of the log-likelihood function to the reciprocal variety L−1 is

ℓ̃S(x, y) = −log((ax − y)3(bx − y)2) −
s11 x

(ax − y)2 +
2 s12
ax − y +

s33
ax − y −

s44 x

(bx − y)2 +
2 s45
bx − y .

The two partial derivatives have 3 zeros, expressible in radicals in a, b, s11, . . . , s45.

7.5 Strata in the Grassmannian

We now define a partial order on the set Segren of all Segre symbols for fixed n. If σ and τ
are in Segren then we say that σ is above τ if ∣σ∣ > ∣τ ∣ and τ is obtained from σ by replacing
two partitions σi, σj by their sum, or if ∣σ∣ = ∣τ ∣ and σ and τ differ in precisely one partition,
with index i, and τi ⊲ σi in the dominance order on partitions. The partial order on Segren is
the transitive closure of the relation “is above”. The top element of our poset is [1,1, . . . ,1],
and the bottom element is [(2,1, . . . ,1)]. The Hasse diagrams for n = 3,4 are shown in
Figure 7.1.

We wish to study the strata Grσ in (7.1). Recall that Grσ is the constructible subset of
Gr(2,Sn) whose points are the pencils L with σ(L) = σ. Its closure Grσ is a subvariety of
the Grassmannian Gr(2,Sn). Its defining equations can be written either in the 1

8(n+2)(n+
1)n(n − 1) Plücker coordinates, or in the (n + 1)n Stiefel coordinates which are the matrix
entries in a basis {A,B} of L.

Consider the related Jordan stratification. For each σ ∈ Segren, the Jordan stratum Joσ
is the set of n×n matrices whose Jordan canonical form has pattern σ. Its closure Joσ is an
affine variety in Cn×n. Its defining prime ideal consists of homogeneous polynomials in the
entries of an n × n matrix X = (xij).

Theorem 7.5.1. Our poset models inclusions of both Grassmann strata and Jordan strata.
That is, σ ⪰ τ in Segren if and only if Grσ ⊇ Grτ if and only if Joσ ⊇ Joτ .

The codimensions of the Jordan strata generally differ from those of the Grassmann
strata. While the Joσ are familiar from linear algebra [34], the Grσ capture the geometry
of the varieties listed on the right in Examples 7.1.3 and 7.3.1. The codimensions are ≥ 1,
unless σ = [1, . . . ,1] where both strata are dense.
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[1,1,1,1]

[2,1,1]

[(1,1),1,1] [3,1] [2,2]

[(2,1),1] [4] [2, (1,1)]

[(3,1)] [(1,1), (1,1)]

[(1,1,1),1] [(2,2)]

[(2,1,1)]

[1,1,1]

[2,1]
[3] [(1,1),1]
[(2,1)]

Figure 7.1: The posets of all Segre symbols for n = 3 (left) and n = 4 (right).

Example 7.5.2 (n = 3). We computed the prime ideals for the Jordan strata in C3×3, for
the Plücker strata in Gr(2,S3) ⊂ P14, and for the Stiefel strata in P5×P5:

symbol Jordan Plücker Stiefel codims degrees
[2,1] 61 61 (6,6)1 1,1,1 6,6, [6,6]
[3 ] 21,31 421 (2,4)1, (3,3)1, (4,2)1 2,2,2 6,99, [6,15,6]

[(1,1),1] 320 320 (3,3)20 3,2,2 6,36, [4,4,4]
[(2,1)] 29 26 (2,2)6 4,3,3 6,56, [4,12,12,4]

The sextic in the first row is the discriminant of the characteristic polynomial of X. We shall
explain the last row, indexed by σ = [(2,1)]. The Jordan stratum Joσ has codimension 4
and degree 6. Its ideal is generated by nine quadrics, like x11x31 − 2x22x31 + 3x21x32 + x31x33.
Under the substitution X = AB−1, these transform into six quadrics in Plücker coordinates,
like p04p14 + p12p14 − p03p15 − p12p23 − 3p02p34 + 2p01p35. Here p01, p02, . . . , p45 denote the 2 × 2
minors of

(a11 a12 a13 a22 a23 a33
b11 b12 b13 b22 b23 b33

) .

The stratum Grσ has codimension 3 in Gr(2,S3) and degree 56 in the ambient P14. The six
Plücker quadrics give six polynomials of bidegree (2,2) in (A,B). These define a variety of
multidegree 4a3 + 12a2b + 12ab2 + 4b3 ∈ H∗(P5 × P5).

Example 7.5.3 (n = 4). The column “codims” in Example 7.3.1 gives the codimensions
of Jordan strata, Plücker strata and Stiefel strata. The last two agree; they quantify the
moduli of quartic curves in P3 listed on the right. We found equations of low degree for the
13 strata. For instance, Jo[4] lies on a unique quadric:

3x211 − 2x11x22 − 2x11x33 − 2x11x44 + 8x12x21 + 8x13x31 + 8x14x41 + 3x222
−2x22x33 − 2x22x44 + 8x23x32 + 8x24x42 + 3x233 − 2x33x44 + 8x34x43 + 3x244.
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Proof of Theorem 7.5.1. For Segre symbols σ with one partition σ1, the Jordan strata Joσ
are the nilpotent orbits of Lie type An−1. Gerstenhaber’s Theorem [58] states that inclusion
of nilpotent orbit closures corresponds to the dominance order ⊲ among the partitions σ1.
This explains the second condition in our definition of “is above” for the poset Segren. The
other condition captures the degeneration that occurs when two eigenvalues come together.
Generally, this leads to a fusion of Jordan blocks, made manifest by adding partitions σi and
σj. For a precise algebraic version of this argument we refer to [58, Theorem 4].

The inclusions of orbit closures are preserved under the map X ↦ AB−1 that links
Stiefel strata to Jordan strata. Furthermore, the Plücker stratification is obtained from the
Stiefel stratification by taking the quotient modulo GL2. This operation also preserves the
combinatorics of orbit closure inclusions.

We close with formulas for the dimensions of our strata. For each partition σi occurring
in a Segre symbol σ = [σ1, . . . , σr], we write σ∗i = (σ∗i1, . . . , σ∗in) for the conjugate partition.
For instance, if n = 5 and σi = (4,1) then σ∗i = (2,1,1,1).
Proposition 7.5.4. The codimension of the Jordan strata and Grassmann strata are:

codim(Joσ) =
r

∑
i=1

n

∑
j=1

(σ∗ij)2 − r and codim(Grσ) =
r

∑
i=1

n

∑
j=1

(σ
∗
ij + 1
2
) − r.

Proof. The dimension is the number r of distinct eigenvalues plus the dimension of the GLn-
orbit of the general matrix or pencil in the stratum of interest. Thus, the codimension is the
dimension of its stabilizer subgroup minus r. The codimension for Grassmann strata agrees
with the codimension for Stiefel strata, so we may consider pairs of matrices (A,B) when
determining codim(Grσ).

The stabilizer on the left is found in [34, Theorem 2.1] or [58, Proposition 8], using the
identity ∑s

k=1(2k−1) = s2. The stabilizer dimension on the right is calculated in [35, Corollary
2.2] for general symmetric matrix pencils. For regular pencils, the case studied here, the
Kronecker canonical form in [35, eqn. (2.4)] only has H-components. Thus the dimension
formula in [35] becomes dA,B = dH + dHH , where dH = 0 and dHH = ∑i≤i′,λi=λi′ min(hi, hi′). In
our notation, this is

∑
i≤k,αi=αk

min(ei, ek) =
r

∑
i=1

n

∑
k=1

kσik =
r

∑
i=1

n

∑
k=1

σik

∑
j=1

k =
r

∑
i=1

n

∑
j=1

σ∗ij

∑
k=1

k =
r

∑
i=1

n

∑
j=1

(σ
∗
ij + 1
2
).

In conclusion, our proof consists of specific pointers to the articles [37, 35, 58].

Concluding remarks

Revisiting classical concepts with a fresh lens can lead to unexpectedly interesting new ideas.
In this chapter, we showed how pencils of quadrics, originating in the 19th century, can serve
as linear Gaussian or concentration models in the realm of the relatively new field of algebraic
statistics. More generally, old ideas can take on new lives when repositioned in the context
of newer fields.
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