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Modeling uncertainty in the measurement of low-level analytes
in environmental analysis

David M. Rocke,a,* Blythe Durbin,a Machelle Wilson,a and Henry D. Kahnb

The use of analytical chemistry measurements in environmental monitoring is dependent on an assessment of measurement error.
Models for variation in measurements are needed to quantify uncertainty in measurements, set limits of detection, and preprocess
data for more sophisticated analysis in prediction, classification, and clustering. This article explains how a two-component error
model can be used to accomplish all of these objectives. In addition, we present applications to quantitating biomarkers of exposure
to toxic substances using gene expression microarrays.
@ 2003 Elsevier Inc. All rights reserved.

concentrations and quantifiable amounts. If a model
assuming a constant error is used, there is an implicit
assumption that the absolute size of the error is
unrelated to the concentration of the analyte. This
assumption is not supported by empirical observation of
behavior at the higher levels. If a model assuming a
proportional error is used, then there is an implicit
assumption that the measurement error becomes vanish-
ingly small as the concentration approaches zero. This
assumption is also contrary to experience of behavior at
the lower levels. Because environmental monitoring data
often fall into this gray area, understanding measure-
ment error in this region is of considerable importance.

The model presented here resolves these difficulties
by incorporating both types of error that are observed
in practice into a single model. This model provides
an obvious advantage over existing models by describ-
ing the precision of measurements across the entire
usable range. We will present two examples-one of zinc
by inductively coupled plasma mass spectrometry
(ICPMS) and one of propionitrile by gas chromato-
graphy-mass spectrometry (GC-MS). These examples
support the validity and advantages of this two-
component model. We also discuss the application of
the model to detection limits, quantification limits,
sample size calculations, and the construction of
confidence intervals. Some of the technical background
to this model can be found in Rocke and Lorenzato
(1995).

.Introduction

Limitations of the analytical methodology used to
measure the concentration of toxic substances in the
environment have had an important role in environ-
mental modeling and regulation. It is difficult to model
or regulate emissions of toxic substances at levels below
what can be reliably measured, and a definition of the
level of reliable measurement is therefore crucial to
policymaking. Furthermore, even when the measure-
ments are reliably above zero, both modeling and
regulation are difficult without "error bars" around
the measurements. In this article, we discuss the
implications of a model for measurement error for these
issues.

It has been observed from long experience that the
measurement error of an analytical method, for example
atomic absorption spectroscopy, is of two types. Over a
range of concentrations near zero, the measurement
error is seen to be approximately constant. Over ranges
of higher concentration, the measurement error is
observed to be proportional to the concentration of
the analyte (Currie, 1968; Hubaux and Vos, 1970). This
poses some difficulty in estimating the overall precision
of an analytical method for data that span the "gray
area" where a transition occurs between near-zero
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We also present here some recent work on the
application of this model to biomarkers of exposure to
toxic substances using gene expression data. We find
that the perspective of the two-component model
clarifies several of vexing problems with gene expression
data and allows for much more precise quantification of
such biomarkers (Rocke and Durbin, 2001; Durbin
et al., 2002).

and for the estimated concentration,

I
Var{J1} = p.2S; + S;. (2.5)

Let us compare the usefulness of a two-component
error model to a model using only the relative standard
deviation (RSD), which is defined to be equal to the
standard deviation of the estimated concentration
divided by the concentration (Liteanu and Rica, 1980).
For the two-component model, we have

2. The model

Most measurement technologies require a linear
calibration curve to estimate the actual concentration
of an analyte in a sample for a given response. We can
incorporate into the linear calibration model the two
types of errors that are observed in most analyses. The
two-component model is

y = (X + ppe" +e, (2.1)

where y is the response (such as peak area) at
concentration JL, ,,-N(O,o-,,), and e-N(O,o-,,). Here",
represents the proportional error that always exists, but
is noticeable at concentrations significantly above zero,
and e represents the additive error that always exists but
is noticeable mainly for near-zero concentrations. This
two-component model approximates a constant stan-
dard deviation for very low concentrations and approx-
imates a constant relative standard deviation (RSD) for
higher concentrations. Note that y is the response of the
measuring apparatus, for example peak area. To obtain
the estimated concentration, we do the back calculation:

RSD{Jl} = ~+~j;i. (2.6)

If the error structure is described only in terms of RSD,
we see that measurements at high concentrations have a
nearly constant RSD, whereas small concentrations
have an increasing RSD that tends to infinity as the
concentration approaches zero. Use of RSD alone to
characterize measurement error in the low concentration
region can cause difficulties when attempting to make
decisions regarding detection and quantification. The
two-component model allows for a more reasonable
estimation of error near zero, and hence more reason-
able criteria for setting detection limits, critical levels,
and quantification levels.

As an example (zinc by ICPMS described in detail
later), suppose that 0", = 204 (in units of the peak area),
0"" = 0.0390 (this is the high-level CV), (X = 490, and p =
7.06. The derived quantities are S, = 204/7.06 =
28.9 ppt and S" = 0.0390. Then the standard deviation
of blanks is 204 (units of peak area) or 28.9 ppt. Critical
levels, which are the basis for determining detection of
an analyte, are often set at 2-3 times the standard
deviation of the blank above background (see Currie,
1995, 1997). Using this definition with a multiplier of 3,
we have the critical level set at 490 + 3(204) = 1102
in units of peak area or 3(28.9 ppt) = 86.7 ppt. Then,
using (2.4), the standard deviation of the response, y, at
concentration /l. = 86.7 ppt is

SD{y} = (86.7)2(7.06)2(0.0390)2 + (204)2

=J~
=205

Y-I%
11= .,

p
where Ii and p are estimates of (X and P, respectively, in
model (2.1).

Under this model, the variance of the response y at
concentration Jl is given by

(2.2)

(compared to 204 at zero concentration). The standard
deviation of the estimated concentration is, using (2.5),

SD{il} = \/(86.7Y(0.0390)2 + (28.9Y

=v1S47
=29.1 ppt

(compared to 28.9 ppt at zero concentration).
That is, using the two-component model, measure-

ments at this concentration have a standard deviation
of 29.1 ppt, only slightly above the value for blanks,
and RSD = 29.1/86.7 = 0.34.

Var{y} = Jl.2{J2et1~(e~ -1) + a; (2.3)

(Rocke and Lorenzato, 1995). Two derived quantities
will be useful in interpretation of the results. Se = O"e/ {J
represents the approximate standard deviation of Ii at
low levels (approximate because it ignores uncertainty in

the calibration parameters tX and (J). S" = .fe~(;~-=-1)

is the approximate RSD of Ii for high levels. For values
of 0"" appropriate for analytical technologies (say no
more than 0.3), S" is very near 0"". For example, if 0"" =
0.1, then S" = 0.1008 and if 0"" = 0.3, then S" = 0.32.

Using these derived quantities, we can represent the
variance of y as

,
Var{y} = Jl.2{J2S; +a; (2.4)



80 D.M. Rocke et al. / Ecoto.l:icology and Environmental Safety 56 (2003) 78-92

3. Estimation

The parameters in the two-component model can be
estimated in a number of ways. The standard deviation
0"0 of the low-level measurements can be estimated from
replicate blanks, for example by those routinely included
with batches of samples. If this number is stable, it can
also be estimated from routine QC data so long as
measurements are replicated. The parameters 0"" can be
likewise estimated from the standard deviation of the
logarithms of high-level measurements. The calibration
curve can then be estimated using weighted least
squares, weighting each point by the inverse estimated
variance. It is also possible to estimate all four
parameters simultaneously using weighted least squares,
although our experience is that this estimation method is
often not very stable and can lead to nonconvergence or
impossible estimates (such as negative variances).

The most effective estimation method is maximum
likelihood, as described in Rocke and Lorenzato (1995).
A computer program that solves for the maximum
likelihood estimates for IX, p, 0"0' 0"" is available at
http://www.cipic..ucdavis.edu/-dmrocke.

exceed Lc. Note that the critical level is defined at first
in the units of the measurement technology (e.g., peak
area), not in units of concentration. Of course, we can
also express the critical level in units of concentration by
taking the critical level (in measured units) and dividing
by the calibration slope p. Because the critical level is the
point at which the detection decision is made, it has been
called by some authors a detection limit, but it should be
noted that it is distinct from the IUPAC definition of the
limit of detection. Limits of detection will be discussed
later in this article.

Under the assumption of normality, the value of Lc
may be calculated as follows: Assume that O"e, the
standard deviation of the response at Jl = 0, is known
and that we require 99% confidence in our statement
that the analyte is present. Then the one-sided 99%
confidence level is represented by Lc = a + ZOO"e, where
Zo is the z-value corresponding to the 99th percentile of
the standard normal distribution (i.e., Zo = 2.326). To
find the critical level for any level of confidence, simply
find the appropriate one-sided z-value, then multiply
by the standard deviation of the blanks and add this to
the mean value of the blanks, that is,

Lc=a+zoO"e (4.1)

in units of the response and

Lc = zoSe (4.2)

4. Applications

In this section, we describe some applications of the
two-component model. Special emphasis is given to
applications in environmental monitoring, where detec-
tion and measurement of toxins at very low levels can be

quite important.

4.1. Critica//eve/s

Detection refers to the capacity of an analytical
measurement process to indicate the presence of an
analyte. This requires an agreed-upon procedure for
determining whether or not a given measurement result
conclusively establishes that the analyte is present in the
sample. In practice, this means that the investigators
establish a numerical value such that a result greater
than this value is extremely unlikely to occur if the true
concentration is in fact zero, whereas a result lower than
this value indicates that the true concentration in the
sample either is zero or is too low to detect (with
certainty) with the technology in use. The measurement
error that exists in any technology leads to this inability
to detect concentrations below a certain level. The
critical level is defined by the International Union of
Pure and Applied Chemistry (IUPAC) to be the value,
Lc, such that the probability of a measurement
exceeding this value will be very small, say 0.01, when
the true concentration in the sample is zero (Currie,
1995). That is, samples that do not contain the analyte
are very unlikely to generate measurement results that

in units of concentration. Generally, the mean and
standard deviation of the blanks will be well enough
known from experience to use this method. If these are
estimated from data, then a t-value (from the t-
distribution), with the appropriate degrees of freedom,
is substituted for the z-value. The advantage of the two-
component error model is that an estimate for (1" with
desirable statistical properties can be obtained from data
that span a range of concentrations, resulting in greater
accuracy from a given amount of data.

For our example zinc data, we have (1" = 204 in units
of peak area and S" = 28.9 ppt. If we use a 99%
confidence level, the normal percentage point is 2.326,
so that Lc in units of peak area is 490 + (2.326)(204) =
965 and in units of concentration is (2.326}(28.9) =
67.2 ppt.

Note that a measured value below Lc does not
establish that the analyte is absent, only that it has not
been shown conclusively to be present. This means that
the value should be reported as measured, together with
the standard deviation at the measurement value. Cases
in which limitations of the instrument itself prevent
reporting a value (as is the case with some spectroscopic
measurements) are an obvious exception. In other cases,
censoring of values below Lc may be required as a
matter of policy by regulatory agencies. Such practices
result in data sets with reduced value from the loss of
information; this makes tracking of trends, monitoring
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of laboratory quality, summarization of data, and other
data analysis all more difficult. More importantly, ,this
censoring needlessly prevents investigators from being
able to reach probabilistically quantified conclusions
about the true presence of an analyte. Sometimes
sophisticated methods can be used to cope with these
censored data (Gilbert, 1987; Cohen, 1991), but simple
reporting of measured values would allow use of basic,
easily understood methodology instead of these complex

techniques.

4.2. Minimum detectable value

Then an estimated Lo is found by simply substituting
the sample variance estimates into the above equation.

For our example zinc data, we have Sa = 28.9 and
S" = 0.0390. If we use =0 = ZI = 2.326, corresponding to
99% confidence, we have a minimum detectable value of

(2)(2.326)(28.9)/[1 -(2.326)2(0.0390)1 = 135 ppt.

One important use of Lo is to assess and monitor the
performance of a laboratory. If samples are spiked at
a concentration of Lo, then almost all of the time the
resulting responses should exceed the critical value Lc.
Such trials can be run periodically to monitor the ability
of the laboratory to detect analytes up to specifications.
Another important use is to determine what concentra-
tions in the field can reliably be detected with a given
technology. If concentrations below the minimum
detectable value are important to detect, consideration
should be given to the use of better technology or
replicate measurements. The minimum detectable value
should never be used to assess a measured value to
decide if it should be rltported or censored. It should only
be used for planning purposes or for quality assurance.

4.3. Quantification limit

By a quantification limit, some authors have meant
the lowest level at which the quantitative assessment is
sufficiently accurate for practical use. Because the
standard deviation at low levels is actually smaller than
that at high levels, it could be argued that this is a
meaningless concept; any measured value, along with a
confidence interval, provides a useful measurement; and
the most precise measurements, in terms of standard
deviation, are actually those for the lowest level of the
analyte. A definition with some practical utility is the
true concentration at which the relative standard
deviation (RSD) falls to a specified level (Gibbons,
1994; Meier and Ziind, 1993). However, measurement of
some analytes at an arbitrarily low RSD, such as 10%,
may not be possible. The model allows for evaluation of
each case in terms of what RSD is feasible. The RSD at
0 is automatically infinite, no matter how accurate the
measurement process is, and the RSD at high levels is u"
so it is meaningful to define the quantification limit as
the level at which the RSD falls to a specified factor of

The limit of detection or minimum detectable value is
the true concentration, Lo, of an analyte that will, with
high confidence, produce a measured value above the
critical level. For example, if the concentration Lo is
chosen for laboratory QC, it should be detected
(measured above the critical level Lc) almost all of the
time. Although Lc can be given either in the units of the
measurement technology or in units of concentration,
Lo is purely in units of concentration. Conceptually, Lc
is determined so that the desired confidence level of the
test that the true concentration is zero is met, and Lo is
determined so that the desired statistical power is
obtained. It usually cannot be safely assumed that the
standard deviation at the detection limit is the same as
the standard deviation of a blank, so reliable estimates
of variance at any specified concentration are necessary
for reliable determination of the minimum detectable
value.

We can find a good estimate ofLn by noting that the
level is low enough that a normal approximation is
appropriate (at high levels, the distribution is essentially
log normal). We treat y as being normally distributed
with mean IX + P.u and with variance given by (2.4) and
solve the resulting equation. Recall that, from (2.5),

Var{p} = .u2S~ + s; (4.3)

so that Lo is the solution to the equation

Lo = zoS; + z, yiVar[i;;;'i (4.4)

zoS; + ZI V LbS~ + S; (4.5)

where Zo is the percentile of the standard normal
distribution corresponding to the desired confidence
level for the critical level, and ZI is the percentile
corresponding to the desired confidence level for the
minimum detectable value. Because Lo appears on both
sides of the equation, at first glance it might seem that
iterative methods would be required to find the solution.
However, so long as the variance of y does not increase
too rapidly with Jl., a closed form solution is possible.
The required condition is

8,,<1/zl. (4.6)
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then any average of measured values greater than

D 30""
=IX+

u", say 2u". It makes little sense to specify a parti.cular
arbitrary RSD, such as 20%, because the limit of
quantification would then be undefined for any mea-
surement process with u" >0.20. This is easily seen by
substituting in 0.2 in the example given earlier. If it
is desirable to make this computation for a particular
process, this can easily be done using the model
presented here. Let R be the desired RSD, for example,
10%. Then the equation

(4.13)
":Jr

is extremely unlikely to have come from a zero
concentration sample. Similarly, so is any average of
estimated concentrations greater than

D= 38" (4.14)

~.

(4.10)/v~~ = R,

where V(LQ) = L~S~ + S;, has solution

LQ=~ (4.11 )

whenever R>S". No real solution is possible when
R~S". This is readily apparent once (4.10) is rewritten
as a quadratic equation in LQ.

For our zinc example, Se = 28.9 ppt, S" = 0.0390. If
the desired RSD is 10%, then

LQ = 28.9/J(O.I)2 -(0.0390)2 = 314 ppt. (4.12)

Compare this to the 99% confidence critical level of
67.2 ppt and the minimum detectable value of 135 ppt.
The limit of quantification is somewhat arbitrary by
comparison. Whereas the critical level and the minimum
detectable value are quantified using standard normal
probability theory, the limit of quantification is set
arbitrarily by the investigator. For example, if the target
RSD is chosen to be 15% rather than 10%, then the
quantification limit is 200 ppt instead of 314 ppt. For
analytes that are toxic at very 1ow levels, this arbitrary
choice may have rather severe consequences. As in the
case of the minimum detectable value, the limit of
quantification has no use in interpreting measurements
that have already occurred. The estimated concentration
along with a measure of the uncertainty of the
measurement convey all of the necessary information.

(Of course, this assumes that the replicates are true
reruns of the entire process; otherwise the error may not
be reduced by a factor of .;;, but by a much smaller

amount.)
An implication of this rule for environmental

monitoring is that multiple measurements at low levels,
even if they are individually below the critical level, can
still provide quantitative evidence of the concentration
of a toxic substance. If the safe level is near or below the
critical level, then requiring adequate replication of the
measurements reduces the effective critical level. That is,
much smaller amounts can be measured with greater
certainty. Quantitative recording of repeated measure-
ments, even when they are below the individual
observation critical level, will allow quantitative evi-
dence to be gathered to estimate the true concentration
at a site.

The question remains, how many replicates are
needed? The approximate sample size required to
determine a concentration to a particular precision
depends on the concentration as well as the precision
desired. Suppose that we wish to determine whether the
concentration of zinc is above some specific level, say
50 ppt. From previous experience, we estimate the
standard deviation parameters to be S" = 28.9 ppt and
S" = 0.0390. Suppose further that it is held to be
important to detect a concentration of 80 ppt and
determine it to be out of compliance. At that concentra-
tion, the standard deviation of an average of r replicates
IS

=~

29.1

4.4. Sample size calculations

(4.15)= ---,..

;;:

When detection is crucial, it makes sense to take
replicate samples at a site rather than one measurement.
The me~lsurement error associated with the mean of the
replicates is much smaller than the error associated with
one measurement, thus replication allows for more
sensitive detection of the toxin. Therefore, sample size
calculations become quite important.

According to our model, the measurements at true
concentration p. = 0 are normally distributed with
standard deviation 0"0' If the number of replicates is r,

Using a normal approximation, the distance between
the criterion level 50 ppt and the concentration 80 ppt
in standard deviation units is

(30/29.1)v;: = 1.03v;:. (4.16)

For the chance of detection to be 0.95, we require

.O3vr> 

1.645
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or r>2.55. In this case, then, we need at least three
replicates.

section and documented fully in Hawkins (2002) and
Durbin et at. (2002).

4.5. Uncertainty of a single measurement
5. Data transformations

The uncertainty of a single measurement is usually
quantified using confidence intervals. There are two
primary approaches to this problem, an exact solution
and a normal or log normal approximation. The exact
solution requires numerical integration and will not be
discussed here. Say we would like a 95% confidence
interval for .u based on a single measurement, fl. The
approximate method for low values of fl, using an
estimated variance and a normal approximation is

J1::t 1.96JV ar(j2) , (4.17)

where Var({l) is estimated using

Var({l) = Jl.2S; + S; (4.18)

and where all estimates are obtained from the max-
imum-likelihood routines or other methods. For high
levels of {l (those in which the second term in Eq. (2.5)
dominates:l, In {l is approximately normally distributed
with variance O"~. Hence, a 95% confidence interval
for Jl. is

(exp(ln{i -- .968,,),exp(lnfJ; + 1.968,,». (4.19)

Transformations of statistical data are undertaken for
a variety of reasons. It may be that transformed data
conform to a linear or additive model more accurately,
they may have more nearly constant variance, or may be
more nearly normally distributed. One of the most
important such goals is stabilisation of variance, so that
all of the observations have the same variability.

If the variance is already constant, as is approximately
true for low-level analytical data, then no data
transformation is required. If the standard deviation is
proportional to the mean (that is, the relative standard
deviation is constant), then the log transform stabilizes
the variance. In the case of analytical data spanning the
whole range, neither the log transformation nor the raw
data satisfy the assumption of constant variance.

As it turns out, there is a transformation that
accomplishes this goal. Suppose that there are random
variables Yi that estimate Jli, and suppose that Var(Yi) =
O"~v(JlJ. Consider a transformation z = f(y). It is well
known that, up to the first order,

Var(zi) = (f'(Jli»20"~V(Jli).

Thus, a transformation that fully stabilizes the variance
would be one in which

(f'(JI.;))2 =
qij v (Jl.J

or

f' ( 1

Jl.J=.

~~
This formulation gives us many familiar results. If

v(.u) = .u2, then

If(Jl.) = P

so

f(Jl) = In(Jl)

If V(Jl) = Jl (as in Poisson data), then

f'(Jl) = Jl-1n

so

f(Jl) = Jjl.

Note that this interval is symmetric on the log scale, but
asymmetric on the original measurement scale.

For our zinc data, a measured concentration of
80.0 ppt would use the first technique and have a 95%
confidence interval of 80.0:t(1.96)(29..1) = 80:t57.0
(because the standard deviation of the 80.0-ppt

measured value is vi (28.9)2 + (80)2(0.0390)2 = 29.1).

A measured value of 5000 ppt would use the second
method. The log measurement is 8.517 with standard
deviation O"e = 0.0390, so a 95% confidence interval on
the log scale is 8.517:t(1.96)(0.0390) = 8.517:t0.076,
or (8.441,8.593). Transforming the limits by exponentia-
tion, we arrive at the 95% confidence limit (4630,5390)
for the concentration.

We can also use this method to give confidence
intervals tor the average of a series of replicate
measurements. For low levels, the average of r
measurements will be approximately normally distrib-
uted with standard deviation VVar(l1)fr. For larger
values of 11, the average of the natural log of the r
measurements will have approximate standard deviation
0"" f ..;r. Confidence intervals can then be constructed
as described earlier using the' appropriate standard
deviations.

An alternative to the use of the raw or log data is a
new data transformation that can be used over the
whole range of the data. This is described in the next

If

v(y) = ~ + b2Jl2
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where a = 8" and b = 8", as is the case with analytical
data across the whole range, we have '

,f'(Jl) = -}

Table 1
Zinc parameter estimates

Maximum-likelihood estimate (MLE)Parameter

(X

p
U,
u.
S,
s.
Lc (peak area)
Lc (concentration)
Lo
LQ

490
7.06
204
0.0390
28.9 ppt
0.0390
965
67.1 ppt
135 ppt

314ppt

The MLEs were obtained using numerical methods in Fortran and
then used to calculate the critical value (Lc) limit of detection (Lo)
and limit of quantification (LQ). The first value reported for Lc is peak
area; the second is in units concentration (parts per trillion). The Lo
and the LQ are both in units of concentration. LQ was calculated using
a CV of 0.10. Both Lo and Lc were calculated using a 99% confidence
level.

va2+b2p.2'

which integrates to a multiple of

f(p.) = In(p. + vi p.2 +a2jb2)

(Hawkins, 2002; Durbin et al., 2002). We then have that
z = f(y) has constant approximate standard deviation
of b = 8" over the whole range. This is the same
standard deviation as In(y) has for high-level values, but
this transformation achieves the same standard devia-
tion across low levels as well.

We can use this to set a confidence interval that works
for any concentration. The inverse transformation of

z =f(y) = In(y+ Vy2 +a2jb2)

is

Table 2
Zinc data set

Number of
replicates

Concentration
in parts per
thousand

Average observed
response (peak area)

Predicted
response

0
10
20
100
200
500
1000
2000
5000
10,000
25,000

8
7
7

11
7
7
9
7
9

10
9

265
317
692

1290
2190
4110
7590

14,400
35,100
70,300

181,000

490
561
631

1200
1900
4020
7550

14,600
35,800
71,100

177,000

y = g(z) = (er -(~jb2)e-Y)j2.

For the zinc data, a2jb2 = 549,119. If we have a
measured value of 1000 ppt, then the transformed value
is 1(1000) = In(IOOO + V1OOO2 + 549, 119) = 7.716. A
95% confidence interval is 7.716:t(1.960)(0.0390), or
(7.640,7.692). Transforming back to the original scale
with the g inverse transformation gives (908,1098).

For low level data, the new transformation leads
to similar results to using the raw data. For J1 = 80 ppt,
the raw-data confidence interval is (23, 137), whereas the
transformation yields (23,137), the same up to whole
units of ppt. For a large value such as 5000 ppt, the use
of the log transform gives a confidence interval of (4632,
5397), whereas the new transformation yields (4628,
5401), the same to three significant figures.

The predicted response at each concentration was calculated using the
maximum-likelihood estimates for the parameters of the calibration
curve.

6. Instrumental method examples

In this section, we present two examples of analytical
methods and examine the fit of the two-component error
model. Our first example is a metal data set using
ICPMS. Our second example is an organic data set
using GC-MS. In both cases, we use the calibration
curve model (2.1).

response away from the calibration curve (that is, the
predicted response). Thus, the data exhibit the error
structure assumed by the model. The observed and
model predicted variances are shown in Fig. 3. Here
also, the linear increase in standard deviation at high
levels is clear, as well as an area at concentrations near
zero where the standard deviation appears to remain
somewhat constant.6.1. Zinc by ICPMS

6.2. Propionitrile by GS-MS

Our second example is a set of propionitrile data
measured at nine concentrations, using GC-MS, with
the number of replications varying between 4 and II.
The maximum-likelihood estimation results are shown
in Table 3. The summary data are shown in Table 4. The
observed and predicted responses are shown in Fig. 4.

This first example is a set of zinc data at 12
concentrations measured via IPCMS, with 7-11 replica-
tions at each concentration. The maximum-likelihood
parameter estimates for IX, />" (J" and (J" are shown in
Table I. The summary data are shown in Table 2. The
observed and predicted responses are shown in Fig. I.
A plot of the residuals vs. predicted values is shown in
Fig. 2. Note the increasing deviation of the observed
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Fig. Zinc-predicted and observed responses.

The residual vs. predicted plot is shown as Fig. 5. The
observed and predicted variances are shown in Fig. 6.
Once again, it can be easily observed that the data exhibit
the error structure of the model and the estimation routine
produces plausible results.

expression level. However, this proportionality cannot
continue down to genes that are entirely unexpressed
because that would imply zero measurement error,
which is not observed. The model described in this
section was originally developed in the context of
instrumental methods of analytical chemistry, but these
methods also exhibit the same kind of behavior
referenced above (Rocke and Lorenzato, 1995). This
model resolves the difficulties by incorporating both
types of error that are observed in practice into a single
model. This model provides an obvious advantage over
existing models by describing the precision of measure-
ments across the entire usable range. We also discuss the
application of the model to detection limits, categoriza-
tion of genes as expressed or unexpressed, comparison

7. Applications to biomarkers of exposure to toxic
substances via gene expression arrays

Just as with any other analytical technology, mea-
surement of gene expression with cDNA or oligonucleo-
tide arrays have measurement errors. It is commonly
observed (e.g., Chen et al., 1997) that the standard
deviation of measurements rises in proportion to the
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Ports per Trillion

Fig. 3. Predicted vs. observed standard deviation for zinc.

Table 3
Propionitrile parameter estimates

Table 4
Propionitrile data set

Parameter Maximum-likelihood
estimates

Concentration
in parts per
billion

Number of

replicates
Average observed Predicted
response (peak area) response

4.8
16.0
32.1
48.1
160
321
481
722
3010

7
8
7
3
6
4
3
5
4

7.16
18.1
31.7
42.0
151
284
431
658
2660

7.37
17.4
31.7
46.0
146
289
432
647
2680

(X

.8
iI.
tInS.

Sn
Lc (peak area)
Lc (concentration)
LD
LQ

559
18.7
147
0.0397
7.85 ppb
0.0398
900
18.3 ppb
36.8 ppb
85.6 ppb

The MLEs were obtained using numerical methods in Fortran and
then used to calculate the critical value (Lc) limit of detection (LD)
and limit of quantification (LQ). The first value reported for Lc is peak
area. The second is in units concentration (parts per billion). The LD
and the LQ are both in units of concentration. LQ was calculated using
a CV of 0.10. Both LD and Lc were calculated using a 99% confidence
level.

The predicted response at each concentration was calculated using the
maximum-likelihood estimates for the parameters of the calibration
curve.

level in molecular units, but can only do so relatively.
Model (2.1) then looks like this:

Y=IX+Jle"=e, (7.1)

where Y is the intensity measurement, Jl is the expression
level in arbitrary units, and IX is the mean background
(mean intensity of unexpressed genes).' Our best
estimate if Jl is y -a, the background-corrected ob-
served intensity. The first error term is e-N(O,O't),
which represents the standard deviation of the back-
ground (unexpressed genes), and the second error term
is ,,- N (0, 0',,), which represents the proportional error

of expression between conditions on the same gene,
construction of confidence intervals, and transformation
and weighting of expression data for use in comparisons
and in multivariate applications such as classification or
clustering. Some of the details for these methods are
explicated more fully in Rocke and Durbin (200 I) and
Durbin et al. (2002).

7.1. An error model for gene expression arrays I Background is used here for the statistical distribution of overall

intensity measurements for genes that are actually not expressed in the
sample. We do not discuss here the image processing issued in which
background may refer to the pixel distribution in areas of the slide in
which there is not spot.

For gene expression arrays, it is unusual to have
calibration data (that is, samples of known expression
levels); thus, we cannot actually discern the expression
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that always exists, but is noticeable mainly for highly
expressed genes.

Under this model, the variance of the response y at
concentration J1. is given by

2 '
Var(y) = J1.2ef1,,(e";; -.I) + a; = J1.2S; + 0";. (7.2)

We illustrate this with a data set from an experiment,
on the response of male Swiss Webster mice to a toxic
substance (Bartosiewicz et al., 2000). The treated
animal received an intraperitoneal injection of
15 mgjkg of p-naphthoflavone, whereas the control
mouse had an injection of the carrier (com oil) of equal
volume. The two-color spotted cDNA slides were
constructed using Molecular Dynamics equipment, with
data from a treated mouse and a control mouse on each
slide. Data were replicated usually a total of eight times

35000 500 1000 1500 2000 2500 3000

ports per billion

Fig. 4. Propionitrile--observed and predicted responses.

parts per billion

Fig. 6. Predicted vs. observed standard deviation fro propionitrile.
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14 16

per slide (meaning eight spots from the same microplate
well were placed on the slide). We use data from one
slide. Figs. 7-9 illustrate the phenomena. Fig. 7 shows
the close linear relationship between replicate mean and
replicate standard deviation at high expression levels. The
line shown is the predicted standard de,riation from the
model; the slope of this line at high levels is the relative
standard deviation. Fig. 8 shows the approximately
constant standard deviation of the natural logarithms
of the data above a log intensity of "" 13. Note that
when the RSD of the original set of replicates is not too
large, the standard deviation of the natu:rallogarithms is
about the same as the RSD of the untransformed data.
This figure also illustrates the vexing phenomenon that
the logarithmic transformation, which nicely stabilizes
the variance at high levels, produces highly variable

results for low expression levels. The lines show the
predicted standard deviation from the model for control
data (solid line) and treatment data (dotted line) using the
model along with the theoretical standard deviation. Fig.
9 shows the approximately constant variance of the raw
data below a measurement threshold as predicted by the
two-component model.

It is important to realize that most of the variation
observed on a cDNA or oligonucleotide array is caused
by variations in Jl, the actual expression. Variation
within replicated spots at the same level Jl of true
expression is the measurement error that we model, and
this is typically much smaller. For our example, the
observed mean intensity varies across genes from -6000
to >9,000,000 U. Using the two-component model,
the uncertainty in a mean of 9,000,000 U over eight

12
Mean of Replicates
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Fig. 9. Raw data for low-level expression (thousands).

replicate amounts to a confidence interval of
,..., 7,650,000-10,590,000 far smaller than the variability
between different genes. We also conjecture that
variation in Jl. across individuals or experimental
condition for a fixed gene also has ;1 two-component
structure in that the standard deviation at low expres-
sion levels is approximately constant whereas at high
expression levels, the RSD is approximately constant.
This issue will be addressed in further work.

This can be done separately for treatment and control
in a two-color array.

7.2. Estimation

A model such as (7.1) cannot be used in practice
unless the parameters can be estimated. In this
section, we discuss methods of estimation and necessary
characteristics of the data for e~;timation to be
possible.

7.2.1. Estimation of background using negative controls
The easiest way to estimate the mean IX and standard

deviation (1" of the low-level meastJ.rements is from
replicate blanks (negative controls}. The standard
deviation of the negative controls wollld be used as the
estimate of (1". The mean intensity of the negative
controls is a suitable estimate of IX, the mean back-
ground.

10 Begin with a small subset of genes with low intensity,
such as the 10% of genes with lowest intensity
measurements. Compute the mean XB of the genes
including all replicates and the pooled standard
deviation SB of replicates of these genes that have
been replicated. For each replicated gene to this
group, compute the standard deviation s; of the
replicates. If there are m replicated genes, pool these
estimates as follows:

m

SB = (n -m)-1 L sJ(n; -I),
;=1

where n; is the number of replicates for gene i and
n = L~I n;o If there are a large number of such
genes, or many replicates, it may be better to use only
those replicated genes whose average expression is
less than XB to determine SB.

20 Define a new subset consisting of genes whose
intensity values are in the interval [XB -2sB, XB +
2sB] 0 Recompute XB and sB.

30 Repeat the previous step until the set of genes does
not change.

At the final step, the set of genes should include at
least 95% of the unexpressed genes. If one includes the
genes below Xs -2ss, this would include -97.5% of the
unexpressed genes. Depending on the distribution of
actual expression levels, this estimate could be biased up
both in the mean and (slightly) in the standard
deviation, because it is impossible in principle to
distinguish an unexpressed gene from one with such a
low expression level that it is below detection limits.

7.2.2. Estimation of background with replicate
measurements

If we have replicated measurement:5, but no specific
negative controls, we can still estimatc~ the background
mean and variance. According to (7.1), intensity
measurements from unexpressed genes. will be normally
distributed with mean (X and standard deviation Ue.
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7.2.4. Estimation of the high-level RSD
The parameter 0"" can be estimated from the standard

deviation of the logarithms of high-level replicated
measurements in much the same way as the background
standard deviation can be estimated from the low-level
data. For each replicated gene that is expressed at a high
level, compute the standard deviation Sj of the
logarithms of the replicate estimates .a = y -a of 11..
If there are m replicated genes, one then pools these
estimates as follows:

Nonetheless, this estimate should be of considerable use
in screening genes for expression.

The standard deviation of an replicated ge:ne is at least
a", and for genes that are unexpressed or ,expressed at
very low levels, it will be essentially exactly this. This
process cannot lead to the empty set, because at least
one replicated gene will be included. In practice, the
process cannot converge to an estimate of IX or u" that
are systematically too small, and because the bias
in the standard deviation at low levels is typically small,
the estimates are rarely too large by much. Furthermore,
the solution to which this process conver~:es does not
appear at all to depend on the details of the' selection of
the initial set, so long as it is fairly small. These
observations have been confirmed by exteI1lsive simula-
tions that are omitted here. In the next section, we
present a method of estimating IX and al: even from
unreplicated data.

SH =/(n -m)-1 tsf(nj -;;,v \', -"'J £1"j \"j -'J

where ni is the number of replicates for gene i and n =
E;:\ ni. This method works because for high-expression
levels, (7.1) is indistinguishable from

J1 = Jl.eI1

7.2.3. Estimation of background without replication
In the absence of replicated measurements, it is still

possible to estimate the mean and vari~mce of un-
expressed genes (background); the following procedure
is recommended. This can be done separately for
treatment and control in a two-color array.

In(l1) = In(p.) + ",

which is a constant mean, constant variance model.
There is no method even in principle for estimating

measurement error without at least some replication
at high levels because it is impossible from an
unreplicated sample to know if an intensity value is
high because the expression is high or because of a
positive measurement error. This fact of life should be
an important determinant of experimental design is

mlcroarrays.

1. Begin with a small subset of genes with low intensity,
such as the 10% of genes with lowl~st intensity
measurements. Compute the mean XB and standard
deviation SB of these genes.

2. Define a new subset consisting of ~:enes whose
intensity values are in the interval [XII -2SB, XB +
2sB]. Recompute XB and SR.

3. Repeat the previous step until the set of genes does
not change.

7.2.5. What is "high" and "[ow" expression?
Given the model, and preliminary estimates of

the parameters, we can address the issue of high
and low expression and the variability of genes in
each group. The variance of y given by (7.2) can
be compared with the variance of y at low levels.
If the ratio is smaller than, say 0.9, then most of
the variance is due to the additive error component.
Thus,

(12
£(1~ +~~ 0.9,

"
(1;~ O.9a; + O.9Jl2S~,

., O.la:.~ .
Jl ~ 0:9S;f'

At the final step, the set of genes should iru;lude at least
95% of the unexpressed genes. As before, this estimate
may be biased upward but nonetheless should be of
considerable use in screening genes for expression. Note
that this procedure is less reliable than the one to be
used when there are an adequate number of replicates
because the standard deviation is taken across genes. If
some of these genes are actually expressed, the standard
deviation is elevated by the variation in means, whereas
this does not happen with replicated data.

A variant of this procedure may reduce the bias
somewhat. In this variant, one uses the IIlledian of the
expression levels of the subset of genes as tb,e estimate of
location, and uses MAD 0.6745 as the estimate of SB,
where the MAD is the median absolute deviation from
the median. This is calculated by subtracting the median
from each expression value in the subset, taking
absolute values, and taking the median of the resultant
set of absolute deviations.

(7.3).u~ 0""/3S,,.

Thus, one can define "low-lever' data as ones for which
the observed expression is smaller than this threshold.
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24,800
4800
0.227
0.080
0.236
34,300

25,300
9000
0.220
0.078
0.228
43,300

Ii

a,
a"
all/Vi
s"
Expression cutoff

For data with calibration curves, the most effective
estimation method is maximum likelihood, as described
in Rocke and Lorenzato (1995). A method of applying
maximum likelihood for replicated microarrays is in
development, but the more heuristic methods given here
may be satisfactory for many applications.

The recommended course of action at this point is to
use the data transformation

f(Jl.) =In(Jl.+ VJl.2+a2/b2). (7.5)

At that point, standard statistical methods can be used.
It is important to note that neither the raw data nor the
logarithms can be uniformly used without severe
problems. Only this new transformation behaves prop-
erly across a wide range of data.

This shows the estimates for the treatment and ,;ontrol data separately;
estimates for the combined model are given in Rocke and Durbin
(2001). In this case r, the number of replicates, lis eight. The expression
cutoff is the intensity above which the gene is expressed at a level that
is statistically significantly above zero.

Similarly

8. Conclusion,u2S2" 0'2
+ 2C'?~09 £ ,u "': .,

"
2S2,u " ~ 0.90-2

£

., 0.90-;

O.9Jl2 S~
The two-component error model is useful for many

applications in the assessment of environmental data
because it provides accurate estimates of error across the
entire usable range of a measurement technology, so
long as the data exhibit the error structure specified by
the model. The model has been tested on a wide variety
of data sets, three of which were shown here. The
estimation routine produces highly accurate maximum-
likelihood estimates for the model parameters for each
of the data sets tested.

The two-component error model is especially useful in
the calculation of critical value and limits of detection
based on standard probability theory and also allows
calculation of limits of quantification. Thus, the model
provides a solid analytical framework for making
detection decisions and a superior alternative to
previous methods for calculating the quantities men-
tioned above. That is, the model facilitates explicit
evaluation of the efficacy of alternative values for RSD
as a criterion of quantification.

.u~ ~ ~'

.u~ 30'"/S,,, (7.4)

gives a threshold above which the variance is mostly due
to the multiplicative component.

An examination of the example data shows that the
variance is approximately constant below '"'" 25, 000
and the variance of the logarithm is approximately
constant above -13. Use of the procedure given in
Sections 7.2.2 and 7.2.4 yields parameter estimates as
given in Table 5.

Using (7.3), for the control data, the logarithms have
approximately constant variance when

.u ~ 30',,/ S",

.u~61,OOO
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corresponding to a signal of 24, 800 + 61,000 = 85,800
and a log signal of 11.4. For the treatment data, the
equivalent values are J1.~ 118,400, corresponding to a
signal of 25, 300 + 118,400 = 143,700, and a log signal
of 11.9.

Using (7.4), the raw control data have approximately
constant variance when

J1.~O'B/3Sn,

Ji.~6800

corresponding to a signal of 24,800 -t 6800 = 31,600.
For the treatment data, the equivalent calculation gives
Jl.~ 13,200, corresponding to a signal of 38,500. In the
range 31,600 to 85,800 for controls and 38,500-143,700
for treatment, both the variance and the coefficient of
variation are changing substantially.
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