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ABSTRACT OF THE DISSERTATION

Transient Frequency Analysis and Distributed Synthesis
for Power Networks

by

Yifu Zhang

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Jorge Cortés, Chair

Electric power systems safety is a fundamental aspect of the operation and management

of the grid. In order to maintain safety, the power system is operated around a nominal fre-

quency. In fact, large frequency fluctuations can trigger generator relay-protection mechanisms

and load shedding, which may further jeopardize network integrity, leading to cascading fail-

ures. Without appropriate estimations on the possible consequences resulting from contingency,

operational architectures, and control safeguards in place, the likelihood of such events is not

negligible, given that the high penetration of non-rotational renewable resources provides less

inertia, possibly inducing higher frequency excursions. These observations motivate us in this

xv



thesis to develop approximation and control schemes to efficiently estimate the transient-state

evolution subject to disturbances and contingencies and further actively mitigate undesired tran-

sient frequency deviations.

This thesis first develops methods to efficiently compute the set of disturbances on a

power network that do not tip the frequency of each bus and the power flow in each transmis-

sion line beyond their respective bounds. For a linearized power network model, we propose a

sampling method to provide superset and subset approximations with a desired accuracy of the

set of feasible disturbances. We also introduce an error metric to measure the approximation gap

and design an algorithm that is able to reduce its value without impacting the complexity of the

resulting set approximations.

As a natural follow-up to our on approximating feasible disturbances, we seek to further

regulate transient frequency via novel control schemes. With regard to this, this thesis proposes

three control strategies that all achieve local stabilization of power networks characterized by

nonlinear swing equations and, at the same time, delimit the transient frequencies of targeted

buses to a desired safe interval. To handle the coordination of large numbers of resources in an

adaptive and scalable fashion, all three controllers can be implemented in an either partially or

fully distributed fashion. Specifically, we synthesize the first transient frequency controller by

having it satisfy a transient frequency constraint and an asymptotic stability constraint. Bene-

fitting from its structural simplicity, the controller can be implemented in a distributed fashion

by merely allowing each controlled bus physically measure the states of neighbors. To reduce

the control effort, the second MPC-based controller enables control command cooperation by

communication; however, the coordination is limited within a designed range, and the control

algorithm is only partially distributed, potentially non-Lipschitz, and not as computationally ef-

ficient. The third controller successfully addresses all these issues via a bilayered structure and

information exchange with up to 2-hop neighbors.

xvi



Chapter 1

Introduction

The electric power network has been greatly expediting the developments of numerous

scientific and engineering disciplines since the 19th century, which in turns facilitate the evolu-

tion of power systems themselves. To maintain system security and integrity, the power network

is required to operate within prescribed bounds around the nominal frequency of 60Hz or 50Hz.

Without appropriate operational architectures and control safeguards in place, large frequency

fluctuations can trigger generator relay-protection mechanisms and load shedding, which may

further jeopardize network integrity, leading to cascading failures. Traditionally, the frequency

deviation is regulated by shaping the generators output to preserve a balance between generation

and load through a hierarchical control structure consisting of primary, secondary, and tertiary

controls occurring over a continuum of time.

Tertiary control is the highest but also the slowest layer in the control hierarchy. Con-

cerned with a global view and operating over an extensive range, it determines the generation

level of generators based on the predicted load, and adjusts its commands over different time-

scales, ranging from 24 hours to 10-30 mins intervals. However, due to its slow time-scale

and prediction error, tertiary layer by itself cannot restore frequency to the nominal value at

steady-state. This calls for the secondary layer which intervenes at a faster time-scale ranging

1



from 30s to 15 min. Specifically, secondary layer gathers local measurements, compares them

with the prediction, and correspondingly adjusts generation determined by the tertiary layer in a

more detailed fashion to finally eliminate steady-state error. Primary control, also called droop

control, is regulated independently on each controlled plant to stabilize the power network, to

dampen frequency deviations, and to establish power sharing. Primary control, as the lowest

control layer with no need of communication, typically reacts immediately within a few seconds

following disturbances.

However, the hierarchical control structure faces fundamental challenges as technolog-

ical advances are driving power networks to a cleaner outlook, progressively penetrated by re-

newables such as wind and solar. Differing from traditional fossil fuel resources, renewables

typically contribute less to stability and robustness margins. In detail, the rotating component of

synchronous machines using traditional resources naturally provides inertia to the power net-

work, whereas power electronics connecting renewable resources possess much less inertia.

Therefore, in the absence of inertia dampening the reactions of the power network, disturbances

and contingencies may lead to higher transient frequency fluctuations, resulting in relay pro-

tections that isolate affected generators from the rest of the network. Consequently, the loss of

network integrity could further trigger larger abnormal state deviations, leading to the risk of

cascading failures. This calls for a re-design of the primary control layer to adequately maintain

the frequency deviations within a desired range. On the other hand, it is crucial to preserve the

distributed nature of the primary layer for scalability and fast response.

Motivated by the critical issues in power network safety mentioned above, this thesis

considers and attempts to answer two questions: how to identify the severity of disturbances,

and, in a further step, how to mitigate severe disturbances with novel distributed control algo-

rithms. The first part (Chapter 3) characterizes the set of tolerable disturbances that do not tip

bus frequency and transmission line power flow beyond their in corresponding bounds. In this

part, the control strategy is assumed to be the traditional droop control. For instance, in Fig-

2
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Figure 1.1: An illustration of the thesis topics on disturbance characterization and transient
frequency control.

ure 1.1, the disturbance is not tolerable as it drives some frequency evolution (solid line) beyond

the safe bound. The second part (Chapters 4, 5, and 6) proposes three distributed controllers

that, while preserving network stability, are able to maintain transient frequency safety even un-

der disturbances considered not tolerable with droop control. The dashed line in Figure 1.1 is a

desired trajectory using the proposed controllers. These three chapters are in a progressive rather

than a parallel fashion: Chapter 4 proposes the first transient frequency controller with stability

guarantee. Based on it and to reduce control cost, the control algorithm in Chapter 5 enables

nodal cooperation, but the coordination is only regional rather than global, and the controller

is computationally intensive and potentially non-Lipschitz. Finally, the proposed controller in

Chapter 6 has no such issues.

1.1 Literature review

Facing challenges and embracing opportunities, the hierarchical control structure of power

systems [Ili07, GVM+11] is moving towards new designs from various sides. Concerns on en-

3



vironmental sustainability lead to the shift from traditional power plant using fossil fuels with

bulk and steady generations to renewable distributed energy resources (DERs) with small and

variable outputs [HJX08, DK08, JMLJ13, DSSPG19]. This, together with the controllable load-

side devices integrated in the power network, dramatically increases the number of controllable

variables and the complexity of optimizing the system [SIF16, BLR+10]. Meanwhile, with the

increased numbers and types of sensors, huge amount of data are collected on the operating con-

ditions of the power network [GM16, Dar05]. These emerging issues and opportunities, with

the advancement of computation and communication, are pushing the power network control to

a structure that is autonomous, scalable, safe, robust, economic, and flexible [Kro17]. Towards

these directions, various control and optimization strategies have been proposed: distributed op-

timal power flow [DZG13, Ers14, LZT12], load-side regulation [MZL14, WA04], virtual iner-

tia placement [MDH+18, PBD17], privacy-preserving energy management [MM09, HGKX17],

and electricity market mechanism design [AMDM01, TJ13]. On the other hand, power networks

fall into the general category of safety-critical systems whose failure could lead to loss of life

or significant property and environment damages [Kni02]. Various analysis methodologies and

protection mechanisms have been discovered, proposed and applied to guarantee safety: formal

method on software engineering [BS93, NRZ+15], redundant design on flights [HG05, SLJ15],

humour and sublimation on psychological defence [BDS98, Kub71], to mention a few. Specif-

ically, this thesis focuses on transient-state safety characterization and transient frequency con-

trol.

1.1.1 Transient-state safety

There are two major methods [KPA+04, GTK14] for analyzing safety in power net-

works: time-domain and Lyapunov direct methods. The time-domain method [NFP+13, DN11,

FCE+99] usually refers to the numerical simulation of the system behavior for some specific

disturbance. Depending on the numerical solver, this method is able to consider almost any

4



power network model and to precisely depict the state trajectories, provided that the system

parameters are accurately known. However, the time-domain method cannot answer question

regarding how far the system is from (in)stability and can hardly provide guidelines for con-

trol [PERV12]. The Lyapunov direct method [Pai89, CWV94, AMA13, DB12, VAMT16] fo-

cuses on estimating the region of attraction of the system equilibrium using Lyapunov functions

to ensure the stability of the power network without knowing the specific form of the disturbance

(provided the initial state lies in a suitable identified region). Most of the direct methods require

less simulation/computation time than time-domain methods and, more importantly, are able to

provide stability margins and parameter sensitivity analysis. However, due to the difficulty of

finding Lyapunov functions, especially for power systems with complex dynamics subject to

time-varying disturbances, and the conservativeness required in bounding their evolution, the

identified regions of attraction may in general be coarse approximations of the actual one. In

this thesis we take the alternative approach of identifying the set of disturbances under which the

state of the power system remains within some desired bounds during transients. The availability

of these descriptions makes it possible to quantify network robustness by, for instance, defining

metrics that measure the minimum disturbance that is able to force the system out of the safety

region, see e.g., [ZC16, BS16]. Such notions are useful in the context of cascading failures anal-

ysis and, unlike much of the literature, see e.g., [SMZ17, YNM17], they help identify conditions

for triggering initial failures that incorporate the effect of not only network connectivity, but also

network dynamics.

Transient-state safety analysis is also related to the literature on the characterization of

forward and backward reachability sets, see [Mit07, KB06a, Dan06] and, in the context of power

systems, [CDG12] for linear dynamics, [VPA14, EGHA16, EGSS+18] for nonlinear dynamics

with time-varying uncertainty, and [CSD16] for constant uncertainty. Given regions of initial

states and possible input signals, a state belongs to the forward reachability set if there exists

an initial state and an input signal trajectory that steer the dynamical system to this particular
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state. Similarly, a state belongs to the backward reachability set if the system can be driven

starting from this state into the region with an input trajectory. In general, both types of sets are

too difficult to compute precisely, so instead the emphasis is put on constructing accurate inner

and outer approximations. An important observation is that reachability set analysis puts the

emphasis on characterizing the achievable system states and ensuring that transient trajectories

satisfy desired specifications given the set of allowable inputs or disturbances. However, there

is a entirely complementary research direction worth investigating: how to characterize the set

of disturbances that do not cause the system state to violate the desired specifications. Along

this line, the recent paper [LAVT18] provides an inner approximation of the set of bounds on

arbitrary disturbances that respect transient-state safety for the nonlinear swing dynamics but

without a formal guarantee on its accuracy.

1.1.2 Distributed transient frequency control

In transient-state safety analysis, it is generally assumed that the system is closed-loop

with a droop controller whose output is simply linear in frequency. Considering the numerous

well-developed control frameworks [ÅströmK14] proposed in the past several decades, naturally

one would like to ask the following question: given a disturbance that is able to make a power

network with the droop controller unsafe during transients, it is possible to re-design the con-

troller so that the new closed-loop system is safe during transients against the same disturbance?

To answer this question, various techniques have been proposed to improve transient behavior,

especially transient frequency. These include resource re-dispatch with transient stability con-

straints [AM06, NNK11]; thyristor-controlled series capacitor compensation to optimize trans-

mission impedance and keep power transfer constant [GP01]; the use of power system stabilizers

to damp out low frequency inter-machine oscillations [MPAH14], and placing virtual inertia in

power networks to mitigate transient effects [BLH15, PBD17]. While these approaches have a

qualitative effect on transient behavior, they do not offer strict guarantees as to whether the tran-
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sient frequency stays within a specific region. Furthermore, the approach by [BLH15] requires

a priori knowledge of the time evolution of the disturbance trajectories and an estimation of the

transient overshoot. Alternative approaches rely on the idea of identifying the disturbances that

may cause undesirable transient behaviors using forward and backward reachability analysis,

see e.g., [Alt14, CDG12, CSD16] and our previous work [ZC17]. The lack of works that pro-

vide tools for transient frequency control motivates us here to design feedback controllers for

the generators that guarantee simultaneously the stability of the power network and the desired

transient frequency behavior.

Asymptotic stability can be established by identifying a control Lyapunov function and

enforcing its monotonic decrease along the system dynamics. In the last two decades, researchers

mainly in robotics have formally developed barrier certificates [Pra06] and latter control barrier

function method [XTGA15, AXGT17] to establish provable safety control of dynamical sys-

tems. The term ‘barrier’ was motivated by the barrier function in the optimization literature,

which works as a penalization to the cost function to avoid constraint violations [ACE+19].

Similarly, a barrier function in dynamical system plays the role of constraining state trajectorys,

and prescribing control commands to gradually kick in as the trajectory approaches the bound-

ary of a prescribed safe region. Moreover, in order to simultaneously guarantee both stability

and safety, a natural idea is to seek for a controller which satisfies a stability condition as well

as a barrier function condition; however, possible trade-offs have to be made [XTGA15], since

such a combination may be infeasible. Interestingly, it is currently an open problem to determine

if such trade-offs are necessary, or there actually exists another pair of control Lyapunov func-

tion and control barrier function that can be satisfied at the same time. In addition, besides the

methodology based on barrier function, many other safety-oriented control strategies have been

proposed, e.g., modified backstepping for nonovershooting control [KB06b], model reference

L1 adaptive control with guaranteed transient performance [CH08], and adaptive sliding model

control for safe output tracking [YT94], to mention but a few. However, as opposed to the bar-
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rier function method, most of them more or less rely on high-gain feedback, sufficiently forcing

system state to evolve only within a small region close to the equilibrium to enforce transient

safety.

Considering controller cost and scalability implemented on large-scale power networks,

a related body of work [VHRW08, MRRS00, JK02] looks at reducing control effort while re-

specting performance requirements, and investigates distributed model predictive control (MPC)

for networked systems. However, the proposed distributed implementations may jeopardize net-

work stability. Particularly, [JK02] treats each subsystem as an independent system by con-

sidering the effect of other subsystems as bounded uncertainty, which complicates obtaining

stability guarantees for the whole system. In fact, [VHRW08] shows that, if each subsystem

has no knowledge of other subsystems’ cost functions [CJKT02], this leads to a noncooper-

ative game, and the control input trajectory may even diverge. In addition, some MPC ap-

proaches [VHRW08, NCF+14] restrict the predicted horizon to a single step in order to obtain

distributed strategies, since otherwise the control signal may require global state or global sys-

tem parameter information. Furthermore, a challenge in employing MPC techniques in the spe-

cific context of power networks [JLSH15, VHRW08, FIDM14] is that, as the equilibrium point

heavily depends on modeling and network parameters that cannot be precisely known, it is ana-

lytically hard to establish robust stabilization given that the objective function generally requires

knowledge of the equilibrium point.

1.2 Contributions

Chapter 3 focuses on characterizing tolerable disturbances for power networks transient-

state safety. We consider a linearized AC power network subject to multiple disturbances, with

each one modeled as amplitude multiplying a time-varying signal, injected at various buses.

We distinguish between three cases: when the form of the trajectory is totally known, partially
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known, or totally unknown but bounded. A disturbance is tolerable for the transient-state safety

of the power network if the frequency of each bus and the power flow in each transmission line

still remain in their respective bounds during a given period of time. Our main goal is to design

efficient ways of computing the transient-state tolerableness set consisting of all such classes

of disturbances. Our first contribution shows that all three transient-state tolerableness sets can

be equivalently expressed in a unified way that contain infinitely many constraints. The second

contribution develops a sampling method to approximate these sets by synthesizing inner and

outer approximations. The inner approximation is computed by sampling and tightening the

constraints at finite discrete-time instants. We use the network dynamics to upper and lower

bound the evolution of state signals and show that satisfying the constraints at these finite instants

ensures in fact that all constraints are respected at all times. The outer approximation comes from

using only a finite number of the constraints appearing in the original transient-state tolerableness

set. We show that, as the number of sampling points increases, the approximation sets converge

to the real transient-state tolerableness set. Our third contribution consists of defining a metric to

measure the approximation gap by estimating the region difference between the approximations

and the real set. We characterize the sampling sequence that, for a fixed number of sampling

points, results in the minimal gap of the approximations and design an algorithm to find it by

efficiently adjusting the positions of the sampling points. We illustrate our results on the IEEE

39-bus power system by showing the inner and outer approximations of the three tolerableness

sets.

With the transient-state safety analysis established, Chapters 4, 5, and 6 provide three

controllers to regulate transient-state (especially transient frequency) so that with the assistance

of the controller, transient frequency evolves within a safe region even under intolerable distur-

bances. As the foundation of these three chapters, Chapter 4 proposes a non-optimization-based,

distributed controller, available at specific individual generator nodes, that satisfies the following

requirements (i) renders the closed-loop power network asymptotically stable; (ii) for each con-
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trolled generator node, if its initial frequency belongs to a desired safe frequency region, then its

frequency trajectory stays in it for all subsequent time; and (iii) if, instead, its initial frequency

does not belong to the safe region, then the frequency trajectory enters it in finite time, and once

there, never leaves. Our technical approach to achieve this combines Lyapunov stability and set

invariance theory. We first show that requirement (iii) automatically holds if (i) and (ii) hold

true, and we thereby focus our attention on the latter. For each one of these requirements, we

provide equivalent mathematical formulations that are amenable to control design. Regarding

(i), we consider an energy function for the power system and formalize it as identifying a con-

troller that guarantees that the time evolution of this energy function along every trajectory of the

dynamics is non-decreasing. Regarding (ii), we show that this condition is equivalent to having

the controller make the safe frequency interval forward invariant. To avoid discontinuities in the

controller design on the boundary of the invariant set, we resort to the notion of barrier functions

to have the control effort gradually kick in as the state trajectory approaches the boundary. Our

final step is to use the identified constraints to synthesize a specific controller that satisfies both

and is distributed. The latter is a consequence of the fact that, for each bus, the constraints only

involve the state of the bus and that of neighboring states. In addition, we analyze its robust-

ness properties against measure error and parameter uncertainty, quantify its magnitude when

the initial state is uncertain, and provide an estimation on the frequency convergence rate from

the unsafe to the safe region for each controlled generator. We illustrate the performance and

design trade-offs of the proposed controller on the IEEE 39-bus power network.

Although it guarantees transient frequency safety and power network stability, the con-

troller proposed in Chapter 4 is in fact myopic, without prediction capabilities. To address the

issue of control cost reduction, we propose a receding-horizon MPC strategy in Chapter 5 which

takes requirements (i)-(iii) into account, with consideration of control economy. Specifically,

we first formulate a non-convex finite-horizon open-loop optimal control problem whose solu-

tion is the control trajectory minimizing the overall cost under stability and transient frequency
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constraints. We then propose a reference trajectory technique for convexification. The central-

ized closed-loop control signal for each state is defined as the first-step solution of the optimal

control problem. To enable distributed control, we partition the network into different regions

and apply the centralized control for each region, while taking into account the dynamics of the

transmission lines connecting different regions. The resulting control signal for each bus only re-

lies on system information of the region to which the bus belongs to and its neighboring regions.

However, some critical problems and potential improvements arise as we explore its analytical

properties and practical applicability; first, we are not able to show the Lipschitz continuity of the

controller; second, in the open-loop optimal control problem, the prediction model is discretized

by first-order forward Euler method, whose discretization step has to be sufficiently small so that

it approximates the real continuous-time power network dynamics. This in turns significantly

constrains the prediction horizon due to the limited computational resources; third, the proposed

regional implementation is only partially distributed: given a set of regions in the network, a cen-

tralized controller aggregates information and determines the control actions within each region,

independently of the others.

Chapter 6 proposes a bilayer control structure that deals with these three issues while

still taking the baseline requirements (i)-(iii) as well as control economy into consideration.

The bottom layer solves periodically a finite-horizon convex optimization problem and globally

allocates control resources to minimize the overall control effort. The optimization problem

incorporates a prediction model for the system dynamics, a stability constraint, and a relaxed

frequency safety constraint. The prediction model is a linearized and discretized approximation

of the nonlinear continuous-time power network dynamics, carefully chosen to preserve its local

nature while keeping the complexity manageable. As a consequence, in the resulting convex

optimization problem, the objective function can be interpreted as the sum of local control costs,

and each constraint only involves local decision variables. This enables us to apply saddle-point

dynamics to recover its solution in a distributed fashion by allowing each bus (resp. line) to
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exchange system information within its neighboring buses (resp. lines). On the other hand, the

top layer, as a real-time feedback controller, acts as a compensator, bridging the mismatch be-

tween the actual continuous-time power network dynamics and the sampled-based information

employed in the bottom layer to rigorously guarantee frequency safety. The top layer control

signal regulating on a generic bus only depends on physical measurements of system informa-

tion within the range of its neighboring transmission lines. We show that both two layer control

signals are Lipschitz in system state. We illustrate the performance of the proposed bilayered

controller architecture in the IEEE 39-bus power network.

1.3 Organization

In Chapter 2, we briefly introduce some notions, notation, and power network dynamics

used throughout this thesis. In Chapter 3, we develop methods to efficiently compute the set of

disturbances on a power network that do not tip the frequency of each bus and the power flow

in each transmission line beyond their respective bounds. In Chapters 4, 5, and 6, we introduce

three different but related distributed control strategies regulated on a subset of individual buses

in a power network described by the swing equations to achieve transient frequency control while

preserving asymptotic stability. Finally, Chapter 7 summarizes our contributions and provides

some future research directions.
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Chapter 2

Preliminaries

This section introduces basic notation and notions from graph theory, optimization, set

limit, dynamical systems, set invariance, and power network dynamics. 1

2.1 Notation

Let N, R, R>, and R> denote the set of natural, real, strictly positive, and nonnegative

real numbers, respectively. Variables are assumed to belong to the Euclidean space unless spec-

ified otherwise. For a,b ∈ N, denote [a,b]N , {x ∈ N | a 6 x 6 b}. Denote by dae as the ceiling

of a ∈R. Given C ⊂Rn, ∂C denotes its boundary. We let ‖ ·‖2 denote the 2-norm on Rn. For a

point x ∈ Rn and r ∈ R>, denote Br(x) ,
{

x′ ∈ Rn
∣∣ ‖x′− x‖2 6 r

}
. Denote 1n and 0n in Rn as

the vector of all ones and zeros, respectively. For A ∈ Rm×n, let [A]i and [A]i j denote its ith row

and (i, j)th element. For A ∈ Rn×Rn, denote as A � 0 and A � 0 if A is positive semidefinite

and positive definite. Let 1n and 0n in Rn denote the vector of all ones and zeros, respectively.

We denote by A† its unique Moore-Penrose pseudoinverse and by range(A) its column space.

A continuous function α : R→ R is of class-K if it is strictly increasing and α(0) = 0 (note

the slightly different convention with respect to the literature of taking the domain space to be

1Notations in the rest chapters are independent except for those introduced in this chapter.
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R instead of R>). Given a differentiable function l : Rn→ R, we let ∇l denote its gradient. A

function f : R>×Rn→Rn, (t,x)→ f (t,x) is Lipschitz in x (uniformly in t) if for every x0 ∈Rn,

there exist L,r > 0 such that ‖ f (t,x)− f (t,y)‖2 6 L‖x−y‖2 for any x,y ∈ Br(x0) and any t > 0.

For scalars a,b ∈ R, let

[a]+b =


a if b > 0,

max{a,0} if b 6 0.

For vectors a,b ∈ Rn, [a]+b ∈ Rn is the vector whose ith component is [ai]
+
bi

for every i ∈ [1,n]N.

Denote the sign function sgn : R→{0,1} as

sgn(a) =


1 if a > 0,

−1 if a < 0.

Define the saturation function sat : R→ R with limits amin < amax as

sat(a;amax,amin) =


amax a > amax,

amin a 6 amin,

a otherwise.

For a function : F : X ×Y →R, (x,y)→ F(x,y), denote by ∇xF (resp. ∇yF) the partial

derivative of F with respect to x (resp. y). Second-order derivatives follow the usual convention

∇xyF = ∂ 2F
∂x∂y and ∇xxF = ∂ 2F

∂x2 . A point (x∗,y∗) ∈ X ×Y is a saddle point of F on the set

X ×Y if F(x∗,y)6 F(x∗,y∗)6 F(x,y∗) holds for every (x,y) ∈X ×Y .
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2.2 Graph theory

We present basic notions in algebraic graph theory from [BCM09, Big94]. An undirected

graph is a pair G = (I ,E ), where I = {1, . . . ,n} is the vertex set and E = {e1, . . . ,em} ⊆

I ×I is the edge set. A path is an ordered sequence of vertices such that any pair of consecutive

vertices in the sequence is an edge of the graph. A graph is connected if there exists a path

between any two vertices. Two nodes are neighbors if there exists an edge linking them. Denote

by N (i) the set of neighbors of node i. For each edge ek ∈ E with vertices i, j, the orientation

procedure consists of choosing either i or j to be the positive end of ek and the other vertex to be

the negative end. The incidence matrix D = (dki) ∈ Rm×n associated with G is then defined as

dki =


1 if i is the positive end of ek,

−1 if i is the negative end of ek,

0 otherwise.

2.3 Set limit

We introduce basic definitions from set theory [Res98]. Given a sequence of sets {Ak}∞
k=1,

define

liminf
k→∞

Ak ,
⋃
k>1

⋂
j>k

A j, limsup
k→∞

Ak ,
⋂
k>1

⋃
j>k

A j.

It holds that liminf
k→∞

Ak ⊆ limsup
k→∞

Ak. Furthermore, if liminf
k→∞

Ak = limsup
k→∞

Ak = A, then we say the

limit of {Ak}∞
k=1 exists and is A. In shorthand notation, we write Ak→ A. For a set C and two set

sequences {Bk}∞
k=1 and {Ck}∞

k=1, if C ⊆ Bk ⊆Ck (resp. Ck ⊆ Bk ⊆C) for all k > 1, and Ck→C,

then Bk→C.
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2.4 Convex optimization

In this section we review basics of convexity, convex optimization with its relation to

saddle points from [BV04]. A function f : X → R is convex if

f (λx+(1−λ )y)6 λ f (x)+(1−λ ) f (y)

holds for every x,y ∈X and λ ∈ [0,1]. If f is twice differentiable, then f is called strongly

convex if ∇2 f (x) � mI with some m > 0 for every x ∈X . Specifically, a quadratic function

xT Hx is strongly convex if and only if H � 0.

Consider

min f (x),

s.t. g(x)6 0m, (2.1)

h(x) = 0p, (2.2)

where f : Rn → R, g : Rn → Rm, and h : Rn → Rp are continuously differentiable. The re-

fined Slater condition holds for (2.1) if there exists x ∈ Rn such that h(x) = 0p, g(x) 6 0m, and

g j(x)< 0 for all nonafine functions g j, where g j is the jth component of g. Note that the refined

Slater condition reduces to feasibility when constrains are all linear equalities and inequalities.

The optimization (2.1) is convex if f and g are convex and h is affine. Define the Lagrangian

associated with the optimization problem as

L(x,η ,µ) = g(x)+η
T g(x)+µ

T h(x), (2.3)

where η ∈Rm
> and µ ∈Rp. If the optimization is convex and satisfies the refined Slater condition,

then strong duality holds, further implying that at least one primal-dual solution (x∗,η∗,µ∗)

16



of (2.1) exists, and the set of primal-dual solutions is exactly the set of saddle points of L on the

set Rn× (Rm
>0×Rp).

2.5 Dynamical system and set invariance

We introduce here notions of forward invariance [Kha02] for dynamical system. Con-

sider the non-autonomous system on Rn,

ẋ = f (t,x), x(0) = x0, (2.4)

where f : R>×Rn→ Rn. We assume f is piecewise continuous in t and Lipschitz in x, so that

the solution of (2.4) exists and is unique. A set C ∈ Rn is (forward) invariant for system (2.4)

if for every initial condition x0 ∈ C , the solution starting from x0 satisfies x(t) ∈ C for all t > 0.

The following result states a sufficient and necessary condition for a set to be forward invariant

for (2.4).

Lemma 2.5.1. (Nagumo’s Theorem [BM08]): Let l : Rn→R be continuously differentiable and

let C ,
{

x
∣∣ l(x)6 0

}
. Suppose that for all x∈C , there exists s∈Rn such that l(x)+∇l(x)T s <

0. Furthermore, suppose there exists a Lipschitz function φ : Rn→Rn such that ∇l(x)T φ(x)< 0

for all x ∈ ∂C . Then C is forward invariant if and only if ∇l(x)T f (t,x)6 0 for all x ∈ ∂C .

The assumptions in Nagumo’s Theorem ensure that the set C is regular enough to have

a well-defined interior and boundary.

2.6 Power network dynamics

Here we introduce the power network dynamical model characterized by nonlinear swing

equations and its linearization.
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The power network is encoded by a connected undirected graph G = (I ,E ), where

I = {1,2, · · · ,n} is the collection of buses and E = {e1, · · · ,em} ⊆I ×I is the collection of

transmission lines. For each node i ∈I , let θi ∈ R, ωi ∈ R and pi ∈ R denote its voltage angle,

shifted voltage frequency relative to the nominal frequency, and constant active power injection,

respectively. We partition buses into I u and I \I u, where every bus i∈I u possesses an addi-

tional control command ui (we explicitly allow for the possibility that I u = I ). The dynamics

is described by the swing equations [MBB08, BH81] for voltage angles and frequencies,

θ̇i(t)= ωi(t), ∀i ∈I , (2.5)

Miω̇i(t)=−Eiωi(t)−∑
j∈N (i)

bi j sin(θi(t)−θ j(t))+ui(t)+ pi, ∀i ∈I u,

Miω̇i(t)=−Eiωi(t)−∑
j∈N (i)

bi j sin(θi(t)−θ j(t))+ pi, ∀i ∈I \I u,

where bi j ∈ R> is the susceptance of the line connecting bus i and j, and Mi ∈ R> and Ei ∈ R>

are the inertia and damping coefficients of bus i ∈I . For simplicity, we assume that they are all

strictly positive.

For our purposes, it is convenient to rewrite the dynamics (2.5) in a more compact way.

Let θ , [θ1, · · · ,θn]
T ∈Rn, ω , [ω1, · · · ,ωn]

T ∈Rn and p , [p1, · · · , pn]
T ∈Rn be the collection

of voltage angles, frequencies, and power injections. Let D ∈ Rm×n be the incidence matrix

corresponding to an arbitrary graph orientation, and define the voltage angle difference vector

λ , Dθ ∈ Rm. (2.6)

Note that, if the transmission line ek has bus i (resp. j) as its positive (resp. negative) end, then

by the definition of incidence matrix, one has λk = θi− θ j. Therefore, the vector λ stands for

the collection of angle differences between any two adjacent buses. Denote by Yb ∈ Rm×m the

diagonal matrix with [Yb]k,k = bi j, for k = 1,2, · · · ,m. We write the dynamics (2.5) in terms of λ
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and ω as

λ̇ (t) = Dω(t), (2.7a)

Miω̇i(t) =−Eiωi(t)− [DTYb]i sinλ (t)+ui(t)+ pi, ∀i ∈I u, (2.7b)

Miω̇i(t) =−Eiωi(t)− [DTYb]i sinλ (t)+ pi, ∀i ∈I \I u, (2.7c)

where sinλ (t)∈Rm is the component-wise sine value of λ (t). Note that the transformation (2.6)

enforces λ (0)∈ range(D). We refer to an initial condition satisfying this equation as admissible.

When convenient, for conciseness, we use x(t) , (λ (t),ω(t)) ∈ Rm+n to denote the collection

of all states, and we neglect its dependence on t if the context is clear. In a clearer way, one can

re-write (2.7) into the following compact form,

λ̇ (t) = Dω(t), (2.8a)

Mω̇(t) =−Eω(t)−DTYb sinλ (t)+ p+u(t), (2.8b)

where u(t) ∈ A ,
{

z ∈ Rn
∣∣ zw = 0 for w ∈I \I u}, M , diag(M1,M2, · · · ,Mn) ∈ Rn×n, and

E , diag(E1,E2, · · · ,En) ∈ Rn×n.

Remark 2.6.1. (Distributed dynamics): We emphasize that the dynamics (2.8) is naturally dis-

tributed, i.e., the evolution of any given state is fully determined by the state information from

its neighbors. Specifically, for each (i, j) ∈ E , λ̇i j is determined by ωi and ω j, i.e., the states

of neighbors of edge (i, j); for each i ∈F ; ω̇i is determined by ωi, Ei, pi, αi and λi j, bi j with

(i, j) ∈ E that are either state, parameter, and power injections belonging to node i, or states and

parameters of its neighboring edges. •

The trajectories (λ (t),ω(t)) locally converge to a unique equilibrium point if all ui’s

are set to zero. Specifically, let L , DTYbD and L† be its pseudoinverse. Define ω∞ , ∑
n
i=1 pi

∑
n
i=1 Ei

,
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E , diag(E1,E2, · · · ,En), and p̃ , p−ω∞E1n. If

‖L† p̃‖E ,∞ < 1, (2.9)

where ‖y‖E ,∞ , max(i, j)∈E |yi− y j|, then there exists

λ
∞ ∈R ,

{
λ
∣∣ |λi|< π/2, ∀i ∈ [1,m]N

}
that is unique in Rcl ,

{
λ
∣∣ |λi|6 π/2, ∀i ∈ [1,m]N

}
such that

p̃ = DTYb sinλ
∞ (2.10)

λ
∞ ∈ range(D). (2.11)

According to [DCB13, Lemma 2 and inequality (S17)], system (2.7) with ui ≡ 0 for every i ∈

I u, (λ ∞,ω∞1n) is stable. Furthermore, (λ (t),ω(t)) locally converges to (λ ∞,ω∞1n) provided

λ (0) ∈ range(D). Throughout the rest of the chapter, we assume that (2.9) holds.Interestingly,

the term ‖L† p̃‖E ,∞ stands for the maximum angle difference between any two adjacent nodes at

the steady state for the linearized dynamics of (2.7). We refer to [DCB13] for a detailed physical

interpretation.

For the purpose of analyzing power network robustness against time-varying distur-

bances without the additional assistance from u, we set u to zero, allow p to be time-dependent,

and further linearize the dynamics (2.7), leading to the following compact form [ZTLL14],

 λ̇ (t)

Mω̇(t)

=
 0m×m D

−DTYb −E


λ (t)

ω(t)

+
 0m

p(t)

 . (2.12)

It should be mentioned that there are more complicated power network models [Pai89]
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that also capture the dynamics of voltage and reactive power injection and their dependencies

on voltage angle, frequency, and active power injection. However, from a control perspective,

we stick on the simplified models (2.8) and (2.12) to establish rigorous results on, for instance,

convergence and stability.
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Chapter 3

Characterizing tolerable disturbances for

transient-state safety

This chapter develops methods to compute the set of disturbances on a power network

that do not tip the frequency of each bus and the power flow in each transmission line beyond

pre-defined bounds. For a linearized AC power network model, we consider scenarios with

varying degree of knowledge about the form of the disturbance. We propose a sampling method

to provide inner and outer approximations with tunable accuracy of the set of tolerable distur-

bances. The complexity of computing such set approximations is a function of the number of

sampling points. We introduce an error metric to measure the gap between the approximations

and design an algorithm that finds, for fixed number of sampling points, the sampling sequence

that minimizes its value. Simulations on the IEEE 39-bus power network illustrate our results.

3.1 Problem Statement

We are interested in understanding how disturbances in the power injection affect the

transient-state safety of the power network. For system (2.12) with an arbitrary initial state
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(λ (0),ω(0)) and a known nominal power injection pnom(t) ∈ Rn, we consider the case where

an additional unknown power disturbance pdist(t) ∈ Rn is injected starting at time 0, i.e.,

p(t) = pnom(t)+ pdist(t), ∀t > 0. (3.1)

Such additive disturbances model the mismatch between predicted and actual power injection

in power systems and might arise, for instance, from variability in the load consumption or

uncertainty in power generation caused by, e,.g., renewable energy sources. As safety criteria,

we consider the following:

(i) Transient-state frequency bound: Given 0 6 t1 < t2, the voltage frequency ω(t) satisfies

ω
min < ω(t)< ω

max, ∀t ∈ [t1, t2].

(ii) Transient-state power flow bound: Given 0 6 t1 < t2, the power flow Ybλ (t) satisfies

f min < Ybλ (t)< f max, ∀t ∈ [t1, t2].

Depending on how much is known about the form of the disturbance signal Pdist, we

provide different definitions of what it means for a disturbance to be tolerable by the system,

i.e., not disrupt its transient-state safety. We consider three increasingly realistic cases:

(a) Precisely known trajectory form: the amplitude of the disturbance is unknown but its

trajectory form is precisely known,

pdist(t) = Bdiag(ζ pre(t))Kpre, ∀t > 0, (3.2)

where Kpre ∈Rs denotes the amplitude; ζ pre(t) ∈Rs is an integrable function that stands for the

trajectory form; diag(ζ pre(t)) is a shorthand notation for the diagonal matrix diag(ζ pre(t)) ∈
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Rs×s, and B ∈Rn×s is a constant matrix whose elements are either 0 or 1, representing the buses

where the elements of diag(ζ pre(t))Kpre are injected. The transient-state tolerableness set is

then defined as

Ψ
pre ,

{
Kpre ∣∣ (i)-(ii) hold for (2.12) under (3.1) and (3.2)

}
(3.3)

Clearly, if Kpre lies in Ψpre, then the disturbance pdist(t) with amplitude Kpre does not violate the

transient-state requirements.

(b) Partially known trajectory form: the amplitude is unknown and the trajectory form

is partially known, in the sense that a nominal trajectory form together with an estimation error

bound are available. Formally,

pdist(t) = Bdiag(ζ par)Kpar, (3.4a)

ζ
par(t) = ζ

nom(t)+ζ
err(t), (3.4b)

where ζ nom(t) ∈ Rs is known and ζ err(t) ∈ Rs is bounded component-wise by a known vector

α ∈ Rs. For convenience, we define

Z(α),
{

ζ
∣∣ |ζi(t)|6 αi, ∀i ∈ [1,s]N, ∀t ∈ [t1, t2]

}
The transient-state tolerableness set is then defined as

{
Kpar∣∣∀ζ err ∈ Z(α), (i)-(ii) hold for (2.12) under (3.1) and (3.4)

}
(3.5)

The interpretation of this set is that, if the amplitude Kpar belongs to Ψpar, then the transient-state

requirements (i)-(ii) are satisfied under the disturbance pdist(t) no matter how the evolution of

the unknown trajectory estimation error ζ err(t) (as long as it remains bounded by α). Notice

24



that if α = 0s and ζ nom = ζ pre, then Ψpar = Ψpre. We still deal with the case of precisely known

trajectory form independently as its treatment sets the basis for generalization to the other two,

more complicated, cases.

(c) Unknown trajectory form: both the amplitude and the trajectory form of the distur-

bance are unknown. To define the transient-state tolerableness set in this case, we consider the

magnitude, rather than the amplitude, of the disturbance. Formally,

pdist(t) = BKunk(t). (3.6)

We define the set of disturbances bounded by R ∈ Rs as

P(R),
{

Kunk ∣∣ |Kunk
i (t)|6 Ri, ∀i ∈ [1,s]N, ∀t ∈ [t1, t2]

}
.

The transient-state tolerableness set is then

{
R > 0s

∣∣∀Kunk ∈ P(R), (i)-(ii) hold for (2.12)under (3.1) and (3.6)
}

(3.7)

The interpretation of this set is that, if the magnitude bound R belongs to Ψunk, then the transient-

state requirements (i)-(ii) are satisfied under the disturbance Punk(t) no matter its evolution (as

long as it magnitude is bounded by R).

Our goal is to provide formal descriptions of the transient-state tolerableness sets in each

of the cases (a)-(c). Given the complexity of obtaining exact descriptions of these sets, we focus

on developing inner and outer approximations of them with tunable accuracy. Our strategy to

assess the impact of disturbances on system trajectories over the time interval of interest is to

consider a finite set of sampling points, ensure certain bounds are satisfied by the trajectories

at these points, and reason to ensure that no violations occur in between the sampling points.

Figure 3.1 illustrates the main ideas behind our forthcoming discussion.
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t
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Figure 3.1: Illustration of our strategy to develop approximations of the transient-state toler-
ableness sets. In this example, we describe conditions under which a one-dimensional signal
trajectory stays within the horizontal black dashed bounds in a time interval determined by the
two sampling points. In plot (a), we only require the value of the signal to lie within the bounds
at two sampling points, which leads to an outer approximation, as some trajectories (red dashed
lines) may exceed the bounds within the time interval. In plot (b), we employ a similar strategy,
but require the two terminal values to lie within some stricter bounds, denoted by horizontal
green dashed lines, whose positions are determined by knowledge about the signal derivative
inside the interval. This allows us to guarantee that the whole trajectory does not exceed the
black dashed bounds at any time within the interval. This leads to an inner approximation, as
there may be trajectories (e.g., the red dashed one) whose terminal values are not in the stricter
green bounds but also stay within the black dashed bounds at all times.

Remark 3.1.1. (Time interval selection): The initial time t1 is typically the starting time of the

disturbance, t1 = 0. We assume the terminal time t2 is specified by a system operator based

on desired time horizons over which the network performance must meet certain specifications.

In general, the time when the system reaches steady state after the disturbance depends on the

disturbance itself, the network connectivity, and the network dynamics in a complex way. The

work [KPA+04] shows that in transient stability studies t2 =3 to 5s, and it may extend to 10 to

20s for very large systems with dominant inter-area swing dynamics. •
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3.2 Transformation of the transient-state tolerableness sets

In this section, we show how the transient-state tolerableness sets defined in Section 3.1

can be expressed in a way that shares the same structure across all three cases. This allows for a

unified treatment of all cases later.

In our treatment, we consider the case where all buses have strictly positive inertias so

that the diagonal matrix M in (2.12) is invertible. Under the input (3.1), the dynamics can be

written as

ẋ(t) = Ax(t)+

 0m

M−1 p(t)

 , (3.8)

where

x(t)=

λ (t)

ω(t)

 , A=

 0m×m D

−M−1DTYb −M−1E

.
Solving (3.8), one has

x(t) = eAtx0 +
∫ t

0
eA(t−τ)

 0m

M−1 p(τ)

dτ, (3.9)

where x0 , [λ T (0) ωT (0)]T . Denoting

S(t,x0, pnom), eAtx0 +
∫ t

0
eA(t−τ)

 0m

M−1 pnom(τ)

dτ,

V (t,ζ ),
∫ t

0
eA(t−τ)

 0m×s

M−1Bdiag(ζ (τ))

dτ,
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xmax ,

 ωmax

Y−1
b f max

 , xmin ,

 ωmin

Y−1
b f min

 , (3.10)

one has that in the case (a) of precisely known trajectory form, the state response can be re-

written as x(t) = S(t,x0, pnom)+V (t,ζ pre)Kpre, and hence the transient-state tolerableness set

takes the form

{
Kpre∣∣xmin < S(t,x0, pnom)+V (t,ζ pre)Kpre < xmax, ∀t ∈ [t1, t2]

}
(3.11)

Based on this expression, it is easy to check whether a given amplitude Kpre belongs to

Ψpre. However, in cases (b) and (c), one has

Ψ
par = {Kpar ∣∣ xmin < S(t,x0, pnom)+V (t,ζ nom)Kpar

+V (t,ζ err)Kpar < xmax, ∀ζ err ∈ Z(α), ∀t ∈ [t1, t2]},

Ψ
unk = {R > 0s

∣∣ xmin < S(t,x0, pnom)+V (t,1n)Kunk(t)

< xmax, ∀Kunk ∈ P(R), ∀t ∈ [t1, t2]}. (3.12)

Checking whether a disturbance amplitude belongs to either of these two sets is impractical

because of the need to check for all possible values in Z(α) or P(R), respectively. The following

result shows that these checks can be made as simple as that for case (a).

Lemma 3.2.1. (Transformation of the transient-state tolerableness set): The following state-

ments hold.

(i) Kpar ∈Ψpar if and only if, for all t ∈ [t1, t2],

S(t,x0, pnom)+V (t,ζ nom)Kpar +W (t)diag(α) |Kpar|< xmax, (3.13a)

S(t,x0, pnom)+V (t,ζ nom)Kpar−W (t)diag(α) |Kpar|> xmin, (3.13b)
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where

W (t),
∫ t

0
|Q(t− τ)|dτ ∈ R(m+n)×s, Q(t̄), eAt̄

 0m×s

M−1B

 ∈ R(m+n)×s. (3.14a)

(ii) R > 0s ∈Ψunk if and only if, for all t ∈ [t1, t2],

S(t,x0, pnom)+W (t)R < xmax, (3.15a)

S(t,x0, pnom)−W (t)R > xmin. (3.15b)

Proof. We only provide the proof of case (i). The proof of (ii) follows similarly.

⇐) Assume Kpar satisfies (3.13). Notice that ∀ζ err ∈ Z(α), ∀i ∈ [1,m+n]N, it holds that

[W (t)diag(α) |Kpar|]i =
∫ t

0
|[Q(t− τ)]i|diag(α) |Kpar|dτ

=
∫ t

0

s

∑
j=1
|[Q(t− τ)]i, j|α j|Kpar

j |dτ

>
∫ t

0

s

∑
j=1

[Q(t− τ)]i, jζ
err
j (τ)Kpar

j dτ

=
∫ t

0
[Q(t− τ)]idiag(ζ err(τ))Kpardτ

= [V (t,ζ err)Kpar]i.

Therefore, one has that if (3.13) holds ∀t ∈ [t1, t2], then the following inequalities hold ∀t ∈ [t1, t2],

∀ζ err ∈ Z(α),

S(t, pnom)+V (t,ζ nom)Kpar +V (t,ζ err)Kpar < xmax, (3.16a)

S(t, pnom)+V (t,ζ nom)Kpar−V (t,ζ err)Kpar > xmin, (3.16b)

and hence Kpar ∈Ψpar.
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⇒) On the other hand, if Kpar ∈ Ψpar, then (3.16) holds ∀t ∈ [t1, t2], ∀ζ err ∈ Z(α). To

prove (3.13), let us show that for all l ∈ [1,m+n]N, one has

[S(t, pnom)+V (t,ζ nom)Kpar +W (t)diag(α) |Kpar|]l < xmax
l , (3.17a)

[S(t, pnom)+V (t,ζ nom)Kpar−W (t)diag(α) |Kpar|]l > xmin
l . (3.17b)

For any l ∈ [1,m+n]N, we select ζ̂ err(t) ∈ Z(α) as follows: for any t̄ ∈ [t1, t2], let

ζ̂
err
j (τ) = αlsgn{[(Q(t̄− τ)]l, jK

par
j }, ∀ j ∈ [1,s]N. (3.18)

One can check that [W (t̄)diag(α) |Kpar|]l = [V (t̄, ζ̂ err)Kpar]l . Therefore, since the lth row of (3.16a)

(resp. (3.16b)) holds at t = t̄, one has that (3.17a) (resp. (3.17b)) holds at t = t̄. The result follows

from the arbitrariness of l and t̄.

Given (3.11) and Lemma 3.2.1, it is clear that all the transient-state tolerableness sets

Ψpre, Ψpar and Ψunk admit a common representation involving certain vector signal (different in

each case) being upper and lower bounded over the time interval of interest.

Remark 3.2.2. (Containment relations among Ψpre, Ψpar and Ψunk): The transient-state tolera-

bleness sets for the different types of disturbances are related as follows:

(i) If |ζ pre−ζ nom| is upper bounded by α , then Ψpar ⊆Ψpre;

(ii) If |ζ pre| is upper bounded by Rs 3 β pre > 0, then for every R ∈Ψunk, it holds R̄ ∈Ψpre for

all |R̄|6 diag(β pre)−1R. In particular, if β pre 6 1s, then Ψunk ⊆Ψpre;

(iii) If |ζ nom| is upper bounded by β nom ∈ Rs with β nom +α > 0, then for every R ∈ Ψunk, it

holds that R̄ ∈ Ψpar for all |R̄| 6 (diag(β nom +α))−1 R. In particular, if β nom +α 6 1s,

then Ψunk ⊆Ψpar.
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These statements follow from Lemma 3.2.1 by noting that if |ζ | is upper bounded by β > 0s,

then W (t)diag(β )>V (t,ζ ), for all t ∈ [t1, t2]. •

Remark 3.2.3. (Extension to linearly coupled safety criteria): The expressions obtained above

for the computation of the transient-state tolerableness sets can be extended to the case where

the safety requirements involve linearly coupled states of the form

x̄min <Cx(t)< x̄max, ∀t ∈ [t1, t2], (3.19)

where C ∈ Rc×(m+n), x̄max, x̄min ∈ Rc. A particular example of this scenario is the use of the

center of inertia (COI) frequency [Kun94, MSV11],

ωCOI(t),

(
n

∑
i=1

Miωi(t)

)
/

n

∑
i=1

Mi,

which corresponds to C = [M1,M2, · · · ,Mn,0T
m]/∑

n
i=1 Mi. When the safety criteria is given

by (3.19), the expression (3.11) to compute Ψpre should be modified by replacing S(t,x0, pnom)

and V (t,ζ pre) by CS(t,x0, pnom) and CV (t,ζ pre), respectively. Similarly, the results in Lemma 3.2.1

to compute Ψpar and Ψunk are stil valid by replacing S(t,x0, pnom), V (t,ζ nom) and W (t) by

CS(t,x0, pnom), CV (t,ζ nom) and
∫ t

0 |CQ(t − τ)|dτ , respectively. In all cases, xmin (resp. xmax)

should be replaced by x̄min (resp. x̄max). •

Remark 3.2.4. (Initial state as another disturbance): In the definitions of tolerableness sets, we

assume the initial state x0 is arbitrary but known. We can also consider the initial condition as

another type of disturbance, and characterize the tolerableness sets with respect to both x0 and

Kpre, Kpar or R. For instance, consider the definition of Ψpar as

Ψ̃
par ,

{
(xest

0 ,Kpar)
∣∣ ∀ζ err ∈ Z(α), ∀x0 s.t. |x0− xest

0 |6 xbnd
0 ,

(i)-(ii) hold for (2.12) under (3.1) and (3.4)
}
,
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where xbnd
0 > 0m+n constrains the initial state uncertainty. Note that (xest

0 ,Kpar) ∈ Ψ̃par means

that Kpar corresponds to a tolerable disturbance for any initial state in a xbnd
0 -neighborhood

around xest
0 . Similarly to Lemma 3.2.1, one can show that (xest

0 ,Kpar) ∈ Ψ̃par if and only if,

for all t ∈ [t1, t2],

S(t,xest
0 , pnom)+ |eAt |xbnd

0 +V (t,ζ nom)Kpar +W (t)diag(α) |Kpar|< xmax,

S(t,xest
0 , pnom)−|eAt |xbnd

0 +V (t,ζ nom)Kpar−W (t)diag(α) |Kpar|> xmin.

For brevity, throughout the rest of the chapter, we carry out the exposition for the simpler defi-

nition of tolerableness set where the initial condition is not an argument, but the results can be

extended accordingly. •

Remark 3.2.5. (Tolerableness sets with zero inertia buses): The equivalent characterization of

the tolerableness sets relies on the fact that M is invertible. If this is not the case, one can derive

a similar equivalent transformation. For instance, if the disturbance trajectory form is precisely

known, the time-domain solution for system (2.12) under (3.1) and (3.2) still takes a linear form

with respect to Kpre, denoted by x(t) = Ŝ(t,x0, pnom)+V̂ (t,ζ pre)Kpre, and hence one has

{
Kpre∣∣xmin < Ŝ(t,x0, pnom)+V̂ (t,ζ pre)Kpre < xmax, ∀t ∈ [t1, t2]

}

Due to the non-zero inertias, Ŝ(t,x0, pnom), V̂ (t,ζ pre) have more complicated expressions than

S(t,x0, pnom), V (t,ζ pre)), but the ensuing discussion is equally applicable. •
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3.3 Inner and outer approximations of the transient-state tol-

erableness sets

The descriptions of the transient-state tolerableness sets obtained in Section 3.2 involve

infinitely many constraints to check whether a disturbance is tolerable due to the dependence

on continuous time. To address this issue, here we construct inner and outer approximations of

these sets that are easier to compute and have tunable accuracy. For simplify of exposition, we

first consider the case of scalar signals, and then build on this treatment to deal with the vector

case.

3.3.1 Scalar-signal case

Here we deal with the case when the signal that must stay within given upper and lower

bounds is scalar. Our discussion here can be interpreted as looking at one component of the

actual vector signal. Let y : R×Rs→ R be a generic scalar signal and let ymin,ymax ∈ R with

ymin < ymax. We make the following assumption.

Assumption 3.3.1. (Signal differentiability and upper bound): The signal y is differentiable

with respect to its first argument and its derivative is upper bounded by a time-continuous signal

uniformly in K, i.e., there exists yd : R→ R> such that

|ẏ(t,K)|6 yd(t), ∀t ∈ [t1, t2]. •

Consider the set Σ ,
{

K
∣∣ ymin < y(t,K)< ymax, ∀t ∈ [t1, t2]

}
. Let us first define a sam-

pling sequence

τ , {τ1,τ2, . . .τr}, (3.20)
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where r > 3 and τi’s are called sampling points ordered as t1 = τ1 < τ2 < · · · < τr = t2. Our

approximations of the set Σ are based on the idea of requiring the signal to be upper and lower

bounded at every sampling point, instead of at every time, and making sure that the constraints

defining Σ are not violated at all the other times.

The next result makes our approximation methodology precise.

Lemma 3.3.2. (Sufficient condition for checking constraints on continuous-time signal): Con-

sider a sampling sequence defined in (3.20). For each q ∈ [1,r−1]N, Under Assumption 3.3.1,

define

dτ
q , max

t∈[τq,τq+1]
{yd(t)} ∈ R>, (3.21a)

δ
τ
q , dτ

q(τq+1− τq)/2 ∈ R>. (3.21b)

If

ymin +δ
τ
q < y(τq,K) < ymax−δ

τ
q , (3.22a)

ymin +δ
τ
q < y(τq+1,K)< ymax−δ

τ
q , (3.22b)

for all q ∈ [1,r−1]N, then ymin < y(t,K)< ymax for all t ∈ [t1, t2].

Proof. We prove that the two upper bounds in (3.22) imply y(t,K)< ymax for all t ∈ [t1, t2] (the

statement for the lower bound follows similarly). For q ∈ [1,r−1]N, let

a ,
y(τq,K)+ y(τq+1,K)

2
+δ

τ
q .

Note that, using (3.22), one has that a < ymax. Let us show that

max
t∈[τq,τq+1]

y(t,K)6 a. (3.23)
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It is easy to see that dτ
q is a Lipschitz constant for y constrained on [τq,τq+1]. First, we

show that a− y(τq,K)> 0 and a− y(τq+1,K)> 0. These facts are a consequence of

a− y(τq,K) =
1
2
(
y(τq+1,K)− y(τq,K)+dτ

q(τq+1− τq)
)
,

a− y(τq+1,K) =
1
2
(
y(τq,K)− y(τq+1,K)+dτ

q(τq+1− τq)
)
,

and the fact that |y(τq+1,K)− y(τq,K)| 6 dτ
q(τq+1− τq). Next, using the Lipschitz condition,

one sees that, if y reaches at some time a starting from the value y(τq,K), it takes at least(
a− y(τq,K)

)
/dτ

q > 0 seconds from τq to do so. On the other hand, to come down from such a

value, it would take at least
(
a− y(τq+1,K)

)
/dτ

q > 0 seconds, so the total time would be at least(
2a− y(τq,K)− y(τq+1,K)

)
/dτ

q = τq+1− τq. Therefore y cannot reach any value larger than a,

i.e., (3.23) follows, concluding the proof.

Lemma 3.3.2 opens the way to efficiently compute inner and outer approximations of the

set Σ. The next result formally states this and shows that the two approximations can be made

arbitrarily accurate.

Lemma 3.3.3. (Inclusion relations and convergence of inner and outer sets): Let K ∈ Rs, and

t 7→ y(t,K) satisfy Assumption 3.3.1. For a sampling sequence τ , let

ε
τ , max

q∈[1,r−1]N
{τq+1− τq} ∈ R>

denote its maximum inter-time separation. With the notation of Lemma 3.3.2, define

Σ
τ
O ,

{
K
∣∣ ymin 6 y(τq,K)6 ymax, ∀q ∈ [1,r]N

}
,

Σ
τ
I ,

{
K
∣∣ ymin +δ

τ
q < y(τq,K), y(τq+1,K)< ymax−δ

τ
q , ∀q ∈ [1,r−1]N

}

Then, the following statements hold
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(i) Στ
I ⊆ Σ⊆ Σcl ⊆ Στ

O, and

(ii) for a sequence of sampling sequences {τ(k)}∞
k=1, if ετ(k)→ 0+ as k→∞, then Σ

τ(k)
O → Σcl

and Σ
τ(k)
I → Σ.

Proof. We first prove (i). Since the constraints defining Στ
O all appear in Σcl, we deduce Σcl⊆Στ

O.

By Lemma 3.3.2, it holds that Στ
I ⊆ Σ.

Next we prove (ii). For each sampling sequence τ(k), let

δ
max(k), ε

τ(k) max
q∈[1,r(k)−1]N

dτ(k)
q /2.

Since dτ(k)
q is a Lipschitz constant for y constrained on [τq(k),τq+1(k)], we have that for all k∈N,

t ∈ [τq(k),τq+1(k)] and q ∈ [1,r(k)−1]N,

|y(t,K)− y(τq(k),K)|6 dτ(k)
q (t− τq(k))

6 dτ(k)
q (τq+1(k)− τq(k))

= 2δ
τ(k)
q 6 2δ

max(k). (3.25)

Now if ymin 6 y(τ1(k),K), . . . ,y(τr(k)(k),K)6 ymax, then by the above inequality one has ymin−

2δ max(k)6 y(t,K)6 ymax +2δ max(k) for any t ∈ [t1, t2]. Let

{
K
∣∣ymin−2δ

max(k)6 y(t,K)6 ymax +2δ
max(k), ∀t ∈ [t1, t2]

}

The above reasoning shows that ΣO ⊆ Σ̂
τ(k)
O . Together with (i), we have Σcl ⊆ Σ

τ(k)
O ⊆ Σ̂

τ(k)
O . Next

we show that

Σ̂
τ(k)
O → Σcl as k→ ∞, (3.26)

which, by the properties of set limits presented in the preliminaries, suffices to guarantee that
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Σ
τ(k)
O → Σcl as k→ ∞.

To prove (3.26), we first show that limsup
k→∞

Σ̂
τ(k)
O = Σcl by pointing out that the two sets

mutually contain each other. Since Σcl ⊆ Σ̂
τ( j)
O for every j ∈ N, it holds that Σcl ⊆

⋃
j>k Σ̂

τ( j)
O for

every k ∈N, which further implies that Σcl ⊆
⋂

k>1
⋃

j>k Σ̂
τ( j)
O = limsup

k→∞

Σ̂
τ(k)
O . On the other hand,

suppose that K /∈ Σcl, then by the definition of Σcl, there exists t̄ ∈ [t1, t2] such that y(t̄,K)> ymax

or y(t̄,K) < ymin. Since by the assumptions, if j → ∞, then ετ( j) → 0+, which implies that

δ max( j)→ 0+, one has that K /∈ Σ̂
τ( j)
O for every j large enough, i.e., K 6∈

⋃
j>k Σ̂

τ( j)
O for k large

enough. This further implies that K /∈
⋂

k>1
⋃

j>k Σ̂
τ( j)
O , i.e., K /∈ limsup

k→∞

Σ̂
τ( j)
O . Therefore, by

contradiction, it holds that limsup
k→∞

Σ̂
τ(k)
O ⊆ Σcl.

Next we show that liminf
k→∞

Σ̂
τ(k)
O = Σcl. Since liminf

k→∞
Σ̂

τ(k)
O ⊆ limsup

k→∞

Σ̂
τ(k)
O and we have al-

ready proven that limsup
k→∞

Σ̂
τ(k)
O = Σ̂cl, we only need to show that Σ̂cl ⊆ liminf

k→∞
Σ̂

τ(k)
O . This contain-

ment holds by noticing that Σ̂cl⊆ Σ̂
τ( j)
O for every j∈N, which implies that Σ̂cl⊆

⋃
k>1

⋂
j>k Σ

τ( j)
O =

liminf
k→∞

Σ̂
τ(k)
O .

Similarly, by letting

{
K
∣∣ymin +δ

max(k)< y(t,K)< ymax−δ
max(k), ∀t ∈ [t1, t2]

}

One has that Σ̂
τ(k)
I ⊆ Σ

τ(k)
I ⊆ Σ and Σ̂

τ(k)
I → Σ as k→ ∞; therefore Σ

τ(k)
I → Σ as k→ ∞.

As stated in Lemma 3.3.3, the inner and outer approximations can be made arbitrarily

accurate as ετ decreases, at the cost of increasing the cardinality of the sampling sequence,

which linearly raises the number of constraints in the definition of the approximations.

3.3.2 Vector-signal case

Here we build on the treatment of the generic scalar-signal case to construct inner and

outer approximations of the transient-state tolerableness sets Ψpre, Ψpar and Ψunk. In the pre-
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cisely known case, for every i ∈ [1,m+n]N, if we let

Ψ
pre
i ,

{
Kpre∣∣xmin

i 6 [S(t,x0, pnom)]i +[V (t,ζ pre)]iKpre 6 xmax
i , ∀t ∈ [t1, t2]

}
(3.27)

then Ψpre =
⋂

i∈[1,m+n]N Ψ
pre
i . The inner (resp. outer) approximation of each Ψ

pre
i follows from

Lemma 3.3.3 with respect to the signal y(t,Kpre)= [S(t,x0, pnom)]i+[V (t,ζ pre)]iKpre and bounds

ymax = xmax
i and ymin = xmin

i . Then, the inner (resp. outer) approximation of Ψpre is just the

intersection of inner (resp. outer) approximations for every i. We can also approximate Ψpar and

Ψunk in a similar fashion.

The main difficulty then in applying the scalar-signal results lies in the fact that the sig-

nals are not necessarily known a priori, but instead are the result of the effect of the disturbances

on the power network dynamics (2.12). The next result shows that, nevertheless, we can guar-

antee that Assumption 3.3.1 is satisfied.

Lemma 3.3.4. (Component-wise derivative bound signal): Suppose the amplitude vector Kpre

(resp. Kpar) in Ψpre (resp. Ψpar), and the magnitude vector R in Ψunk are bounded as follows,

‖Kpre‖∞ 6 γ
pre, ‖Kpar‖∞ 6 γ

par, ‖R‖∞ 6 γ
unk. (3.28)

For every i ∈ [1,n+m]N, define

zpre
i (t), |[S′(t,x0, pnom)]i|+ γ

pre‖[V ′(t,ζ pre)]i‖1, (3.29a)

zpar
i (t), |[S′(t,x0, pnom)]i|+ γ

par (‖[V ′(t,ζ nom)]i‖1 +αi‖[W ′(t)i‖1
)
, (3.29b)

zunk
i (t), |[S′(t,x0, pnom)]i|+ γ

unk‖[W ′(t)]i‖1, (3.29c)

where S′(t,x0, pnom), V ′(t,ξ ) and W ′(t) are the component-wise time-derivative of
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S(t,x0, pnom), V (t,ξ ) and W (t), and admit the following form

S′(t,x0, pnom) = AS(t,x0, pnom)+

 0m

M−1 pnom(t)

 , (3.30a)

V ′(t,ζ ) = AV (t,ζ )+

 0m×s

M−1Bdiag(ζ (t))

 , (3.30b)

W ′(t) = |Q(t)|. (3.30c)

Then it holds that for all i ∈ [1,m+n]N and for all t ∈ [t1, t2],

d
dt

([S(t,x0, pnom)]i +[V (t,ζ pre)]iKpre)6 zpre
i (t), (3.31a)

d
dt

([S(t,x0, pnom)]i +[V (t,ζ nom)]iKpar(±)W (t)|Kpar|)6 zpar
i (t), (3.31b)

d
dt

([S(t,x0, pnom)]i(±)W (t)R)6 zpar
i (t). (3.31c)

Proof. One can easily verify (3.30a) and (3.30b) using the chain rule. For (3.30c), by letting

τ̄ = t− τ , one has

W (t) =
∫ t

0
|Q(t− τ)|dτ =

∫ t

0
|Q(τ̄)|dτ̄,

and hence W ′(t) = |Q(t)| follows immediately.

Next, since

d([S(t,x0, pnom)]i +[V (t,ζ pre)]iKpre)/dt = [S′(t,x0, pnom)]i +[V ′(t,ζ pre)]iKpre

6 |[S′(t,x0, pnom)]i|+‖Kpre‖∞‖[V ′(t,ζ pre)]i‖1

6 zpre
i (t),
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one has (3.31a) holds. The rest follows similarly.

Lemma 3.3.4 allows us to use the results for generic scalar signals to construct the set

approximations in the case of vector signals generated by power network dynamics subject to

disturbances.

Theorem 3.3.5. (Inclusion relations and convergence of inner and outer sets for the transient-

state tolerableness set): For every i ∈ [1,n+m]N, let τ i = {τ i
1,τ

i
2, . . . ,τ

i
r(i)} be a sampling se-

quence and define for each λ ∈ {pre, par, unk},

ε
τ i
, max

q∈[1,r(i)−1]N
{τ i

q+1− τ
i
q},

dλ
q,i , max

t∈[τ i
q,τ

i
q+1]
{zλ

i (t)}, ∀q ∈ [1,r(i)−1]N,

δ
λ
q,i , dλ

q,i(τ
i
q+1− τ

i
q)/2, ∀q ∈ [1,r(i)−1]N.

Further define

Ψ
pre
O,i ,

{
Kpre ∣∣ xmin

i 6 [S(τ i
q,x0, pnom)]i +[V (τ i

q,ζ
pre)]iKpre 6 xmax

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
pre
I,i ,

{
Kpre ∣∣ xmin

i +δ
pre
q,i < [S(t,x0, pnom)]i +[V (t,ζ pre)]iKpre < xmax

i −δ
pre
q,i , ∀t ∈ {τ

i
q,τ

i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
par
O,i ,

{
Kpar ∣∣ [S(τ i

q,x0, pnom)]i +[V (τ i
q,ζ

nom)]iKpar +W (τ i
q)|Kpar|6 xmax

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
par
O,i ,

{
Kpar ∣∣ [S(τ i

q,x0, pnom)]i +[V (τ i
q,ζ

nom)]iKpar−W (τ i
q)|Kpar|> xmin

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
par
I,i ,

{
Kpar ∣∣ [S(t,x0, pnom)]i +[V (t,ζ nom)]iKpar +W (t)|Kpar|< xmax

i −δ
par
q,i , ∀t ∈ {τ

i
q,τ

i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
par
I,i ,

{
Kpar ∣∣ [S(t,x0, pnom)]i +[V (t,ζ nom)]iKpar−W (t)|Kpar|> xmin

i +δ
par
q,i , ∀t ∈ {τ

i
q,τ

i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
unk
O,i ,

{
R
∣∣ [S(τ i

q,x0, pnom)]i +W (τ i
q)R 6 xmax

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
unk
O,i ,

{
R
∣∣ [S(τ i

q,x0, pnom)]i−W (τ i
q)R > xmin

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
unk
I,i ,

{
R
∣∣ [S(t,x0, pnom)]i +W (t)R < xmax

i −δ
unk
q,i , ∀t ∈ {τ i

q,τ
i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
unk
I,i ,

{
R
∣∣ [S(t,x0, pnom)]i−W (t)R > xmin

i +δ
unk
q,i , ∀t ∈ {τ i

q,τ
i+1
q }, ∀q ∈ [1,r(i)−1]N

}
. (3.32)
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Given the sets defined in (3.32), let

Ψ
pre
O ,

⋂
i∈[1,n+m]N

Ψ
pre
O,i, (3.33a)

Ψ
pre
I ,

⋂
i∈[1,n+m]N

Ψ
pre
I,i , (3.33b)

Ψ
par
O ,

⋂
i∈[1,n+m]N

(Ψ
par
O,i ∩Ψ

par
O,i ), (3.33c)

Ψ
par
I ,

⋂
i∈[1,n+m]N

(Ψ
par
I,i ∩Ψ

par
I,i ), (3.33d)

Ψ
unk
O ,

⋂
i∈[1,n+m]N

(Ψ
unk
O,i ∩Ψ

unk
O,i ), (3.33e)

Ψ
unk
I ,

⋂
i∈[1,n+m]N

(Ψ
unk
I,i ∩Ψ

unk
I,i ). (3.33f)

Then, the following statements hold for any λ ∈ {pre,par,unk},

(i) Ψλ
I ⊆Ψλ ⊆Ψλ

cl ⊆Ψλ
O, and

(ii) if ετ i → 0+ for all i ∈ [1,m+n]N, then Ψλ
O→Ψλ

cl and Ψλ
I →Ψλ .

Proof. We only prove the case λ = pre (the other two cases follow similarly). Notice that

each Ψ
pre
i defined in (3.27) can be approximated individually using Lemma 3.3.3 by letting

y(t,Kpre) = [S(t,x0, pnom)]i +[V (t,ζ pre)]iKpre. The corresponding time-derivative bound signal

is yd = zpre
i , which follows from Lemma 3.3.4. Therefore, it holds that for every i ∈ [1,m+

n]N, Ψ
pre
I,i ⊆ Ψ

pre
i ⊆ Ψ

pre
i,cl ⊆ Ψ

pre
O,i, and Ψ

pre
O,i → Ψ

pre
cl and Ψλ

I → Ψpre as ετ i → 0+. Since finite

intersections preserve containment relations and set limits, statements (i) and (ii) follow.

Even though we assume for simplicity that the time interval [t1, t2] is the same for each

component of x(t), note that this can be easily extended to scenarios where each xi(t) has its own

time sampling interval [t i
1, t

i
2].
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Remark 3.3.6. (Bound on the disturbance amplitude): Theorem 3.3.5 requires an a priori bound

on the norm of Kpre (resp. Kpar and R) to obtain the set Ψ
pre
I (resp. Ψ

par
I and Ψunk

I ). This

assumption is reasonable in the sense that the energy of the disturbance should be upper bounded.

Alternatively, since Ψ
pre
O (resp. Ψ

par
O and Ψunk

O ) can be computed without any knowledge of

the norm bound, one can obtain an upper bound on the norm of Kpre, for instance, by solving

maxK∈Ψ
pre
O
‖K‖∞, provided that Ψ

pre
O is bounded. •

Remark 3.3.7. (Computational complexity): Note that both Ψλ
I and Ψλ

O for any λ ∈{pre,par,unk}

consist of only linear constraints, and hence are convex sets, where the number of constraints

appearing in them are, depending on the case, either 2∑
m+n
i=1 r(i) or 4∑

m+n
i=1 r(i). This implies that

the complexity of characterizing such sets grows linearly with respect to the number of sampling

points, and, if we take the r(i)’s equal for each component, then it also grows linearly with m+n,

i.e., the number of states. Furthermore, the approximations also scale well with the dimension

of K because of the linear dependence of the system trajectories on this parameter.

The actual computation of the approximation sets involves the evaluation of several time-

varying matrices (e.g., S(t,x0, pnom), V (t,ζ pre), W (t), etc.) at each sampling time. Here, we

briefly describe the procedure we employ to do this for S(t,x0, pnom) at t = τ i
1,τ

i
2, · · · ,τ i

r for

each i ∈ [1,n+m]N (other procedures are also possible). Using a first-order approximation, for

sufficiently small T > 0 and any n ∈ N, we can write

S((n+1)T,x0, pnom)≈ S(nT,x0, pnom)+T S′(nT,x0, pnom)

= S(nT,x0, pnom)+TAS(nT,x0, pnom)+T

 0m

M−1 pnom(nT )

 ,
where the equality follows from substituting S′(nT,x0, pnom) by (3.30a). Using this equation,

one can iteratively compute the value of S(t,x0, pnom) at t = 0,T,2T,3T, . . . . For T much smaller

than the distance between consecutive sampling points, one can report to this approximation to

42



evaluate S(t,x0, pnom) at the sampling points. •

Remark 3.3.8. (Robustness metric based on tolerableness set): One can synthesize metrics

that quantify the robustness to disturbances of the power network at a given steady state using

the transient-state tolerableness set. The basic idea is to identify the smallest (with respect

to some criteria) disturbance that leads to a violation of the safety criteria (i)-(ii). Formally,

for λ ∈ {pre,par,unk}, one can define the metric, denoted by β λ , as the optimal value of the

following optimization problem,

inf f (K) (3.34a)

s.t. K /∈Ψ
λ , (3.34b)

g(K)6 0, (3.34c)

where f : Rs 7→ R is a measurement of the disturbance energy, say, f (K) = ‖K‖2, and (3.34c)

represents some other constraints for the disturbance. Since we cannot precisely compute Ψλ ,

one can alternatively compute the optimal value, denoted β λ
I (resp. β λ

O ), of the following opti-

mization problem

inf f (K) (3.35a)

s.t. K /∈Ψ
λ
O(resp. Ψ

λ
I ), (3.35b)

g(K)6 0. (3.35c)

By Theorem 3.3.5, one has that β λ
I 6 β λ 6 β λ

O . If f is continuous, as ετ i → 0+ for all i ∈

[1,m+ n]N, it holds that β λ
I → β λ and β λ

O → β λ , i.e., we can upper and lower bound β λ with

an arbitrary degree of accuracy.

Although constraint (3.35b) is nonconvex (since it corresponds to the complement of a

convex polytope), we can decompose (3.35b) into a finite union of linear constraints. We take
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λ =pre as an example. Define for each q ∈ [1,r(i)],

Ψ
pre
O,i,q ,

{
K pre∣∣xmin

i 6 [S(τ i
q,x0, pnom)]i +[V (τ i

q,ζ
pre)]iKpre 6 xmax

i

}

Then we deduce Ψ
pre
O =

⋂
i∈[1,m+n]N

⋂
q∈[1,r(i)]N Ψ

pre
O,i,q. Now denote β

pre
O,i,q as the optimal solution

of

inf f (K) (3.36a)

s.t. K /∈Ψ
λ
O,i,q, (3.36b)

g(K)6 0. (3.36c)

One can see that β
pre
O equals the smallest value among β

pre
O,i,q over all possible i and q. Notice

now (3.36b) is a linear constraint, and if f and g are convex, then (3.36) is a convex optimization

problem. In the same way, we can compute β
pre
I . This strategy also works for µ ∈ {pre,par}. •

3.4 Optimizing the sampling sequence

A relevant question regarding the inner and outer approximations developed above is how

to precisely quantify how well they approximate the corresponding transient-state tolerableness

set. With metrics available to provide such quantification, one can then ask the question of

how to optimize the location of a fixed number of sampling points in order to provide better

approximations. This aim is motivated by the fact that the complexity of characterizing the

approximations grows with the number of constraints defining them. To answer these questions,

we first consider the scalar-signal case and quantify the approximation gap between Στ
I (resp.

Στ
O) and Σ (resp. Σcl). We then propose an provably correct algorithmic procedure to find the

optimal sampling sequence and generalize our treatment to the vector-signal case.
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3.4.1 Metric measuring the approximation gap

Here we define a metric to quantify the gap between the inner and outer approximations

and the actual set. To do so, we find it useful to introduce the following set definitions with the

same functional form as Σ,

Σ̄
τ
O ,

{
K
∣∣ ymin−2δ

τ
q 6 y(t,K)6 ymax +2δ

τ
q , ∀t ∈ [τq,τq+1], ∀q ∈ [1,r−1]N

}
, (3.37a)

Σ̄
τ
I ,

{
K
∣∣ ymin +δ

τ
q < y(t,K)< ymax−δ

τ
q , ∀t ∈ [τq,τq+1], ∀q ∈ [1,r−1]N

}
. (3.37b)

Given the similarity in their definitions with Σ, these sets are easier to compare with it than

the original Στ
I and Στ

O. In addition, note that by (3.25), it holds that Στ
O ⊆ Σ̄τ

O, and since all

constraints in Στ
I appear in Σ̄τ

I as well, one has that Σ̄τ
I ⊆ Στ

I . Therefore a conservative but

guaranteed way to describe the approximation is to depict the gap between Σ̄τ
I and Σ, and between

Σcl and Σ̄τ
O.

To quantify the gap between Σ̄τ
I and Σ, we define the approximation metric as

ν(τ), max
q∈[1,r−1]N

{δ τ
q }. (3.38)

The explanation for this choice is as follows. For a given q ∈ [1,r−1]N, all the K’s that satisfy

ymin 6 y(t,K)6 ymax, ∀t ∈ [τq,τq+1] while do not satisfy ymin +δ τ
q 6 y(t,K)6 ymax−δ τ

q , ∀t ∈

[τq,τq+1] are given by cns(δ τ
q ) defined as,

cns(δ τ
q ),ϒ1\ϒ2 =

(
ϒ3
⋂

ϒ4

)⋃(
ϒ5
⋂

ϒ6

)
, (3.39)

where

ϒ1 ,
{

K
∣∣ ymin < y(t,K)< ymax, ∀t ∈ [τq,τq+1]

}
,
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ϒ2 ,
{

K
∣∣ ymin +δ

τ
q < y(t,K)< ymax−δ

τ
q , ∀t ∈ [τq,τq+1]

}
,

ϒ3 ,
{

K
∣∣ ymax−δ

τ
q 6 y(t,K)< ymax, ∀t ∈ [τq,τq+1]

}
,

ϒ4 ,
{

K
∣∣ ymin < y(t,K), ∀t ∈ [τq,τq+1]

}
,

ϒ5 ,
{

K
∣∣ ymin < y(t,K)6 ymin +δ

τ
q , ∀t ∈ [τq,τq+1]

}
,

ϒ6 ,
{

K
∣∣ y(t,K)< ymax, ∀t ∈ [τq,τq+1]

}
.

The region cns(δ τ
q ) becomes smaller as δ τ

q decreases, and is empty if δ τ
q is 0. Hence a proxy

to measure the size of cns(δ τ
q ) is simply δ τ

q . Furthermore, by noting that ν(τ) characterizes the

largest size of all cns(δ τ
q )’s and that Σ\Σ̄τ

I is a subset of
⋃

q∈[1,r−1]N cns(δ τ
q ), we conclude ν(τ)

measures the gap between Σ̄τ
I and Σ. Given the symmetry with the definition of Σ̄τ

O, note that

one can also use the metric to measure the gap between Σ̄τ
O and Σcl.

Our next result characterizes the minimization of ν . Formally, consider

min
τ

ν(τ) (3.40a)

s.t. t1 = τ1 < τ2 < · · ·< τr = t2. (3.40b)

This problem possesses a unique global minimizer, which can be equivalently characterized by

a set of equations.

Proposition 3.4.1. (Characterization of global optimum of metric): The optimization prob-

lem (3.40) has a unique global minimizer, which is uniquely determined by,

δ
τ
i = δ

τ
i+1, ∀i ∈ [1,r−2]N, (3.41a)

τ1 = t1, τr = t2. (3.41b)

Proof. Note that the result holds if the following three statements are true:
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(i) There exists at least one global minimizer for (3.40)

(ii) Any global minimizer of (3.40) satisfies condition (3.41).

(iii) There exists a unique solution for (3.41).

To see this, by (i) and (ii), a solution for (3.41) exists. By (iii), since the solution for (3.41) is

unique, it has to be the only global minimizer. Our strategy is then to prove (i)-(iii) separately.

To prove (i), consider the optimization problem (3.40) but with non-strict inequality con-

straints. Since ν is continuous and the constraints define a compact feasibility set, by the extreme

value theorem [PM97], there exists at least one global minimizer τ̄∗. If at least one of these min-

imizers satisfies the constraint (3.40b), then it is also a global minimizer of (3.40). If it does

not, then it is easy to find a sampling sequence τ̂∗ that satisfies the constraint and has at most

the same metric value. In fact, without loss of generality, assume that τ̄∗q−1 < τ̄∗q = τ̄∗q+1 = · · ·=

τ̄∗q+k < τ̄∗q+1 for some q ∈ [1,r−1]N and k ∈ N. Let τ̂∗j = τ̄∗j for every j ∈ [1,r]N/[q,q+ k−1]N

and τ̂∗j = τ̄∗q−1 +(τ̄∗q − τ̄∗q−1)( j− q+ 1)/(k+ 1) for every j ∈ [q,q+ k− 1]N. By this way one

can easily check that ν(τ̂∗)6 ν(τ̄∗) holds.

We prove statement (ii) by contradiction. Suppose (3.40) admits a global minimizer

τ that does not satisfy condition (3.41) and let us construct another sequence τ̄ with ν(τ̄) <

ν(τ). We first consider the case where consecutive subintervals achieve the same maximum

value, i.e., for some k ∈ N∪{0}, it holds that δ τ
j < δ τ

q = δ τ
q+1 = · · · = δ τ

q+k = ν(τ) for every

j ∈ [1,r− 1]N\[q,q+ k]N. Since condition (3.41) does not hold, either τq 6= t1 or τq+k 6= t2.

Without loss of generality, assume the first case. Now construct τ̄ by letting τ̄ j = τ j for every

j ∈ [1,r]N\[q,q+ k]N and τ̄ j = τ j + dx j for every j ∈ [q,q+ k]N, where dx j is determined as

follows: since every δ τ
j is a strictly monotonically decreasing and continuous function of τ j, one

can always find dx j > 0 small enough for every j ∈ [q,q+k]N such that δ τ̄
q−1 < δ τ̄

j < δ τ
q = δ τ

q+1 =

· · · = δ τ
q+k holds for every j ∈ [q,q+ k]N, which implies that ν(τ̄) < ν(τ). In the most general

case where there are several groups of consecutive subintervals achieving the same maximum
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value, and all groups share no common sampling point, one can construct τ̄ by tuning the points

using the idea above for each individual group, resulting in ν(τ̄)< ν(τ).

To prove statement (iii), assume there exist two different sampling sequences τa and

τb that both satisfy condition (3.41). We first consider the case when δ τa

i 6= δ τb

i for every i ∈

[1,r−1]N, and, without loss of generality, assume that δ τa

i < δ τb

i . Notice that if τb
2 6 τa

2 , then

δ
τb

1 , (τb
2 − t1)/2 max

t∈[t1,τb
2 ]
{yd(t)}6 (τa

2 − t1)/2 max
t∈[t1,τa

2 ]
{yd(t)}= δ

τa

1 ,

violating the assumption, and hence τb
2 > τa

2 . Similarly, it holds that τb
3 > τa

3 . Along this

one has that τb
r−1 > τa

r−1. The contradiction occurs as one can easily see that δ τb

r−1 6 (t2−

τa
2 )/2maxt∈[t1,τa

2 ]
{yd(t)} = δ τa

r−1. Next, we consider the case when δ τa

i = δ τb

i for every i ∈

[1,r− 1]N. Since δ τ
1 is a strictly monotonically increasing function of τ2, to have δ

τb
1 = δ

τb
1 ,

it must hold that τa
2 = τb

2 . Similarly, τa
i = τb

i for every i ∈ [1,r]N, i.e., τa and τb are the same

sequence. Therefore, equation (3.41) admits only one solution.

Given Proposition 3.4.1, we denote the unique minimizer of (3.40) by τ∗, and the optimal

value by ν(τ∗).

3.4.2 Algorithm to reduce the approximation gap

Here, we introduce a strategy that, for a fixed number r of sampling points, finds the sam-

pling sequence that minimizes v. Our design is based on Proposition 3.4.1. Notice that we can

equivalently obtain τ∗ by solving the transcendental equations (3.41). Based on this equivalence

relation, we propose Algorithm 1 to provide a sampling sequence τ̂ whose metric value ν(τ̂) can

be made arbitrarily close to ν(τ∗). The algorithm proceeds by approximating ν(τ∗) through the

bisection method, i.e., starts from an initial interval that contains ν(τ∗), and iteratively obtains

intervals containing ν(τ∗) whose length is half the length of the one generated in the previous

step. This process terminates when the approximation is optimal within a prescribed tolerance
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error.

Algorithm 1: Obtain near-optimal sampling sequence
Data: Derivative bound signal yd , tolerance error value νerr > 0, t1 and t2
Result: Near-optimal value ηN and near-optimal sequence τ̂

1 Initialization: τeven
i = t1 +(i−1)(t2− t1)/(r−1) ∀i ∈ [1,r]N,

a0 = 0, b0 = ν(τeven), η0 = (a0 +b0)/2, k = 0, f lag=true
2 while flag do
3 τk

1 = t1, τk
r = t2

4 for i = 2 : r−1 do
5 Set τk

i such that δ τk

i−1 = ηk

6 end
7 if bk−ak 6 νerror/2 then
8 N = k, f lag=false
9 end

10 Compute δ τk

r−1

11 if δ τk

r−1−ηk > 0 then
12 ak+1 = ηk, bk+1 = bk

13 else
14 ak+1 = ak, bk+1 = ηk

15 end
16 ηk+1 = (ak+1 +bk+1)/2, k = k+1
17 end
18 τ̂1 = t1, τ̂r = t2
19 for i = 2 : r−1 do
20 Set τ̂i such that δ τ̂

i−1 = ηN +νerr/2
21 end

The following result formally characterizes the convergence properties of Algorithm 1.

Proposition 3.4.2. (Algorithm 1 finds optimal sampling sequence): Given a tolerance error

νerr > 0, there exists a unique N such that the sampling sequence τk, k ∈ [1,N]N and outputs

ηN , τ̂ from Algorithm 1 satisfy

(i) |ηk−ν(τ∗)|6 ν(τeven)2−k for every k ∈ [1,N]N;

(ii) |ηN−ν(τ∗)|6 νerr/2, with N < log2 ν(τ0)− log2 νerr+2;

(iii) ν(τ̂)6 ν(τ∗)+νerr.
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Proof. With the notation of Algorithm 1, we first show that for the sampling sequence τk , if

δ τk

r−1 > ηk, then ηk < ν(τ∗). One can see that since ηk = δ τk

1 = δ τk

2 , · · · ,= δ τk

r−2, if ηk > ν(τ∗),

then using the same argument as in the proof of Proposition 3.4.1(ii), it holds that τk
i > τ∗i for any

i∈ [2,r−1]N, leading to δ τk

r−1 6 δ τ∗
r−1 = ν(τ∗)6ηk, which contradicts the assumption. Similarly,

one can prove that if δ τk

r−1 6 ηk, then ηk > ν(τ∗). Along with these observations, one can easily

see that via step 11 to step 16, plus the initialization condition, it holds that ν(τ∗) ∈ [ak,bk]

for every k ∈ [1,N]N, and bk+1− ak+1 = (bk− ak)/2. Finally, statement (i) holds by noticing

that |ηk− ν(τ∗)| 6 bk− ak = (b0− a0)/2k = ν(τ0)/2k. This implies that ν(τk) exponentially

converges to the optimal value ν(τ∗).

The first part of statement (ii) is simply due to the termination condition in step 7 in

Algorithm 1. Since k = N is the first satisfying bk − ak 6 νerror/2, it holds that νerror/2 <

bN−1−aN−1 = ν(τ0)/2N−1, and hence the rest of statement (ii) follows immediately.

To prove statement (iii), notice δ τ̂
i = ηN +νerr/2 > ν(τ∗) = δ τ∗

j for any i, j ∈ [1,r−1]N,

where the inequality follows from (ii). Therefore, δ τ̂
i > δ τ∗

i for every i ∈ [1,r− 1]N, which

implies that τ̂i > τ∗i for every i ∈ [1,r−1]N, and hence δ τ̂
r−1 6 δ τ∗

r−1 = ν(τ∗). Now, one has

ν(τ̂) = max{ηN +νerr/2,δ τ̂
r−1}

6 max{ηN +νerr/2,ν(τ∗)}= η
N +νerr/2 6 ν(τ∗)+ν

err,

where the last inequality follows from (ii).

Notice that steps 5 and 20 of Algorithm 1 require the solution of a transcendental equa-

tion in one variable. Even though an exact solution is not available, we discuss in the following

remark a bisection method to approximate it with an arbitrary degree of accuracy.

Remark 3.4.3. (Solving transcendental equation in one variable): Here we describe a strategy

to approximate the solution in steps 5 and 20 of Algorithm 1. For conciseness, we describe it in

general as Algorithm 2: one can apply it to solve step 5 (resp. step 20) by simply letting τ = τk
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(resp. τ = τ̂) and η = ηk (resp. η = ηN). Algorithm 2 uses bisection method too, where we

tighten the length of the interval containing the solution of δ τ
i−1 = η iteratively.

Algorithm 2: Solve transcendental equation in one variable
Data: Derivative bound signal yd , τi−1 and t2
Result: τi that satisfies δ τ

i−1 = η

1 Initialization: c(0) = τi−1, d(0) = t2, and τi(0) = (c(0)+d(0))/2
2 while true do
3 if (τi(l)− τi−1)maxt∈[τi−1,τi(l)]{yd(t)}> η then
4 cl+1 = cl, dl+1 = τi(l)
5 else
6 cl+1 = τi(l), dl+1 = dl

7 end
8 τi(l) = (ck+1 +dk+1)/2 and l = l +1
9 end

Similar to the way we prove Proposition 3.4.2, one can easily check that |τi(l)− τi| 6

(t2− τi−1)2−l for every l ∈ N. Due to the fact that τi(l) converges to τi exponentially fast, in

practice, we terminate Algorithm 2 when l is large enough and take τi(l) as our approximation

of τi. •

Figure 3.2 shows an execution of Algorithm 1. Note that the sampling sequence obtained

by the optimization algorithm is optimal for a class of disturbances (rather than for a specific

disturbance), as defined by the cases (a), (b), and (c) in Section 3.1.

Remark 3.4.4. (Generalized metric for vector-signal): Similar to the way we define ν in (3.38),

for any µ ∈ {pre, par, unk}, we define

π
µ

i , max
q∈[1,r(i)]N

{δ µ

q,i},

π
µ , max

i∈[1,m+n]N
{πµ

i /(x
max
i − xmin

i )}, (3.42)

and use πµ as the metric measuring the approximation gap between Ψ
µ

I (resp. Ψ
µ

O) and Ψµ

(resp. Ψ
µ

cl), where the coefficient 1/(xmax
i − xmin

i ) scales π
µ

i relative to its bounds. One can
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(a) (b)

Figure 3.2: Execution of Algorithm 1. Here y : R→R, t 7→ e−2t + sin te−tK, with |K|6 1. One
can easily check that yd : R→ R>, t → 2|e−2t |+ |cos te−t − sin te−t | satisfies |ẏ(t)| 6 yd(t) for
any t > 0. The interval of interest is determined by t1 = 0, t2 = 5. We run the algorithm for
r = 12 sampling points and set νerr = 2−19ν(τeven). (a) shows yd and the trajectories of the 12
sampling points at each iteration. Since yd is monotonically decreasing, as k increases, τk tends
to be dense around t = 0s and sparse around t = 5s. (b) shows the convergence of ak, bk and ηk.

reduce πµ by applying Algorithm 1 component-wise to optimize the sampling sequence τ i for

each i ∈ [1,m+n]N. •

3.5 Simulations

Here we illustrate our results on the IEEE 39-bus New England power network displayed

in Figure 3.3. This network has 46 transmission lines and 10 generators serving a load of ap-

proximately 6GW. We run our simulations in MATLAB on a desktop with a 3.5GHz Intel Core

i7-4770k quad-core CPU and 8GB of RAM. For system (2.12), the susceptance bi j and the

rotational inertia Mi for generator nodes are taken from the Power System Toolbox [CCR09].

We assign all non-generator buses an uniform small inertia Mi = 0.1. Let the damping param-

eter (or droop coefficient) to be Di = 1 for all buses. The nominal power injection pnom(t) is

chosen to be a constant P0 obtained from the same toolbox. The initial state (λ (0),ω(0)) is

chosen to be the equilibrium with respect to the input P(t) = P0. The frequency bounds are
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Fmax = −Fmin = 10 unit×146, the power flow bounds are ωmax = −ωmin = 0.5 Hz×139, and

the time period considered for transient-safety is [t1, t2] = [0,3]. If there is no disturbance injec-

tion, then the state (λ (t),ω(t)) stays at equilibrium, which trivially satisfies the transient-safety

requirements.
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Figure 3.3: IEEE 39-bus power network.

We start by showing the efficiency of the approximation gap reduction obtained by

Algorithm 1. We consider the case when a precisely known disturbance occurs at the 16th

and the 24th buses, with the trajectory form of a step signal. Formally, this corresponds to

the model (3.2) with B ∈ R39×2, where Bi j = 1 only when (i, j) equals (16,1) and (24,2);

diag(ζ pre(t))= diag([1(t) 1(t)]), and Kpre = [Kpre
1 Kpre

2 ] for which the bound γpre = 4.7 is known.

We compute the approximations Ψ
pre
I and Ψ

pre
O using the expressions (3.33) in Theorem 3.3.5.

We use the same sampling sequence for each component i ∈ [1,m+n]N and consider two cases:

an even sampling sequence of period 0.02s and the sequence that results from optimizing it by

applying Algorithm 1. Figure 3.4(a) and (b) show the approximation sets Ψ
pre
O and Ψ

pre
I obtained
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(a) (b) (c)

Figure 3.4: Inner and outer approximations of the transient-state tolerableness set for the pre-
cisely known case with different sampling sequences. Plot (a) uses even sampling with 151
points. Plots (b) and (c) use optimized sampling sequences with 151 and 301 points, respec-
tively. The first two plots show that Algorithm 1 reduces the gap between the inner and outer
approximations for a fixed number of sampling points. The last two plots illustrate the conver-
gence of the approximations as the number of sampling points increases.

in each case, with a marked improvement in the case of the optimized sequence. Figure 3.4(c)

shows the result obtained with an optimized sequence using Algorithm 1 on an even sampling

sequence of period 0.01s. The gap between the two approximation sets is smaller than in Fig-

ure 3.4(b), which is in agreement with the convergence result in Theorem 3.3.5(ii).

Figure 3.5 illustrates how the trajectory form impacts the shape and size of the toler-

ableness set. Figure 3.5(a) shows the inner and outer approximations when the step function

in the first component of the disturbance trajectory is delayed by one second, i.e., ζ pre(t) =

[1(t − 1) 1(t)]T . Figure 3.5(b) shows the same sets when the trajectory form is the sinusoid

ζ pre(t) = [sin(πt) sin(πt)]T . Comparing with Figure 3.4(c), one observes that the tolerableness

set can take remarkably different forms depending on the type of disturbance (even though all

the three trajectory forms are bounded by 1).

Next, we illustrate the containment relations among the approximations and the exact

tolerableness set stated in Theorem 3.3.5(i). To do this, we select two nearby disturbance ampli-

tudes, Kpre
I = [2 −3]T ∈Ψ

pre
I and Kpre

O = [2 −3.1]T /∈Ψ
pre
O . The plots in the top row in Figure 3.6

show the state trajectories of (2.12) corresponding to each disturbance. In the case of Kpre
I , the

frequency responses (resp. flow responses) of all buses (resp. transmission lines) stay within the
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(a) (b)

Figure 3.5: Inner and outer approximations of transient-state tolerableness set for the precisely
known case with different trajectory forms. In plot (a), the trajectory form is ζ pre(t) = [1(t−
1s) 1(t)]T and in plot (b) ζ pre(t) = [sin(πt) sin(πt)]T , respectively.

±0.5Hz (resp. ±10unit) bound, and hence Kpre
I ∈ Ψpre according to (3.3), which is consistent

with the inclusion Ψ
pre
I ⊆ Ψpre. In the case of Kpre

O , one frequency response goes beyond the

-0.5Hz bound, reaching to approximately -0.506Hz, violating the frequency safety requirement

slightly, and hence Kpre
O /∈Ψ

pre
cl , which is consistent with the inclusion Ψ

pre
cl ⊆Ψ

pre
O . The plots in

the bottom row in Figure 3.6 show the state responses generated by the nonlinear swing equa-

tions [MBB08] instead of the linear model (2.12). Although the containment relationships are

not guaranteed in the nonlinear case, one can see that they still hold in this particular example.

Figure 3.7 illustrates the computation of the inner and outer approximation sets in the

cases when the disturbance trajectory form is partially known and unknown. In the first case,

for the model (3.4), we have the nominal trajectory form ζ nom(t) = 0.9 · [1(t) 1(t)]T and the

uncertainty bound α = 0.1 ·12 on ζ err. Since |ζ pre(t)−ζ nom(t)|6 α and |ζ nom(t)|+α 6 1 for

every t ∈ [t1, t2], we deduce from Remark 3.2.2 that Ψunk ⊂ Ψpar ⊂ Ψpre. The comparison of

Figures 3.4 and 3.7 validates these containment relations.

Table 3.1 gathers the computational time for the inner and outer approximations in Fig-

ures 3.4, 3.5 and 3.7. The additional 2 seconds for Figure 3.4(b) with respect to Figure 3.4(a) are
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Frequency and power flow trajectories with different disturbance amplitudes. The
problem data is the same as in Figure 3.4. Plots (a) and (b) show the trajectories with a distur-
bance amplitude Kpre

I = [2 − 3]T (which, from Figure 3.4(c), is contained in the inner approx-
imation set Ψ

pre
I ), while plots (c) to (d) show the trajectories for Kpre

O = [2 − 3.1]T (which is
not contained in the outer approximation set Ψ

pre
O ). In both cases, the power flow trajectories

stay within the ±10 unit bound. However, all the frequency trajectories stay within the ±0.5 Hz
bound when the disturbance amplitude is Kpre

I , while for the Kpre
O case, one frequency trajectory

hits up to approximately -0.506Hz, exceeding the -0.5Hz bound. Plots (e) to (h) in the bottom
row display the corresponding state trajectories generated with the nonlinear swing equations
instead of the linear dynamics (2.12) for plots (a) to (d).

due to the take taken by the optimization of the sampling sequence. This latter time increases as

more sampling points are considered, cf. Figure 3.4(c). We also see a slight computational time

difference among Figure 3.4(c), Figure 3.5(a), and Figure 3.5(c), corresponding to different dis-

turbance trajectory forms. Finally, for a fixed number of sampling points, the computational time

does not vary dramatically for precisely known, partially known, and totally unknown distur-

bances. Computational times are also reported in [ZC17] for a simulation on the IEEE 118-bus

network with 91 disturbances.

Finally, we illustrate the robustness metric definition based on tolerableness sets intro-

duced in by Remark 3.3.8. We consider 39 different scenarios: in the ith scenario, we inject a

power disturbance with trajectory form 1(t) only at node i. For each i ∈ {1, · · · ,39}, β
pre
O (resp.
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Table 3.1: Times for the computation of for various tolerableness sets.
Sets Time(s) Sets Time(s)

Figure 3.4(a) 12.41 Figure 3.5(a) 18.62
Figure 3.4(b) 14.39 Figure 3.5(b) 16.52
Figure 3.4(c) 20.38 Figure 3.7(a) and (b) 20.26 and 20.39

β
pre
I ) stands for the upper (resp. lower) approximation of the maximum allowable disturbance

magnitude injected at node i so that the whole network maintains transient-state safety. One

can see from Figure 3.8 that nodes 1,9,12 and 38 are the most vulnerable. The first three cases

have similar causes – either low inertia, making the transient frequency easily affected by dis-

turbances or low dissipation capabilities due to a small number of neighboring nodes, resulting

in a relatively long time required to dissipate the disturbances. The 38th node case is primarily

due to the fact that the only transmission line connecting the node with the rest of the network is

almost saturated before the disturbance injection.

(a) (b)

Figure 3.7: Inner and outer approximations of the transient-state tolerableness set with partially
known and totally unknown trajectory forms. Plot (a) shows the tolerableness set with nominal
trajectory form ζ nom(t) = 0.9 · [1(t) 1(t)]T and uncertainty α = 0.1 · 12. Plot (b) shows the set
with totally unknown trajectory. Together with Figure 3.4(c) one has that Ψunk ⊆ Ψpar ⊆ Ψpre,
as stated in Remark 3.2.2.
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Figure 3.8: Robustness characterization of the IEEE39 bus network based on tolerableness sets.
In each scenario, we inject a disturbance at the corresponding node and compute the approxi-
mations of the robustness metric defined in Remark 3.3.8. This metric measures the maximum
allowable disturbance that does not violate transient safety. Both approximations use 301 sam-
pling points optimized through Algorithm 1.
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Chapter 4

Distributed transient frequency control

with stability and performance guarantees

Note that our transient-state analysis in Chapter 3 is based on open-loop power network

dynamics in the sense that the extra control signal is set to zero. Therefore, it is of interest

to design control strategy so that the closed-loop system is safe even with disturbance able to

jeopardize transient-state safety for the open-loop system. Especially, here we focus on transient

frequency control.

This chapter proposes a distributed strategy regulated on a subset of individual buses in

a power network described by the swing equations to achieve transient frequency control while

preserving asymptotic stability. Building on Lyapunov stability and set invariance theory, we

formulate the stability and the transient frequency requirements as two separate constraints for

the control input. Our design synthesizes a controller that satisfies both constraints simultane-

ously. The controller is distributed and Lipschitz, guaranteeing the existence and uniqueness of

the trajectories of the closed-loop system. We further bound its magnitude and demonstrate its

robustness against measurement inaccuracies. Simulations on the IEEE 39-bus power network

illustrate our results.

59



4.1 Problem statement

For the nonlinear power network characterized by (2.7), our goal is to design a state-

feedback controller for each bus i ∈ I ω ⊆ I that guarantees that the frequency transient be-

havior stays within desired safety bounds while preserving the stability properties that the sys-

tem (2.7) enjoys when no external input ui is present. Due to the structural limitation of the

controller proposed in this chapter, we assume that I ω = I u, i.e. control resources at nodes

without transient frequency requirement cannot be utilized. We will later relax this assumption

in the next two chapters. We state these requirements explicitly next.

Stability and convergence requirement: Since the system (2.7) without ui is locally sta-

ble, we require that the same system with the proposed controller ui is also locally stable. Fur-

thermore, for every admissible initial condition, the two systems should converge to the same

equilibrium (λ ∞,ω∞1n), meaning that ui only affects the transient behavior.

Frequency invariance requirement: For each i ∈I u, let ω i ∈R and ω̄i ∈R be lower and

upper safe frequency bounds, where ω i < ω̄i. We require that the frequency ωi(t) stays inside

the safe region [ω i, ω̄i] for any t > 0, provided that the initial frequency ωi(0) lies inside [ω i, ω̄i].

This forward invariance requirement corresponds to underfrequency/overfrequency avoidance.

Attractivity requirement: If, for some i ∈I u, the initial frequency ωi(0) /∈ [ω i, ω̄i], then

after a finite time, ωi enters the safe region and never leaves afterwards. This requirement corre-

sponds to underfrequency/overfrequency recovery.

In addition to these requirements, we also seek the designed controller to be Lipschitz as

a function of the state. This guarantees the existence and uniqueness of solutions for the closed-

loop system and, at the same time, provides robustness for practical implementation against

errors in state measurements.

Remark 4.1.1. (Selection of buses with transient frequency specification): The set I u consists

of buses belonging to either of the following two types: a) buses with specified over/underfrequency
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requirement [PKT06] and b) buses whose transient frequency behavior is key in evaluating sys-

tem performance, or are used as indexes for load shedding schemes [MCS11]. We assume each

individual bus in I u is equipped with an external input directly tuning its transient behavior. We

show later that this is necessary condition to obtain frequency invariance guarantees. •

Note that the attractivity requirement is automatically satisfied once the controller meets

the first two requirements, provided that ω∞ ∈ (ω i, ω̄i). However, in general it is still of interest

to provide estimates for how fast the frequency reaches the safe region. Our objective is to design

a controller that satisfies the above three requirements simultaneously and is distributed, in the

sense that each bus can implement it using its own information and that of its neighboring buses

and transmission lines.

4.2 Constraints on controller design

In this section, we identify constraints on the controller design that provide sufficient

conditions to ensure, on the one hand, the stability and convergence requirement and, on the

other hand, the frequency invariance requirement.

4.2.1 Constraint ensuring stability and convergence

We establish a stability constraint by identifying an energy function and restricting the

input so that its evolution along every trajectory of the closed-loop dynamics is monotonically

non-increasing. We select the energy function [VNM+18]

V (λ ,ω),
1
2

n

∑
i=1

Mi(ωi−ω
∞)2 +

m

∑
j=1

[Yb] j, ja(λ j), (4.1)

where a(λ j), cosλ ∞
j − cosλ j−λ j sinλ ∞

j +λ ∞
j sinλ ∞

j . The next result uses the LaSalle Invari-

ance Principle to show this property.
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Lemma 4.2.1. (Sufficient condition for local stability and convergence): Consider the sys-

tem (2.7). Under condition (2.9), further suppose that, for every i ∈ I u, ui : Rm+n×Rn →

R, (x,y) 7→ ui(x,y) is Lipschitz in x. Let

r̄ , min
λ∈∂Rcl

V (λ ,ω∞1n) (4.2)

and define

T (r),
{
(λ ,ω)

∣∣ λ ∈Rcl, V (λ ,ω)6 r
}

(4.3)

with r ∈ R>. If for every i ∈I u, x ∈ Rm+n, and p ∈ Rn,

(ωi−ω
∞)ui(x, p)6 0 if ωi 6= ω

∞, (4.4a)

ui(x, p) = 0 if ωi = ω
∞, (4.4b)

then the following results hold provided λ (0) ∈ range(D) and (λ (0),ω(0)) ∈ T (r) for some

0 < r < r̄:

(i) The solution of the closed-loop system exists and is unique for any t > 0;

(ii) λ (t) ∈ range(D) and (λ (t),ω(t)) ∈T (r) for any t > 0;

(iii) (λ ∞,ω∞1n) is stable, and (λ (t),ω(t))→ (λ ∞,ω∞1n) as t→ ∞.

Proof. To prove (i), as (x,y) 7→ ui(x,y) is Lipschitz in x, there exists a unique local solution

over [0,δ ] for some δ > 0, according to [Kha02, Theorem 3.1]. Let [0,T ) be the maximal

interval of existence. We then show that T (r) is non-empty and compact, and that (λ (t),ω(t))

lies entirely in T (r) for any t ∈ [0,T ). These two facts together, by [Kha02, Theorem 3.3],

imply the existence and uniqueness of the solution for every t > 0. To show the non-emptiness

of T (r), note that in (4.1) if |λi| 6 π/2 and |λ ∞
i | < π/2, then a(λi) > 0, which implies that
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V (λ ,ω) > 0 for every λ ∈ Rcl and every ω ∈ Rn; hence r̄ > 0. Then (λ ∞,ω∞1n) ∈ T (r) as

V (λ ∞,ω∞1n) = 0.

To show the compactness of T (r), note that the set is clearly closed. Since the polytope

Rcl is bounded, the variable λ is bounded too. Therefore, a(λi) is bounded for every i ∈ [1,m]N.

Since V (λ ,ω)6 r, we deduce that ∑
n
i=1 Mi(ωi−ω∞)2 is bounded, implying that ω is bounded.

Hence, T is bounded.

Regarding statement (ii), note that λ (t)∈ range(D) holds for every t > 0 since both λ (0)

and λ̇ (t) lie in range(D). To establish the invariance of T (r), we examine the evolution of the

function V along the dynamics (2.7),

V̇ (λ ,ω) =
n

∑
i=1

(ωi−ω
∞)
(
−Eiωi− [DTYb]i sinλ + pi

)
+ ∑

i∈I u
(ωi−ω

∞)ui(x, p)+
m

∑
j=1

[Yb] j, j(sinλ j− sinλ
∞
j )[D] jω

=−
n

∑
i=1

Ei(ωi−ω
∞)2 + ∑

i∈I u
(ωi−ω

∞)ui(x, p)

6−
m

∑
i=1

Ei(ωi−ω
∞)2 6 0,

where

n

∑
i=1

(ωi−ω
∞)
(
−[DTYb]i sinλ + pi−ω

∞Ei
)
+

m

∑
j=1

[Yb] j, j(sinλ j− sinλ
∞
j )[D] jω

=
n

∑
i=1

(ωi−ω
∞)
(
−[DTYb]i sinλ + pi−ω

∞Ei
)
+

m

∑
j=1

(sinλ j− sinλ
∞
j )[YbD] j(ω−ω

∞1n)

=
n

∑
i=1

(ωi−ω
∞)(pi−ω

∞Ei)−
m

∑
j=1

(sinλ
∞
j )[YbD] j(ω−ω

∞1n)

=
n

∑
i=1

(ωi−ω
∞)
(

pi−ω
∞Ei−DTYb sinλ

∞
i
)
= (ω−ω

∞1n)
T (p̃−DTYb sinλ

∞) = 0.

This monotonicity of V implies that the constraint V (λ ,ω) 6 r defining T (r) can never be
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violated. Now if there exists a time t1 > 0 such that (λ (t1),ω(t1)) /∈ T (r), then it must be the

case where λ (t1) /∈R. By the continuity of the trajectory, there must exist another time t2 before

t1 such that λ (t2) ∈ ∂Rcl , in which case V (λ (t2),ω(t2)) > V (λ (t2),ω∞1n) > r̄ > r, which is a

contradiction. Hence T (r) is invariant.

To prove (iii), notice that, for any (λ ,ω) ∈T (r), V̇ (λ ,ω)6 0; second, V (λ ∞,ω∞1n) =

0; third, V (λ ,ω) > 0, for every (λ ,ω) ∈ T (r) with (λ ,ω) 6= (λ ∞,ω∞1n). By [Kha02, Theo-

rem 4.1], (λ ∞,ω∞1n) is stable. Finally, to establish convergence, let

Ω , T (r)∩
{
(λ ,ω)

∣∣ λ ∈ range(D)
}
. (4.5)

Note that (λ (0),ω(0)) ∈ Ω. Clearly, the set Ω is compact and invariant with respect to the

dynamics (2.7a)-(2.7c) with controller satisfying (4.4). Noticing that V̇ (λ ,ω) = 0 implies ω =

ω∞1n, let S ,
{
(λ ,ω)

∣∣ ω = ω∞1n
}⋂

Ω. It is easy to see that no solution can identically stay

in S other than the trivial solution (λ (t),ω(t))≡ (λ ∞,ω∞1n). The conclusion then follows from

the LaSalle Invariance Principle [Kha02, Theorem 4.4].

Remark 4.2.2. (Computation of the region of attraction): The set T (r̄) is an estimate of the

region of attraction but its explicit computation requires the solution of a non-convex optimiza-

tion problem to determine the value of r̄. We can equivalently compute r̄ by solving 2m convex

problems. For each j ∈ [1,m]N, let

c̄ j , min
λ j=π/2

|λi|6π/2,∀i 6= j

V (λ ,ω∞1n), c j , min
λ j=−π/2

|λi|6π/2,∀i6= j

V (λ ,ω∞1n).

Note that these problems are convex, as the Hessian of V (λ̃ ,ω∞1n) with respect to λ̃ , ∇2V =

diag([Yb]1,1 cos(λ1), · · · , [Yb]m,m cos(λm)), is positive definite on Rcl , and the feasible set is a

closed convex subset of Rcl . One can easily see that r̄ = min j∈[1,m]N{c̄ j,c j}. •

64



4.2.2 Constraint ensuring frequency invariance

We next focus our attention on the frequency invariance requirement. We start by defin-

ing the invariant sets we are interested in,

C̄i ,
{

x
∣∣ ωi− ω̄i 6 0

}
, C i ,

{
x
∣∣ ω i−ωi 6 0

}
. (4.6)

The characterization stated in the next result directly follows from Nagumo’s Theorem.

Lemma 4.2.3. (Sufficient and necessary condition for frequency invariance): Assume that the

solution of (2.7) exists and is unique for every admissible initial condition. Then, for any i∈I u,

the sets C̄i and C i are invariant if and only if for every x ∈ Rm+n and p ∈ Rn,

ui(x, p)−qi(x, p)6 0 if ωi = ω̄i, (4.7a)

−ui(x, p)+qi(x, p)6 0 if ωi = ω i, (4.7b)

where qi(x, p), Eiωi +[DTYb]i sinλ − pi.

Proof. For simplicity, we only deal with the case of C̄i (the other case follows similarly). For

each i ∈I u, let l̄i, li : Rn→ R be defined by l̄i(x), ωi− ω̄i and li(x),−ωi +ω i. Notice that,

by letting s = −1m+n and φ(x) ≡ −1m+n, one has that l̄i(x) +∇l̄i(x)T s < 0 for every x ∈ C̄i

and ∇l̄i(x)T φ(x)< 0 for every x ∈ ∂ C̄i, and hence the assumptions in Nagumo’s Theorem hold.

Denote by f (t,x) the right-hand side of the dynamics (2.7). Then C̄i is invariant if and only if

∇l̄i(x)T f (t,x)6 0 when ωi(t) = ω̄i, which is equivalent to (4.7a).

From Lemma 4.2.3, one sees that if some bus j ∈I u does not possess an external control

input (i.e., u j ≡ 0), then one can not guarantee the invariance of C̄ j and C j, since without an

active control signal, condition (4.7) can easily be violated. The characterization of Lemma 4.2.3

points to the value of the input at the boundary of C̄i and C i. However, having a controller that
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is only nonvanishing at such points is undesirable, as the actuator effort would be discontinuous,

affecting the system evolution. A more sensible policy is to have the controller become active

as the system state gets closer to the boundary of these sets, and do so in a gradual way. This is

captured by the following result.

Lemma 4.2.4. (Sufficient condition for frequency invariance): Assume that the solution of (2.7)

exists and is unique for every admissible initial condition. For each i ∈I u, let ω̄ th
i , ω th

i ∈ R be

such that ω i < ω th
i < ω̄ th

i < ω̄i and let ᾱi and α i be functions of class-K . If for every x ∈Rm+n

and p ∈ Rn,

(ωi− ω̄
th
i )(ui(x, p)−qi(x, p))6−ᾱi(ωi− ω̄i), if ω̄

th
i < ωi 6 ω̄i, (4.8a)

and

(ω th
i −ωi)(−ui(x, p)+qi(x, p))6−α i(ω i−ωi), if ω i 6 ωi < ω

th
i , (4.8b)

then C̄i and C i are invariant.

The proof of Lemma 4.2.4 follows by noting that, when ωi = ω̄i (resp. ωi = ω i), condi-

tion (4.8a) (resp. (4.8b)) becomes (4.7a) (resp. (4.7b)). The introduction of class-K functions

enables the design of controllers that gradually kick in as the margin for satisfying the require-

ment for frequency invariance gets increasingly small. In fact, using (2.7), we can equivalently

write (4.8a) as

Mω̇i 6−ᾱi(ωi− ω̄i)/(ωi− ω̄
th
i ), if ω̄

th
i < ωi 6 ω̄i. (4.9)

Notice that, as ωi grows from the threshold ω̄ th
i to the safe bound ω̄i, the value of −ᾱi(ωi−

ω̄i)/(ωi− ω̄ th
i ) monotonically decreases to 0. Thus, the constraint on ω̇i becomes tighter (while

allowing ω̇i to still be positive) as ωi approaches ω̄i, and when ωi hits ω̄i, prescribes ω̇i to be
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nonpositive to ensure invariance.

It is interesting to point out the trade-offs present in the choice of class-K functions.

A function with a large derivative, for instance, corresponds to a controller design that allows

the derivative above to be significant near the boundary, at the risk of increasing the sensitivity

to changes in the state. We re-examine this point later after introducing our specific controller

design.

4.3 Distributed controller synthesis

In this section we introduce a distributed controller design that meets the stability and

convergence condition (4.4) as well as the frequency invariance condition (4.8). Our next result

formally introduces this controller and characterizes its continuity property.

Proposition 4.3.1. (Distributed frequency controller): For each i ∈I u, let ᾱi and α i be Lips-

chitz functions of class-K . Then,

ui(x, p)=


min{0, −ᾱi(ωi−ω̄i)

ωi−ω̄ th
i

+qi(x, p)} ωi > ω̄ th
i ,

0 ω th
i 6 ωi 6 ω̄ th

i ,

max{0, α i(ω i−ωi)

ω th
i −ωi

+qi(x, p)} ωi < ω th
i ,

(4.10)

is Lipschitz in its first argument.

Proof. Let i ∈ I u. We show that for any x ∈ Rm+n, there exist L,r ∈ R> such that |ui(y, p)−

ui(z, p)|6 L‖y− z‖ for any y,z ∈ Br(x). Notice that this condition holds true for x belonging to

H,
{

x ∈ Rm+n
∣∣ ωi 6= ω̄ th

i , ωi 6= ω th
i
}

, in that x 7→ −ᾱi(ωi−ω̄i))

(ωi−ω̄ th
i )

+qi(x, p) (resp. x 7→ α i(ω i−ωi)

ω th
i −ωi

+

qi(x, p)) is Lipschitz for any x in H, and the min (resp. max)) operator preserves Lipschitz

continuity. Hence we only need to establish Lipschitzness for x 6∈ H. For simplicity we only

reason for the case when x satisfies ωi = ω̄ th
i . Denote r0 ,min{1

2(ω̄i−ω̄ th
i ), 1

2(ω̄
th
i −ω th

i )}∈R>.
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One can see that for any x′ ∈ Br0(x), it holds that ω th
i 6ωi. Next we show that there always exists

r 6 r0 such that

−ᾱi(ωi− ω̄i)

(ωi− ω̄ th
i )

+qi(x′, p)> 0, (4.11)

for all x′ ∈ Br(x)∩
{

x′
∣∣ ωi > ω̄ th

i
}

. Notice that for any x′ ∈ Br(x), ωi−ω̄i 6 ω̄ th
i +r−ω̄i 6ω th

i +

(ω̄i− ω̄ th
i )/2− ω̄i =−(ω̄i− ω̄ th

i )/2 < 0, and qi(x′, p) = ωi+[DT ]iλ − pi >−(n+1)‖x′‖2−|pi|.

Therefore, it holds that

−ᾱi(ωi− ω̄i)

(ωi− ω̄ th
i )

+qi(x′, p)>
−ᾱi(ωi− ω̄i)

2r
− (n+1)‖x′‖2−|pi|.

It is easy to see that for any x′ ∈ Br(x)∩
{

x′
∣∣ ωi > ω̄ th

i
}

, the first term can be arbitrarily large

by reducing r, while the other two terms are bounded; therefore, there exits r > 0 small enough

such that (4.11) holds. By (4.10), this implies that ui(x′, p) = 0 for any x′ ∈ Br(x), and hence ui

is Lipschitz in x.

Remark 4.3.2. (Distributed character and practical implementation): The controller (4.10) is

distributed since each controlled bus i ∈I u, ui only utilizes ωi, pi, and information of buses it

is connected to in the power network in order to compute [DTYb]iλ . This term corresponds to

the aggregate power flow injected at node i from its neighboring nodes. In turn, this means that,

instead of measuring λ j and its corresponding susceptance for every i’s neighboring node j, in

practice, each node can simply measure the signed power flows in each neighboring transmission

lines of node i and sum it up, which is equivalent to [DTYb]iλ as well. •

The next result shows that the proposed distributed controller achieves the objectives

identified in Section 3.1 regarding stability, convergence, and frequency invariance.

Theorem 4.3.3. (Transient frequency control with stability guarantees): Under condition (2.9),

let ω∞ ∈ (ω th
i , ω̄

th
i ) and consider the closed-loop system (2.7) with controller (4.10). If λ (0) ∈
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range(D) and (λ (0),ω(0)) ∈T (r) for some 0 < r < r̄, then

(i) The solution exists and is unique for every t > 0;

(ii) λ (t) ∈ range(D) and (λ (t),ω(t)) ∈T (r) for any t > 0;

(iii) (λ ∞,ω∞1n) is stable, and (λ (t),ω(t))→ (λ ∞,ω∞1n) as t→ ∞;

(iv) The controllers become inactive in finite time, i.e., there exists a time t0 > 0 such that

ui(x(t), p) = 0 for all t > t0 and all i ∈I u.

(v) For any i ∈I u, if ωi(0) ∈ [ω i, ω̄i], then ωi(t) ∈ [ω i, ω̄i] for all t > 0;

(vi) For any i∈I u, if ωi(0) 6∈ [ω i, ω̄i], then ωi(t) monotonically approaches [ω i, ω̄i]. Further-

more, there exists a finite time t1 > 0 such that ωi(t) ∈ [ω i, ω̄i] for all t > t1.

In addition, if (i) holds for (λ (0),ω(0)) 6∈ T , then (v) and the monotonic convergence in (vi)

still hold, but with no guarantee on the existence of a finite t1.

Proof. It is easy to see that (4.10) guarantees ui(x, p) 6 0 if ωi > ω̄ th
i , ui(x, p) = 0 if ωi ∈

(ω th
i , ω̄

th
i ), and ui(x, p)> 0 if ωi < ω th

i . Therefore, (4.4) holds as ω∞ ∈ (ω th
i , ω̄

th
i ). Hence (i)-(iii)

directly follow from Lemma 4.2.1 (Proposition 4.3.1 justifies the Lipschitzness of the controller).

To prove (iv), we use the convergence established in (iii). For ε = mini∈I u{ω̄ th
i −

ω∞,ω∞−ω th
i }, there exists t0 ∈ R> such that ‖(λ (t),ω(t))− (λ ∞,ω∞1n)‖2 < ε , for t > t0.

Therefore, for any i∈I u, |ωi(t)−ω∞|6 ‖(λ (t),ω(t))−(λ ∞,ω∞1n)‖2 6 min{ω̄ th
i −ω∞,ω∞−

ω th
i }, for t > t0, which implies ω th

i 6 ωi(t) 6 ω̄ th
i , for t > t0. The result follows now from

the definition (4.10) of the controller. Regarding (v), the controller (4.10) satisfies (4.8a) if

ω̄ th
i < ωi 6 ω̄i, and satisfies (4.8b) if ω i 6 ωi < ω th

i ; hence by Lemma 4.2.4 both C̄i and

C i are invariant. Proving monotonicity in (vi) is equivalent to showing that ω̇i(t) 6 0 when

ωi(t)> ω̄i and ω̇i(t)> 0 when ωi(t)< ω i. For simplicity we only prove the first case. Note that
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ui(x, p)6 −ᾱi(ωi−ω̄i)

(ωi−ω̄ th
i )

+qi(x, p). Plugging this into (2.7b) and using ωi > ω̄i, one has

Miω̇i 6
−ᾱi(ωi− ω̄i)

(ωi− ω̄ th
i )

6 0, (4.12)

establishing monotonicity (notice that the inequality holds even if the initial condition does not

belong to T (r)). Finally, since ω∞ ∈ (ω th
i , ω̄

th
i ) and ωi(t)→ ω∞ for every i ∈ I , there exists

t1 such that ωi(t1) ∈ [ω th
i , ω̄

th
i ], which, by (v), further implies that ω(t) ∈ [ω th

i , ω̄
th
i ] for every

t > t1.

Remark 4.3.4. (Performance trade-offs via selection of class-K functions): As pointed out

in Section 4.2.2, the choice of class-K functions affects the system behavior. To illustrate

this, consider the linear choice ᾱi = α i : R→ R, s 7→ Γis, where Γi > 0 is a design parameter.

A smaller Γi leads to more stringent requirements on the derivative of the frequency. This is

because ui(x, p) can be non-zero only when either of the following happen,

−ᾱi(ωi− ω̄i)

(ωi− ω̄ th
i )

+qi(x, p)< 0 and ωi > ω̄
th
i ,

α i(ω i−ωi)

ω th
i −ωi

+qi(x, p)> 0 and ωi < ω
th
i .

In this first case, the term −ᾱi(ωi−ω̄i)

(ωi−ω̄ th
i )

= Γi(ω̄i−ωi)

ωi−ω̄ th
i

> 0 becomes smaller as Γi decreases, making

its addition with qi(x, p) more likely to be less than 0, and resulting in an earlier activation of ui.

The second case follows similarly.

A small Γi may also lead to high control magnitude because it prescribes a smaller bound

on the frequency derivative, which in turn may require a larger control effort. However, choosing

a large Γi may cause the controller to be highly sensitive to ωi. This is because the absolute value

of the partial derivative of −ᾱi(ω i−ωi)

(ωi−ω̄ th
i )

(resp. α i(ω i−ωi)

ω th
i −ωi

) with respect to ωi grows proportionally

with Γi; consequently, when ui(x, p) is non-zero, its sensitivity against ωi increases as Γi grows,
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resulting in low tolerance against slight changes in ωi. In the limit, as Γi→ ∞, this yields

u∞
i (x, p) =


min{0,qi(x, p)} ωi = ω̄i,

0 ω i < ωi < ω̄i,

max{0,qi(x, p)} ωi = ω i,

(4.13)

which in general is discontinuous. We illustrate in simulation the dependence of the controller

on the choice of linear class-K functions in Section 6.4. •

Remark 4.3.5. (Incorporating transient frequency control and economic dispatch): The power

injections pi’s from the generator side are typically determined via economic dispatch, which

specifies setpoints for individual generator buses to balance the power consumptions given from

the load side while minimizing economic cost at steady state. Although we do not consider it

here, it is possible to combine economic dispatch with the transient frequency controller dis-

cussed here. Intuitively, this is because our proposed controller affects the system transient

behavior without changing the steady-state equilibrium. However, such combination must be

done carefully, because the economic dispatch mechanism may enable the dependence of the

power injection from the generators on the system state, whereas here we assume that it is con-

stant. In the former case, this would require analyzing the asymptotic stability of the resulting

closed-loop system. •

4.4 Closed-loop performance analysis

In this section, we characterize additional properties of the closed-loop system under

the proposed distributed controller beyond stability and frequency invariance. We characterize

the attractivity rate of trajectories for initial conditions outside the safe frequency region, the

boundedness of the control effort prescribed by the controller along the system trajectories, and
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its robustness against measurement and parameter uncertainty.

4.4.1 Estimation of the attractivity rate

Here we provide an estimate of the convergence rate to the safe region (cf. Theo-

rem 4.3.3(vi)) when the frequency of a node is initially outside it. The next result identifies

a specific trajectory bounding the frequency evolution.

Lemma 4.4.1. (Upper bound on frequency evolution): With the notation of Theorem 4.3.3,

assume that for some i ∈I u, ωi(0)> ω̄i. Let zi(t) be the unique solution of

Miżi(t) =
−ᾱi(zi(t)− ω̄i)

zi(t)− ω̄ th
i

, zi(0) = ωi(0). (4.14)

Then it holds that ωi(t)6 zi(t), for any t > 0. Furthermore, zi(t) converges to ω̄i monotonically

without reaching it in finite time.

Proof. It is easy to check that if zi(0)> ω̄i, then there exists a unique solution of (4.14) for every

t > 0. Since (4.12) holds for every i ∈ I u, by the Comparison Lemma [Kha02, Lemma 3.4],

one has that ωi(t)6 zi(t) for any t > 0. On the other hand, one can easily prove via Lemma 2.5.1

that the set
{

zi
∣∣ω̄i− zi 6 0

}
is invariant, which, together with the fact that zi(0) > ω̄i, implies

zi(t) > ω̄i for every t > 0. By the dynamics (4.14), we deduce żi(t) 6 0 for every t > 0 and

the monotonicity follows. Finally, since zi(t) is monotone decreasing and lower-bounded, zi(t)

is convergent, with limit ω̄i (since żi(t) < 0 if zi(t) 6= ω̄i). Finally, since the uniqueness of

trajectories is guaranteed by the Lipschitzness of the dynamics (4.14) and ω̄i is an equilibrium,

it follows that zi(t)> ω̄i for any t > 0.

A similar statement holds for the case when the initial frequency is lower than the lower

safe bound, but we omit it for brevity. When ᾱi is linear, the next result provides an explicit

expression for the bounding trajectory.
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Corollary 4.4.2. (Estimation of frequency convergence rate with linear class-K function): With

the notation of Lemma 4.4.1, if ᾱi(s) = Γ̄is with Γ̄i > 0, then zi(t) is uniquely determined by

zi(t)+(ω̄i− ω̄
th
i ) ln

(
zi(t)− ω̄i

ωi(0)− ω̄i

)
=−Γ̄it/Mi +ωi(0). (4.15)

Furthermore, it holds that for any t > 0,

zi(t)6 ω̄i +(ωi(0)− ω̄i)exp
(−Γ̄it/Mi +ωi(0)− ω̄i

ω̄i− ω̄ th
i

)
.

Proof. In the case where ᾱi(s) = Γ̄is, by separation of variables, one has that (4.14) is equivalent

to

zi− ω̄ th
i

zi− ω̄i
dzi =−Γ̄idt/Mi, zi(0) = ωi(0).

Equation (4.15) follows by integrating the above differential equation. Since by Lemma 4.4.1

zi(t)> ω̄i for every t > 0, it holds

ω̄i +(ω̄i− ω̄
th
i ) ln

(
zi(t)− ω̄i

ωi(0)− ω̄i

)
6−Γ̄it/Mi +ωi(0),

concluding the proof.

Remark 4.4.3. (Estimation of safe-frequency entry time): Corollary 4.4.2 establishes the expo-

nential convergence rate of the frequency evolution to the safe region, but it does not provide

an estimate of the finite time of entry t1 stated in Theorem 4.3.3(vi). This is because the upper-

bound signal zi never hits ω̄i in finite time. This drawback is caused by the fact that the existence

of t1 is justified by (cf. proof of Theorem 4.3.3(vi)) the combination of frequency invariance

and convergence of the closed-loop system, where we do not utilize the latter in obtaining the

upper-bound signal. To fix this, one may replace ω̄i by ω̄i− εi in (4.10) with εi ∈R>, and deter-
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mine t1 by solving z(t1) = ω̄i along the dynamics (4.14). Note that, although this procedure does

not jeopardize any statement in Theorem 4.3.3, it actually puts a stricter frequency invariance

requirement on the controller. •

4.4.2 Bounds on controller magnitude

Here, we provide bounds on the amplitude of the proposed controller (4.10) along the

system trajectories for a given constant power injection profile p. Our approach to do this is to

constrain the allowable initial conditions by employing the energy function V as a measure of

how far an initial state can be from the equilibrium point. The next result bounds the control

input as a function of r in (4.1), with 0 < r < r̄.

Lemma 4.4.4. (Lower bound on control effort): For i ∈I u, let gi(λ ,ω), −ᾱi(ωi−ω̄i)

ωi−ω̄ th
i

+qi(x, p)

and di , 1/2Mi(ω̄
th
i −ω∞)2. Let (λ ∗,ω∗) be the optimal solution of

(Q) min
(λ ,ω)

gi(λ ,ω)

s.t. (λ ,ω) ∈T (r), (4.16a)

λ ∈ range(D), (4.16b)

ωi > ω̄
th
i , (4.16c)

and define

umin
i (r),


0 if 0 6 r 6 di,

min{0,gi(λ
∗,ω∗)} if di < r < r̄.

(4.17)

Then, for any (λ (0),ω(0)) ∈T (r) with λ (0) ∈ range(D),

ui(x(t), p)> umin
i (r), (4.18)
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for any t > 0, and there exists initial states such that equality holds at some t > 0.

Proof. Note that by Theorem 4.3.3 with 0 < r < r̄, one has (λ (t),ω(t)) ∈ T (r) and λ (t) ∈

range(D) for every t > 0, provided they hold at t = 0. Therefore, to show (4.18) for every t > 0,

it suffices to show it holds for t = 0. If 0 6 r 6 di, then 1/2Mi(ωi(0)−ω∞)2 6V (ω(0),λ (0))6

di = 1/2(Mi(ω̄
th
i −ω∞)2, which implies ωi(0)6 ω̄ th

i ; therefore, ui(x(0), p)> 0 follows by (4.10).

Also, ui(x(0), p) can be 0 in the case when, say, x(0) = (λ ∞,ω∞). In the other case, if di < r < c̄,

then ui(x(0), p) is lower bounded by the optimal value of

(Q̂) min
(λ ,ω)

ui(x, p)

s.t. (4.16a) and (4.16b). (4.19)

Denote this optimal value by vi(r). Also, the value of ui(x(0), p) can be exactly vi(r), e.g., in the

case when x(0) is the optimal solution of (Q̂). Note that vi(r)6 0 as (λ ∞,ω∞) satisfies (4.19) and

ui((λ
∞,ω∞), p) = 0. Since it holds that a) ui(x, p)> 0 for any ωi 6 ω̄ th

i , and b) ui(x, p)6 0 for

any ωi > ω̄ th
i , one can, without changing the optimal value, replace ui(x, p) by min{0,gi(λ ,ω)}

in (Q̂), and meanwhile add an additional constraint (4.16c). With a simple reasoning effort, one

can show that for this new optimization problem, the optimal value is exactly min{0,gi(λ
∗,ω∗)}.

Note that the control amplitude lower bound umin
i (r) depends nonlinearly on the power

injection p. This is because, although the objective function in the optimization problem (Q), lin-

early depends on p, the optimal value does depend nonlinearly on p through the constraint (4.16a).

This is due to the fact that the equilibrium (λ ∞,ω∞1n) depends on p through the transcendental

equation (2.10).

A similar result can be stated regarding an upper bound of the controller magnitude, but

we omit it for brevity. The problem (Q) is non-convex due to the non-convexity of the objective

function. We next show that its optimal value equals that of another optimization problem with
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convex objective function and non-convex feasible set. Define the function hi : Rm+n×R→

R, (z,ω)→ hi(z,ω) exactly the same as gi but replacing sinλi by zi in the definition of qi.

In this way, hi(sinλ ,ω) = gi(λ ,ω). Let D+
i ,

{
j
∣∣[DTYb]i j > 0

}
and D−i ,

{
j
∣∣[DTYb]i j < 0

}
.

Consider the optimization

(R) min
(z,λ ,ω)

hi(z,ω)

s.t. sinλ j 6 z j, ∀ j ∈D+
i , (4.20a)

sinλ j > z j, ∀ j ∈D−i , (4.20b)

(4.16a) to (4.16c). (4.20c)

We claim that the optimal value of this problem is the same as that of (Q). The claim holds if

every optimal solution of (R), denoted by (z],λ ],ω]), satisfies (4.20a) and (4.20b) with equality

signs. This has to be the case since, for instance, if sinλ
]
k < z]k for some k ∈D+

i , then (z],λ ],ω])

can no more be an optimal solution, since (ẑ],λ ],ω]), where ẑ] differs from z] only in its kth

component, ẑ]k = sinλ
]
k , has hi(ẑ],ω])< hi(z],ω]), violating optimality.

Our next step is to convexify (R). Here we assume that ωi 7→ −ᾱi(ωi−ω̄i)

ωi−ω̄ th
i

is convex in ωi in

the region ωi > ω̄ th
i , which suffices to guarantee the convexity of (z,ω) 7→ hi(z,ω) in (z,ω) under

constraint (4.20) (this convexity assumption holds if, for instance, ᾱi is a linear function). To

handle the non-convexity of the constraints (4.20a) and (4.20b), in the following two results, we

separately provide inner and outer approximations, leading to upper and lower approximations

of the optimal value of (R), and equivalently (Q).

Lemma 4.4.5. (Upper bound of optimal value): Define H + , {(a,b)
∣∣ |a| < π/2, sina 6

b if a∈ [−π/2,0), and a6 b if a∈ [0,π/2]}, and H −, {(a,b)
∣∣ |a|< π/2, a> b if a∈ [−π/2,0),
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and sina > b if a ∈ [0,π/2]}. Consider the convex optimization problem

(R̄) min
(z,λ ,ω)

hi(z,ω)

s.t. (λ j,z j) ∈H +, ∀ j ∈D+
i , (4.21a)

(λ j,z j) ∈H −, ∀ j ∈D−i , (4.21b)

(4.16a) to (4.16c), (4.21c)

and denote its optimal solution by (zo,λ o,ωo). Then it holds that hi(zo,ωo) > gi(λ
o,ωo) >

gi(λ
∗,ω∗).

Proof. The second inequality holds since (λ o,ωo) satisfies (4.16a) to (4.16c), making it a fea-

sible point for (Q). To show the first inequality, one can easily check that for any j ∈ D+
i , if

(λ j,z j) ∈H +, then sinλ j 6 z j (cf. Figure 4.1(a)). Therefore, (4.21a) is stricter than (4.20a).

Similarly, (4.21b) is stricter than (4.20b). Therefore, [DTYb]i jzo
j > [DTYb]i j sinλ o

j holds for any

j ∈ [1,m]N, completing the proof since hi(zo,ωo)> hi(sinλ o,ωo) = gi(λ
o,ωo).

Lemma 4.4.6. (Lower bound of optimal value): Define M+
0 , {(a,b)

∣∣ −π/2 < a 6 0, sina 6

b}, M+
1 , {(a,b)

∣∣ 0 6 a 6 π/2, 2a/π 6 b}, M−
0 , {(a,b)

∣∣ − π/2 < a 6 0, 2a/π > b},

and M−
1 , {(a,b)

∣∣ 0 6 a 6 π/2, sina 6 b}. Consider the convex optimization problem for

µ , {µ j} j∈D+
i
⋃

D−i
, with µ j ∈ {0,1},

(Rµ) min
(z,λ ,ω)

hi(z,ω)

s.t. (λ j,z j) ∈M+
µ j
, ∀ j ∈D+

i , (4.22a)

(λ j,z j) ∈M−
µ j
, ∀ j ∈D−i , (4.22b)

(4.16a) to (4.16c), (4.22c)

and denote its optimal solution by (zµ ,λ µ ,ωµ). Let µ∗, argminµ hi(zµ ,ωµ), then hi(zµ∗ ,ωµ∗)6
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gi(λ
∗,ω∗).

Proof. Define

(R) min
(z,λ ,ω)

hi(z,ω)

s.t. (λ j,z j) ∈M+
0 ∪M+

1 , ∀ j ∈D+
i , (4.23a)

(λ j,z j) ∈M−
0 ∪M−

1 , ∀ j ∈D−i , (4.23b)

(4.16a) to (4.16c). (4.23c)

One can easily see that (4.20a)-(4.20b) is stricter than (4.23a)-(4.23b) (cf. Figure 4.1(b)). Hence

the optimal value of (R) lower bounds gi(λ
∗,ω∗). Notice that (4.22a)-(4.22b) simply splits (4.23a)-

(4.23b) into convex regions, and hence (zµ∗ ,λ µ∗,ωµ∗) is also the optimal solution of (Rµ).

(a) (b)

Figure 4.1: Tightening and relaxation of a sinusoidal non-convex constraint. In plot (a), within
|a| < π/2, by ignoring the gray region delimited by b = a, b = sin(a) and a = π/2, the non-
convex set characterized by sin(a)6 b appearing in (4.20a) contains the red convex subset H +.
On the other hand, in plot (b), this non-convex set is contained in the blue region. Each of the
blue regions separated by the dotted line at a = 0 are convex.

Together, Lemmas 4.4.5 and 4.4.6 provide us with efficient ways of approximating the

value of the bound on the control effort umin
i (r).
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4.4.3 Robustness to measurement and parameter uncertainty

Here we study the controller performance under measurement and parameter uncertainty.

This is motivated by scenarios where the state or the power injection may not be precisely mea-

sured, or scenarios where some system parameters, like the damping coefficient, are only ap-

proximately known. Formally, we let x̂ = (λ̂ , ω̂), p̂, and Ê be the measured or estimated state,

power injection, and damping parameters, respectively. For every i∈I u, we introduce the error

variables

ε
ω
i , ω̂i−ωi, ε

λ
i , [DTYb]iλ̂ − [DTYb]iλ , ε

p
i , p̂i− pi, ε

E
i , Êi−Ei.

We make the following assumption regarding the error.

Assumption 4.4.7. (Bounded uncertainties): For each i ∈I u,

(i) the uncertainties are piece-wise continuous and can be bounded by |εω
i (t)|6 ε̄ω

i , |ελ
i (t)|6

ε̄λ
i , |ε p

i (t)|6 ε̄
p
i , and |εE

i (t)|6 ε̄E
i for all t > 0;

(ii) ω∞ ∈ (ω th
i + ε̄ω

i , ω̄ th
i − ε̄ω

i );

(iii) ε̄ω
i < min{ω̄i− ω̄ th

i ,ω th
i −ω i}.

Condition (i) provides uniform bounds on the uncertainties; (ii) ensures that, even with

uncertainty, the control input is identically 0 around the equilibrium; (iii) guarantees that the

control input is always non-singular.

For convenience, we use ûi(x̂, p̂(t)) to refer to the controller with the same functional

expression as (4.10) but implemented with approximate parameter values and evaluated at the

inaccurate state x̂ and power injection p̂(t). Notice that p̂(t) can be time-varying. The next

result shows that ûi still stabilizes the power network and enforces the satisfaction of a relaxed

frequency invariance condition. For simplicity, we restrict our attention to linear class-K func-

tions in the controller design.
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Proposition 4.4.8. (Robust stability and frequency invariance under uncertainty): Under con-

dition (2.9) and Assumption 4.4.7, consider the evolution of the system (2.7) with the con-

troller ûi for each i ∈ I u. Then the following results hold provided λ (0) ∈ range(D) and

(λ (0),ω(0)) ∈T (r) for some 0 < r < r̄:

(i) The solution exists and is unique for every t > 0.

(ii) λ (t) ∈ range(D) and (λ (t),ω(t)) ∈T (r) for any t > 0;

(iii) (λ ∞, ω∞1n) is stable, and (λ (t), ω(t)) converges to (λ ∞, ω∞1n);

(iv) There exists a finite time t2 such that ûi(x̂(t), p̂(t)) = 0 for every t > t2 and every i ∈I u.

(v) Suppose ᾱi(s) = α i(s) = Γis for every i ∈I u. Then, if there exists ∆ > 0 such that satisfy

−Γi(ε̄
ω
i +∆)

ω̄i− ω̄ th
i +∆+ ε̄ω

i
+ ε̄

E
i (∆+ ω̄i)+ Êiε̄

ω
i + ε̄

λ
i + ε̄

p
i 6 0, (4.24a)

−Γi(ε̄
ω
i +∆)

ω th
i −ω i +∆+ ε̄ω

i
+ ε̄

E
i (∆−ω i)+ Êiε̄

ω
i + ε̄

λ
i + ε̄

p
i 6 0, (4.24b)

then ωi(t)∈ [ω i−∆, ω̄i+∆] for all t > 0, provided ωi(0)∈ [ω i−∆, ω̄i+∆], and, if ωi(0) 6∈

[ω i−∆, ω̄i +∆], then there exists a finite time t3 such that ωi(t) ∈ [ω i−∆, ω̄i +∆] for all

t > t3.

Proof. The proofs of (i)-(iii) follow similar arguments as the proofs of Theorem (i)-(iii). For

stability, one can show that d
dtV (ω(t),λ (t)) = −ω̃T (t)Eω̃(t) +∑i∈I u ω̃i(t)ûi(x̂(t), p̂(t)). By

Assumption 4.4.7 and the definition of ûi, it holds that ∑i∈I u ω̃i(t)ûi(x̂(t), p̂(t)) 6 0, implying

d
dtV (λ (t),ω(t)) 6 0. The convergence follows by LaSalle Invariance Principle and noticing

that ûi(x̂, p̂(t)) is identically 0 so long as ωi ∈ [ω th
i + ε̄ω

i , ω̄ th
i − ε̄ω

i ], which, together with the

convergence, implies that ûi(x̂(t), p̂(t)) is 0 after a finite time. For (v), to prove the invariance of
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[ω i−∆, ω̄i +∆], by Lemma 4.2.3, we only need to show that

ûi(x̂, p̂(t))−qi(x, t)6 0, if ωi = ω̄i +∆, (4.25a)

−ûi(x̂, p̂(t))+qi(x, t)6 0, if ωi = ω i−∆. (4.25b)

For simplicity, we only show that (4.24a) implies (4.25a) (the fact that (4.24b) implies (4.25b)

follows similarly). Notice that if ωi = ω̄i +∆, then ûi(x̂, p̂(t))−qi(x, t) equals

−Γi(∆+ εω
i )

ω̄i− ω̄ th
i +∆+ εω

i
+ ε

E
i (ω̄i +∆)+ Êiε

ω
i + ε

λ
i + ε

p
i , (4.26)

which, by Assumption 4.4.7, is smaller than or equal to the left-hand side of (4.24a) by letting

the uncertainties take their individual bounds; hence (4.25a) holds. Finally, the existence of t3

follows a similar proof in Theorem (vi).

One should look at (4.24) as a condition that, independently of the specific realization of

the uncertainty, guarantees that the invariance of the frequency interval is ensured.

4.5 Simulations

We illustrate the performance of our control design in the IEEE 39-bus power network

displayed in Figure 3.3. Parameter set-ups of the power network are in line with those in Sec-

tion 3.5, and we use Power System Toolbox [CCR09] to assign the initial power injection pi(0)

for every bus (although the analytical results hold for constant power injections, in simulation

we have also tested the more general time-varying case). We assign all non-generator buses

a uniform small inertia Mi = 0.1. The damping parameter is Ei = 1 for all buses. The ini-

tial state (λ (0),ω(0)) is chosen to be the unique equilibrium with respect to the initial power

injection. We implement the distributed controller in (4.10) in the generators with indices

I u = {30,31,32} to tune their transient frequency behavior. The controller parameters are
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as follows: for every i ∈ I u, we let ᾱi(s) = α i(s) = Γis, with Γi = 2, ω̄i = −ω i = 0.2Hz and

ω̄ th
i = −ω th

i = 0.1Hz. The nominal frequency is 60Hz, and hence the safe frequency region is

[59.8Hz, 60.2Hz].

We first show how the proposed controller maintains the targeted generator frequencies

within the safe region provided that these frequencies are initially in it. For our first scenario, we

consider a generator loss and recovery process. Specifically, we set the power injection of node

38 to zero (i.e., generator G9) during the time interval [10,40]s. As shown in Figure 4.2, without

the transient controller (4.10), the frequency of node 30 first gradually goes down, exceeding the

safe bound 59.8Hz a few times, even tending to converge to a frequency below it. As node 38

recovers its power supply at 40s, the frequency comes back to 60Hz. In comparison, with the

transient controller, the frequency trajectory never goes beyond 59.8Hz during the transient.

For our second scenario, we perturb all non-generator nodes by a sinusoidal power in-

jection whose magnitude is proportional to the corresponding node’s initial power injection.

Specifically, for every i ∈ {1,2, · · · ,29},

pi(t) =


pi(0) if t > 30,(
1+0.3sin(πt

30)
)

pi(0) otherwise.

For i ∈ {30,31, · · · ,39}, pi(t) remains constant all the time. Figure 4.3(a) shows the frequency

responses of generators 30, 31, and 32 without the transient controller. One can see that all

trajectories exceed the 59.8Hz lower frequency bound. For comparison, Figure 4.3(b) shows

the trajectories with the transient controller (4.10), where all remain within the safe frequency

region. Figure 4.3(c) displays the corresponding input trajectories, which converge to 0 in finite

time, as stated in Theorem 4.3.3(iv). We also illustrate the robustness of the controller against

uncertainty. We have each controller employ Êi = 2 and p̂i(t) = 1.1pi(t), corresponding to

100% and 10% deviations on droop coefficients and power injections, respectively. Figure 4.3(d)
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Figure 4.2: Frequency and control input trajectories at node 30 corresponding to the power sup-
ply loss of generator G9 during [10,40]s. The frequency trajectory without transient controller
goes beyond the safe bounds during the contingency, while this is avoided with the proposed
controller. Notice that the latter only takes effect when the frequency is close to the safe bound.

illustrates the frequency trajectories of the 3 controlled generators. Since condition (4.24) is

satisfied with ∆ = 0.1Hz, Proposition 4.4.8 ensures that the invariant frequency interval is now

[59.7Hz,60.3Hz].

Next, we illustrate the effect of unmodeled actuator dynamics in the performance of our

controller. Instead of the ideal assumption adopted in our analysis that the control command u

is applied to the physical system without delay, we run simulations on the same setup of Fig-

ure 4.3(b), that incorporate the actuator response time by having the actuator of each controlled

node be modeled as a first-order linear system with response time 5s, see e.g. [WLL+18]. Fig-

ure 4.4(a) shows the outcome of the simulation. One can see that, since the controller does

not take the actuator dynamics into account, the guarantee on frequency invariance is not main-

tained. Still, the frequency trajectories are better than the open-loop trajectories displayed in

Figure 3.6(a). On the other hand, if we use ω i =−0.06Hz and ω thr
i =−0.03Hz for each i ∈U

(that is to say, we narrow down the safe frequency bound) for the controller (4.10), then the

frequency trajectories stay above 59.8Hz in this scenario, as shown in Figure 4.4(b).

Next, we examine the effect of the choice of class-K function on the behavior of the

transient frequency. We focus our attention on bus 30 and simulate the network behavior for
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(a) (b)

(c) (d)

Figure 4.3: Frequency and control input trajectories with and without transient controller.
Plot (a) shows the frequency trajectories of the generators 30, 31, and 32 without the tran-
sient controller (4.10), with all of them going beyond the lower safe frequency bound. With
the transient controller, plot (b) shows that all frequency trajectories stay within the safe bound.
Plot (c) shows the corresponding trajectories of the control inputs. Plot (d) shows the controller
performance under parameter uncertainty and errors in the power injection approximation.

a linear function with Γ30 = 0.1,2,10, and +∞ (the latter corresponding to the discontinuous

controller in (4.13)). Figure 4.5 shows the corresponding frequency and control input trajectories

for the first 30 seconds at node 30. From Figure 4.5(a), one can see that the frequency trajectory

with Γ30 = 0.1 tends to stay away from the lower safe bound (overprotection), compared with the

trajectories with Γ30 = 2,10, and +∞, and this results in a larger control input, cf. Figure 4.5(b).

As Γ30 increases, the control input is triggered later. On the other hand, choosing a large Γ30
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(a) (b)

Figure 4.4: Frequency trajectories under non-ideal actuator dynamics. Plot (a) shows the fre-
quency trajectories of generators 30, 31, and 32 with the control command (4.10) as the setpoint
of a first-order actuator. Plot (b) shows the same but with the control command (4.10) imple-
mented with tighter safe frequency bounds.

lead to higher sensitivity, as observed in Figure 4.5(b), where the input trajectory with large Γ30

grows faster at the time when the control input first becomes non-zero. In fact, the controller with

Γ30 = 10 exhibits a sharp change around t = 9s, similar to the discontinuous controller (4.13).

The discontinuity of the latter is more evident under state measurements errors. In Figure 4.6, we

run the same simulation but with ω̂30(t) = ω30(t)+0.001sin(200πt) as the measured frequency.

One can observe the high-frequency fluctuation in the control input trajectory around 9.4s for

Γ30 = +∞, whereas this does not happen for Γ30 = 2 due to its Lipschitz continuity character.

These simulations validate the observations of Remark 4.3.4.

Next, we simulate the case where some of the generator frequencies are initially outside

the safe region to show how the transient controller brings the frequencies back to it. We use

the same setup as in Figure 4.3, but we only turn on the distributed controller after t = 12s.

Figure 4.7(a) shows the frequency trajectories of generators 30, 31, and 32. As the controller

is disabled for the first 12s, all 3 frequency trajectories are lower than 59.8hz at t = 12s. After

t = 12s, all of them return to the safe region in a monotonic way, and once they are in the region,

they never leave, in accordance with Theorem 4.3.3(vi). Figure 4.7(b) shows the corresponding
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(a) (b)

Figure 4.5: Frequency and control input trajectories at node 30 with linear class-K function
with slope Γ30 = 0.1,2,10 and +∞, respectively. We observe from plot (a) that the frequency
trajectory with small Γ30 tends to stay away from the safe frequency bound, at the cost of having
a large control input, as shown in plot (b). A large Γ30 causes the controller to be sensitive to
ω30, making the input change rapidly around 9s.

(a) (b)

Figure 4.6: Control input trajectories at node 30 with linear class-K function with slope Γ30 =
2 and +∞, respectively, under state measurement errors in ω30. The controller with γ30 = 2
is Lipschitz continuous (cf. plot (a)), whereas the controller with γ30 = +∞ (cf. plot (b)) is
discontinuous.

control input trajectories.

Finally, we illustrate the bounds on control amplitude of Section 4.4.2. Let r = 0.5

and i = 30. By Lemma 4.4.4, the control input is lower bounded by umin
i (γ), which requires
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(a) (b)

Figure 4.7: Frequency and control input trajectories with transient controller available after
t = 12s. Plot (a) shows the frequency trajectories of generators 30, 31, and 32. Due to the
disturbance, and without the transient controller, all 3 frequency trajectories exceed the 59.8Hz
safe bound at t = 12s. As the transient controller kicks in, the unsafe trajectories come back to
the safe region and never leave afterwards. Plot (b) shows the control input trajectories.

gi(λ
∗,ω∗). The numerical computation of the upper gi(λ

o,ωo) (cf. Lemma 4.4.5) and lower

hi(zµ∗,ωµ∗) (cf. Lemma 4.4.6) bounds both yield −5.8686. Figure. 4.8(a) shows 100 input

trajectories with initial states randomly selected around (λ o,ωo), all lower bounded by−5.8686.
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(a) (b)

Figure 4.8: Control input trajectories at node 30 corresponding to 100 different initial states. In
plot (a), with all initial states randomly selected around the worst-case scenario, all 100 trajecto-
ries are lower bounded by−5.8686 (denoted by the dashed line), as guaranteed by Lemma 4.4.4.
A similar result is illustrated in plot (b), where another 100 trajectories with random initial states
are upper bounded by 5.8494.
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Chapter 5

Model predictive control for transient

frequency regulation

As the controller designed in Chapter 4 only takes frequency safety and network stability

into account, this chapter further introduces a control strategy that enables control cooperation

on multiple nodes to reduce their overall control efforts. The control command is generated by

iteratively solving an open-loop control cost minimization problem with stability and transient

frequency constraints. To deal with the non-convexity of the stability constraint, we propose a

convexification strategy that uses a reference trajectory based on the system’s current state. We

also detail how to employ network partitions to implement the proposed control strategy in a

distributed way, where each region only requires system information from neighboring regions

to execute its controller.

5.1 Problem statement

We consider the same power network dynamics (2.8) used in Chapter 4. Besides the

three basic requirements on stability and convergence, frequency invariance, and attractivity

89



mentioned in Section 4.1, we aim to design state-feedback controllers ui for each bus i ∈ I u

that also satisfies the following requirement,

Coordination requirement: Each controller ui, i ∈ I u, should cooperate with others to

lower the overall control effort, as measured by some given cost function. Moreover, here we

allow I ω to be a subset of I u, that is to say, a node with an available control command can

also participate in transient frequency regulation on other nodes, even if the node itself has no

such a requirement.

Our design strategy is to first set up an open-loop optimization problem with control

cost as objective function, and with frequency and stability requirements as constraints. Then,

we design a centralized controller by solving this optimization problem in a receding horizon

fashion. Finally, the distributed controller comes from partitioning the network into several

regions, and treating each region as an independent network.

5.2 Open-loop optimal control

We start by formulating an optimization problem whose goal is to minimize a cost func-

tion measuring control input effort subject to the system dynamics, safe frequency invariance,

and asymptotic stability constraints. As this problem turns out to be non-convex and non-smooth,

we propose a convexification strategy by generating a set of linear constraints. Later, we build

on this to design centralized and distributed controllers.

5.2.1 Open-loop finite-horizon optimal control

We introduce a robust asymptotic stability condition with respect to the open-loop equi-

librium point and estimate the region of attraction.

Lemma 5.2.1. (Robust asymptotic stability condition): For system (2.8), suppose that the so-

lution exists and is unique. For every i ∈ I u, let ω̄ thr
i > 0 and ω thr

i < 0 be threshold values
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satisfying ω thr
i < ω∞ < ω̄ thr

i . If for every t ∈ R>,

ωi(t)ui(x(t), p)6 0, if ωi(t) 6∈ (ω thr
i , ω̄ thr

i ), (5.1a)

ui(x(t), p) = 0, if ωi(t) ∈ (ω thr
i , ω̄ thr

i ), (5.1b)

then under condition (2.9), (λ ∞,ω∞1n) is locally asymptotically stable. Furthermore, with V , r̄,

and T defined in (4.1), (4.2),and (4.3), for every (λ (0),ω(0)) ∈ T (r) with 0 < r < r̄, it holds

that (λ (t),ω(t)) ∈T (r) for every t > 0 and (λ (t),ω(t))→ (λ ∞,ω∞1n).

Proof. Note that (5.1) implies (4.4), and the proof follows by Lemma 4.2.1.

Notice that the dependence of the robust asymptotic stability condition (5.1) on the equi-

librium point (λ ∞,ω∞1n) is limited to an approximate knowledge of ω∞. This reflects a practical

consideration under which the controller should still ensure asymptotic stability: although ide-

ally ω∞ is 0 when load and supply are balanced (i.e., ∑
n
i=1 p∗i = 0), due to imperfect estimation

on the load side and transmission losses, ω∞ tends to slightly deviate from 0.

We here formally introduce the finite-horizon optimal control problem. For every t ∈R>,

we consider a piece-wise continuous signal p f cst
t : [t, t+ t̃]→Rn forecasting its value for the first

t̃ seconds starting from t. When convenient, we invoke the following assumption in our technical

analysis.

Assumption 5.2.2. (Forecast reveals true value at current time): For any t ∈ R>, p f cst
t (t) = p.

The open-loop finite-horizon optimal control problem is defined by

(Qcont) min
λ ,ω,u,β ,γ

∑
i∈I u

∫
τ0+t̃

τ0

ciu2
i (τ)+diβ

2
i (τ)dτ + ∑

i∈I ω

∫
τ0+t̃

τ0

eiγ
2
i (τ)dτ

s.t. λ̇ (τ) = Dω(τ), (5.2a)

Mω̇(τ) =−Eω(τ)−DTYbλ (τ)+ p f cst
t (τ)+u(τ), (5.2b)
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λ (τ0) = sinλ0, ω(τ0) = ω0, (5.2c)

u(τ) ∈ U, ∀τ ∈ [τ0,τ0 + t̃], (5.2d)

umin
i −ξiβi(τ)6 ui(τ)6 umax

i +ξiβi(τ), ∀i ∈I u, ∀τ ∈ [τ0,τ0 + t̃], (5.2e)

βi(τ)> 0,∀i ∈I u, ∀τ ∈ [τ0,τ0 + t̃], (5.2f)

ω i−λi(ω0,ξi)(γi(τ)−δ )6 ωi(τ)

6 ω̄i +λi(ω0,ξi)(γi(τ)−δ ), ∀i ∈I ω , ∀τ ∈ [τ0,τ0 + t̃], (5.2g)

γi(τ)> 0, ∀i ∈I ω , ∀τ ∈ [τ0,τ0 + t̃], (5.2h)

(ω,u) ∈Φcont , (5.2i)

where constraints (5.2a)-(5.2c) represent system dynamics and initial state. Notice that we lin-

earize the dynamics in (5.2b), which contributes to the convexification of the open-loop op-

timization with a slight loss of optimality (in Section 5.3, we show that employing this lin-

earization for controller design does not jeopardize the asymptotic stability or safe frequency

invariance requirements in the closed-loop system); constraint (5.2d) reflects the available con-

trol signal indexes; constraints (5.2e) and (5.2f) delimit the control magnitude bounds, in which

ξ ∈ {0,1} indicates the magnitude constraint type, i.e., if ξi = 1 for i∈I u, then the constraint is

soft as ui(τ) could exceed umax
i ∈R or umin

i ∈R, but penalized by βi(τ) in the objective function,

and if ξi = 0 then it is a hard constraint; constraints (5.2g) and (5.2h) refer to the safe frequency

invariance requirement, in which

λi(ω0,ξi) =


0 if ωi,0 ∈ [ω i, ω̄i] and ξi = 1,

1 otherwise.
(5.3)

Intuitively, these two constraints require that ωi stays in [ω i, ω̄i] provided that it is initially in-

side and the magnitude constraint on the controller is soft, and penalize through γi if not. The
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parameterδi with 0< δi < ω̄i−ω i is tunable, forcing ωi(τ) approach the interval [ω i+δi, ω̄i−δ ],

and hence enter [ω i, ω̄i] in finite time; constraint (5.2i) is the asymptotic stability condition es-

tablished in Lemma 5.2.1, where

Φcont ,
{
(ω,u)

∣∣ (5.1) holds ∀t ∈ [τ0.τ0 + t̃], ∀i ∈I u} .
Finally, ci,di ∈ R> and ei ∈ R> refer to the weight coefficient on control effort, control magni-

tude penalty, and frequency invariance penalty, resp.

We refer to (5.2) as Qcont(G ,I u,I ω , p f cst
t ,λ0,ω0,τ0) to emphasize its dependence on

the graph topology, controlled node indexes, transient-frequency-constrained node indexes, fore-

casted power injection, initial state, and initial time. If the context is clear, we use Qcont . We use

the same notational logic for other optimization problems in the rest of the chapter.

In practice, a convenient way to approximate the functional solution for Qcont is by dis-

cretization. Specially, here we discretize the system periodically with time length T ∈ R>, and

denote N , dt̃/Te as the total number of steps. For every k ∈ [0,N]N, denote λ̂ (k), ω̂(k), û(k),

p̂ f cst(k) as the approximation of λ (τ0 + kT ),ω(τ0 + kT ), u(τ0 + kT ) and p f cst
t (τ0 + kT ), resp.,

and let

Λ̂ , [λ̂ (0), λ̂ (1), · · · ,λ (N)], (5.4a)

Ω̂ , [ω̂(0), ω̂(1), · · · , ω̂(N)], (5.4b)

P̂ f cst , [p̂ f cst(0), p̂ f cst(1), · · · , p̂ f cst(N−1)], (5.4c)

Û , [û(0), û(1), · · · , û(N−1)], (5.4d)

B̂ , [β̂ (0), β̂ (1), · · · , β̂ (N−1)], (5.4e)

Γ̂ , [γ̂(0), γ̂(1), · · · , γ̂(N)], (5.4f)

be the collection of voltage angle difference, frequency, predicted power injection, and control
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input discrete trajectories, resp. We formulate the discrete version of Qcont in (5.6), where

Φdisc ,
{
(Ω̂,Û)

∣∣ ∀i ∈I u, ∀k ∈ [0,N−1]N, it holds that

ω̂i(k)ûi(k)6 0, if ω̂i(k) 6∈ (ω thr
i , ω̄ thr

i )ûi(k) = 0, if ω̂i(k) ∈ (ω thr
i , ω̄ thr

i )
}
. (5.5)

Note that this set is nonlinear and non-smooth.

(Qdisc) min
Λ̂,Ω̂,Û ,B̂,Γ̂

g(Û , B̂, Γ̂), ∑
i∈I u

N−1

∑
k=0

(
ciû2

i (k)+diβ
2
i (k)

)
+ ∑

i∈I ω

N

∑
k=1

eiγi(k)

s.t. λ̂ (k+1) = λ̂ (k)+T Dω̂(k),

Mω̂(k+1) = Mω̂(k)−T
{

Eω̂(k)+DTYbλ̂ (k)− p̂ f cst(k)− û(k)
}
, ∀k ∈ [0,N−1]N,

(5.6a)

λ̂ (0) = sinλ0, ω̂(0) = ω0, (5.6b)

û(k) ∈ U, ∀k ∈ [0,N−1]N, (5.6c)

umin
i −ξiβi(k)6 ûi(k)6 umax

i +ξiβi(k), ∀i ∈I u, ∀k ∈ [0,N−1]N, (5.6d)

βi(k)> 0, ∀i ∈I u,∀k ∈ [0,N−1]N, (5.6e)

ω i−λi(ω0,ξi)(γi(k)−δ )6 ω̂i(k)6 ω̄i +λi(ω0,ξi)(γi(k)−δ ), ∀i ∈I ω , ∀k ∈ [1,N]N,

(5.6f)

γi(k)> 0, ∀i ∈I ω ,∀k ∈ [1,N]N, (5.6g)

(Ω̂,Û) ∈Φdisc, (5.6h)

5.2.2 Constraint convexification

The major obstacle to solve Qdisc is dealing with the set Φdisc in constraint (5.6h). To

this end, we propose a convexification method that seeks to identify a subset of Φdisc consisting

of only linear constraints. This method relies on the notion of reference trajectory, which is a

trajectory (Λ̂,Ω̂,Û) of the system state and input for which there exist B̂ and Γ̂ such that (5.6)
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are satisfied. The next result details this.

Lemma 5.2.3. (Convexification of non-convex constraints): For any reference trajectory

(F̂ref,Ω̂ref,Û ref), let

Φcvx ,
{
(Ω̂,Û)

∣∣ ∀i ∈I u, ∀k ∈ [0,N−1]N, it holds that

ω̂i(k)> ω̄
thr
i , ûi(k)6 0, if ω̂

ref
i (k)> ω̄

thr
i ;

ω̂i(k)6 ω
thr
i , ûi(k)> 0, if ω̂

ref
i (k)6 ω

thr
i ;

ûi(k) = 0, if ω
thr
i < ω̂

ref
i (k)< ω̄

thr
i

}
. (5.7)

Then, /0 6= Φcvx ⊆Φdisc is convex.

Proof. The non-emptiness holds by simply noticing that (Ω̂ref,Û ref) ∈ Φcvx. We show the in-

clusion by classifying each k ∈ [0,N− 1]N into three types regarding the value of ω̂ ref
i (k). If

ω̂ ref
i (k) > ω̄ thr

i , then at step k, only the first constraint in Φcvx is active, which satisfies the first

constraint in Φdisc, as well as the second one trivially, since in this case ω̂i(k) /∈ (ω thr
i , ω̄ thr

i ).

Similar analysis holds if ω̂ ref
i (k)6 ω thr

i . Finally, if ω thr
i < ω̂ ref

i (k)< ω̄ thr
i , then only the last con-

straint in Φcvx is active, which satisfies both two constraints in Φdisc. Finally, the convexity of

Φcvx follows by noting that it corresponds to the intersection of finitely many linear constraints

over all i ∈ I u and k ∈ [0,N− 1]N. To see this, notice that for each i and k, as the value of

ω̂ ref
i (k) is given a priori by the reference trajectory, one and only one of the three constraints in

Φcvx is active, leading to linearity.

In light of Lemma 5.2.3, given a reference trajectory, we solve a convexified version of

Qdisc, replacing Φdisc by Φcvx,

(Qcvx) min
F̂ ,Ω̂,Û

g(Û , B̂, Γ̂)

s.t. (5.6a)− (5.6g) hold, (5.8a)
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(Ω̂,Û) ∈Φcvx. (5.8b)

Since the convexification reduces the set Φdisc to Φcvx, the optimal value of Qdisc is less than or

equal to that of Qcvx. For consistency, if the reference trajectory is the optimal solution of Qdisc,

then both problems have the same optimal value.

5.2.3 Generation of reference trajectory

Here we introduce a method to generate the reference trajectory required by the convex-

ification process of Φdisc based on our previous work [ZC19c].

Proposition 5.2.4. (Generation of reference trajectory): For every i ∈I u and every k ∈ [0,N−

1]N, suppose ω i < ω thr
i < ω∞ < ω̄ thr

i < ω̄i, and γ̄i, γ
i
∈ R>. For every k ∈ [0,N−1]N, define,

ûa
i (k),


min{0, γ̄i(ω̄i−ω̂

ref
i (k))

ω̂
ref
i (k)−ω̄ thr

i
− vi(k)} if ω̂

ref
i (k)> ω̄ thr

i ,

0 if ω thr
i < ω̂

ref
i (k)< ω̄ thr

i ,

max{0, γ
i
(ω i−ω̂

ref
i (k))

ω thr
i −ω̂

ref
i (k)

− vi(k)} if ω̂
ref
i (k)6 ω thr

i ,

∀i ∈I ω , (5.9)

ûref
i (k), sat(ûa

i (k);ξi,umin
i ,umax

i ), ∀i ∈I ω ,

ûref
i (k), 0, ∀i ∈I \I ω ,

vi(k), ∑
j: j→i

b jiλ̂
ref
ji (k)− ∑

l:i→l
bilλ̂

ref
il (k)+ p̂ f cst

i (k)−Eiω̂
ref
i (k), ∀i ∈I ω , .

Furthermore, set Û ref , [ûref(0), ûref(1), · · · , ûref(N−1)] and let (Λ̂ref,Ω̂ref) be the sate trajectory

uniquely determined by (5.6a) and (5.6b) using ûref as input. Then there exists T̄ ∈R> such that

for any 0 < T 6 T̄ , (Λ̂ref,Ω̂ref,Û ref) is a reference trajectory.

Proof. From the definition of (Λ̂ref,Ω̂ref,Û ref) one can easily see that it naturally satisfies con-

straints (5.6a)-(5.6c) and (5.6h). We next show that the other constraints hold with each possible

ξ ∈ {0,1}|I u| by pointing out a specific B̂ and Γ̂ associated with (Λ̂ref,Ω̂ref,Û ref). For any
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i ∈ I u, if ξi = 0, one can easily check that (5.6d)-(5.6e) holds by the definition of ûref
i with a

trivial choice of βi(k)≡ 0. Notice that since we assume that λi is always 1 if ξi = 0, there always

exists γi(k) sufficiently large such that (5.6f)-(5.6g) hold.

If ξi = 1 for some i∈I u instead, then one can have βi(k) sufficiently large to meet (5.6d)-

(5.6e). Further if ωi,0 6∈ [ω i, ω̄i], resulting in λi(ω0,ξi) = 1, then one can still choose γi(k) suffi-

ciently large so that (5.6f)-(5.6g) hold. Finally, if ωi,0 ∈ [ω i, ω̄i], then we show that (5.6f)-(5.6g)

also hold with a trivial choice of γi(k) = 0 for every k ∈ [1,N]N. We first claim that there exists

c ∈ R> such that, for every k ∈ [0,N−1]N and i ∈I ,

|ω̂ ref
i (k+1)− ω̂

ref
i (k)|6 cT. (5.10)

Note that x̂ref(k) , (λ̂ ref(k), ω̂ ref(k)) ∈ Rm+n, obtained by substituting ûref into (5.6a)-(5.6b),

satisfies x̂ref(k+ 1) = x̂ref(k)+T h(x̂ref(k), p̂ f cst(k)), which correspond to the Euler approxima-

tion of the continuous-time dynamics ẋref(t) = h(xref(t), p f cst
t (t)). Here, for simplicity, we omit

the explicit expression of h, but one can see [ZC19c] that it is Lipschitz in its first component,

and hence the solution of the continuous-time dynamics exists and is unique for any t > 0, and

‖xref(t)‖ 6 r1 for sufficiently large r1 ∈ R>. By [But08, Theorem 212A], there exists c1 ∈ R>

such that

‖xref(τ0 + kT )− x̂ref(k)‖6 c1T, ∀k ∈ [0,N−1]N.

Further, the Lipschitz property of h and the uniform boundedness of xref(t) imply that there exists

r2 ∈ R> such that ‖ẋref(t)‖6 r2 for any t > τ0. Therefore, it holds for all k ∈ [0,N−1]N and all

i ∈I that

|ω̂ ref
i (k+1)− ω̂

ref
i (k)|6 ‖x̂ref(k+1)− x̂ref(k)‖

6 ‖x̂ref(k+1)− xref(τ0 +(k+1)T )‖+‖x̂ref(k)− xref(τ0 + kT )‖
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+‖xref(τ0 +(k+1)T )− xref(τ0 + kT )‖

6 2c1T +‖
∫ (k+1)T

kT
ẋref(τ)dτ‖

6 2c1T +
√

m+n
∫ (k+1)T

kT
‖ẋref(τ)‖dτ = (2c1 + r2

√
m+n)T.

Hence, (5.10) follows by letting c , 2c1 + r2
√

m+n.

Next, we prove (5.6f) holds by induction, i.e., for any i ∈ I ω , if ω̂ ref
i (k) ∈ [ω i, ω̄i] for

some k ∈ [0,N−2]N, then it also holds by replacing k by k+1. Note that by (5.10), if ω̂ ref
i (k) ∈

[ω i + cT, ω̄i− cT ], then ω̂ ref
i (k + 1) ∈ [ω i, ω̄i]. Therefore, we only need to consider the case

when ω̂ ref
i (k) ∈ (ω̄i− cT, ω̄i] and ω̂ ref

i (k) ∈ (ω i,ω i + cT ]. For simplicity, we only prove the first

case (the other holds similarly). Without loss of generality, we choose T small enough so that

cT < ω̄i− ω̄ thr
i for every i ∈I ω , ensuring ω̂ ref

i (k)> ω̄ thr
i . From the system dynamics, one has

Miω̂
ref
i (k+1) = Miω̂

ref
i (k)+T

(
vi(k)+ ûref

i (k)
)
. Substituting (5.9), one has

Miω̂
ref
i (k+1)6 Miω̂

ref
i (k)+T

γ̄i(ω̄i− ω̂ ref
i (k))

ω̂ ref
i (k)− ω̄ thr

i
6 Miω̂

ref
i (k)+T

γ̄i(ω̄i− ω̂ ref
i (k))

ω̄i− cT − ω̄ thr
i

.

By substituting b( j), ω̂ ref
i ( j)− ω̄i for j = k and k+1 into the above inequality, it holds

Mib(k+1)6
(

Mi−
T γ̄i

ω̄i− cT − ω̄ thr
i

)
b(k).

Since b(k) 6 0, let T̄ be such that Mi− T̄ γ̄i
ω̄i−cT̄−ω̄ thr

i
> 0. Then, b( j+1) 6 0 for 0 < T 6 T̄ , i.e.,

if ω̂ ref
i (k)6 ω̄i, then ω̂ ref

i (k+1)6 ω̄i, and the induction holds.

Notice that a small sampling length T reduces the discretization gap between Qcont and

Qdisc, as well as guarantees the qualification of (F̂ ref,Ω̂ref,Û ref) in Proposition 5.2.4 as a refer-

ence trajectory. On the other hand, the number of constraints appearing in Qcvx grows linearly

with respect to 1/T . Hence, there is a trade-off among discretization accuracy, reference trajec-

tory qualification, and computational complexity.
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5.3 From centralized to distributed closed-loop receding hori-

zon feedback

In this section we design a feedback controller in a receding horizon fashion by having

the input at a given state (λ (t),ω(t)) at time t with a forecasted power injection p f cst
t be the

first step of the optimal control input trajectory of Qcvx(G ,I u,I ω , P̂ f cst ,λ (t),ω(t), t). We first

consider a centralized implementation, where a single operator gathers global state information,

computes the control law, and broadcasts it. Building on it, we propose a distributed strategy,

where several independent operators are responsible for computing control signals within its

own region using only regional information.

5.3.1 Centralized control with stability and frequency invariance

Formally, at time t, the centralized controller measures the current output ( f (t),ω(t))

and forecasts a power injection profile p f cst
t (τ) with τ ∈ [t, t + t̃] as well as its corresponding

discretization P̂ f cst , cf. (5.4c). Let (Λ̂∗cvx,Ω̂
∗
cvx,Û

∗
cvx) be the optimal solution of Qcvx(G ,I u,I ω ,

P̂ f cst , f (t),ω(t), t). The centralized control law is then given by

u(x(t), p f cst
t ), û∗cvx(0), (5.11)

where u∗cvx(0) is the first column of Û∗cvx. The next result states that the controller is able to

stabilize the system without changing its open-loop equilibrium point, and, at the same time,

guarantees safe frequency region invariance and attractivity.

Theorem 5.3.1. (Centralized control with stability and frequency constraints): Under Assump-

tion 5.2.2 and for any initial state (λ (0),ω(0)), the closed-loop system (2.8) with controller (5.11)

and sufficiently small sampling length T satisfies:

(i) For any i∈I u with any ξi ∈{0,1} and any t ∈R>, ui(x(t), p f cst
t )= 0 if ωi(t)∈ (ω thr

i , ω̄ thr
i );
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(ii) For any i ∈I ω with ξi = 1, if ωi(0) ∈ [ω i, ω̄i], then ωi(t) ∈ [ω i, ω̄i] for any t > 0.

Furthermore, if in addition condition (2.9) hold, and (λ (0),ω(0)) ∈T (r) with some 0 6 r < r̄,

then:

(iii) For any ξ ∈ {0,1}|I u|, (λ ∞,ω∞1n) is locally asymptotically stable, (λ (t),ω(t)) ∈ T (r)

for every t > 0, and (λ (t),ω(t))→ (λ ∞,ω∞1n);

(iv) For any i ∈I u with any ξi ∈ {0,1}, ui(x(t), p f cst
t ) converges to 0 in finite time;

(v) For any i ∈ I ω with ξi = 1, if ωi(0) 6∈ [ω i, ω̄i], then there exists a finite t1 such that

ωi(t) ∈ [ω i, ω̄i] for any t > t1.

Proof. We first show that u is well-defined by proving that û∗cvx(0) exists and is unique. Notice

that (Λ̂ref,Ω̂ref,Û ref) defined in Proposition 5.2.4 always qualifies as a reference trajectory for

sufficiently small T . Hence the feasible set of Qcvx is non-empty, and thus there exists at least

one optimal solution. Uniqueness follows from the strict convexity of the objective function.

For (i), note that in Qcvx(G ,I u,I ω , P̂ f cst ,λ (t),ω(t), t), if ωi(t) ∈ (ω thr
i , ω̄ thr

i ) for some i ∈I u,

then by (5.8b) and the fact that ω̂ ref
i (0) = ωi(t), one has û∗i,cvx(0) = 0, and hence the statement

follows by (5.11).

As we have shown in Lemma 4.2.3, the statement in (ii) is equivalent to

ω̇i(t)6 0, if ωi(t) = ω̄i, (5.12a)

ω̇i(t)> 0, if ωi(t) = ω i. (5.12b)

For simplicity, here we only prove (4.7a). Since (Λ̂∗cvx,Ω̂
∗
cvx,Û

∗
cvx) is feasible for Qcvx(G ,

I u,I ω , P̂ f cst , λ (t),ω(t), t), it satisfies constraint (5.6). Extracting the ith equation with k = 1

from (5.6a), it holds

Miω̂
∗
i,cvx(1) = Miω̂

∗
i,cvx(0)+T

{
−Eiω̂

∗
i,cvx(0)− [DTYb]iλ̂

∗
cvx(0)+ p̂ f cst

i (0)+ û∗i,cvx(0)
}
. (5.13)
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Note first, by (5.6b), λ̂ ∗cvx(0) = sinλ (t) and ω̂∗i,cvx(0) =ωi(t); secondly, ui(x(t), p f cst
t ) = û∗i,cvx(0);

thirdly, p̂ f cst
i (0), p f cst

i,t (t), which by assumption equals pi(t); fourthly, by (5.6f), ω̂∗i,cvx(1)6 ω̄i.

These four facts imply that, when ωi(t) = ω̄i,

−Eiω̄i(t)− [DT ]iYb sinλ (t)+ pi(t)+ui(x(t), p f cst
t )6 0. (5.14)

From (2.8b), one sees that (5.14) is exactly (4.7a), concluding our reasoning.

To prove statement (iii), since (Λ̂∗cvx,Ω̂
∗
cvx,Û

∗
cvx) ∈Φcvx, by Lemma 5.2.3, one has (Λ̂∗cvx,

Ω̂∗cvx,Û
∗
cvx) ∈Φdisc, which further implies that for every i ∈I u,

ω̂
∗
i,cvx(0)û

∗
i,cvx(0)6 0, if ω̂

∗
i,cvx(0) 6∈ (ω thr

i , ω̄ thr
i ),

û∗i,cvx(0) = 0, if ω̂
∗
i,cvx(0) ∈ (ω thr

i , ω̄ thr
i ).

Since ω̂∗i,cvx(0) = ωi(t), together with the definition of controller (5.11) and Lemma 5.2.1, it

holds that the closed-loop system is asymptotically stable.

To prove statement (iv), since we have already shown the converge of (λ (t),ω(t)), it

holds that for arbitrarily small δ ∈ R>, there exists t̃ ∈ R> such that |ωi(t)−ω∞| < δ for any

i ∈I u at any t > t̃. Let δ , mini∈I u{min(ω̄ thr
i −ω∞,ω∞−ω thr

i )}> 0. Now consider any t > t̃,

one has ωi(t) ∈ (ω thr
i , ω̄ thr

i ), which, by statement (i), implies ui(x(t), p f cst
t ) = 0.

Finally, to prove statement (v), by (iii), since every ωi ultimately converges to ω∞, it

must first enter [ω i, ω̄i], which, by (ii), cannot leave the safe region afterwards.

Note that to compute the centralized control signal in (5.11), the operator should com-

plete the following steps at every time: a) collect state information and forecast power injection

of the entire network, b) determine the optimal trajectory Û∗cvx by solving Qcvx, and c) broadcast

the control signals to the corresponding controllers. The time to complete any of these three

steps grows with the size of the network. This motivates the developments of our next section.
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5.3.2 Distributed control using regional information

Here we describe our approach to design a distributed control strategy that takes advan-

tage of cooperation to optimize control effort while ensuring stability and frequency invariance.

The idea is to divide the power network into regions, and have each controller make decisions

based on the state and power injection prediction information within its region. The network

partition relies on the following assumption.

Assumption 5.3.2. (Controlled nodes in induced subgraphs): Let Gβ = (Iβ ,Eβ ), β ∈ [1,d]N

be induced subgraphs of G (i.e., Iβ ⊆I , Eβ ⊆ E , and (i, j) ∈ Eβ if (i, j) ∈ E with i, j ∈Iβ ).

We assume that each controlled node is contained in one and only one region, i.e.,

I u ⊆
d⋃

β=1

Iβ , (5.15a)

Iα

⋂
Iβ

⋂
I u = /0, ∀α,β ∈ [1,d]N with α 6= β . (5.15b)

The induced subgraphs represent the regions of the network. Our distributed control

strategy consists of implementing the centralized control for every induced subgraph Gβ , where

for every line (i, j)∈ E ′
β
⊆Iβ ×(I \Iβ ) connecting Gβ and the rest of the network, we treat its

power flow fi j(τ) as an external power injection whose forecasted value is a constant equaling

its current value fi j(t) for τ ∈ [t, t + t̃]. Formally,

p f cst, f
t,β ,i (τ), ∑

j→i
(i, j)∈E ′

fi j(t)− ∑
i→ j

(i, j)∈E ′

fi j(t), ∀τ ∈ [t, t + t̃], (5.16)

as the forecasted (starting from the current time t) power flow from transmission lines in E ′
β

injecting into node i∈Iβ . Let p f cst, f
t,β : [t, t+ t̃]→R|Iβ | be the collection of all such p f

t,β ,i’s with

i ∈Iβ . Also, let p f cst
t,β : [t, t + t̃]→ R|Iβ | be the collection of all p f cst

t,i ’s with i ∈Iβ , and denote

p f cst,o
t,β , p f cst, f

t,β + p f cst
t,β as the overall forecasted power injection for Gβ . Denote P̂ f cst,o

β
as its
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discretization. Define I u
β
, I u⋂Iβ (resp. I ω

β
, I ω

⋂
Iβ ) as the collection of nodes within

Gβ with available controllers (resp. with frequency constraints). Let ( fβ ,ωβ ) ∈ R|Iβ |+|Eβ | be

the collection of states within Gβ . Similarly to (5.11), let (F̂∗cvx,β ,Ω̂
∗
cvx,β ,Û

∗
cvx,β ) be the optimal

solution of Qcvx(Gβ ,I
u

β
,Gβ , P̂

f cst,o
β

, fβ (t),ωβ (t), t). The control law is given by

ui(x(t), p f cst
t ), û∗i,cvx,β (0), ∀i ∈I u, (5.17)

where u∗i,cvx,β (0) is the ith entry of u∗cvx,β (0) (the first column of Û∗cvx,β ). The next result details

the properties of this strategy.

Proposition 5.3.3. (Distributed control with stability and frequency constraints): Given power

injection p and under Assumptions 5.2.2 and 5.3.2 with sufficiently small sampling length T , the

following statements hold for the closed-loop system (2.8) under controller (5.17):

(i) For any i∈I u with any ξi ∈{0,1} and any t ∈R>, ui(x(t), p f cst
t )= 0 if ωi(t)∈ (ω thr

i , ω̄ thr
i );

(ii) For any i ∈I ω with ξi = 1, if ωi(0) ∈ [ω i, ω̄i], then ωi(t) ∈ [ω i, ω̄i] for any t > 0.

Furthermore, if in addition condition (2.9) hold, and (λ (0),ω(0)) ∈T (r) with some 0 6 r < r̄,

then:

(iii) (λ ∞,ω∞1n) is locally asymptotically stable, (λ (t),ω(t)) ∈ T (r) for every t > 0, and

(λ (t),ω(t))→ (λ ∞,ω∞1n);

(iv) For any i ∈I u with any ξi ∈ {0,1}, ui(x(t), p f cst
t ) converges to 0 within a finite time;

(v) For any i ∈ I ω with ξi = 1, if ωi(0) 6∈ [ω i, ω̄i], then there exists a finite t1 such that

ωi(t) ∈ [ω i, ω̄i] for any t > t1.

Proof. First notice that each ui is well-defined, as by Assumption 5.3.2, for every i ∈I u, ui is

assigned to one and only one subgraph, and hence û∗i,cvx,β (0) is determined uniquely by a single
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Qcvx(Gβ ,I
u

β
,Gβ , P̂

f cst
β

,λβ (t),ωβ (t), t). The proofs of all statements follow similar arguments

as the ones in Theorem 5.3.1. For statement (ii), similar to the way we have (5.14), it holds

that when ωi(t) = ω̄i, −Eiω̄i(t)− [DT
β
]i fβ (t)+ p f cst, f

t,β ,i (t)+ pi(t)+ui(x(t), p f cst
t )6 0, where Dβ

is the incidence matrix for Gβ . Notice that this inequality is equivalent to (5.14) as [DT
β
]i fβ (t)+

p f cst, f
t,β ,i (t) =−[DT ]i f (t) by (5.16), implying frequency invariance.

5.4 Simulations

We first illustrate the performance of the distributed controller in the IEEE 39-bus power

network displayed in Fig. 5.1. Network parameters are the same with what we chose in Sec-
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Figure 5.1: IEEE 39-bus power network.

tion 3.5 and 4.5. The initial state (λ (0),ω(0)) is chosen to be the equilibrium with respect to

the initial power injections. Let I ω = {30,31} be the two generators with transient frequency

requirements. As shown in Fig. 3.3, we assign each of them a region containing its 2-hop neigh-
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bors. Let I u = {3,7,25,30,31} be the collection of nodal indexes with controllers. Notice

that Assumption 5.3.2 holds in this scenario. To set up the optimization problem Qcvx so as to

define our controller (5.17), for every i ∈ I u, we set γ̄i = γ
i
= 1 required in (5.9), ci = 2 if

i ∈ I ω and ci = 1 if i ∈ I u\I ω , T = 0.001s, N = 150 so that the predicted time horizon is

t̃ = 0.15s. For simplicity, for every i ∈ I u, let ξi = 1 and di = 0, i.e., we impose neither hard

nor soft constraints on the control signal amplitude, and therefore, there is no need to specify

umin
i and umax

i . For every i ∈I ω , let ei = 500, ω̄i = −ω i = 0.2Hz and ω̄ thr
i = −ω thr

i = 0.1Hz.

The nominal frequency is 60Hz, and hence the safe frequency region is [59.8Hz, 60.2Hz]. We

take p f cst
t (τ) = (1+τ− t)p(τ) for every τ ∈ [t, t+ t̃], that is, the forecasted power injection error

p f cst
t (τ)− p(τ) satisfies Assumption 5.2.2, and grows linearly in time. Note here we allow p to

be time-varying.

(a) (b) (c)

Figure 5.2: Plot (a) shows the frequency trajectories of generators 30 and 31 without the con-
troller, going beyond the lower safe frequency bound. With the centralized controller, plot (b)
and (c) show the trajectories of the control inputs and frequency within each region.

We show that the proposed controller is able to maintain the targeted generator frequen-

cies within the safe region, provided that these frequencies are initially in the safe region. We

perturb all non-generator nodes by a sinusoidal power injection whose magnitude is proportional

to the corresponding node’s initial power injection. Specifically, for every i ∈ {1,2, · · · ,29}, let

pi(t) = (1+ δ (t))pi(0), where δ (t) = 0.25sin(πt/20) for t < 20, and δ (t) = 0 for t > 20. For

i ∈ {30,31, · · · ,39}, let pi(t) ≡ pi(0). Fig. 5.2(a) shows the open-loop frequency responses of

the two generators without the controller. One can see that both trajectories exceed the lower
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(a) (b)

Figure 5.3: Frequency and control input trajectories with centralized controller available only
after t = 10s, plot (a) for the region with generator 30, and plot (b) for the region with genera-
tor 31.

bound around 8s. With the distributed control, Fig. 5.2(b) and (c) show the frequency and con-

trol input responses in the left-top region and left-bottom region, resp. Both frequency responses

stay within the safe bound all the time and converge to 60Hz. Also, all control signals vanish to

0 within 20s. In Fig. 5.2(b), since we assign a higher cost weight on u30, and the same weight on

u25 and u3, the latter two have a similar trajectory with magnitude higher than the first one. On

the other hand, notice that for every i∈I ω , ui is always 0, while ωi is above the lower frequency

threshold denoted by the dashed line. All these observations are in agreement with the result of

Proposition 5.3.3(i)-(iv) (even though here we assume the power injection is time-varying).

Next, we simulate the case where generator frequencies are initially outside the safe

frequency region to show how the controller brings the frequencies back to the safe region. We

apply the same setup used in Fig. 5.2, but only enable the controller after t = 10s. The plots

in Fig.5.3 shows the frequency trajectories and control trajectories of each region. Note that

both two frequency trajectories are lower than 59.8Hz at t = 10s. However, as the controller

becomes active after t = 10s, they come back to the safe region and never leave, in accordance

with Proposition 5.3.3(v).

Next, we compare the performance of the centralized controller (5.11), the distributed
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controller (5.17), and the controller we proposed in Chapter 4 in the IEEE 9-bus network with

the regional partition shown in Fig. 5.4. Since the control framework in Chapter 4 requires that

controllers are available only for nodes with transient frequency constraints, for fairness, we let

I ω = I u = {1,2,3} for controllers (5.11) and (5.17) (adding nodes with controllers to I u/

I ω would further enhance their performance). We employ a similar set-up as in the previous

simulation, here with T = 0.01s; pi(t) ≡ pi(0) for i = 1,2,3, and pi(t) = (1+ δ (t))pi(0) for

i = 4,5, · · · ,9, with the coefficient 0.25 replaced by 1.5 in δ (t) so that the open-loop frequency

responses exceed the safe frequency bounds.

G2 G3

G1

8

72

5

4

1

6

9 3

Figure 5.4: IEEE 9-bus power network with network partition.

Fig. 5.5 shows the input trajectories of the generators indexed from 1 to 3 for each of the

three controllers. Since all of them achieve frequency invariance and stabilization, we do not

show the state trajectories. In terms of the overall control cost, the centralized controller per-

forms the best, due to its capability of accessing the entire network parameters, state, and power

injection information, and hence all three generators cooperatively reduce the total cost. This ca-

pability is, however, weakened in the distributed controller, as the controller in each region only

considers its regional optimality, losing inter-region cooperation. The controller from Chapter 4,

which is not designed by optimizing control effort, tends to have the largest cost. On the hand, in
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terms of implementation, the centralized controller requires global network information as well

as solving a large-scale optimization problem. In comparison, the distributed controller only

accesses network information within its region, and solves a small-scale optimization problem.

The controller in Chapter 4 can be computed the fastest and only needs information of 1-hop

neighbors.

(a) (b) (c)

Figure 5.5: Input trajectories of controlled generators in IEEE 9-bus example under (a) central-
ized controller, (b) distributed controller, and (c) controller proposed in [ZC19c]. All of them
guarantee stability and frequency invariance.
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Chapter 6

Distributed bilayered control for transient

frequency safety and system stability

In addition to the baseline requirements of frequency safety and asymptotic stability,

we proposed a MPC-based controller in Chapter 5 that enables regional nodal cooperations.

However, the prediction horizon used is limited by trade-offs between the discretization accuracy

and the computational complexity, limiting its performance. Moreover, the implementation of

the MPC-based controller is only partially distributed: given a set of regions in the network,

a centralized controller aggregates information and determines the control actions within each

region, independently of the others. Finally, we are not able to prove its Lipschitz continuity in

system state, leading to potential jumps in control signals.

In this chapter we propose a bilayer controller without any issue mentioned above. The

bottom layer is a model predictive controller that, based on periodically sampled system infor-

mation, optimizes control resources to have transient frequency evolve close to a safe desired

interval. The top layer is a real-time controller assisting the bottom-layer controller to guarantee

transient frequency safety is actually achieved. We show that control signals at both layers are

Lipschitz in the state and do not jeopardize stability of the network. Furthermore, we carefully
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characterize the information requirements at each bus necessary to implement the controller and

employ saddle-point dynamics to introduce a distributed implementation that only requires in-

formation exchange with up to 2-hop neighbors in the power network. Simulations on the IEEE

39-bus power network illustrate our results.

6.1 Problem statement

In this chapter, we still consider the same power network dynamics (2.8) used in Chap-

ter 4 and 5. We further assume that the power injection p designed by the tertiary layer and

secondary layer is balanced, i.e., 1T
n p = 0. This assumption is reasonable, given that our fo-

cus here is on the system transient frequency behavior, which instead lies within the scope of

primary control.

The control requirements are similar to those mentioned in Section 4.1 and 5.1. For

clarity and narrative integrity, we re-state them as follows and replace the control signal u in (2.8)

by α ,

(i) Frequency safety: For each i ∈I ω ⊆I u, let ω i ∈R and ω̄i ∈R be lower and upper

safe frequency bounds, with ω i < ω̄i. If ωi is initially safe, i.e., ωi(0) ∈ [ω i, ω̄i], then we require

that the entire trajectory stay within [ω i, ω̄i]. On the other hand, if ωi is initially unsafe, then we

require that there exists a finite time t0 such that ωi(t)∈ [ω i, ω̄i] for every t > t0. This requirement

is equivalent to asking the set [ω i, ω̄i] to be both invariant and attractive for each i ∈I ω .

(ii) Local asymptotic stability: The closed-loop system should preserve the asymptotic

stability properties of the open-loop system (2.8) with α ≡ 0n.

(iii) Lipschitz continuity: The controller should be a Lipschitz function in the state ar-

gument. This ensures the existence and uniqueness of solution for the closed-loop system and

rules out discontinuities in the control signal.
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(iv) Economic cooperation: Each bus in I u should cooperate with the others to reduce

the overall cost of the control input.

(v) Distributed nature: The controller α should be implementable in distributed way,

i.e., node i should be able to compute αi by only exchanging information with its neighboring

nodes and edges.

In Section 6.2, we introduce a centralized controller architecture that meets the require-

ments (i)-(iv). We later build on this architecture in Section 6.3 to provide a distributed controller

that satisfies all requirements (i)-(v).

Top layer 

control

Network dynamics (2)

MPCStability filterLow-pass filter

Direct feedback 

control

( ( ), ( ), )t t p 

BL

TL

ˆ
MPCu MPCu

Bottom layer 

control

Figure 6.1: Block diagram of the closed-loop system with the proposed controller architecture.

6.2 Centralized bilayered controller

Here, we propose a centralized controller to address the requirements posed in Sec-

tion 6.1. Our idea for design starts from considering MPC to account for the economic coopera-

tion requirement; however, MPC cannot be run continuously due to the computational burden of

its online optimization. We therefore compute MPC solutions periodically. Given the reliance
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of the MPC implementation on sampled system states that are potentially outdated, we include

additional components that employ real-time state information to tune the output of the MPC

implementation and ensure stability and frequency safety. Figure 6.1 shows the overall structure

of the closed-loop system. The control signal α is defined by

α = αT L +αBL. (6.1)

Roughly speaking, the bottom-layer controller αBL periodically and optimally allocates control

effort, while respecting an stability constraint and steering the frequency trajectories as a first

step to achieve frequency invariance and attractivity. The top-layer controller αT L, implemented

in real time, slightly tunes the control trajectory generated by the bottom layer, ensuring fre-

quency invariance and attractivity. In the following, we provide detailed definitions of each of

the design elements.

6.2.1 Bottom-layer controller design

We introduce here the bottom-layer control signal αBL, which results from the combina-

tion of three components. The MPC component periodically samples the system state, solves

an optimization problem online, and updates its output signal uMPC. The purpose of having this

MPC component is to efficiently allocate control resources to achieve the frequency safety re-

quirement. Given the discrete-time nature of this component, the stability filter is designed to

produce an output ûMPC that filters out the unstable part in uMPC. Since ûMPC is merely a piece-

wise continuous signal, to avoid discontinuity in the control signal, the low-pass filter further

smooths it to generate an input αBL that is continuous in time. The bottom-layer controller by

itself stabilizes the system (without the need of the top layer) but does not guarantee frequency

safety. This is precisely the role of the top-layer design, which based on real-time system state

information, slightly tunes the control signal generated by the bottom layer in order to achieve
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frequency safety while maintaining system stability. Note that, except for the MPC component,

all other components can access real-time information.

Next, we introduce each component in the bottom layer and characterize their properties.

MPC component

Based on the most recent sampled system information, the MPC component updates its

output after solving an optimization problem online. Formally, denote {∆w}w∈N as the collection

of sampling time instants, where ∆w+1 > ∆w > 0 holds for every w ∈ N. At each sampling time

t = ∆w, define a piece-wise continuous signal p f cst
t : [t, t + t̃]→ Rn as the predicted value of the

true power injection p for the t̃ seconds immediately following t. Note that here we particularly

allow the predicted power injection to be time-varying, although its true value is time-invariant.

For convenience of exposition, we define

x , (λ ,ω,αBL)

as the augmented collection of system states (the last state comes from the low-pass filter com-

ponent). Let x(∆w) = (λ (∆w),ω(∆w),αBL(∆
w)) be the augmented system state value at the

sampling time ∆w.

In the predicted model, we discretize the system dynamics with time step T > 0, and

denote N , dt̃/Te as the predicted step length. At every t = ∆w, the MPC component solves the

following optimization problem,

min
X̂ ,û,B

g(X̂ , û,B),
N

∑
k=1

(
∑

i∈I u
ciα̂

2
BL,i(k)+ ∑

i∈I ω

diβ
2
i (k)

)
s.t. Fx̂(k+1) = Ax̂(k)+B1 p̂ f cst(k)+B2û (6.2a)

û ∈ A, (6.2b)

x̂(1) = x(∆w), (6.2c)
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ω i−βi(k)6 ω̂i(k)6 ω̄i +βi(k), ∀i ∈I ω ,∀k ∈ [1,N]N, (6.2d)

|ûi|6 εi|αBL,i(∆
w)|, ∀i ∈I u. (6.2e)

In this optimization, (6.2a) combines the linearized, discretized dynamics corresponding to (2.8)

as well as the low-pass filter introduce later, and x̂ , (λ̂ , ω̂, α̂BL)∈Rm+2n corresponds to the pre-

dicted system state. Depending on the specific discretization method, one can choose different

matrices F , A ∈ R(m+2n)×(m+2n) and B1,B2 ∈ R(m+2n)×n (Section 6.2.2 below contains a de-

tailed discussion on discretization); p̂ f cst(k), p f cst
∆w (∆w+(k−1)T ) for every k ∈ [1,N]N; (6.2b)

specifics the control availability for each bus; (6.2c) is the initial condition; (6.2d) represents a

soft version of the frequency safety constraint, where we penalize in the cost function the devia-

tion of predicted frequency from its desired bounds; (6.2e) restricts the value of the control input

ûi ∈ R with respect to the state of the low-pass filter via a tunable parameter εi > 0; finally, the

objective function g combines the overall cost of control effort and the penalty on the violation

of the frequency safety requirement, where ci > 0 for each i ∈I u and di > 0 for each i ∈I ω

are design parameters. For compactness, we define

X̂ , [x̂(1), x̂(2), · · · ,x(N)], (6.3a)

B , [β (1),β (2), · · · ,β (N)], (6.3b)

P̂ f cst , [p̂ f cst(1), p̂ f cst(2), · · · , p̂ f cst(N)], (6.3c)

where for every k ∈ [1,N]N, β (k) is the collection of βi(k)’s over i ∈I ω .

We denote by R(G ,I u,I ω , p f cst
∆w ,x(∆w)) as the optimization problem (6.2) to empha-

size its dependence on network topology, nodal indexes with exogenous control signals, nodal

indexes with transient frequency requirement, forecasted power injection, and state values at the

sampling time. We may simply use R if the context is clear. Also, we denote (X̂∗, û∗,B∗) as its

optimal solution.
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Remark 6.2.1. (Selection of frequency violation penalty coefficient): The parameter d = {di}i∈I ω

in the objective function plays a fundamental rule in determining how the predicted frequency

can exceed the safe bounds. In the extreme case d = 0|I ω | (i.e., no penalty for frequency vi-

olation), the MPC controller loses its functionality of adjusting frequency. As d grows, the

controller ensures that the violation of the frequency safety requirement become smaller. The

top-layer control introduced later adds additional input to the resulting bottom-layer controller

to ensure the frequency requirement is strictly satisfied. •

Given the open-loop optimization problem (6.2), the function uMPC corresponding to the

MPC component in Figure 6.1 is defined as follows: for w ∈ N and t ∈ [∆w,∆w+1), let

uMPC(t)= û∗(G ,I u,I ω , p f cst
∆w ,x(∆w)). (6.4)

Note the last two arguments that û∗ depends on: forecasted power injection value and

state value of the entire network at a sampling time. To implement (6.4), a straightforward

idea is to have one operator globally gather the above two values, obtain û∗ by solving R, and

finally broadcast û∗i to the ith node. Later in Section 6.3, we propose an alternative distributed

computation algorithm to reduce the computational burden. The next result characterizes the

dependence of the controller on the sampled state values and predicted power injection.

Proposition 6.2.2. (Piece-wise affine and continuous dependence of optimal solution on sam-

pling state and predicted power injection): Suppose F is invertible, then the optimization prob-

lem R(G ,I u,I ω , p f cst
∆w ,x(∆w)) in (6.2) has a unique optimal solution (X̂∗, û∗,B∗). Further-

more, given G , I u, and I ω , û∗ is continuous and piece-wise affine in (P̂ f cst ,x(∆w)), that is,

there exist l ∈ N,{Hξ}l
ξ=1, {Sξ}l

ξ=1, {h}l
ξ=1, and {sξ}l

ξ=1 with suitable dimensions such that

û∗ = Sξ z+ sξ , if z ∈
{

y | Hξ y 6 hξ

}
for ξ ∈ [1, l]N (6.5)
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holds for every z ∈R(N+2)n+m, where z is the collection of (P̂ f cst ,x(∆w)) in column-vector form.

Proof. We start by noting that R is feasible (hence at least one optimal solution exists) for

any given z. This is because, given a state trajectory X̂ of (6.2a) with input û = 0n and initial

condition (6.2c), choosing a sufficiently large β (k) for each k ∈ [1,N]N makes it satisfy con-

straint (6.2d). The uniqueness follows from the facts that I) g is strongly convex in (û,B);

II) X̂ is uniquely and linearly determined by û; III) all constraints are linear in (X̂ , û,B). To

show continuity and piece-wise affinity, we separately consider 2|I
u| cases, depending on the

sign of each {αBL,i(∆
w)}i∈I u . Specifically, let η , {ηi}i∈I u ∈ {1,−1}|I u| and define Bη ,{

z
∣∣(−1)ηiαBL,i(∆

w)> 0, ∀i ∈I u}. Note that every z lies in at least one of these sets and that, in

any Bη , the sign of each αBL,i(∆
w) with i ∈I u is fixed. Hence all the |I u| constraints in (6.2e)

can be transformed into one of the following forms

−εiαBL,i(∆
w)6 ûi 6 εiαBL,i(∆

w) if αBL,i(∆
w)> 0, (6.6a)

εiαBL,i(∆
w)6 ûi 6−εiαBL,i(∆

w) if αBL,i(∆
w)6 0. (6.6b)

Note that if αBL,i(∆
w) = 0, then ûi = 0. Therefore, in every Bη , z appears in R in a linear fashion;

hence, it is easy to re-write R into the following form:

min
s

sT Ks

s.t. Gs 6W + Jηz, (6.7)

where s is the collection of (X̂ , û,B) in vector form and K � 0, G, W and Jη are matrices with

suitable dimensions. Note that only Jη depends on η . By [Bor03, Theorem 1.12], for every

η ∈ {−1,1}|I u|, s∗ is a continuous and piece-wise affine function of z whenever z ∈Bη . Since

each Bη consists of only linear constraints and the union of all Bη ’s with η ∈ {1,−1}|I u| is

R(N+2)n+m, one has that s∗ is piece-wise affine in z on R(N+2)n+m. Lastly, to show the continuous
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dependence of s∗ on z on R(N+2)n+m, note that since such a dependence holds on every closed

set Bη , we only need to prove that s∗ is unique for every z lying on the boundary shared by

different Bη ’s. This holds trivially as s∗ is unique for every z ∈ R(N+2)n+m, which we have

proven above.

Notice that the continuity and piece-wise affinity established in Proposition 6.2.2 together

suffice to ensure that û∗ is globally Lipschitz in z, and hence in the sampled system state. To see

this point, one can easily check that maxξ∈[1,l]N ‖Sξ‖ qualifies as a global Lipschitz constant.

In addition, Proposition 6.2.2 also suggests an alternative to directly solve R without

treating it as an optimization problem. Specifically, we can first compute and store {Hξ}l
ξ=1,

{Sξ}l
ξ=1, {h}l

ξ=1, and {sξ}l
ξ=1, and then compute û∗ online via (6.5). However, such an ap-

proach, usually called explicit MPC [AA09], suffers from the curse of dimensionality, in that the

number of regions l grows exponentially fast in m+n, input size |I u|, and horizon length N.

Stability and low-pass filters

Here we introduce the stability and low-pass filters, explain the motivation behind their

definitions and characterize their properties. Note that the sampling mechanism used for the

MPC component inevitably introduces delays in the bottom layer. Specifically, for any time

t ∈ (∆w,∆w+1), i.e., between two adjacent sampling times, uMPC(t) is fully determined by the old

sampled system information at time ∆w, as opposed to the current information. To eliminate the

potential negative effect of delay on system stability, we introduce a stability filter that filters out

the unstable part in the signal uMPC. The low-pass filter after the stability filter simply smooths

the output of the stability filter to ensure that the output of the bottom layer is continuous in time.

Formally, for every i ∈I u at any t > 0, define the stability filter as

ûMPC,i(αBL(t),uMPC(t)) = sat(uMPC,i(t);εi|αBL,i(t)|,−εi|αBL,i(t)|), (6.8)
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and define the low-pass filter as

α̇BL,i(t) =−
1
Ti

αBL,i(t)−ωi(t)+ ûMPC,i(t), ∀i ∈I u,

αBL,i ≡ 0, ∀i ∈I \I u, (6.9)

where the tunable parameter Ti ∈ R> determines the bandwidth of the low-pass filter.

Note that both the stability and the low-pass filters possess a natural distributed structure:

for each i ∈I u, αBL,i only depends ωi and ûMPC,i, where the latter one only depends on uMPC,i

and αBL,i. This implies that to implement ûMPC,i and αBL,i, it only requires local information at

node i. Throughout the rest of the chapter, we interchangeably use ûMPC,i(αBL(t),uMPC(t)) and

ûMPC,i(t) for simplicity.

The next result establishes that ûMPC is Lipschitz continuous in the system state and

an important property of the bottom-layer controller αBL that we use later to establish system

stability.

Lemma 6.2.3. (Lipschitz continuity and stability condition): For the signal ûMPC defined in (6.8),

ûMPC is Lipschitz in system state at every sampling time t = ∆w with j ∈N. Furthermore, if αT L

is Lipschitz in system state, then both αT L and αBL are continuous in time. Additionally,

αBL,i(t)ûMPC,i(t)6 εiα
2
BL,i(t), ∀t > 0, ∀i ∈I . (6.10)

Proof. If t = ∆w, then since |û∗i |6 εi|αBL,i(∆
w)| by (6.2e) and uMPC,i(∆

w) = û∗i for every i∈I u,

using (6.8) we deduce that ûMPC,i(αBL(t),uMPC(t))|t=∆w = û∗i . The Lipschitz continuity follows

by Proposition 6.2.2. To show the time-domain continuity, since ûMPC is Lipschitz at every

sampling point and the top-layer controller is also Lipschitz by hypothesis (we demonstrate

this point later in Section 6.2.3), one has that the solutions of both αT L and the closed-loop

system (2.8) exist and are unique and continuous in time. Note that uMPC in (6.4) is defined to
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be a piece-wise constant signal. One has, by (6.8), that ûMPC is piece-wise continuous, which

further makes αBL a continuous signal in time due to the low-pass filter. Condition (6.10) simply

follows from the definition of saturation function.

Remark 6.2.4. (Link between designs of the MPC component and stability filter): Note that,

regardless of the MPC component output uMPC, the output of the stability filter ûMPC defined

in (6.8) always meets condition (6.10). This implies that any inaccuracy in the MPC component

(e.g., errors in sampled state measurement, forecasted power injection, or system parameters)

cannot cause instability. However, to ensure the Lipschitz continuity in Lemma 6.2.3, we for-

mulate constraint (6.2e) employing the same coefficient εi in the stability filter (6.8). It is in this

sense that both are linked. •

Remark 6.2.5. (Continuous versus periodic sampling in the MPC component): Given the re-

liance of the MPC component on periodically sampled information, the role of the stability filter

is to filter out the unstable parts in uMPC. If the MPC component were to sample the system

state in a continuous fashion instead, then the constraint (6.2e) would ensure that the output of

the MPC component already satisfies the stability condition (6.10), and hence there would be no

need for the stability filter. •

6.2.2 Discretization with sparsity preservation

As we have introduced the dynamics of the low-pass and stability filters, we are now able

to explicitly explain the computation of matrices F , A, B1 and B2 in the prediction model (6.2a).

To obtain the prediction model used in the MPC component, we first construct a continuous-

time linear model by neglecting the top-layer controller and the stability filter (α ≈ αBL and

ûMPC ≈ uMPC), and then linearizing the nonlinear dynamics in Figure 6.1. Our second step

consists of appropriately discretizing this linear model.

Notice that the transformation from a nonlinear continuous-time nonlinear model to a
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discrete one does not affect closed-loop system stability due to the presence of the stability

filter. In fact, any prediction model in the MPC component cannot jeopardize stability (cf. Re-

mark 6.2.4). On the other hand, such a model simplification is reasonable since αBL is designed

to only slightly tune the control signal, and we have described in Remark 6.2.5 how the stability

filter barely changes its input.

We obtain the linear model by assuming α ≈ αBL and ûMPC ≈ uMPC, and approximating

the systems dynamics in Figure 6.1 by

λ̇ (t) = Dω(t),

Mω̇(t) =−Eω(t)−DTYbλ (t)+ p+αBL(t),

α̇BL,i(t) =−
1
Ti

αBL,i(t)−ωi(t)+uMPC,i(t), ∀i ∈I u,

αBL,i ≡ 0, ∀i ∈I \I u, (6.11)

where the first two equations come from (2.8) by linearizing the nonlinear sinusoid function via

sin(Ybλ (t)) ≈ Ybλ (t). Now we re-write the above linear dynamics into the following compact

form,

ẋ(t) = Ãx(t)+ B̃1 p+ B̃2uMPC(t), (6.12)

for certain matrices Ã, B̃1, and B̃2, with Ã stable [Pai89]. Additionally, one can easily check that

the linearized dynamics (6.11) and (6.12) preserve the locality of (2.8b) and (6.9).

We consider the following three discretization methods with stepsize T> 0 to construct

F , A, B1, and B2 matrices in (6.2a) approximating the continuous dynamics (6.12).

a) Impulse invariant discretization:

F , Im+2n, A , eÃT, Bs ,
∫ T

0
eÃτdτB̃s, s = 1,2, (6.13)
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b) Forward Euler discretization:

F , Im+2n, A , TÃ+ Im+2n, Bs , TB̃s, s = 1,2, (6.14)

c) Backward Euler discretization:

F , Im+2n−TÃ, A , Im+2n, Bs , TB̃s, s = 1,2, (6.15)

where F should be invertible for uniqueness of solution of the discretized dynamics.

Note that with a fixed T, the impulse invariant and backward Euler methods usually have

better approximation accuracy than the forward Euler method. In fact, since all eigenvalues of

Ã have non-positive real part, a basic discretization requirement is that all eigenvalues of F−1A

are in the unit circle to maintain stability. One can easily prove that the impulse invariant and

backward Euler discretization always meet this requirement for any T> 0, but the forward Euler

method requires a sufficiently small T to preserve stability; therefore, with a same predicted time

horizon t̃, the forward Euler method has the largest predicted step length N and hence makes the

optimization problem R harder to solve. On the other hand, the backward Euler method might

require a small enough T to guarantee the invertibility of F , but numerically we have found this

to be easily satisfiable. Therefore, we set aside the forward Euler method from our considerations

of discretization. On the other hand, the impulse invariant method fails to preserve the sparsity of

Ã, B̃1, and B̃2, which are essential for the design of distributed solvers of R. Instead, the matrices

F , A, B1 and B2 resulting from the backward Euler discretization are all sparse. This justifies

our choice, throughout the rest of the chapter, of the backward Euler method for discretization.
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6.2.3 Top-layer controller design

In this section we describe the top-layer controller. By design, cf. (6.2), the bottom-

layer controller makes a trade-off between the control cost and the violation of frequency safety,

and hence does not strictly guarantee the latter. This is precisely the objective of the top-layer

controller: ensuring frequency safety at all times by slightly adjusting, if necessary, the effect of

the bottom-layer controller. Formally, for every i ∈ I ω , let γ̄i,γ i
> 0, and ω thr

i , ω̄ thr
i ∈ R with

ω i < ω thr
i < 0 < ω̄ thr

i < ω̄i. We use the design from [ZC19c] for the top layer. For i ∈ I ω ,

αDF,i(x(t), p) takes the form


min{0, γ̄i(ω̄i−ωi(t))

ωi(t)−ω̄ thr
i

+ vi(x(t), p)} ωi(t)> ω̄ thr
i ,

0 ω thr
i 6 ωi(t)6 ω̄ thr

i ,

max{0, γ
i
(ω i−ωi(t))

ω thr
i −ωi(t)

+ vi(x(t), p)} ωi(t)< ω thr
i ,

(6.16)

where

vi(x(t), p), Eiωi(t)+ [DT ]i sin(Ybλ (t))− pi−αBL,i(t),

and for i ∈ I \I ω , simply αDF,i ≡ 0. Note that this almost the same controller we proposed

in Chapter 4, where the only difference is the addition of αBL, and the class-K being linear

for simplicity. Also, Based on our results in Chapter 4, one can easily shown that the top-

layer controller can be implemented in a decentralized fashion, and is locally Lipschitz in x.

For brevity, we may use αDF,i(x(t), p) (respectively, vi(x(t), p)) and αDF,i(t) (respectively vi(t))

interchangeably.

Each αDF,i, with i ∈I ω , behaves as a passive and myopic transient frequency regulator

without prediction capabilities. We offer the following observations about its definition: first,

αDF,i only depends on local system information and does not incorporate any global knowledge;
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second, αDF,i vanishes as long as the current frequency is within [ω thr
i , ω̄ thr

i ], a subset of the safe

frequency interval, with no consideration for the possibility of future large disturbances; third,

αDF,i can be non-zero when the current frequency is out of [ω thr
i , ω̄ thr

i ] and hence close to the safe

frequency boundaries. However, this could also lead to over-reaction, especially when γ̄i and γ
i

are small, as the disturbance may disappear suddenly, in which case even without the top-layer

controller, the frequency would remain safe afterwards. As pointed out above, the top-layer

controller only steps in if the input from the bottom-layer controller is not sufficient to ensure

frequency safety.

6.2.4 Frequency safety and local asymptotic stability

Having introduced the elements of both layers in Figure 6.1, we are now ready to show

that the proposed centralized control strategy meets requirements (i)-(iv) in Section 6.1. We

focus on the first two requirements, since we have already established the Lipschitz continuity

of each individual component, and the MPC component by design takes care of the economic

cooperation among the controlled buses.

With regard to stability, we here consider the following energy function for the closed-

loop system,

V̄ (x) =V (x)+
1
2 ∑

i∈I u
α

2
MPC,i, (6.17)

with V defined in (4.1).

Furthermore, define the level set

Tρ ,
{

x
∣∣ λ ∈Rcl, V̄ (x)6 ρc

}
, (6.18)

where ρ > 0 and c , min
λ̃∈∂R V̄ (λ̃ ,0n,0n). Now we are ready to prove that system (2.8) with
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the proposed controller guarantees frequency safety and local asymptotic stability at the same

time.

Theorem 6.2.6. (Bilayered control with stability and frequency guarantees): Under condi-

tion (2.9), assume that εiTi < 1 for every i ∈ I u, then the system (2.8) with the bilayered con-

troller defined by (6.1), (6.4), (6.8), (6.9), and (6.16) satisfies

(i) for any i ∈I ω , if ωi(0) ∈ [ω i, ω̄i], then ωi(t) ∈ [ω i, ω̄i] for every t > 0;

(ii) for any i ∈I ω , if ωi(0) /∈ [ω i, ω̄i], then there exists t0 such that ωi(t) ∈ [ω i, ω̄i] for every

t > t0. Furthermore, ωi(t) monotonically approaches [ω i, ω̄i] before entering it;

(iii) if the initial state (λ (0),ω(0),αBL(0)) is in Tρ for some 0< ρ < 1, then (λ (t),ω(t),αBL(t))

stays in Tρ for all t > 0, and converges to (λ∞,0n,0n). Furthermore, α(t), αBL(t), and

αT L(t) all converge to 0n as t→ ∞.

Proof. by Lemma 4.2.3, it is easy to see that statement (i) is equivalent to asking that, for any

i ∈I ω at any t > 0,

ω̇i(t)6 0 if ωi(t) = ω̄i, (6.19a)

ω̇i(t)> 0 if ωi(t) = ω i. (6.19b)

For simplicity, we only prove (6.19a), and (6.19b) follows similarly. Note that by (2.8b), (6.1),

and (6.16), one has

ω̇i(t) =−Eiωi(t)− [DT ]i sin(Ybλ (t))+ pi +αi(t)

=−Eiωi(t)− [DT ]i sin(Ybλ (t))+ pi +αBL,i(t)+αDF,i(t)

=−vi(t)+αDF,i(t).
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Now if ωi(t) = ω̄i, then −vi(t)+αDF,i(t) =−vi(t)+min{0,vi(t)}6 0; hence condition (6.19a)

holds.

Note that (ii) follows from (i) and (iii). This is because, for any i ∈I , if ωi converges to

0∈ (ω i, ω̄i), there must exist a finite time t0 such that ωi(t0)∈ [ω i, ω̄i], which, by (i), implies that

ωi(t) ∈ [ω i, ω̄i] at any t > t0. We then prove statement (iii), To show the invariance of Tρ , first,

it is easy to see that c > 0 by noticing that λ∞ 6∈ ∂R, and V (λ̃ ,0n,0n) is non-negative, equaling

0 if and only if λ̃ = λ∞. Next, we show that ˙̄V 6 0 for every x ∈ Tρ . We obtain after some

computations that

˙̄V =−ω
T (t)Eω(t)+ ∑

i∈I ω

ωi(t)αDF,i(t)− ∑
i∈I u

(
1
Ti

α
2
BL,i(t)−αBL,i(t)ûMPC,i(t)

)
.

Note that by the definition of αT L in (6.16), ωi(t)αDF,i(t)6 0 holds for every i∈I ω at every t >

0, in that αDF,i(t)= 0 whenever ω thr
i 6ωi(t)6 ω̄ thr

i , and αDF,i(t)> 0 (reps. 6 0) if ωi(t)> ω̄ thr
i >

0 (respectively, ωi(t)6 ω thr
i < 0). Therefore, together with condition (6.10) in Lemma 6.2.3, we

have

˙̄V 6−ω
T (t)Eω(t)− ∑

i∈I u
(

1
Ti
− εi)α

2
BL,i(t)6 0,

and hence V̄ (x(t)) 6 ρc for all t > 0. Finally, by the definition of c, one can check that λ

stays in Rcl all the time, otherwise there exists some t > 0 such that λ (t) ∈ ∂R, resulting in

V̄ (x(t))> c > ρc. Therefore, the set Tρ is invariant.

The convergence of state follows by LaSalle Invariance Principle [Kha02, Theorem 4.4].

Specifically, ω(t) and αBL(t) converge to 0n (notice that αBL,i ≡ 0 for each i ∈ I \I u). Next

we show that limt→∞ αDF,i(t) = 0 for every i ∈ I ω , which implies that limt→∞ αT L(t) = 0n as

αDF,i ≡ 0 for each i ∈ I \I ω . This simply follows from (6.16) since αDF,i(t) = 0 whenever

ω thr
i 6 ωi(t) 6 ω̄ thr

i , where 0 ∈ (ω thr
i , ω̄ thr

i ), and we have shown that limt→∞ ω(t) = 0n. The

convergence of α(t) follows by its definition (6.1).
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Remark 6.2.7. (Independence of controller on equilibrium point): It should be pointed out that

in Theorem 6.2.6, the proposed controller is able to locally stabilize the system without a priori

knowledge on the steady-state voltage angle λ∞. Specifically, both αBL and αT L are not functions

of λ∞. •

Remark 6.2.8. (Control framework without bottom layer): We have shown in Chapter 4 that

the top-layer controller by itself makes the closed-loop system meet all requirements except for

the economic cooperation. Such a lack of cooperation can be observed in two aspects. First,

since αT L is only defined for nodes in I ω , those in I u\I ω do not get involved in controlling

frequency transients. Second, the top-layer control is a non-optimization-based state feedback,

where each αDF,i with i ∈I ω is merely in charge of controlling the transient frequency for its

own node i. •

6.3 Controller decentralization

The centralized bilayered controller meets the requirements (i)-(iv) stated in Section 6.1.

In this section, we focus on the requirement (v) on the distributed implementation of the con-

troller. While introducing each controller component in Figure 6.1, our discussion has shown

that only the MPC component requires access to global system information, whereas all other

components can be implemented in a distributed fashion. In this section, we show that by hav-

ing each node and edge communicate within its 2-hop neighbors, one can solve the optimization

problem R in (6.2) online and hence exactly recover the MPC component û∗ in (6.4). The key

idea is to properly assign the decision variables in the optimization problem to each node so

that the cost function can be represented as sum of local costs and the constraints can be written

locally. Once this is in place, we report to saddle-point dynamics to find the solution of R in a

distributed way.

126



6.3.1 Strong convexification of the objective function

We start here by transforming the optimization problem R into an equivalent form whose

objective function is strongly convex in all its arguments. Such property is useful later when

characterizing the convergence properties of distributed algorithm to the optimizer. Formally, let

gaug(X̂ , û,B),
N−1

∑
k=1
‖Fx̂(k+1)−Ax̂(k)−B1 p̂ f cst(k)−B2û‖2

2

+
N

∑
k=1

(
∑

i∈I
ciα̂

2
BL,i(k)+ ∑

i∈I ω

diβ
2
i (k)

)
+‖x̂(0)− x(∆w)‖2

2. (6.20)

We denote by Raug the optimization problem with objective function gaug and constraints given

by (6.2a)-(6.2e). Letting Y , (X̂ , û,B) ∈ R(m+2n+|I ω |)N+n, we can re-write Raug into the fol-

lowing compact form

min
Y

1
2

Y T HY + f TY +a

s.t. S1Y 6 s1, (6.21a)

S2Y = s2, (6.21b)

for suitable

H ∈ R((m+2n+|I ω |)N+n)×((m+2n+|I ω |)N+n), f ∈ R(m+2n+|I ω |)N+n, a ∈ R,

S1 ∈ R(2|I ω |N+2|I u|)×((m+2n+|I ω |)N+n), S2 ∈ R((m+2n)N+n−|I u|)×((m+2n+|I ω |)N+n),

s1 ∈ R2|I ω |N+2|I u|, s2 ∈ R(m+2n)N+n−|I u|.

The next result shows the equivalence between R and Raug.

Lemma 6.3.1. (Equivalent transformation to strong convexity): The optimization problem R

and Raug posses exactly the same optimal solution. Furthermore, if F is invertible, then gaug is
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strongly convex in (X̂ , û,B).

Proof. The equivalence between R and Raug follows by noting that gaug corresponds to augment-

ing g with equality constraints. For notational simplicity, we assume that ci = 1 for all i ∈ I

and di = 1 for all i ∈I ω (the proof holds for general positive values with minor modifications).

To show strong convexity, one can write H as an upper-triangular block matrix, whose diagonal

matrices are FT F +JT J, FT F +AT A+JT J, AT A+JT J, BT
2 B2, and I|I ω |N , where J ∈R(m+2n)×n

is a matrix mapping the whole state x̂ to the partial state α̂BL, i.e., α̂BL = Jx̂. It is easy to see that

both J and B2 are full-column-rank matrices, which, together with the invertibility assumption

on F , implies that all five matrices are positive definite. Hence, all eigenvalues of H are real and

strictly positive, leading to strong convexity of gaug, as claimed.

6.3.2 Separable objective with locally expressible constraints

Next, we explain how the problem data defining the optimization Raug has a structure

that makes it amenable to distributed algorithmic solutions. We start by assigning the decision

variables Y = (X̂ , û,B) in Raug to the nodes and edges in the network. We partition the states

into voltage angle difference, frequency, and low-pass filter state, i.e., x̂ = (λ̂ , ω̂, α̂BL). For every

k∈ [0,N]N, i∈ [1,n]N, and j ∈ [1,m]N, we assign ωi(k), ûi, and α̂BL,i(k) to the ith node, and λ̂ j(k)

to the jth edge. For every i ∈I ω , we assign βi(k) to the ith node. In the subsequent discussion,

we say a constraint or function is local for the power network G if its decision variables are all

from either of the following two cases: a) a node i ∈I and its neighboring edges (i, j) ∈ E , and

b) an edge (i, j) ∈ E and its neighboring nodes i and j. We claim that

(i) if F , A, B1 and B2 are determined by (6.15), then every constraint in (6.2) is local.

(ii) the objective function gaug can be written as a sum of local objective functions.

To see (i), note that (6.2b)-(6.2e) are a collection of constraints, each depending only

on variables owned by a single node. Constraint (6.2a) is also local by noticing the following
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two points. First, the dynamics of each state in (6.11) is uniquely determined by the states of its

neighbors. Second, we have shown in Section 6.2.2 that the backward Euler discretization (6.15)

preserves locality. To see (ii), first note that the sum of α2
BL,i(k) (respectively, β 2

i (k)) over i

is naturally the sum of local variables. Second, the two-norm square of Fx̂(k + 1)−Ax̂(k)−

B1 p̂ f cst(k)−B2û for every k ∈ [1,N− 1]N is the sum of square of all its m+ 2n entries, where

each entry is local due to the locality of discretized dynamics. Similarly, ‖x̂(0)−x(∆w)‖2
2 is also

the sum of local variables.

6.3.3 Distributed implementation via saddle-point dynamics

Here we introduce a saddle-point dynamics to recover the unique optimal solution Y ∗ of

Raug in a distributed fashion. We start from the Lagrangian of Raug

L(Y,η ,µ) = gaug(Y )+η
T (S1Y − s1)+µ

T (S2Y − s2), (6.22)

where η ∈ R2|I ω |N+2|I u|
>0 and µ ∈ R(m+2n)N+n−|I u| are the Lagrangian multiplier correspond-

ing to constraints (6.21a) and (6.21b), respectively. Note that we have shown that a) R is fea-

sible (cf. Proposition 6.2.2), b) R and Raug are equivalent (cf. Lemma 6.3.1), and c) all con-

straints in Raug are linear. These three points together imply that the refined Slater condition

and strong duality hold, [BV04, Section 5.2.3], which further implies that at least one primal-

dual solution (Y ∗,η∗,µ∗) of Raug exists, and the set of primal-dual solutions is exactly the set

of saddle points of L on the set R(m+2n+|I ω |)N+n× (R2|I ω |N+2|I u|
>0 ×R(m+2n)N+n−|I u|) [BV04,

Section 5.4.2]. Therefore, one can apply the saddle-point dynamics [CMLC18] to recover one

solution (Y ∗,η∗,µ∗), where û∗ is the MPC output signal we need. Formally, the saddle-point

dynamics of Raug is

εZ
dZ
dτ

=−∇ZL(Z,η ,µ) =−(HZ + f +ST
1 η +ST

2 µ), (6.23a)
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εη

dη

dτ
= [∇ηL(Z,η ,µ)]+η = [S1Z− s1]

+
η , (6.23b)

εµ

dµ

dτ
= ∇µL(Z,η ,µ) = S2Z− s2, (6.23c)

where εZ , εη , and εµ are tunable positive scalars.

Given the strong convexity of gaug, the following result states the global convergence of

the dynamics (6.23), and its proof directly follows from [CMLC18, Theorem 4.2].

Theorem 6.3.2. (Global asymptotic convergence of saddle-point dynamics): Starting from any

initial condition (Z(0),η(0)µ(0)), it holds that Z(τ) globally asymptotically converges to the

unique optimal solution Y ∗ of Raug.

To conclude, we justify how the saddle-point dynamics (6.23) can be implemented in a

distributed fashion to recover Y ∗. We first assign (Z,η ,µ) to different nodes and edges. In (6.23),

the primal variable Z corresponds to Y , and its assignment is exactly the same, as discussed at

the beginning of Section 6.3.2. Since all constraints are local with respect to a node or an edge,

we assign each entry of (η ,µ) to the corresponding node or edge. With this assignment, and

due to locality, the dual variables dynamics (6.23b) and (6.23c) are distributed, i.e., for each

entry of η or µ , if it belongs to a node (respectively, edge), then its time derivative only depends

on primal and dual variables of its own and of neighboring edges (respectively, nodes). On the

other hand, the primal dynamics (6.23a) requires 2-hop communication, i.e., for each entry of Z,

if it belongs to a node (respectively, edge), then its time derivative depends on primal and dual

variables of its neighboring nodes (respectively, edges).

Remark 6.3.3. (Time scale in saddle-point dynamics): Since the MPC component updates its

output at time instants {∆w}w∈N according to (6.4), a requirement on the saddle-point dynam-

ics (6.23) solving R (or equivalently Raug) is that it returns the optimal solution within ∆w+1−∆w

seconds starting from ∆w for every w ∈ N. To achieve this, one may tune εY , εη , and εµ to

accelerate the convergence of the saddle-point dynamics. In practice, this corresponds to run-
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ning (6.23) on a faster time scale, which puts requirements on the hardware regarding commu-

nication bandwidth and computation time. •

Remark 6.3.4. (Comparison with controller with regional coordination based on network de-

composition): The proposed distributed algorithm treats each bus and transmission line as an

agent, and recovers the optimal solution by allowing each agent to exchange information only

with its neighbors.In Chapter 5 and our previous work [ZC19d], we have proposed an alternative

algorithm that does not rely on participation of every agent at the expense of not recovering the

global optimal solution. The basic idea of this alternative implementation is to consider a set

of regions in the network. Each region, independently of the rest, possesses its own centralized

controller in charge of gathering regional information and broadcasting control signals to con-

trollers within the region. To account for the couplings in the dynamics, flows that connect a

region and the rest of the network are assumed constant when computing the controller in each

region. Although there can be nodes and edges shared by multiple regions, the control signal

regulated on a shared node belongs to only one region. This implementation does not recover

the exact optimal solution and only ensures partial cooperation among the control inputs. •

6.4 Simulations

We verify our results on the IEEE 39-bus power network shown in Figure 3.3. All param-

eters in the power network dynamics (2.8) still come from the Power System Toolbox [CCR09]

used in the Chapter 4 and 5. Let I ω = {30,31,32,37} be four generator buses with transient fre-

quency requirements. The safe frequency region is [ω i, ω̄i] = [−0.2Hz, 0.2Hz] for every i∈I ω

(as ω corresponds to the shifted frequency, the safe frequency region without shifting is thus

[59.8Hz, 60.2Hz]). Let {3,7,25} be another three non-generator buses that can provide control

signals, so that I u = {3,7,25,30,31,32,37}. To set up the optimization problem (6.2) used in

the MPC component (6.4), we use (6.15) for the discretization. The controller parameters are
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Table 6.1: Controller parameters.
parameter value parameter value

t̃ 10s p f cst
t (τ), ∀τ ∈ [t, t + t̃] p(τ)

T 0.2s ci, ∀i ∈I ω 4
N 50 ci, ∀i ∈I u\I ω 1
d 100 ∆w, ∀w ∈ N w

εi, ∀i ∈I u 1.9 γ̄i and γ
i
, ∀i ∈I ω 1

Ti, ∀i ∈I u 0.5s ω̄ thr
i and −ω thr

i 0.1Hz

summarized in Table 6.1. In addition, we apply the saddle-points dynamics (6.23) to generate

the output of the MPC component in a distributed fashion.

We first show that the bilayered controller defined by (6.1), (6.4), (6.8), (6.9), (6.16) is

able to maintain the transient frequency of selected nodes within the safe region without chang-

ing the equilibrium point (cf. Theorem 6.2.6(i) and (iii)). Although in the dynamics (2.8) we

assume that the power injection is constant, in simulations we perturb all non-generator nodes

by a time-varying power injection. Specifically, for every i ∈ [1,29]N, let pi(t) = (1+δ (t))pi(0)

where

δ (t) =



0.2sin(πt/50) if 0 6 t 6 25,

0.2 if 25 < t 6 125,

0.2sin(π(t−100)/50) if 125 < t 6 150,

0 if 150 < t.

The deviation δ (t)pi(0) has both fast ramp-up and ramp-down periods and a long intermedi-

ate constant period. We have chosen it this way to test the capability of the controller against

both slow-varying and fast-varying disturbances. Figure 6.2(a) shows the open-loop frequency

responses of nodes 30, 31, 32, and 37 (i.e., nodes with the frequency safety requirement). All

four frequency trajectories, which almost overlap with each other, exceed the lower safe fre-
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quency bound 59.8Hz. However, with the controller enabled, in Figure 6.2(b), their frequencies

all evolve within the safe region, and they all return to 60Hz as the disturbance disappears. Fig-

ure 6.2(c) shows the corresponding control signals. Note that, due to our specific choice of ci’s,

the controller tends to use more non-generator control signals (i.e., α3, α7, and α25) than gener-

ator ones (i.e., α31, α32, α33, and α37). Also, note that they split into two groups and the control

signals within each group possess almost the same trajectories.

(a) (b) (c)

Figure 6.2: Frequency and control input trajectories with and without transient frequency
control.

Next we compare the performance of the proposed controller with other approaches. Fig-

ures 6.3(a) and (b) show the frequency trajectories and control signals using the controller with

regional coordination based on network decomposition proposed in Chapter 5. As mentioned in

Remark 6.3.4, although this controller achieves frequency safety, it only allows control cooper-

ation within a limited region, instead of the entire network. This can be seen from Figure 6.3(b),

where, with the same control cost coefficients (cf. Table 6.1), the two groups of control trajec-

tories are not as uniform as those in Figure 6.2(c) and have a larger magnitude. Figures 6.3(c)

and (d) are the frequency and control trajectories with only the top-layer controller, as proposed

in Chapter 4, cf. Remark 6.2.8. Since it is a non-optimization-based control strategy, each con-

trol signal does not cooperate with others. In this specific scenario, the top-layer controller leads

to fluctuations even during the time interval [25,125]s, when the disturbance is constant. This

is because the top-layer controller is myopic, without further consideration for the effects of the
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rest of the network. The economic advantage of the proposed bilayered control can be also seen

by computing the overall control cost over [0,180]s of the proposed controller, the controller

in [ZC19d], and the controller in Chapter 4, which are 163.60, 231.13 and 656.68, respectively.

(a) (b)

(c) (d)

Figure 6.3: Comparison of frequency and control input trajectories with other approaches.

Next, we examine the role of the bottom and top layers in determining the value of the

input signal of our distributed controller. For node 30, Figure 6.4(a) shows that αBL,30 is respon-

sible for the larger share in the overall control signal α30, whereas αT L,30 provides a slightly

tuning during most of the time. If we reduce the penalty d30 from 100 to 10, in Figure 6.4(b),

the dominance of αBL,30 decreases, in accordance with our discussion in Remark 6.2.1. On the
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contrary, if we raise d30 to 1000, the contribution of the top layer becomes much smaller, as

shown in Figure 6.4(c). Figure 6.4(d) shows how the saddle-point dynamics (6.23) converges

to the value of uMPC,30(50) starting from an initial guess. Here we have used εZ = 5 ·10−4 and

εη = εµ = 2.5 ·10−4 to ensure convergence is attained within 1s, cf. Table 6.1.

(a) (b)

(c) (d)

Figure 6.4: Decomposition of the control signal at node 30.

Lastly, we show that the distributed controller is able to steer the frequency to the safe

region from unsafe initial conditions. To do this, we consider the set-up of Figure 3.6 but inten-

tionally disable the controller for the first 30 seconds. For clarity, we only show the frequency

and control trajectories at node 30 in Figure 6.5(a). Note that the frequency quickly moves
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above the safe lower bound after the controller becomes active at t = 30s. Figure 6.5(b) shows

the control signal, where after some brief transient, αBL,30 still dominates the overall control

signal.

(a) (b)

Figure 6.5: Frequency and control input trajectories at node 30 when the controller is only
turned on after 30s. In plot (a), the frequency gradually comes back to the safe region once the
controller kicks in. Plot (b) shows the control signals.
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Chapter 7

Closing remarks

The work of this thesis is motivated by the emerging issues in transient-state estimation

and control raised by the integration of low-inertia renewables into the power grid. This thesis

has started from analyzing transient-state safety subject to disturbances, and then proposed three

transient frequency controllers, followed by discussions and extensions from robustness, control

cost, and distributed implementation.

7.1 Conclusions

In Chapter 3, we have considered the problem of efficiently describing the set of distur-

bances to a power network that do not affect its transient-state safety in terms of frequency and

power flow. Under the assumption that a bound on the amplitude of the disturbance is available,

we have devised a sampling method to provide inner and outer approximations of the transient-

state tolerableness set. These approximations can be computed with arbitrary accuracy, at the

cost of increasing the computational complexity. We have also introduced a metric to measure

the approximation gap and designed an algorithm to optimize it for a given fixed number of

sampling points.

Going beyond transient-state analysis and further controlling transient frequency, from
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Chapter 4 to Chapter 6, we have proposed three different distributed controllers. By establishing

and enforcingconditions on set invariance and set attractivity, we have shown that all three con-

trollers are able to maintain the nodal frequency of actuated buses within a desired safe region

and to recover from undesired initial conditions. Meanwhile, they preserve network asymptotic

stability without shifting the open-loop equilibrium point. In detail, we have shown that the con-

troller proposed in Chapter 4 is Lipschitz continuous, robust against measurement uncertainty,

and simple for implementation, as it requires no communication among control signals regulat-

ing on different buses; however, this controller turns out to be myopic, possessing no prediction

capability, and this may lead to over-reaction and overuse of the control resources. To this aspect,

we proposed the MPC-based controller in Chapter 5 that takes control cost into account. Through

network partition and a careful treatment on transmission lines connecting different regions, we

showed that the controller can be implemented in a partially distributed fashion—each region,

independently of the rest, possesses its own centralized controller in charge of gathering regional

information and broadcasting control signals to controllers within the region. Finally, we pro-

pose a bilayer controller in Chapter 6. Adopting a receding horizon approach, the bottom-layer

controller periodically updates its output, enabling global cooperation among buses to reduce

the overall control effort while respecting stability and soft frequency constraints. The top-layer

controller, as a continuous state feedback controller, tunes the output of the bottom-layer con-

trol signal as required to rigorously enforces frequency safety and attractivity. We have shown

that the entire control structure can be implemented in a distributed fashion, where the control

signal can be computed by having nodes interact with up to 2-hop neighbors in the power net-

work. The bilayer controllers inherit most of the advantages from the previous two controllers

without having their disadvantages: unlike the short-sighted controller in Chapter 4, the bilayer

controller is cable of predicting future disturbance and hence optimally and globally schedules

control resources; unlike the MPC-based controller in Chapter 5, the bilayer controller is prov-

ably Lipschitz in system state, fully distributed, and computationally easy to implement.
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7.2 Future work

Although this thesis is all about transient-state analysis and transient frequency control,

it still leaves (and creates more!) research directions. Here we list a few possible topics.

For the transient-state analysis, due to the need of finding the explicit solution of power

network dynamics, our current result is established on a linearized dynamical model. To this

aspect, it would be interesting to quantify the difference between the tolerableness sets of the

nonlinear swing dynamics and its linearized version. In addition, we assume that the disturbance

can be modeled as the multiplication of a trajectory form and its independent time-invariant

amplitude. Future work may relax the assumption by allowing trajectory-coupled and time-

varying amplitude.

The three transient frequency controllers proposed in this thesis have their own work wor-

thy investigation. In Chapter 4, it would be interesting to further explore the analysis of the effect

of actuator dynamics of the generators on the guarantees on transient frequency and performance

of our controller, and the understanding of the connection between actuation effort and network

connectivity. For the controller in Chapter 5, we may quantify the optimality loss during the pro-

cess of convexification in the open-loop optimization problem, and study the trade-offs between

discretization accuracy, reference trajectory qualification, and computational complexity. Future

work for Chapter 6 will explore the optimization of the sampling sequences employed in the

bottom layer to improve performance, the quantitative evaluation of the contributions of the top-

and bottom-layer control signals, and the acceleration of saddle-point dynamics to reduce the

communication burden. Interestingly, since the choice of prediction model in the bottom layer

cannot affect system closed-loop stability or frequency safety, this presents opportunities for in-

corporating system identification and machine learning techniques to progressively improve the

prediction model quality.

With regards to the controllers proposed in this thesis, there are common theoretical as-
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pects requiring more analysis. Since the underlying power network model we considered ignores

the dynamical influence of voltage and reactive power on voltage angle and frequency, it would

be interesting to extend the current results to more realistic models. Future work will also extend

transient frequency control to the control of transient states consisting of frequency, power flow,

and voltage. In a broader context, we may extend the proposed control methodologies to other

safety-critical systems to improve transient behavior during stabilization.
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