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2Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA

Abstract

Background and Objectives: Oxygen (O») use during neonatal cardiopulmonary resuscitation
(CPR) remains a subject of controversy. The inspired O, concentration during neonatal CPR,

that hastens return of spontaneous circulation (ROSC), allows adequate cerebral and myocardial
O, delivery, and enhances survival to discharge, is not known. The optimal FiO, during CPR
should decrease incidence of hypoxia but also avoid hyperoxia, and ultimately lead to improved
neurodevelopmental outcomes. Due to infrequent need for extensive resuscitation, and emergent
circumstances surrounding neonatal CPR, conducting randomized clinical trials continues to be a
challenge. The goal of this study was to review the evolution of oxygen use during neonatal CPR,
the evidence from animal and clinical studies on oxygen use during neonatal CPR and after ROSC,
the pertinent physiology including myocardial oxygen consumption and cerebral oxygen delivery
during CPR, and outcomes following CPR in the DR and in the neonatal intensive care unit.

Methods: This narrative review is based on recent and historic English literature in PubMed and
Google scholar over the past 35 years (January 1, 1985 — May 1, 2021).

Key Content and Findings: Several studies in animal models have compared ventilation with
different inspired O, concentrations (mostly 21% and 100%) during chest compressions and after
ROSC. These studies reported no difference in short-term outcomes, even with as low as 18%
O,. However, in lamb models of cardiac arrest and CPR, 100% O» during chest compressions

is associated with better oxygen delivery to the brain compared to 21% O,. Abrupt weaning to
21% O, following ROSC followed by titration to achieve preductal SpO, of 85-95% minimizes
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systemic hyperoxia and oxidative stress compared to slow weaning from 100% O, following

ROSC.

Conclusions: Clinical research is needed to arrive at the best strategy for assessment of
oxygenation and choice of FiO, during neonatal CPR that lead to improved survival and
outcomes. In this article, we have reviewed the literature on evidence behind O, use during
neonatal advanced CPR and after ROSC.

Keywords

Oxygen (O»); neonatal resuscitation; neonatal cardiopulmonary resuscitation; hyperoxia; chest
compressions (CC)

Introduction

Methods

Newly born infants infrequently need advanced resuscitation including endotracheal
intubation, chest compressions (CC), medications such as epinephrine, and fluid
administration (1-3). Neonates surviving extensive cardiopulmonary resuscitation (CPR)
are at risk for poor neurodevelopmental outcomes (4). Oxygen (O5) is the most frequently
used drug in newborns during resuscitation in the delivery room (DR). During extensive
CPR including CC for neonatal bradycardia and cardiac arrest, the International Liaison
Committee on Resuscitation (ILCOR) advocates increasing inspired O, to 100%. However,
researchers have reported similar outcomes with the use of lower inspired O, compared to
100% O, during CC (Table 1). Furthermore, evidence has emerged over the past decade that
hyperoxia may be harmful in the post-resuscitation period (5). Optimal oxygen use during
CPR in the neonatal intensive care unit (NICU) especially among preterm infants with
bronchopulmonary dysplasia (BPD) or pulmonary hypertension is not known. Judicious
use of O, during advanced neonatal resuscitation based on robust evidence is warranted

to minimize further tissue injury during resuscitation and post-resuscitation period, as well
as improve long-term outcomes. We present this article in accordance with the Narrative
Review reporting checklist (available at https://pm.amegroups.com/article/view/10.21037/
pm-21-74/rc).

This narrative review is based on recent and historic English literature in PubMed and
Google scholar over the past 35 years (January 1, 1985 — May 1, 2021). More detailed
methods could be found in Table 1.

Evolution of oxygen use in neonatal CPR

Oxygen has been an integral component of neonatal resuscitation for almost two centuries.
Use of 100% O in newborns requiring positive pressure ventilation (PPV) in the DR
remained unquestioned until recently, since perinatal asphyxia is associated with hypoxic
ischemic injury to the brain. However, multiple animal studies have reported increases in
inflammation in the lung, heart, and brain, neurological and brain injury, elevated pulmonary
vascular reactivity, oxidative stress, and activation of transcription factors with neonatal
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exposure to 100% O at birth (6-9). Towards the end of the 20t century, efforts of
investigators resulted in randomized and quasi-randomized trials that demonstrated higher
neonatal mortality, prolonged time to first breath, increased duration of resuscitation, and
higher exposure to O,, lower 5-minute Apgar score, more myocardial and kidney injury,
higher oxidative stress and increased risk of childhood leukemia and cancer when neonatal
resuscitation was initiated with 100% O, as compared to 21% O, in term neonates (10-16).
Thus, there was a clear change in approach towards use of room air at initiation of
ventilation in asphyxiated term neonates by the end of the first decade of 215t century, with
a shift in focus towards improved effectiveness of ventilation (17,18). A recent meta-analysis
by ILCOR supports this approach in term infants (19), although the optimal initial inspired
O, concentration for preterm neonates remains unknown (20).

The goal of neonatal resuscitation is effective ventilation to switch the site of gas exchange
from the placenta to the lungs. When effective ventilation fails to raise the heart rate

>60 beats per min (bpm), CC are indicated (in addition to PPV) to pump deoxygenated
blood from the right ventricle (RV) to the lungs for oxygenation, and oxygenated blood
from the left ventricle (LV) to the coronary and cerebral circulations until return of
spontaneous circulation (ROSC) is achieved (21). Neonatal resuscitation guidelines continue
to recommend increasing the inspired O, to 100% (based on expert opinion) when CC are
needed for severe bradycardia while acknowledging that there is a dearth of evidence in
this topic (21). This stems from an attempt to maximize O, delivery during CPR to the
myocardium to hasten recovery and improve chances of survival, and to the brain in hopes
of improving overall neurodevelopmental and cognitive outcomes by minimizing cerebral
hypoxic injury.

Assessment of oxygenation status during CPR

During CPR, neonates are monitored for adequate chest rise, bilateral breath sounds (in
response to effective PPV) and rise in heart rate by auscultation and electrocardiogram

(in response to effective PPV and/ or CC) (22). Color of the infant is a poor indicator of
tissue oxygenation status (23). An increasing heart rate by electrocardiogram (EKG) [with
palpable pulsations at the base of the umbilical cord to rule out pulseless electrical activity
(PEA)] is the most reassuring sign of effective resuscitation.

When a pulse oximetry probe is placed on the right upper extremity to assess the

preductal capillary O, saturation (SpO>), the oximetry reading is either absent or inaccurate
during severe bradycardia, asystole and during CC owing to poor peripheral perfusion.
Cerebral regional oxygen saturation (CrSO,) can be recorded non-invasively during neonatal
resuscitation by near-infrared spectroscopy. Badurdeen et al., and Zeinali et al., evaluated
the utility of CrSO, monitoring in ovine models of perinatal cardiac arrest, and found that
CrSO, correlated better with cerebral O, delivery than SpO, (24,25). CrSO, may be more
sensitive compared to SpO, in the DR to assess cerebral oxygenation, detect ROSC, and
titrate inspired O,, and requires further investigation (25). We speculate CrSO» is more
reliable than SpO; as it does not depend on pulsatile flow and reflects oxygen delivery
(oxygen content x blood flow) to the brain. In addition, oxygen consumption by the brain
is significantly impaired soon after asphyxia (Figure 1A) (24,26,27). The arteriovenous
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oxygen difference (AVDO,; Figure 1B) in the immediate post-resuscitation period following
cardiac arrest is 1.86+0.6 mL/dL (carotid arterial oxygen content =15.3+2.7 mL/dL; jugular
venous oxygen content =13.5+2.4 mL/dL) (27). In lambs with asphyxial bradycardia and
meconium aspiration (without arrest), the AVDO, in the immediate post-resuscitation period
following cardiac arrest is 0.9+0.4 mL/dL (Carotid arterial oxygen content =14.6+2.5
mL/dL; jugular venous oxygen content =13.9+2.7 mL/dL) (28). These results suggest that
oxygen consumption by the brain is low in neonatal lambs soon after an asphyxial episode.
This results in cerebral venous oxygen saturation fairly similar to arterial oxygen saturation
during the immediate post-asphyxial period.

Several investigators have evaluated oxygenation in the fetus and during fetal-to-neonatal
transition. The fetus is exposed to a PaO, of 27-35 mmHg from the oxygenated umbilical
venous blood (29). Soon after delivery, a healthy newly born infant breathing room air

has a PaO, of 45-80 mmHg. Exposure to room air with 21% O, is adequate to raise the
alveolar PO, (PAO5) and hence the arterial PO, (PaO5), that along with lung aeration results
in pulmonary vasodilation and decrease in pulmonary vascular resistance (PVR) (30,31).
However, in the clinical setting, it is not possible to obtain repeated invasive measurements
including arterial blood gases to assess the oxygenation and ventilation. Many researchers
diligently performed studies in both perinatal and postnatal animal models of asphyxial
arrest in an endeavor to determine the optimal inspired O, concentration during CPR.

Evidence from animal studies (Table 2)

Linner et al. evaluated asphyxiated and bradycardic newborn piglets and compared PPV
with air vs. 100% O for 3 or 30 min during CC (32). The authors observed no difference
in speed of circulatory recovery and cerebral oxygenation (32). The duration of CC was
relatively short in this model of bradycardia. However, 100% O during CC for bradycardia
resulted in very high brain tissue PO, (32). In the setting of inadequate ventilation, the
same authors observed earlier ROSC with one O, breath per minute compared to air (33).
Dannevig et al. compared 21% and 100% O during CPR and reported no difference in
time to ROSC and markers of lung or cerebrospinal fluid inflammatory response (34,35).
Solevag et al. similarly compared 21% and 100% O, during CPR in post-natal piglets and
reported no differences in mean arterial blood pressure, heart rate, pH, pCO», IL-18 or
lactate/pyruvate ratios (36). At the same token, there was an inherent bias in this study
towards 21% O, (Table 2). Additionally, they observed higher SaO, and CrSO in animals
resuscitated with 100% O (36). Subsequently, Solevag et al. also demonstrated lower
myocardial oxidative stress (oxidized/ reduced glutathione ratio 0.1 (0.09-0.12) vs. 0.13
(0.11-0.2), P=0.04, with 21% vs. 100% O, during CC respectively) and improved cardiac
function with the use of room air compared to 100% O, during CPR (37). Recently, Solevag
et al. randomized newborn piglets to receive 18%, 21% and 100% O, concentrations during
CPR, and did not find any difference in time to ROSC or myocardial and frontoparietal
cortical oxidative stress from hypoxia or hyperoxia (38). Thus, from these postnatal piglet
models of cardiac arrest/ bradycardia, room air resuscitation appeared to be safe, and as
effective, but may not be superior to the current practice of using 100% O,.
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Perinatal ovine models of asphyxial arrest provide a window of opportunity to evaluate the
hemodynamics during the fetal-to-neonatal transition with the fetal shunts (patent foramen
ovale and ductus arteriosus), fluid filled lungs and high pulmonary vascular resistance
(39-41). Perez-de-Sa et al. noted very high brain tissue PO, with prolonged ventilation

with 100% O, in severe near-term ovine asphyxia without cardiac arrest (39). Rawat et al.
observed low PaO, (21.6+1.6 mmHg with 21% O, and 23.9+6.8 mmHg with 100% O,) and
cerebral O, delivery (0.05+£0.06 mL/kg/min with 21% O, and 0.11+0.09 mL/kg/min with
100% O5) during CC in term perinatal ovine asphyxial arrest, that were significantly lower
than fetal baseline values (40). Furthermore, they reported significantly higher cerebral O,
delivery at peak of CC and excessive PaO, post-ROSC among lambs ventilated with 100%
O during CC (Table 1). A meta-analysis showed no difference in mortality or time to ROSC
between use of 21% and 100% O during CC (43). However, resuscitation with 21% O,
may lead to inadequate oxygenation, delayed pulmonary transition and elevated PVR which
could further extend the window of hypoxic ischemic injury (44). Therefore, the optimal
inspired O, during CC remains controversial.

Lack of human trials

There are no clinical trials evaluating O, use during neonatal CPR. Emergent situation
and ethical issues preclude performance of such a study in human neonates. Clinical

trials are difficult to conduct due to the infrequent need for CC, emergent clinical
circumstances with inadequate time to obtain parental informed consent. While planning
clinical trials, other factors that contribute to poor outcomes, including etiology of cardiac
arrest, duration of cardiac arrest, need for and number of epinephrine doses, duration of
resuscitation, availability of trained personnel in the DR capable of advanced resuscitative
interventions, should be accounted for as confounding variables while evaluating inspired
O, concentrations during CPR. Multicenter prospective observational studies to collect
clinically important information are being conducted and might be a good source of
information in the absence of randomized clinical trials (4).

Observational studies of infants undergoing CPR and with low Apgar scores provides some
information regarding short- and long-term follow-up of neonates undergoing CC. evidence
in term infants and preterm infants are presented below. These results demonstrate a high
incidence of mortality and neurodevelopmental impairment following advanced CPR at birth
further emphasizing the importance of optimal cerebral oxygenation during CC.

Evidence in term infants

Harrington et al. conducted a systematic review of literature to investigate the outcomes of
infants who had an Apgar score of zero at 10 minutes in the pre-therapeutic hypothermia
era (infants born between January 1991 and December 2004) (45). Eighty-five cases were
identified of which 9 within the Oxford database were closely evaluated. Six died before
discharge, one with severe quadriparesis and microcephaly died at 11 months. One infant
had severe spastic quadriparesis and global delay. One infant had mild disability at 2 years
follow-up. Evaluation of all 94 infants (85 from the literature and 9 in this case series),

88 (94%) either died or had severe handicap; 2 infants (2%) had moderate handicap and
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1 (1%) had mild handicap. Three infants were lost to long-term follow-up. The authors
concluded that an Apgar score of zero at 10 minutes is associated almost universally with

a poor outcome (45). In 2007, in an accompanying editorial, Drs. Carlo and Schelonka
commented on the limitations of Harrington et a/. and concluded that at the present time (in
2007), evidence suggests that resuscitation beyond 10 minutes in neonates without cardiac
activity or other signs of life may not be justified. However, they pointed out that outcomes
of these infants could be significantly improved with therapeutic hypothermia (46). The
AAP/AHA NRP recommendations in 2015 specified that an Apgar score of zero at 10
minutes was a strong predictor of mortality and morbidity in late preterm and term infants
(47). If heart rate was undetectable after 10 minutes of resuscitation, it was reasonable to
stop assisted ventilation in the pre-hypothermia era. However, an individualized decision
based on effectiveness of resuscitation, availability of therapeutic hypothermia and advanced
neonatal care, and family wishes was recommended.

Laptook et al. evaluated 208 infants in a secondary analysis of term infants (=36 weeks’
gestation at birth) infants enrolled in the NICHD NRN cooling trial (48). Twenty-seven
percent of these infants had Apgar scores of 0 to 2 at 10 minutes. Death or disability
occurred in 76% of infants with a 10-minute Apgar score of 0 (19/25). Death occurred

in 48% and among 13 survivors, 7 (54%) had moderate to severe disability. Six infants
survived without moderate or severe disability with a Mental Developmental Index (MDI) of
87+9 (range, 73-100) (48).

Shah et al. evaluated 13 infants (gestational age =35 weeks) with Apgar score of zero at 10
minutes admitted to the NICU in the era of therapeutic hypothermia from Western Australia
(49). Out of the 5 survivors, three had normal cognitive scores (100, 100 and 110) on
Bayley 111 assessment at 2 years of age and one infant had a normal Griffiths score of 103
at 1 year. Only one infant developed severe spastic quadriplegia (49). A recent systematic
review by ILCOR included 579 newborns from 16 studies with ongoing need for CPR

at 10 min after birth for asystole, bradycardia or PEA. Newborns with ongoing need for
CPR at 10 min after birth are at increased risk for mortality and neurodisability, although
survival without neurodevelopmental impairment is possible (4). These results have led to
revision of guidelines. The revised NRP recommendations state that in a newly born baby
with confirmed absence of heart rate after all appropriate steps are performed, cessation of
resuscitation efforts may be considered around 20 minutes after birth. This decision should
be individualized based on patient and contextual factors (50).

preterm infants

Sproat et al. studied 22 babies with no detectable heart beat at 10 minutes of age among
35,805 births between 2009 and 2013 (51). These included 7 infants between 24 and 31
weeks’ gestation. In four of these preterm infants, heart rate was detected at 15, 12, 35 and
17 minutes but they all died at 30 minutes, 48 h, 10 h and 72 h respectively. The other 3
preterm infants could not be resuscitated. In contrast, 55% of term (>37 weeks gestation)
babies survived and 67% of survivors had a normal 2-year neurodevelopmental outcome in
this study (51).
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Similarly, the Canadian Neonatal Network reported poor survival (35%) among infants <32
weeks gestation at birth with an Apgar score of zero at 10 minutes compared to term (=36
weeks gestation) infants with a survival to discharge of 61%. Among preterm infants <32
weeks gestation with an Apgar score of zero at 10 minutes, only 5/31 (16%) survived

to NICU discharge without brain injury. In this preterm <32 weeks gestation category,
mortality before hospital discharge remained high (39%) even when the Apgar score was
1-2 or 3-5 at 10 minutes (52).

We need multicenter observational studies that record inspired oxygen used during

CPR. Although invasive monitoring of hemodynamics and recurrent blood sampling for
assessment of gas exchange may be challenging in the clinical settings, human trials can
collect data on FiO,, CrSO,, and SpO, and will enable long term follow-up for assessment
of survival and neurodevelopmental outcomes.

Myocardial energy and oxygen demand during CPR

Animal models of neonatal bradycardia and cardiac arrest have helped investigators explore
myocardial energy and oxygen demand during CC. Newborns who remain persistently
bradycardic in the DR have failed to respond to early effective ventilation, and have poor
pulmonary vascular transition, hypoxemia and severe metabolic acidosis (53). In such severe
asphyxia, the myocardium has been depleted of its energy substrates such as ATP (54).

In these neonates, CC are indicated to allow adequate coronary arterial blood flow to
kick-start the heart. Coronary blood flow occurs solely in diastole in a normal cardiac

cycle and during the “decompression” phase of CC due to high right atrial pressures during
the compression phase of CC (Figure 2A-2C) (54). Delivery of oxygenated blood to the
myocardium can potentially facilitate aerobic metabolism with mitochondrial generation

of ATP to restore the myocardial function. Additionally, CPR is followed by an intense
sympathoadrenal response increasing the systemic vascular resistance and enabling blood
flow to the brain (55). A particular challenge in newly born infants is the presence of ductus
arteriosus which prevents buildup of diastolic pressure during CC for cardiac arrest. Vali et
al. have reported low diastolic pressures such as 9 mmHg associated with successful ROSC
in the perinatal lamb model (56). During decompression phase, such low diastolic pressures
appear to lead to adequate coronary perfusion pressure and coronary flow (Figures 2,3) (53).
Immediately after birth, following clamping of the umbilical cord and ventilation of the
lungs with 21% oxygen, carotid flow, aortic pressure and pulmonary flow rapidly increase
(Figure 4A). The pulmonary flow is predominantly forward with minimal retrograde flow
during diastole due to high PVR and bidirectional ductal shunting (Figure 4A). In contrast,
pulmonary flow is bidirectional with minimal forward flow during chest compressions but
significant retrograde flow during the decompression phase (Figure 4B). This results in
minimal effective pulmonary flow to support gas exchange during CPR for cardiac arrest.
Hence, providing 100% oxygen during CC for cardiac arrest might benefit by reducing the
duration of CPR and increase oxygen content in the low flow volume of pulmonary venous
return (Figure 4B).

Meanwhile, the pumping of deoxygenated blood from the RV to the lungs is a requirement
to enable adequate gas exchange and oxygenation, especially following early cord clamping
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and removal of placental source of oxygenated blood. Furthermore, the presence of

fetal shunts with persistent high PVR (due to hypoxic pulmonary vasoconstriction)

diverts deoxygenated blood away from the lungs and towards the systemic circulation

(57). Effective ventilation of the lungs with supplemental O, can potentially mediate
increased pulmonary blood flow and therefore, enable gas exchange at the alveolar-capillary
membrane (58). For the fetus who was exposed to a maximum PO, of 27-35 mmHg

from the umbilical venous blood, any amount of O, supplementation (even 21% O5)

may be surplus in aiding pulmonary vasodilation (29). Simultaneously, adequate cerebral
perfusion in order to minimize brain injury is desired. The goal is to supplement with just
enough inspired O, that bring about decrease in PVR along with lung aeration strategies
during CPR, with optimal coronary and cerebral perfusion, while not causing toxicity from
hyperoxia. However, Rawat ef a/. demonstrated that gas exchange during CPR is suboptimal
(40). The carotid blood flow, PaO, and cerebral O, delivery are very low during CPR both
with 21% and 100% O, supplementation. Thus, more intricate research in warranted to
decipher the optimal strategy of oxygenation during CPR.

Epinephrine is a catecholamine with inotropic, chronotropic, lusitropic, and vasoconstrictor
properties. Vasoconstriction mediated by effect of epinephrine on a adrenergic receptors

are primarily responsible for its effects on increasing systemic vascular resistance and
coronary perfusion pressure during neonatal CPR (59,60). However, B-adrenergic effects

of epinephrine may increase myocardial work and oxygen demand (61). In addition,
epinephrine is a pulmonary vascular constrictor that increases pulmonary vascular resistance
further reducing the oxygen uptake and is associated with persistent pulmonary hypertension
(62).

Cerebral oxygen delivery and consumption after ROSC

In the immediate post-ROSC period, hypercapnia from the accumulated arterial PCO,
results in post-ischemic cerebral hyperemia. Following ROSC, there is a swift increase in
cerebral blood flow, cerebral vascular blood pressure and oxygen saturation (SaO5) resulting
in an increase in cerebral oxygen delivery (24). Gradual weaning of inspired O, down from
100% based on NRP recommended preductal SpO, targets in asphyxiated term lambs after
ROSC is accompanied by a rapid increase in cerebral O, delivery and PaO5 that remained
higher and above the physiological range in term newborn lambs ventilated with room air
until 10-15 min after ROSC (27). Moreover, the increased cerebral O, delivery following
ROSC is associated with a decrease in cerebral O, consumption due to slowed metabolism
(24-27), that may result in cerebral hyperoxemia, generation of excessive oxygen free
radicals and potential toxicity with cerebral tissue injury.

Infants surviving severe hypoxic ischemic encephalopathy (HIE), especially after requiring
extensive resuscitation including CC are at risk of poor neurodevelopmental outcomes

(4). These poor outcomes are attributed to cerebral reperfusion injury over several hours
following the perinatal asphyxial event. However, the excess oxygen free radicals in the
cerebral circulation that are not being consumed may contribute to further tissue injury and
need further investigation. Kapadia et a/. observed an association between high PaO, at

1 hour after birth with increased incidence of moderate to severe HIE in newborn infants
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with perinatal metabolic acidosis (5). Additional brain injury can potentially be averted by
avoiding excessive O, supplementation after ROSC. The Pediatric Life Support guidelines
from the 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency
Cardiovascular Care Science With Treatment Recommendations (CoSTR) recommend
targeting normoxemia as soon as ROSC is established (63). Optimal O, supplementation
in the post-ROSC period is listed as a knowledge gap by the recent neonatal resuscitation
guidelines (21).

Optimal oxygen supplementation following chest compressions

Existing neonatal resuscitation guidelines recommended titrating inspired O, down as soon
as the heart rate recovers to >60 bpm and a reliable SpO, signal is obtained (21). Once the
neonate recovers with a sustained spontaneous heart rate following CC, there is a dramatic
increase in reperfusion of organs, especially to the brain, even in the presence of varying
degrees of myocardial dysfunction (64). During this phase, aiming to decrease excessive
cerebral O, delivery, researchers have investigated abrupt weaning of inspired O, to 21%
immediately following ROSC (27). In a perinatal asphyxial cardiac arrest lamb model,
gradual weaning of inspired O, down from 100% O, (standard of care) was compared

to abrupt weaning of inspired O, to 21% as soon as ROSC occurred. Abrupt decrease to
room air followed by titrating up to target preductal SpO, per NRP resulted in stable PaOo,
cerebral O, delivery and SaO, following ROSC (27). In stark contrast, gradual weaning
down from 100% O resulted in excessive cerebral O, delivery and PaO,, with no difference
in cerebral O, extraction between the two weaning strategies. Moreover, abrupt weaning to
room air was protective against oxidative stress [assessed by measurement of whole blood
oxidized (GSSG), reduced (GSH), and oxidized to reduced glutathione ratios (GSSG/GSH)]
when compared to gradual weaning down from 100% O, (Table 2) (27). These findings
were corroborated by Badurdeen ef al., who identified deep grey matter hyperoxia and
mitochondrial dysfunction with gradual wean (current standard), whereas rapid wean to 21%
after ROSC reduced hyperoxia and mitochondrial dysfunction while maximizing blood O,
content during CPR (42). Thus, an intervention as simple as decreasing to room air and
subsequently titrating up on O, if needed to target preductal SpO, per NRP guidelines may
minimize any further and unnecessary cerebral O, exposure and oxidative stress. However,
preterm newborns and bradycardic neonatal models have not been evaluated. Additionally, it
is not known if delayed cord clamping or umbilical cord milking during CC may be helpful
in diluting the higher PaO, by the lower PaO, from the umbilical venous blood post-ROSC
after 100% O, resuscitation.

During delivery room resuscitation, it may be practically difficult to titrate inspired O,
every 30 seconds to achieve normoxemia, especially because PaO is not measured by
repeated blood gases. Furthermore, some infants may have lung parenchymal diseases, such
as meconium aspiration syndrome or surfactant deficiency, and may require more inspired
05, to achieve target preductal SpO,.
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Outcomes and optimal oxygenation during CPR in the NICU

Neonatal CPR has been reported in 1-3% of all the NICU admissions (65). However,

the incidence of NICU-CPR among extremely preterm infants is as high as 10-34% (66).
Foglia et al. performed a single center retrospective cohort study of NICU patients <1

year of age requiring CPR over a 4-year-period, that included 162 CPR events in 113
infants (~2.2% of all NICU admissions) with median gestational age of 28 weeks (65).
Respiratory compromise was the primary etiology of the event in 77% whereas primary
cardiopulmonary arrest occurred in 20%, and 81% of events occurred while on invasive
mechanical ventilation. Epinephrine was administered in 30% of the events. Ninety-one
percent of the infants (103/113) achieved ROSC, 81% (92/113) survived at least 24 hours
after CPR, and 61% (69/113) survived to hospital discharge. Duration of CPR {median
[interquartile range]: 1 min [1-4] in survivors vs. 5 min [2-24] in non-survivors}, and
epinephrine administration (1% of survivors vs. 61% of non-survivors) were different
among survivors and non-survivors, while inotrope infusion prior to CPR and epinephrine
administration independently affected survival to discharge (65). These findings were
corroborated by Ahmed et a/., with higher NICU-CPR incidence with decreasing gestational
age and worse outcomes with increasing CPR duration in a multicenter retrospective study
over 6 years from 10 centers (67). Similarly, Ali et al. conducted an elegant multicenter
retrospective study from 4 quaternary NICUs in USA over a 5-year period (68). CPR

was required in 1.2% of the NICU admissions (200/17,358). Majority of newborns who
received CPR in NICU were preterm {median [IQR] gestational age 29 [26—-36] weeks},
were receiving mechanical ventilation (79%, 157/200), with acute respiratory compromise
as the etiology in 91% (182/200), and 45.5% survived to hospital discharge. Mechanical
ventilation, vasopressor, antibiotic and inhaled nitric oxide therapies at time of arrest
decreased likelihood of survival to discharge (68). None of these published studies mention
about oxygen supplementation or oxygenation characteristics during CPR in the NICU.
Further, it is not known if continued mechanical ventilation (especially high frequency
ventilation) can improve oxygenation and hasten ROSC during CPR in the NICU when
compared to bag and mask ventilation.

Long term impact of oxygen exposure during neonatal CPR

There are no published studies comparing long-term effects of neonatal exposure to O,
specifically during CPR. Newborn animal models of asphyxia and persistent pulmonary
hypertension have clearly demonstrated objective evidence of hyperoxia in the form of

high brain tissue PaO, and increase in oxygen free radicals following 100% O, ventilation
(39,69). Even brief exposure to O, can be toxic in a newly born infant and is associated with
adverse outcomes in the long run (10,13-16). These are illustrated by the clinical studies

in asphyxiated neonates demonstrating increased mortality, oxidative stress and childhood
leukemia (70).

Conclusions

During CC for cardiac arrest, pulmonary, coronary, and cerebral blood flow along with PaO»
are very low. In this situation, the current recommendation to use 100% inspired O, appears
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prudent based on current animal data. During CC for bradycardia, the optimal FiO, is not
known and there does not appear to be a significant difference with the use of 21% or
100% oxygen. Following ROSC, there is evidence of cerebral hyperoxia and hyperoxemia
in the post-resuscitative period with slow weaning from 100% O,. Evidence from recent
animal studies suggest that post-ROSC hyperoxia can be avoided by abrupt/rapid decrease
of inspired O, immediately after ROSC. Clinical trials that are well designed, sufficiently
powered, and well executed comparing various inspired O, concentrations during CPR
and O, weaning strategies after ROSC are essential to answer these key questions but are
difficult to conduct. In the absence of clinical trials, large observational databases collecting
information on neonatal CPR provide the best evidence. In addition, follow-up of recruited
neonates to assess the survival, short-term pulmonary and cardiovascular outcomes, and
long-term cardiovascular and neurodevelopmental outcomes is of paramount importance.
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Figurel.
Change in carotid arterial and jugular venous oxygen content after recovery from cardiac

arrest and bradycardia. Change in carotid arterial and jugular venous O, content following
ROSC in a lamb model of cardiac arrest are shown in (A). The AVDOs is low in the

first 10 min after ROSC indicating reduced cerebral O, consumption after recovery from
asphyxial arrest in term newborn lambs. The typical AVDO; in fetal and neonatal lambs is
shown in the yellow box in (A). Carotid arterial and jugular venous oxygen content, and
arteriovenous differences (AVDO,) after ROSC from lamb models of cardiac arrest induced
by umbilical cord compression [B, (i)] and bradycardia [with meconium aspiration, (B),
(ii)] are presented as bar graphs. These suggest that oxygen consumption by the brain is
low in neonatal lambs following recovery from cardiac arrest and bradycardia. Copyright
Satyan Lakshminrusimha. O,, oxygen; ROSC, return of spontaneous circulation; AVDO»,
arteriovenous difference in oxygen content.
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Intrinsic beats —immediate postnatal period B Chest compressions—for cardiac arrest
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Figure 2.
Changes in hemodynamics and timing of flows during intrinsic heart beats in a BIOPAC

snapshot and an illustration. Changes in aortic pressure, carotid artery blood flow,
pulmonary blood flow, ductus arteriosus blood flow and coronary artery blood flow during
spontaneous heartbeat are depicted in (A). Pink highlight indicates timing of systole during
an intrinsic heartbeat. Except forward coronary flow that occurs during diastole, all the
other blood flows (carotid, pulmonary and ductal) occur during systole (A). During chest
compressions (B), there is forward flow across the aorta, carotid artery, pulmonary artery
and ductus arteriosus (right-to-left) depicted by the positive deflection in the BIOPAC
snapshot (pink highlight indicating time of chest compressions). However, there is no
forward blood flow across the coronary artery during chest compressions, and the forward
flow occurs during the decompression phase (diastole). Illustration of pressure and flow
changes in the heart chambers during chest compressions for cardiac arrest are shown in
(C). During chest compressions/“systole” (left hand side of the figure), the venous valves
are closed (preventing back flow of blood in inferior vena cava), the right atrial pressure is
increased, along with open pulmonary and aortic valves, allowing forward flow to the PA,
ductus arteriosus (ductus) and ascending aorta. However, there is no forward coronary blood
flow during CC as there is no gradient between aortic pressure and right atrial pressure.
The pulmonary flow may be limited by compressed lung with increased pulmonary vascular
resistance during CC. On the other hand, during decompression phase of CC/“diastole”,
the venous valves and atrioventricular valves are open, allowing forward flow from atria to
ventricles, but the pulmonary and aortic valves are closed, and forward blood flow occurs
in the coronary arteries in between the CC. Furthermore, the flow from left to right across
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the ductus arteriosus during the decompression phase prevents the increase and build-up
of diastolic pressure. Copyright Satyan Lakshminrusimha. PA, pulmonary artery; CC, chest
compressions; PV, pulmonary veins; PVR, pulmonary vascular resistance.
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Coronary perfusion pressure—spontaneous vs. chest compressions
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Figure 3.
Coronary perfusion pressure during spontaneous heartbeats compared to during CC. During

spontaneous heartbeat, the aortic pressure is normal, with very low right atrial pressure
(BIOPAC snapshot), allowing a gradient between diastolic blood pressure and right atrial
pressure of ~15 mmHg which is the coronary perfusion pressure. Forward carotid blood
flow, ETCO, and EKG are also shown. However, during CC (right hand side of the figure)
for cardiac arrest, the aortic diastolic pressure is lower, and the right atrial pressure is higher
approaching the diastolic pressure, thus decreasing the difference to 2-3 mmHg resulting in
lower coronary perfusion pressure. Reduced carotid artery blood flow (forward flow during
CClsystole) and dampened ETCO, (due to low pulmonary circulation) are also depicted.
Copyright Satyan Lakshminrusimha. CC, chest compressions; ETCO», end tidal carbon
dioxide; EKG, electrocardiogram.
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Figure 4.

Differences in carotid and pulmonary hemodynamics during CC. (A) Shows carotid flow,
aortic pressure, and pulmonary flow during spontaneous heart beats immediately after birth
in term lambs ventilated with 21% Oxygen after cord clamping from a BIOPAC shapshot

in non-asphyxiated lambs. Immediately after birth, following clamping of the umbilical cord
and ventilation of the lungs with 21% oxygen, carotid flow, aortic pressure and pulmonary
flow rapidly increase. The carotid flow is always antegrade both during systole and diastole.
The pulmonary flow is predominantly forward with minimal retrograde flow during diastole
due to high pulmonary vascular resistance and bidirectional ductal shunting (A). Whereas,
(B) is a BIOPAC snapshot depicting changes in hemodynamics during CC and at ROSC.
The pink, red and blue horizontal bold lines indicate “zero” value for the carotid flow,

aortic pressure and pulmonary flow respectively. During CC, pulmonary flow is bidirectional
with minimal forward flow during chest compressions but significant retrograde flow

during the decompression phase (B). This results in minimal effective pulmonary flow to
support gas exchange during CPR for cardiac arrest. Hence, providing 100% oxygen during
CC for cardiac arrest might benefit by reducing duration of CPR and increasing oxygen
content in the low flow volume of pulmonary venous return (B). In contrast, carotid flow

is predominantly antegrade with only minimal retrograde flow during the decompression
phase. We speculate that these differences are secondary to extrathoracic location of carotid
vessels—resulting in positive pressure gradient during chest compressions vs. intrathoracic
location of pulmonary vessels (as shown in Figure 2C). Copyright Satyan Lakshminrusimha.
CC, chest compressions; ROSC, return of spontaneous circulation; CPR, cardiopulmonary
resuscitation.
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